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BASED COMPRESSED A I R  ENERGY STORAGE SYSTEMS 
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Argonne Nat iona l  Laboratory 
9700 South Cass Avenue 

Argonne, I l l i n o i s  60439 

ABSTRACT 

The a p p l i c a t i o n  of  a  gene ra l  Compressed A i r  Energy S to rage  (CAES) power system des ign  
o p t i m i z a t i o n  methodology t o  t h e  c l a s s  of CAES p l a n t s  having a q u i f e r  a i r  s t o r a g e  r e s e r v o i r s  
i s  d i scus sed .  The r e s u l t i n g  procedure i nco rpo ra t e s  performance and economic models f o r  
t h e  a q u i f e r  r e s e r v o i r ,  w e l l s ,  p ip ing ,  and a i r  compression system. Its u s e  a l l ows  i d e n t i -  
f i c a t i o n  of des igns  which min imize - the  subsystem power gene ra t i on  c o s t  (mills/kWh), wh i l e  
s a t i s f y i n g  c o n s t r a i n t s  r e l a t e d  t o  t h e  geology, equipment, and u t i l i t y  load  curve .  The 
des ign  s p e c i f i c a t i o n  r e s u l t i n g  from t h e  op t imiza t ion  procedure i nc ludes :  l and  a r e a  t o  be  
purchased,  w e l l  depth,  number of w e l l s ,  w e l l  spac ing ,  we l lbo re  d iameter ,  main p i p e l i n e  
d iameter ,  r equ i r ed  compressor system power and d i scha rge  p re s su re ,  and r equ i r ed  compres- 
s i o n  t i m e  d u r a t i o n s  f o r  each day of t h e  week. A c a p i t a l  and ope ra t i ng  c o s t  summary f o r  
t h e  optimum des ign  is a f i n a l  ou tpu t  of t h e  procedure.  This  paper reviews t h e  models and 
c o n s t r a i n t s  incorpora ted  i n  t h e  op t imiza t ion  procedure.  Although t h e  b a s i c  framework i s  
well-developed, some re f inements  o r  a d d i t i o n s  t o  the ,model ing  may be  necessary  t o  improve 
t h e  r e s u l t s ;  t h e s e  p o s s i b i l i t i e s  a r e  d i s cus sed .  Resu l t s  of c a s e  s t u d i e s  a r e  includ.ed i n  
t h e  paper i n  o r d e r  t o  i l l u s t r a t e  t h e  power and p o t e n t i a l  economic impact of t h e  techniques 
descr ibed ,  t o  demonstrate  some of t h e  economic t r a d e o f f s  which occur  i n  t h e  op t imal  des ign  
of a q u i f e r  reservoi r -based  CAES systems,  and t o  show t h e  i n f l u e n c e  of  c e r t a i n  c o s t  para- 
meters. 

INTRODUCTION 

A major p o r t i o n  of t h e  Department of 
Energy r e sea rch  program on Compressed A i r  
Energy S to rage  (CAES) i s  devoted t o  addres- 
s i n g  a i r  r e s e r v o i r  concerns.  I n  t h e  c a s e  
of cons tan t -pressure  (hard rock)  caverns,  
i t  is q u i t e  easy t o  d e s i g n  a  r e s e r v o i r  
which s a t i s f i e s  t h e  planned ope ra t i ng  
c y c l e  of  t h e  CAES p l a n t ,  once t h e  t u r b i n e  
system a i r  supply requirements  have been 
s p e c i f i e d .  It is  then  s t r a i g h t f o r w a r d  t o  
i n c l u d e  t h e  e f f e c t  of cavern  c o s t s  i n  eco- 
nomic s t u d i e s  of turbomachinery op t ions  
(e.g. ,  see Ref.  1 ) .  The s i t u a t i o n  i s  some- 
what more complicated . in t h e  c a s e  of con- 
stant-volume (usua l ly  sa l t  c a v i t y )  reser- 
v o i r s .  For t h e s e  r e s e r v o i r s ,  t h e  peak 
s t o r a g e  p r e s s u r e  ( r e l a t e d  t o  t h e  amount of 
cush ion  a i r )  must be  s e l e c t e d ,  which in-  
vo lves  f i n d i n g  t h e  economic ba l ance  between 
a ir  compression and cavern  volume c o s t s .  
The r e l a t i v e  des ign  s i m p l i c i t y  of hard rock  
and s a l t  c a v i t y  r e s e r v o i r s  ha s  r e s u l t e d  i n  
a DOE-sponsored r e sea rch  emphasis on t h e  
long-term s t a b i l i t y  o r  r e l i a b i l i t y  of t h e  
r e s e r v o i r s  undergoing CAES p l a n t  o p e r a t i n g  

cond i t i ons .  

When a q u i f e r s  a r e  cons idered  f o r  CAES 
r e s e r v o i r  a p p l i c a t i o n ,  t h e  number of de s ign  
parameters  t o  b e  s e l e c t e d  i s  much l a r g e r  
and, i n  a d d i t i o n ,  t h e r e  a r e  many c o n s t r a i n t s  
imposed by t h e  o p e r a t i n g  c y c l e ,  t h e  i n t e r -  
a c t i o n  w i t h  aboveground machinery, and the  
g e o l o g i c a l  c h a r a c t e r i s t i c s .  These f a c t o r s  
g i v e  a  g r e a t  i n c e n t i v e  t o  t h e  c a r e f u l  ex- 
p l o r a t i o n  of a q u i f e r  system des ign  op t ions ,  
s o  t h a t  t h e  economic b e n e f i t  of t h e  p l a n t  
can b e  maximized wh i l e  s imul taneous ly  in-  
s u r i n g  i t s  long-term c a p a b i l i t y  t o  meet t h e  
p l a n t  o p e r a t i o n a l  c r i t e r i a .  The primary 
g o a l  of t h e  work r epo r t ed  h e r e  has  been t o  
develop an a p p r o p r i a t e ,  comprehensive, 
means f o r  performing t h e s e  des ign  s t u d i e s .  
The performance, economic and des ign  o p t i -  
m iza t ion  c o n s i d e r a t i o n s  which form t h e  
bases  of t h e  des ign  procedure a r e  descr ibed  
and i l l u s t r a t e d  w i t h  example c a s e  s tudy  
r e s u l t s  i n  subsequent  s e c t i o n s  . 
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Because of t h e  complexity of a n  aqui- 
f er reservoi r -based  CAES system, bo th  i n  
terms of subsystem i n t e r a c t i o n s  and des ign  
c o n s t r a i n t s ,  i t  was decided t o  o r i e n t  t h e  
formula t ion  of  t h e  des ign  procedure toward 
t h e  u t i l i z a t i o n  of gene ra l i zed ,  computer- 
o r i e n t e d  techniques  f o r  so lv ing  non l inea r ,  
cons t r a ined  op t imiza t ion  problems. With 
t h i s  approach, 'a b a s i c  framework f o r  system 
des ign  can b e  developed s o  that.  new improve- 
ments i n  t h e  t e c h n i c a l  o r  economic models 
can b e  e a s i l y  i nco rpo ra t ed .  I m p l i c i t l y ,  
t h e  cho ice  of bas ing  t h e  des ign  procedure 
on modern op t imiza t ion  techniques r e f l e c t s  
a r e c o g n i t i o n  of t h e  confusion and inade- 
quacy which could r e s u l t  from applying t h e  
uore t r a d i t i o n a l  "parmeter study" approach 
t o  a  problem of t h i s  magnitude. 

SYSTEM CONSIDERATIONS 

I n  p r i n c i p l e ,  and probably i n  p r a c t i c e ,  
t h e  des ign  o p t i m i z a t i o n  of an  e n t i r e  CAES 
system could b e  handled a s  one l a r g e  prob- 
l e m ,  e s p e c i a l l y  i f  t h e  models employed f o r  
i n d i v i d u a l  system components were n o t  too  
d e t a i l e d .  However, c o n s i d e r a t i o n  of a  
gene ra l  formula t ion  l e d  t o  t h e  development 
of a n  advantageous decoupling s t r a t e g y  
which enab le s  s e p a r a t e  op t imiza t ion  of par- 
t i c u l a r  subsystems wi thout  compromising 
t h e  op t ima l  system des ign .  Each of t h e s e  

. subop t imiza t ions  is ,  of course ,  s imp le r  t o  
perform t h a t  t h a t  of t h e  f u l l  problem. 

