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CALCULATION OF ISLAND WIDTHS IN THREE-DIMENSIONAL EQUILIBRIA

A. H. Reiman and A. H. Boozer

Plasma Physics Laboratory, Princeton University

P.O. Box 451

Princeton, New Jersey 08544

In three-dimensional MHD equilibria, pressure driven currents can

resonate with rational surfaces in the plasma, producing magnetic islands and

breaking up flux surfaces. This effect is of great practical importance for

stellarators, where it gives an equilibrium f? limit, and also limits the.

plasma aperture below that 3 limit. We have explored the physics of

equilibrium island formation, and have obtained some estimates for island

widths.* We have applied our theory to the Princeton heliac reference

design.

Stellarator vacuum fields are constructed to have relatively good flux

sufaces. The islands that exist are small relative to the minor radius. With

finite 8, the flux surfaces are shifted and distorted. It has been expected

that the flux surfaces break up at some critical 0. The convention has been

to take the equilibrium 8 limit to be that value of p at which the magnetic

axis shift equals half the minor radius. There have previously been no actual

calculations of this (3 limit. In the following, we first describe our general

analysis of island formation in three-dimensional equilibria, summarizing the

general conclusions, and then detailing some of the mathematics by which we

arrive at the conclusions. We finally apply the analysis to the particular

example of the heliac device studied at Princeton.

For purposes of orientation, we contrast our picture of equilibrium

island formation with the familiar picture of island formation in tokamaks.

In tokamaks, the appearance of islands is usually due to symmetry breaking

tearing instabilities, although it can also be caused by nonaxisymmetruc field

errors. For nearly circular flux surfaces, the island width is proportional

to the square root of the resonant fourier component of the radial magnetic

field, Byjuj. This component is resonant in the sense that n = (jn, where to =

1/q is the rotational transform.

For the three-dimensional equilibria we are interested in, the geometry

is considerably more complicated. The island width is now proportional to the

square root of the resonant component of B« 7<[» as determined in an

appropriate coordinate system (((,, 9, $). The island arises through the

equilibrium equation, and is intrinsic to the equilibrium itself.

For an equilibrium with small islands, it is natural to use nearby flux

coordinates, obtained by interpolating across the islands. The nearby i,



coordinate is to coincide with the flux surfaces, except in the immediate

vicinity of an island. The nearby flux coordinates define a magnetic field

with good surfaces. The difference between this field and the exact field is

small, relative to the magnitude of the exact field. This small difference is

important, of course, because it contains all the information about the island

structure. The nearby flux surfaces are not uniquely determined by the exact

field, but this nonuniqueness is unimportant as long as the island widths are

small.

The resonant component of the field is generated by a resonant component

in the current. The resonant current is driven by the pressure, through the

equilibrium equation

Vp - 2 x B , (1)

due to a resonant term in the Jacobian, J. Here J is the Jacobian of the

transformation from Cartesian coordinates to ( 4J, 9, cj>) - It describes the

geometry of the flux surfaces. The resonant term in the Jacobian, Jnm,

corresponds to a resonant rippling of the flux surfaces. As 8 increases, the

resonant'current increases due to the direct dependence on 0 which comes from

the Vp term in Eq. (1), and also due to the dependence of Jnm on R.

The spectrum of the vacium Jacobian typically has peaks at a few low

values of m, n, and decays exponentially with increasing m, n. There is a

peak at m = 1, n » 0, due to the toroidal curvature. For a helical axis

stellarator there is a peak at n « 1 and n equal to the number of periods, due

to the helical curvature. In addition, there are nonresonant terms with m > 2

which determine the shape of the flux surfaces. The resonant terms, with n =

wn, lie in the exponential tail of the spectrum.

Finite B gives a shift and distortion of the flux surfaces. The

corresponding nonlinear coupling of the fourier components of the Jacobian

gives a broadening of the fourier spectrum. The fourier amplitudes in the

tail of the spectrum increase. In particular, the resonant component also

increases.

The magnetic islands are intrinsic to the MHD equilibrium solution. When

(3 is sufficiently large that the islands overlap, the flux surfaces are

destroyed, and there is no equilibrium solution.

Now we present some of the mathematics by which we arrived at these

conclusions. We rewrite Eq. (1) as the two equations

^ - B.x Vp/B2 , (2)



and

B • 7fj(/B) « -7 • ix . (3)

To determine the integration constant for Eq. (3) we take the equilibrium to

have zero net current inside each flux surface. This is appropriate for

stellarator fields.

To solve the equations, we use an iterative method. To lowest order, we

take B aqual to the vacuum field, with p constant on the vacuum flux

surfaces. Equations (2) and (3) then give the lowest order plasma current.

The lowest order correction to the field is determined by Ampere's law. To

iterate, the corrected field is substituted back into Eqs. (2) and (3). We

must go to second order in this iteration procedure to see all the physics we

have previously described.

All results are expressed in terms of the fourier decomposition of the

Jacobian,

J * J o (
1 + 5; ' 5 n m cos<n<j, -me)") , (4)

n,m

where the prime indicates that the n = 0, m = 0 term is omitted from the

sum. In particular tha solution for j is,

do 6nm
j * J •— I 7<t> * 7<b + T' c o s l n * - m9)7(Ux(m79 - n74) 1 • (5)
*• o u<b * n—oju

nm

At thosa rational surfaces where n = ujn and 6nm ^ 0, islands will form, so

that dp/d<|i * 0 there.

The self-consistent set of equations is completed by Ampere's law,

7 x B » £ (6)

One particular solution of Eq. (6) is

H °* U J J 7 d<l))7$ + J -—• ) ' s i n ( n * - m9)
** • . o Gib ' - o urn ' n—torn

<v

has 7 »H ?* 0. The general solution to Eq. (6) can be written

B * H + 7F , (8)

with
72P - - 7 • H (9)



We solve Eg. (9) by an expansion about the magnetic axis. To simplify

further, we take the ellipticity of the flux surfaces to be small. We work in

a helical coordinate system, first introduced by Mercier,^ for which one of

the coordinate axes coincides with the magnetic axis. Expressing the flux

coordinates in terms of Mercier's coordinates! we get an inhomogeneous

Bessel's equation for F. To maka life easy, we take n/m small compared to the

aspect ratio, so that the Be33el functions can be expanded.

To calculate the field explicitly, we need to specify a pressure

profile. Taking a quadratic profile, we find the resonant correction to the

field,

where L is the length of the magnetic axis, a is the minor radius, and po

corresponds to the rational surface.

The resonant field given by Eg. (10) is proportional to the resonant

Courier amplitude of the vacuum Jacobian. We have not yet obtained the

broadening of the fourier spectrum* This appears in the next order.

In the next order, we need the nearby flux coordinates for the corrected

field. The new flux coordinates are determined by

(B + B ) . 7<|» - 0 (11)

and

where B^ is the vacuum field and 3.. is the nonresonant part of the lowest

order correction. We fourier decompose the difference between the old and new

coordinates, and substitute into Eqs. (11) and (12), to obtain explicit

expressions for the new coordinates in terms of the old.

The Jacobian is now reexpressed in terms of the new coordinates. To see

what this looks like, we consider the case where only 6Q-| and 6 1̂ are nonzero

for the vacuum Jacobian, where U is the number of periods. The fourier

amplitudes of the Jacobian are then

6nm "I K J \ V 3 fc



where the J's here are Bessel functions. This is probably not accurate for n

or m large'. Although the vacuum Jacobian has no resonant terms, the finite $

Jacobian resonates with every rational surface.

Now we apply our analysis to the Heliac reference design. Here we are

most concerned with the neighborhood of the magnetic axis, where o> « 1*5, or

av̂ N a 0.5. We cannot use our analysis directly, because do/dp vanishes at the

axis. It is straightforward to modify all the formulas appropriately.

We obtain the Sj^'s from a numerical fourier decomposition of the vacuum

field.3 To g«t a rough idea of the equilibrium B limit, we calculate the g at

which our formulas predict an island width equal to half the minor radius of

the plasma. For the direct resonance, due to the resonant fourier amplitude

of the vacuum Jacobian, we get B » 0.3%. This may be remedied by adjusting

the tilt of the coils. The nonlinear resonance gives g « 1.6%. This is not

as easily remedied, coming from a coupling of the helical and toroidal

curvature.

In the general design of stellarator vacuum fields, we night have

expected the requirement of good vacuum flux surfaces to suppress the resonant

field amplitudes. Our calculation for the heliac reference design shows that

the amplitudes of the direct resonances may nonetheless be unacceptably

large. We conclude that it is necessary to incorporate the constraints on the

resonant 6 ^ directly in the design procedure. Our application also shows

that coupling of nonresonant components can give large islands, even for

values of B at which the axis shift is small relative to the minor radius.

Our approximations have allowed us to obtain analytic estimates of island

widths, for the direct resonances and for low n, m nonlinear resonances. Oar

simplifying approximations have also allowed us to explore and clarify f;he

basic physics of island formation and surface destruction in three-dimensional

equilibria. Clearly, the theory we have presented can be used do more

accurate calculations, both analytically and using numerical methods. An

extension of the calculation to higher order in fj would allow the

determination of island widths for higher m, n, and give a more complete

description of the equilibrium Q limit.
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A 3D Algorithm for Calculating Drift Orbits
in Nonaxisymmetric Toroidal Devices

K. Hanatani and K. Uo

Plasma Physics Laboratory, Kyoto University
Gokasho, Uji, Kyoto, JAPAN

ABSTRACT

A three-dimensional (3D) interpolation technique for computing

guiding-center drift orbits in nonaxisymmetric toroidal magnetic devices is

described. The new technique, named "two-level interpolation scheme", uses a

simple algorithm which splits given field quantities into symmetric (2D) and

asymmetric (3D) parts. The interpolation scheme allows a fast and accurate

drift orbits computation and also provides a direct means to examine the

effects of symmetry-breaking perturbation as a part of the numerical procedure.

The technique has been applied to study the toroidal drift of the particles in

a vacuum heliotron field. It was found that the. asymmetric part of the drift

shows a vortex structure and this vortex reduces the net vertical drift in the

peripheral region of the magnetic surface. A strong reduction in the net

vertical drift occurs even near the magnetic axis when the magnetic axis is

shifted inward by applying vertical field. The presence of the drift vortex is

attributed to the absence of toroidal field coils in che heliotron field

studied. An implication of the drift vortex on the diffusive and nondiffusive

particle losses from the heliotron plasma is also commented.

INTRODUCTION

Lack of ignorable coordinate in stellarator and heliotron implies that

one must resort to 3D numerical techniques to examine the drift orbits. It

also implies that the techniques must be fast aad accurate to be useful in

applications. Unfortunately, methods easy to implement do not simultaneously

meet these requirements: Simplified analytic models may be inaccurate in the

field modeling though they are time-saving. Conversely, integration of the

Biot-Savart law is time-consuming though it is accurate. More advanced

techniques, which are capable of achieving efficient drift orbit computation in

the stellarator fields without sacrificing the reality in the modeling, have
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been developed by several authors ' ' ' . This paper proposes another simple

technique which not only allows a fast and accurate drift orbit computation but

also clarifies the effects of the symmetry-breaking perturbation on the drift

orbits.

GUIDING CENTER EQUATION

A set of guiding-center drift equations which includes usual gradient and

curvature drifts is used to track the charged particle orbits.

•#•• "--f + % «•>

-fr" -
where

2
V. 2 ( 1 + X 2) G(x) (2a)

2 « R

-j. + B x V B
G(x) - BQ RQ ^ (2b)

B

H(x> - -|-- . 7 B (2c)

Here, A. (- v,,/v) is the pitch of the particle, Q Q (= qBQ/m) denotes the

cyclotron frequency, and u (= mv x /2B) denotes the magnetic moment which is

assumed to be an adiabatic invariant. The velocities v,,, v _,_ and v = ( v,, +
2 1/2

v x ) are the parallel, perpendicular and the total velocities of the

guiding center. A nondimensional vector G(x) is a geometry-dependent (or

particle-independent) part of the drift velocity VQ; a scalar function H(x) is

the derivative of B in the direction of B/B. We regard the drift G(x) and the

derivative H(x) as the field quantities ( like the magnetic field B) filling

the whole space.



MAGNETIC FIELD GEOMETRY

The magnetic field model used to validate the new interpolation scheme is

that of vacuum magnetic field produced by filamentary external helical

windings. Integration of the .Biot-Savart law provides the magnetic field

quantities B, G and H. In toroidal geometry, the most convenient way to

specify the winding law is with quasi-toroidal coordinates ( r, 6 , <j> ). The

heliotron winding ( RQ; major radius, a; minor radius, L; pitch length) of

multiplicity £ is simply defined by 9 • ioj> , where K - 2 ir RQ/L is the twist

number of the helical winding. The number of the field periods around the

torus is then given by KI . Besides the helical field (HF) windings, the

heliotron configuration requires vertical field (VF) coils and allows, in

general, toroidal field (TF) coils. The VF coils compensate the average

vertical field produced by the HF coil. The VF coils also control the

horizontal position of the magnetic axis.

THE INTERPOLATION METHOD

we propose here a two-level interpolation technique to speed up the drift

orbit computations in the toroidal helical devices. Unlike conventional 3D

interpolations, this technique makes full use of symmetry to evaluate

asymmetric quantities. Basic idea is to decompose all relevant physical

quantities into symmetric and asymmetric parts, both of which are more

manageable than the original ones. Let P denote Che helically symmetric part

of any quantity Q. We then express Q as a sum of the principal part P and a

residual part R:

any Principal . Residual

Quantity part part

Q - P + R (3)

( r, 6 , cj> ) ( r, 9 - K(f> ) ( r, 9 , * )

3D 2D 3D
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The principal part P is the dominant, symmetric part while the residual part R

is the small asymmetric part. To evaluate the field quantity Q as the function

of position, we interpolate P and R separately rather than interpolating Q

itself. It must be emphasized that the right hand side of expression (3) is

not an approximate expansion of the left hand side but a closed decomposition

of Q as it literally means.

To evaluate the symmetric part F, one can use either analytic or numerical

representation for Q in the equivalent, straight helically symmetric system.

The analytical representation can be given by a series of modified Bessel

functions; the numerical solution can be obtained by integrating the

Biot-Savart law for infinitely long straight helical winding. In practice,

however, we have not found them necessary. To obtain the desired

representation for P, we simply extract the helically invariant components from

the field quantity 0 given in the finite aspect-ratio toroidal configuration.

Here quantities that depend only on r and £ (* 9 - Ktft ) are considered to be

helically invariant. This extraction can be made by averaging the quantity Q

"helically" over 2ir /K ,

d<J> , (4)

just as the calculation of zero order Fourier coefficient. Recently and

independently, an averaging similar to (4) was used to eliminate magnetic

islands and stochasticity in a nonaxisymmetric vacuum 3D field. Once P is

obtained, R can be calculated by Eq.(3). Untill now, notations Q, P and R are

used only symbolically. In the following, Q, P and R actually represent the

three components of B, the three components of the nondimensional drift G, and

the directional derivative H chat are necessary to solve the drift equation

(1). From Eq.(3) one has

B(x) = B(0> + I ™ ,
G(h » 3(°) + S<» . (5)

H(x) » H ( 0 ) + H(1> '
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where super-scripts (0) and (1) denote the symmetric and the asymmetric parts.

In addition to B, G and H, the decomposition can be applied to other quantities

if necessary.

Above decomposition has a number of new advantages over standard methods.

First of all, it allows us to investigate how and to what extent the

symmetry-breaking perturbation affects the drift orbits. By directly examining

the distribution of the residual parts, we may have clearer insight into the

underlying orbit physics than by examining the integrated trajectory itself in

full nonaxisymmetric complexity. We can also calculate drift surfaces in the

corresponding, straight, helically symmetric system by artificially eliminating

all the asymmetric parts from the drift et,uations( i.e., R =• 0) and from the

metric of the coordinates. This option permits us a close comparison between

the unperturbed (2D) and the perturbed (3D) drift orbits. By this comparison,

we can investigate the departure from the helical symmetry.

Secondly, the decomposition allows us to develop a simple and efficient

computational scheme. The essential point is to choose suitable, different,

interpolating formulas for P and R according to their relative importance and

to the number of their dimensions. Although the original quantity Q is 3D, the

principal part P reduces to 2D owing to the helical symmetry. Two-dimensional

interpolations are, of course, much easier,to implement, faster to execute and

require less storage than 3D interpolations. We can, therefore, calculate the

principal part P easily and quickly either by using bicubic spline with

moderate mesh size or by using bilinear interpolation with finer mesh size. On

the other hand, the residual part R is still 3D. The magnitude of this part

is, however, typically by one order (a/R.J smaller than that of the principal

part P. We, therefore, need not use the same-accuracy formula as that used for

the principal part, and a rough trilinear interpolation formula with coarse

grids may be accurate enough. A volume-weighting method in the toroidal

coordinates was used for this trilinear interpolation. Again, we can calculate

the residual part R easily and quickly. Thus, we can handle both of the

decomposed parts, P and R, in a more physically meaningful and numerically

economical way than directly handle the original quantity Q.
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The accuracy of the two-level interpolation scheme was tested by comparing

the interpolated result with that of the direct calculation (the Biot-Savart

law). We interpolate not only B but also G(x) and H(x) in order to avoid the

difference approximation in B x V B and B. V B. The accuracy of V is,

therefore, of the same order of that of B. The convergence of the two-level

scheme is faster Chan that of "single-level" trilinear interpolation. A

possible weakness of the two-level schema is that it may not work very

efficiently in completely asymmetric fields. If the level of asymmetry is too

strong, the magnitude of the residual part R becomes comparable to (or even

greater than) that of the principal part P. In this extreme limit, the

accuracy of tha two-level scheme degrades to that of usual trilinear

interpolation. Fortunately, however, many asymmetric magnetic confinement

devices of practical importance such as stellarators and bumpy tori do have

their neighboring symmetry and the levels of their asymmetry are usually weak

or at most moderate.

