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CALCULATION OF ISLAND WIDTHS IN THREE-DIMENSIONAL EQUILIBRIA

A. H. Reiman and A. H. Boozer
Plasma Physics Laboratary, Princeton University
B.O. Box 451
Princeton, New Jersey 08544

In three-~dimensional MHD equilibria, pressure driven currents can
resonate with rational surfaces in the plasma, producing magnetic islands and
breaking up flux surfaces. This effect is of great practical importance for
stellarators, wheres it gives an equilibrium PR limit, and also limits the
plasma aperture below that g limit. We have explored the physics of
equilibrium island formation, and have obtained som2 estimates for island
widths.! We have applied our theory to the Princeton heliac reference

desig’n.

Stellarator vacuum fields are constructed to have relatively good flux
sufaces. The islands that exist are small relative to the minor radius. Wwith
finite B, the flux surfaces arz shifted and distorted. It has been expected
that the flux surfaces break up at scme critical g. The convention has been
te take the equilibrium B limit to be that value of g at which the magnetic
axis shift equals half the minor radius. There have previously been no actual
calculations of this g limit. In the following, we first describe our general
analysis of island formation in three-dimensional equilibria, summarizing the
general conclusions, and then detailinq some of the mathematics by which we
arrive at the conclusions. We finally apply the analysis to the particular
example of the heliac device studied at Princeton.

For purposes of orientation, we contrast our picture of equilibrium
island formation with the familiar picture of island formation in tokamaks.
In tokamaks, the appearance of islands is usually due to symmetry breaking
tearing instabilities, although it can also be caused by nonaxisymmetruc field
errors. For nearly circular flux surfaces, the island width is proportional
to the square root of the resonant fourier component of the radial magnetic
field, Bypp This component is resonant in the sense that n = ym, where y =
1/¢ is the rotational transform. )

For the three-dimensional equilibria we are interested in, the geometry
is considerably more complicated. The island width is now proportional to the
square root of the resonant component of Be V), as determined in an
appropriate corrdinate system (¢,8,4). The island arises through the
equilibrium equation, and is intrinsic to the equilibrium itself.

For an equilibrium with small islands, it is natural to use nearby flux
coordinates, obtained by interpolating across the isglands. The nearby ¢



coordinate is tn coincide with the £flux surfaces, excepE in the immediate
vicinity of an island. The nearby flux coordinates define a magnetic field
with good surfaces. The difference between this field and the exact field is
small, relative to the magnitude of the exact field. 7This small difference is
important, of course, because it contains all the information about the island
structure. The nearby flux surfaces are not uniquely determined by the exact
f£field, but this nonuniqueness is unimportant as long as the island widths are

small.

The resonant component of the field is generated by a resonant component
in the current. The resonant current is driven by the pressure, through the
equilibrium equation A

Vp=jxB ' (1)

due to a resonant term in the Jacobian, J. Here J is the Jacsbian of the
transformation from Cartesian coordinates to (¢,9,¢)- It describes the
geometry of the f£flux surfaces. The resonant term in the Jacoblan, J,n.
corresponds to a regonant rippling of the flux surfaces. As B increases, the
resonant’ current increases due to the direct dependence on g which comes frém
the Vp term in Eq. (1), and also due to the dependence of J,, on f.

The spectrum of the vacium Jacobian typically has peaks at a few low
values of m, n, and decays expconentially with increasing m, n. There is a
peak at m = 1, n = 0, due to the toroidal curvature. For a helical axis
stellarator there is a peak at m = 1 and n equal to the number of periods, due
to the helical curvature. In addition, there are nonresonant terms with m > 2
which determine the shape of the flux surfaces. The resonant terms, with n=
wm, lie in the exponential tail of the spectrum.

Finite B gives a shift and distortion of the flux surfaces. The

corresponding nonlinear coupling of the fourier components of the Jacobian
gives a broadening of the fourier spectrum. The fourier amplitudes in the
tail of the spectrum increase. In particular, the resonant component also

increases.

The magnetic islands are intrinsic to the MHD equilibrium solution. When
B is sufficiently large tiiat the islands overlap, the flux surfaces are
destroyed, and there is no equilibrium solution.

Now we present some of the mathematics by which we arrived at these
conclusions. We rewrite Eg. (1) as the two equations

i =B ve/B2 (2)



and
B . V(jl/B) IR AL TR (3)

To determine the integration constant for Eq. (3) we take the equilibrium to
have zero net current ingide each flux surface. This is appropriate for
stellarator fields.

To solve the equations, we use an iterative method. To lowest order, we
take B =2qual to the wvacuum field, with p constant on the vacuum flux
surfaces. Equations (2) and (3) then give the lowest order plasma current.
The lowest order correction to the field is determined by Ampere's law. To
iterate, the corrected field is substituted back into Egs. (2) and (3). We
must go to second order in this iteration procedure to see all the physics we
have previously described.

All results are expressed in terms of the fourier decomposition of the
Jacobian,

- E L] -
J J°[1 Y 8. COS(nd o)) (4)
n,m
where the prime indicates that the n = 0, m = 0 term is omitted from the
sum. In particular the solution for 3 is,

Snm
n=um

cos(ng - m@) Yyx(mve - nv¢p) | . (5)

~

dp
—— + 3!
j=J°d¢ [V x vg + §
nm
At thosa rationil surfaces where n = ym and 5nm # 0, islands will form, so
that dp/d¢ = 0 there.

The self-consistent set of equations is completed by Ampere's law,

Y xB=3j . (6)

~

One particular solution of Eq. (6) is

6!111\

o sin(ng -~ m8) |v¢ -

)
a dp dp o
H = (J¢ % 3 ap)ve + |3 Evs S
This has 7 «H # 0. The general solution to Eg. (6) can be written
B=H+ VW P (8)

with

VzP’-V-H . {9)



We solve Eg. (9) by an expansion about the magnetic axis. To simplify
furthar, we take the ellipticity of the flux surfaces to be small. We work in
a helical coordinate system, first introduced by Mercier,2 for which one of
the coordinate axes coinsides with the magnetic axis. Expressing the flux
coordinates in terms of Mercler's coordinates, we get an inhomogeneous
Bessel's equation for F. To make life easy, we take n/m small compared to the
aspect ratio, so that the Bessel functions can be expanded.

To calculate the field explicitly, we need to specify a pressure
profile. Taking a quadratic profile, we find the resonant correction to the

field,

1 . (10)

B a=p 2
e R M LGRS I

o im Po j=1
where L is the length of the magnetic axis, a is the minor radius, and p,
corresponds to the rational surface.

n+1
S‘ _1.+.a_..
-1 3 0

The resonant field given by Eq. (10) is proportional to the resonant
fourier amplitude of tha vacuum Jacobian. We have not yet obtained the
broadening of the fourier spectrum. This appears in the next order.

In the next order, we need the nearby f£flux coordinates for the corrected
field. The new flux coordinates are determined by

(Ev + 51] « V=0 (1
and

(Ev * By e Ve r'Ev * 21] L ’ (12)

where EV is the vacuum field and B, is the nonresonant part of the lowest
order correction. We fourier decompSse the difference between the old and new
coordinates, and substitute into Eqs. (11) and (12), to obtain explicit
expressions for the new coordinates in terms of the old.

The Jacobian is now reexpressed in terms of the new coordinates. To see
what this looks like, we consider the case where only 631 and 5§1 are nonzero
for the vacuum Jacobian, where N is the number of periods. The fourier
amplitudes of the Jacobian are then

1 v ~ ~ v ~ PPy
Sam =3 2 18007, (B Vo me 1 (B )+ 89970 et (Bt W ger e (805 )

1 v v ~
+ 302w [ 809 (B Yoyt (B0 )+ 80190 et (B Pamensw(Bo1)7 -



where the J's here are Bessel functions. This is probably not accurate for n
or m large. Although the vacuum Jacobian has no resonant terms, the finite g
Jacobian resonates with every rational surface.

Now we apply our analysis to the Heliac reference design. Here we are
most concerned with the neighborhood of the magnetic axis, where p» = 1.5, or
WwN = 0.5. We cannot use our analysis directly, because dyw/'dp vanishes at the
axis. It is straightforward to modify all the formilas appropriately.

We obtain the me's from a numerical fourier decomposition of the vacuum
field.3 To get a rough idea of the equilibrium g limit, we calculate the g at
which our formulas predict an island width equal to half the minor radius of
the plasma. For the direct resonance, due to the resonant fourier amplitude
of the vacuum Jacobian, we get B ~ 0.3%. This may be remedied by adjusting
the tilt of the coils. The nonlinear resonance gives g = 1.6%. This is not
as easily remedied, coming from a coupling of the helical and toroidal
curvature.

In the general design of stellarator vacuum fields, we nmnight have
expected the requirement of good vacuum flux surfaces to suppress the resonant
field amplitudes. Our calculation for the heliac reference design shows that
the amplitudes of the direct resonances may nonetheless be unacceptably
large. We conclude that it is necessary to incorporate the constraints on the
resonant axm directly in the design procedure. our application also shows
that coupling of nonresonant components can give large islands, even for
values of B at which the axis shift is small relative to the minor radius.

Our approximations have allowed us tc obtain analytic estimates of island
widths, for the direct resonances and for lew n, m nonlinear resonances. Our
simplifying approximations have also allowed us to explore and clarify the
basic physics of island formation and surface destruction in three-dimensicnal
equilibria. Clearly, the theory we have presented can be used do more
accurate calculations, both analytically and using numerical methods. An
extension of the calculation to higher order in g8 would allow the
determination of island widths for higher m, n, and give a more complete
description of the equilibrium A limit.
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A 3D Algorithm for Calculating Drift Orbits
in Nonaxisymmetric Toroidal Devices

K. Hanatani and K. Uo

Fiasma Physics Laboratory, Kyoto Universicy
Gokasho, Uji, Kyoto, JAPAN

ABSTRACT
A three-dimensional (3D) interpolation technique for  computing

guiding-center drift orbits in nonaxisymmetric toroidal magnetic devices is
described. The new technique, named "two-level interpolation scheme', uses a
simple algorithm which splits given field quantities into symmetric (2D) and
asymmetric (3D) parts. The interpolation scheme allows a fast and accurate
drift orbits computation and also provides a direet means to examine the
effects of symmetry-breaking perturbation as a part of the numerical procedure.
The technique has been applied to study the toroidal drift of the particles in
a vacuum heliotron field., It was found that th: asymmetric part of the drift
shows a vortex structure and this vortex reduces the net vertical drift in the
peripheral region of the magnetic surface. A stroag reduction in the net
vertical drift occurs even near the magnetic axis when the magnetic axis is
shifted inward by applying vertical field. The pre-.ence of the drift vortex is
attributed to the absence of toroidal field coils in che heliotron field
studied. An implication of the drift vortex on the diffusive and nondiffusive

particle losses from the heliotron plasma is also commented.

INTRODUCTION

Lack of ignorable coordinate in stellarator and heliotronl implies that
one must resort to 3D numerical techniques to examine the drift orbits. It
also implies that the techniques must be fast aand accurate to be useful in
applications. Unfortunately, methods easy to implement do not simultaneously
meet these reguirements: ¢Simplified analytic models may be inaccurate in the
field modeling though they are time-saving. Conversely, integration of the
Biot-Savart 1law is time-consuming though it is accurate. More advanced
techniques, which are capable of achieving efficient drift orbit computation in

the stellarator fields without sacrificing the reality in the modeling, have



2’3’4’5. This paper proposes another simple

been developed by several authors
technique which not only allows a fast and accurate drift orbit computation but
also clarifies the effects of the symmetry-breaking perturbaticn on the drift

orbits.

GUIDING CENTER EQUATICN
A set of guilding~center drift equations which includes usual gradient and

curvature drifts is used to track the charged particle orbits.

&Y o
dx B >
el A (ta)
dv a - B > :
3t o H(x) (1b)
where
- VZ 2. > >
VD = — (1 + A7) 6x) (2a)
2 Q. R
0 "0
-
- - BxVE
G(x) = B0 RO-———E——- (2b)
B
- -
HGx) = —<— . 7B ‘ (2¢)

Here, A(= v,/v) is the pitch of the particle, @ 0 (= qBO/m) denotes the

cyclotron frequency, and u (= mv 4?/28) denotes the magnetic moment which is
2

assumed to be an adiabatic invariant. The velocities vy, v , and v = ( v,” +
v .L?)I/Z are the parallel, perpendicular and the total velocities of the

guiding center. A nondimensional vector E(;) is a geometry-~dependent (or
particle-independent) part of the drift :flocicy VD; a scalar funciygn HE;) is
the derivative of B in the direction of B/B. We regard the drift G(x) and the
derivative H(;) as the field quantities ( like the magnetic field E) £illing

the whole space.




MAGNETIC FIELD GEOMETRY
The magnetic field model used to validate the new interpolation scheme is

that of vacuum magnetic field preduced by filamentary external helical

windings. Integration of the Biot-Savart law provides the magnetic field
quantities .ﬁ. (:: and H. In toroidai geometry, the most convenient way to
specify the winding law is with quasi-toroidal coordinates (r, 8, ¢ ). The
heliotron winding ( R.; wmajor radius, a; miner radius, L; pitch length) of
multiplicity g is simply defined by 06 =x¢ , where K = 21rRO/L is the twist
number of the helical winding. The number of the field periods around the
torus is then given by k% . BResides the helical field (HF) windings, the
heliotron configuration requires vertical field (VF) coils and allows, in
general, toroidal field (TF) coils. The VF coils compensate the average
vertical field produced by the HF coil. The VF coils alsc control the

horizontal position of the magnetic axis,

THE INTERPOLATION METHOD
we propose here a two-level interpolation technique to speed up the drifc

orbit computations in the toroidal helical dnrvices. Uulike conventional 3D
interpolations, this technique makes full wuse of symmetry to evaluate
asymmetric quantities. Basic idea 1s ¢to decompose all relevant physical
quantities into symmetric and asymmetric parts, both of which are more
manageable than the original ones. Let P denote the helically symmetric part
of any quantity Q. We then express Q as a sum of the principal part P and a

residual part R:

any Principal . Residual
Quantity part part
Q = P + R (3)

(r, 6.¢) (r, 6 -x¢ ) (r’e’¢)

3D 2D 3D



10

The principal part P is the dominant, symmetric part while the residual part R
is the small asymmetric part. To evaluate the field qusntity Q as the function
of position, we interpolate P and R separately rather than interpolating Q
itself. It must be emphasized that the right hand side of expression (3) is
not an approximate expansion of the left hand side but a closed decomposition

of Q as it literally means.

To evaluate the symmetric part P, one can use either analytic or numerical
representation for Q in the equivalent, straight helically symmetric system.
The analytical representation can be given by a series of modified Bessel
functions; the numerical solution can be obﬁained by integrating the
Biot-~Savart law for infinitely long straight helical winding. In practice,
however, we have not found them necessary. To obtain the desired
representation for P, we simply extract the helically invariant components from
the field quantity Q given in the finite aspect-ratio toroidal configuratiom.
Here quantities that depend only on r and Z (= 8 - K¢ ) are considered to be
helically invariant, This extraction can be made by averaging the quantity Q

"helically" over 27 /x ,

2r/x
QCr,z+x¢p , ¢ ) d , (4)

P( rsC) =
2T

just as the calculation of =zero order Fourier ccefficient. Recently and
independently, an averaging similar tec (4) was used6 to eliminate magnetic
islands and stochasticity in a nonaxisymmetric vacuum 3D field. Once P is
obtained, R can be calculated by Eq.(3). Untill row, notations Q, P and R are
used only symbolically. In the following, Q, P and R actually represent the
three components of ;, the three components of the nondimensional drift E, and
the directional derivative H that are necessary to solve the drift equation

(1). From Eq.(3) ome has

G =3© 4 3
e =80 4 W sy

© , RO,

H(x) =B
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where super-scripts (0) and (1) denote the symmetric and the asymmetric parts.

> -
In addition to B, G and H, the decomposition can be applied to other quantities

if necessary.

Above decomposition has a number of new advantages over standard methods.
First of all, 1t allows us to investigate how and to what extent the
symmetry-breaking perturbation affects the drift orbits. By directly examining
the distribution of the residual parts, we may have clearer insight into the
underlying orbit physics than by examining the integrated trajectory itself in
full nonaxisymmetric complexity. We can also calculate drift surfaces in the
corresponding, straight, helically symmetric system by artificially eliminating
all the asymmetric parts from the drift eyuations( i.e., R = 0) and from the
metric of the coordinates. This option permits us a close comparison bhetween
the unperturbed (2D) and the perturbed (3D) drift orbits. By this comparison,

we can investigate the departure from the helical symmetry.

Secondly, the decomposition allows us to develop a simple and efficient
computational scheme. The essential point is to choose suitable, different,
interpolating formulas for P and R according to their relative importance and
to the number of their dimensions. Although the original quancity Q is 3D, the
principal part P reduces to 2D owing to the helical symmetry. Two~dimensional
interpolations are, of course, much easier,to implement, faster to execute and
require less storage than 3D interpolations. We can, therefore, calculate the
principal part P easily and quickly either by using bicubic spline with
moderate mesh size or by using bilinear iﬁterpolation with finer mesh size. On
the other hand, the residual part R is still 3D. The magnitude of this part
is, however, typically by one order (a/RO) smaller than that of the principal
part P. We, therefore, need not use the same-accuracy formula as that used for
the principal part, and a rough trilinear interpolation formula with coarse
grids may be accurate enough. A volume-weighting method in the toroidal
coordinates was used for this trilinear interpolation. Again, we can calculate
the residual part R easily and quickly. Thus, we can handle both of the
decomposed parts, P and R, in a more physically meaningful and numerically

economical way than directly handle the original quantity Q.
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The accuracy of the :wo—leve} laterpolation scheme was tested by comparing
the interpolated result with that of the direct calculation (the Biot-Savart
law). We interpolate not only E but also 3(25 and H(;) in order to avoid the
difference approximation in E x VB and 'E. VY B. The accuracy of Gb is,
therefore, of the same order of that of E. The convergence of the two-level
scheme is faster than that of "single-level" trilinear interpolation. A
possible weakness of the two=level scheme is that it may not work very
efficiently in completely asymmetric fields. If the level of asymmetry is too
strong, the magnitude of the residual part R becomes comparable to {(or even
greater than) that of the principal part P. In this extreme limit, the
accuracy of the two-level scheme degrades to that of wusual trilinear
interpolation. Fortunately, however, many asymmetric magnetic confinement
devices of practical importance such as stellarators and bumpy tori do have
their neighboring symmetry and the levels of their asymmetry are usually weak

or at most moderate,

We have compared the computing speed of two~level interpolation scheme
with that of the direct calculation to estimate the figure of merit factor of
the iuterpolation scheme. We compared the CPU times of the direct and the
interpolation wethods spent for one evaluation of the field quantities. As a
reference, we also measured the CPU time of the single-level trilinear
interpolation, which should give a minimum executing time of any interpolation
methods. The comparison was made on FACOM/M-200 computer. The two-level
scheme was faster than the direct method by more than two orders of magnitude,

and it was slower than the single-level interpclation only about 30%.

APPLICATION
Let us apply the decomposition procedure to Heliotron E ( see Fig.l) and
to examine the effect of toroidal perturbation on the drift GD' From Eq.(2a),

- -
the normalized drift G(x) can be written as follows:

- > - - -‘;
e =¢® L gL D (6

tor



U = (1+ 2% D)

->
where E(O) and G(l) are the principal (symmetric) and the residual (asymmetric)
parts of E(;). The characteristic velocity, Utor’ is the so-called "toroidal
drift" velocity. If the magnetic field is produced only by a toroidal solenoid
~(1)

-
(TF coils), then G(O) reduces to a zero vector and G

-
vertical vector 2. Accordingly, the drift velocity VD reduces to a vertical

reduces to a unit

drift U z.
tor

-
The origir of the asymmetric drife, G(l), in heliotron 1s different from

that both of tokamaks and classical stellarators. In the latter two
->
configurationg, dominant contribution to G(l)
gradient of the toroidal field component Bt’ which 1is produced by TF coils
-
(1)
G

originates from the curvature and

(toroidal solenoid). In heliotrom, by contrast, originates from the
toroidal bending of the helical winding. Note that in heliotron both poloidal
Bp and toroidal Bt field components can be produced by a single set of helical
winding. The TF coils are dispensable or (at most) of secondary importance in
the heliotron concept. For this reason, the perturbed drift, E(l), in the
heliotron need not be identical with those of tokamaks and classical

stellarators.