I n  broad terms, a  CAES power system 
comprises t h e  fol lowing:  t h e  a i r  compres- 
s i o n  t r a i n  (compressors,  i n t e r c o o l e r s ,  a f -  
t e r c o o l e r ) ;  compressed a i r  p ip ing ;  a i r  
s t o r a g e  r e s e r v o i r  (any t y p e ) ;  power genera- 
t i o n  t r a i n  (e .g . ,  t u r b i n e s ,  combustors, re- 
c u p e r a t o r ) ;  r e v e r s i b l e  motor /genera tor  and 
t h e  u t i l i t y  g r i d .  Although t h e  u t i l i t y  
g r i d  i s  n o t  p h y s i c a l l y  p a r t  of t h e  CAES 
p l a n t ,  t h i s  i n t e r a c t i o n  should be  consid- 
e red  i n  des ign ing  t h e  p l a n t ,  s i n c e  t h e  de- 
s i g n  ( c o s t )  of t h e  p l a n t  can i n f l u e n c e  
u t i l i t y  usage  (ope ra t i ng  c y c l e ) .  Conver- 
s e l y ,  t h e  u t i l i t y  load  c y c l e  a £  f e c t s  t h e  
p l a n t ' d e s i g n  ( i . e . ,  a  coupl ing e x i s t s ) .  
For t h e  purpose of de s ign  o p t i m i z a t i o n  t h e  
o v e r a l l  system can be  decomposed i n t o  t h r e e  
subsystems ( s e e  F ig .  1 ) .  The f i r s t  subsys- 
t e m  (subsystem 1 )  comprises t h e  a i r  com- 
p r e s s i o n  t r a i n ,  t h e  main p ip ing  and a i r  
d i s t r i b u t i o n  system and t h e  a i r  s t o r a g e  
r e s e r v o i r .  

UTILITY GRID I-SUBSYSTEM 1 ------ 
I 

AFTERCOOLER I 
L,-------,,--,,- I 

RECUPERATOR 
I 

I - " t I 
I LJ ------,- J 

. MAIN PIPING I 
v AND I 

AIR D ~ S T R I B U T ~ O N ~  

I 
L 

Fig .  1. Typical  CAES Power System 

Subsystem 2 i s  t h e  power gene ra t i on  t r a i n .  
The motor /genera tor  and t h e  u t i l i t y  g r i d  
are inco rpo ra t ed  i n  t h e  t h i r d  group (sub- 
system 3 ) .  It i s  important  t o  n o t e  t h a t  
t h i s  p a r t i c u l a r  decomposition is  g e n e r a l ,  
i n  t h e  s e n s e  t h a t  i t  i s  n o t  dependent upon 
t h e  i n t e r n a l  de s ign  of any p a r t i c u l a r  sub- 
system. Furthermore, i t  minimizes t h e  num- 
b e r  of coupl ing  v a r i a b l e s .  That i s ,  t h e  
i n t e r a c t i o n s  of subsystems 1 and 2 w i t h  
subsystem 3 a r e  dependent on only one coup- 
l i n g  "var iab le"  -- t h e  u t i l i t y  load cyc l e .  
The i n t e r a c t i o n s  between subsystems 1 and 
2 ( t h e  ones of p r i n c i p l e  concern t o  t h e  
p l a n t  de s igne r )  a r e .dependen t  on only t h r e e  
coupl ing  v a r i a b l e s  -- t h e  i n l e t  p r e s s u r e  t o  
t h e  power gene ra t i on  t r a i n  (pti) , t h e  spe- 
c i f i c  a i r  mass flow r a t e  (6') and t h e  u t i l -  
i t y  load  cyc l e .  

The c r i t e r i o n  f o r  optimum des ign  i s  
chosen t o  b e  t h e  t o t a l  normalized c o s t  (C) 
of t h e  system ( i . e . ,  c o s t  p e r  u n i t  of e lec-  
t r i c i t y  g e n e r a t e d  by t h e  CAES power p l a n t ) .  
This  t o t a l  c o s t  i s  t h e  sum of t h e  i n d i v i d u a l  
subsystem normalized ope ra t i ng  cos t s . *  The 
c o s t s  have t o  b e  minimized s u b j e c t  t o  v a r i -  
ous performance and t e c h n i c a l  c o n s t r a i n t s  . 
The i m p l i c a t i o n  f o r  CAES p l a n t  des ign  i s  
t h a t ,  f o r  a  g iven  u t i l i t y  load  cyc l e ,  a  sub- 
op t imiza t ion  of  subsystem 1 would provide  

0  t h e  minimum subsystem ope ra t i ng  c o s t  (C1) 
and va lues  f o r  t h e  corresponding subsystem 
des ign  v a r i a b l e s ,  a s  a  f u n c t i o n  of t he  
coupl ing v a r i a b l e s  -- pti and k' .  Simi l a r  
op t imiza t ion  f o r  subsystem 2 would y i e l d  

* 
Typica l ly  t h e  normalized ope ra t i ng  c o s t s  
i n c l u d e  f u e l  c o s t s ,  maintenance, charge  
r a t e  on c a p i t a l  investment ,  e t c .  



CQ ( t h e  minimum ope ra t i ng  c o s t  of subsystem 
- 2 r a n d  i t s  optimum des ign ,  as a  f u n c t i o n  of 

t h e  coupl ing v a r i a b l e s  only.  F i n a l l y ,  t h e  
sum of CO and C! can b e  minimized by inspec- 
t i o n  t o  ae te rmine  t h e  optimum va lues  of t h e  
coupl ing v a r i a b l e s ,  t h e  minimum p l a n t  c o s t  
(C*) and t h e  op t imal  p l a n t  des ign .  The 
process  can obviously b e  expanded ( i n  pr in-  
c i p l e )  t o  i n c l u d e  v a r i a t i o n s  i n  t h e  u t i l i t y  
load c y c l e  and c o n s i d e r a t i o n  of  t h e  r e su l -  
t i n g  economic b e n e f i t s  o r  p e n a l t i e s  t o  t h e  
u t i l i t y .  A noteworthy c o r o l l a r y  of t h e  
approach descr ibed  i s  t h a t  changes i n  t h e  . 
des ign  op t ions  cons idered  (e .g . ,  t u r b i n e s  
v s .  p i s t o n  expanders) i n  one subsystem do 
n o t  i n v a l i d a t e  t h e  o p t i m i z a t i o n  r e s u l t s  f o r  
t h e  o t h e r  subsystem. The remainder of t h i s  
paper is  confined t o  c o n s i d e r a t i o n  of t h e  
des ign  of a  p a r t i c u l a r  v a r i e t y  of subsystem 
1 -- one wi th  an  a q u i f e r  r e s e r v o i r .  

AQUIFER RESERVOIR 
TECHNICAL CONSIDERATIONS 

The des ign  of a q u i f e r  r e s e r v o i r s  f o r  
CAES r e q u i r e s  i n t e g r a t i o n  w i t h  t h e  charac- 
t e r i s t i c s  of t h e  aboveground machinery, 
p ip ing ,  and t h e  u t i l i t y  load  c y c l e .  The 
des ign  a l s o  depends g r e a t l y  upon s i te -spe-  
c i f  i c  g e o l o g i c a l  p roper  t i e s  l i k e  p o r o s i t y ,  
d i scovery  p r e s s u r e ,  pe rmeab i l i t y  and 
th re sho ld  Some of. t h e s e  i n  s i tu  
p r o p e r t i e s  e n t e r  i n t o  t h e  flow performance; 
o t h e r s  impose des ign  c o n s t r a i n t s  . Compli- 
c a t i o n s  a r e  in t roduced  by way of d i s t r i b u -  
t ed  flow r e s i s t a n c e ,  format ion  heterogene- 
i t i e s  and p o s s i b l e  two-phase flow of water  
and a i r .  Due t o  t h e  complex i t i e s ,  however, 
a q u i f e r  r e s e r v o i r s  appear  t o  o f f e r  a  s i g n i -  
f i c a n t  p o t e n t i a l  f o r  economic op t imiza t ion .  

For an  underground porous formation 
t o  b e  s u i t a b l e  f o r  s t o r i n g  compressed a i r ,  
i t  should have c e r t a i n  s t r u c t u r a l  f e a t u r e s .  
S u i t a b l e  a q u i f e r s  a r e  u s u a l l y  i n  t h e  ap- 
proximate shape of  a n  i n v e r t e d  s auce r .  The 
top  c o n s i s t s  of a  t i g h t  porous caprock, 
s a t u r a t e d  w i t h  water .  The i n t e r f a c i a l  
p roper ty  of t h e  a i r -water  system i n  t h e s e  
t i g h t  pores  does n o t  permi t  t h e  flow of 
air .  Thus, t h e  dome shape w i l l  p revent  
any l a t e r a l  o r  v e r t i c a l  mig ra t i on  of com- 
pressed  a i r .  The compressed a i r  i s  con- 
t a i n e d  i n  t h e  pores  of t h e  rock between 
t h e  caprock and t h e  bottom l a y e r  of water  
and/or  rock.  I n  a q u i f e r s ,  t h e  ad j acen t  
water  moves under a n  a p p l i e d  p r e s s u r e  
g r a d i e n t  and t h e r e f o r e  r e q u i r e s  c a r e f u l  
monitor ing t o  ensu re  ze ro  n e t  movement 
over  a  pe r iod  of t i m e .  