We have compared the computing speed of two-level interpolation scheme

with that of the direct calculation to estimate the figure of merit factor of

the interpolation scheme. We compared the CPU times of the direct and the

interpolation methods spent for one evaluation of the field quantities. As a

reference, we also measured the CPU time of the single-level trilinear

interpolation, which should give a minimum executing time of any interpolation

methods. The comparison was made on FACOM/M-200 computer. The two-level

scheme was faster than the direct method by more than two orders of magnitude,

and it was slower than the single-level interpolation only about 30%.

APPLICATION

Let us apply the decomposition procedure to Heliotron E ( see Fig.l) and

samine the effect of toroidal perturbation on th

the normalized drift G(x) can be writcen as follows:

to examine the effect of toroidal perturbation on the drift V . From Eq.(2a),

G(0)

Utor
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U 2 ( 1 + X 2) (7)
2 R0

where G and G are the principal (symmetric) and the residual (asymmetric)

parts of G(x). The characteristic velocity, U , is the so-called "toroidal

drift" velocity. If the magnetic field is produced only by a toroidal solenoid
•+(Q) "*"(!)

(TF coils), then G ' reduces to a zero vector and G reduces to a unit

vertical vector z. Accordingly, the drift velocity V D reduces to a vertical

drift U t o r 9.

The origin of the asymmetric drift, G , in heliotron is different from

that both of tokamaks and classical stellarators. In the latter two
-•(1)

configurations, dominant contribution to G originates from the curvature and

gradient of the toroidal field component B , which is produced by TF coils
"*"(1)

(toroidal solenoid). In heliotron, by contrast, G originates from the

toroidal bending of the helical winding. Note that in heliotron both poloidal

B and toroidal B field components can be produced by a single set of helical

winding. The TF coils are dispensable or (at most) of secondary importance in
"*(1)the heliotron concept. For this reason, the perturbed drift, G , in the

heliotron need not be identical with those of tokamaks and classical

stellarators.

A unique capability of the two-level interpolation scheme is that it

allows us to visualize the "drift vector field" of the helically symmetric and
"*"(()) -*"(1)

the toroidally perturbing drifts, G and G , part by part. Figure 2 shows

the arrow map of the helically symmetric drift of Heliotron E. An interesting

finding in the toroidal heliotron is a vortex structure in the perturbed drift,

G^ . In Fig. 3-(a),(b) and (c), the arrow map of the perturbed drift, G ,

is similar to the toroidal drift , U 2, near the minor axis. It is, however,

substantially modified in the outer region of the magnetic surface and

completely different in the separatrix region from U z of simple toroidal
•*/n t o r

solenoid. In particular, the drift G shows the vortex-likt structure. The

center of this "drift vortex" is located at the peripheral region of the

magnetic surface. As a reference, arrow map of the toroidal solenoid is shown

in Fig.4.
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The numerical finding of the drift vortex prompts us to reconsider a

question: what is the "toroidal drift" in nonaxisymmetric devices. To answer

this question, we have examined the distribution of the perturbed drift G

along the field line and along the drift orbit. Figure 5 shows the time

variation of the unperturbed and the perturbed drift along the trajectory of a
•*(0)

passing particle in the heliotron. The helically symmetric part, G ,

asymmetric part and, G , are clearly separated. we have averaged the

vertical and horizontal components of the symmetric G and the asymmetric

G parts along the field lines and along the drift orbits. The average was

carried out along the line of force over 10 toroidal revolution around the

torus. It was found that the net vertical drift resulting from the toroidal

perturbation, G z, in the heliotron field is appreciably smaller than that

expected from the geometric aspect ratio R./a of the device. This reduction is

restricted in the peripheral region of the magnetic surface when the magnetic

axis is centered on the minor axis. Effects of the VF coil field on the

averaged vertical drift are also examined. When we shift the magnetic axis

inward by the VF coils, a strong reduction (factor of two) in the vertical

.drift was obtained even near the magnetic axis ( see Fig.6). This type of

configuration was previously studied and referred to a "reduced Q"

configuration .

These results indicate that the aspect ratio is effectively enhanced for

the charged particles moving in the Heliotron E plasma. It must be emphasized

that this enhancement of the aspect ratio is achieved not by introducing

auxiliary coils ( and hence extra complexity) into the system but by simply

removing the TF coils from the system. When we increased the TF coil field in

the calculation, the perturbed vertical drift approached to that of toroidal

solenoid field as expected. We consider that the finding of the drift vortex

is a good example illustrating a possibility of the optimization of field

configuration. Since the reduction of the vertical drift are obtained even in

a simplest combination of the helical winding and VF coils, one can expect

further optimization of the drift by modifying the external coil system.
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SUMMARY

He have outlined here a simple interpolation algorithm which enables us to

develop an efficient 3D field line and drift orbit following code. This

algorithm splits given field quantities into the symmetric and the residual

parts and, therefore, is particularly powerful to evaluate asymmetric fields.

Using this code (ATLAS), we have investigated the effects of the toroidal

perturbation on drift orbits in the heliotron field, and found a vortex

structure in the perturbed drift velocity. Such a "drift vortex" is that can

not be expected from the usual toroidal drift in torus geometries. The

presence of the drift vortex implies that the vertical drift of the particle in

the heliotron pla'sma is substantially reduced than that frequently assumed in

simplified analytical models for tokamaks and stellarators. This reduction in

the vertical drift is important because it may reduces both diffusive and

non-diffusive losses of the charged particles from the heliotron plasma.

So far, the two-level interpolation scheme has been applied only to the

calculation of magnetic surfaces and drift orbits in the vacuum heliotron

fields produced by filamentary helical windings. The ATLAS code can be a

useful tool in investigating drift orbit related phenomena in nonaxisymmetric

devices such as the calculation of velocity space loss region, neoclassical

transport of thermal ions, slowing-down process of fast ions, and drift

optimization of field configuration. The philosophy and the technique proposed

here, however, may be equally applicable to wider classes of problems arising

in various types of asymmetric 3D fields. Any magnetic fields obtained by

other approaches than the Biot-Savart law that can provide reasonably accurate

B and grad-B on the 3D grid points can be used as the input of the present

decomposion procedure. For example, the scheme is in principle applicable to

finite beta 3D equilibria by using the output of 3D MHD equilibrium codes.

Incorporation with existing Monte-Carlo scattering algorithm and the inclusion

of the electric filed remain the subjects of future studies.
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FIGURE CAPTIONS

Figure 1. the magnetic surface of Heliotron E ( 2H" a/L » 1.4; RQ/a =

2.2/0.3). Field line tracing was carried out by the two-level

interpolation scheme.
•*"(0)

Figure 2. arrow map of helically symmetric drift G . Mote that the scale of

the arrow length is different from that in figure (3), (4) and (6).
-Kl)

Figure 3. ari-nw map of asymmetric drift G at three different toroidal

position (a),(b),(c).

Figure 4. drift arrow map of a reference tokamak (toroidal solenoid).

Figure 5. time evolution of vertical drift along the passing particle. Dots

represent the helically symmetric part; solid line represents the

asymmetric part.

Figure 6. arrow map of the asymmetric drift G in the case with increased (by

25%) vertical field. The magnetic surface is also shown.
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1. Introduction

In this paper, the equilibrium properties of several types of
helical axis stellarators will be studied. Previous stability studies
of the heliac concept have shown the expectation of high (3 limits. In
particular, detailed stability studies in the infinite aspect ratio,
helically symmetric limit show favorable stability properties for
"bean* shaped he!lacs.1 The equilibrium results given in this paper
sill focus on the finite aspect ratio regime where there is an
interplay between toroidal and helical curvature effects. Studies by
Reiman and Boozer indicate that such interactions may lead to island
formation and flux surface destruction.2

The equilibrium properties of three types of helical a s device
wilI be studied:
1) The helical axis ATF,3 which is formed by imbalancing the currents

in the helical windings of the ATF device.
2) Heiiacs of the type studied at PPPL,4 in which a set of toroidal

field coils spiral about an interlocking, toroidally directed ring
[Fig. l(a)]. A large sequence of such heiiacs. with varying
helical and toroidal curvatures wi11 be studied.

3) Helical axis stellarators formed by non-interlocking toroidal field
coils. In particular, a system in which the axis of the coils
defines a geodesic on a torus will be studied [Fig. l(b)].

The above configurations have been studied with the 3-D
equilibrium code NEAR, and also using an average method, which is
applicable to helical axis systems. Details of these methods will be
given in the next section and results of the calculations will be
presented in Sec. 3.



By «cc«ptanct at this article. th«
publiihtr or r«cipi»nt acknowlidgtt
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The equilibrium properties of helical axis stellarators are

studied with a 3-D equilibrium code and with an average method (2-D).
The helical axis ATF is shown to have a toroidally dominated
equilibrium shift and good equilibria up to at least 10% peak beta.
Low aspect ratio heliacs, with relatively large toroidal shifts, are
shown to have low equilibrium beta limits (~5fS). Increasing the aspect
ratio and number of field periods proportionally is found to improve
the equilibrium beta limit. Alternatively, increasing the number of
field periods at fixed aspect ratio which raises t and lowers the
toroidal shift improves the equilibrium beta limit.
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1. Introduction

In this paper, the equilibrium properties of several types of
helical axis stellarators will be studied. Previous stability studies
of the heliac concept have shown the expectation of high J9 limits. In
particular, detailed stability studies in the infinite aspect ratio,
helically symmetric limit show favorable stability properties for
"bean" shaped heliacs.1 The equilibrium results given in this paper
will focus on the finite aspect ratio regime where there is an
interplay between toroidal and helical curvature effects. Studies by
Reiman and Boozer indicate that such interactions may lead to island
formation and flux surface destruction.2

The equilibrium properties of three types of helical axis device
wi11 be studied:
1) The helical axis ATF,3 which is formed by imbalancing the currents

in the helical windings of the ATF device.
2) Heliacs of the type studied at PPPL,* in which a set of toroidal

field coils spiral about an interlocking, toroidally directed ring
[Fig. l(a)]. A large sequence of such heliacs, with varying
helical and toroidal curvatures will be studied.

3) Helical axis stellarators formed by non-interlocking toroidal field
coils. In particular, a system in which the axis of the coils
defines a geodesic on a torus will be studied [Fig. l(b)].

The above configurations have been studied with the 3-D
equilibrium code NEAR, and also using an average method, which is
applicable to helical axis systems. Details of these methods will be
given in the next section and results of the calculations will be
presented in Sec. 3.
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2. Numerical and Semi-Analytic Methods

Both the average method and 3-0 NEAR code ara based on a set
vacuum flux coordinates (pv, 9y, <f>y), described by Boozer. These
coord'nates are defined by their relationships to the vacuum magnetic
field

Bv = Bopv Vpy x V(6V - *„<(>„) = Fv\ (1)

and bv the additional constraints that Bnp?/2 is the vacuum toroidal
flux and that the constant Fy should be such that $ y varies by 2ir in
traversing the torus once toroidal ly. The (pv, Qy, <J>V) coordinates and
associated metric elements are derived numerically from given coil
configurations, using a modified version of a code developed at ORNL.

The 3-0 NEAR code uses the (py, 9y, <j)y) coordinates as its
Eulerian frame of reference. The dependent variables are represented
as doubly periodic Fourier series in 8 y and (j)y. Thus, for example, the
contravariant component of the magnetic field is represented as

v e v . V t ) = EBP(pv,t) sin(n,9v -.- ncj)v) . (2)
m,n

The equilibrium problem is solved, using this representation, by a
steepest descent method in the manner described by Chodura and
Schliiter. A fictitious force F is introduced

F = J x B - 7P (3)

which in turn is related to a velocity V, by a conjugate gradient
iteration scheme."1 The magnetic field and pressure are advanced subject
to the constraints of flux and mass conservation:
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|fVxtfxB) (4)

and

| P = _V • VP - - { P 7 • V . (5)

The wall boundary condition is given by an infinitely conducting wall
at the last closed flux surface.

The other approach which has been used in these studies is an
average method. The average method was first applied to the
stellarator equilibrium problem by Greene and Johnson.8 Their averaging
was in real toroidal angle and relies on the dominance of the toroidal
magnetic (By) field over the rapidly varying helical component (Bv) ,
where | B y j / B j ~ 5 « 1. The averaging method described in this paper
makes the same assumption but averages are performed in the flux
coordinate toroidal angle (c|>v) at fixed p y, 9y. Thus the average
magnetic field is

To leading order, the averaged equilibrium equations reduce to a
Grad-Shafranov type equation:

~F v 1 dP
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where

1 STIJ . B 9 &b_
Aft and 7T~ = ~"a^~TT" c ^ Aft and 7T~

v

here D v is the Jacobian and F = <Bx>. The equivalence of Eq. (7) to
the Grad-Shafranov equation derived by Greene and Johnson may be
demonstrated. Equation (7) is, however, equally applicable to planar
and halical axis configurations; provided the toroidal shift dominates.
A Poisson type equation for EL (the toroidally varying toroidal field)
has also been derived. Thus higher order corrections to the averaged
equilibrium may be computed. Numerical methods have been developed to
solve both this Poisson equation and the Grad-Shafranov equation
[Eq. (7)]. Comparisons between 3-D equilibria and average method
calculations will be given in the next section.

3. ResuIts

(a) Helical Axis ATF

By imbalancfng the currents in the helical field coils of «he ATF
device, a helical axis plasma is formed The low iota bar per field
period (~0.1) and relatively low aspect ratio, result in the
equilibrium shift being toroidally dominated. The average method
described in the previous section is thus applicable. Figure 2 shows a
comparison of the flux surfaces, for the helical axis ATF, computed
with 3-D NEAR code and with the average method at J3Q = 2.6% (the vacuum
flux surfaces are also shown for reference ) . To make this comparison
more qualitative, the equilibrium shifts (Ap) computed with NEAR (3-D)
and the average method are compared in Fig. 3. The average and 3-D
computations agree well. Good equilibria have been found for the
helical axis ATF for central beta's up to 10%. However, the importance
of resonant harmonics (whose importance is accer.jated by the low
shear) has not been examined in detail.
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(b) Heliacs and Geodesic Helical Axis Stellarators.

A wide range of heliacs have been studied. Two fixed pitch scans
have been examined in detail [Pitch = (Number field periods)/(Aspect
ratio)]. The particular configurations studied in these pitch scans
are summarized Fig. 4. In general, it is found that low aspect ratio
heliacs have low equilibrium beta limits. Figure 5 shows a comparison
between the equilibrium flux surfaces computed with the
Chodura-Schluter5 code and the NEAR code, for the M = 4, R = 4 he! lac
(M is the number of field periods). The distortions to the flux
surfaces, shown in Fig. S, are caused by the beating of the dominant
toroidal shift with the helical harmonics generated by the coils. At
higher betas (~1O55) these distortions grow without limit and destroy
the equilibrium. The equilibrium bet? limits can be raised by reducing
the toroidal equilibrium shift. This may be achieved either by raising
the total t or by raising the aspect ratio at fixed pitch. Figure 6
shows equilibrium flux surfaces at |5Q = 5% for the M = 8, R = 8 and
M = 8, R = 4 heliacs. These correspond to raising the total t (M = 8,
R = 4) and raising the aspect ratio (M = 8, R = 8 ) , relative to the
M = 4, R = 4 case. The improvement in equilibrium quality is evident
in Fig. 6. The results of the M/R = 1 scan are summarized in Fig. 7,
where the toroidal shift (Ay) and helical shift (A^) as function of $ Q
are plotted for the configurations studied. The helical shifts remain
practically invariant for all configurations in the pitch scan, while
the toroidal shifts decline as the inverse aspect ratio. This is
because in a fixed pitch scan the helical curvature remains constant as
the toroidal curvature varies.

Finally, the potential of reducing the toroidal shift by winding
the toroidal coil axis as a geodesic on a torus, has been examined
[Fig. l(b)]. Figure 8 shows equilibrium flux surfaces at J5Q = % for
this configuration. The toroidal shift is of the same order as the
M = R = 4 heliac (shown in Fig. 2 ) ; there appears to be little benefit
in winding the axis as a geodesic. Further studies are however
required to clarify this point.
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Conclusions

A wide range of helical axis ste Mara tors have been studied with
the 3-D equilibrium code NEAR and with an average method applicable to
helical axis configurations. The helical axis variant of the ATF
device is found to have a toroidally dominated equilibrium shift.
Studies of the helical axis ATF with NEAR (3-0) and the average method
indicate good equilibria exist up to at least 10& central beta.

Two sequences of fixed pitch heliacs have been examined to clarify
the effects of toroidal and helical curvature on the equilibrium. In
general, it is found that heliacs which have large toroidal shifts,
have low equilibrium beta limits. This is because the beating of
toroidal shift with the helical harmonics of the coils produces gross
distortions to the flux surfaces. This process is the same as that
described by Reiman and Boozer.3 Raising the total t by increasing M at
fixed aspect ratio improves the equilibrium beta limit in heliacs.
Alternatively increasing the aspect ratio at fixed pitch also raises
the equilibrium beta limit.

Finally, the potential of reducing the torldal shift by winding
the toroidal field coil axis as geodesic [Fig. l(b)] has been examined.
Initial results indicate there Is little reduction toroidal shift by
winding the coils in such a manner.
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Fig. 4. Plot or number of field periods (M) v Aspect ratio;
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pitch scans.
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In the heliotron with large rotational transform, ^(a) ~ 2,

the dominant stabilizing mechanism against MHD instabilities is

shear. The linear MHD stability of the heliotron configuration

was studied against the low n pressure-driven modes both for the

cylindrical *• ̂  and the toroidal configuration , where n is a

toroidal mode number. It is found that (i) the equilibrium

averaged beta limit exceeds 7% since both < and the aspect ratio,

R/a, is large, and (ii) the stability beta limit depends on the

pressure profile and broad profiles give large stability margin.

Recently two types of discharge are observed in Heliotron E

which depend on the gas puffing condition during the neutral beam

injection. In the weak gas puffing case, for 6(0) z IX ,. internal

disruption with precursor fluctuations appears in the soft x-ray

measurements as shown in Fig. 1 (S mode). On the other hand,

when the intense gas puffing is applied, the fluctuations of the
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soft x-ray become, weak or disappear (Q mode). In the S mode,

density fluctuations and magnetic fluctuations are also observed.