A unique capability of the two-level interpolation scheme is that it
allows us to visualize the "drift vector field" of the helically symmetric and
the toroidally perturbing drifts, E(O) and E(l). part by part. Figure 2 shows
the arrow map of the helically symmetric drift of Heliotron E. An interesting
finding in the toroidal heliotron is a vortex structure in the perturbed drift,
E(l). In Fig. 3-(a),(b) and (c), the arrow map of the perturbed drift, E(l),
is similar to the toroidal drift , Utorﬁ’ near the minor axis. It is, however,
substantially modified in the outer region of the magnetic surface and
completely different in the separatrix region from Utorﬁ of simple toroidal

()

solenoid. In particular, the drift G shows the vortex-like structure. The
center of this "drift vortex" is located at the peripheral region of the
magnetic surface., As a reference, arrow map of the toroidal solenoid is shown

in Fig.4.
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The numerical finding of the drift vortex prompts us to reconsider a
gquestion: what is the "toroidal drift" in nonaxisymmetric devices. To answer
this question, we have examined the distribution of the perturbed drift E(l)
along the field line and along the drift orbit, Figure 5 shows the time
variation of the unperturbed and the perturbed drift along the trajectory of a
passing particle in the heliotron. The helically symmetric part, E(o),

-
asymmetric part and, G(l), are clearly separated. we have averaged the
%(0)

vertical and horizontal components of the symmetric G
-

G(l) parts along the field lines and along the drift orbits. The average was
carried out along the line of force over 10 toroidal revolution around the

and the asymmetric

- torus. It was found that the net vertical drift resulting from the toroidal
perturbation, E(l)' z, iu the heliotron field is appreciably smaller than that
expected from the geometric aspect ratio Rola of the device. This reduction is
restricted in the peripheral region of the magnetic surface when the magnetic
axls is centered on the minor axis. Effects of the VF coil field on the
averaged vertical drift are algo examined. When we shift the magnetic axis
inward by the VF coils, a strong reduction (factor of two) in the vertical

. drift was obtained even near the magnetic axis ( see Fig.6). This type of
configuration was previously studied and referred to a '"reduced Q"

configuration7.

These results indicate that the aspect ratio is effectively enhanced for
the charged particles moving in the Heliotrom E plasma. It must be emphasized
that this enhancement of the aspect ratio is achieved not by introducing
auxiliary coils ( and hence extra complexity) into the system but by simply
removing the TF coils from the system. When we increased the TF coil field in
the calculation, the perturbed vertical drift approached to that of toroidal
solenoid field as expected. We consider that the finding of the drift vortex
is a good example illustrating a possibility of the optimization of field
configuration. Since the reduction of the vertical drift are obtained even in
a simplest combination of the helical winding and VF coils, one can expect

further optimization of the drift by modifying the external coil svstem.
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SUMMARY
We have outlined here a simple interpolation algerithm which enables us to

davelop an efficient 3D field line and drift orbit following code. This
algorithm splits given field quantities into the symmetric and the residual
parts and, therefore, is particularly powerful to evaluate asymmetric fields.
Using this code (ATLAS), we have investigated the effects of the toroidal
perturbation on drift orbits in the heliotron field, and ‘found a vortex
structure in the perturbed drift velocity. Such a "drift vortex" is that can
not be expected from the usual toroidal drift in torus geometries. The
presence of the drift vortex implies that the vertical drift of the particle in
the heliotron pldsma is substantially reduced than that frequently assumed in
simplified analytical models for tokamaks and stellarators. This reduction in
the vertical drift is important because it may reduces both diffusive and
non-diffusive losses of the charged particles from the heliotron plasma.

So far, the two-level interpolation scheme has been applied only to the
calculation of magnetic surfaces and drift orbits in the vacuum heliotron
fields produced by filamentary helical windings. The ATLAS code can be a
useful tool in investigating drift orbit related phenomena in nonaxisymmetric
devices such as the calculation of velocity space loss region, neoclassical
transport of thermal ions, slowing-down process of fast ions, and drift
optimization of field configuration. The philosophy and the technique proposed
here, however, may be equally applicable to wider classes of problems arising
in various types of asymmetric 3D fields. Any magnetic fields obtained by
other approaches than the Biot~Savart law that can provide reasonably accurate
B and grad-B on the 3D grid points can be used as the input of the present
decomposion procedure. For example, the scheme is in principle applicable to
finite beta 3D equilibria by using the output of 3D MHD equilibrium codes.
Incorporation with existing Monte-Carle scattering algorithm and the inclusion

of the electric filed remain the subjects of future studies.



16

REFERENCES

(1) K.Uo, Plasma Phys. 13 (1971) 243,

{2) G.Kuo-Petravic, A.H.Boozer, J.A.Rome and R.H.Fowler,
Journal of computational physics 51 (1983) 261.

(3) W.Dommaschk, Z. Naturforsch 36a, 251 (1981).

(4) C.Gourdon, G.Lemarie, F.Roche, J.L.Soule,
"Un Programme optimise de Calculs numeriques dans les configurations
magnetiques toroidales" Rep. EUR-CEA~FC-449 (1968).

(5) R.E.Potok, P.A.Politzer and L.M.Lidsky,
Phys. Rev. Lett. 43 1328 (1980). See also PFC/PR-80-15 (1980).

(6) J.R.Cary, Phys. of Fluids 27 (1984) 1i9.

(?) W VII-A Team and W.Lotz, presented by F.Rau, "On Toroidal Vacuum Fields
and Particle Orbits in Modified Stellarator and Torsatrons"  9th Europ.
Conf. on Contr. Fusion and Plasma Physics, Oxford Sept. (1979)

FIGURE CAPTIONS

Figure 1. the magnetic surface of Heliotran E ( 27 a/L = 1.4; RO/a =
2.2/0.3). Field line tracing was carried out by the two-level

interpolation scheme.
Figure 2. arrow map of helically symmetric drift E(O). Note that the scale of
the arrow length is different from that in figure (3),(4) and {6).
Figure 3. arrow map of asymmetric drifc E(l)
position (a),(b),(c).

Figure 4. drift arrow map of a reference tokamak (toroidal solenoid).

at three different toroidal

Figure 5. time evolution of vertical drift along the passing particle. Dots
represent the helically symmetric part; solid line represents the
asymmetric part.

(1)

-
Figure 6. arrow map of the asymmetric drift G in the case with increased (by

25%) vertical field. The magnetic surface is also shown.
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studied with a 3-D equilibrium code and with an average method (2-D).
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equilibrium shift and good equilibria up to at least 10% peak beta.
Low aspect ratio heliacs, with relatively large toroidal shifts, are
shown to have low equilibrium beta limits (~5%). Increasing the aspect
ratio and number of field periods proportionally is found to improve
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Tield periods at fixed aspect ratio which raises Z and lowers the
toroida! shift improves the equilibrium beta limit.
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1. Introduction

In this paper, the equilibrium properties of several types of
helical axis stellarators will be studied. Previous stability studies
of the heliac concept have shown the expectation of high £ limits. 1In
particular, detailed stabiiity studies in the infinite aspect ratio,
helically symmetric limit show favorable stability properties for
"bean® shaped he!iscs.! The equilibrium results given in this paper
will focus on the finite aspsct ratio regime where there is an
interplay between toroidal and helical curvature effects. Studies by
Reiman and Boozer indicate that such interactions may lead to island
formation and flux surface destruction.?

The equilibrium properties of three types of helical a 's device
will be studied:

1) The helical axis ATF,® which is formed by imbalancing the currents
in the helicz] windings of the ATF device.

2) Heliacs of the type studied at PPPL,* in which a set of toroidal
Tield coils spiral about an interiocking, toroidally directed ring
[Fig. 1{a)]. A large sequence of such heliaecs, with varying
helical and toroidal curvatures will be studied.

3) Helical axis stellarators formed by non-interlocking toroidal field
coils. In particular, a system in which the axis of the coils
defines a geodesic on a torus will be studied [Fig. 1(b)].

The above configurations have been studied with the 3-D
equilibriun code NEAR, and also using an average method, which is
applicable to helical axis systems. Details of these methods will be
given in the next section and results of the calculations will be

presented in Sec. 3.
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1. Introduction

In this paper, the equilibrium properties of several types of
helical axis stellarators will be studied. Previous stability studies
of the heliac concept have shown the expectation of high § limits. In
particular, detailed stability studies in the infinite aspect ratio,
helically symmetric 1imit show favorable stability propertivs for
"bean" shaped heliacs.! The equilibrium results given in this paper
will focus on the finite aspect ratio regime where there is an
interplay between toroidal and helical curvature effects. Studies by
Reiman and Boozer indicate that such interactions may lead to island
formation and flux surface destruction.?

The equilibrium properties of three types of helical axis device
will be studied:

1) The helical axis ATF,® which is formed by imbalancing the currents
in the helical windings of the ATF device.

2) Heliacs of the type studied at PPPL,* in which a set of toroidal
field coils spiral about an interlocking, toroidally directed ring
[Fig. 1(a)]. A large sequence of such heliacs, with varying
helical and toroidal curvatures will be studied.

8) Helical axis stellarators formed by non-interlocking toroidal field
coils. In particular, a system in which the axis of the coils
defines a geodesic on a torus wi!l be studied [Fig. 1(b)].

The above configurations have been studied with the 3-D
equilibrium code NEAR, and also using an average method, which is
applicable to helical axis systems. Details of these methods will be
given in the next section and results of the calculations will be

presented in Sec. 3.
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2. Numerical and Semi-Analytic Methods

Both the average method and 3-D NEAR code arz based on a set
vacuum flux coordinates (p,, ©,, ¢,), described by Boozer. These
coord’nates are defined by their relationships to the vacuum magnetic

tield

> -

- -
BV = Bopv va X V(ev - V¢V) = FVV¢V (l)

and by the additional constraints that Bop%/2 is the vacuum toroidal
flux and that the constant F, should be such that §, 6 varies by 2r in
traversing the torus once toroidally. The (p,, ©,, ¢,} coordinates and
associated metric elements are derived numerically from given coil
configurations, using a modified version of a2 code developed at ORNL.
The 3-D NEAR code uses the (p,, ©,, ¢,) coordinates as its
Eulerian frame of reference. The dependent variables are represented
as doubly periodic Fourier series in 6, and ¢,. Thus, for example, the
contravariant component of the magnetic field is represented as

BP(p,.9,.4,.t) = L B(p,.t) sin(mb, - nd,) . (2
m,n

The equilibrium problem is soived, using this representation, by a
steepest descent method in the manner described by Chodura and
->
Schliter.® A fictitious force F is introduced

F:jxg—ﬁ:’ (3)

which in turn is related -to a velocity V, by a conjugate gradient
iteration scheme.” The magnetic field and pressure are advanced subject
to the constraints of flux and mass corservation:
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.g%=\7x ¥ x B) (4)
and
1a_=-i.’-w= NPV eV . (5)

The wal! boundary condition is given by an infinitely conducting wall
at the last closed flux surface.

The other approach which has been used in these studies is an
average method. The average method was first applied to the
stellarator equilibrium problem by Greene and Johnson.® Their averaging
was in real toroidal angle and relies on the dominance of the toroidal
magnetic (By) tield over the rapidly varying helical component (Bv)
where ]B i/BT ~ 8 <€ 1. The averaging method described in this paper
makes the same assumption but averages are performed in the flux
coordinate toroidal angle (¢,) at fixed p,, O,. Thus the average
magnetic field is

- 1 b
B =5 jﬁ“s db, (6)

To leading order, the averaged equilibrium equations reduce to a
Grad-Shafranov type equation:

1.8 1 3 L < 8y
L2 (v 2o EP_>+ s (gL ae)

BoF 1 & 1 3 )
tE- [p (32,<3") - (oyZ,<3™)

fv 1 o oF
B, D, &% & v
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where
B 18 Ly B __ %
b, Py 09y Dy Opy

here Dy is the Jacobian and F = <Bp. The equivalence of Eq. (7) to
the Grad-Shafranov equation derived by Greene and Johnson may be
demonstrated. Equation (7) is, however, equally applicable to planar
and hzlical axis configurations; provided the toroidal shift dominates.
A Poisson type equation for §¢ (the toroidally varying toroidal field)
has also been derived. Thus higher order corrections to the averaged
equilibrium may be computed. Numerical methods have been developed to
solve both this Poisson equation and the Grad-Shafranov equation
[Eq. (7)]. Comparisons between 3-D equilibria and average method
calculations will be given in the next section.

3. Results

(a) Helical Axis ATF

By imbalancing the currents in the helical field coils of the ATF
device, a helical axis plasma is formed. The low iota bar per field
period (~0.1) and relatively low aspect ratio, result in the
equilibrium shift being torcidally dominated. The average method
described in the previous section is thus applicable. Figure 2 shows a
comparison of the flux surfaces, for the helical axis ATF, computed
with 3-D NEAR code and with the average method at By = 2.8% (the vacuum
tlux surfaces are also shown for reference ). To make this cemparison
more qualitative, the equilibrium shifts (Ap) computed with NEAR (3-D)
and the average method are compared in Fig. 3. The average and 3-D
computations agree well. Good equilibriz have been found for the
helical axis ATF for central beta’s up to 10%. However, the importance
of resonant harmonics (whose importance is accerisated by the low
shear) has not been examined in detail.
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(b) Heliacs and Geodesic Helical Axis Stellarators.

A wide range of heliacs have been studied. Two fixed pitch scans
have been examined in detail [Pitch = (Number field periods)/{Aspect
ratio)]. Tie particular configurations studied in these pitch scans
are summarized Fig. 4. In general, it is found that low aspect ratio
heliacs have low equilibrium beta limits. Figure 5 shows a comparison
between the equilibrium flux surfaces computed with the
Chodura-Schliiter® code and the NEAR code, for the M = 4, R = 4 heliac
(M is the number of field periods). The distortions to the flux
surfaces, shown in Fig. 5, are caused by the beating of the dominant
toroidal shift with the helical harmonics generated by the coils. At
higher betas (~10%) these distortions grow without limit and destroy
the equilibrium. The .quilibrium beta Timits can be raised by reducing
the toroidal equilibrium shift. This may be achieved either by raising
the total Z or by raising the aspect ratio at fixed pitch. Figure 8
shows equilibrium flux surfaces at By = 5% for the M =8, R=8 and
M =28, R=4 heliacs. These correspond to raising the total z (M = 8,
R =4) and raising the aspect ratio (M =8, R =8), relative to the
M =4, R=4 case. The improvement in equilibrium quality is evident
in Fig. 8. The results of the M/R = 1 scan are summarized in Fig. 7,
where the toroidal shift (A7) and helical shift () as function of g
are plotted for the configurations studied. The helical shifts remain
practically invariant for all configurations in the pitch scan, while
the toroidal shifts decline as the inverse aspect ratio. This is
because in a fixed pitch scan the helical curvature remains constant as
the toroidal curvature varies.

Finaliy, the potential of reducing the toroidal shift by winding
the toroidal coil axis as a geodesic on a torus, has been examined
[Fig. 1(b)]. Figure 8 shows equilibrium flux surfaces at §y = 5§ for
this configuration. The torcidal shift is of the same order as the
M =R =4 heliac (shown in Fig. 2); there appears to be little benefit
in winding the axis as a geodesic. Further studies are however

required to clarify this point.
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Conclusions

A wide range of helical axis stellarators have been studied with
the 3-D equilibrium code NEAR and with an average method applicable to
helical axis configurations. The helical axis variant of the ATF
device is found to have a toroidally dominated equilibrium shift.
Studies of the helical axis ATF with MEAR (3-D) and the average method
indicate good equilibria exist up to at least 10% central beta.

Two sequences of fixed pitch heliacs have been examined to clarify
the effects of toroidal and helical curvature on the equilibrium. In
general, it is found that heliacs which have large toroidal shifts,
have low equilibrium beta limits. This is because the beating of
toroidal shift with the helical harmonics of the coils produces gross
distortions to the flux surfaces. This process is the same as that
described by Reiman and Boozer.3 Raising the total z by increasing M at
fixed aspect ratio improves the equilibrium beta limit in heliacs.
Alternatively increasing the aspect ratio at fixed pitch also raises
the equilibrium beta limit.

Finally, the potential of reducing the toridal shift by winding
the toroidal field coil axis as geodesic [Fig. 1(b)] has been examined.
Initial results indicate there is little reduction toroidal shift by
winding the coils in such a manner.
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Kyoto University i
Gokasho, Uji

Kyoto, Japan

In the heliotron with large rotational transform, «(a) ~ 2,
the dominant stabilizing mechanism against MHD instabilities 1is
shear. The linear MHD stabillty of the heliotron configuration
. was studied against the low n pressure-driven modes both for the i
cylindrical (1] and the ;oroidal configuration [2], where n is a -
toroidal mode number. It is found that (i) the equilibrium
averaged beta limit exceeds 77 since both ¢ and the aspect ratio,
R/a, is large, and (ii) the stability beta limit depends on the
pressure profile and broad profiles give large stability margin.

Recently two types of discharge are observed in Heliotron E
which depend on the gas puffing condition during the neutral beam
injeéction. 1In the weak gas puffing case, for 8(0) 2 27, internal
disruption with precursor fluctuations appears in the séft x-ray

measurements as shownAin'Fig. 1 (S mode). On the other hand, L

when the intense gas puffing is applied, the fluctuations of the




35

soft x-ray become weak or disappear (Q mode). In the § mode,
density fluctuations and magnetic fluctuations are also observed.
At the time of the internal disruption energy flow to thé'edge
region was detected by the bolometric measurement.

The estimated mode numhber from the measured precursor
oscillations is m = 1/ n = 1, where m denotes a poloidal mode
number. The main difference between the S mode and the Q mode is
the pressure profile. The S mode has a peaked profile, while the
Q mode has a broader one. The stability of the Q mode is
consistent with the linear stability analyses which predicts a
higher beta limit for a broader pressure profile.

In order to investigate the physical mechanism of the §
mode, the reduced non-linear MHD equations describing the

stellarator plasma [3],

d 2 > - - -
M) — v u= (B8 + Ty + v x &) Ty )

dt
- > >
+ Vi x VP-e,,
> .. 5 2
(2) —:T- q)_]' = {Bzogz + V(\PJ + lbn) X eZ} vu + nV_L w_]"
dP _ 2

are solved in the straight plasma model,

where
Boen2l
Y, = = I,'(hr) I, (hr)
h Zszhr2 1 L
q 4 G(hr)

" UDR F' (ho



F(hr) =2 I,(hr) I, (hr),
" hr

12

G(hr) = (I, (ho)]1% + (1 + ) 1,2 (k).

h2r2
Here u denotes a stream function, WI a flux function due to
plasma current, Eh a magnitude of the helical magnetic field and
1 and h characterize the helical field structure. In the
pressure equation (3), the thermal diffusion Keff' is included to
take into account the rapid energy transport due to the
instability and to remove the singular profile at the saturation
of the unstable ideal MHD mode. In the numerical calculations,
Keff is given by an, where o is a constant and n denotes
resistivity. It is assumed that the mode coupling due to the
toroidal geometry may be weak for the m = 1/ n = 1 mode resonate
at £ = 1 surface. The resistivity in eq. (2) allows reconnection
of the magnetic field lines in the non-linear stage of the
ideally unstable mode.

Without n and Keff in egs. (1) ~ (3), the linear stability
analyses against the ideal m = 1/ n = 1 interchange mode give
3c(0) =2.5%2 for the pressure profile, P = Po(l - (r/a)z)z, and
below this value the resistive m = 1/ n = 1 interchange is
destabilized by n. In the non-linear analyses of these modes we
assume single helicity. The time evolution of kinetic energy is
shown in Fig. 2. Figure 3 shows plasma pressure profiles at four
different times. T = 132 (normalized by the poloidal Alfven
transit time) corresponds to the growing stage of the unstable

mode, at T = 164 the reconnection of the magnetic field lines
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starts and T = 292 corresponds to the saturated stage. The
pressure profile deforms due to both the non-linear development
of the m = 1/ n = 1 mode and the thermal diffusion. From the
time evolution of the pressure profile we can estimate the soft
x-ray signal in the experiment by assuming that the pressure
corresponds to electron temperature and the plasma column rotates
rigidly. We also assume the soft-x—ray is proportional to P3.
Figure 4 shows the estimated fluctuations for the ceatral cord
and the cord through about the half radius. It is seen that the
fluctuation level is large in the outer region and the phase of
the central cord is about 180° different from the outer region
cord. These are consistent with the experimental data of Fig. 1.

Now we will discuss the time scale of the internal
disruption. In Fig. 1 it starts at T = 471.6 msec and ends at T
= 472.8 msec. Therefore, the saturation time may be 1.2 msec.
The saturation time in Fig. 2 is about T = 280 TO. From the
experimental data the unit time Ty is estimated 0.5 sec. By
comparing these members, there is about 8 times difference
between the experiment and the numerical results. Still there is
ambiguity about both the beta value and the pressure profile just
before the internal disruption. More detailed measurements of
the temperature profile and the density profile are required.
The fluctuation before T = 471.6 msec is assumed the resistive
instability withm =1 and n = 1.

In summary, main characteristics of S mode can be explained

by the non-linear evolution of the m = 1/ n = 1 interchange mode

at nearly marginal stability.
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Figure Captions

Fig. 1 An example of soft x-ray fluctuations in the case of
internal disruption for #(0) ~ 2.57.

Fig. 2 Time evolution of kinetic energy of m =1/ n =1
interchange instability for P = Po(l - (r/a)z)2 and
g(0) = 2.6Z. Magnetic Reynolds number § = 5 «x 103 and

K = 2N

eff

Fig. 3 Pressure profiles along 6 =0 and 6 = = line for the
instability shown in Fig. 2.

Fig. 4 Soft x-ray fluctuations from time evolution of pressure
profile by assuming rigid rotation of the plasma
column. (a) shows the central cord and (b) the cord

through about the half radius for 8(0) = 3.77%, Keff =
5nand § = 5 x 10°.
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STELLARATOR EXPANSION STUDIES GF A HIGH-BETA TORSATRON*

J. A. Holmes, B. A. Carreras,™ L. A. Charlton,
H. R. Hicks, and V. E. Lynch

Computer Sciences at
Oak Ridge National Laborator
Oak Ridge, Tennessee 37831 USA

1. INTRODUCTION

ATF is a medium aspect ratio (R,/a; =7) £=2 continuous
torsatron with twelve field periods (M = 12). This configuration has
been demonstrated, using the stellarator expansion,1 to have good MHD
equilibrium and stability properties2 with increasing §.