For t h e  purpose of a n a l y s i s ,  i t  he lps  
t o  make a  d i s t i n c i t o n  between edge-water 
and bottom-water r e s e r v o i r s .  Edge-water 
r e s e r v o i r s ,  shown i n  F ig .  2, a r e  cha rac t e r -  
i z ed  by r e l a t i v e l y  t h i n  format ions ,  a  cap- 
rock of app rec i ab l e  d i p ,  an  under ly ing  i m -  
permeable l a y e r ,  and water  d r iven  t o  t h e  
edge of t h e  f i e l d  dur ing  bubble  development. 

WATER- SATURATED \ ZONE 
MYPRESSED WATER - 
AJR RESERVOIR 

ZONE 
SATURATED 

Fig .  2 .  Edge-Water CAES Aquifer  
Reservoi r  

I n  bottom-water r e s e r v o i r s ,  dep i c t ed  i n  
F ig .  3, a  water -a i r  i n t e r f a c e  l ies  i n  a  
n e a r l y  h o r i z o n t a l  p l ane  beneath t h e  a i r  
bubble .  This  commonly occurs  i n  t h i c k ,  
formations.  A c h a r a c t e r i s t i c  unique t o  
bottom-water r e s e r v o i r s  i s  t h e  phenomenon 
of water  coning. Because t h e  bottom-water 
r e s e r v o i r s  involve  more des ign  v a r i a b l e s  
and c o n s t r a i n t s ,  they have rece ived  t h e  
g r e a t e s t  a t t e n t i o n  i n  t h e  p r e s e n t  optimi- 
z a t i o n  s tudy .  

AQUIFER-RELATED DESIGN CONSTRAINTS 

A s  r e l a t e d  t o  CAES systems, p o t e n t i a l  
c o n s t r a i n t s  imposed by t h e  a q u i f e r  charac- 
t e r i s t i c s  have been d i scus sed  i n  Refs.  3  
and 4 .  These c o n s t r a i n t s  were l a r g e l y  
i d e n t i f i e d  from exper ience  i n  n a t u r a l  gas  
s t o r a g e .  The DOE-funded work i n  progress  
on a q u i f e r  r e s e r v o i r  s t a b i l i t y  may r e s u l t  
i n  i d e n t i f i c a t i o n  of a d d i t i o n a l  ones.  The 
c o n s t r a i n t s  p r e s e n t l y  appearing t o  be i m -  
p o r t a n t  f o r  i n c l u s i o n  i n  t h e  CAES des ign  
proc'edures a r e  a s  fo l lows .  

A i r  Bubble S i z e .  A f t e r  growing t h e  a i r  
bubble  t o  t h e  d e s i r e d  equ i l i b r ium s i z e ,  
f u r t h e r  growth o r  shr inkage  due t o  t h e  
d a i l y  v a r i a t i o n s  i n  p r e s s u r e  is  t o  be  nul- 
l i f i e d .  This  concern i s  r e f l e c t e d  i n  two 
r e l a t e d  c o n s t r a i n t s .  F i r s t ,  t h e  t o t a l  mass 
of a i r  s t o r e d  du r ing  a weekly c y c l e  should 
equa l  t h e  t o t a l  mass removed. Second, f o r  
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long-term constancy of bubble  s i z e ,  a  pres-  
s u r e  schedule  having t h e  average  weekly 
p r e s s u r e  (corresponding t o  t h e  mean mass 
of a i r  i n  t h e  bubble  dur ing  t h e  week) equa l  
t o  t h e  a q u i f e r  d i scovery  p r e s s u r e  should b e  
adopted.  

Charging P re s su re .  I n  o p e r a t i n g  CAES 
p l a n t s ,  no apparent  advantage r e s u l t s  from 
us ing  h igh  i n j e c t i o n  p re s su re s ;  a c t u a l l y ,  
t h e r e  are economic b e n e f i t s  of i n j e c t i n g  
air  a t  t h e  minimum p o s s i b l e  p r e s s u r e  com- 
p a t i b l e  w i t h  t h e  r e s e r v o i r  dynamics and 
power a v a i l a b i l i t y .  However, du r ing  a i r  
bubble  development, a  h igh  p r e s s u r e  w i l l  
reduce t h e  development t ime. An upper 
l i m i t  on charging p r e s s u r e  i s  imposed t o  
avoid  exceeding e i t h e r  t h e  caprock 
th re sho ld  p re s su re  o r  t h e  overburden pres-  
s u r e .  

Aquifer  Geometry. It i s  obvious t h a t  t h e  
r e s e r v o i r  de s ign  and s t o r a g e  c a p a c i t y  must 
b e  compatible  w i t h  t h e  s i t e - s p e c i f i c  geom- 
e t r y  of t h e  formation.  Contour maps f o r  
t h e  s i t e  enable  t h e  in format ion  needed f o r  

op t imiza t ion  t o  be  determined. This  i n fo r -  
mation inc ludes  t h e  t o t a l  bubble  volume a s  
a f u n c t i o n  of  bubble  t h i cknes s  (measured a t  
t h e  apex of t h e  dome) and t h e  s p i l l  p o i n t  
(maximum bubble  t h i cknes s  f o r  which t h e  a i r  

w i l l  remain t rapped by t h e  caprock) .  The 
corresponding c o n s t r a i n t s  a r e  t h a t  t h e  a r e a  
occupied by t h e  w e l l - f i e l d  must n o t  exceed 
t h e  p ro j ec t ed  bubble  area and t h e  bubble  
s i z e  must n o t  exceed t h e  s p i l l - p o i n t  volume. 

Water Coning. The problem of water  coning 
i n  bottom-water r e s e r v o i r s  means t h a t ,  f o r  
g iven  r e s e r v o i r  c o n d i t i o n s  and w e l l  pene- 
t r a t i o n  depth,  a  c r i t i c a l  f low r a t e  of a i r  
e x i s t s  above which a i r  cannot  be  withdrawn 
from t h e  r e s e r v o i r  wi thout  s imultaneous 
product ion  of water .  The c r i t i c a l  f low 
r a t e  i s  extremely s e n s i t i v e  t o  in situ 
r e s e r v o i r  h e t e r o g e n e i t i e s .  It  i s  known 
t h a t  t h e  presence  of an  impermeable bar-  
rier l i k e  a  s h a l e  s t r e a k  below t h e  w e l l  
would d r a s t i c a l l y  i n h i b i t  bottom-water 
from coning i n t o  t h e  w e l l .  The phenomenon 
of water  coning has  been s t u d i e d  exten- 
s i v e l y  i n  t h e  p a s t  under t h e  assumption of 
s t eady  s t a t e  flow, bu t  an o r d e r  of  magni- 
tude  e s t i m a t i o n  f o r  CAES a p p l i c a t i o n s  
( s h o r t  d i s cha rge  t ime) i n d i c a t e s  t h a t  a  
non-steady a n a l y s i s  i s  r equ i r ed  t o  ade- 
qua t e ly  determine t h e  maximum w e l l  pene- 
t r a t i o n  t h a t  permi ts  withdrawal of com- 
pressed  a i r  wi thout  co-production of wa te r .  
L i t t l e  a t t e n t i o n  has  been given t o  t h i s  
s i t u a t i o n  i n  t h e  l i t e r a t u r e .  Therefore ,  
t h e  coning h e i g h t  i s  p r e s e n t l y  t r e a t e d  a s  
a  parameter  i n  t h e  des ign  procedure.  The 
i n t e n t i o n  i s  t o  c a l c u l a t e  t h e  c o s t  and 
performance s e n s i t i v i t y  of t h e  a q u i f e r  sys- 
tem t o  t h i s  parameter .  This  w i l l  h e l p  es- 
t a b l i s h  t h e  p r i o r i t y  t o  be  a s s igned  t o  t h e  
s tudy  of t r a n s i e n t  coning.  