At the time of the internal disruption energy flow to the edge

region was detected by the bolometric measurement.

The estimated mode number from the measured precursor

oscillations is n » 1/ n « 1, where m denotes a poloidal mode

number. The main difference between the S mode and the Q mode is

the pressure profile. The S mode has a peaked profile, while che

Q mode has a broader one. The stability of the Q mode is

consistent with the linear stability analyses which predicts a

higher beta limit for a broader pressure profile.

In order to investigate the physical mechanism of the S

mode, the reduced non-linear MHD equations describing the

r 31
stellarator plasma ,

(1) J_7,2u= {B oe + ? ( K + W x e } .
d t J- 20 z J h' z'

+ vr. x vp-ez,

+ I(J_ ) x 2 } • 7u

313

are solved in the straight plasma model,

where o
B0£h

Zl
* u = IT ' (hr) I

2 2 "̂

4 G(hr)

q(a)R F'(hr) ,
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F(hr) -i-
' hr

2 I2 2G(hr) = [Ij'ChDr + (1 + — — ) \ (hr)
2

Here u denotes a stream function, lp. a flux function due to

plasma current, e. a magnitude of the helical magnetic field and

1 and h characterize the helical field structure. In the

pressure equation (3), the thermal diffusion Keff, is included to

take into account the rapid energy transport due to the

instability and to remove the singular profile at the saturation

of the unstable ideal MHD mode. In the numerical calculations,

K ££ is given by an. where a is a constant and p denotes

resistivity. It is assumed that the mode coupling due to the

toroidal geometry may be weak for the m = 1/ n = 1 mode resonate

at * - 1 surface. The resistivity in eq. (2) allows reconnection

of the magnetic field lines in the non-linear stage of the

ideally unstable mode.

Without n and K -̂  in eqs. (1) - (3), the linear stability

analyses against the ideal m = 1/ n = 1 interchange mode give

gc(0) =2.5% for the pressure profile, P = PQ(1 - (r/a)
2)2, and

below this value the resistive m = 1/ n = 1 interchange is

destabilized by n. In the non-linear analyses of these modes we

assume single helicity. The time evolution of kinetic energy is

shown in Fig. 2. Figure 3 shows plasma pressure profiles at four

different times. T = 132 (normalized by the poloidal Alfven

transit time) corresponds to the growing stage of the unstable

mode, at T = 164 the reconnection of the magnetic field lines
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starts and T = 292 corresponds to the saturated stage. The

pressure profile deforms due to both the non-linear development

of the m = 1/ n • 1 mode and the thermal diffusion. From the

time evolution of the pressure profile we can estimate the soft

x-ray signal in the experiment by assuming that the pressure

corresponds to electron temperature and the plasma column rotates
3

rigidly. We also assume the soft x-ray is proportional to P .

Figure 4 shows the estimated fluctuations for the central cord

and the cord through about the half radius. It is seen that the

fluctuation level is large in the outer region and the phase of

the cantral cord is about 180° different from the outer region

cord. These are consistent with the experimental data of Fig. 1.

Now we will discuss the time scale of the internal

disruption. In Fig. 1 it starts at T = 471.6 msec and ends at T

= 472.8 msec. Therefore, the saturation time may be 1.2 msec.

The saturation time in Fig. 2 is about T = 280 TQ. From the

experimental data the unit time T« is estimated 0.5 sec. By

comparing these members, there is about 8 times difference

between the experiment and the numerical results. Still there is

ambiguity about both the beta value and the pressure profile just

before the internal disruption. More detailed measurements of

the temperature profile and the density profile are required.

The fluctuation before T = 471.6 msec is assumed the resistive

instability with m = 1 and n = 1.

In summary, main characteristics of S mode can be explained

by the non-linear evolution of the m = 1/ n = 1 interchange mode

at nearly marginal stability.
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Figure Captions

Fig. 1 An example of soft x-ray fluctuations in the case of

internal disruption for 3(0) -2.5%.

Fig. 2 Time evolution of kinetic energy of n = 1/ n = I

2 2
interchange instability for P = PQ(1 - (r/a) ) and

0(0) « 2.6%. Magnetic Reynolds number S = 5 * 103 and

Kef f " 2 n'

Fig. 3 Pressure profiles along 6 = 0 and e = TT line for the

instability shown in Fig. 2.

Fig. 4 Soft x-ray fluctuations from time evolution of pressure

profile by assuming rigid rotation of the plasma

column. (a) shows the central cord and (b) the cord

through about the half radius for 3(0) = 3.7%, K f f =

5n and S = 5 " 103.
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STELLARATOR EXPANSION STUDIES OF A HIGH-BETA TORSATRON*

J. A. Holmes, B. A. Cameras,** L. A. Charlton,
H. R. Hicks, and V. E. Lynch

Computer Sciences at
Oak Ridge National Laboratory
Oak R'dge, Tennessee 37831 USA

1. INTRODUCTION
ATF is a medium aspect ratio (Rc/ac = 7) & = 2 continuous

torsatron with twelve field periods (M = 12). This configuration has
been demonstrated, using the stellarator expansion, to have good MHD
equilibrium and stability properties* with increasing |3.

Present studies are directed toward improving the flexibility of
the ATF design by determining means of controlling important plasma
parameters, such as the magnetic well and the rotational transform
profile. We concentrate here on the use of the ATF vertical-field (VF)
coil system in providing this control.

The stellarator expansion equiIibrium and stabiIity calculations
carried out using the system of computer codes developed at Oak
Ridge''"* feature a fixed-boundary approach. This method provides
convenient control of the equilibrium shaping and is useful for rapidly
producing and considering a wide range of cases. However, with the
demonstrated desirability of the ATF configuration from an MHD
equilibrium and stability standpoint and with the capability of ths VF
coil system for controlling plasma parameters as discussed here, the
need to study the free-boundary equilibrium and stabiIity of ATF
becomes important. To carry out this work, we have recently obtained
Princeton Plasma Physics Laboratory's free-boundary stsllarator

CO

expansion equiIibrium and stabil i ty codes.0"0 We present here the
results of our in i t ia l free-boundary calculations for ATF.

Research sponsored by the Office of Fusion Energy, U.S. Department
of Energy, under Contract No. DE-AC05-840R21400 with Martin Marietta
Energy Systems, Inc.

**Fusion Energy Division.
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2. THE STELLARATQR EXPANSION EQUATIONS AND THEIR SOLUTION
The stelhrator expansion was originally derived by Greene and

Johnson* using an ordering scheme with the ratio of the helical and
toroidal magnetic-field strengths as the basic parameter. In this
scheme, toroidal effects are assumed to enter in second order. The
crucial feature of the stellarator expansion is the reduction of the
equilibrium calculation from three to two dimensions through toroidal
averaging over a field period. This feature makes the systematic
computational treatment of a large number of cases possible. With this
reduction, one solves an equilibrium equation for the averaged poloidal
flux function

(1)

which closely resembles the Grad-Shafranov equation for tokamaks. In
Eq. (1), *(R,Z) is the averaged poloidal flux function, **(R,Z) is the
averaged poloidal flux function of the vacuum, R is the major radius
coordinate, 2 is the vertical position, P(*) is the pressure, F*(R,Z)
is the he Meal-curvature term, and the averaged toroidal flux function
F(tf) is adjusted to give either strict flux conservation (e> = 4>v) or
zero net toroidal current within each flux surface ( < J J ^ = 0). The
quantities ** and F* depend only upon the vacuum magnetic field. While
the details are discussed in Refs. 1 and 2, It suffices for present
purposes to state that F* depends only upon the helical magnetic field
and that •* = * Q + **» *here ** depends only on the helical field and
* Q contains only axisymmetric contributions. In particular, $ Q is
obtained by solving A* * Q = 0 with the boundary condition
B Q = -n-Vj-*o

 x £» *nere B Q is the poloidal vacuum field averaged over
a field period. Hence, the effect of the axisymmetric VF coil system
in these calculations enters entirely through the quantity $ Q . Because
the stellarator expansion Is not an exact model for three-dimensional
equilibrium and stability (being derived in ihe limit of small
helical-field variations, large aspect ratio, and low f?), tests have
been conducted comparing the results with those of full
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three-dime- lonal equiIibrium calculations. As shown in Ref. 2, good
agreement .s obtained.

Both the fixed- and the free-boundary equilibrium codes used in
this work have been adapted to accept averaged numerical vacuum data,
rather than model fields, from the actual ATF design. The vacuum
magnetic fields are calculated using the Biot-Savart law, together with
filamentary coil specifications.

Both the fixed- and free-boundary equilibrium codes solve Eq. (1)
on a rectangular coordinate grid. While the fixed-boundary code can
produce either flux-conserving or zero net current equilibria, the
free-boundary code solves only the latter. In both programs the
averaged pressure is modeled by P(^) = c (̂  - ^g)* where the constant c
determines the peak |3, $a is the value at the zero pressure boundary,
and the exponent k determines the steepness of the pressure profile.
We take k = 2 in this work.

The main difference between the fixed- and free-boundary
equilibrium codes is the treatment of the boundary. In the
fixed-boundary code, a flux surface of $* is chosen to be the
computational boundary. The boundary conditions are taken to be P = 0
and • = 0, and the calculation is carried out entirely inside this
conducting wall boundary. The free-boundary code calculates a solution
over an entire rectangular region with the boundary conditions applied
•at the edges. The location of the flux surface of zero pressure is
determined by the intersection of the flux surfaces with a specified
limiter. Interior to this surface one obtains a solution to Eq. (1)
with pressure, while the exterior solution is an averaged vacuum
solution. The boundary conditions on the edge of the computational
grid are determined from the plasma currents using Green's functions.^
The control of the shape and location of the P = 0 surface in the
free-boundary method is carried out completely through the
specification of the VF coil currents.

The fixed-boundary stability calculations for low-n modes are
carried out using a reduced set of equations for steMarators that was
derived by Strauss** using the stelIarator expansion ordering. These
calculations (described in Ref. 2} use an initial-value approach. The
free-boundary code for low-n stability, described in Refs. 7 and 8,
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uses a 5W approach, with an optional conducting wall that can be placed
at any multiple of the plasma radius between 1 and «. This
free-boundary system of codes is a modification of the tokamak MHD
equilibrium and stability PEST code*5'6 to do the stellarator expansion.

3. ROTATION/1 TRANSFORM CONTROL USING THE ATF VF COIL SYSTEM
For fixed-vacuum configurations, zero net current equiIibrium

sequences show significant deformation of the rotational transform
profile with increasing |3. As can be seen for the standard ATF
reference vacuum in Fig. 1, with increasing |3 the rotational transform
increases on the magnetic axis, decreases at the (fixed) plasma
boundary, and forms intermediate minima. Such major variations of the
rotational transform could lead to resistive instabilities and
degradation of confinement. To control the rotational transform of
zero net current sequences of equilibria, let us now consider the ATF
VF coil systum.

The VF coil system for ATF consists of the three pairs of
axisymmetric coils shown in Fig. 2. Each pair is located symmetrically
about the horizontal midplane, and the currents in the upper and lower
members of each pair are equal. By varying the currents in the three
sets of coils, it is possible to alter the magnetic configuration quite
flexibly. Such features as the position, the total external fiux
linked, and the cross-section shape of the magnetic surfaces can be
controlled in this manner. For example, by changing the relative
currents between the inner and outer sets of coils, it Is possible to
shift the magnetic surfaces in or out along the major radius.
Reference 2 shows how this technique can be used to control the
magnetic well and, hence, the stability of the resulting equilibria.

With three sets of coils, it is possible to control three degrees
of freedom, or to satisfy three constraints, in the magnetic-field
configuration. One such constraint could be to detennine the position
of the plasmia, using the VF coils to shift the surfaces in or out as
desired. Another such constraint is to detennine the total external
flux linked by the plasma. Having satisfied these two constraints, one
degree of freedom remains, and this is related to the cross-section
shape of the magnetic configuration. This is discussed in a
quantitative way in Ref. 10. For the calculations to be presented in
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this section, we have chosen to maintain the plasma position and the
external flux linked by the plasma to be constant and equal to that for
the standard, reference ATF vacuum configuration. This leaves one
remaining degree of freedom in the relative coil currents. Since the
standard ATF vacuum configuration is obtained with zero current in the
VFB coils (Fig. 2), we parameterize this degree of freedom by 1^, Ibe
current in the VFB coils normalized to the current in the he Iical-field
coils. The constraint of constant external flux linked by the plasma
is in keeping with the conditions of a dynamic adjustment of the coil
currents during a discharge, during which changes in the flux would
lead to surface currents in the plasma.

As the VF coil currents are changed in a manner to maintain
constant external flux linkage and plasma position, the shape of the
magnetic surfaces becomes elongated/shortened with
increasing/decreasing 1^. For a given plasma j9, & Q decreases as the
surfaces become elongated ( I ^ > 0 ) . For large enough values of 1^,
Ijj Z 0.3, the vacuum fcg becomes zero, and a separatrix forms, leading
to a doublet configuration. Since &g increases with increasing j8 for a
fixed-vacuum configuration and decreases with increasing 1^ for fixed
P, it is possible to increase I^ with increasing |3 at a rate just
sufficient to maintain &g constant. Such fiux-controlled curves of
constant & Q are plotted in the 0 Q - Ij, plane in Fig. 3.

We sha11 now describe our results for a typical flux-controlled
curve depicted in Fig. 3- The equilibria in this sequence have been
calculated by varying the coil currents with j3 to maintain constant fog
such that at (3 = 0 the vacuum is the standard ATF reference case.
Throughout this sequence the vacuum-averaged flux surface chosen for
the boundary is taken such that &a = 1, which is consistent with the
notion of a natural limiter at the plasma boundary. The elongation of
the magnetic surfaces required to maintain constant & Q as (3 is
increased is shown in Fig. 4.

A favorable property of the flux-controlled equilibrium path is a
reduction of the magnetic axis shift at given 0 when compared with that
of the standard vacuum coil current configuration (Fig. 5). This
decrease can be understood as a consequence of a reduction in the
Pfirsch-Schluter currents with increasing Ijj.
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Although one might expect a decrease in the magnetic well in
conjunction with the reduced axis shifts and Pf irsch-Schliiter currents,
the shaping of the magnetic surfaces accompanying these reductions
prevents such a decrease.

4. FREE-BOUNDARY CALCULATIONS
Our initial work with free-boundary equilibrium and stability has

concentrated on comparison with existing fixed-boundary cases. This
comparison has been carried out for a fixed VF coil current
configuration. The equilibrium parameters compare quite closely for
the two methods. In Fig. 6 we show plots of <J3> and the magnetic axis
shift 6/RQ VS j3g for the fixed- and free-boundary models. The
free-boundary calculations have been carried out here using an
additional vertical field to keep the plasma centered as J3 is
increased. The rotational transform profiles also agree quite well in
Fig. 7. The difference at the outside boundary is due to a different
choice of limiter in the two calculations, but the trend in &a vs |9 is
the same for both methods.

We have not, at this time, observed any global instabilities for
the ATF configuration. Although Rewoldt and Johnson^ have reported a
global n = 1 kink mode for an <j3> = 2.655 equilibrium, this calculation
was made using a vacuum field configuration that has been
computationally superseded. In this vacuum configuration, the
computational boundary for the toroidal averaging was taken to be a
square box. To keep this box from intersecting the (circular)
projection of the helical-field coils, it was necessary to omit
substantial regions containing good flux surfaces (Fig. 8). In
addition, the helical magnetic fields were calculated using a potential
function fy, such that Vfcj, = 8f,» with the derivatives evaluated
numerically. Since then, the vacuum calculations have been modified to
use the circular region, which more nearly matches the projection of
the helical-field coils. With this larger region it is possible to
include mere good surfaces. As seen in Fig. 8, using the old method
(squsre box) on the standard ATF vacuum, the rotational transform is
cut off at b = 0,82, while with the circular region, surfaces with
b > 1.1 are included. We now also calculate the vacuum helical fields
more accurately using the Biot-Savart law, which avoids the necessity



9 -7

48

of numerical differentiation. Finally, higher resolution is now
obtained in the average vacuum calculations by using a 100 x 100 mesh,
rather than the 65 x 65 mesh as used previously. While we have been
able to duplicate the results of Rewoldt and Johnson by using the same
"old" vacuum file they used, we find no global instabilities for the
same configuration when the "new* vacuum calculations are used. At
present we are working on separating the effects of box size, numerical
differentiation versus Biot-Savart, and resolution to determine which
factors are instrumental in changing the stability results.
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ABSTRACT

The nature of the resistive MHD equations is examined in terras of a set

of gauge functions based on the magnetic field. A set of reduced equations

may be arrived at. in this gauge by making the simple assumption that the

compressional motion is decoupled from the shear mobion. The equations

reduce to those first proposed by Strauss and by Chance et al. when the

perpendicular perturbation wavelength is much shorter than the equilibrium

length scale.

I. INTRODUCTION

The basic nature of the reduced equations1"3 is that they provide a

concise description of the interaction of the shear Alfven waves in the sys-

tem. One of the key assumptions in the original Strauss equations is that

in the plasma there is a predominant (axially symmetric) toroidal magnetic

field. Due to this strong toroidal field, the phenomena under study could

be decoupled from the roagnetoacoustic branch. As a matter of fact, the

magnetoacoustic branch is completely eliminated. In a general fusion con-

figuration, the plasma may evolve into a state in which the magnetic field

does not have any predominant symmetry direction. Examples of these devices

are the spheromak,1* stellarator, the various high current pinches (RFP,

OHTE,S bimpy Z-pinch,6 etc.), and the very low aspect ratio tokamak. It is

the purpose of this paper to extend the formulation of the reduced equations

to these configurations.
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By representing the electric field in a special gauge, simple assump-

tions can be made which allow the easy elimination of the magnetoacoustic

waves and the clear decoupling of the magn. '•-acoustic branch from the Alfven

waves. This gauge facilitates the decomposition of the primitive set of

equations into links of equation chains with easily solvable links. The

gauge functions play the essential role of the Langrangian coordinates7

for the magnetic field.

The plasma state is no longer specified by the eight variables

(B,v,p,p). Their evolution, instead, is aided by the information on the

evolution of the gauge functions <|>, x and u» specifying the electric field.