Present studies are directed toward improving the flexibility of
the ATF design by determining means of controlling important plasma
parameters, such as the magnetic wel!l and the rotational transform
profile. We concentrate here on the use of the ATF vertical-field (VF)
coil system in providing this control. .

The stellarator expansion equilibrium and stability calculations
carried out using the system of computer codes developed at Dak
Ridge2‘4 feature a fixed-boundary approach. This method provides
convenient control of the equilibrium shaping and is useful for rapidly
producing and considering a wide range of cases. However, with the
demonstrated desirability of the ATF configuration from an MHD
equilibrium and stability standpoint and with the capability of the VF
coil system for controlling plasma parameters as discussed here, the
need to study the free-boundary equilibrium and stability of ATF
becomes important. To carry out this work, we have recently obtained
Princeton Plasma Physics Laboratory’s free~boundary steliarator
expansion equilibrium and stability codes. 58 We present here the
results of our initial free-boundary calculations for ATF.

*Research sponsored by the Office of Fusion Energy, U.S. Department
of Energy. under Contract No. DE-AC05-840R21400 with Martin Mariesta
yst

Energy ems, Inc.

**Cusion Energy Division.



2. THE STELLARATOR EXPANSION EQUATIONS AND THEIR SOLUTION

The stellarator expansion was originally derived by Greene and
Johnson! using an ordering scheme with the ratio of the helical and
toroidal magnetic-field streigths as the basic parameter. In this
scheme, toroidal effects are assumed to enter in second order. The
crucial feature of the stellarator expansion is the reduction of the
equilibrium calculation from three to two dimensions through toroidal
averaging over a field period. This feature makes the systematic
computational treatment of a large number of cases possible. With this
reduction, one solves an equilibrium equation for the averaged poloidal
fiux function

* * 2 dP ¥ df
A" (¥ - V) =-R W'(F+F)W‘ (1)

which closely resembles the Grad-Shafranov equation for tokamaks. In
Eq. (1), %(R,Z) is the averaged poloidal flux function, %;(R,Z) is the
averaged poloidal flux function of the vacuum, R is the major radius
coordinate, Z is the vertical position, P(¥) is the pressure, F*(R,Z)
is the helical-curvature term, and the averaged toroidal flux function
F(¥) is adjusted to give either strict flux conservation (& = &,) or
zero net toroidal current within each flux surface (<J¢>¢ =0). The
quantities W: and F* depend only upon the vacuum magnetic field. While
the details are discussed in Refs. 1 and 2, it suffices for present
purposes to state that F* depends only upon the helical magnetic field
and that ¢: =Yg + ¥*, where ¥* depends only on the helical field and
Yo contains only axisymmetric contributions. In particular, ¥ is
gbtaineg . by solving *A* Yo =0 with the boundary conditiop
By = -ﬁ-VlWO X &, where By is the poloidal vacuum field averaged over
a Tield pericd. Hence, the effect of the axisymmetric VF coil system
in these calculations enters entirely through the quantity ¥,. Because
the stellarator expansion is not an exact mode! for three-dimensional
equilibriun and stability (being derived in She !imit of small
helical-tield variations, large aspect ratio, and low B), tests have
been conducted comparing the results with those of full
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three-dime- ‘onal equilibrium calculations. As shown in Ref. 2, good
agreement .s obtained.

Both the fixed- and the free-boundary equilibrium codes used in
this work have been adapted to accept averaged numerical vacuum data,
rather than mode! fields, from the actual ATF design. The vacuum
magnetic fields are calculated using the Biot-Savart law, together with
filamentary coil specifications.

Both the fixed- and free-boundary equilibrium codes soive Eq. (1)
on a rectangular coordinate grid. While the fized-boundary code can
produce either flux—conserving or zero net current equilibria, the
free-boundary code solves only the latter. In both programs the
averaged pressure is modeled by P(¥) = c (¥ - Wa)k where the constant ¢
determines the peak B, ¥, is the value at the zero pressure boundary,
and the exponent k determines the steepness of the pressure profile.
We take k=2 in this work.

The main difference between the fixed- and free-boundary
equilibrium codes is the trcastment of the boundary. In the
fixed-boundary code, a flux surface of Wv is chosen to be the
computational boundary. The boundary conditions are taken to be P = 0
and ¥ = 0, and the calcuiation is carried out entirely inside this
conducting wall boundary. The free-boundary code calculates a solution
over an entire rectangular region with the boundary conditions applied
at the edges. The location of the flux surface of zero pressure is
determined by the intersection of the flux surfaces with a specified
limiter. Interior to this surface one obtains a solution to Eq. (1)
with pressure, while the exterior solution is an averaged vacuum
solution. The boundary conditions on the edge of the computational
grid are determined from the plasma currents using Green’s functions.”
The control of the shape and location of the P = 0 surface in the
free-boundary method is carried out completely through the
specification of the VF coil currents.

The fixed-boundary stability calculations for low-n modes are
carried out using a reduced set of equations for stellarators that was
derived by Strauss? using the stellarator expansion ordering. These
calculations (described in Ref. 2} use an initial-value approach. The
free-boundary code for low-n stability, described in Refs. 7 and 8,



uses a 8W approach, with an optional conducting wall that can be placed
at any multiple of the plasma radius between 1 and o. This
free-boundary system of codes is 2 modification of the tokamak MHD
equilibrium and stability PEST coded:8 to do the stellarator expansion.

3. ROTATIONAL TRANSFORM CONTROL USING THE ATF VF COIL SYSTEM

For fixed-vacuum configurations, zero net current equilibrium
sequences show significant deformation of the rotational transform
profile with increasing B. As can be seen for the standard ATF
reference vacuum in Fig. 1, with increasing B the rotational transform
increases on the magnetic axis, decreases at the (fixed) plasma
boundary, and forms intermediate minima. Such major variations of the
rotational transform could lead to resistive instabilities and
degradation of confinement. To control the rotationa! transform of
zero net current sequences of equilibria, let us now consider the ATF

VF coil system.

The VF coil system for ATF consists of the three pairs of
axisymmetric coils shown in Fig. 2. Each pair is located symmetrically
about the horizontal midplane, and the currents in the upper and lower
members of -each pair are equal. By varying the currents in the three
sets of coils, it is possible to alter the magnetic configuration quite
flexibly. Such features as the position, the total external fiux
linked, and the cross-section shape of the magnetic surfaces can be
controiled in this manner. For example, by changing the relative
currents between the inner and outer sets of coils, it is possible to
shift the magnetic surfaces in or out along the major radius.
Reference 2 shows how this technique can be used to control the
magnetic well and, hence, the stability of the resulting equilibria.

With three sets of coils, it is possible to control three degrees
of freedom, or to satisfy three constraints, in the magnetic-field
configuration. One such constraint cou!d be to determine the position
of the plasma, using the VF coils to shift the surfaces in or out as
desired. Another such constraint is to determine the total external
flux linked by the plasma. Having satisfied these two constraints, one
degree of freedom remains, and this is related to the cross-section
shape of the magnetic configuration. This is discussed in a
quantitative way in Ref. 10. For the calculations to be presented in
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this section, we have chosen to maintain the plasma position and the
external flux linked by the plasma to be constant and equal to that for
the standard, reference ATF vacuum configuration. This leaves one
remaining degree of freedom in the relative coil currents. Since the
standard ATF vacuum configuration is obtained with zero current in the
VFB coils (Fig. 2), we parameterize this degree of freedom by Ip, uhe
current in the VFB coils normalized to the current in the helical-field
coils. The constraint of constant external flux linked by the plasma
is in keeping with the conditirns of a dynamic adjustment of the coil
currents dering a discharge, during which changes in the flux would
lead to surface currents in the plasma.

As the VF coil currents are changed in a manner to maintain
constant external flux linkage and plasma position, the shape of the
magnetic surfaces becomes elongated/shortened with
increasing/decreasing I,. For a given plasma B, »g decreases as the
surfaces become elongated (I, 2 0). For large enough values of Iy,
I, 2 0.3, the vacuum vy becomes zero, and a separatrix forms, leading
to a doublet configuration. Since »y increases with increasing 8 for a
fixed~vacuum configuration and decreases with increasing Iy for fixed
B, it is possible to increase I, with increasing B 2t a rate just
sufficient to maintain ®y constant. Such flux-controlled curves of
constant &y are plotted in the By ~ Iy, plane in Fig. 3.

We shall now describe our results for a typical flux—controlled
curve depicted in Fig. 3. The equilibria in this sequence have been
calculated by varying the coil currents with B to maintain constant g
such that at B =0 the vacuum is the standard ATF reference case.
Throughout this sequence the vacuum-averaged flux surface chosen for
the boundary is tuken such that &, = 1, which is consistent with the
notion of a natural limiter at the plasma boundary. The efongation of
the magnetic surfaces required to maintain constant 3y as §is
increased is shown in Fig. 4.

A Tavorable property of the flux-controlied equilibrium path is a
reduction of the magnetic axis shift at given B when compared with that
of the standard vacuum coil current configurztion (Fig. 5). This
decrease can be understood as a consequence of a reduction in the
Pfirsch-Schiiter currents with increasing I,.
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Although one might expect a «decrease in the magnetic well in
conjunction with the reduced axis:shifts and Pfirsch-Schiiter currents,
the shaping of the magnetic surfaces accompanying these reductions
prevents such a decrease.

4. FREE-BOUNDARY CALCULATIONS

Our initial work with free-boundary equilibrium and stability has
concentrated on comparison with existing fixed-boundary caszes. This
comparison has been carried out for a fixed VF coil current
configuration. The equilibrium parameters compare quite closely for
the two methods. TIn Fig. 8 we show plots of <> and the magnetic axis
shift /Ry vs Py for the fixed- and free-boundary models. The
free-boundary calculations have been carried out here using an
additional vertical field to keep the plasma centered as f is
increased. The rotational transform profiles also agree quite wel! in
Fig. 7. The difference at the outside boundary is due to a different
choice of limiter in the two calculations, but the trend in &, vs g is
the same for both methods.

We have not, at this time, observed any global instabilities for
the ATF configuration. Although Rewoldt and Johnson!! have reported a
global n =1 kink mode for an <B> = 2.8% equilibrium, this calculation
was made wusing a vacuum Ticld configuration that has been
computationally superseded. In this vacuum configuration, the
computational boundary for the toroidal averaging was taken to be a
square box. To keep this box from intersecting the (circular)
projection of the helical-field coils, it was necessary to omit
substantial regions containing good flux surfaces (Fig. 8). In
addition, the helical magnstic fields were calculated using a potential
function & such that W = By, with the derivatives evaluated
numerically. Since then, the vacuum calculations have been modified to
use the circular region, which more nearly matches the projection of
the helical-field coils. With this larger region it is possible to
include more good surfaces. As seen in Fig. 8, using the old method
(square box) on the standard ATF vacuum, the rotational transform is
cut of at & = 0,82, while with the circular region, surfaces with
v > 1.1 are included. We now also calculate the vacuum helical fields
more accurately using the Biot-Savart law, which avoids the necessity
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of numerical differentiation. Finally, higher resolution is now
obtained in the average vacuum calculations by using a 100 X 100 mesh,
rather than the 85 X 65 mesh as used previous!y. While we have been
able to duplicate the results of Rewoldt and Johnson by using the same
"old" vacuum file they used, we find no global instabilities for the
same configuration when the "new" vacuum calculations are used. At
present we are working on separating the effects of box size, numorical
differentiation versus Biot-Savart, and resolution to determine which
factors are instrumental in changing the stability results.
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ABSTRACT

The nature of the resistive MHD equations is examined in terms of a set
of gauge functions based on the magnetic field. A set of reduced equations
may be arrived at in this gauge by making the simple assumption that the
compressional motion 1s decoupled from the shear motion. The equations
reduce to those first proposed by Strauss and by Chance et al. when the
perpendicular perturbation wavelength is much shorter than the equilibrium

length scale.
I. INTRODUCTION

The basic nature of the reduced equations!—3 is that they provide a
concise description of the interaction of the shear Alfven waves in the sys—
tem. One of the key assumptions in the original Strauss equations is that
in the plasma there is a predominant (axially symmetric) toroidal magnetic
field. Due to this strong toroidal field, the phenomena under study could
be decoupled from the magnetoacoustic branch. As a matter of fact, the
magnetoacoustic branch is completely eliminated. In a general fusion con-
figuration, the plasma may evolve into a state in which the megnetic field
does not have any predominant symmetry direction. Examples of these devices
are the spheromak,“ stellarator, the various high current pinches (RFP,
OHTE, 5 bumpy Z-pinch,® etc.), and the very low aspect ratio tokamak. It is
the purpose of this paper to extend the formulation of the reduced equations
to these configurations.
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By representing the electric field in & special gauge, simple assump-
tions can be made which allow the easy eliminat.ion of the magnetoacoustic
waves and the clear decoupling of the megn “~acoustic branch from the Alfven
waves. This gauge facilitates the decomposition of the primitive set of
equations into links of equation chains with easily solvable links. The
gauge functions play the essential role of the langrangian coordinates?
for the mgnetic field.

The plasma state is no longer specified by the eight variables
(E,;,p.p). Their evolution, instead, is aided by the information on the
evolution of the gauge functions y, y and u, specifying the electric field.
Further specific assumptions about them provide self-consistent simplifi-
cations on the system without affecting the structure of the equations.

II. "REDUCED" BQUATIONS IN AN ARBITRARY CONFIGURATTON

The primitive MHD equations which we start with are:

3p+" >

—r— FelpV) =0 ’ 1
v (pV) (1)

3.3 . > > +

P E+ p(VeV)Vv = = Up + JxB )
aE +* >

— = ~ IxE 3
vy ’ 3)
> > >

E=nJ - B , 4)

> >
i;.l:.+6.p+rpv-$='r s (5)

and

-
J=UB . (8)
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A campletely equivalent description of the plasma state may be specified by
adopting the gauge of the electromagnetic field as

> *» > > ‘
Ex-XpB_.vX, B+ . ' (7N
ot ot o

This gauge is motivated by noting that the fluid velocity v is obtained from
Eq. (4) as (for plasmas close to MHD equilibria):

>

> > vy B
§=TuwB _ g _Q&_,va.,._'_, . (8)
B2 9 2 B2

We see from Eq. (8) that v is decomposed im:o pa.rts which can be identified
a.s the shear motion around the field line, VuxB/B <; the compressional motion
vl(ax/at), the slippage of the plasma with respect to the field line,
n/B2(Wp); and the motion parallel to the field line v,B/Bz We associate

u with the shear Alfvén wave and 3x/3t with the magnetoacoustic mode. A
description of the plasma state may therefore be obtained by regarding
E,w,x,u.p,p as dependent variables and recast the set of Egs. (1) through
(6) in terms of them. In this set of variables, the decoupling of the shear
motion and the compressional motion is relatively easily implemented.

Here ¢ is the inductive volt seconds linked by a field line. Its
evolution in time is obtainable from the parallel component of Eq. (4) as

-a-l=-]:— +.-> _ ->'->
profey (BeVu - nJ+B) , €))

The elimination of the compressional Alfven wave is equivalent to the
neglect of the mss density in the equation of motion for the compressiciial
component. Or when mass density is ignored, we have the equilibrium
relation:

'
TR T Rt AR
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> > >
Vp = JxB , (10)

The compressional compcnent can be used as a dynamical constraint for
determining v;(2x/9t). By differentiating Eq. (10) with respect to time,
we find

+ >
> > >
vR_M, 3. 580 . (11)
at ot at
In Eg. (11), the time rate of change of the magnetic field consists of two
parts

aB
. v,((f.“..’ B) , (12)
at

E :
.a_&- ;x(;.axx EJ . : L (13)
at at

By utilizing Eg. (5), and Eqs. (i2) and (13), Eq. (11) can be shown as the
Euler equation for the following functional L‘x for a plasma satisfying
Eq. (10), with

Ly (v, ’2‘%] = Ligp (7, %i‘) f (‘71 S W) ar (14)

In Eg. (14)

> > >

I.MHD(E_L) = -j dr {[Vx(ELxB)]z + J-E_LxVx(sLxB)
> > > > > >
+ (V1981)(51°Vp + IPY<E1)} (15)

and
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>

8* > + 3B >
sxa[(an—il'-)xB]+(Jx;;‘E)-vpc , (16)

and P, is due to pressure changes.

For the . »n-equilibrium state under consideration as in usual non-
equilibrium dynamics, we regard the function 3x/9t minimizing Egq. (14)
as the desired sclution. This minimizing function 3yx/2t is the resultant
response of the plasma through the eliminated compressional waves. . We note
that LﬁHD is the same as the Lyyp functional given by Bernstein et al.,®
except that % allows the displucement to e only in the direction per-
pendicular to the magnetic field. If the plasma evolves through a sequence
of ideal MHD stable equilibria, then Lyyp > O, the minimizing function,
definitely exists. The appropriate boundary condition in Egq. (14) for 3y/3t
is ay/at = O and 9(3x/3t) = O at the boundary.

In this manner, the velocity v in Eg. (8) is completely determined.
> >
To determine the time rate of change of u, we take the B.¥x component of
Eg. (2) to obtain:

3 = > > > -a-i > » +_§K
S [=VepWu + (BeV ~ Vx(pB).v &1
pos [=VeoVu + (BeV)p ot (pB) sl
+ > > + > 2 u
= (BsV)(JeB) ~ (Je+V)B4 + Sy, 7

u . ;
where Syi, is a nonlinear source term.

The terms on the left-hand side of Eq. (17) contain second derivative terms
in time. These make the solution of this equation more complicated. We
assume that they are negligible in this equation. This is the other major
assumption necessary in the decoupling of the equatlons in this coordinate
system. As shown in the next section, the assumption of short perpendicular
wavelength in comparison to the parallel wavelength is sufficient to justify
this assumption. For a plasma with constant density, this assumption also
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+ >
is identical to that of the Coulomb gauge condition Vv.A = G, which is
verified by the chosen gauges.

To complete the listing of the equations, we note that

+>

vy > > > o, + 3B
e B = BeYp = pBe(VeT)IV = pVe == . 18
s D = pBe(VeV)V - p v (18)

The equations for determining p and p are the same as Egs. (1) and (5).

Therefore, we have arrived at a set of first nrder differential
equations in itime, Egs. (1), (5), (9), (17), and (18) for the evolution
of o, Py ¥, V2u, and vy, The auxiliary functional L, in By, (14) has to
be minimized for 3yx/at, and the three-dimensional Laplacian V2 has to be
inverted to determine 3u/3t from V2(3u/at). The result of the elimination
of the compressional Alfvén wave is the minimization of Eq. (14) for 8y/at,
and the decoupling of (3x/at) from the equation [Eq. (17)] for 72y keeps
the equations structurally simple. These equations are the structural
equivalent of the Strauss equations in a general configuration.

Although the inversion of v2 is not complicated, the minimization of
Lx to find 3y/at is not very easy in general. In practice, some physical
assumptions should be adopted in simplifying the minimization of Lyx. In
here, we mention one such possible suhsidiary assumption; in I"x we assume
the perpendicular perturbation wavelength can be taken to be much shorter
than the equilibrium wavelength. We then obtain

Lp(E) = [ dr (B2 + Ip)(7-6)2 (19)
S %- W . (20)

The minimization of L’x then leads to
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(B2 + rp)v2 -‘;-Zé- ==-P . (21)

with the boundary condition of x = 0 at the conducting boundary.

With this last simplification, we have arrived at the systems of Egs.
), 5, 9, (A7), (18), and (21) for advancing e, p, ¥, Vzu, vy, and sz,
with two three-dimensional Laplacian equations to be inverted for 3u/a3t and
3x/9t. The sequence of the solution of the equations should be starting
with a configuration determined by 13, ¥ X» W, Vg, P, and p; Eq. (9) is
first used to advance y. Equation (24) is used to solve for 3y/3t, the
velocity ¥ in Eq. (8) is then determined, Egs. (1), (5), (17), and (18) can
then be used to determine 3p/3t, 3p/dt, du/dt, and 3v,/3t. Written in this
fashion, we did not actually reduce the amount of information in the
original set of equations.

However, the structure of the eguations makes the introduction
of additional physical assumptions easy, such as ignoring vy or the
-
compressional motion V(3x/3at), and results in real reduction.