Well Spacing. It can b e  observed5  by con- 
s i d e r i n g  t h e  dynamics of f low i n  porous 
media t h a t ,  f o r  a  g iven  charging o r  d i s -  
charging t i m e ,  a  c r i t i c a l  d i s t a n c e  e x i s t s  
around each w e l l  beyond which only a  neg l i -  
g i b l e  amount of compressed a i r  s t o r a g e  can 
occur .  This  g ives  r ise t o  an  economic con- 
s t r a i n t  on maximum w e l l  spac ing  ( i . e . ,  
g r e a t e r  spac ings  would be  w a s t e f u l  of land 
and bubble  volume). The c r i t i c a l  spacing 
can  be  c a l c u l a t e d  from a d i f f u s i o n  t i m e  
formula.  3 y  

AOUIFER FLOW MODELING 

Due t o  t h e  des ign  requirements  imposed 
by t h e  system coupl ing  v a r i a b l e s  ( t u r b i n e  
i n l e t  p r e s s u r e  and mass flow r a t e )  and t h e  



. ne'ed' to s e l e c t  a  p roper  p r e s s u r e  r a t i o  f o r  
t h e  a i r  compressor t r a i n ,  a  p r e d i c t i o n  of 
t h e  formation p re s su re  drop is  needed i n  
t h e  des ign  op t imiza t ion  procedure.  Based 
on an  ex t ens ive  s tudy  of t h e  modeling re-  
quirements  f o r  flow i n  porous r a d i a l  d i s c  
geometry ( a s  app l i ed  t o  CAES a p p l i c a t i o n s  
i n  edge-water a q u i f e r s ) ,  i t  can b e  reason- 
a b l y  expected t h a t  a  s imple quasi-s teady 
model w i l l  s u f f i c e .  To a l low c o n s i d e r a t i o n  
of bottom-water r e s e r v o i r s  (baving a  coning 
c o n s t r a i n t ) ,  a s  w e l l  a s  t o  i n s u r e  t h a t  po- 
t e n t i a l  economic b e n e f i t s  of p a r t i a l l y -  
p e n e t r a t i n g  ( i . e . ,  sha l lower)  wells can b e  
examined by t h e  op t imiza t ion  procedure,  a  
more gene ra l ,  two-dimensional, v e r s i o n  of 
t h e  quasi-s teady model2 i s  employed i n  t h e  
p re sen t  s tudy .  I n  o rde r  t o  e a s i l y  use  t he  
format ion  p re s su re  drop equa t ion  ( i . e . ,  t o  
employ a  s i n g l e  " t y p i c a l  we l l "  model) ,  t h e  
a c t i v e  p a r t  of t h e  a c t u a l  dome-shaped res- 
e r v o i r  has  t o  be  r ep re sen t ed  by an  equiva- 
l e n t  c y l i n d e r  having t h e  same p ro j ec t ed  a r ea  
and a  h e i g h t  equa l  t o  t h e  r a t i o  of  a c t u a l  
s t o r a g e  volume t o  p ro j ec t ed  a r e a .  This  in -  
format ion  i s  determined from contour  maps. 

The amount of mass s t o r e d  o r  removed 
dur ing  a  g iven  charge o r  gene ra t i on  pro- 
c e s s  i s  used,  t oge the r  w i t h  t h e  vo id  volume 
of t h e  a c t i v e  w e l l - f i e l d  w i t h i n  t h e  bubble ,  
t o  de te rmine  t h e  change i n  mean format ion  
p r e s s u r e  occu r r ing  dur ing  t h a t  p rocess .  
Combining t h i s  in format ion  w i t h  t h e  quasi-  
s t eady  format ion  p r e s s u r e  drop p r e d i c t i o n  
enab le s  t h e  maximum and minimum wel lbore  
p r e s s u r e s  occur r ing  du r ing  t h e  week t o  be  
found. These va lues ,  i n  t u r n ,  a r e  needed 
i n  a s s e s s i n g  t h e  c o m p a t i b i l i t y  between t h e  
r e s e r v o i r  des ign  and t h e  aboveground equip- 
ment. 

The ch ie f  u n c e r t a i n t y  i n  t h e  flow 
modeling j u s t  descr ibed  i s  t h a t  i t  assumes 
v a l u e s  f o r  t h e  e f f e c t i v e  pe rmeab i l i t y  and 
p o r o s i t y  of t h e  porous medium a r e  known. 
These va lues  a r e  i n f luenced  n o t  on ly  by 
h e t e r o g e n e i t i e s  i n  t h e  rock,  b u t  a l s o  by 
t h e  d i s t r i b u t i o n  of water  throughout  t h e  
format ion  fo l lowing  bubble  development and 
subsequent  d ryout  ( t o  t h e  e x t e n t  i t  o c c u r s ) .  
Although mois ture  e f f e c t s  have been con- 
s i d e r e d ,  more work i s  r equ i r ed  t o  r e s o l v e  
t h e  i s s u e s .  A s  a  r ea sonab le  measure, f o r  
d e s i g n  s tudy  purposes ,  t h e  fo l lowing  s i m -  
p l i f i c a t i o n s  a r e  used. F i r s t ,  t o  account  
f o r  t h e  r educ t ion  of s t o r a g e  space  because 
of mo i s tu re  remaining a f t e r  bubble  develop- 
ment, a modif ied p o r o s i t y  h a s  t o  be  de f ined .  
It i s  recommended t h a t ,  u n t i l  more a c c u r a t e  
in format ion  becomes a v a i l a b l e ,  t h e  d ry  por- 
o s i t y  va lue ,  reduced by t h e  connate  water  

s a t u r a t i o n ,  b e  used i n  a l l  c a l c u l a t i o n s .  
Second, s i n c e ,  i n  a  r a d i a l '  geometry, t h e  
p r e s s u r e  l o s s e s  a r e  concent ra ted  around t h e  
wel lbore ,  which should be  r e l a t i v e l y  dry ,  
i t  seems j u s t i f i a b l e  t o  u se  t h e  dry perme- 
a b i l i t y  v a l u e s  i n  e s t ima t ing  t h e  p re s su re  
drop i n  t h e  r e s e r v o i r .  

OPTIMAL DESIGN OF A CAES 
SUBSYSTEM WITH AQUIFER RESERVOIR 

The decomposition concept  descr ibed  
e a r l i e r  sugges t s  t h a t  t h e  a q u i f e r  r e s e r v o i r ,  
compressed a i r  p ip ing ,  and a i r  compression 
t r a i n  should b e  designed concur ren t ly  a s  a  
subsystem. This  grouping has  minimal in -  
t e r a c t i o n  w i t h  t h e  rest of t h e  CAES system. 
It should b e  r e a l i z e d  t h a t  any a t tempt  t o  
des ign  and opt imize  only p a r t  of t h i s  sub- 
system (namely, t h e  a q u i f e r  w e l l - f i e l d  
a lone)  would be  less s a t i s f a c t o r y  and, 
pos s ib ly ,  mis lead ing .  The r e s u l t i n g  "solu- 
t i o n "  would be  dependent on assumed va lues  
of parameters  such a s  p ip ing  p r e s s u r e  drops 
and would n o t  d i r e c t l y  a l low t h e  compres- 
s i o n  c o s t s  t o  impact t h e  r e s e r v o i r  des ign .  

S i t e - s p e c i f i c  r e s e r v o i r  des ign  s t u d i e s  
f o r  CAES have been d iscussed  i n  prev ious  
l i t e r a t u r e .  For example, a  conceptua l  de- 
s i g n  of a  complete CAES p l a n t  us ing  t h e  
Brookv i l l e  a q u i f e r  a s  t h e  r e s e r v o i r  was 
conducted by General  ~ l e c t r i c  . The des ign  
was based on more o r  less s t a t e -o f - the -a r t  
equipment and was used t o  test some g e n e r a l  
conc lus ions  concerning t e c h n i c a l  and econo- 
mic f e a s i b i l i t y  of compressed a i r  s t o r a g e .  
Also,  Katz and   ad^^ have analyzed (and 
p a r t i a l l y  opt imized)  a n  a q u i f e r  and a  r ee f  
system t o  i l l u s t r a t e  a  des ign  phi losophy 
f o r  CAES p l a n t s  u s ing  underground porous 
media. The g e n e r a l  t echniques  r e s u l t i n g  
from t h e  p r e s e n t  p r o j e c t  should a i d  i n  
conduct ing opt imal  des ign  s t u d i e s  f o r  CAES 
systems i n  t h e  f u t u r e .  

SUBSYSTEM PERFORMANCE MODELING AND 
DESIGN CONSTRAINTS 

The performance modeling and des ign  
c o n s t r a i n t s  a s s o c i a t e d  w i t h  t h e  a q u i f e r  
were d i s cus sed  i n  an  e a r l i e r  s e c t i o n .  
These a s p e c t s  have r ece ived  t h e  g r e a t e s t  
a t t e n t i o n  because they a r e  complex and 
r e s e r v o i r  c o s t s  a r e  dominant i n  subsystem 
1. Rather  s i m p l i f i e d  compressor t r a i n  and 
p ip ing  system performance models a r e  used 
i n  t h e  p re sen t  subsystem 1 des ign  procedure.  
However, t h e  i n c o r p o r a t i o n  of  more d e t a i l e d  
models would n o t  a l t e r  i t s  b a s i c  s t r u c t u r e .  