Further specific assumptions about them provide self-consistent simplifi-

cations on the system without affecting the structure of the equations.

II. "REDUCED" EQUATIONS IN AN ARBITRARY CONFIGURATION

The primitive MHD equations which we start with are:

|£+ V.(pv-) = 0 , (1)
dX

a v •* •*••»• * • +

p — + p(v»7)v = - Vp + JxB , (2)
ot

E = nJ - vxB , (4)

| £ + V.Vp + IpV.v = T , (5)

and

J = VxB . (6)
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A completely equivalent description of the plasma state may be specified by
adopting the gauge of the electromagnetic field as

E . - i l - B - V - ^ x B + V u . (7)
at at

This gauge is motivated by noting that the fluid velocity v is obtained from
Eq. (4) as (for plasmas close to MHD equilibria):

* % ^_n ^ . (8)

B2 3C B 2 B 2

V/e see from E^. (8) that v is decomposed into parts which can be identified
as the shear notion around the field line, VuxB/B3; the compressional motion
Vi(3x/at); the slippage of the plasma with respect to the field line,
n/B2(7p); and the motion parallel to the field line VjB/B2. We associate
u with the shear Alfven wave and 3x/3* with the magnetoacoustic mode. A

description of the plasma state may therefore be obtained by regarding
+

B,i|;,x,u,p,p as dependent variables and recast the set of Eqs. (1) through

(6) in terms of them. In this set of variables, the decoupling of the shear

motion and the compressional motion is relatively easily implemented.

Here <|» is the inductive volt seconds linked by a field line. Its

evolution in time is obtainable from the parallel component of Eq. (4) as

i£ = i_ (B.Vu - nJ»B) , (9)
3t B 2

The elimination of the compressional Alfven wave is equivalent to the

neglect of the mass density in the equation of motion for the compressional

component. Or when mass density is ignored, we have the equilibrium

relation:
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Vp * JxB , (10)

•Rie compressional component can be used as a dynamical constraint for

determining Vj.(3x/3t>. By differentiating Eq. (10) with respect to time,

we find

$!fc-MxB-Jx|i-0 . (11)
at at at

In Eq. (11), the time rate of change of the magnetic field consists of two

parts

«.(*!) .

—& . 7x(v A x B . • .. (13)
at at ;

By utilizing Eq. (5), and Eqs. (12) and (13), Bq. (11) can be shown as the

Euler equation for the following functional L^ for a plasma satisfying

Bq. (10), with

h & |J / & £ 'SXJ dt , (14)

In Eq. (14)

, (15)

and



^ [ ( ^ l C j W o , (16)

and Pc is due to pressure changes.

For the ^-equilibrium state under consideration as in usual non-
equilibrium dynamics, we regard the function 3x/3t minimizing Eq. (14)
as the desired solution. This minimizing function 3x/3t is the resultant
response of the plasma through the eliminated compressional waves. . We note
that LjJiHD is the same as the I^JHD functional given by Bernstein et al. ,8

except that LJJJHD allows the displacement to be only in the direction per-
pendicular to the magnetic field. If the plasma evolves through a sequence
of ideal MHD stable equilibria, then LMHD > 0, the minimizing function,
definitely exists. The appropriate boundary condition in Eq. (14) for 3x/3t
is 3x/3t » 0 and V(3x/3t) • 0 at the boundary.

In this manner, the velocity v in Eq. (8) is completely determined.
To determine the time rate of change of u, we take the B«7x component of
Eq. (2) to obtaiu:

— f-V.pVu + (B.7)p 22. - Vx(pB).V 2L\
3t u 3t 3t

= (B.V)(J«B) - (J.7)B2 + SNL , (17)

where SJJL is a nonlinear source term.

The terms on the left-hand side of Eq. (17) contain second derivative terms
in time. These make the solution of this equation more complicated. We
assume that they are negligible in this equation. This is the other major
assumption necessary in the decoupling of the equations in this coordinate
system. As shown in the next section, the assumption of short perpendicular
wavelength in comparison to the parallel wavelength is sufficient to justify
this assumption. For a plasma with constant density, this assumption also
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+ +
is identical to that of the Coulomb gauge condition 7«A » 0, which is
verified by the chosen gauges.

To complete the listing of the equations, we note that

p _ ! * _ B«Vp - pB.(v.7)v - pv. -i- . (18)
at at

The equations for determining p and p are the same as Bqs. (1) and (5).

Therefore, we have arrived at a set of first order differential

equations in time, Bqs. (1), (5), (9), (17), and (18) for the evolution

of p, p, \j), i%u, and v(. The auxiliary functional L^ in Bq. (14) has to

be minimized for 3x/3t, and the three-dimensional Laplacian V2 has to be

inverted to determine 3u/3t from 72(3u/3t). The result of the elimination

of the ccmpressional Alfven wave is the minimisation of Eq. (14) for 3x/3t,

and the decoupling of (3x/3t) from the equation [Bq. (17)] for 72u keeps

the equations structurally simple. These equations are the structural

equivalent of the Strauss equations in a general configuration.

Although the inversion of V2 is not complicated, the minimization of

1^ to find 3x/3t is not very easy in general. In practice, seme physical

assumptions should be adopted in simplifying the minimization of Lx. In

here, we mention one such possible subsidiary assumption; in L^ we assume

the perpendicular perturbation wavelength can be taken to be much shorter

than the equilibrium wavelength. We then obtain

dr (B2 + rp)(7.5)2 , (19)

S x - - 7PC . (20)

The minimization of L^ then leads to
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(B2 + ^ ) 7 2 h. = - p c . (21)

with the boundary condition of \ ** 0 a.t the conducting boundary.

With this last simplification, we have arrived at the systems of Eqs.

(1), (5), (9), (17), (18), and (21) for advancing p, p, *, v'Ax, vt, and 7
2
X,

with two three-dimensional Laplacian equations to be inverted for 3u/3t and

3x/3t. The sequence of the solution of the equations should be starting

with a configuration determined by B, $, x» u, Vj, p, and p; Eq. (9) is

first used to advance i|>. Equation (24) is used to solve for 3x/3t, the

velocity v in Eq. (8) is then determined, Eqs. (1), (5), (17), and (18) can

then be used to determine 3p/3t, 3p/3t, 3u/3t, and 3v,/3t. Written in this

fashion, we did not actually reduce the amount of information in the

original set of equations.

However, the structure of the equations makes the introduction

of additional physical assumptions easy, such as ignoring vt or the

compressional motion 7(3x/3t), and results in real reduction.

III. NONLINEAR EVOLUTION WITH "LOCALIZED" PERTURBATIONS

We start with the ordering that the plasma has an equilibrium specified

by JQ ~ B Q ~ P Q ~ 1, with equilibrium gradient length 7 Q ~ 1, except that

- 1/e. For the perturbation, we assume Ji ~ 1, 3p/3t ~ s, 3/3t

~ e2, x ~ e3» u ~ e2> 7J ~ !» 7X ~ 1/e» v ~ E, and n ~ e2.

Then

II , (v it xB) - 72 & B ~ 0(s) . (22)
3t v 3t ' 3t K
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Since 3B/3t ~ 0(e), we do not need to update B for t i 1/e. The equilibrium

relation [Eq. (12)] gives

72 J2L^ L- JR . (23)
3t B 2 3t

This relation is the same as Eq. (21), except we see that in Eq. (23) the

natural ordering for pressure is PQ ~ e. PQ has been ordered to be of lower

order so that parallel sound wave effect would be kept. Then from Eq. (4)

to leading order

IL. ~ o(e) , (24)

The perpendicular velocity is dominated by the rotational part of the fluid

flow. It is quite easy to write down that

SB. = p [7xi - .7U - (5.V) ^ - + 7- (H- 7p) - 1 - iE]
3t L

 B 2 B2 B2 B2 8 t J

^ -7p - 0(e) , (25)
B2

IE) SB. = _ J2ES . ^ . rp[(B.v)(Il} + v. iSKS
B2 at B2 L

 B " B2

-7.(1!- vp)] -.o(e) , (26)
B^

i£ - i- (yu.B - riJ.B) ~ 0(s2) , (27)
at Q2

~ 7-(p7u) » - (B«7)(J.B) + (J-7)B2 - Vj.'^pVZu) , (28)
9t
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3Vi + + + +
P ™ = - (B«V)p - p(vi.V)v1 . (29)

3X

This set of nonlinear coupled differential equations [Eqs. (25) through

(29)] nay be used for the study of the nonlinear evolution of small ampli-

tude localized Alfven wave perturbations. In the linear regime, v = 0 at

equilibrium, the density equation [Bq. (25)] is decoupled from the rest of

thu equations. By denoting Y • 3/3t, we obtain

V.(\Vpj] , (30)
Bo

m + Bp.Vu - nJrBp

, (32)

(Bi'V)po - (BQ.7)P , (33)

By substituting Bq. (22) into Eqs. (30) through (33), we note this set

is similar to the set which has been used by Strauss with r = 5/3, ty = A8/B,

vj •>• V,BQ, and JQ + -Jo» to study the resistive ballooning mode. This set

is also identical to the high n ordering equations used by Chance et al.9

except that the current density gradient term has been kept. This is

appropriate for intermediate n numbers in which the effect of current den-

sity gradient and the pressure gradient and curvature force both affect the

shear Alfven wave.10
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IV. CONCLUSION

In conclusion, a new approximate reduced set of equations for the

interaction of shear Alfven waves in a general magnetic configuration is

given by the set of equations, Bqs. (1), (5), (17), (18) and (21), with

auxiliary conditions given by Eqs. (8) and (12). The assumption of local-

ized modes with perpendicular wavelength much shorter than the equilibrium

wavelength reduces the set to that given by Strauss and Chance et al. The

numerical implementation for a high current pinch configuration is particu-

larly simple. It could be modified from the known schemes for Che Strauss

equation, such as HIB. n
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I. INTRODUCTION

It is now well established that multidimensional nonlinear resistive
magnetohydrodynamics (MHD) is an excellent model for the description of the
macroscopic dynamics of present magnetic fusion experiments. Two-dimensional
simulation of these processes has become commonplace[1-3]. Such calculations
have provided valuable insights into the interpretation of experimental
diagnostics [4], and the nonlinear behavior of unstable modes in various devices
[1.5.6.7].

It has recently been recognized that two-dimensional motions, while
enlightening, do not represent the true state of plasma dynamics, and that fully
three-dimensional calculations are required [8,9]. For tokamak plasmas, where
one component of the magnetic field is everywhere large, it is possible to derive
a reduced set of equations that adequately describes the dynamics of these
devices [10]. Three-dimensional simulations of these equations have provided a
detailed picture of plasma evolution [8,9,11]. These calculations can proceed
much faster than solutions of the original equations. In other magnetic fusion
devices, such as the spheromak and the reversed field pinch, no such generally
applicable set of reduced equations exists at present, and one must solve the
primitive equations. Incompressibility may provide some computational relief
[12] but this assumption can only be justified a posteriori.

•Work supported by U.S. DOE contract DE-AC03-83ER53150.
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The periodic nature of the poloidal and toroidal directions in many
fusion devices allows solutions to be represented by Fourier series in these
coordinates. Simulations of tokamak plasmas with reduced equations have found
that only a handful of these modes are important to the dynamics [13]. Codes
developed for the solution of such problems have made use of this fact by
introducing a mode selection process whereby only a few modes are retained in the
calculation [14]. This procedure has also been used in incompressible
simulations of the primitive equations [12]. The convolution sums that arise
froa the Fourier representation of quadratic nonlinearities in configuration
space are then computed directly.

In fusion devices such as the Reversed-Field Pinch or the Spheromak no
a priori mode selection is possible. Indeed, there is reason to believe that
many large scale modes will be equally important [7]. Thus a large number of
mode interactions are probable. These large scale motions may serve to drive
small scale MHD turbulence, which may be responsible for such important physical
effects as dyn?mo action and profile maintenance. Also, the particular path
taken in the cascade of energy from long to short wavelength (along with the
possibility of inverse cascades from short to long wavelength) is unknown and may
be important. A large number ^100) of modes must therefore be retained in such
calculations.

The physical and computational problems described above are similar to
those encountered in the simulation of turbulent hydrodynamic flows. Accurate
and efficient methods have been developed for the solution of these problems
[15-20]. These spectral methods are based on the use of the Fast Fourier
Transform (FFT), which allows the convolution sums to be evaluated in 0(Nln2N)
operations, as opposed to Q($P) operations for direct summation [15]. This
allows many modes to be used in the simulation. In this paper we describe codes
based on these methods [21], and briefly present some results.

II. BASIC EQUATIONS

Tha study of large-scale dynamics in fusion and astrophysical plasmas
involves the description of motions that occur en long time scales. In these
cases the plasma acts as an electrically conducting fluid whose motions are
adequately described by the single-fluid resistive magnetohydrodynamic (MHD)
equations. In a suitable non-dimensional form, they are
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7 r = - v V B + B V v - B v v + t^vB - VT)OX(V X B) (la)

f=-Y-Vv+^B-VB-^(p + B2) (lb)

•jk=-v • Vp-pV • v (ic)

f£ = -Y • Vp - TpV • v + 2(T-1) no(7 x B) 2 - * (Id)

where B. is the magnetic field measured in units of a characteristic field Bo, v
is the velocity measured in units of the Alfve'n velocity v^ = BQ/V^ITPQ, p is the
mass density measured in units of a characteristic density p0, p is the
thennodynamic pressure measured in units of p 0 = B|/8IT, ^ is the ratio of
specific heats, and all lengths are measured in units of a characteristic length
a. The coefficient i^ isa nondimensional resistivity that may be a function of
the dependent variables. When the resistivity is constant in space and time, T)o
is the inverse of the Lundquist number S = t^/t^, where t^ = (?t\/Ats? is the
resistive diffusion time and t^ = a/v^ is the Aifven transit time. Note that S
is defined in terms of the normalization constants, and is not to be confused
with the magnetic Reynolds number %, which is defined in terms of local
quantities. The last term in Eq. (Id) represents energy losses not directly
encompassed by the model, and is included to control the effects of Joule heating
on plasma beta ((3 = Snp/B2).

When T]o vanishes, Eqs. (la)-(Id) define the ideal MHD model. A finite
value of T ^ relaxes the flux topology constraints of these equations with the
result that previously unallowed motions are possible [22]. These new dynamical
processes are essential for an adequate description of fusion and astrophysical
plasmas. The inclusion of further dissipative processes, such as ion viscosity
or thermal conduction, removes no further constraints on the magnetic topology.
We thus exclude these effects from the model.

We note that the compressible nature of Eqs. (la)-(Id) admits the
propagation of Aifven (fast magnetosonic) waves perpendicular to the field.
These waves evolve on a time scale defined by a cross-field scale length divided
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by the Alfvan velocity. For a diffuse pinch this length scale is the minor
radius. Since many phenomena of interest occur on much longer time scales, this
presents a computational problem. In tokamaks one component of the magnetic
field is everywhere large. This allows a self-consistant ordering in which the
plasma becomes incompressible, and the magnetosonic wave is eliminated [10]. The
remaining high-frequency normal mode is the shear Alfven wave propagating
parallel to the field. This wave evolves on a time scale defined by a parallel
scale length divided by the Alfve'n velocity. In fusion experiments in which the
incompressible ordering is valid, this scale length is the major radius. Thus in
these cases the fast time scale is increased by a factor that is of the order of
the aspect ratio, thereby greatly reducing the computational requirements.
However, in general such orderings are not possible, and there is no a priori
justification for eliminating compressibility from the model. Indeed, for highly
sheared, lov; q devices such as the reversed field pinch a shear Alfven wave
travelling near the field reversal surface evolves on a time scale that is on the
order of the minor radius divided by the Alfven velocity, i.e., the same order as
that of the compressible wave. We thus retain compressibility in our model.

III. NUMERICAL METHODS

In the numerical solution of Eqs. (la)-(ld) in cylindrical geometry
(r,9,9) the state variable U.= (Br, BQ, B^, vr, VQ, V-, p, p) is represented on
mesh of N r x N Q x N- grid points (r^ i = l,Nr; 0:, j = 1,N@; C^, k = 1.N-). The
spacing in the poloidal (6) and toroidal (<;) directions is uniform such that
AQ = 2IT/NQ, flS = 2H/N,-. We allow for nonuniform mesh spacing in the radial
coordinate, but in practice a uniform spacing Ar = a/(Nr-l) is used.

The periodic nature of the solution vector U with respect to the 0 and
<; coordinates allows a spectral representation to be employed for the finite
approximation of spatial operators in these directions, since this representation
is uniformly convergent at the boundaries 0 and 2it. The radial coordinate is
treated by the method of finite differences.

When the periodic function u(0>£) is approximated by MxN data points
(e.g., stored on a mesh), it can be represented by the finite Fourier series

J
n=-M/2+l n=-N/2+i
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with

Here %i(9j»$ie»t) is tJie MN-term approximation to the function U(6,?,t) evaluated
at the mesh point (9j,sk) at time t; 9j = (j - l)2n/ll and ? k = (k - l)2u/N. Hie
derivatives 9u/99 and 8u/9? at the point (9s ,^) and time t are given by

M/2 N/2 x ,, *

c t ) . 1 ^ * 1 ^ • (4a)
k m=-M/2+i n=-N/2+i

M/2 N/2 . , „ N

K m=4«/2+i n=-N/2+i

The spectral representation of the equations of motion is obtained by
employing Eqs. (2) and (4) in some appropriate manner in the right hand side of
the Eq. (la-d). If this is done in a straight forward manner, the quadratic
nonlinearities inherent in these equations leads to convolution sums whose direct
evaluation requires 0 ^ ) operations, making such methods excessively expensive
except when a handful of modes is employed. However, when fast Fourier
Transforms are used [23], the operation count is reduced to Q(N£nN), making it
comparable in speed to finite differences. These methods are called
pseudospectral.