III. NONLINEAR EVOLUTION WITH "LOCALIZED" PERTURBATIONS
We start with the ordering that the plasma has an equ:.libr:.um specified
by JO ~ BQ Py ~ 1, with equilibrium gradient length VO ~ 1, except that
Boxvo(JO-BO) ~ 1/e. For the perturbat:.on, we assume J1 ~ 1, 3p/at ~ ¢, 3/3t

~1,zp~e2,x~e3 u~e2 Vn~1 VL~1/e,v~e, a.ndn~52

Then

>
aB -Pa +> 23 -+

Zx (v xp)-v2XB~0 . 22
e at () (22)
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+ +
Since 3B/3t ~ O(e), we do not need to update B for t ¢ 1/=. The equilibrium
relation [Eq. (12)] gives

v2_ax¢=.l_§2
at - g2 ot

(23)

This relation is the same as Eq, (21), except we see that in Egq. (23) the
natural crdering for pressure is pg ~ €. pg has been orderad to be of lower
order so that parallel sound wave effect would be kept. Then from Eg. (4)
to leading order

v
p3=pﬂ"-§+p—'- ~ 0(e) , (24)
B2 B2

The perpendicular velocity is dominated by the rotational part of the fluid
flow. It is quite easy to write down that

>
30 -DB +> ki Vn > n > 1 -32
30 o o[Vxom oVU = (BeV) ~k + Vo(Bu 7p) - 2~
at el sz (Be7) B2 (32 P) B2 31:]
-
- B g, ~0(e) (25)
B2

Ip, 2 ;UXE > > > Yy > ;mg
o2 B iy g b

g2’ 3t B2 B2
> n +*
+ > > >
.g% = iz.. (VueB - nJ+B) ~0(s2) (27)

> > > > >

3 > > >
= Ve(pVu) = = (BeV)(J+B) + (JeV)B2 - ¥, +V(pV20) |, (28)
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v > > :
P _a-.‘-t—l = (BoV)p - p(\-;'LOV)Vn . (29)

This set of nonlinear coupled differential equations [Egs. (25) through
(29)] may be used for the study of the nonlinear evolution of small ampli-
tude localized Alfvén wave perturbations. In the linear regime, v=0at
equilibrium, the density equation {Eq. (25)] is decoupled from the rest of
the equations. By denoting y = 3/9t, we obtain

+> > > >

v Yue x
(1 + 1By yp = - 2OV g Bpe Dy (L) + 0. 222

B BO BO BO

-7 = w)] (30)
B
BeVu = nJyeB
yp =+ 2T "2" i (31)
5

190720 = = Go-tiroBo - Gr-iosdo + (yehye?

> >
+ (JoeV)(B%); (32)
* > > >
Yegvy = ~ (B1*V)pg - (Bp*M)p , (33)

By substituting Eq. (22) into Egs. (80) through {33), we note this set
is similar to the set which has been used by Strauss with I = 5/3, ¥ = 4;/B,
vy * vyBpo, and Jg + -Jg, to study the resistive ballooning mode. This set
is also identical to the high n ordering eguations used by Chance et al.?®
except that the current density gradient term has been kept. This is
appropriate for intermediate n mumbers in which the effect of current den-
sity gradient and the pressure gradient and curvature force both affect the
shear Alfven wave, 10
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IV. OONCLUSION

In conclusion, a new approximate reduced set of equations for the
interaction of shear Alfven waves in a general megnetic configuration is
given by the set of equations, Egs. (1), (5), (17), (18) and (21), with
auxiliary conditions given by Egs. (8) and (12). The assumption of local-
ized modes with perpendicular wavelength much shorter than the equilibrium
wavelength reduces the set to that given by Strauss and Chance et al. The
numerical implementation for a high cwrrent pinch configuration is particu-
larly simple. It could be modified from the known schemes for the Strauss
equation, such as HIB,1!
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THREE-DIMENSIONAL MHD IN THE REVERSED-FIELD PINCH*
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I. INTRODUCTION

It is now well established that multidimensional nonlinear resistive
magnetohydrodynamics (MHD) is an excellent model for the description of the
macroscopic dynamics of present magnetic fusion experiments. Two-dimensional
simulation of these processas has become commonplace[1-3]. Such calculations
have provided valuable insights into the interpretation of experimental
diagnostics [4], and the nonlinear behavior of unstable medes in various devices
[1.5,8,7].

It has recently been recognized that two-dimensional motions, while
enlightening, do not represent the true state of plasma cynamics, and that fully
three-dimensional calculations are required [8,9]. For tokamak plasmas, where
one component of the magnetic field is everywhere large, it is possible to derive
a reduced set of equations that adequately describes the dynamics of these
devices [10]. Three-dimensional simulations of these equations have provided a
detailed picture of plasma evolution [8,9,11]. These calculations can proceed
much faster than solutions of the original equations. In other magnetic fusica
devices, such as the spheromak and the reversed field pinch, no such generally
applicable set of reduced equations exists at present, and one must solve the
primitive equations. Incompressibility may provide some computational relief
[12] but this assumption can only be justified 2 posteriori.

*Work supported by U.S. DOE contract DE-ACO3-83ERS3150.
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The periodic nature of the poloida! and toroidal directions in many
fusion devices allows solutions to be represented by Fourier series in these
coordinates. Simulations of tokamak plasmas with reduced equations have found
that only a handful of these modes are important to the dynamics [18]. Codes
developed for the solution of such problems have made use of this fact by
introducing a mode selection process whereby only a few modes are retained in the
calculation [14]. This procedure has also been used in incompressible
simulations of the primitive equations [12]. The convolution sums that arise
fron the Fourier representation of quadratic nonlinearities in configuration
space are then computed directly.

In fusion devices such as the Reversed-Field Pinch or the Spheromak no
apriori mode selaction is possible. Indeed, there is reason to balieve that
many large scale modes will be equally important [7]. Thus a large number of
mode interactions are probable. These large scale motions may serve to drive
small scale MHD turbulence, which may be responsible for such important physical
effects as dynemo action and profile maintenance. Also, the particular path
taken in the cascade of energy from long to short wavelength (along with the
possibility of inverse cascades from short to long wavelsngth) is unknown and may
be important. A large number (>100) of modes must therefore be retained in such
calculations.

The physical and computational problems described above are similar to
those encountered in the simulation of turbulent hydrodynamic flows. Accurate
and efficient methods have been developed for the solution of these problems
[15-20]. These spectral methods are based on the use of the Fast Fourier
Transform (FFT), which allows the convolution sums to be evaluated in O(NlnyN)
operations, as opposed to O(NQ) operations for direct summation [15]. This
allows many modes to be used in the simulation. In this paper we describe codes
based on these methods [21], and briefly present some results.

II. BASIC EQUATIONS

The study of large-scale dynamics in fusion and astrophysical .plasmas
involves the description of motions that occur cn long time scales. In these
cases the plasma acts as an electrically conducting fluid whose motions are
adequately described by the single-fluid resistive magnetohydrodynamic (MHD)
equations. In a suitable non-dimensional form, they are
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.?._;.=_!,VB+B-VE_5v-g+n°V25-Vnox(VxB) (t2)

L RSN LT (1)
o p

%:-g'Vp-pV'z (1c)

'g%= -y V- wV  w2(H) np(Tx B)? - F (1d)

where B is the magnetic field measured in units of a characteristic field B,, ¥
is the velocity measured in units of the Alfvén velocity vy = Bo/VAmp,, p is the
mass density measured in units of a characteristic demsity p,, p is the
thermodynamic pressure measured in units of py = B20/81r, N is the ratio of
specific heats, and all lengths are measured in units of a characteristic length
a. The coefficient n, is 2 nondimensional resistivity that may be a function of
the dependent variables. When the resistivity is constant in space and time, 19,
is the inverse of the Lundquist number S = tp/ty, where tp = c®n/4ma? is the
risistive diffusion time and ty = a/vy is the Alfvén transit time. Note that S
is defined in terms of the normalization constants, and is not to be confused
with the magnetic Reynolds number Ry, which is defined in terms of local
quantities. The last term in Eq. (1d) represents energy losses not directly
encompassed by the model, and is included to control the effects of Joule heating
on plasma beta (8 = 8rp/B?).

When 1, vanishes, Egs. (la)-(1d) define the ideal MHD model. A finite
value of n, relaxes the flux topology comstraints of these equations with the
result that previously unallowed motions are possible [22]. These new dynamical
processes are essential for an adequate description of fusion and astrophysical
plasmas. The inclusion of further dissipative processes, such as ion viscosity
or thermal conduction, removes nc further conmstraints on the magnetic topology.
We thus exclude these¢ effects from the model.

We note that the compressible nature of Egs. (1a)-(1d) admits the
propagation of Alfvén (fast magnetosonic) waves perpendicular to the field.
These waves evolve on a time scale dofined by a cross-field scale length divided



71

by the Alfvén velocity. For a diffuse pinch this length scale is the minor
radius. Since many phenomena of interest occur on much longer time scales, this
presents a computational problem. In tokamaks one component of the magnetic
tield is everywhere large. This allows a self-consistent ordering in which the
plasma becomes incompressible, and the magnetosonic wave is eliminated [10]. The
remaining high-frequency normal mode is the shear Alfvén wave propagating
parallal to the field. This wave evolves on a time scale defined by a parallel
scale length divided by the Alfvén velocity. In fusion sxperiments in which the
incompressible ordering is valid, this scale length is the major radius. Thus in
these cases the fast time scale is increased by a factor that is of the order of
the aspect ratio, thereby greatly reducing the computational requirements.
However, in general such orderings are not possible, and there is no 3 priori
justification for eliminating compressibility from the model. Indeed, for highly
sheared, low q devices such as the reversed field pinch a shear Alfvén wave
travelling near the field reversal surface evolves on a time scale that is on the
order of the minor radius divided by “he Alfvén velocity, i.e., the same order as
that of the compressible wave. We thus retain compressibility in our model.

II1. NUMERICAL METHODS

In the numerical solution of Egs. (1a)-(1d) in cylindrical geometry
(r.0.5) the state variable U= (B,, By, Bg, Ve Ygs Ve P p) is represented on
mesh of Np. x Ng x N. grid points (ri, 1=1,N: 65, J = LNgi g, k= 1.N.). The
spacing in the poleidal (6) and toroidal (¢) directions is uniform such that
40 = 2x/Ng, 8S = Zﬂ/Ng. We allow for nonuniform mesh spacing in the radial
coordinate, but in practice 2 uniform spacing Ar = a/(N.-1) is used.

The periodic nature of the sclution vector U with respect to the 6 and
§ coordinates allows a spectral representation to be employed for the finite
approximation of spatial operators in these directions, since this representation
is uniformly convergent at the boundaries 0 and 2. The radial coordinate is
treated by the method of finite differences.

When the periodic function u(®,4) is approximated by MxN data points
(e.g., stored on a mesh), it can be represented by the finite Fourier series

Mé“’ N/j2 (i@ +ng) @)
n=-M/2+1 n=-N{:2+1 “n.a(t)

Uy (058k: 1) =
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with

¥ X ~i{(m: + n
2 n(t) =3 jfx kEl PVCRIROE (md; + 2g) @)

Here UMN(G +$>t) is the MN-term approximation to the function U(6,s,t) evaluated
at the mesh point (85,¢y) at time t; 6; = (j - 1)2n/M and ¢ = (k - 1)2n/N. The
derivatives Ou/80 a.nd au/eg at the point (9 ,$) and time t are given by

M/2 N/2
%o%j,k = 1 L imay o (t)e

m=-M/2+1  n=-N/2+1
M/2 Nf2
@ém)j,k = L L inap ;(t)e

m=-M/2+1 n=-N/2+1

i(mej +0S) - (42)
i(mej + ngk) . (4b)

The spectral representation of the equations of motion is obtained by
employing Egs. (2) and (4) in some appropriate manner in the right hand side of
the Eq. (la-d). If this is dome in a straight forward manner, the quadratic
nonlinearities inherent in these equations leads to convolution sums whose direct
evaluation requires O(N?) operations, making such methods excessively expensive
except when a handful of modes is employed. However, when fast Fourier
Transforms are used [23], the operation count is reduced to O(NZnN), making it
comparable in speed to finite differences. These methods are called
pseudospectral.

The pseudospectral approximation takes advantage of &he fact that
multiplication is most efficiently performed in configuration space and
differentiation is most accurately performed in Fourier space. Fast Fourier
Transforms are used to communicate between the two representations. In principle
it is irrelevant whether the dependent variables are the N Fourier coefficients
or the values of u(xj) stored at the N mesh points X; in configuration space. In
the first case the transformation is made to configuratiocn space to perform the
convolution; in the second case the transformation is made to Fourier space to
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perform the difierentiation. Both methods have the same accuracy. Because of
its familiarity, ve have chosen the configuration space representation.

It is well known that these methods can lead to a physically realistic
and rapidly convergent approximation to a linear equation. When nonlinearities
are present, as discussed above, these methods are subject to aliasing errors
[15,17,18,20] that arise from the generation by quadratic nonlinearities of modes
with wavelangths shorter than m/Ax. These errors are caused by modes in the
"high" end of Fourier space; they ca: be prevented by removing the offending
modes from the problem. This is accomplished by truncating Fourier space at some
value M*. Modes outside this range are set to zero, since it is these terms that
contain the aliasing errors. It can be shown that it is sufficient to set
M*<N/3, where N is the number of mesh points in a periodic direction. Since
kpax = N/2, aliasing errors are prevented by using 2/3 of available Fourier
space.

We employ explicit leapfrog with averaging for the temporal
approximation to the advective terms. The diffusive terms are treated implicitly
in Fourier space.

Iv. RESULTS OF THREE-DIMENSIONAL SIMULATICNS

We have previously studied the nonlinear ewolution of m =1 tearing
modes in RFP plasmas in single helicity [7]. To study three-dimensional mode
coupling effects, we pose an initial value problem consisting of an equilibrium
[7] and two unstable m = 1 modes with axial mode numbers n = -10 and n = -11. We
use a mesh with 65 radial, 8 poloidal, and 64 axial points. In Fig. 1 we show
the evolution of the radial magnetic energy in these modes as a function of time
for both single helicity 2and three-dimensional simulations. We see that
saturation occurs socner and at a lower level when three-dimensional effects are
included. This is because the mode coupling to a larger part of Fourier space
allows energy to be drained from the m = 1 modes. This is illustrated in Fig. 2,
where we plot the enmergy in varicus m=0 and m=2 modes for the
three-dimensional case. Note that m = 2 possesses more energy than m = 0 [24].

In Fig. 3 we plot the evolution of qfo), the safety factor at r = 0, as
a function of time for both single helicity and multi-helicity simulations. We
see that the rise in qo) is significantly slowed when the extra
three-dimensional mode couplings are included.



V. REDUCED RELAXATION MODEL FOR DRIVEN SYSTEMS

A problem of interest in RFP and CT plasmas is the dynamics of
relaxation to a forca-free state [25]. Recent experimental schemes for providing
steady-state current and flux regemeration in both RFPs [26] and spheromaks [27]
probably depend in part on the existence of these relaxation phenomena. In order
to assess these schemes and to understand their utility, these inherently
three-dimensional problems must be addressed. However such motions occur on time
scales long compared to Alfvén times, and hence present computational
difficulties if the model described in the previous sections is employed.

In this section we present a computational model for the simulation of
these processes. Codes based on this model are presently under development. We
assume that the plasma relaxes to a force-free state through the action of
perpendicular perturbation currents alone; the pressure is ignored. Fast time
scales are eliminated by replacing the time derivative in the momentum equation
with a phenomenological drag. Thus displacements away from the force-free state
are damped; the plasma always relaxes. With these assumptions, the combination
of Ampéres law and Ohm’s law yields an anisotropic diffusion equation for the
vector potential that completely describes the response of the system to electric
fields driven at the boundaries. With the proper choice of gauge a tractable
corputational model is obtained. The model is similar to one previously used to
compute three-dimensional force-free equilibria [28].

We picture 2 system in which the plasma is continually driven away from
a force-free state by the imposition of slowly varying electric fields at the
boundary. We are not interested in the details of the flow during the ensuing
=elaxation; it merely provides a means by which the relaxation can take place.
We thus replace the time derivative in the momentum equation by a
phenomenclcgical drag coefficient v, and ignore the pressure. (The latter is
strictly justified only when &p < &%, but it is in the spirit of the model.)
Then using the resulting velocity in Ohm’s law yields

E=nd=nd +m )]
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where my =1y, and M =M + lefpu is an effective perpendicular resistivity that
damps the perturbations. Introducing the vector potential B = VXA, we find

(8
@

|
1

nd
1

1~
i
<}
x
<l
>

foe=

If we choose the gauge A. = 0 (in cylindrical coordinates), and specify Eg(t) and
E,(t) at the outer boundary, Eqs. (6) and (7) become a coupled set of diffusion
equations in the unknowns Ag and A:

%% “Nordr = Mogdo - Mezdz - ®
%A'tz' “Nzedr - Mz0%0 - M0z . (©)]

By mtroducmg a staggered mesh, {finite representations that preserve the
properties of the continuum can be cbtained.

Nonlinearities in Egs. (8) and (9) arise because the Euler angle
transformation required to define the space centered components of 1 is a
function of the instantaneous fluctuating magnetic field. We treat these
nonlinearities by writing

(10)

@l
il
|
1=
ey
[ o

where A and n contain both mean and fluctuating parts. Taking the spatial
average of f 0) allows these components to be ssparated. We find

= ik - Op® (19
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The operators n,'J, and 7my°] are now linear. These equations are solved
iteratively. =~ -7
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FIGURE CAPTIONS

Energy in the (a) m=1, n=-10, and (b) m=1, n=-11 medes as a
function of time for both single helicity and thres-dimensional
evolution.

Energy inthe () m=0,n=1; (B) m=0,n=2; (¢) m=2, n=-21;
and (d) m = 2, n = -22 modes of the radial magmetic field as a function
of time for the three-dimensional low-8 case.

q(o) as a function of time for the single helicity evclution of (a) the
m=1, n=-10 moda; (b) them=1, n=-11 mode; and (¢) the fully
three-dimensional, high-8 case.

Field line plots (surfaces of section) in the (r,z) plane at various
times for evolution at low-8.

Field line plots (surfaces of section) in the (r,z) plane at various
times for the evolution at high-8.

m = 0 magnetic islands for n =1, 2, and 3 for the low-B case of
Fig. 4.

m =0 magnetic islands for n =1, 2, and 3 for the high-4 case of
Fig. 5.

{2) axial magnetic flux contained within the field reversal surface r.;
(b) m=0, n =0 component of the poloidal electric field at the field
reversal surface; and (c) polcidal mode contributions to the mean
poloidal electric field at the field reversal surface, as functions of
time for the three-dimensional high-8 case.
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Nonlinear MHD Simulations of the .
Spheromak and The Reversed Field Pinch

A.A. Mirin and N.J. 0’Neill
National Magnetic Fusion Energy Computer Center
Lawrence Livermore National Laboratory
Livermore, California 94550

and

AGe SgrO
Los Alamos National Laboratory
Los Alamos, New Mexico 87544

Introduction

MHD simulations applicable to both the CTX gun-injected Spheromak(l] at
Los Alamos National Laboratory and to the various Reversed Field Pinches
(e-g. ZT40 at LANL{2]) are presented. The evolution of the Spheromak is
simulated usi~7 the three-dimensional, finite-beta, compressible, nonlinear,
resistive MHD cude TEMCO{3). The code uses cylindrical coordinates (r,?9,2z)
and hence is applicable to both cylimndrical and toroidal geometries. The
effect of Hall terms on resiscive interchange modes in a Reversed Field Pinch
is studied using the c='indrical, linear, compressible, finite-beta initial
value code ODRIC([4]. FExtensions of this work to three dimensions will be
presented at a later date. (A nonlinear study exclusive of Hall terms is

presented in Reference [3]).

Basic Equatioms

The nondimensional equations are as follows:

9p .
a_t.+V(px)-0 (1)

*Work performed under the auspices of the U.S. Department of Emergy by the
Lawrence Livermore National Laboratory under Contract No. W-74Q05-ENG-48.
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—_— VT = w - Ve
T T (vy~1) T Veoy

P) =
-|-.(Y_;.!'—)-E ¢ Vl.g. .(_Y_;‘.]L.).V-(KVT) (2)
3v T
—— o --—v -—-V
at:+vVv T 2 P
1 1
- —= Ve 3
+lixnetva (
3B
ST:"-V x_E_, (4)

J=YxB (5
g--;xg+%i+£-aau (6)
Egar1 =5 [ x B - E706m)] (7

In Eqs. (1)=(7), p is the mass density, T is the energy per unit mass, v is

the velocity, B is the magnetic fleld, Y is the ratio of specific heats, S is
the magnetic Reynolds number TR/'rA, the ratio of resistive diffusion time to
Alfven time, T

is the viscous stress tensor, K is the thermal conductivity, n
is the resistivity, v = (ucirA)"l and g is the fraction of pressure in the

electrons. Time is measured in Alfven units.
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The resistivity N and thermal conductivity Kk are taken as isotropic.
The Hall contribution to the electric field is opticnal. The viscous stress

tensor T is based on an isotropic coefficient of viscosity, so that

Vege=u PR+ IO, (8)

as8 in Dibiase and Killeen [5]. The fact that the resistivity, thermal
conductivity and viscosity are taken as isotropic is a matter of expediency.
Although classical tensor representations of these quantities have been
derived [6], their applicability is questionable due to the extremely long

parallel mean free path.

Representation of Variables in TEMCO

The principal dependent variables are represented in a 1-D Fourier

series:

M
U(r,9,2) = U (r,2) + ) [Up(r,2z)cosm + Uy (r,z)sin m]. (9)
m=]

Because only low mode numbers are of interest, the ¢ direction is treated in
a purely spectral manner, with the exception of an option to compute 1l/p
pseudo=-spectrally. Finite differencing is performed in the r and z

directions.