. .The des ign  cons ide ra t i ons  are b e s t  
i l l u s t r a t e d  by 'reviewing a  t y p i c a l  s t e p  i n  
t h e  i t e r a t i v e  s e a r c h  f o r  t h e  optimum CAES 
subsystem des ign .  The t y p i c a l  de s ign  s t e p  
inc ludes  compression t r a i n  des ign ,  based 
on flow r a t e  and p r e s s u r e  drop c a l c u l a t i o n s  
f o r  a  charg ing  process ,  and checking of t h e  
a v a i l a b l e  t u r b i n e  i n l e t  p r e s su re ,  based on 
p re s su re  drop c a l c u l a t i o n s  f o r  a  power 
gene ra t i on  process .  

F i r s t ,  t h e  compressor t r a i n  mass flow 
r a t e  is  c a l c u l a t e d  from t h e  known t u r b i n e  
flow r a t e  and r a t i o  of weekly power genera- 
t i o n  t o  s t o r a g e  t i m e .  Th is  c a l c u l a t i o n  in-  
co rpo ra t e s  t h e  non-growth c o n s t r a i n t  f o r  
t h e  a i r  bubble  and a l s o  assumes ( f o r  s i m -  
p l i c i t y )  t h a t  t h e  mass flow r a t e  dur ing  
every charging pe r iod  i s  t h e  same. Next, 
t h e  r equ i r ed  compressor t r a i n  d i s cha rge  
p re s su re  i s  c a l c u l a t e d  by adding t h e  pres -  
s u r e  drops i n  t h e  w e l l s  and compressed a i r  
p ip ing  t o  t h e  maximum wel lbore  bottom pres-  
s u r e ,  p r ed i c t ed  w i t h  t h e  a q u i f e r  model. 
The maximum we l lbo re  p r e s s u r e  depends on 
t h e  weekly mass cha rg ing ld i scha rg ing  c y c l e ,  
t h e  wel lbore  d iameter ,  depth of w e l l  pene- 
t r a t i o n ,  w e l l  spac ing ,  and number of w e l l s .  
From knowledge of t h e  compressor t r a i n  d i s -  
charge p r e s s u r e  and flow r a t e ,  and s p e c i f i -  
c a t i o n  of t h e  p r e s s u r e  r a t i o  a c r o s s  t h e  
low-pressure compressor* ( e i t h e r  11:l o r  
16: l ) ,  t h e  t o t a l  compression power is cal- 
cu la t ed  from a v a i l a b l e  d a t a .  3 '  " 

The p r e s s u r e  d i f f e r e n c e  from well-head 
t o  well-bottom r e f l e c t s  f r i c t i o n  and grav- 
i t y  e f f e c t s  u s i n g  s t anda rd  r e l a t i o n s h i p s .  3 '  

- 
The p ip ing  system f r i c t i o n  p r e s s u r e  drop i s  
pa t t e rned  a f t e r  t h e  s i m p l i f i c a t i o n s  employed 
by Katz.  It is  assumed t h a t  t h e  m a j o r i t y  
of t h e  p r e s s u r e  drop i n  t h e  s u r f a c e  p ip ing  
system occurs  i n  t h e  main p i p e l i n e  and t h a t  
a n  equ iva l en t  p i p e  l e n g t h  (L) can b e  de- 
f i n e d  t o  account  f o r  p r e s s u r e  drops i n  t h e  
feed ,  c ross - feed  and branch p i p e l i n e s .  The 
most s i g n i f i c a n t  de s ign  v a r i a b l e  of t h e  
p ip ing  system is  then  t h e  diameter  of t h i s  
main p i p e l i n e .  Standard r e l a t i o n s h i p s  are 
used i n  t h e s e   calculation^.^ A 2% addi- 
t i o n a l  p r e s s u r e  drop i n  t h e  a f t e r c o o l e r  i s  
added. 

A f t e r  t h e  p r e s s u r e  drop a n a l y s i s  of 
t h e  compression process ,  some s i m i l a r  p res -  
s u r e  drop c a l c u l a t i o n s  a r e  done f o r  t h e  

* 
The compressor t r a i n  is  modeled as com- 
p r i s i n g  a  low-pressure compressor, a  
boos t e r  compressor,  and a p p r o p r i a t e  i n t e r -  
c o o l e r s  and a f t e r c o o l e r .  

power gene ra t i on  process  occu r r ing  a t  t h e  
t i m e  of t h e  week f o r  which t h e  mass s t o r e d  
(bubble  p r e s s u r e )  i s  minimum. This  proce- 
dure  enab le s  t h e  de te rmina t ion  of t h e  mini- 
mum p r e s s u r e  a v a i l a b l e  t o  t h e  power genera- 
t i o n  t r a i n  f o r  t h e  des ign  being cons idered .  
For a  des ign  t o  b e  a c c e p t a b l e , - t h i s  pres-  
s u r e  must b e  a t  l e a s t  a s  h igh  a s  t h e  spec i -  
f i e d  i n l e t  p r e s su re .  

I n  t h e  compressor des ign  S tage  de- 
s c r i b e d  above, t h e  t o t a l  charg ing  t i m e  was 
used;  i t  in f luenced  t h e  p red i c t ed  charging 
flow r a t e  and power. It should be  noted 
t h a t  t h i s  charging t ime d u r a t i o n  and power 
l e v e l  must b e  checked f o r  c o m p a t i b i l i t y  w i t h  
t h e  s p e c i f i e d  u t i l i t y  load  cyc l e .  An i d e a l -  
i z ed  u t i l i t y  load c y c l e  is  shown i n  F ig .  4 ,  
t oge the r  w i th  t h e  corresponding r e s e r v o i r  
a i r  s t o r a g e  c y c l e .  

W I Y U Y  MASS SlORED 

AGE MASS STORED 

Fig .  4 .  I d e a l i z e d  Weekly U t i l i t y  Load 
and A i r  S to rage  Cycles 

The power gene ra t i on  l e v e l  and time sche- 
d u l e  i s  cons idered  i n v a r i a n t ,  r e f l e c t i n g  
t h e  power demand f o r  which t h e  CAES p l a n t  
i s  t o  b e  designed.  The excess  power l e v e l  
f o r  s t o r a g e  and i t s  d a i l y  a v a i l a b l e  t i m e  
d u r a t i o n s ,  however, have maximum va lues  
b u t  t h e s e  may n o t  be  e n t i r e l y  needed by 
t h e  CAES p l a n t  which i s  be ing  designed. 
S ince  t h e  compressor power and t h e  t i m e  
v a r i a t i o n  i n  a i r  s t o r a g e  over  t h e  week can 
both  i n f l u e n c e  t h e  subsystem c o s t s ,  t h e  
t r a d e o f f s  between t h e  two* allowed by t h e  
p re sen t  op t imiza t ion  procedure can l ead  t o  
p o t e n t i a l  o p e r a t i n g  c o s t  r educ t ion .  

* 
The beginning and ending time f o r  each 
charging process  and t h e  compression power 
(assumed uniform f o r  s i m p l i c i t y )  a r e  a l l  
cons idered  a s  des ign  v a r i a b l e s ,  s u b j e c t  t o  
t h e  maximum v a l u e  c o n s t r a i n t s  imposed by 
t h e  u t i l i t y .  



1 . . SU~SYSTEM ECONOMICS: THE OBJECTIVE 
FUNCTION 

I 
I n  A t  every s t a g e  i n  t h e  op t imiza t ion  ~ process ,  t h e  t r i a l  de s ign  being considered 

has  an  a s s o c i a t e d  set  of c o s t s .  To pu t  t h e  
c o s t s  on a  common b a s i s ,  i t  was decided t o  
minimize t h e  t o t a l  ope ra t i ng  c o s t  (per  u n i t  
of power genera ted)  a t t r i b u t a b l e  t o  subsys- 
t e m  1. I n  t h e  terminology of op t imiza t ion  
theory ,  t h i s  ope ra t i ng  c o s t  i s  t h e  ob j  ec- 
t i v e  f u n c t i o n  t o  be  minimized. T t  com- 
p r i s e s  t h e  annua l  ca r ry ing  charge on capi- 
t a l ,  subsystem ope ra t i ng  and maintenance 
(O&M) c o s t s ,  and t h e  c o s t  of compression 
energy ( e l e c t r i c i t y )  de r ived  from t h e  base  
p l a n t  off-peak power. The s p e c i f i c  c a p i t a l  
c o s t s  inc luded  a r e :  

(1) Main p ip ing  and d i s t r i b u t i o n  system - 
dependent on p ip ing  des ign  and number 
of w e l l s .  

( 2 )  Wells - dependent on number, dep th ,  
and d iameter .  