The pseudospectral approximation takes advantage of the fact that
multiplication is most efficiently performed in configuration space and
differentiation is most accurately performed in Fourier space. Fast Fourier
Transforms are used to communicate between the two representations. In principle
it is irrelevant whether the dependent variables are the N Fourier coefficients
or the values of u(x.-) stored at the N mesh points x: in configuration space. In
the first case the transformation is made to configuration space to perform the
convolution; in the second case the transformation is made to Fourier space to



perform the differentiation. Both methods have the same accuracy. Because of
its familiarity, ;?e have chosen the configuration space representation.

It is veil known that these methods can lead to a physically realistic
and rapidly convergent approximation to a linear equation. When nonlinearities
are present, as discussed above, these methods are subject to aliasing errors
[15,17,18,20] that arise from the generation by quadratic nonlinearities of modes
with wavelengths shorter than ir/Ax. These errors are caused by modes in the
"high" end of Fourier space; they can be prevented by removing the offending
modes from the problem. This is accomplished by truncating Fourier space at some
value M*. Modes outside this range are set to zero, since it is these terms that
contain the aliasing errors. It can be shown that it is sufficient to set

, where N is the number of mesh points in a periodic direction. Since
s N/2, aliasing errors are prevented by using 2/3 of available Fourier

space.
We employ explicit leapfrog with averaging for the temporal

approximation to the advective terms. The diffusive terms are treated implicitly
in Fourier space.

IV. RESULTS OF THREE-DIMENSIONAL SIMULATIONS

We have previously studied the nonlinear evolution of m = 1 tearing
modes in RFP plasmas in single helicity [7]. To study three-dimensional mode
coupling effects, we pose an initial value problem consisting of an equilibrium
[7] and two unstable m = 1 modes with axial mode numbers n = -10 and n = -11. We
use a mesh with 65 radial, 8 poloidal, and 64 axial points. In Fig. 1 we show
the evolution of the radial magnetic energy in these modes as a function of time
for both single helicity and three-dimensional simulations. We see that
saturation occurs sooner and at a lower level when three-dimensional effect? are
included. This is because the mode coupling to a larger part of Fourier space
allows energy to be drained from the m = 1 modes. This is illustrated in Fig. 2,
where we plot the energy in various m = 0 and m = 2 modes for the
three-dimensional case. Note that m = 2 possesses more energy than m = 0 [24].

In Fig. 3 we plot the evolution of q(o), the safety factor at r = 0, as
a function of time for both single helicity and multi-helicity simulations. We
see that the rise in q(o) is significantly slowed when the extra
three-dimensional mode couplings are included.



75

V. REDUCED RELAXATION MODEL FOR DRIVEN SYSTEMS

A problem of interest in RFP and CT plasmas is the dynamics of
relaxation to a force-free state [25]. Recent experimental schemes for providing
steady-state current and flux regeneration in both RFPs [26] and spheromaks [27]
probably depend in part on the existence of these relaxation phenomena. In order
to assess these schemes and to understand their utility, these inherently
three-dimensional problems must be addressed. However such motions occur on time
scales . long compared to Alfve'n times, and hence present computational
difficulties if the model described in the previous sections is employed.

In this section we present a computational model for the simulation of
these processes. Codes based on this model are presently under development. We
assume that the plasma relaxes to a force-free state through the action of
perpendicular perturbation currents alone; the pressure is ignored. Fast time
scales are eliminated by replacing the time derivative in the momentum equation
with a phenomenological drag. Thus displacements away from the force-free state
are damped; the plasma always relaxes. With these assumptions, the combination
of Amperes law and Ohm's law yields an anisotropic diffusion equation for the
vector potential that completely describes the response of the system to electric
fields driven at the boundaries. With the proper choice of gauge a tractable
computational model is obtained. The model is similar to one previously used to
compute three-dimensional force-free equilibria [28].

We picture a system in which the plasma is continually driven away from
a force-free state by the imposition of slowly varying electric fields at the
boundary. We are not interested in the details of the flow during the ensuing
relaxation; it merely provides a means by which the relaxation can take place.
We thus replace the time derivative in the momentum equation by a
phenomenolcgical drag coefficient v, and ignore the pressure. (The latter is
strictly justified only when Sp < 8EP, but it is in the spirit of the model.)
Then using the resulting velocity in Ohm's law yields

£ = TJ-J = TILJL + 1)|| J|| (5)
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where i\\\ = T]o, and ru. = % + iP/py is an effective perpendicular resistivity that
damps the perturbations. Introducing the vector potential B •= VXA, we find

J = 7 x V x A . (7)

f.-J-J

If we choose the gauge A r = 0 (in cylindrical coordinates), and specify Eg(t) and
E^(t) at the outer boundary, Eqs. (6) and (7) become a coupled set of diffusion
equations in the unknowns A Q and A ^

aA_

By introducing a staggered mesh, finite representations that preserve the
properties of the continuum can be obtained.

Nonlinearities in Eqs. (8) and (9) arise because the Euler angle
transformation required to define the space centered components of T) is a
function of the instantaneous fluctuating magnetic field. We treat these
nonlinearities by writing

where A and r\ contain both mean and fluctuating parts. Taking the spatial
average of (10) allows these components to be separated. We find

(lla)
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(lib)

The operators T|0*J0 and tio"j are now linear. These equations are solved
iteratively.
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FIGURE CAPTIONS

Fig. 1. Energy in the (a) tn = 1, n = -10, and (b) m = 1, n = -11 modes as a
function of time for both single helicity and three-dimensional
evolution.

Fig. 2. Energy in the (a) in s 0, n = 1; (b) m = 0. n = 2; (c) m = 2. n = -21;
and (d) m = 2, n = -22 modes of the radial magnetic field as a function
of time for the three-dimensional low-9 case.

Fig. 3. q(o) as a function of time for the single helicity evolution of (a) the
m = 1, n = -10 mode; (b) the m = 1, n = -11 mode; and (c) the fully
three-dimensional, high-8 case.

Fig. 4. Field line plots (surfaces of section) in the (r,z) plane at various
times for evolution at low-8.

Fig. 5. Field line plots (surfaces of section) in the (r,z) plane at various
times for the evolution at high-8.

Fig. 6. m = 0 magnetic islands for n = 1, 2, and 3 for the low-8 case of
Fig. 4.

Fig. 7. m = 0 magnetic islands for n = 1, 2, and 3 for the high-9 case of
Fig. 5.

Fig. 8. (a) axial magnetic flux contained within the field reversal surface ry;
(b) ra = 0, n = C component of the poloidal electric field, at the field
reversal surface; and (c) polcidal mode contributions to the mean
poloidal electric field at the field reversal surface, as functions of
time for the three-dimensional high-8 case.
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Nonlinear MHD Simulations of Che
Spheromak and The Reversed Field Pinch

A.A. Mirin and N.J. O'Neill
National Magnetic Fusion Energy Computer Center

Lawrence Livermore National Laboratory
Llvermore, California 94550

and

A.G. Sgro
Los Alamos National Laboratory
Los Alamos, New Mexico 87S44

Introduction

MHD simulations applicable to both the CTX gun-injected Spheromak[1] at

Los Alamos National Laboratory and to the various Reversed Field Pinches

(e-g. ZT40 at LANL[2]) are presented. The evolution of the Spheromak is

simulated usl-^ the three-dimensional, finite-beta, compressible, nonlinear,

resistive rfHD code TEMCO[3]. The code uses cylindrical coordinates (r,<t>,z)

and hence is applicable to both cylindrical and toroidal geometries. The

effect of Hall terms on resistive interchange modes in a Reversed Field Pinch

is studied using the c*-1iidrical, linear, compressible, finite-beta initial

value code ODRIC[4]. Extensions of this work to three dimensions will be

presented at a later date* (A nonlinear study exclusive of Hall terms is

presented in Reference [3]).

Basic Equations

The nondimensional equations ar? as follows:

|£.+ V.(pv) - 0 (1)

*Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.
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11 + V.VT - - (Y-l) T V»vot ~ ~

(2)

l 7 t -

jS - -V x 1 , (4)

with the auxiliary conditions

2 - V x B (5)

E - - v x B + l j + Ej j a l l (6)

In Eq3. (l)-(7), p is the mass density, X is the energy per unit mass, y_ is

the velocity, jJ is the magnetic field, Y is the ratio of specific heats, S is

the magnetic Reynolds number T
R / T A , the ratio of resistive diffusion time to

Alfven time, J is the viscous stress tensor, < is the thermal conductivity, n

is the resistivity, v • ^uciTA^~ aat* 8 is 'the fraction of pressure in the

electrons* Time is measured in Alfven units.
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The resistivity H and thermal conductivity < are taken as Isotropic

The Hall contribution to the electric field is optional. The viscous stress

tensor J is based on an isotropic coefficient of viscosity, so that

v+Iv(7«v)], (8)

as in Dibiase and Killeen [5]. The fact that the resistivity, thermal

conductivity and viscosity are taken as Isotropic is a matter of expediency.

Although classical tensor representations of these quantities have been

derived [6], their applicability is questionable due to the extremely long

parallel mean free path*

Representation of Variables in TEMCO

The principal dependent variables are represented in a 1-D Fourier

series:

M
U(r,4>,z) - D ( J(r,z) + I [Umc(r,z)cosm<J> + U m s ( r , z ) s i n iwj>]. (9)

m»l

Because only low mode numbers are of interest, the $ direction is treated in

a purely spectral manner, with the exception of an option to compute 1/p

pseudo-spectrally. Finite differencing is performed in the r and z

directions.

Numerical Methods in TEMCO

Letting IJ - (p, T, vr, v^, vz, Br, B^, B z )
c , the basic equations can be

written in the form

|£ - LA(U)
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Here, L» represents the resistive terms in Eq. (4), Lj, represents the viscous

terms in Eq. (3), LK represents the thermal conduction terms in Eq. (2), Ly

represents the Hall terms in Eq. (A), and L A represents everything else.

Eq. (10) is solved using operator splitting. Standard spatial central

differencing coupled with an explicit time advancement is used in Lp, Ly, 1K
and I*,. In Eq. (4) the term - V x & VxB) is expressed as ̂  V2B - 7(1)XVXB.

This is found to be helpful in reducing errors in the divergence of B. The

operator LA is advanced using either a two step Lax-Wendroff method or a

leapfrog method. In the latter case temporal smoothing is occasionally

employed. Artifical smoothing of P and v, is sometimes necessary. The

timestep is determined in accordance with the courant condition associated

with LA. The other operators are advanced using a smaller timestep if

necessary.

Boundary Conditions in TEMCO

At r - 0, the boundary conditions depend on the mode number m.

Generally speaking all variables are 0, except as follows: For m - 0, P, T,

vz and B z have vanishing radial first derivatives, as do vr, v^, Br and B^

for m - 1. At the wall radius^ - rw, vr » Br » 0, a

H " °» If " -T' h (TV^ " IT * ° 3nd -k < rV ' I ? ' 0 1 Alternative
boundary conditions ar r • r s may be applied as the physics dictates. For a

cylindrical system periodic boundary conditions are used in the z direction.
3o 3 T 3 vr 3vit) 3 BrIn the case of a toroidal system _ - 0, ̂  - 0, - ^ - 0, - ^ - 0, - ^ - 0

and -5-2- » 0 at the z-walls. All boundary conditions are second order
dz

accurate.

Numerical Methods in ODRIC

ODRIC is merely a linearization of the cylindrical form of TEMCO.

Equilibrium quantitities P0(r), T0(r), 3$0(r) and Bz0(r) are specified.

Perturbed variables are expressed in the form f|(r,t)exp[l(m<j>+nkz)] where m

and n are the poloidal and toroidal mode numbers and k is the inverse aspect

ratio. Equations for the perturbed variables are then integrated in time

using a fully implicit algorithm. Central differencing is used in the radial
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direction, and the boundary conditions are first order accurate. Complex

growth rates are calculated using the algorithm of Buneman[7] •

Spheroaak Applications

The dynamical relaxation of an unstable Spheromak equilibrium is modeled

using the three-dimensional nonlinear code TEMCO. This equilibrium is

calculated as follows: A zero-beta equilibrium in its minimum energy state

is evolved in time using the nonciicular transport code MINERVA[8]* The

resistivity profile corresponds to that of a Ze?j - 1 plasma having a

temperature of 23 eV at the magnetic axis and 4.5 eV at the boundary. The

plasma evolves until the safety factor q on axis drops below 0.5, at which

time the equilibrium become3 unstable to an n - 2 kink instability. This

unstable equilibrium, combined with ai n « 2 perturbation at the e - 10X

level as computed by a linear stability code of Marklin[9], serves as initial

data for TEMCO.

Standard Case. The dimensions of the poloidal domain are 0 <_ r _< 1.125 and

0 _£ z _< 1. There are 73 meshpoints in the radial direction and 65 points in

the z direction; both meshes are uniformaly spaced. The calculation is

performed at "zero beta", i.e., T = 0.001, and the density p is set uniformly

equal to 1.0. The thermal conductivity and viscosity coefficients are set to

zero and the Hall terms are ignored. The. ratio of specific heats T is set to

5/3, and the Lundquist number S - T R / T A i s equal to 1 x 1Q4. Toroidal mode

numbers n - 0 and 2 are included in the computation. Artificial smoothing of

the velocity components is performed. The simulation is run for 107 Alfven

times, which corresponds to 8000 timesteps.

The 3D magnetic fields are fed into the TUBE code[10], which outputs

puncture plots in various poloidal planes. It can be seen that the unstable

perturbation initially grows and the plasma moves closer to the boundary (see

Fig. 1). At around t - 12 (Fig. lb) the displacement reverses itself and the

plasma moves in the opposite direction, crossing its original position at

about C • 40 (Fig. lo)• The displacement continues opposite to its original

motion until about t - 53 (Fig. le), during which time the magnetic topology

becomes less coherent (Fig. If) and the kinetic energy sharply increases. By
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t - 61 (Fig. lg) Che magnetic structure seems to have settled down and the

kinetic energy has begun to drop. The calculation is stopped at t - 107. By

this time the kinetic energy has dropped from its maximum value by over two

orders of magnitude and the magnetic energy has dropped from its value at

t « 0 by about thirty percent. It is difficult to tell whether the plasma

has actually reached a stable equilibrium or whether it will undergo some

gross motion at a later time.

A result of this evolution is that the plasma is closer to a minimum

energy state than at the beginning of the relaxation' For a force-free

plasma, J. * AJ3. In general, X is a function of position, but in a minimum

energy state it is a constant XQ. At the beginning of the MHD simulation X

at the outer boundary is much less than its value at the magnetic axis, as a

result of the initial resistive evolution. During the dynamical relaxation A

becomes more uniform, as can be seen by examining contours of the function

X " J*B/X0B
2 (see Fig. 2). Furthermore, the number of meshpoints at which

|X — 11 is less than 0.1 increases by 50% during the course of the

simulation. This indicates that the plasma has moved closer to a minimum

energy state.

Variation with Magnetic Reynolds Number. When the MHD simulation is

repeated at S » I03 instead of 10*, the configuration is seen to diffuse

toward a Taylor state. By t • 24, the number of meshpoints at which

IX — 11 < 0.1 has trebelled and the fractional magnetic energy in the n - 2

mode has dropped by two orders of magnitude. (When S » 10* this fraction is

roughly constant.) Thi3 is consistent with transport code results which show

that at S » 10% the minimum energy state q(i|>) profile is recovered after 75

Alfven times, but at S « 10* the change in qOJ>) is much less pronounced.

Perturbation Size. When s equals 0.01 instead of 0.1, the n • 2 mode grows

approximately linearly until it reaches an amplitude of about £ - 0.03, at

which time nonlinearitles appear to set in. This indicates that the original

£ * 0.1 level is a reasonable, but perhaps slightly large initial

perturbation size. It is difficult to tell exactly when nonlinear!ties

develop since the initial conditions, having been computed by Marklin's ideal

code[9], are not an eigenfunction of TEMCO.
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Comparison with Linear Code. The ideal stability code of Marklin[9] is

compared to a linearized version of TEMCO, obtained by Ignoring nonlinear

convolution terms and zeroth order resistive diffusion terms* A comparison

of contour plots and growth rates indicates excellent agreement between the

two codes. Marklin computes a growth rate of 0.1, whereas TEMCO obtains 0.13

for S •• 103 ar1 0.20 for S » 10*. The calculation fails when run on a 37 by

33 mesh, indicating that a mesh size of at least 73 by 65 is necessary.

Verification that a 73 by 65 mesh is adequate will have to be forthcoming, as

the present version of the code does not fit on the MFECC D machine if the

mesh Is made any larger.

Number of Toroidal Harmonics. The standard case includes only modes n - 0

and 2. It is quite likely that higher modes must be included. This too will

have to vait for Che future due to lack of storage.

Artificial Smoothing. A significant amount: of artificial smoothing must be

added to the velocity components. The extent to which this distorts the

physics cannot be ascertained without using a much finer mesh. This will

also have to wait for the fur re.

Variable Density. The standard case is redone allowing the density to vary

according to Eq. (1). For 0 <_ t <_ 40 the evolution of the magnetic field is

almost identical, but the velocity variables look quite different. Meanwhile

the ii»2 density component has been growing steadily, and by t » 40 its

amplitude exceeds that of the n » 0 density component, causing the density to

become negative at some locations. The cause of this, including the extent

to which it is due to not carrying enough toroidal harmonics, is under

investigation.

RFP Applications

The effect of Hall terms on resistive interchange modes in a Reversed

Field Pinch is studied using the linear initial value code ODRIC. The

equilibrium used is that of Robinson[11], which is known to be stable to

tearing modes. It satisfies



95

-El- (-L)2 < 0.125 (12)

Unless otherwise specified, In the results to follow C^ - 0.1 and the wall

radius rw equ.ils 3> The Inverse aspect ratio is taken to be k * 0.2. Since

ODRIC is an initial value code, it computes only the fastest growing mode.

The growth rate of the variable f is defined as

+ to) - |£/f } (13)
at

in the absence of Hall terms to » 0.

Linear g-mode studies exclusive of Hall terms have been presented

recentlyIM . The principal observations are as follows:

a) For m - 0, as S increases from 103 to 107, the growth rate first

increases and then decreases; there is a wider range of toroidal mode numbers

which are unstable; and the n value of the most unstable mode increases.