Numerical Methods in TEMCO

Letting U = (0, T, Ves Vos Vi By, B¢, Bz)t, the basic equatiouns can be

written in the form

g% = La(@ +Lp(@ + L@ + Le(W) + Ly(Yye (10)
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Here, Ln represents the resistive terms in Eq. (4), L, represents the viscous
terms in Eq. (3), L. repregsents the thermal conduction terms in Eq. 2), L,
represents the Hall terms in Eq. (4), and L, represents everything else.

Eq. (10) is solved using operator splitting. Standard spatial central
differencing coupled with an explicit time advancement is used imn Ly, Ly, L.
and L,. In Eq. (4) the temm -Vx(ps- VxB) is expressed as % v - V(—:-)xVxB-
This ia found to be helpful in reducing errors in the divergence of B. The
operator L, is advanced using either a two step Lax-Wendroff method or a
leepfrog method. In the latter case temporal smoothing is occasionally
employed. Artifical smoothing of p and v 1s sometimes necessary. The
timestep is determined in accordance with the courant condition assoclated
with L,. The other operators are advanced using a smaller timestep 1f

necessary.

Boundary Conditions in TEMCO

At r = Q, the boundary conditions depend on the mode number m.
Generally speaking all variables are 0, except as follows: For m = 0, o, T,
v, and B, have vanishing radial firat derivatives, as do v, Vo B, and B¢
form = 1. At the wall radius,r = r,, v, = B, =0, 33,

% o, 3T 22 2 )-a—-?--o d 2= (eBy) = 5= = 0. Alternari
3; ’ 3; T ° 3¢ rv¢ 3¢ an b o 3 3T - ernative

boundary conditions ar r =~ r, may be applied as the physics dictates. For a

cylindrical system periodic boundary conditions ag used 15 the 2z d%rection.
3p aT

In tgﬁq,case of a toroldal system Ere 0, Fry =0, — = 0, 5" 0, —a—z- = 0
and ra 0 at the z-walls. All boundary conditicns are second order
accurate.

Numerical Methods in ODRIC

ODRIC is merely a linearization of the cyliadrical form of TEMCO.
Equilibrium quantitities p,(r), T,(r), B¢°(r) and B,,(r) are specified.
Perturbed variables are expressed in the form fl(r,t)exp[i(m¢+nkz)] where m
and n are the poloidal and toroidal mode numbers and k is the inverse aspect
ratio. Equations for the perturbed variables are then integrated in time
using a fully fmplicit algorithm. Central differencing is used in the radial
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direction, and the boundary conditions are first order accurate. Complex

growth rates are calculated using the algorithm of Buneman{7].

Spheromak Applications

The dynamical relaxation of an unstable Spheromak equilibrium is modeled
using the three-dimensional nonlinear coda TEMCO. This equilibrium is
calculated as follows: A zero-beta equilibrium in its minimum energy state
is evolved in time using the noncircular transport code MINERVA[8]. The
resistivity profile corresponds to that of a Z,eg = 1 plasma having a
temperature of 23 eV gt the magnetic axis and 4.5 eV at the boundary. The
plasma evolves until the safety factor q on axis drops below 0.5, at which
time the equilibrium becomes unstable to an n = 2 kink instability. This
unstable equilibrium, combined with a1 n = 2 perturbation at the € = 10%
level as computed by a linear stability code of Marklin{9], serves as initial
data for TEMCO.

Standard Case. The dimensions of the poloidal domain zre 0 < r < 1.125 and
0 <z <1. There are 73 meshpoints in the radial direction and 65 points in
the z direction; both meshes are uniformaly spaced. The calculation is
performed at "zero beta", i.e., T 3 0.001, and the density p is set uniformly
equal to l.0. The thermal conductivity and viscosity coefficlents are set to
zero and the Hall terms are ignored. The ratio of specific heats Y iz set to
5/3, and the Lundquist number § = Tp/Ty is equal to 1 x 104. Toroidal mode
numbers n = 0 and 2 are included in the computation. Artificial smoothing of
the velocity components is performed. The simulation is run for 107 Alfven

times, which corresponds to 8000 timesteps.

The 3D wagnetic fields are fed into the TUBE code{l10], which cutputs
puncture plots in various poloidal planes. It can be seen that the unstable
perturbation initially grows and the plasma moves closer to the boundary (see
Fig. 1). At around t = 12 (Fig. 1b) the displacement reverses itself and the
plasma moves in the opposite direction, crossing its original position at
about t = 40 (Fig. lc). The displacement continues opposite to its original
motion until abcut t = 53 (Fig. le), during which time the magnetic topology

becomes less coherent (Fig. 1f£) and the kinetic energy sharply increases. By
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t = 61 (Fig. 1g) the magnetic structure seems to have gettled down and the
kinetic energy has begun to drop. The calculation is stopped at t = 107. By
this time the kinetic energy has dropped from its maximum value by over two
orders of magnitude and the magnetic energy has dropped from its value at

t = 0 by about thirty percent. It is difficult to tell whether the plasma
has actually reached a stable equilibrium or whether it will undergo some

gross motion at a later time.

A result of this evolution is that the plasma is closer to a minimum
energy atate than at the beginning of the relaxation. For a force-fres
plasma, J = AB. In general, ) is a function of position, but in a minimum
energy state it is a constant A,. At the beginning of the MHD simulation A
at the outer boundary is much less than its value at the magnetic axis, as a
result of the initlal resistive evolution. During the dynamical relaxation A
becomes more uniform, as can be seen by examining coantours of the function
X = J‘B/XOB2 (see Fig. 2). Furthermore, the number of meshpoints at which
Ix = 1] is less than 0.1 increases by 50% during the course of the
simulation. This indicates that thé plasma has moved closer to a minimum

energy state.

Variation with Magnetic Reynolds Number. When the MHD simwlation is

repeated at S = 103 instead of 104, the configuration is seen to diffuse
toward a Taylor state. By t = 24, the number of meshpoints at which

Ix = 1] < 0.1 has trebelled and the fractional magnetic energy in the n = 2
mode has dropped by two orders of magnitude. (When S = 10% this fractlon is
roughly constant.) This is consistent with transport code results which show
that at § = 103, the minimum energy state q(y) profile is recovered after 75
Alfven times, but at § = 10% the change in q{¥) 1s much less pronounced.

Perturbation Size. When € equals 0.0l instead of 0.1, the n = 2 mode grows

approximately linearly until it reaches an amplitude of about € = (.03, at
which time nonlinearities appear to set in. This indicates that the original
€ = 0.1 level is a reasonable, but perhaps slightly large initial
perturbation size. It is difficult to tell exactly when nonlinearitiess
develop since the initial conditions, having been computed by Marklin’s ideal
code[9), are not an eigenfunction of TEMCO.
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Comparison with Linear Code. The ideal stability code of Marklin{9] is
compared to a linearized version of TEMCO, obtained by ignoring nonlinear
convolution terms and zeroth order resistive diffusion terms. A comparison
of countour plots and growth rates indicates excellent agreement between the
two codes. Marklin computes a growth rate of 0.1, whereas TEMCO obtains 0.13
for S = 103 ar1 0.20 for S = 10%. The calculation fails when run on a 37 by
33 mesh, indicating thac a mesh size of at least 73 by 65 1s necessary.
Verification that a 73 by 65 mesh is adequate will have to be forthcoming, as
the present version of the code does not fit on the MFECC D machine if the

mesh is made any larger.

Number of Toroidal Harmonics. The standard case includes only modes n = 0
and 2. It is quite likely that higher modes must be included. This too will

have to walt for the future due to lack of storage.

Artifieial Smoothing. A significant amount of artificial smoothing must be
added to the velocity components. The extent to which this distorts the
physics cannot be ascertained without using a much finer mesh. This will

also have to walt for the fur re.

Variable Density. The standard case 1s redone allowing the density to vary
according to Eq. (1). For 0 < t < 40 the evolution of the magnetic field is
almost identical, but the velocity variables look quite different. Meanwhile
the n = 2 density component has been growing steadily, and by t = 40 its
amplitude exceeds that of the n = 0 density component, causing the density to
become negative at some locations. The cause of this, including the extent
to which it is due to not carrying enough toroidal harmonics, is under

investigation.

RFP Applications

‘The effect of Hall terms on resistive interchange modes in a Reversed
Field Pinch is studied using the linear initial value code ODRIC. The
equilibrium used is that of Robimson[ll], which s known to be stable to
tearing modes. It satisfies
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rB, T et
2l o - 11
M 5, 2 (1 3 400) (11)
B (32 |
c = ~ (=) <o0.125 (12)
ZrBE u

Unless otherwise specified, in the results to follow Cl = 0.1l and the wall
radius r, equils 3. The iaverse aspect ratio is taken to be k = 0.2. Since
ODRIC is an initial value code, it computes only the fastest growing mode.
The growth rate of the variable £ is defined as

)
Y +iw = 3§/f : (13)

in the absence of Hall terms w = 0.

Linear g-mode studies exclusive of Hall terms have been presented

recently #]. The principal observations are as follows:

a) Form = 0, as S increases from 103 to 107, the growth rate first
increases and then decreases; there is a wider range of toroidal mode numbers
which are unstable; and the n value of the most unstable mode increases.

Preliminary results indicate the same trends for m > 0.

b) For m = 0, u = 25 and S between 109 and 107, v ~ §70°26 (yg. 570-33 45
predicted by Finn and Manheimer({l12]); for S between 10* and 107, the jump in
the logarithmic derivative of B, A”, behves as predicted in Reference [12].

c) Form= 0, n » 25 and S between 3 x 104 and 3 x 106, the growth rate
decreases much more rapidly with decreasing Cl as cl gets smaller, in
qualitative agreement with Reference [12].
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In studying the effects of Hall terms, it is convenient to initially
cousider the situation in which there is no temperature perturbation. The
first case under study satisfies m = 0, n = 25 and § = 104- In the absence
of Hall terms (V = 0; see Eq. (7)), the growth rate (Y,w) equals
(2.71 x 10‘3, 0), and the resulting mode is recognized to be the "odd mode"
of Finn and Manheimer([12]; that is, the radial velocity is an odd function
with respect to the singular radius. As vV increases, Y decreases
monotonically until Vv I 0.12, at which point Y becomes negative and the mode
has been stabilized. At the same time ®w increases until it hits a maximum at
v = 0.07, at wvhich point it begins to decrease slowly. In all cases
considered thc odd mode is the fastest growing mode.

A similar situation occurs for m = 1, n = -6 and S = 103. as v
increases from 0 to 0.5, Y decreascs monotonically until the mode is
stabilized. As with m = Q above, the odd mode is the fastest growing mode.
These results are in qualitative agreement with Delucia, et al., who study
the effect of Hall terms on vesigtive instabilities in the Spheromak(13].

If the temperature perturbation 1s included, however, the situation
becomes more complicated. For zero therwmal conductivity, wvhen m = 0, n = 25
and S = 104, then in the absence of Hall terms Y = 2.97 x 103. As the Hall
parameter V lncreases, the real part of the growth rate decreases until about
v = 0.064, at which point Y = 8 x 10~%. During this time the odd mode kas
continued to be the fastest growing mode. However at V = 0.064, Y suddenly
starts increasing and eventually reaches 7.1 x 10'2, more than twenty times
its value at Vv = () (see Fig. 3)« It is now the even mode which is the

fastest growing mode; the odd mode has presumably been stabilized.

This increase in the growth rate may be negated through inclusion of the
thermal conductivity. For v = Q.2 (applicable to ZT-40) and ¥ = 0, the
growth rate (Y,w) is (8.66 x 10'3, 5.68 x 10'3) and the even mode prevails.
As K increases from zero, Y decreases monotonically and w increases
monotonically until x = 1.05 x 10'4, at vhich point the mode is stabilized.
The even mode does continue to prevail, however. It 1is difficult to attach a

significance to the value of K since this model assumes isotropic thermal
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conductivity, which is known to be a rather poor approximation. A similar

situation occurs form = 1, n = =6 and S = 103.
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(f) t = 56

Fig. 1 Continued.
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(a) e=9¢ (b) £t = 74

Fig. 2 Coutours of x-J'B/AoB2 for the standard Spheromak case; r is
the horizontal variable and z is the vertical variable.
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1. Introduction

A numerical method for solving a system of 3D-MHD equations
is proposed in this paper.

The method is based on and formulated with the finite element
method (FEM) with elements in motion, that is, arbitrary
Lagrangian and Eulerian (ALE) method. This method is called
"FEMALE".

Numerical methods for solution of the nonlinear hyperbolic
system‘stemmed from Lax's work[l]. The two-step Lax-Wendroff-
scheme which is currently and widely used, is regarded as one of
tough method of numerical solution. Tt ccntains Friedrichs scheme,
which introduce large diffusion. The discretization which is
necessary for numerical simulations, divides fluid into three
dimensional bodies, and large energy input to them near the
discontinuity makes kinetic energy of bodies large. Then these
bodies become oscillatory and overshot. .

To suppress this overshooting, the kinetic energy have to be
converted into thermal energy.

This is just the reason of introduction of numerical
diffusion. However, the discontinuity disappears because of this
diffusion. In studying MHD plasma quantitatively, it .s important
that we have to discriminate differences between physical and
numerical diffusions in computation. For this purpose, we
propose here a finite element method which is little or no

numerical diffusion.
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2. Formulation
2, 1 Basic equations

Qur basic MHD equations can be written as a conservation form,

@

u -
=5 + div F(U) = 0 . (z - 1)

U is a 8-column vector whose components are unknown scalar

variables:
- -
U= (Do pVvV , E , B )T ’ (2 = 2)
" where
) 2
€ = % pvz + % p + z%— B
o)

T denotes transposition of matrix, and other notations have usual

meanings. F is a flux vector corresponding to U ,

F = (D; ) § ’ E ’ E*)T ) (2 = 3)
where
5z o(p e o)l 0¥ - L83
= P 7;; pvyY Hy
- _ - 1 > 2 - >
g=(p+e)y + = (vV,B" + nJ xB)
uo -
“'*_ n > T o
E=ir’§-§{r’+ﬁ—-((v§) - 78) .
0

Hereafter, we choose the resistivity n = 0, or we assume that

eq. (2 - 1) is hyperbolic.



104

2. 2 Shape Functions

The space Q , occupied by plasma, is divided into Ne elements
Re :
Ne
Q= U Re (2, - 4)
e=1
and they are not overlapped. To define elements, N nodes are

defined. Let the position of the u-th node by §ueQ. A series

of N-functions is introduced,
{¢1(—£n t), ¢Z(-£’ t), sec, ¢N(—£9 t)} (2- 5)

" such that ToH(X, t) = 1, <Xeq,
u

HE,, 0 = e,

where 8"V is Kronecker's delta. We assume that ¢”(§, t) is a

class of functions which satisfy
Y . =
3%— + vg -grad ¥ =0 , (z2 - 6)

where $é is the grid velocity., Eq. (2 - 6) shows the elements
are ALE. When ?g = 0 then method is Eulerian, and when ?a = v
then it is Lagrangian. Though this grid velocity is arbitrary

here, its value has large effect on accuracy of computation.
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2. 3 Basic equations for numerical simulation

For the conservation equation (2 - 1), we interpolate U, F

d+
and ¥, as
Uy U= MR, U (D), (2 - 7a)
n
F-Fro= J ok, t)F, (B)e, , (2 - 7b)
= : . iu i
u,i
> > - H,* - -
vg ~ vgv u§i¢ (x, t)vgiu(t)ei , (2 7¢)
where gi is unit basis vector. U', F' and ?2' coincide with U,
¥ and $g at the nodes. For simplicity we drop the dash in what
follows.

According to Galerkin method[Z], we take
[an ¢" A+ aivE) =0, (2 - 8)
Q

and substituting eqs. (2 - 6), (2 - 7) into (2 - 8)

du
A 2z -9
v
where
= d9¢u(Va-grad U - div F)
9 >
= TR - s
v gv
c_l-l\’ = I dﬂ¢”¢v
Q
B - ] aevey
o
p
TR v
S Z. Bi Fiv

v,1
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BHYP & £ dasH¢Vgrade®
8EY = [ de¢Mdiv(eVe,)
1 Q 1

auv, Euvp and Bgv are geometrical coefficients independent of Uu'
Eq. (2 - 9) is a system of ordinary differential equations for Uu’

if v v is specified. The nodal position is obfained by solving

g
e .5, . | (2 - 10)
Eq. (2 - 9) and (2 - 10) are our tasic equations for numerical
simulation, and solve these ordinary differential equations under
prescribed initial and boundary conrditions.
The properties of eq. (2 - 9) should be noted. Taking ¢“
linear function in the one-dimensional problem, eq. (2 - 9) is

equal to the conjugate approximationls] of equation

du _

3
dt vg

le7]

(z -~ 11)

@ty
&
'

Xl

. al
and if equally grid spacing Ax is taken, gfﬂ

is equal to the
compact differencing[4] of eq. (2 - 11) which is accurate to
oCcenh).
Finally, ICED ALE equationl°!
d [ aou= [ dadiv(u¥, - F) (2 - 12)
Re Re
is regarded as a special case where ¢u(§, t) = 1 for §éRe, and

vanishes otherwise. This can be seen by noting that eq. (2 - 9)

is written as
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g?é anetu = ffzdszqs“divcuvg STy . (2 - 13)

3. Optimization of Accuracy with Specifying the Grid Velocity

3.1 Effects of grid velocity

In many cases, 38 can be arbitrarily specified, and eq. (2 - 9)
can be numerically integrated. However, when one or some kinds of
discontinuities exist, the value of ;g is crucially important.

As the example, the problem of single rectangular pulse

‘propagation can be considered.

2 4 30Y .9, v = const. . (3 - 1)
at 3x

When Vg # v , the computation results show that the fluctuation
is observed around discontinuity. When v_ = v , this fluctuation
N o

disappears.

The application of eq. (2 - 9) to eq. (3 - 1)

dp
uv v _ 1
\z) A ) {Cvglﬂ'l - v) (pu*-l - Ou)
+ Z(Vgu - v)(gu+1 - pu-l)
* [ngJ‘l = V)(pu = pu'l)} ) LS - 2)
dp

= H - 1 i
thus for vg vVoge - 0. This explains above results.

3. 2 Optimization of accuracy with generalized Rankine-Hugoniot

relation

The results of previous section suggest us that one of the

best way of determining the value ;g is the one which CH = ¢ in
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eq. (2 - 9).
- Here we examine the shock tube problem as non-trivial example.

We should note that
€* = [deeM(V_+grad U - div F) = 0 , (3 - 3)
Q =3

is, the FEM representation of generalized Rankine-Hugonict relation
(R-H relation). It should be noted the relation (3- 3) lead us

to the best way of determining grid velocity in the pulse propaga-
tion problem. We consider one dimensional shock tube probelm,

where at t = 0

U x <0
Ulx, 0) = Lo (3 - 4)
URO x>0
We shall find_the solution for t > 0. CY is
pola = H .a_[‘l - ﬁ . -
c [dxé (vg 5% © 5% (3 - 5)
Let the discontinuities, the shock front and the contact
discontinuity, be at xu,
U= UL + 8(x - xu)(UR - UL) (3 - 6a)
F = FL + B8(x - xu)(FR - FL) (3 - 6b)

8({x) is Heaviside functioen. UL, UR are value ¢ U on the left
and on the right, respectively, and have to satisfy the generalized

Rankine-Hugoniot relation:

(UR - UL)S = FR - FL , (3 - 8)
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where S 1s the speed of the discontinuity. Substitution eqs.

(3 - 6) into (3 - 5) yields
¢! = (Up - UV, (X)) - (Fp - F) (3 -7

and c* = 0 if vg(xu) = § . Thus, c* vanishes in the shock tube
problem, if vg is the shock speed at the shock front and fluid
velocity at the contact discontiauity.

For the rarefaction wave, %% is an eigenstate of Jacobian

U T

OF with eigenvalue & = X , which is a velocity of single wave, and

- ) & =0 N EIE )

ifv =& . Soeq. (2 - 9) is reduced to

U= = ces o e
M-y, (=112 N)

in the all region of the shock tube problem if Vgu is a local

wave front velocity. When Vgu is exact, then numerical solution

Uu is also exact.
3. 3 General case

Unfortunately, C* = 0 is not generally satisfied »y a single

vgu’ since c* = 0 (=1, 2 ++« N) is 8N linear sim .ateneous
equations for determining 3N unknowns, V... From previous

gu
discussions, we require that $gu is determined by the condition
) chuz is minimum. Usually, this condition does not determine

i
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g uniquely, so we also require that § [v
u

v g#lz is minimum among
¢g which minimize [ [ICM{,.

As numerical method to this end, we used the Conjugate
Gradient method (CG). It is known that this method can obtain
Moore-Penrose solution of the simulateneous equations, and this
solution satisfy above condition if starting value of iteration
is taken to be zero. After Vg is obtained. Eq. (2 - 9) is solved
by using Incomplete Cholesky-Conjugate Gradient method (ICCG),
then differential equations for Uu are solved by using the implicit

Adams method.

4. Application

We developed the 3D code, ATLAS, based on the FEMALE method.
The element is tetrahedron.