(3) Land - f o r  s i m p l i c i t y ,  assumed propor- 
t i o n a l  t o  p r o j e c t e d  a r e a  of a i r  bubble .  

(4)  Compressor t r a i n  - based on d a t a  from 
Ref. 7.  

(5) Bubble development - dependent on 
e q u i l i b r i u m  bubble  volume (air  com- 
p r e s s i o n  c o s t ) .  ' 

I 
I The O&M c o s t  i s  assumed p r o p o r t i o n a l  t o  t h e  

c a p i t a l  charge  c o s t .  Fu r the r  d e t a i l s  on 
i t h e  c o s t  c a l c u l a t i o n s  and d a t a  a r e  given 
I i n  Refs .  2 and 3.  The des ign  v a r i a b l e s  in-  

! f l uenc ing  t h e  va r ious  c o s t  components a r e  
dep ic t ed  i n  Table  1. 

Table  1. Subsystem 1 Cost Fac to r s  

OPTIMIZATION PROCESS 

Design 
Variables 

U t i l i t y  Load 
Cycle 

Wellbore 
. Diameter 

Well Pene- 
trat ion  

Bubble 
Thickness 

Number of 
Wells 

Well Spacing 

Main Pipel ine 
Diameter 

L.P. Compres- 
sor  Pressure 

A d e t a i l e d  d i s c u s s i o n  of t h e  non l inea r  
programming (opt imiza t ion)  a lgor i thms ,  o r  
t h e i r  computer code implementations (OPT' 
and BIASg), which were employed i n  t h i s  
s t udy ,  w i l l  n o t  be  g iven  he re .  I n  essence ,  ' 

t h e s e  gene ra l i zed  procedures  i n t e r a c t  w i th  
computer s u b r o u t i n e  r e p r e s e n t a t i o n s  of t h e  
subsystem performance and c o s t  models, and 
t h e  c o n s t r a i n t  d e f i n i t i o n s ,  i n  o rde r  t o  
f i n d  t h a t  combination of des ign  v a r i a b l e s  
which minimizes t h e  o b j e c t i v e  f u n c t i o n  
s a t i s f i e s  a l l  t h e  des ign  c o n s t r a i n t s .  
During t h e  course  of t h e  s ea rch  f o r  t h e  
optimum,-many (e .g . ,  hundreds) of t r i a l  
des igns  a r e  cons idered .  The computer codes 
used work only on t h e  cont inuous des ign  
v a r i a b l e s .  D i s c r e t e  v a r i a b l e s  ( t h o s e  re- 
s t r i c t e d  t o  on ly  a  few allowed v a l u e s ,  such 
a s  p i p e  d iameters )  must be  examined "manu- 
a l l y "  by repea ted  a p p l i c a t i o n  of t h e  com- 
p u t e r  code. I n  t h e  p re sen t  fo rmula t ion ,  
t h e  number of w e l l s  i s  approximated a s  a  
cont inuous v a r i a b l e ,  because i t  i s  t y p i c a l l y  
a  l a r g e  number (e .g . ,  a  few hundred).  The 
p re sen t  CAES des ign  op t imiza t ion  procedure 
r e s u l t s  i n  t h e  s p e c i f i c a t i o n  of t h e  follow- 
i n g  independent v a r i a b l e s :  a i r  bubble  s i z e ,  
number of w e l l s ,  w e l l  dep th ,  wel lbore  d i -  
ameter ,  w e l l  spac ing ,  compression (charging)  
t ime d u r a t i o n  f o r  each day, compression 
r a t i o  of t h e  low-pressure (L.P.) compressor 
and main p ip ing  diameter .  Much a d d i t i o n a l  
in format ion  can subsequent ly  be de r ived  
from t h e s e  r e s u l t s  (e .g . ,  boos t e r  compres- 
s o r  p r e s s u r e  r a t i o ,  l and  a r e a  t o  be  pur- 
chased, e t c . )  . 

Air Com- 
pression 

X 

X 

X 

X 

X 

X 

X 

X 
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Wells 

X 

X 

X 

The number of de s ign  v a r i a b l e s  ( re -  
l a t e d  t o  t h e  f l e x i b i l i t y  of t h e  model) re- 
q u i r e s  t h e  i n v e s t i g a t i o n  of many t r a d e o f f s  
dur ing  op t imiza t ion .  Although some of 
t h e s e  t r a d e o f f s  a r e  perhaps obscured by t h e  
"automatic" n a t u r e  of t h e  op t imiza t ion ,  t h e  
formula t ion  of  t h e  procedure and o p e r a t i o n a l  
exper ience  have l e d  t o  t h e  i d e n t i f i c a t i o n  
of s e v e r a l  t r a d e o f f s .  

Piping 

X 

X 

Land 

X 

(1) Act ive  Bubble us.  Total  Bubble S i ze .  
L i t t l e  i n c e n t i v e  e x i s t s  t o  s i n k i n g  w e l l s  
n e a r  t h e  o u t e r  pe r iphe ry  of t h e  r e s e r v o i r .  
For a  g iven  bubble  t h i cknes s  a t  t h e  apex 
of t h e  dome, as t h e  a c t i v e  land  a r e a  in -  
c r e a s e s ,  t h e  ave rage  w e l l  t h i cknes s  de- 
c r e a s e s  ( s e e  F i g .  3) s o  t h a t  t h e  per for -  
mance pe r  w e l l  s u f f e r s  and t h e  number of 
w e l l s  i n c r e a s e s .  However, fewer ,  deeper ,  
w e l l s  concent ra ted  near  t h e  c e n t e r  of t h e  
bubble  r e s u l t s  i n  development of a  l a r g e l y  

Cost Items 

Com- 
pressor 

X 

X 

X 

X 

X 

X 

X 

X 

Bubble 
Develop- 

ment 

X 



i n a c t i v e  bubble  and i n  g r e a t e r  c o s t  per  
w e l l .  

(2) We22 PenetrQtion. Grea te r  p e n e t r a t i o n  
' of w e l l s  i n t o  t h e  bubble  reduces  t h e  number 

of  w e l l s ,  b u t  i n c r e a s e s  t h e  c o s t  per  w e l l .  

(3) We22 Spacing. Close ly  spaced w e l l s  
have less p r e s s u r e  drop (compression c o s t )  
b u t  a l s o  less s t o r a g e  volume a s s o c i a t e d  
w i t h  each w e l l .  

(4) Bubble Thickness. Grea te r  t h i cknes s  
permi ts  deeper ' w e l l s  (fewer needed) b u t  re- 
q u i r e s  more surrounding land (p ro j ec t ed  
area of bubble) .  

( 5 )  Compression Time. Use of a l l  t h e  
charg ing  t i m e  a v a i l a b l e  minimizes t h e  capi-  
t a l  c o s t  of t h e  compressor t r a i n  (lower 
flow r a t e ) .  U s e  of reduced t i m e  (h igher  
flow r a t e )  can a l t e r  t h e  shape of t h e  res- 
e r v o i r  mass s t o r a g e  cyc le , '  reducing t h e  
maximum p re s su re  swing. This  could reduce  
t h e  number of w e l l s  needed t o  meet t h e  t u r -  
b i n e  i n l e t  p r e s s u r e  requi rements .  

EXAMPLE APPLICATIONS 

The CAES subsystem 1 des ign  optimiza- 
t i o n  procedure desc r ibed  i n  t h e  preceding 
s e c t i o n s  has  been s u c c e s s f u l l y  implemented. 

I Resu l t s  of apply ing  i t  a r e  presen ted  i n  
~ t h i s  s e c t i o n  f o r  i l l u s t r a t i o n  purposes ,  t o  

examine t h e  p o t e n t i a l  economic impacts t h a t  
can  b e  achieved w i t h  a q u i f e r  r e s e r v o i r  sub- 
system opt imiza t ion ,  and t o  examine t h e  
e f f e c t s  of c e r t a i n  c o s t  parameters .  