Preliminary results Indicate the same trends for m > 0.

b) For n - 0, a - 25 and S between 106 and 107, Y * s~0'26 (vs. S~0*33 as

predicted by Finn and Manheimer[12]); for S between 10* and 107, the jump in

the logarithmic derivative of Br, A*, behaves as predicted in Reference [12].

c) For m - 0, n » 25 and S between 3 x 10* and 3 x 10^, the growth rate

decreases much more rapidly with decreasing C^ as Cj gets smaller, in

qualitative agreement with Reference [12].
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In studying the effects of Hall terms, it is convenient to initially

cousider the situation in which there is no temperature perturbation. The

first case under study satisfies m - 0, n « 25 and S - 10*. In the absence

of Hall terms (V - 0; see Eq. (7)), the growth rate (Y,w) equals

(2.71 x 10~3, 0 ) , and the resulting mode is recognized to be the "odd mode"

of Finn and Manheimer[12]; that is, the radial velocity is an odd function

with respect to the singular radius. As v increases, Y decreases

monotonically until v Z 0.12, at which point Y becomes negative and the mode

has been stabilized. At the same time u increases until it hits a maximum at

v - 0.07, at which point it begins to decrease slowly. In all cases

considered the odd mode is the fastest growing mode.

A similar situation occurs for m - 1, n « -6 and S - 103. As v

increases from 0 to 0.5, Y decreases monotonically until the mode is

stabilized. As with m - 0 above, the odd mode is the fastest growing mode.

These results are in qualitative agreement with Delucia, et al., who study

the effect of Hall terms on resistive instabilities in the Spheromak[13].

If the temperature perturbation is included, however, the situation

becomes more complicated. For zero thermal conductivity, when m » 0, n - 25

and S • 10^, then in the absence of Hall terms Y - 2.97 x 103. As the Hall

parameter « increases, the real part of the growth rate decreases until about

v m 0.064, at which point Y - 8 x 10~*. During this time the odd mode has

continued to be the fastest growing mode. However at v » 0.064, Y suddenly

starts increasing and eventually reaches 7.1 x 10~2, more than twenty times

its value at v » 0 (see Fig. 3). It Is now the even mode which is the

fastest growing mode; the odd mode has presumably been stabilized.

This increase in the growth rate may be negated through inclusion of the

thermal conductivity. For v » 0.2 (applicable to ZT-40) and < - 0, the

growth rate (Y,«i) is (8.66 x 10~3, 5.68 x 10~3) and the even mode prevails.

As < increases from zero, Y decreases monotonically and u increases

monotonically until < - 1.05 x 10"*, at which point the mode is stabilized.

The even mode does continue to prevail, however. It is difficult to attach a

significance to the value of < since this model assumes isotropic thermal
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conductivity, which ia known to be a rather poor approximation. A similar

situation occurs for m • 1, n « -6 and S « 10^.
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1, Introduction

A numerical method for solving a system of 3D-MHD equations

is proposed in this paper.

The method is based on and formulated with the finite element

method (FEM) with elements in motion, that is, arbitrary

Lagrangian and Eulerian (ALE) method. This method is called

"FEMALE".

Numerical methods for solution of the nonlinear hyperbolic

system stemmed from Lax's work'-"•'. The two-step Lax-IVendroff-

scheme which is currently and widely used, is regarded as one of

tough method of numerical solution. It contains Friedrichs scheme,

which introduce large diffusion. The discretization which is

necessary for numerical simulations, divides fluid into three

dimensional bodies, and large energy input to them near the

discontinuity makes kinetic energy of bodies large. Then these

bodies become oscillatory and overshot.

To suppress this overshooting, the kinetic energy have to be

converted into thermal energy.

This is just the reason of introduction of numerical

diffusion. However, the discontinuity disappears because of this

diffusion. In studying MHD plasma quantitatively, it xS important

that we have to discriminate differences between physical and

numerical diffusions in computation. For this purpose, we

propose here a finite element method which is little or no

numerical diffusion.
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2. Formulation

2. 1 Basic equations

Our basic MHD equations can be written as a conservation form,

|| + div F(U) * 0 . ( 2 - 1 )

U Is a 8-column vector whose components are unknown scalar

variables:

U - (P. pv , e , B ) T , C2 - 2)

where

e B \ pv2 + | p + £- .

T denotes transposition of matrix, and other notations have usual

meanings, t is a flux vector corresponding to U ,

? - (pv , P , | , E*) T , (2-3)

where

P = (p + JJ-OI + pvv - J- BB

g = (p + e)v •»• — (v_j_B + T)J xB)

E* = vt - Sv + J_ (C7B")T - 7B) .

Hereafter, we choose the resistivity n = 0, or we assume that

eq. (2 - 1) is hyperbolic.
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2. 2 Shape Functions

The space Q , occupied by plasma, is divided into Ne elements

Re :

Ne
Q - U Re (2, - 4)

e=l

and they are not overlapped. To define elemen.ts, N nodes are

defined. Let the position of the y-th node by x efi. A series

of N-functions is introduced,

{•1C$, t ) , <fr2($, t), •••-, <|>N(x, t)} (2- 5)

such that E<j>w(x, t) - 1, xefl,

^ ( J v , t) = ̂  ,

where 6I|JV is Kronecker's delta. We assume that ^ ( x , t) is a

class of functions which satisfy

1 ^ + vg -grad ^ = J , (2 - 6)

where v is the grid velocity. Eq. (2 - 6) shows the elements

are ALE. When v = 0 then method is Eulerian, and when va = v

then it is Lagrangian. Though this grid velocity is arbitrary

here, its value has large effect on accuracy of computation.
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2. 3 Basic equations for numerical simulation

For the conservation equation (2 - 1), we interpolate U, "F"

and v as

U - IP - hU(x, t)U(t) , (2 - 7a)

? s f» - ZyCx, tJF^Ct)^ , C2 - 7b)

v - v ' - X $ (x, t)v •,1(t)e- , (2 - 7c)
y > i

where e- is unit basis vector. U', P1 and v ' coincide with U,

F* and v at the nodes. For simplicity we drop the dash in what

follows.
F21According to Galerkin method1 ', we take

/ da <j>y(|7 + div F) - 0 , (2 - 8)

a
and substituting eqs. (,2 - 6) , (2 - 7) into (2 - 8)

V

where

Cu = / dG<f>y(v -g rad U - d iv f)
a s
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/

ctwv, 1 u v p and gVv are geometrical coefficients independent of U .

Eq. (2 - 9) is a system of ordinary differential equations for U ,

if v is specified. The nodal position is obtained by solving

Eq. (2 - 9) and (2 - 10) are our basic equations for numerical

simulation, and solve these ordinary differential equations under

prescribed initial and boundary conditions.

The properties of eq. (2 - 9) should be noted. Taking 4y

linear function in the one-dimensional problem, eq. (2 - 9) is

equal to the conjugate approximation'- ' of equation

dU _ 3U 3F
Ht " vg 3x • 37 '

3Uuand if equally grid spacing Ax is taken, s-r-̂  is equal to the

compact differencing"• ' of eq. [2 - 11) which is accurate to

OCUx)4).

Finally, ICED ALE equation^

pp / dnU = / dGdiv(Uv - F) (2 - 12)

z Re Re g

is regarded as a special case where <j>y(x, t) = 1 for xeRe, and

vanishes otherwise. This can be seen by noting that eq. (2 - 9)

is written as
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U = /dfl<f>ydiv(Uv - t ) . ( 2 - 1 3 )

" n a g

3. Optimization of Accuracy with Specifying the Grid Velocity

3. 1 Effects of grid velocity

In many cases, v can be arbitrarily specified, and eq. (2 - 9)

can be numerically integrated. However, when one or some kinds of

discontinuities exist, the value of v is crucially important.

As the example, the problem of single rectangular pulse

propagation can be considered.

H + W" * ° ' v " const' • (3-1)
When v f v , the computation results show that the fluctuation

is observed around discontinuity. When va = v , this fluctuation

disappears.

The application of eq. (2 - 9) to eq. (3 - 1)

thus for vo = v , g ~ = 0 . This explains above results.

3. 2 Optimization of accuracy with generalized Rankine-Hugoniot

relation

The results of previous section suggest us that one of the

best way of determining the value v_ is the one which G*1 = 0 in
5
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eq. ( 2 - 9 ) .

Here we examine the shock tube problem as non-trivial example.

We should note that

6y * /dn<j>p(v «grad U - div f) = 0 , (3-3)

is. the FEM representation of generalized Rankine-Hugoniot relation

(R-H relation). It should be noted the relation (3 - 3) lead us

to the best way of determining grid velocity in the pulse propaga-

tion problem. We consider one dimensional shock tube probelm,

where at t = 0

U(x, 0) =
ULQ x < 0

UR0 * > °
(3 - 4)

We sha l l find the solut ion for t > 0. Cu i s

^ - Jdx<|> (v 5— - -T—) . [ 3 - 5 )

Let the discontinuities, the shock front and the contact

discontinuity, be at x ,

U = UL + 9(x - x )(UR - UL) (3 - 6a)

F • FL + 9(x - x )(FR - FL) (5 - 6b)

9(x) is Heaviside function. IL, Uj, are value of U on the left

and on the right, respectively, and have to satisfy the generalized

Rankine-Hugoniot relation:

(UD - UT)S = FD - FT , (3 - 6)
Xv Li I\ LI
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where S is the speed of the discontinuity. Substitution eqs.

(3 - 6) into (3 - S) yields

t\ Li g (i K. L

and Cv • 0 if v (s ) = S . Thus, Cu vanishes in the shock tube

problem, if v is the shock speed at the shock front and fluid

velocity at the contact discontinuity.

For the rarefaction wave, |^ is an eigenstate of Jacobian
3F 5c
|-g with eigenvalue 5 » ̂  , which is a velocity of single wave, and

g 3x 3x g 3x

if v = ? . So eq. (2 - 9) is reduced to
o

dU
=0 ( 3 - 9 )

= vgiJ (y = 1, 2, N)

in the all region of the shock tube problem if v is a local

wave front velocity. When v is exact, then numerical solution
or

U is also exact.

3. 3 General case

Unfortunately, Cu = 0 is not generally satisfied by a single

v , since Cu = 0 (u = 1, 2 • • • N) is 8N linear sim* i.ateneous

dx

equations for determining 3N unknowns, v . From previous

discussions, we require that v is determined by the condition

T ||CMIU is minimum. Usually, this condition does not determine
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v uniquely, so we also require that £ IJv-JI 2 * s minimum among

v which minimize £ \\CV\\ , .
g y

As numerical method to this end, we used the Conjugate

Gradient method (CG). It is known that this method can obtain

Moore-Penrose solution of the simulateneous equations, and this

solution satisfy above condition if starting value of iteration

is taken to be zero. After v is obtained. Eq. (2 - 9) is solved

by using Incomplete Cholesky-Conjugate Gradient method (ICCG),

then differential equations for U are solved by using the implicit

Adams method.

4. Application

We developed the 3D code, ATLAS, based on the FEMALE method.

The element is tetrahedron.

To check the ability of this code, the 3D shock tube problem

in which the waves propagate in z direction is simulated. The

numerical solution v of R-H relation, Cy = 0 , agree with the

local wave front velocities. It needs careful attention to

determine v numerically. The results of this simulation are

shown in Fig. 1, where solid line is exact solution and dots show

numerical one. As the references, we show the results of

Lagrangian (v = v) and Lax-Wendroff methods in Figs. 2 and 3,

which are obtained by ID code.
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RAPIDLY CONVERGENT ALGORITHMS FOR 3-D TANDEM AND STELLARATOR EQUILIBRIA

IN THE PARAXIAL APPROXIMATION

BRENDAN McNAMARA,

Lawrence Livermore National Laboratory, University of California,
Livermore, California.

Tandem and stellarator equilibria at high 0 have proved hard to compute and
the relaxation methods of Bauer et al. *,Chodura and Schluter2, Hirshman 3,
Strauss *, and Pearlstein et al. * have been slow to converge. This paper
reports an extension of the low-B analytic method of Pearlstein,Kaiser, and
Newcoub to arbitrary 8 for tandem mirrors which converges in 10-20 iterations.
Extensions of the method to stellarator equilibria are proposed and are very
close to the analytic method of Johnson and Greene ' - the "stellarator
expansion". Most of the results of all these calculations can be adequately
described by low-S approximations since the HHD stability limits occur at low
3. The tandem.mirror, having weak curvature and a long central cell, allows
finite Larmor radius effects to eliminate most ballooning modes and offers the
possibility of really high average 3. This is the interest in developing such
three-dimensional numerical algorithms.

2. CONNECTION BETWEEN KINETIC AND FLUID MODELS

Tandem mirrors have very large mirror ratios and large flux-surface
distortions and so any numerical representation of the equilibrium must use the
field lines as the basis of the coordinate system to place mesh points where
they are needed. This is done by defining the magnetic field in terms of two
scalars (̂ ,6) as

JJ - V"? x 79 (1)

which ensures that V«_B»0. In a Stellarator the field lines lie on magnetic
surfaces which naturally identify a set of flux surfaces, if>. In tandem mirrors
the field lines are open and there are no natural magnetic surfaces. However,
the systems are designed so that confined particles move on closed drift
surfaces and, in many designs, these are arranged to be the same surfaces for
almost all particles whose orbits intersect the same field line. These are the
so-called omnigenous drift surfaces of Hall and McNamara 9 and are physically
the relevant choice for 4». The second flux-line coordinate, 9, is an angle-like
variable chosen to satisfy eqn.l. Even in systems which are not everywhere
omnigenous for particles moving in the vacuum field alone it is speculated that
the plasma transport processes set up radial electric fields which re-align the
drift orbits much closer to an omnigenous set and this is to be expected also in
toroidal systems. The assumption of omnlgenity allows one to connect the
microscopic distribuClon functions with macroscopic density and pressure
profiles most easily. Most fusion systems now have neutral beam or high-power
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Tandem mirrors tend to self-anneal for a number of reasons which need
further explanation. In stationary electric and magnetic fields the strong
constants of motion of a single particle of charge, e, mass, m, and velocity, v
are the energy,

H - i n vtt
2 + UB + a* (2)

and the magnetic moment,
mvi

M - i r <2)

The magnetic moment is an adiabatic invariant and is destroyed by plasma
oscillations at or above the cyclotron frequency, but is not affected by the
global geometry of the field, provided the Larmor parameter, e - (Larmor
radius)/(radial scale) is small. The longitudinal adiabatic invariant, A, is
the action in the bounce motion,

A - / v, dl (3)

. / <I(H - pB - e * ) 1 / 2 ds (4)
m

In the paraxial equilibrium theory 10 it is found that B-B(^,3) in a mirror
cell at high 8. ($<* the ratio of plasma to magnetic pressure). The distance s
along a field line is approximately the distance, z, along the axis of the
system and so A • A(H,u,i|i) if * is small* The drifts are dominated by the 7B
drift and the surfaces are locally omnigenous.

At low 8, B is independent of ^ and so the drift surfaces are determined by
the difference between s and z due to the weak field line curvature. At this
point I introduce Newcomb's notation for the covarian'c components of the
field line curvature,

k - B«76

- RVi|; + JOV8 (5)

Then, it can be shown that the net drift off a surface, i>, in one bounce of
a particle is

A* - -(-)! (v,2 + WB) 50 £2. (6)
e " V11

If B is symmetric about the center of this cell then the integral will
vanish if SO is designed to be antisymmetric and the drift surfaces will be
omnigenous«

In the paraxial limit the potential is determined by the requirement of
local quasineutrality and then *-*(B,iJ>). Even in a low-0 mirror cell which is
not omnigenous in the vacuum magnetic field, omnigenity is restored by the
potential, determined by radial lossea and events in neighbouring cells. An
example of just such a case is the GAMMA-VI experiment ll, in which the end
plugs are aligned so that fans of field lines enetering the center-cell from the
plugs are both vertical. There are NO confined magnetic drift surfaces in the
centre cell and so the choice of ^ is determined by the drift surfaces of the
high-temperature plasma in the plugs. These are omnigenous locally, with a
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circular section at the midplane of each plug. These cicles map into an
elliptic cross-section flux tube in the center cell. When che center cell is
filled with plasma the radial losses lead to radial potential drops of #* 3-4
T i c and the drifts are dominated by the E*JB drifts and so the total system
becomes omnigenous. Reasonable models of the total pressure tensor can be given
in the forms

(11)

where most of the ^-dependence has been extracted in the density profile
factor u, and_P depends only on weakly varying functions like the mirror ratio,
or on the radial variation of *. The electric fields have not been included in
the rest of this paper but will be essential in a fuller model of the tandem
mirror equilibria.