To check the ability of this code, the 3D shock tube problem
in which the waves propagate in z direction is simulated. The
numerical sclution $g of R-H relation, ¢t =0 , agree with the
local wave front velocities. It needs careful attention to
determine ;g numerically. The results of this simulation are
shown in Fig. 1, where solid line is exact solution and dots show
numerical one. As the references, we show the results of

Lagrangian (Vg = V) and Lax-Wendroff methods in Figs. 2 and 3,

which are obtained by 1D code.
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IN THE PARAXIAL APPROXIMATION

BRENDAN McNAMARA,

Lawrence Livermore WNational Laboratory, University of California,
Livermore, California.

Tandem and stellarator equilibria at high § have proved hard to compute and
the relaxation methods of Bauer et al. ,Chodura and Schluterz, Hirshman 3.
Strauss *, and Pearlstein et al. have been slow to converge. This paper
reports %n extension of the low=-8 analytic method of Pearlstein,Kaiser, and
Newcoub “ to arbitrary 8 for tandem mirrors which converges in 10-20 iterations.
Extensions of the method to stellarator equilibria are proposed and are very
close to the analytic method of Johnson and Greene - the "stellarator
expansion". Most of the regults of all these calculations can bhe adequately
described by low=-8 approximations since the MHD stability limits ° occur at low.
8. The tandem.mirvor, having weak curvature and a long central cell, allows
finite Larmor radius effects to eliminate most ballooning modes and offers the
possibility of really high average 8. This 1s the interest in developing such
three-dimensional numerical algorithms.

2. _CONNECTION BEIWEEN KINETIC AND FLUID MODELS

Tandem mirrors have very large wmirror ratios and large flux-surface
distortions and so any numerical representation of the equilibrium must use the
field 1lines as the basis of the coordinate system to place mesh points where
they are needed. This is done by defining the magnetic field in terms of two
scalars (¢,8) as

B = VY x Vo (1)

which ensures that VeB=0. 1In a Stellarator the field lines lie on magnetic
surfaces which naturally identify a set of flux surfaces, Y. In tandem mirrors
the field 1lines are open and there are no natural magnetic surfaces. However,
the systems are designed so that confined particles move on closed drift
surfaces and, in many designs, these are arranged to be the same surfaces for
almost all particles whose orbits intersect the same field line. These are the
go-called omnigenous drift surfaces of Hall and McNamara 7 and are physically
the relevant choice for Y. The second flux-line coordinate, ®, is an angle-like
variable chosen to satisfy eqn.l. Even in systems which are not everywhere
omnigenous for particles moving in the vacuum field alone it is speculated that
the plasma transport processes set up radial electric fields which re-align the
drift orbits much closer to an omnigenous set and this is to be expected also in
toroidal systems. The assumption of omnigenity allows one to connect the
microscopic distribution functions with macroscopic density and pressure
arofiles most easily. Most fusion systems now have neutral beam or high-power
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Tandem mirrors tend to self-anneal for a number of reasons which need
further explanation. In statlonary electric and magnetic £lelds the strong
constants of motion of a single particle of charge, e, mass, m, and velocity, v
are the energy,

BH=2nv,?+ub+ed . (2)
and the magnetic moment,

mvlz
u- (2)

2B

The magnetic moment i{s an adlabatic invariant and is destroyed by plasma
oscillations at or above the cyclotron frequency, but 1s not affected by the
global geometry of the field, provided the Larmor parameter, € = (Larmor
radius)/(radial scale) 1s small. The longitudinal adiabatic fnvariant, A, is
the action in the bounce motion,

A=fwv dl (3)

- | (%(u - uB - e2)1/2 ¢gs (4)

In the paraxial equilibrium theory 10 it {s found that B=B(Y,s3) in a mirror
cell at high B. (8= the ratio of plasma to magnetic pressure). The distance s
along a field line is approximately the distance, z, along the axis of the
system and so A = A(H,u,¥) 1f ¢ 1s small. The drifts are dominated oy the VB
drift and the surfaces are locally omnigenous.

At low B, B is independent of ¥ and so the drift surfaces are determined by
the difference between s and z due to the weak field line curvature. At this
point I introduce Newcomht’s 10 potation for the covariant components of the
field line curvature,

k = 5+V6
= RVY + FOVE (5)

Then, it can be shown that the net drift off a surface, Y, in one bounce of
a particle is

a4 = =B (vy? +up) 20 %% (6)

If B is symmetric about the center of this cell then the integral will
vanish 1f *0 4s designed to be antisymmetric and the drift surfaces will be
omnigenous.

In the paraxial limit the potential is determined by the requirement of
local quasineutrality and then ¢=#(B,¥). Even in a low-8 mirror cell which is
not omnigenous in the vacuum megnetic field, omnigenity i1s resctored by the
potential, determined by radial lossey and events in neighbouring cells. Am
example of just such a case is the GAMMA-VI experiment s 1n which the end
plugs are aligned so that fans of f£ield lines enetering the center-cell from the
plugs are both vertical. There are NO confined magnetic drift surfaces in the
centre cell and so the choice of ¥ 1s determined by the drift surfaces of the
high-temperature plasma in the plugs. These are omnigenous locally, with a
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circular section at the midplane of each plug. These cicles map into an
elliptic cross-section flux tube in the center cell. When cthe center cell 1is
filled with plasma the radial losses lead to radial potential drops of &= 34
T4o and the drifts are dominated by the EXB drifts and so the total system
beccmes omnigenous. Reasonable models of the total pressure tensor can be given
in the forms

P= .P_(\I',OB)
= w(¥) (p, (¥,B) L+ _BBD, (¥,B)) (11)

where most of the Y¥-dependence has been extracted in the density profile
factor w, and_P depends only ou weakly varyimg functions like the mirror ratio,
or ou the radial variation of ¢. The electric flelds have not been included in
the rest of this paper but will be essential in a fuller model of the tandem
mirror equilibria.

3. _THE CURRENT BALANCE ALGORITHM.

Newcomb and Stranss have derived the paraxial form of the equilibrium
equations from the static and dynamiral equations respectively. I therefore
present only the most direct definition of the required relations. In addition
to the requirement that VeBa0, which 1is satisfied by the represantation in eqn.
(1), the three-dimensional equilibrium of a guiding center plasma 1s described
by the force-balance equation,

JxB = Vep (12)

and Ampere’s law,

VXB = J (13)
In Strauss’ reduction of the dynamical equations, the leading order equilibrium
condition, O(AY), comes from the perpendicular components of the force-~balance.
Eqns. 12 and 13 can be combined to give

Vl(nzlz +p) = kB2 +p -py) (14)

In the paraxial approximation the curvature i1is small, O(Az), and, on
dropping the curvature, eqn. 14 may be integrated to give

B2/2 + p, = B (2)2/2 (15)

This is to be solved for B(Y,z) to establish perpendicular pressure
balance, where z is the distance along the axis of the system and Bv is the
vacuum field on the axis. The next order equilibrium condition is obtained from
the parallel component of the force balance, which is
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bsV + Pwd (16)

This arises from comservation of (H,u). The pressure gradient 1s now
determined in £flux coordinates, along with the perpendicular current flow. It
remains to find the parallel current and the actual shape of the flux surfaces.
At this point, the Lagrangian representation of the field is introduced in terms

" of the position of a field line as

X = X(¥,8,s) (17)
so that
B = 5B =X'8B - (18

and X°=3X/9s 1s the tangent vector. The parallel current per unit flux, 1,
1s defined as

B+ J=iB2 19)
= BX+VxX’B

= BX’+(VBxX” + B VxX")

= B2X’eVxx’ (19)

In the paraxial approximation only the axial curreat contributes and so

ax* oy’
1 = 1(4,0,2) = 3= = 5
= B([X",X] + [Y*,Y]) (20)

where (x,y,z) are Cartesian coordinates and (X,Y,z) the position of a field
line. The conversion to (¥,8,z) coordinates introduced the bracket notation for

 0f3g 3fdg
[£.8] = 3938 ~ 300¢ (19)
= £y gg ~ £ 8y (21)
and the Jacobian, in this approximation 1is
1
== [X,Y] (22)

B

The definition of the parallel curreut involves only local quantities, the
position of the field lines, but the equilibrium equations also demand that

Vel = 0

- V.J\L + E-V i (23)
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After substituting for J) from the force balance eqn. (12), and a little
maniputlation, 1 1s found to be the field-line integral

1 e 2.d
i(‘?,e,s) - ;- IEL _I)__E x V(O’B )—— + 1 =1 (24)
where
o -1 +H{2TH (25)
B

The 1initial plane, s==L, can be an arbitrary plane in the vacuum outside
the tandem mirror where the integration constant, i_;, is zero. In the paraxial
approximation,

- - Lz dl 3

1, = 1(¥,0,2) = {7 230 2 4L 5+ 007 (26)
where

B~ (o + 02 (27

The current balance algorithm moves the field lines to equate the local
expression, (20), and the integral expression (26)

This is equivalent to setting the integral of tfhe paralilel component of the
curl of the force balance to zero in Strauss’ dynamical model.

The starting position for the tandem-mirror field lines is obtained from
one vacuum fleld lipe close to the axis of the system of an actual coil
configuration. This gives the field stremgth, B (z), and the ellipticity
factor, ¢y(z) for the field line coordinates

X =p cos 0 e Sv(2)

Y = p sin 68 e Sv(2) (29)

The radial factor, p, is chosen to give the correct Jacobian, (13), with
B(¥,z) calculated from the pressure balance, (18):

-8 2 B(, = (30)

This choice of p takes care of the diamagnetism of the plasma and usually
provides most of the displacement of the field 1lines from thair equilibrium

positions.
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Subsequent movement of the field lines must be done incompressibly so as to
preserve the pressure balance,(lS), and also the Jacobian, (22), conservation of
which is wused as numerical test of the accuracy of the calculations. Such a
motion is determined by a velocity potential or two-dimensional ‘Hamiltonian®,
u, for the (X,,Y) motion in each z-plane as

dR(¥,8,2)/dt = Vu x z (31)
If the displacement is small then

X =Xy + (Ju de) x z +0(ax?)
-_};_0+VUx; (32)

or, in (¥,8,z) coordinates,

X = X, + B[X,U]

This may be sgubstituted into the current balance eqn.(28), and i,
linearised to give the equation for U

~B[%q,BU1%5, 511 + 0(v?) - 3T, (34)
where
19 = B([Xg:Xq] + [¥gs¥ql) (35)

Since it does not linearise conveniently, the integral is evaluated, to all
orders in U, from the field line positions at the previous step in the iteration
process. The right hand side of +(34) 1s evaluated on each plane and the
elliptic operatcr 1is inverted. The boundary conditions for the tandem mirror
are that U=0 on the symmetry planes, ©=0,7/2, and at a distant wall, w'wwall‘

The last piece in (34) is needed to symmetrize the numerical representation
of the equation. The tandem mirror has ying-yang symmetry about the mid-point
an] so computations are done only in an octant of the configuration. By
definition, every term of (34) has this symmetry exactly, except for the
integral, 1 _, which is done from z=-L. Without the symmetrizing addition, which
goes separgtely to zero at equilibrium, the midplane 1s driven away from
equilibrium. Needless to say, some meditation was needed to introduce this
correction to ther numerics.
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A final integration then yields:

1z . 2(¥,8)
U Bfo (BU)’ dz * IOy

The integration constant, ¢, on each field line is now determined by the
condition that the integral form of the current should wvanish in the
symmetrically placed vacuum at z=tL.

I ip(?,e,L)

L.
ww ww
2p
dz Y " "
- 6 oy (Xqe Xg + Yqa¥q)
25 " "

dz “P¥
+ ﬁ?—w;-((r;[xo,u‘ge Xg + Xop (BIXg,Ua1) + (21))

+ adgg + blyg + cby + dog + &b + o)

= () (37)

The function ¢ and 1its derivatives come out of the integral, ylelding a
second-order parabolic equation! This is somewhat strange for an equilibrium
problem and is a consequence of the paraxial approximation and the conversion of
the corresponding axial boundary condition on the dynamical formulation into an
integral constraint. It does not occur in the fully three-dimensional
treatments (cf. Hall and Mcnamara). The coefficients (a-e) are the
corresponding pleces of the integrals over U, and need not be written explicitly
here, except for “a” which turns out to be tﬁe flute stability integral

2R D
dz ¥
a ﬁ?T €38)

This would vanish at the flute stability boundary, with dire consequences
for the algorithm , but this would always be at betas above the stability limit
for ballooning or rigid-displacement modes.

The factor 1/(wy), 43 inserted in the integrals to keep all the
coefficients finite near the plasma boundary, where the whole equation would
otherwise vanish, leaving no useful means of defining ¢. This would also allow
the equation to be extended into the vacuum region but ¢ will then never satisfy
any particular radial boundary condition. There is no current ian the vacuum
driven by plasma pressure and it seems incorrect to use the constraint on these
field lines. This leaves ¢ completely unspecified in the vacuum and it can
therefore be chosen to be any smooth function which matches to the plasma ¢ and
which satisfies ¢=0 at 7=¥__,,.
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The other boundary conditions on ¢ are therefore ®=0 on the symmetry planes
8=0,T/2 and, because of the overall quadrupole symmetry of tandem mirrors, at
0w /4, about which ¢ 13 actually anti-symmetric. Only one boundary condition in
the Y~direction cau be specified in the plasma, ¢(¥=0) = 0, and this parabolic
equation is then integrated outwards from the magnetic axis. This completes the
definition of U and the field line displacements needed to achieve equilibrium.

This completes the description of the basic algorithm.

4. _APPLICATION TO STELLARATORS.

I have nat written a code for the Stellarator version of this method but
believe it is a straightforward modification. The first change is to imsert an
appropriate analytic guess at the initial conditions, similar to eqns (29-30j.
The next point is to confine the problem volume to ome period of the Stellarator
and apply periodicity conditions to the calculation. Thus, the integration
counstant, i_;, in eqn (24) is a given function of ¥, corresponding to the net
induced current flowing on each surface.

The constraint on the parallel current flow is that it be periodic , which
yields a pair of conditions on the integration constant ¢ and i1its surface
average. Thus, 1 (? 0,L)=1_(¥,0 ZL)-i (¢Y,9,nL)s The second part of this leads
to the requirement that the urface ave age of the parallel current should equal

(Y)- The first part is constructed by l:erating the wmapping of the field
line positions at z=0 to their positions at z=L to get the locations at =z=2L.
The periodicity requirement then gives an eqn similar te (37).

5. _A TMX-UPGRADE EXAMPLE

This particular example was the first case successfully brought to
equilibrivm by L.D.Pearlstein with the dynamical code in some 11,000 time steps.
The result shown is very close to that and both are close to the TEBASCQO result
from the low-8 analytic theory.

The first figure shows the axial magnetic field profile as Byrg{Zeq) -

Improved accuracy is obtained by stretching the z coordinate and Fig2 shows
B(s(z)). The ianitial analytic guess at equilibrium gives the parallel current
profile of Fig. 3 at z=0 from the local expression and the profiles of Fig 4.
from the integral. They are far from agreement and the local form shows current
flowing in the vacuum. The axial variation of the local and integral currents
are shown in fig. 5 for a field line in the plasma and one in the vacuum. The
differences supply most of the source for eqn. {(34). The initial flow patterns
in the wmid-plane, which 1is all octupole and higher, and the end plane are in
Figs 6,7. The average beta in a plane has a maximum of 8.3%, peak central beta
being 25Z with w=(1-¥/¥ , « This case converged in ten steps to 1% accuracy
everywhere. Current balgr_e is shown in fig 8 and the convergence behaviour in
Figse 9-12. |Note the total current constraint is O(8) smaller than the other
measures. Flux surface shapes in equilibrium cshow the characteristic diamond
distortion for a stable equilibrium.
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These results agree closely with the dynamical code and quitz well with
Tebasco, the low-beta analytic o2quilibrium calculation. The principal
differences are that the parallel curreat is about 15% higher in the finite-8
calculation and the geodesic curvatures are somewhat larger. The principal
curvature, and hence the MHD stability are hardly altered by the plasma.

At higher betas the code may fail to converge because the initial guess is
simply too far from the answer. Also, in tandems with more cells , numerical
accuracy becomes a problem. Work is continuing on extending the domain of
applicability of the code.
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Tt s e Magnetic Equilibria for Square and Circular EBTs

C. L. Hedrick and L. W. Owen

For closed magnetic field line devices, scalar pressure MWHD
implies that the pressure surfaces are the same as surfaces of constant
¢ d#/B. This relation can also be developed from the drift kinetic
equation. Here we contrast this result with that obtained from the
bounce averaged drift kinetic equation. We consider a collisionality
regime such that the collision frequency is much less than the bounce
frequency but comparable (within an order of magnitude) to the poloidal
precession frequency. Under these circumstances it is reasonabie to
assume that scattering causes the distribution function to be
approximately isotropic and that J is not conserved on a drift time
scale. This assumption allows us to make a direct comparison to the
MHD results which would not be possible for lower collisionality where
the distribution function would be anisotropic and approximately a
function of €, @, and J. Our motivation for discussing this
collisionality regime lies in its possible application to the EBT-I/S
and NBT-IM experiments as well as to configurations projected for the
near future such as the ELKO Bumpy Square.

There are several ways of obtaining the MHD result that the
pressure surfaces are the same as surfaces of constant ¢ dZ/B for
closed magnetic field lines. One of the algebraically most compact
procedures follows from the equilibrium algorithm introduced by lortz
[1] (extended to tensor pressure by Grad [2] a_r:d others [3], [4]).
This approach makes use of the fact that Ve | = O*implies that a
Clebsch representation can be used for the current: j = V§ X Vp. By
extracting the perpendicular current from this equation and comparing
it to that obtained from pressure balance; j, =B x 7p/B? one finds
that 8¢/0f = 1/B. This result allows one to impose single-valuedness
of the current in the Clebsch representation and obtain

*Research sponsored by the Office of Fusion Energy, U.S. Department of
Energy, under contract No. [DE-AC05-840R21400 with Martin Marietta

Energy Systems, Inc.
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W xw=0 (1)

A second approacﬁ. which more closely follows the procedure which
is convenient for kinetic treatments again begins with the time
independent expression of charge conservation:

V‘T:O (2)

Here one begins with the observation that V }" = Bé%(j"/B) and
integrates Eq. (2) around a field |ine to obtain

§&y .7 =0 . @

+ .2 + =2 . .
Fron jXB=Vp, |, =BX Vp/B2; which yields after a little
manipulation

Vel =Vpe [VxB+ 28 x venB) /62 (4)

Noting¢that Vp is perpendicular to B one next uses the vector identity
-5
for V(B * B) to obtain

v~]’l=%g- [B x (< + nB)] (5)

where the curvature vector is given by

k= (be V)b (8)
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At this juncture, it is convenient to introduce the Clebsch
representation for the magnetic field:

§=VaXVB M

and note that a and B are constant along field lines. Since p is
constant along field lines

v;;:%&w%%vp (8)

and Eq. (5) becomes

Vel = [.%Eﬁw_g-g.ﬁu] o (% + V4nB) (9)
where

U, = (v8 x B) /82

(10)
ﬁb = (ﬁ X Vo) /82
and have the properties that
UysVa=1; U,+v=0
(11)

-

UB‘Va=0 ; ﬁﬁ'Vﬁ:l

Inserting Eq. (9) into Eq. (3) and noting that p and its o, and B
derivatives are independent yields
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egd . Raung)] +25UT . RawmB)] =0 (12)
B U 3 ° BL @
One next notes that for closed field lines and arbitrary S

-%idls=-§dlsﬁa. [;.—VINS]

(13)

a =-»

pdus=$asiy- [£-Vin 8]
Setting S = 1/8 in Eq. (13) one finds that Eq. (12) becomes

90 gdf BB gl

B8 PmOE " (14)
Equation (14) is simply Eq. (1) written in component form.

We now turn to the drift kinetic equation [5]

af' -p

it . . o Yf: = C:

5t Vi Vij +Vpj * VI = C; (15)

Here fj is a function of €, w and ¥, the position of the guiding
center. (We will soon consider time independent solutions and drop the
time derivative of f;.) The previous MHD analysis suggests that we
integrate over velocity to form the lowest moment of Eq. (15) and then
multiply by the charge, ej, and sum over species to obtain the charge
conservation relation
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PeveT=o0 | (18)

which reduces to Eq. {2) for time independent solutions. Here

Vel = %:ej v vy o ;= %:ej <V ] (17)
and
Veli= Ley Sy v (18)
with J
10,2
o; =3%B. [262¢ + (1 - ¢2)Vin B8] (19)
and
Syl (20)

Note that for simplicity e _’have not included an electrostatic
potential and the resultant E X B drifts. [Retaining such terms leads
to small corrections of order (p/en) ed/T times the ratio of scale
lengths — usually negligible because of quasi-neutrality: p/en << 1.]
For isotropic distribution functions, BfJ/ap. df: /85 = 0 and the
only pitch angle dependence in the integral of Eq. (185 occurs through
the form factor [2g2|<. + (1 ~¢%)Vn B] appearing in Eq. (19).
Accordingly, it is convenient to define an average drift velocity by

1T2) (‘J % VD (21)

or
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wLm

> =T€f§s x [& + Vin B]
and note that since

-g-p= JZ:fda\v-,.i;—mvzfj

. 3le|<ip
Ve =v- [LT——"]

(22)

(23)

(24)

Inserting Eq. (22) into Eq. (24) yields the MHD result, Eq. (5),
and one again obtains Eq. (14). It is instructive to follow a slightly
different procedure. If we form the ¢df/B average of the charge
conservation Eq. (16), the divergence of the parallel current vanishes

and in steady state

1 -df »>
“"“V°]_|_
7

eV
=-1 d-din°[2 D]:O
T "
Using Egs. (22) and (13) we find that

2

éd%{-v«; . G = [%]ﬁ.a%g%{
B .