O r i g i n a l l y ,  i t  was planned t o  apply 
t h e  new procedure t o  t h e  des ign  of a  600 
MI4 p l a n t  a t  Brookvi l le ,  I l l i n o i s ,  s o  t h a t  
t h e  optimized des ign  could be  compared w i t h  
t h e  G.E. design.  I n  prepar ing  t o  do t h i s ,  
however, i t  was noted t h a t  t h e  G.E .  de s ign  
appears  t o  v i o l a t e  t h e  s p i l l  p o i n t  con- 
s t r a i n t  f o r  t h e  Brookv i l l e  a q u i f e r  s i te .  
That  is, t h e  s t o r a g e  volume encompassed, 
by t h e  G.E. Brookv i l l e  r e s e r v o i r  de s ign  
exceeds t h a t  a v a i l a b l e  above t h e  s p i l l  
p o i n t ,  as determined from contour  maps of 
t h e  a q u i f e r  l a y e r .  I n  t h e  Brookv i l l e  
s tudy ,  t h e  a c t u a l  s i t e - s p e c i f i c  p r o p e r t i e s  
(po ros i t y ,  pe rmeab i l i t y ,  average  a q u i f e r  
t h i cknes s )  were used, b u t  t h e  r e s e r v o i r  
was approximated a s  a  cons t an t  t h i c k n e s s  
c i r c u l a r  d i s c  w i thou t  wa te r - r e l a t ed  con- 
s t r a i n t s .  App l i ca t i on  of  t h e  procedure 
developed i n  t h e  p r e s e n t  s tudy ,  which a t -  
temps t o  account  f o r  geomet r ica l  l i m i t a -  
t i o n s  more c o r r e c t l y ,  l e d  t o  a des ign  w i t h  
about  700 w e l l s ;  308 w e l l s  were recommended 
i n  t h e  G.E. r e p o r t 6  u s ing  t h e  less r e s t r i c -  
t i v e  a q u i f e r  geometry assumption. 

The major t e s t i n g  of t h e  c a p a b i l i t i e s  
of t h e  des ign  op t imiza t ion  procedure has  
been f o r  t h e  example of a  h y p o t h e t i c a l  600 
MW CAES p l a n t  u s ing  t h e  Media, I l l i n o i s ,  
G a l e s v i l l e  a q u i f e r  a s  t h e  r e s e r v o i r .  Con- 
t o u r  maps and "mater ia l  p r o p e r t i e s "  f o r  
t h i s  a q u i f e r  were taken  from Ref. 4 .  The 
geomet r ica l  in format ion  on s t o r a g e  volume 
and p ro j ec t ed  bubble  a r e a  a s  a  f u n c t i o n  of 
bubble  t h i cknes s ,  based on t h e  contour  maps, 
is  t abu la t ed  i n  Ref.  3. Other p e r t i n e n t  
parameter va lues  used i n  t h e  s tudy  a r e  
g iven  i n  Table 2. 

Table  2 .  G a l e s v i l l e  Study Parameters 

A s  a  s t a r t i n g  p o i n t ,  a  f e a s i b l e  (bu t  
nonoptimal) de s ign  f o r  t h e  G a l e s v i l l e  p l a n t  

Aquifer Discovery 
Pressure 

Ef fec t ive  Porosity 

Cloeure (top otrur- 
ture t o  s p i l l  poi?<) 

Average Horizontal 
Sand Permeability 

Average Vert ica l  
Sand Permeability 

Spec i f i c  Flow Rate 

Turbine System 
I n l e t  Pressure 

U t i l i t y  Cycle: 
Power Generation 
Power Generation 

Time 
Hax. Compression 

Power 
Max. Compression 

Time 

storage Temperature 

Base Plant Electr i -  
c i t y  Cost 

Land Cost 

Other Cost .and Sub- 
system Parameters 

was developed i n t u i t i v e l y ,  a l though t h i s  is  
n o t  e s s e n t i a l  f o r  t h e  implementation of t h e  
op t imiza t ion  procedure us ing  t h e  OPT' o r  
BIAS' a lgor i thms .  Table  3 compares t h e  
i n i t i a l  i n t u i t i v e  des ign  wi th  two optimized 
des igns .  The f i r s t  one of t h e s e  i s  t h e  re -  
s u l t  of t h e  formula t ion  descr ibed  i n  pre- 
v ious  s e c t i o n s .  The second des ign  was ob- 
t a i n e d  by employing a  f u r t h e r  s i m p l i f i c a t i o n  
i n  which t h e  charging t i m e  v a r i a b l e s  were 
h e l d  cons t an t .  I n  a l l  t h e s e  ca se s ,  t h e  
d i s c r e t e  des ign  v a r i a b l e s  were he ld  f i x e d  
a t  t h e  va lues :  main p i p e l i n e  diameter  
(48 i n . ) ,  we l lbo re  diameter  (7  i n . ) ,  L.P. 
compressor p r e s s u r e  r a t i o  (11: 1 ) .  

840 ps ia  

14.3% 

110 f t  

448 md 

354 md 

10 .4  lbm/kWh 

750 ps ia  

600 MW 

5 days, 10 hrs/day 

590 MW 

6 days. 10 hrsfday 
(excludes Friday) 

150°F 

15 mills/kWh 

$1200/acre 

s e e  Ref. 3 



. Table 3 .  Sample G a l e s v i l l e  Study R e s u l t s  

Surface  a r e a  t o  b e  
bought ( ac res )  

Ac t ive  well-f i e l d  
a r e a  ( ac res )  12755 (2038 1 2944 

A i r  bubble th ickness  ( f t )  . 1 105.0 1 79.9 1 81.7 

Well depth ( f t )  11385 11369 1 1380 

W e l l  spacing ( f t )  1 467 1 530 I 533 

Number o f  w a l l s  1 700 1 402 1 575 

System Pregsures ,  Plow 
Rates  and Povers I I 
Minimum a v a i l a b l e  tu rb ine  
system inlet p ressu re  ( p s i )  1 775.5 1 750.0 1 750.0 

T o t a l  s t o r a g e  process  
t ime (h r s )  I 59.4 I 51.4 1 60.0 

A i r  f l o v  r a t e  dur ing 
s t o r a g e  processes  (lbm/sec) 11459 11686 1 1444 

Compressor power required 1 385 1 449 1 384 

Compressor d i scha rge  
p ressu re  ( p s i )  1 850.3 ( 879.3 1 874.6 

SJstem Costs  

Land c o s t  ($, mil l ions )  ( 8.8431 4.165 1 4.417 

Bubble development c o s t  
($, m i l l i o n s )  1 6.8181 2.580 1 2.779 

Well cons t ruc t ion  c o s t  
(s, m i l l i o n s )  1 73.3791 41.9151 60.190 

Lev pressu re  compressor 
c o s t  ($, mil l ions )  1 4.642) 4.996 1 4.619 

Booster compressor c o s t  
( S ,  mil l ions )  I 4.4551 4.897 1 ' 4.511 

TOTAL CAPITAL COST 
($, mil l ions )  ( 103.59 1 62.00 1 79.97 

REDUCTION Ih' CAPITAL COST ( X )  ( - 1 39.0 1 21.3 

BASE LOAD ELECTRICITY COST 
(mills/kWh) I l l . L 5  I 11.54 1 11.53 

TOTAL SUBSYSTM OPERATING 
COST ( m i l l s / k m )  1 24 .251  19.36 1 21-60 

There a r e  many i n t e r e s t i n g  observa- 
t i o n s  t o  b e  made from t h e  r e s u l t s  i n  Table  
3. Both of  t h e  optimum des igns  reduce t h e  
number of  w e l l s ,  average  w e l l  depth and 
bubble  s i z e ,  i n d i c a t i n g  t h a t  t h e  s t a r t i n g  
p o i n t  was a c a s e  of overdesign.  This  con- 
c l u s i o n  can a l s o  b e  drawn from a  compari- 
son  of a v a i l a b l e  t u r b i n e  system i n l e t  pres-  
s u r e s  i n  t h e  t h r e e  des igns .  Thus, a  care-  
f u l l y  f o r n u l a t e d  cons t r a ined  o p t i m i z a t i o n  
problem has  allowed a r educ t ion  i n  " sa fe ty  
f a c t o r s "  r equ i r ed  i n  a n  i n t u i t i v e  des ign  
process .  

REDUCTION I N  OPERATI!;C 
COST (z) I - 

The op t imiza t ion  a l s o  unde r l i ne s  t h e  
compromise necessary  between compression 
power requirements  and c a p i t a l  c o s t s  of t h e  
r e s e r v o i r  system. Higher compressor power 
and c o s t  are t r a d e o f f s  f o r  lower l and ,  bub- 
b l e  development, and w e l l  c o n s t r u c t i o n  c o s t s .  
I n  t h e  f i r s t  optimum des ign ,  t h e  weekly res -  
e r v o i r  p r e s su re  v a r i a t i o n  is reduced by an 
even d i s t r i b u t i o n  of a i r  s t o r a g e  over  t h e  
e n t i r e  cyc l e .  This  is  accomplished by re- 
ducing t h e  weekend s t o r a g e  process  dura- 
t i o n s .  On t h e  o t h e r  hand, t h e  s i m p l i f i e d  
op t imiza t ion ,  w i t h  f i x e d  s t o r a g e  t imes,  
uses  a  l a r g e r  a c t i v e  r e s e r v o i r  volume and 
reduced r e s e r v o i r  formation p r e s s u r e  drop 
( l a r g e r  number of w e l l s )  t o  dec rease  t h e  
c y c l i c  p r e s s u r e  f l u c t u a t i o n .  A noteworthy 
f e a t u r e  of t h e  optimum des ign  i s  p a r t i a l  
u t i l i z a t i o n  of t h e  a i r  bubble .  This  is  
caused by t h e  h igh  c o s t  of c o n s t r u c t i n g  
a d d i t i o n a l  w e l l s  i n  t h e  o u t e r  r eg ion  of 
t h e  bubble ,  where they y i e l d  only minimal 
b e n e f i t  due t o  t h e  t ape r ing  of t h e  a q u i f e r  
formation.  