3. THE CURRENT BALANCE ALGORITHM.

Newcomb and Strauss have derived the paraxial form of the equilibrium
equations from the static and dynamical equations respectively. I therefore
present only the most direct definition of the required relations. In addition
to the requirement that V*J)>Oa which is satisfied by the representation in eqn.
(1), the three-dimensional equilibrium of a guiding center plasma is described
by the force-balance equation,

JXJ3 - V'P. (12)

and Ampere's law,

Vxj» " J_ (13)
In Strauss' reduction of the dynamical equations, the leading order equilibrium
condition, 0(X°), comes from the perpendicular components of the force-balance.
Eqns. 12 and 13 can be combined to give

V (B2/2 + px) - k(B
2 + px - p,) (14)

In the paraxial approximation the curvature is small, O(A^), and, on
dropping the curvature, eqn» 14 may be integrated to give

B2/2 + Pi

This is to be solved for B(¥,z) to establish perpendicular pressure
nee, where z is the distance along the axis of the
jm field on the axis. The next order equilibrium

the parallel component of the force balance, which is

balance, where z is the distance along the axis of the system and B is the
vacuum field on the axis. The next order equilibrium condition is obtained from
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W • P-0 (16)

This arises from conservation of (H,li). The pressure gradient Is now
determined In flux coordinates, along with the perpendicular current flow. It
remains to find the parallel current and the actual shape of the flux surfaces*
At this point, the Lagranglan representation of the field Is Introduced In terms
of the position of a field line as

X - X(Hf,6,s) (17)
so that

JB - 8B - X'B (18)

and JC'-3X/3s Is the tangent vector. The parallel current per unit flux, i,
is defined as

IS • J. - IB2 19)

« BX'«V*X'B

- BX*«(VBXX' + B Vxx*)

- B2X'«VxX' (19)

In the paraxial approximation only the axial current contributes and so

- B([X',X] + [Y'.Y]) (20)

where (x,y,z) are Cartesian coordinates and (X,Y,z) the position of a field
line. The conversion to (Y,6,z) coordinates introduced the bracket notation for

- % g9 - fe g¥ (21)

and the Jacobian, In this approximation is

J - tX.Y] (22)

The definition of the parallel current involves only local quantities, the
position of the field lines, but the equilibrium equations also demand that

(23)
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After substituting for J^ from the force balance eqn. (12), and a little
manipulation, i is found to be the field-line integral

I /«L £«k x V(aB
2)^i + i.L (24)

0 B2
where

a - 1 +(^2ij (25)
B 2

The initial plane, s—L, can be an arbitrary plane in the vacuum outside
the tandem mirror where the integration constant, i_L, is zero. In the paraxial
approximation,

ip - l(f,e,«) - -i/fL 2S0 H ^ i + 0(X
3) (26)

B
where

P - (Pi + P||)/2 (27)

The current balance algorithm moves the field lines to equate the local
expression, (20), and the integral expression (26)

ij - ip (28)

This is equivalent to setting the integral of the parallel component of the
curl of the force balance to zero in Strauss' dynamical model*

The starting position for the tandem-mirror field lines is obtained from
one vacuum field line close to the axis of the system of an actual coil
configuration. This gives the field strength, Bv(z), and the ellipticity
factor, cv(z) for the field line coordinates

X - P cos 6 e

Y - p sin 8 e ^^ (29)

The radial factor, P, is chosen to give the correct Jacobian, (13), with
B(?,z) calculated from tha pressure balance, (18):

This choice of p takes care of the diamagnetism of the plasma and usually
provides most of the displacement of the field lines from their equilibrium
positions.
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Subsequent movement of the field lines must be done incotapreasibly so as to
preserve the pressure balance,(15), and also the Jacobian, (22), conservation of
which is used as numerical test of the accuracy of the calculations. Such a
motion is determined by a velocity potential or two-dimensional 'Hamiltonian',
u, for the (X,,7) motion in each z-plane as

dX(*,9,z)/dt - Vu x z (31)

If the displacement is small then

X - XQ + V(/u dt) x z + O(AX2)

« XQ + 70 x 2 (32)

or, in (Y,9,z) coordinates,

X - Xo + B[X0,U]

Y - YQ + B[Y0,U] (33)

This may be substituted into the current balance eqn.(28), and i^
linearised to give the equation for U

-R[Y0,BO[Y0,-~]] + 0(U
2) - il p (34)

where

i0 - B(txJ,X0] + [Yo,Yo]) (35)

Since it does not linearise conveniently, the integral is evaluated, to all
orders in U, from the field line positions at the previous step in the iteration
process. The right hand side of (34) is evaluated on each plane and the
elliptic operator is inverted. The boundary conditions for the tandem mirror
are that U»0 on the symmetry planes, 8-0,ir/2, and at a distant wall,

The last piece in (34) is needed to symmetrize the numerical representation
of the equation* The tandem mirror has ying-yang symmetry about the mid-point
an<l so computations are done only in an octant of the configuration. By
definition, every term of (34) has this symmetry exactly, except for the
integral, i , which is done from z--L. Without the symmetrizing addition, which
goes separately to zero at equilibrium, the midplane is driven away from
equilibrium. Needless to say, some meditation was needed to introduce this
correction to ther numerics.
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A final integration then yields:

(36)

The integration constant, *, on each field line is now determined by the
condition that the Integral form of the current should vanish in the
symmetrically placed vacuum at z«+L.

- 0 (37)

The function * and its derivatives come out of the integral, yielding a
second-order parabolic equation! This is somewhat strange for an equilibrium
problem and is a consequence of the paraxial approximation and the conversion of
the corresponding axial boundary condition on the dynamical formulation into an
integral constraint* It does not occur in the fully three-dimensional
treatments (cf. Hall and Mcnamara)• The coefficients (a-e) are the
corresponding pieces of the integrals over U» and need not be written explicitly
here, except for 'a* which turns out to be the flute stability integral

This would vanish at the flute stability boundary, with dire consequences
for the algorithm , but this would always be at betas above the stability limit
for ballooning or rigid-displacement modes.

The factor l/(u<y), is inserted in the integrals to keep all the
coefficients finite near the plasma boundary, where the whole equation would
otherwise vanish, leaving no useful means of defining *. This would also allow
the equation to be extended into the vacuum region but * will then never satisfy
any particular radial boundary condition. There is no current in the vacuum
driven by plasma pressure and it seems incorrect to use the constraint on these
field lines- This leaves * completely unspecified in the vacuum and it can
therefore be chosen to be any smooth function which matches to the plasma 4 and
which satisfies *»0 at
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The other boundary conditions on * are therefore *-0 on the symmetry planes
6-0,^/2 and, because of the overall quadrupole symmetry of tandem mirrors, at
6«ir/4, about which * is actually anti-symmetric• Only one boundary condition in
the "^-direction car. be specified in the plasma, #(¥-0) - 0, and this parabolic
equation is then integrated outwards from the magnetic axis. This completes the
definition of U and the field line displacements needed to achieve equilibrium.

This completes the description of the basic algorithm.

4. APPLICATION TO STELLARATORS.

I have not written a code for the Stellarator version of this method but
believe it is a straightforward modification. The first change is to insert an
appropriate analytic guess at the initial conditions, similar to eqns (29-30)•
The next point is to confine the problem volume to one period of the Stellarator
and apply periodicity conditions to the calculation. Thus, the integration
constant, i_L, in eqn (24) is a given function of f, corresponding to the nee
induced current flowing on each surface.

The constraint on the parallel current flow is that it be periodic , which
yields a pair of conditions on the integration constant * and its surface
average. Thus, i (*,8,L)-ip(*,9,2L)-ip(f,6,nL). The second part of this leads
to the requirement that the Surface average of the parallel current should equal
i_L(*)• The first part is constructed by iterating the mapping of the field
line positions at z-0 to their positions at z-L to get the locations at z-2L.
The periodicity requirement then gives an eqn similar Lc (37).

5. Jl TMX-UPGRADE EXAMPLE

This particular example was the first case successfully brought to
equilibrium by L.D.Fearlsteln with the dynamical code in some 11,000 time steps.
The result shown is very close to that and both are close to the TEBASCO result
from the low-8 analytic theory.

The first figure shows the axial magnetic field profile as

Improved accuracy is obtained by stretching the z coordinate and Fig2 shows
B(s(z)). The initial analytic guess at equilibrium gives the parallel current
profile of Fig. 3 at z«=0 from the local expression and the profiles of Fig 4.
from the integral. They are far from agreement and the local form shows current
flowing in the vacuum. The axial variation of the local and integral currents
are shown in fig. 5 for a field line in the plasma and one in the vacuum. The
differences supply most of the source for eqn. (34). The initial flow patterns
in the mid-plane, which is all octupole and higher, and the end plane are in
Figs 6,7. The average beta in a plane has a maximum of 8.3Z, peak central beta
being 25Z with w"(l-¥/*pia3)

2« This case converged in ten steps to IX accuracy
everywhere. Current balarce is shown in fig 8 and the convergence behaviour in
Figs. 9-12. Note the total current constraint is 0(0) smaller than the other
measures. Flux surface shapes in equilibrium show the characteristic diamond
distortion for a stable equilibrium.
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These results agree closely with the dynamical code and quite well with
Tabasco, the low-beta analytic squilibrium calculation* The principal
differences are that the parallel current is about 15Z higher in the finite-8
calculation and the geodesic curvatures are somewhat larger* The principal
curvature* and hence the MHD stability are hardly altered by the plasma.

At higher betas the code may fail to converge because the initial guess is
simply too far from the answer* Also, in tandems with more cells , numerical
accuracy becomes a problem* Work is continuing on extending the domain of
applicability of the code*
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Figs. 1,2. Axial magnetic field strength vs z and the stretched coordinate
s(z) to improve accuracy.
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Figs. 3,4. Compare local and integral values of the mid-plane parallel
current from the initial guess.
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Figs. 6,7. In i t ia l flow pattern in mid-p'iane and eno-plane to approach
current balance.
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Fig. 8. Local and integral currents balanced in 10 steps. Vacuum currents
reduced to zero.
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Figs. 9-12. Convergence of relative errors in current balance, vacuum
current, ana total current constraint. Also maximum timestep allowed for
conserving Jacobian.
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Magnetic Equilibria for Square and Circular EBTs

C. L. Hedrick and L. W. Owen

For closed magnetic field line devices, scalar pressure MHD
implies that the pressure surfaces are the same as surfaces of constant
$ d//B. This relation can also be developed from the drift kinetic
equation. Here we contrast this result with that obtained from the
bounce averaged drift kinetic equation. We consider a col Iisionality
regime such that the collision frequency is much less than the bounce
frequency but comparable (within an order of magnitude) to the poloidal
precession frequency. Under these circumstances it is reasonable to
assume that scattering causes the distribution function to be
approximately i so tropic and that J is not conserved on a drift time
scale. This assumption allows us to make a direct comparison to the
MHD results which would not be possible for lower col Iisionality where
the distribution function would be anisotropic and approximately a
function of e, \i, and J. Our motivation for discussing this
col Iisionality regime lies in its possible application to the EBT-I/S
and NBT-IM experiments as well as to configurations projected for the
near future such as the ELMO Bumpy Square.

There are several ways of obtaining the MHD result that the
pressure surfaces are the same as surfaces of constant $ d£/B for
closed magnetic field lines. One of the algebraically most compact
procedures follows from the equilibrium algorithm introduced by Lortz
[1] (extended to tensor pressure by Grad [2] and others [3], [4]).
This approach makes use of the fact that V * j = 0 implies that a
Clebsch representation can be used for the current: j = V£ x Vp. By
extracting the perpendicular current from this equation and comparing
ft to that obtained from pressure balance; j^ = B x ?p/B2 one finds
that 9§/D/ = 1/B. This result allows one to impose single-valuedness
of the current in the Clebsch representation and obtain

Research sponsored by the Office of Fusion Energy, U.S. Department of
Energy, under contract No. DE-AC05-840R21400 with Martin Marietta
Energy Systems, Inc.
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(1)

A second approach, which more closely follows the procedure which
is convenient for kinetic treatments again begins with the time
independent expression of charge conservation:

7-7 = 0 (2)

Here one begins with the observation that V • j(| = B^g(}^/B) and
integrates Eq. (2) around a field line to obtain

(3)

From j x B = Vp, J x = B x Vp/B2; which y i e l d s after a l i t t l e
manipulation

V • IJL = Vp • [V x B + 2B X VinBJ/B2 (4)

Noting that Vp i s perpendicular to B one next uses the vector identity
for V(B • B) t o obtain

P* S + tfnfl] (5)

where the curvature vector i s given by

i U (b • V)b (8)
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At this juncture, it is convenient to introduce the Clebsch
representation for the magnetic field:

B = Va x V|3 (7)

and note that a and 0 are constant along field lines. Since p is
constant along field lines

(8)

and Eq. (5) becomes

where

(10)

Up = (B x VaJ/B2

and have the properties that

0 a • Va = 1 ; Ua • V|5 = 0

Va = 0 ;

(11)

U V0 1

Inserting Eq. (9) into Eq. (3) and noting that p and its a, and |3
derivatives are independent yields
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One next notes that for closed field lines and arbitrary S

(13)

S]

Setting S = 1/B in Eq. (13) one finds that Eq. (12) becomes

9p 9 J dl rt

Equation (14) is simply Eq. (1) written in component form.

We now turn to the drift kinetic equation [5]

+ V D J - Vfj = C j (15)

Here f: is a function of e, p. and t, the position of the guiding
center. (We will soon consider time independent solutions and drop the
time derivative of ft.) The previous MHD analysis suggests that we
integrate over velocity to form the lowest moment of Eq. (15) and then
multiply by the charge, e:, and sum over species to obtain the charge
conservation relation
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(16)

which reduces to Eq. (2) for time independent solutions. Here

V • !,, = E ej /d3v v,, • 7f | = E ej nj<v,,>j (17)

and

V • Tj. = I «j /d3v ?Dj # Vf j

with

-Jmv2

j=^g-bx [28*2 +g [28*2 + (1 - <»)Wn B] (19)

and

$ = v,,/v (20)

Note that for simplicity we have not included an electrostatic
potential and the resultant E X B drifts. [Retaining such terms leads
to small corrections of order (p/en) «j>/T times the ratio of scale
lengths — usually negligible because of quasi-neutra1ity: p/en « 1.]

For isotropic distribution functions, 8f:/6p. = 8f:/8£ = 0 and the
only pitch angle dependence in the integral of Eq. (18; occurs through
the form factor [2^ic + (1 - ̂ )7/n B] appearing in Eq. (19).
Accordingly, it is convenient to define an average drift velocity by

(21)

or
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VinB] (22)

and note that since

(23)

(24)

Inserting Eq. (22) into Eq. (24) yields the MHD result, Eq. (5).
and one again obtains Eq. (14). It is instructive to follow a slightly
different procedure. If we form the sfdi/B average of the charge
conservation Eq. (16), the divergence of the parallel current vanishes
and in steady state

= 0 (25)

Using Eqs. (22) and (13) we find that

(26)



132

Thus if we define

<O?0» 1 & $ f Vex - < V + % df-V0 • <V? (28)

then

2

and £q. (25) can be written

= 0 (30)

or

Vp • « V D » = 0 (31)

Equations (31) and (29) may be interpreted as meaning that $6£/B is a
constant of motion for an "average particle". The relation between p
and U may be interpreted as meaning that the pressure Is constant on an
•average" drift surface.
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We notice that the $d//B average arose because v^bf/bS in the
drift kinetic equation [Eq. (15)] led to V * j(( in the charge
conservation equation. He also notice that f in Eq. (15) is a function
of €., M>> <*> P and -̂ For cases where the collision frequency is small
compared to the bounce or transit frequency we expect that the
dependence of f on / will be very weak so that 8f/8/ £ 0. If the
relation 8f/a/ = 0 holds for a!! species then V • J^ = 0 and the
motivation for perfonning the $//B average vanishes.

For collision frequencies well below the bounce frequency we
expect that the distribution function will satisfy (approximately) the
bounce (or transit) averaged drift kinetic equation:

where

As before we can obtain the equation of charge conservation by
multiplying Eq. (32) by e.-, integrating over velocity space and summing
over species. The time independent result is

V • Tj. = I ej /(^v <VDj>b • Vfj = 0 (34)

We notice that if collisions are so infrequent that C: can be neglected
in Eq. (32) then <VDj->b • Vf j = 0 and Eq. (34) is automatically
satisfied. On the other hand if collisions are so infrequent that J is
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approximately invariant, one cannot construct an isotropic distribution
function for all a and j3 — except in certain highly degenerate cases.

In some cases of interest the collision frequency is comparable to
the poloidal precession frequency but well below the bounce and transit
frequency. In this instance it is possible to construct an isotropic
distribution function for all a and b. This intermediate collisions!
case allows us to draw comparisons between the pressure surfaces
arising from Eq. (32) and those arising from Eq. (15) or MHD. We thus
suppose that fr is independent of the adiabatic invariant \i:

fj*fj(€.o,fl) (35)

As before, the lack of pitch angle (or |x) dependence of f: allows
us to pass it through the pitch angle integral implicit in Eq. (34) and
we obtain the analog of Eq. (31):

V • Jj. = Vp • «i?D>fa> (36)

Note however that the average drift velocity in Eq. (36) is now given
by

«WD>b> = b
1 ^ & 0" *Q <Vb * *>

<VD> • ^ (37)

where 0a, Ug, 7a, V|3 and

are to be evaluated at the arbitrary point, XQ, where Vp is evaluated
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in Eq. (36). The pitch-angle like variable $ Q has been chosen to make
the correspondence to the earlier formalism more transparent.

In comparing Eqs. (31) and (36) we see that the a-component of
« V Q » in Eq. (28) is given by

(38)

while in Eq. (37) we have

(39)

and similarly for the ^-components. We are thus led to invert the
order of integration in Eq. (35). To facilitate this, we note that

(40)

SO th:)t

(41)

and

(42)

or

(43)



136

where

and similarly for the |3 component.
He notice that Eq. (43) would reduce to the bounce averaged case

Eq. (37) if the weighting factor, g, were unity. However as given by
Eq. (44), the weighting factor associated with the relatively high
collisionality regime of MHD Is not constant. Suppose that the point
X Q corresponds to a minimum in B (along a field line). Referring to
Eq. (44) we see that if we attempt to apply the high col Iisionality (or
MHO) formafism to the intermediate collisionality regime, trapped
particles are weighted too weakly (VMQ). We also note that T becomes
large for transitional particles, so that the high col I isionality (or
MHO) formalism weights transitional particles too heavily.

The net effect then is that the MHD result overestimates the
pressure shift when the collision frequency is comparable to the drift
frequency. For EBT-I/S, this overestimate is nearly a factor of 2 too
large. For EBS where all particle orbit shifts are small, the pressure
shift is also small. Applying the MHD result makes a larger percentage
error than in EBT because transitional particles contribute relatively
more to the pressure shift and MHD overemphasizes these particles. For
EBS the MHD result for the shift is a factor of 3 or 4 too large.
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The Total Dereduction of the Reduced Equations

R. Izzo, D. Monticello and J. DeLucia
Princeton Plasma Physics laboratory
P.O. Box 451, Princeton, NJ 08544

We have recently reported on the expansion of the Magnetohydrodynamics

(MHD) equations to 4HL order in the aspect ratio.' This high order expansion

(2 orders past leading order) was necessary in order to calculate correctly

the stability and nonlinear evolution of the internal kink. We report here on

the expansion of the MHD equations to 5^L order in the aspect ratio. Our

motivation is the study of finite beta resistive modes. The work of Glasser,

Greene, and Johnson has 3hown that the coupling of the stable interchange

modes to the unstable tearing modes can, at high cmough temperature, lead to a

stabilization of the latter. This stabilization is not in the <££. order

reduced equations. The modifications of the 4SIL order equations are quite

simple. We use 6 scalar quantities to define general velocity and magnetic

vector fields:

V = R2VuxV? + V±x + R V 7? , (1)

(2)B => 7ij; x V? + •— 7 (—) +
R 1 3 ^

Using a model density p ~ 1/R2 we find the following modifications to the

order equations (see Ref. (1)),

||. - - fPV • V ,

3 BI " •> 3 V m
— i - IBRC - R* _-i2, , (4)
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where

V =• R2Vu x

The 4S!l order equations contain only a 7 'V^ in Eq. (3) and the Vj_o in Eq.