(25)

(26)
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ﬁg%’va - dp =-B] ‘_}—L,_B%sf%’- @)

;'giv“ - dp> + U é%l-Vﬁ - dp? (28)

2 'y
vl x b
> = E?;r] 1 f‘%! ] (29)

and £q. (25) can be written

3,
-
W+ Be<dp»] =0 (20)
or
-
Vp = <> = 0 (31)

Equations (31) and (29) may be interpreted as meaning that ¢dZ/B is a
constant of motion for an Maverage particle®™. The relation between p
and U may be interpreted as meaning that the pressure is constant on an
"average" drift surface.
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)

We notice that the §df/B average arose because vuaf/al in the
drift kinetic equation [Eq. (15)] led to Ve J in the charge
conservation equation. We also notice that f in Eq. (15) is a function
of €, p, o, B and L. For cases where the collision frequency is small
compared to the bounce or transit frequency we expect that the
dependence of t on £ will be very weak so that af/al 0. If the
relation dffaf =0 holds for z!! species then V e J“ =0 and the
motivation for performing the §d#/B average vanishes.

For collision frequencies well below the bounce frequency we
expect that the distribution function will satisfy (approximately) the
bounce (or transit) averaged drift kinetic equation:

g .
i+ %%vnj] -V fjemaf) = (32)
where
oy = Lgdliy _¥xb
0”b T vy DI T ey
1 ¢t al ¢ oad
'ej'rj %Ua,@'- Bﬁ (23)

As before we can obtain the equation of charge conservation by
multiplying Eq. (32) by e, integrating over velocity space and summing
over species. The time independent result is

-+ <>
Ve = E:eJ Jd@y (VDj)b‘ij=0 (34)
We notice that if co||usuons are so infrequent that CJ can be neglected
in Eq. (32) then <ij>b V=0 and Eq. (34) 'is automatically
satisfied. On the other hand if collisions are so infrequent that J is
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approximately invariant, one cannot construct an isotropic distribution
function for all « and B — except in certain highly degenerate cases.

In some cases of interest the collision frequency is comparable to
the poloidal precession frequency but well below the bounce and transit
frequency. In this instance it is possible to construct an Isotropic
distribution function for all a and b. This intermediate collisional
case allows us to draw comparisons between the pressure surfaces
arising from Eq. (32) and those arising from Eq. (15) or MHD. We thus
suppose that fj is independent of the adiabatic invariant pu:

fj = fj (G.Q.ﬂ) (35)

As before, the lack of pitch angle (or w) dependence of fJ allows
us to pass it through the pitch angle integral implicit in Eq (34) and
we obtain the analog of Eq. (81):

Ve =Vpe iy (36)

Note however that the average drift velocity in Eq. (36) is now given
by

iy = [%m—Tvz)-] Wy 61 dgg Vpdp * Ve
+Ug 61 deg <V * VR (37)
where Uy, Up, Vo, B and
Sp = V1 - uBy/e

are to be evaluated at the arbitrary point, ?b, where Vp is evaluated
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in Eq. (38). The pitch-angle like variable &y has been chosen to make
the correspondence to the earlier formalism more transparent.
In comparing Eqs. (31) and (38) we see that the a-component of

‘<VD» in Eq. (28) is given by

df
> Vo * a8
lip> = %ﬁ L o va» § (_m (38)

while in Eq. (37) we have

ppa = ) 6'1 deg L6 Lva - Ty (39)
) 3 ]

and similarly for the B-components. We are thus led to invert the
order of integration in Eq. (35). To facilitate this, we note that

u.=-§-(1—';2)=§%(1-s’%) (40)
so that

%’_ 4 = E_ 0 4oig, -_.__E dldg, (41)
and

>, = %m;uz_) Bol ] 6‘1 48 Vy.0 ;s% (Vo * Vp) (42)
or

>y = 61 dgy g(<Vpy = Vo) E_%—NTF] (43)
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where

vIlO T (44)

and similarly for the B component.

We notice that Eq. (43) would reduce to the bounce averaged case
Eq. (37) if the weighting factor, g, were unity. However as given by
Eq. (44), the weighting factor associated with the relatively high
collisionality regime of MHD is not constant. Suppose that the point
.)Eo corresponds to a minimum in B (along a field line). Referring to
Eq. (44) we see that if we attempt to apply the high collisionality (or
NHD) formalism to the intermediate ccllisionality regime, trapped
particles are weighted too weakly (v g). We zlso note that v becomes
large for transitional particles, so that the high collisionality (or
NHD) formalism weights transitional particles too heavily.

The net effect then is that the MHD result overestimates the
pressure shift when the collision frequency is comparable to the drift
frequency. For EBT-1/S, this overestimate is nearly a factor of 2 too
farge. For EBS where all particle orbit shifts are small, the pressure
shift is also small. Applying the MHD result makes a larger percentage
error than in EBT because transitional particles contribute relatively
more to the pressure shift and MHD overemphasizes these particles. For
EBS the MHD result for the shift is a factor of 3 or 4 too large.
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The Total Dereduction of the Reduced Equations
R. Izzo, D. Monticello and J. Delacia
Princeton Plasma Physics Lahoratory
P.O. Box 451, Princeton, NJ 08544

We have recently reported on the expansion of the Magnetohydrodynamics
(MHD) equations to 4t order in the aspect ratio.! This high order expansion
{2 orders past leading order) was necessary in order to calculate correctly
the stability and nonlinear evolution of the internal kink. We report here on
the expansion of the MHD equations to sth order in the aspect ratio. Our
motivation is the study of finite bheta resistive modes. The work of Glasser,
Greene, and Johnson? has shown that the coupling of the stable interchange
modes to the unstable tearing modes can, at high enough temperature, lead to a
stabilization of the latter. This stabilization is not in the 4%l order
reduced equations. The modificatons of the 45.‘3.. order equations are'quite
simple. We use 6 scalar quantities to define general velocity and magnetic

vector fields:

vV a p.2vuxv; +*V X+ K v;v; ' (1
. 1 of
B=vVy x Vg +§'V.L('5§) + IVD o (2)

Using a model density p ~ ‘I/R2 we find the following modificatiens to the 4th

order equations (see Ref. (1)),

dapP
FT=-rEev, (3)

B
b - 2 2 . 'L - . 2
-VlI = - R V‘LP R J;(Bx;) + I —= IBR; - R

v
lo
3T (4

it !
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where

Vlo = R2Vu x Vg o
The 4th order equations contain only a ¢ 'v_Lo in Eqe. (3) and the Vio in Eq.
(4) was dropped due to a suall inertia approximation. The inclusion of the
term VeV gives the sound wave that is necessary for stabilization of the
tearing modes. However, dropping this compression in Eq. (4) means that we
have eliminated the unwanted fast wave that travels in the poloidal plane.

Next, we take ohms law as
E+VxB=nj (5)

and make a subsidiary ordering of these equations in n. By ordering the

variables as

1/3
Y“n/'
Uv ¢v¢"‘1r
1
L BV, 7

BeV, e £~v.

We find that we are able to recover the equations of Coppi, Greene, and
Johnson,3 for finite beta tearing modes and that to do so it is necessary to

keep the two terms mentioned above.
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To verify the qualitative and quantitative applicability of our equations
we have run comparisons in the cylinder with exact codes. HILO is the code
that advances our 5th order equations. It is seen from Fig. (1) and (2) that
our formulation gives excellent agreement with an exact formulation (shooting
code) for ideal modes. The eigenfunctions have also been compared and there
are no significant differences between the eigenfunctions the two codes
produce,

We have also run comparisons for the resitive modes and again find that
our formulation gives excellent quantitative results. Figqure (3) is a plot of
the growth rate for B=0 tearing modes., It shows the agreement between our
formulation and analytic theory for small resistivity. Fig (3) also shows the
excellent agreement, for all values of resistivity, between an exact code
(FMHD) and HILO. Figure (4) show that this agreement continues to hold for
finite g8 interchange modes (distabilizing pressure profile). The dashed line
is the growth rate found from a boundary layer analysis code (MATCH), and the
solid line is that for HILO and FMHD. Again the MATCH code only gives good
agreement at very small values of n. The last figure (Fig. (5)) is a plot of
the perturbed flux as a function of time, for & stabilizing (reversed)
pressure profile. Both HILO and FMHD give the same values of growth rate and
frequency for these modes, where as the MATCH code is off by a large factor
(~S). We do not, at this time, understand the reason for this large
discrepancy.

We would like to point out several advantages of HILO over an exact
formulation. First the numerics are simpler because the fast wave that travel
across the poloidal plane in time a/VA has been eliminates, in fact only 4
waves, not 6, remain in the problem. Secondly, the equilibrium force balance

is exact, so these equations could be used to find 3-d equilibrium such as
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stellarator equilbria. The present formulation also allows cne to identify
the source of r:v nhysics by turning off higher order terms. Lastly, if one
desires, the dynamics can easily be made exact and implicit simply by taking
Vio* V.L in BEgq. (4) and by following the advancement scheme in Ref. (1). This

then is the reason for the title of this paper.
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Figure Captions

Fige 1 Growth ratea vs beta on axis, for g8 = 30(1-32:2 + 2r3) and inverse

aspect ratio equal ¢ = 0.1,
Fige 2 Same as Fig. (1) except here ¢ is varied.
Fige 3  Growth rate vs resistivity for g = 0, ¢ = O.1.
Fig. 4 Same as Fig. (3) except here 3-30(1 - 3r? 4 2r3).

Fig. 5 Perturbed flux vs time for n-4x10'9 and

8 = 0.25(0.001 + 0.028r2 - 0.059r% + .035).

*Note the growth rates and the resistivity in thege plots have been scaled by

1/c from those units given in the text. Likewise the time in Fig. 5 has been

scaled by c.
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3~D SIMULATIONS OF LIMITER STABILIZATION
OF HIGH-EETA EXTERNAL KINK~TEARING MODES

Jae Koo Lee and N. Ohyabu
GA Technologies Inc.
San Diego, California

ABSTRACT.

The effects of finite-size poloidal limiters, toroidal limiters,
and general mushroom limiters are examined for thigh-beta
finite-reslstivity tokamal plasmas in free boundary. Even for a linear
stability analysis, a 3-D simulation 13 necessary, 1in which wmany
poloidal and toroidal modes are coupled because of the limiter
constraint and finite-beta. When the plasma pressure and resistivity
are small, a poloidal limiter is effective in reducing the growth rate
with a small limiter-size, while a toroidal limiter requires a large
size for a comparable effect. As the plasma pressure or resistivity
increases, a toroidal limiter becomes more effective in reducing the
growth rate than a poloidal limiter of the same size. A small optimized
mushroom limiter might have a stabilizing effect similar to a conducting
shell.
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The plasma instability most widely studied in connection with a
major disrupiion of a high-beta tokamak has been the pressure and
current driven external kink-tearing mode!>2. This magnetohydrodynamic
mode in general has the largest growth rate at toroidal mode number n=l.
Being a global mode, it shows large perturbations not only throughout
the whole plasma but also in the vacuum regilon. This finite
perturbation in the plasma-vacuum region can be easily affected by
placing a conducting shell or a finite size limiter. Since a conducting
shell 1is inconvenient in many practical purposes, a limiter covering
only a small fraction of the tokamak circumference is desirable if it
can be as effective as an all-the-way-around conducting shell in

suppressing or slowing down the unstable mode.

For a low-beta ideal plasma in a straight cylinder, it has been
found3 that a poloidal limiter 1s very effective in suppressing the
external kink mode, while a toroidal limiter is not. For a high~beta
ideal and resistive tokamak plasma, a toroidal limiter of a various size
has been found® to te effective in reducing the growth rate if the size,
i.e., the poloidal extent of the limiter is finite. The objective of
this paper 1is to examine the comparative effect of a finite-size
poloidal limiter, toroidal limiter, and general mushroom-type limiter
for a high-beta finite-resistivity tokamak plasma. For the latter two
limiters, our analyses allow three-dimensional linear mode coupling, so
that toroidal as well as pololdal modes are coupled when the size of the
limiter is finite. We use an initial value code HIB3 with appropriate
boundary conditions on perturbed quantities to simulate the limiter
effect; namely, perturbations are allowed to vanish in the region where

the limiter is located.

Our results show that a poloidal limiter of a small but finite size
reduces the unstable mode’s growth rate substantially and 1is more
effective than a toroidal limiter of a comparable size when the plasma
beta and resistivity are low. These results recover the previous
results3 if the size of the limiter is allowed to be finite rather than
infinitesimal as mentioned in Ref. 3. A4s the esp (e 1s the ratio of

minor to major radius and Bp is the ratio of plasma thermal energy to
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poloidal magnetic energy) or the plasma resistivity increases, a
toroidal limiter of a finite size becomes more effective than a poloidal
limiter. A general mushroom-type limiter whose size is finite both in
poloidal and toroidal extents can be optimlzed in size for a significant
slowing~down of the unstable mode, thus making feasible a passive
feed=back stabilizing scheme.

The method of the present analyses was described in details in Ref.
4 together with numerical procedure and parameters for equilibrium and
linear stability. The boundary condition for a finite-size poloidal
limiter or a general limiter 1s similar ¢o that for a finite-size
toroidal limiter?. For a general limiter covering a poloidal zrea from
0= to 8=-§ and a toroidal area from r=A to r=-A, this boundary

condition Is

- ) a
ton(r) = oqnlT) --J;I d8S dgsinmé sinng g, , $m’n’(r) sinm’@é sinn’g
-n'z ) -4A . n

= £sin2ms £sin2na, dmn(T)
() = (8 - ——) (s - —5—) 2

) [sin(m-m’)ﬁ - fsin(m+m’)6][sin{n-n’)A _ fsin(n+n')A1¢m’n’(t)
m’m ;'#n m-m’ mtm n=n’ n+n’ 4 a2

- (6 - fsianS)a [sin(n-n')A - fsin(n+n’)A1¢mn’(r)
'#n

2m n-n’ n+n’ T a2

- (A - fsinZnA) [sin(m-m’)ﬁ _ fsin(m+m’)61¢m'n(r)
Zn &’#m m-m" otm” S

where f=1 for perturbed velocity stream function ¢ and f==1 for
perturbed poloidal magnetic flux function ¢, This boundary condition
has been imposed both for ¢ and ¢.

For the three types of limiter, the growth rates in the unit of the
poloidal Alfven frequency wy are shown in Fig. 1. Here, the
equilibrium has the safety factor on the axis and at the limiter qp=1,05
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and qg=1,7, and efp=0.11. The rest of the parameters are the same as in
Ref. 4. When the plagsma resistivity is small as in the bottom three
curves with n=1076 (n=1/7.uy with 7, denoting the resistive diffusion
time) a poloidal limiter is very effective in reducing the growth rate
even with a small limiter size. For example, a factor of five reduction
in growth rate 1s obtained with F=1/8 where F is the ratio of the
limiter size to the total circumference area. A toroidal limiter,
however, 1is not as effective as a poloidal limiter, thus requiring a

large size to have a comparable effect as a poloidal limiter.

These results for a finite Bp recover the previous results3 for a
zero-sp straight tokamak 1f the limiter size is finite rather than
vanishingly small as orginally described in Ref. 3. The results for a
poloidal 1limiter in Ref. 3 are applicable only to a finite-size
poloidal limiter, not to a zero-size poloidal ring limiter. This is
because the term k?r? was neglected in comparison with the n?-term in
the poloidal limiter constraint equation as well as in the unconstrained
eigenfunction solution and equation such as Egqs. (&) and (5) of Ref.
3. This neglect 1is justifiable only for a finite-size poloidal limiter.

As the plasma resistivity becomes large to make the unstable mode
dominated by a resistive tearing mode, a toroidal limiter reduces the
growth rate to a greater extent than a poloidal limiter as shown in the

upper three curves of Fig. 1 with n=10"3. This 1is alsc observed in

higher-8, cases as in Fig. 2.

An optimized general limiter 1is usually more effective than a
poloidal limiter of the same size as seen in Fig. 1 both for small and
large resistivity. This 1s because the unstable mode structure 1is
shifted outward with respect to the tokamak major axis, thus making a
limiter at the smaller major radius side less effective.

The numerical convergence is 1/N, where N indicates the total mode
number used in the calculation. A typical case is shown in the inset of
Fig. -1, where four calculations for a poloidal limiter of F=1/8 with
different total toroidal mode number found a single growth rate
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corresponding to N=w. Nine poloidal modes are kept in these
salculations (typilcally from m=-3 to m=5); thus, nine poloidal modes and
six to ten toroidal modes are all coupled to simulate a finite—size
poloidal limiter. For a finite-size toroidal limiterA, toroidal modes
are uncoupled and poloidal modes are coupled depending on the magnitude
of eBp; for this case, approximately twenty poloidal modes are used.
Most of the results in the following are based on this numerical

convergence 1/N with at least two different N values.

The effect of B, are shown in Fig. 2, where three values of B for
an otherwise same equilibria are used. Here, a broader pressure profile
with u=2 (as in Ref. 4) is employed in coatrast to a more peaked one
with y=4 in Fig., 1. It is shown that a toroidal limiter with a small
size F=1/8 is more effective at high—Bp in reducing the growth rate than
a poloidal limiter of the same size, while an opposite conclusion is
drawn at low‘Bp. A poloidal or toroidal limiter of a finite size
usually falls between the fixed boundary curve (i.e., with F=1) and the
complete free boundary curve (i.e., with F=0). This allows a smooth
transition in the stability boundary from the free boundary to the fixed
boundary through a limiter of a finite size.

Since it is clear that the fixed and free boundary limits are the
two limiting boundary for a limiter with a finite size, it is helpful to
examine a normalized growth rate I, where I' = (y=y;)/(yg-v;) with y; and
Yo being the fixed and free boundary value respsectively. These
normalized growth rates are plotted in Fig. 3, showing that a toroidal
limiter 1is increasingly more effective with increasing sBp and that a
poloidal limiter becomes increasingly effective with decreasing esp.

The present results are based on a linear analysis. The nonlinear
amplitudes are shown in general6 to increase monotonically with the
linear growth rates. Thus, a reduction in the linear growth rate could

bring a reduction in the nonlinear amplitude as well.
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In summary, the stabilizing effects of poloidal, toroidal, and
general limiters become significant as the limiter size increases. A
small (on the order of 10%Z of a conducting shell) optimized
nushroom~type general limiter might have a stabilizing effect similar te

a conducting shell.
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Fig. !. Linear growth rates for weakly resistive (bottom three curves)
and highly resistive (top three curves) plasmas as a function
of the limiter size F. Results for toroidal limiters are opan
circles; those for poloidal limiters are filled circles; those
for general limiters are rectangles. The numerical convergence
1s showm in the ingert.
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Dependence of growth rates om €fy,. Results for poloidal limiters
with the size F=1/8 are indica:eg as a dashed line; those for
toroidal limiter with F=1/8 and F=1/2 are indicated as solid curves
marked F=1/8T and F«1/2T. The fixed boundary and no-limiter free

_boundary results are shown as dotted lines with F=1 and F=0.
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Fig. 3. Normalized external kink growth rates as a function
of eBP for the cases of Fig. 2.
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Extended Abstract
of
Nonlinear Evolution of External Kink Mode in Tokamak
and
Comment on Resistive Internal Kink Mode

Toshihide TSUNEMATSU, Gen—ichi KURITA, Masafumi AZUMI
Tomonori TAKIZUKA and Tatsuoki TAXEDA

Japan Atomic Energy Research Institute
Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan

1. Introduction

Since the first workshop on the 3-D MHD simulation we have studied
the disruptive processes in tokamaks from the view point of the resistive
MHD instabilities{1-4} and we have extended our models to ones for the
high-beta and the toroidal plasmas. The results show that the major
disruption process is caused by the nonlinear coupling betwéen the
tearing modes with different helicities as pointed out by Waddell et:
al.{5} and that the high-beta or the toroidal effect does not give the
essential effects. The experiments also indicate that this instability
can be suppressed by the control of the profile of the plasma current
when the safety factor at the plasma suriace. g, is greater than 2.
When g,~2 ., the major disruption occurs except for the case of the
conducting wall close to the plasma surface. This fact indicates' that
the m=2/n=1 free boundary mode plays an important role in the major
disruption process. In this vorkshop. we show the model of the resistive
free boundary plasma and the validity of our model as the first step to
study the role of the free boundary mode in the major disruption
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process. In the next section we study.the structure of the external kink
mode as the candidate of the unstable free boundary mode in the linear
theory and the nonlinear evolution of the mode to estimate the level of
the saturation.

As for the high-beta effect on the internal disruption, we have
shown that the saturation of the m=! magnetic island due to the
pres: re-driven instability in the cylindrical geomerty(2! and have also .
pointed out the importance of the toroidal effec{ on the m=1 mode{4}.
The other effect on this mode such as kinetic effect was pointed out by
Biskamp(6}. We make some comments on the kinetic effect on the internal
disruption process in tokamaks in section 3.