20.2 1 10.9 

The most important  r e s u l t s  a r e  t h e  re- 
duc t ions  achieved i n  t h e  subsystem 1 c o s t s .  
The op t imiza t ion  procedure descr ibed  h e r e i n  
y i e lded  a  39% lower c a p i t a l  c o s t  and 20% 
sma l l e r  ope ra t i ng  c o s t ,  compared t o  t h e  
i n i t i a l  des ign!  R e s t r i c t i n g  t h e  s t o r a g e  
processes  t o  f i x e d  va lues  caused t h e s e  i m -  
provements t o  b e  on ly  h a l f  a s  much. A l -  
though s u b s t a n t i a l  de s ign  improvements have 
been made, f u r t h e r  c o s t  r educ t ions  a r e  ex- 
pec ted  a s  t h e  op t imiza t ion  a lgor i thms  a r e  
f i n e  tuned and t h e  models improved. 

Fu r the r  op t imiza t ion  runs  f o r  t h e  
G a l e s v i l l e  problem have been made, u s ing  
d i f f e r e n t  s t a r t i n g  p o i n t  de s igns ,  t o  de t e r -  
mine whether t h e  "global"  optimum has  been 
found. The b e s t  of t h e s e  s o l u t i o n s  has  an 
ope ra t i ng  c o s t  of on ly  17.8 mil ls /k\Jh,  a  
r educ t ion  of 8% from t h e  optimum va lue  g iven  
i n  Table  3. This  des ign  has  only 252 w e l l s ,  
an  a c t i v e  a r e a  of 1294 a c r e s ,  a  bubble  
t h i cknes s  of 91.6 f t . ,  and a  53 h r .  charging 
t ime.  I n t e r e s t i n g l y ,  t h e  f i x e d  charging 
t i m e  (60 h r . )  v e r s i o n  of t h i s  s o l u t i o n  is 
very  s i m i l a r  i n  d e s i g n  and c o s t .  

When a  CAES p l a n t  u s ing  t h e  Media 
G a l e s v i l l e  a q u i f e r  was i n v e s t i g a t e d  by Katz 
and Lady, they concluded ". . . u s e  of 100 
inpu t /ou tpu t  w e l l s  seem reasonable  f o r  f u l l  
development (600 MW)." This  number, no t  
based on d e t a i l e d  op t imiza t ion ,  i s  consider-  
ab ly  less than  found i n  t h e  p re sen t  s tudy  
(252).  The d isc repency  may be  p a r t i a l l y  
due t o  t h e  impos i t ion  of t h e  d i f f u s i o n  t i m e -  



.- . 
' r e l a t e d  c o n s t r a i n t  on w e l l  spac ing  i n  t h e  

op t imiza t ion  procedure.  Whether t h a t  con- 
s t r a i n t  is conse rva t ive  o r  t h e  assumptions ' 
of  t h e  prev ious  i n v e s t i g a t o r s  overes t imates  
t h e  r e s e r v o i r  flow c a p a b i l i t y  under CAES 
cyc l ing  cond i t i ons  remains t o  b e  determined. 

Examination of t h e  va r ious  G a l e s v i l l e  
op t imiza t ion  runs ,  and those  done f o r  t h e  
Brookv i l l e  s i te ,  shows t h a t  t h e  optimum 
w e l l s  p e n e t r a t e  n e a r l y  t o  t h e  bottom of t h e  
bubble,  o f t e n  be ing  l i m i t e d  by t h e  coning 
c o n s t r a i n t .  I nc reas ing  t h e  coning d i s t a n c e  
parameter from 1 f t  t o  5 f t  i nc reases  t h e  
ope ra t i ng  c o s t  by about  1 mill/kWh, ind ica-  
t i n g  t h a t  t h e  coning problem should be  
s t u d i e d  f u r t h e r .  

For t h e  G a l e s v i l l e  problem, t h e  e f f e c t  
of  we l lbo re  and main p i p c l i n c  d iameters  on 
optimum des ign  ope ra t i ng  c o s t  a r e  shown i n  
F igs .  5 and 6 ,  r e s p e c t i v e l y .  The main p ipe  
s i z e  has  l i t t l e  e f f e c t .  

Fig.  5. E f f e c t  of Wellbore Diameter i n  
G a l e s v i l l e  Problem 

The e f f e c t  of  c e r t a i n  c o s t  parameters  
on. t h e  optimum G a l e s v i l l e  subsystem 1 opera- 
t i n g  c o s t  h a s  a l s o  been i n v e s t i g a t e d  ( s e e  
F igs .  7-9). It was found t h a t  t h e  optimum 
d e s i g n  v a r i a b l e s  d i d  n o t  change as t h e s e  

c o s t s  were v a r i e d ,  t hus  exp la in ing  t h e  
l i n e a r  r e l a t i o n s h i p s  i n  t h e  f i g u r e s .  A l -  
though t h i s  obse rva t ion  may n o t  b e  of gen- 
e r a l  v a l i d i t y ,  i t  would b e  comforting t o  
know t h a t  a  CAES des ign  would remain o p t i -  
mum i f  t h e  c o s t  of base-plant  e l e c t r i c i t y  
were t o  i n c r e a s e  i n  t h e  f u t u r e !  

F ig .  6 .  E f f e c t  of Main P ipe  Diameter 
i n  Gal .esv i l le  Problem 

Fig.  7 .  E f f e c t  of Wel l -Dr i l l ing  Cost- 
G a l e s v i l l e .  
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CONCLUDING REMARKS 

The des ign  procedure descr ibed  i n  
t h i s  paper appears  t o  b e  t h e  .most complete 
method a v a i l a b l e  f o r  des igning  a q u i f e r  
reservoir-based CAES p l a n t s .  Limited com- 
par i sons  wi th  publ ished r e s u l t s  us ing  more 
s i m p l i f i e d  methods of a n a l y s i s  sugges ts  a  
p o s s i b l e  inadequacy i n  t h o s e  methods. Fur- 
t h e r  work i s  recommended t o  r e s o l v e  t h e s e  
i s s u e s .  

The des ign  op t imiza t ion  procedure i s  
gene ra l  i n  i t s  s t r u c t u r e ,  b u t  i t s  c u r r e n t  
computer implementation i s  somewhat r e s -  
t r i c t e d  (e.g. ,  bottom-water r e s e r v o i r s ,  
equal  compression power f o r  each charge 
process ,  e t c . ) .  It is  a l s o  based on a  
somewhat i d e a l i z e d  a q u i f e r  model and on 
p a r t i c u l a r  judgements on important  con- 
s t r a i n t s  . However, ex tens ions  and r e f i n e -  
ments can be  r e a d i l y  incorpora ted  a s  r e -  
qu i red .  

LAND COST ($/ACRE) 

Fig. 8. E f f e c t  of Land Cost - G a l e s v i l l e  

ELECTRICIlY COST ( n l u s / ~ W n )  

Fig .  9. E f f e c t  of Base P l a n t  E l e c t r i c i t y  
- G a l e s v i l l e  

U t i l i z a t i o n  of t h e  des ign  op t imiza t ion  
procedure can b e  va luab le ,  when c a r e f u l l y  
app l i ed .  It can: 

- r e s u l t  i n  a c t u a l  c a p i t a l  and ope ra t ing  
c o s t  sav ings  i n  p l a n t  des ign ,  

- g i v e  i n s i g h t  i n t o  t h e  economic t rade-  
o f f s  among des ign  v a r i a b l e s ,  and 

- a s s e s s  t h e  i n f l u e n c e  of u n c e r t a i n t i e s  
i n  c o s t  d a t a .  

Furthermore, i f  combined w i t h  a  s i m i l a r  
op t imiza t ion  model f o r  t h e  t u r b i n e  system, 
a complete CAES p l a n t  des ign  op t imiza t ion  
could b e  performed. 

Some a d d i t i o n a l  in format ion  on t h e  
work presented  is a v a i l a b l e  i n  Refs.  2 and 
3 .  A f i n a l  r e p o r t  is i n  p repa ra t ion  which 
w i l l  p rovide  f u l l  documentation, i nc lud ing  
l i s t i n g s  of t h e  computer sub rou t ines  embody- 
ing  t h e  opt imiza t ion-or ien ted  CAES model. 
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