2. Nonlinear Evolution of External Kink Mode
2.1 Model and Basic Equations

In the usual analysis of the external kink mode, the plasma is
considered to be surrounded by the vacuum region. The equations are
solved seperately both in the plasma and in the vacuum, and the
connection of the two solutions at the plasma surface gives the
dispersion relation of the external kink mode. This model is, however,
very difficult to study in the nonlinear numerical computation because
the motion of the plasma surface has to be precisely traced. In stead of
a real vacuum we put a highly resistive and a small-current region
(a<r<b) outside the plasma column with the radius a (Fig.1). The
conducting - wall is places at r=b. The resistivity, n, increases steeply
at r=a from np=p(r=0) to ne=n(r=b). The plasma current is given by
J=E,/n(r). vhere E, is the electric field at the conducting wall. The
plasma density. p., decrease steeply at r=a from py=p(r=0) to pe=p(r=h).
The widith of the steep change of the equilibrium quantities is denoted by
8 in Fig.1. In the highly resistive region the perturbed current
dissipates rapidly and this region is expected to behave as the vacuum.

We solve the following reduced set of equations through the whole
region in the cylindrical gecmetry.
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& LV, VWU=B-VI 1)

A + V-V = nJ-E, (1) + B; 8% @)

ot oz

[}

3)

it
(o]

— VJ_‘VJ_T)

U=V.2% (4)
J = V.2 (5)

vhere V.= 38/3r Vr+ 9/30 Ve , V. = exV,®d, BL = e, xV,¥. The
quantities ¥, ¢, U and J denote the magnetic flux, stream function,
vorticity and longitudinal current density, respectively. The extension
to the toroidal geometry is straightforward.

2.2 Linear Analysis

For the linear analysis we use the linearized equations of
eqgs. (1)~(3) with respect to the small perturbation, V.. By using the
Fourier expansion, (@,¥,%7)=(®,¥.n)a expimb-nz/Ry)+yt, and the finite
difference method to the radial direction, we have the asymmetric
eigenvalue equation,

yAT=Bx . 6)

For ng=0, ne=~ and &0 (the case of the uniform current density), we
hase the analytic solution and the growth rate is given by

Y?=v2/S {7

where

Pe 1 + (a/b)*

S=1+
po 1 — (a/b)™

8)
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and

m-nq
—_—] )
1 - (a/b)*

The quantity yr in eq.(9) is the growth rate of the external kink mode
for the uniform current distribution. As p., decreases the growth rate,

¥ = 2Bs/a)?(n-nq) (1 -

Y, tends to yg.

Figure 2 shows the growth rate of the m=2/n=1 mode as tﬁg function
of the ratio p./pp for n0=107 and 7.=1.0 obtained by solving eq.(®). In
this case the m=2/n=l rational surface and the conducting wall are placed
at r=1.2a and b=2a.,respectively. The numerical result (solid line) for
8/a<<l agrees well with the analytic one (dashed line). In spite of the
decrease of the growth rate the structure of the eigenmode is unchanged
by the increase of pe/po. This fact encourages us to study the nonlinear
evolution without the reduction of the Alfven transit time, Next we
study the effect of the external resistivity, n,. Figure 3(a) shows the
growth rate as the function of n. by fixing my=10"7 . For 7.<10™* the
growth rate scales as y«aﬁ’5. This means the mode tends from the
external kink mode to the tearing mode. The structures of the m=2/n=1
component of the plasma current for the differnt n. also shov the change
of the mode (Fig.3(b), (c) and (d)).

The linear analysis shows that this model describes both the
external kink mode and the tearing mode by changing n. and that the
structure of the eigenmode is insensitive to p..

2.3 Nonlinear Evolution

For the study of the nonlinear evolution of the external kink mode
we integrate egs.(1)-(B) in time by using the Fourier expansion to both
the azimuthal and the longitudinal directions and the finite difference
method to the radial direction. In the cylindrical geometry we can use
the approximation of the single helicity. Typical numbers of the modes,
M, and the radial meshes, N, are M¥=5 and N,=201. Eigensolution of the
linear equations is used as the initial perturbation to save the
computational time. The resistivity used in the nonlinear study is
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T)0=10'2 and n.=1.

Figure 4{a) and (b) show the time evolution of the magnetic ensrgy
and the kinetic energy, respectively. The m=2/n=1 rational surface and
the conducting wall are placed at r=1.2a and b=2a, respectively, and
8/a=0.1. Both energies saturate at t ~ 30tpy . Here tpy is the poloidal
Alfven transit time at r=a. The evolution of the magnetic flux surface
is shown in Fig.5 at t=0 (Fig.5(a)) and t=80%py (Fig.B{b)),
respectively. The dense lines denote the contors of the resistivity.
From Fig.5(b) we have the saturation level of the plasma surface,
§/a ~ 0.1, vwhich corresponds to the saturation level of the magnetic
field fluctuation, B,/B; ~ 0.03. The dependence of B,/B; on the
position of the rational surface, rs, is shown in Fig.8. The saturation
level increses as the rational surface becomes close to the plasma
surface. The level and the dependence on r; agree with the result of
neighbouring equilibrium theory given by Itoh({7}.

Our preliminary results show that the highly resistive region
outside the plasma column can describe the external kink wmode in

nonlinear evolution,

3. Comment on Resistive Internal Kink Mode

The intense heating by NBI in the JFT-2 tokamak has shown the
transition from the sawtooth oscillation to the continuous oscillation of
the soft X-ray signal{8}. We have studied this transition from the view
point of the m=1/n=1 resistive MHD mode and have shown the saturation of
the m=1/n=1 magnetic island due to the pressure-driven mode in the
cylindrical geometry(2}. The m=1/n=1 ideal internal kink mode is,
however, always unstable for the finite-beta value in the cylindrical
model and the saturation width of the magn=tic island is independent Jf
the beta value. In the last workshop we have shown the toroidal effect
plays an essential role in this mode(4}, and proposed the new reduced set
of equations by using V-V/R?=0 in stead of V. -V./R°=0. The new
equation covers both the resistive equations and the imcompressible ideal

equations.
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The other mechanism of the saturation of the m=l/n=! magnetic island
vas pointed out by Biskamp(6}. He has shown that the kinetic effect
causes the saturation of the magnetic island by using the quasi-linear
theory. In this workshop we show the nonlinear effact on the kinetic

model due to the mode coupling.
The basic equations are given by

Uy 9 - e TNV By
at 2

+ ouTies: VNxVU + uV3U

-g—\f + Vo Vb= + ou(T. + Tide- - VNx V¥

av 2.,
-a—t—-t-v NVL) = aB:VJ + kV=N

where )
B = Byen, + enx V¥
e= e + r/Rey
J = V& + Bo/Ry
Vi= e.xVd
U=V.NV$)
o = opTo/ (eBa®) ~ wuTpy
and

a =c/(Rupi) ~ /By

We use the same method as in section 2 by introducing the

(10)

(11}

(12)

(13>

(14)

(15)

(16)

an

(18)

(1g)

complex
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variables to our code. The safety factor and the density are chosen suc

that
q(r)=Ci+ (r/r )\ (20)

and

N(r)=0.8(1--(r/a)?)?+0.2 . 1)
The parameter ry is determimed so that the m=l/n=1 rational surface is
placed at r;=0.5¢c. ’

Figure 7 shows the imaginary part of the eigenfrequency as the
function of w./yr for ny=10" and the different values of . Here yr is
the growth rate of the m=1/n=l resistive mode. The real part of the
eigenfrequency is o ~ . . The numerical result for &=] (solid line)
agrees with the analytic one (dashed line) given by Waddell et al.{S}.
Figure 8 shows the eigenfunctions for w./yr=5. The lines with the large
amplitude in ¢ and N correspond to the real parts and ¥ ~ id. The
eigenfunctions show that the drift wave is excited at the rational
surface and propagates outward to decay rapidly.‘ This means that the
kinetic effect on the m=1/n=1 mode is apparent near the rational surface
and the MHD behavior holds in other region.

In the nonlinear study we use M = 10, N;=201 and np=10"° . The
analysis with M=l gives the same result as that of the quasi-linear
theory given by Biskamp{6}. Next we study the effect of the higher
modes. Figure 9(a) and (b) show the time evolution of the magnetic
energy for w./y7=0 and 3, respectively. We use M=5 in this case. For
wv/y7=0 the internal disruption occurs at ¢ ~ 800wpy . This time is
almost independent of M. For d*/77=3 the evolution of the magnetic
energy seems to saturate. The level and time of the saturation, however,
increases as M. The saturation level of the m=0 component of the
magnetic energy, -6Y). increases as M (Fig.10). This fact means the
impotance of the coupling with the higher modes and suggests the internal
disruption even for a./yr>!. The time evolution of the spectra of the
kinetic energy in Fig.11 also indicates the importance of the mode
coupling. The solid lines denote the amplitude of the each m componetnt



165

of the kinetic energy for M=5 and the dashad lines are for N=10. With
the lapse of time the higher mode are excited as much as M increases, To
confirm our conjecture we have to taks the numbers of modes up to
M~ B0.

4. Summary

In the analysis of the external kink mode the highly resistive
region outside the plasma column describes the “vacuum” both in the
linear 2 d the nonlinear regime. Hereafter we are studying the nonlinear
behavior of the free boundary modss by varying the position of the
m=2/n=1 rational surface and the profile of the plasma current with the
extension to the muliti-helicity simulation.

The analysis of the kinetic effect on the m=1/n=1 mode has shown the
importance of the higher modes in the single helicity and suggests the
internal disruption for w./yr>1.
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CALCULATIONS IN TOROIDAL GEOMETRY WITH FULL M.H.D. EQUATIONS*
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1. _INTRODUCTION

A tully toroidal formalism has been developed which follows very
closely that of Ref. 1. This approach uses the full MHD equations with
no ordering assumptions. The fluid is, however, assumed to be
incompressible. It can be used to study either ideal or resistive
modes.

This formalism has been used to construct the computer code FAR,
which is linear and fully-implicit. The fully-implicit nature of the
numerics allows extremely fast calculations, as will be discussed
below. Detailed comparisons for n=1 modes have been made with the
computer code RST [2], which uses an ordering formalism due to Strauss
(3].

All results presented in this paper are linear. This work,
however, is viewed as a first step toward nonlinear calculations.
Hork, in fact, is well underway to be able to do non!inear studies.

2. _EQUATIONS

A flux coordinate system (p,6,8) is used where p is a flux-surface
label, 8 is a poloidal angle-like variable and § is the toroidal angle.
The angle © is determined from the straight magnetic field line
condition.

We start with the usual MHD =quations,

*Research sponsored by the Office of Fusion Energy, U.S. Department
of Energy under contract DE-ACO5-840R21400 with Martin Marietta
Energy Systems, Inc.

**cusion Energy Division.
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a8 _ _

'gt-— y‘.x”) (1)

Eeyxg=n. @
av

nlgg ey "W =T ¥ @

1=1%8. @

V-8=0, (s)

and
Oen, .
55t z Pp=0- (8)

The fluid is assumed to be incompressible and the density constant
in time. This implies

Z . (pmx) =0 (D

Therefore, it is useful to assume for the equilibrium mass density the
following form

Pm = pmoég)'z . (8)

Eqs. (1) to (5) can be written in terms of potential functions to
guarantee an exact solution of Eq. (5). To do so, the usual vector
potential, defined by
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2w
i

2
x

2>

(9)

is used with the gauge defined by Ap = 0. This choice of gauge allows
the remaining two components of the vector potential to be identified
with the poloidal and toroidal magnetic fluxes.

The time-dependence of A is given by

o)
woLE-n R (10)
with o the electrostatic potential. The above, together with some

rather lengthy algebra, gives six equations for the six unknowns to be
time advanced. These equations are

LB g%- 8% + VI8 + mj (11)
13 :

%%: -S®C veBP + vPBS + njg , (12)

%: ~ 988 + S0 4 'qu , (13)

(j%¢ - jPe®) (19)
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%‘f"" s2 E-é—-a% (p(v'SuP - vAs)) +——— (vSu® - VB
’55' 1 aR2 9p)
+ 18 (o0i%ee -~ jeed)) + LB (60 - i6S 15
L2 (U - 9) + 15 (5 - 19 { (1)
and
g%=_vp%'g-v9%gg-vsg§£. (16)

The six unknowns are the poloidal flux ¢, the toroidal flux x, the
poloidal velocity stream function ¢, the toroidal velocity stream
function A, the eiectrostatic potential o, and the pressure p. 1In
terms of these quantities, the magnetic field, velocity and vorticity
are given by

B=70xVyx+VxVy (17)
V= Bf.%vexVAng%g (18)
~ Ro

4=l (19)

A perfectiy conducting wall at the plasma boundary (p=a) is assumed
which requires

B°| . = vplp=a =0. (20)

p=a
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Both equilibrium and dynamic quantities are expanded in Fourier
modes as in Ref. 4.

3. _NUMERTCAL SCHEME

Accurate results must be convergent in the number of grid points
used in p and in the number of Fourier modes used in the expansion of
both the dynamic and equilibrium quantities. In Fig. 1, the n=1 growth
rate as a function of the number of radial grid points is shown and
represents typical behavior. For large A (0.1 Tﬁﬁ) results are
converged with ~1U0 grid points. For smaller A, (~0.01 Tﬁ%), however,
a convergence study is needed to extrapclate to an infinite number of
points. In Fig. 2, the convergence behavior when varying the number of
equilibrium modes is shown. The number needed (for errors < 1%) varies
from a few at small 8 to 5-10 for larger 8. For the results presented
later (which are n=1), dynamic modes from m=-1 to m=4 were used, which
gave errors of S 1%. Since the safety factor varied from 0.9 at the
magnetic axis to 2.3 at the edge, this distribution gave modes through
the resonant region with two additional, above and below.

In Fig. 3, a comparison with the ideal code ERATO [5] is shown.
The agreement is regarded as excellient.

In order to display the results seen when the time step was
varied, it is useful to define an eigenvalue and a growth rate. The
linearized preblem is written as

L& Ry, (21)

and the implicit time step algorithm relates the solution vector at
time &t to that at t+At by

ot (- BE R+ ARt (22)
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In the above, L and R denote the matrices formed from the
operators L and R. In what follows. t will denote the physical time
only when At is smal{. The eigenvalue A is defined by

(Rx)

-T-—y— 23
kx)i large t )

where "large t" means that A is independent of t and <...> means an

average has been taken.
The growth rate is defined by

lxt+Atl
=1 N (24)
VERC\TE ) .

In Fig. 4, 4 and A are shown for a cylindrical case and as a function
of step size. The eigenvalue is constant over a large range of At,
while the growth rate undergoes a resonant behavior with the resonance
occurring at At = 2/A. Also shown is the velocity in the poloidal
piane (vP and veb. The velocities are identical for values of At at
each end of the range shown and for a2 value near the resonance. The
behavior for the other unknown quantities is identical. Note that for
small At, A and ~ are identical. It is thus possible to use a very
large step size and obtain a solution given by A and the eigenfunction.
This solution is identical to that found if one uses a small step size
to get a solution given by « and the eigenfunction. The number of time
steps required to find an eigenfunction as a function of At is shown in
Fig. 5. The minimum required is at the resonance given by At = 2/A.
Very careful selection of the step size can give a solution in a very
few (1 or 2) time steps. In Fig. B, the eigenvalue is shown over 2
much wider range of At than that shown in Fig. 4. Discrete changes are
seen at values of At = 2/VK;K; where A; is the value before the change,

and Aj is the value after ths change. Also shown is the poloidal
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velocity given by the eigenfunction found for each A. The p component
of the velocity has no nodes for the largest A, one node for the second
largest, and two for the third largest. This is typical behavior for
the most unstable, second-most unstable, and third-most unstable modes.
This is, in fact, what is being selected by the choice of At. Also
shown, fTor reference, is the resonant values of At for each mode.

The numerical behavior shown in Figs. 4, 5, and 8 can be
understood by assuming the set of eigenfunctions generated form a
complete orthonormal set. Again we write the linear problem as

n (r t)

L __6_— = x(r.t) . (25)

Each member n of the complete set of solutions to the resulting matrix
problem satisfies

A hﬁn (':) = B.)\‘,n (S) (26)

with the stepping algorithm given as befure as
W G- 507 G-, 27

and x, and ;:‘t' related by

t %) = qnt'
t arge,., (rt) =2x, e . (28)

When At is small ~, = A, of course. The solucion vector at each time
step may be expanded as

o) = ;aﬁzn(;) : (29)
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Using Eq. (29) in Eq. (27), using Eq. (26), multiplying by h‘l and
projecting a, by the assumed orthonormality gives

t
(1&"‘;) :
aﬁ*At = AiA aﬁ (30)
T .
___5_9
Thus, if At is properly chosen, the eigenfunction m will be selected

due to the denominator in Eq. (30). A resonance will occur at

At = 7\%{ (31)

as observed in Fig. 4. Using Eqs. (28), (29), and (30), A, and ~, may
be related by

. A
o D)
-

(32)

The results shown in Fig. 4 satisfy this relation with the plus sign
being correct to the left of the resonance and the minus sign to the
right.

The value of At for the transition from one ¢igenvalue to another
may be found by realizing that the minus sign in Eq. 32 applies to one
of the eigenvalues and the plus sign to the other giving

A A AL A
(-2 200 = - (-2 0 - (33

or, by solving for 4t,
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At = 2 . (34)

This is the transition At shown in Fig. 8. Thus a fairiy simple
algebraic treatment can reproduce the numerical results shown in

Figs. 4, 5 and 8.

A, _STABILITY RESULTS

In Fig. 7 stability results are shown for a sequence of
flux-conserving equitibria with a safety factor profile ranging from
0.9 to 2.3. In the lower figure, the eigenvalues as a function of fy
are shown when the full equations of Section 2 are used. In the upper
figure, results for the same sequence are shown when the reduced
equations of Strauss [3] -are used. Both ideal and S=10° results are
shown for the full equations, with only S=10° results shown for the
reduced equations since the reduced equations give ideal stability.
The ideal peak for the full equations results from the ideal internal
kink mode, which is not in the reduced equations since it is of higher
order than that included. The $=10° results for the full equations are
dominated by the ideal internal kink except for the points at the
highest and lowest values of fy. These two points, in fact, are in
good agreement, both in eigenvalue and mode structure with the reduced
equations and are eigenvalues for a tearing mode (for the lowest Bg)
and a resistive ballooning mode (for the highest ﬁo). Thus, for n=1,
the reduced and full equations agree at high and low By, but disagree
at intermediate B where the ideal internal kink is unstable. As seen
in the figure, a second stability region for the internal kink exists.

We would 1ike to acknowledge very usefu! conversations with

M. Azumi.
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FIGURE CAPTIONS
. Conver ence WI%h number of radial (p) grid
poi nts %M) The sca e is M™
Fig. 2. Convergence with number of Fourier modes.

Fig. 3. Comparison with the ideal code ERATO [4].

Fig. 4. Eigenvalue A and growth rate 4 as a function of
step size At for the most unstable mode.

Fig. 5. Number of time steps to converge (N) as a
function of step size At.

. .g. 8. Eigenvalue A as a function of step size At.

Fig. 7. Eigenvaiue as a function of fy for n=1 and for
both the reduced and full equations.
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J. K. Lee,"3-D Simulations of Limiter Stabilization
of High Beta External Kink-=Tearing Mode."
2:15 - 3:00 T, Tsunematsu, "Nonlinear Evolution of External Kink Mode
in Tokamak."
L. A. Charlton, "Calculations in Toroidal Geometry with
Full MHD Equations."
4:00 - 5:00 Discussion on 3-<D MHD calculations for tokamak,
Chairman = D. Monticello
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Thursday = Friday, March 22-23, 1984

Continue discussions at Fusion Energy Division,
Bldg. 9201-2



PREFACE

The US-Japan theory workshop on 3-D MHD studies was held at
Oak Ridge, Tennessee on March 19-23, 1984, 1t was attended by 25
participants.

The main purpose of the workshop was to determine what important
problems are ahead of us in 3-D MHD studies. In the meeting physics
problems were addressed, as well as computational ones for different
devices. The first day of the workshop was devoted to discussion
of MHD equilibrium and stability issues related to stellarators.

The MHD properties of RFP and compact torii were considered during
the second day. Fimally mirrors, EBT, and tokamaks were discussed
on the last day of the workshop. The discussions were neld in a
very informal fashion, which allowed a frank and open exchange of
views between the participants.

These proceedings include the manuscripts that were presented
at the workshop. They cover most of the oral presentations and are
organized in the way they were delivered. An attendance list, and
the agenda are also included in the proceedings.,

The Japanese delegation was led by Professor Tetsuya Sato of
the Institute for Fusion Theory at Hiroshima. His cooperation in the
organization of the workshop is gratefully acknowledged.

The workshop was sponsored by the Fusion Energy Division, Oak
Ridge National Laboratory and could not have been successful without
the efforts of many dedicated individuals - Session chairman, authors,
participants, and last but not least, the workshop secretaries.

T would like to acknowledge special appreciation to: Janice Cox,
who handled the problems of organization prior to the workshop in
an efficient and professicnal manner; June Jernigan and Gladys Warren,
who acted as workshop secretaries during the workshop, taking care of
all the details and problems which normally are associated with such
meetings in an excellent way. I am particularly grateful to June
Jernigan and Gladys Warren for assembling the contributions of the
proceedings, and handling much of the workshop paperwork.

Benjamin A. Carreras
Oak Ridge, Tennessee
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