(4) was dropped due to a 3mall inertia approximation. the inclusion of the

term 7«V gives the sound wave that is necessary for stabilization of the

tearing modes. However, dropping this compression in Eq. (4) means that we

have eliminated the unwanted fast wave that travels in the poloidal plane.

Next, we take ohms law as

(5)

and make a subsidiary ordering of these equations in i). By ordering the

variables as

1/3

0 , i|), <j) ~ 1 ,

1, P, v g ~ l ,

B • 7, x» f ~ Y

We find that we are able to recover the equations of Coppi, Greene, and

Johnson,3 for finite beta tearing modes and that to do so it is necessary to

keep the two terms mentioned above.



140

To verify the qualitative and quantitative applicability of our equations

we have run comparisons in the cylinder with exact codes. HILO is the code

that advances our Sth order equations. It is seen from Fig. (1) and (2) that

our formulation gives excellent agreement with an exact formulation (shooting

code) for ideal modes. The eigenfunctions have also been compared and there

are no significant differences between the eigenfunctions the two codes

produce.

We have also run comparisons for the resitive modes and again find that

our formulation gives excellent quantitative results. Figure (3) is a plot of

the growth rate for f$*0 tearing modes. It shows the agreement between our

formulation and analytic theory for small resistivity. Fig (3) also shows the

excellent agreement, for all values of resistivity, between an exact code

(FMHD) and KILO. Figure (4) show that this agreement continues to hold for

finite f} interchange modes (distabilizing pressure profile). The dashed line

is the growth rate found from a boundary layer analysis code (MATCH), and the

solid line is that for HILO and FMHD. Again the MATCH code only gives good

agreement at very small values of n« The last figure (Fig. (5)) is a plot of

the perturbed flux as a function of time, for a stabilizing (reversed)

pressure profile. Both HILO and FMHD give the same values of growth rate and

frequency for these modes, where as the MATCH code is off by a large factor

(~5). We do not, at this time, understand the reason for this large

discrepancy.

We would like to point out several advantages of HILO over an exact

formulation. First the numerics are simpler because the fast wave that travel

across the poloidal plane in time a/VA has been eliminates, in fact only 4

waves, not 6, remain in the problem. Secondly, the equilibrium force balance

is exact, so these equations could be used to find 3-d equilibrium such as
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stellarator equilbria. The present formulation also allows one to identify

the source of r w "hysics by turning off higher order terms. Lastly, if one

desires, the dynamics can easily be made exact and implicit simply by taking

V^o •»• V, in Eg.. (4) and by following the advancement scheme in Ref. (1). This

then is the reason for the title of this paper.
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Figure Captions

Pig. 1 Growth rate vs beta on axis, for & * gQ(1-3r2 + 2r3) and inverse

aspect ratio equal e =• 0.1.

Fig. 2 Same as Fig. (1) except here e i s varied.

Fig. 3 Growth rate_vs_ resist ivity f e r 0 » 0, e » 0.1.

Fig. 4 Same as Fig. (3) except here (J«30d - 3r2 + 2r3),

Fig. S Perturbed flux vs time for n"4x10~' and

3 - 0.25(0.001 + 0.028r2 - 0.0S9r4 + .03r6).

*Note the growth rates and the resist ivity in these plots have been scaled by

1/e from those units given in the text. Likewise the time in Fig. 5 has been

scaled by e.
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3-D SIMULATIONS OF LIMITER STABILIZATION

OF HIGH-BETA EXTERNAL KINK-TEARING MODES

J'ae Koo Lee and N. Ohyabu

GA Technologies Inc.

San Diego, California

ABSTRACT.

The effects of finite-size poloidal limiters, toroidal limiters,

and general mushroom limiters are examined for high-beta

finite-resistivity tokamak plasmas in free boundary. Even for a linear

stability analysis, a 3-D simulation is necessary, in which many

poloidal and toroidal modes are coupled because of the limiter

constraint and finite-bet:a. When the plasma pressure and resistivity

are small, a poloidal limiter is effective in reducing the growth rate

with a small limiter-size, while a toroidal limiter requires a large

size for a comparable effect. As the plasma pressure or resistivity

increases, a toroidal limiter becomes more effective in reducing the

growth rate than a poloidal limiter of the same size. A small optimized

mushroom limiter might have a stabilizing effect similar to a conducting

shell.
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The plasma instability most widely studied in connection with a

major disruption of a high-beta tokamak has been the pressure and

current driven external kink-tearing mode***. This magnetohydrodynamic

mode in general has the largest growth rate at toroidal mode number n-1.

Being a global mode, it shows large perturbations not only throughout

the whole plasma but also in the vacuum region. This finite

perturbation in the plasma-vacuum region can be easily affected by

placing a conducting shell or a finite size limiter. Since a conducting

shell is inconvenient in many practical purposes, a limicer covering

only a small fraction of the tokamak circumference is desirable if it

can be as effective as an all-the-way-around conducting shell in

suppressing or slowing down the unstable mode.

For a low-beta ideal plasma in a straight cylinder, it has been

found^ that a poloidal limiter is very effective in suppressing the

external kink mode, -while a toroidal limiter is not. For a high-beta

ideal and resistive tokamak plasma, a toroidal limiter of a various size

has been found^ to be effective in reducing the growth rate if the size,

i.e., the poloidal extent of the limiter is finite. The objective of

this paper is to examine the comparative effect of a finite-size

poloidal limiter, toroidal limiter, and general mushroom-type limiter

for a high-beta finite-resistivity tokamak plasma. For the latter two

limiters, our analyses allow three-dimensional linear mode coupling, so

that toroidal as well as poloidal modes are coupled when the size of the

limiter is finite. We use an initial value code HIB-> with appropriate

boundary conditions on perturbed quantities to simulate the limiter

effect; namely, perturbations are allowed to vanish in the region where

the limiter is located.

Our results show that a poloidal limiter of a small but finite size

reduces the unstable mode's growth rate substantially and is more

effective than a toroidal limiter of a comparable size when the plasma

beta and resistivity are low. These results recover the previous

results^ if the size of the limiter is allowed to be finite rather than

infinitesimal as mentioned in Ref. 3. As the efi v'e is the ratio of

minor to major radius and &_ is the ratio of plasma thermal energy to
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poloidal magnetic energy) or the plasma resistivity increases, a

toroidal limiter of a finite size becomes more effective than a poloidal

limiter. A general mushroom-type Hmiter whose size is finite both in

poloidal and toroidal extents can be optimized in size for a significant

slowing-down of the unstable mode, thus making feasible a passive

feed-back stabilizing scheme.

The method of the present analyses was described in details in Ref.

4 together with numerical procedure and parameters for equilibrium and

linear stability. The boundary condition for a finite-size poloidal

limiter or a general limiter is similar co that for a finite-size

toroidal limited. For a general limiter covering a poloidal area from

9»d to 8 — <5 and a toroidal area from 5*A to 5=-A, this boundary

condition is

1 6 A
" W r > ~ " V *d*t dcsinae sinn? V, , 4>m'n'(r) sinm'9^t. «"o —A n n

,2

rsin(m-m')6_ y y rsin(m-m')6 _ fsin(m+Tn')aT rSinCn-
ra'*m n'+n'- m-m' " m-hn' •''• n-n

(6

n+n'

2m

_ fsin2nA->y rsin(m-a')S _ fsin(m+m'
2H ' ' 7
2n Jm'tra m~m m+m' J ^2

where f-1 for perturbed velocity stream function <j> and f—1 for

perturbed poloidal magnetic flux function \|>. This boundary condition

has been imposed both for <|i and $.

For the three types of liraiter, the growth rates in the unit of the

poloidal Alfven frequency u A are shown in Fig. 1. Here, the

equilibrium has the safety factor on the axis and at the liraiter qo*l.O5
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and qjj-1.7, and eflp»0.11. The rest of the parameters are the same as in

Ref. A. When the plasma resistivity Is small as in the bottom three

curves with n"lO"6 <n"l/xrwA with tr denoting the resistive diffusion

time) a poloidal liraiter is very effective in reducing the growth rate

even with a small limiter size. For example, a factor of five reduction

in growth rate is obtained with F-l/8 where F is the ratio of the

limiter size to the total circumference area. A toroidal limiter,

however, is not as effective as a poloidal limiter, thus requiring a

large size to have a comparable effect as a poloidal limiter.

These results for a finite 0p recover the previous results^ for a

zero-g_ straight tokamak if the limiter size is finite rather than

vanishingly small as orginally described in Ref. 3. The results for a

poloidal limiter in Ref. 3 are applicable only to a finite-size

poloidal limiter, not to a zero-size poloidal ring limiter. This is

because the term k^r^ was neglected In comparison with the ra^-term in

the poloidal limiter constraint equation as well as in the unconstrained

eigenfunction solution and equation such as Eqs. (4) and (5) of Ref.

3. This neglect is justifiable only for a finite-size poloidal limiter.

As the plasma resistivity becomes large to make the unstable mode

dominated by a resistive tearing mode, a toroidal limiter reduces the

growth rate to a greater extent than a poloidal limiter as shown in the

upper three curves of Fig. 1 with n"10~^. This is also observed in

higher-6p cases as in Fig. 2.

An optimized general limiter Is usually more effective than a

poloidal limiter of the same size as seen in Fig. 1 both for small and

large resistivity. This is because the unstable mode structure Is

shifted outward with respect to the tokamak major axis, thus making a

limiter at the smaller major radius side less effective.

The numerical convergence is 1/N, where N indicates the total mode

number used in the calculation. A typical case is shown in the inset of

Fig. 1, where four calculations for a poloidal limiter of F=»l/8 with

different total toroidal mode number found a single growth rate
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corresponding to N»». Nine poloidal modes are kept in these

calculations (typically from m—3 to m«5); thus, nine poloidal modes and

six to ten toroidal modes are all coupled to simulate a finite-size

poloidal liraiter. For a finite-size toroidal limiter*, toroidal modes

are uncoupled and poloidal modes are coupled depending on the magnitude

of efi • for this case, approximately twenty poloidal modes are used.

Most of the results in the following are based on this numerical

convergence 1/N with at least two different N values.

The effect of 0p are shown in Fig. 2, where three values of 6p for

an otherwise same equilibria are used. Kere, a broader pressure profile

with u»2 (as in Ref. 4) is employed in contrast to a more peaked one

with u«4 in Fig. 1. It is shown that a toroidal limiter with a small

size F-l/8 is more effective at high-8p in reducing the growth rate than

a poloidal limiter of the same size, while an opposite conclusion is

drawn at low-g . A poloidal or toroidal limiter of a finite size

usually falls between the fixed boundary curve (i.e., with F-l) and the

complete free boundary curve (i.e., with F=*0). This allows a smooth

transition in the stability boundary from the free boundary to the fixed

boundary through a limiter of a finite size.

Since it is clear that the fixed and free boundary limits are the

two limiting boundary for a Hraiter with a finite size, it is helpful to

examine a normalized growth rate r, where r = (Y~YI)/(YO~YI) with YI and

YQ being the fixed and free boundary value respsectively. These

normalized growth rates are plotted in Fig. 3, showing that a toroidal

limiter is increasingly more effective with increasing ef5_ and that a

poloidal limiter becomes increasingly effective with decreasing eg .

The present results are based on a linear analysis. The nonlinear

amplitudes are shown in general6 to increase monotonically with the

linear growth rates. Thus, a reduction in the linear growth rate could

bring a reduction in the nonlinear amplitude as well.
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In summary, the stabilizing effects of poloidal, toroidal, and

general limiters become significant as the limiter size increases. A

small (on the order of 10Z of a conducting shell) optimized

mushroom-type general limiter might have a stabilizing effect similar to

a conducting shell.
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Fig. 1. Linear growth rates for weakly resistive (bottom three curves)
and highly resistive (top three curves) plasmas as a function
of the limiter size F. Results for toroidal Iimiter3 are open
circles; those for poloidal limiters are filled circles; those
for general limiters are rectangles. The numerical convergence
is shown in the insert.
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Fig. 2. Dependence of growth rates on epp. Results for poloidal limiters
with the size F-l/8 are indicated as a dashed line; those for
toroidal limiter with F»l/8 and F-l/2 are indicated as solid curves
marked F-1/8T and F^1/2T. The fixed boundary and no-limiter free
boundairy results are shown as dotted lines with F=»l and F-0.
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Extended Abstract
of

Nonlinear Evolution of External Kink Mode in Tokamak
and

Comment on Resistive Internal Kink Mode

Toshihids TSUNEMATSU, Gen-ichi KURITA, Masafumi &ZUMI

Toraonori TAKIZUKA and Tatsuoki TAKEDA

Japan Atomic Energy Research Institute
Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan

1. Introduction
Since the first workshop on the 3-D MHD simulation we have studied

the disruptive processes in tokamaks from the view point of the resistive
MHD instabilities{1-4} and we have extended our models to ones for the
high-beta and the toroidal plasmas. The results show that the major
disruption process is caused by the nonlinear coupling between the
tearing modes with different helicities as pointed out by Waddell et
al.{5} and that the high-beta or the toroidal effect does not give the
essential effects. The experiments also indicate that this instability
can be suppressed by the control of the profile of the plasma current
when the safety factor at the plasma surfdc?. qa , is greater than 2.
When qa^-2 . the major disruption occurs except for the case of the
conducting wall close to the plasma surface. This fact indicates that
the m=£/n=l free boundary mode plays an important role in the major
disruption process. In this workshop: we show the model of the resistive
free boundary plasma and the validity of our model as the first step to
study the role of the free boundary mode in the major disruption
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process. In the next section we study the structure of the external kink

mode as the candidate of the unstable free boundary mode in the linear

theory and the nonlinear evolution of the mode to estimate the level of

the saturation.

As for the high-beta effect on the internal disruption, ve have

shown that the saturation of the m=l magnetic island due to the

pret; 're-driven instability in the cylindrical geomerty{2} and have also

pointed out the importance of the toroidal effect on the m=l mode{4}.

The other effect on this mode such as kinetic effect was pointed out by

Biskamp(6}. We make some comments on the kinetic effect on the internal

disruption process in tokamaks in section 3.

2. Nonlinear Evolution of External Kink Mode

2.1 Model and Basic Equations

In the usual analysis of the external kink mode, the plasma is

considered to be surrounded by the vacuum region. The equations are

solved seperately both in the plasma and in the vacuum, and the

connection of the two solutions at the plasma surface gives the

dispersion relation of the external kink mode. This model is, however,

very difficult to study in the nonlinear numerical computation because

the motion of the plasma surface has to be precisely traced. In stead of

a real vacuum we put a highly resistive and a small-current region

(a<r<b) outside the plasma column with the radius a (Fig.l). The

conducting wall is places at r=b. The resistivity, r?, increases steeply

at r=a from r^=n{r^C) to i}t=r)(r=b). The plasma current is given by

J=E»/T?(r), where Ew is the electric field at the conducting wall.. Th*

plasma density, p, decrease steeply at r=a from po=p(n=0) to pe=p(r=6).

The width of the steep change of the equilibrium quantities is denoted by

5 in Fig.l. In the highly resistive region the perturbed current

dissipates rapidly and this region is expected to behave as the vacuum.

We solve the following reduced set of equations through the whole

region in the cylindrical geometry.
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dU

at

iT

dt

+ Vx-Vxt/

+ Vx-Vx*

+ V± • Vx7?

= B-VJ

= 0

(1)

+ B_- |2 (2)

(3)

(/ = V±2* (4)

J = Vx2* (5)

where Vx= d/dr Vr+ 3/38 VP , Vx = e zxVi$, Bx = ejxVx*. The
quantities 4>. $, 1/ and J denote the magnetic flux, stream function,
vorticity and longitudinal current density, respectively. The extension
to the toroidal geometry is straightforward.

2.2 Linear Analysis
For the linear analysis we use the linearized equations of

eqs.(l)-(3) with respect to the small perturbation, Vj.. By using the
Fourier expansion, (*,*,77)=($,*, 17)»,nexpi(m9-ar//?o)+7t, and the finite
difference method to the radial direction, we have the asymmetric
eigenvalue equation,

yAx=Bx . (6)

For r?o=0> i?e=°° and 6=0 (the case of the uniform current density), we
the analytic solution and the growth rate is given by

r=7E/S (7)

where

s = 1 + £ £ l * ^
P0 1 - (a/b)2-
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and

•m = 2(Se/a)20n-ng) Cl ""** -3 . (9)
1 - (a/o)

The quantity YE in eq.(9) is the growth rate of the external kink mode
for the uniform current distribution. As pe decreases the growth rate,
y, tends to YE.

Figure 2 shows the growth rate of the m=2/n=l mode as the function
of the ratio pt/po for 7jo=10"

7 and J7e=1.0 obtained by solving eq.(6). In
this case the tn=2/n=l rational surface and the conducting wall are placed
at r=1.2a and b=2a,respectively. The numerical result (solid line) for
d/a«l agrees well with the analytic one (dashed line). In spite of the
decrease of the growth rate the structure of the eigentnode is unchanged
by the increase of p«/po . This fact encourages us to study the nonlinear
evolution without the reduction of the Alfven transit time. Next we
study the effect of the external resistivity, r)e. Figure 3(a) shows the
growth rate as the function of rje by fixing J7o=lO"

7 . For Jfe<10"* the
growth rate scales as Y^I}3/5 . This means the mode tends from the
external kink mode to the tearing mode. The structures of the m=2/n=l
component of the plasma current for the differnt ne also show the change
of the mode (Fig.3(b), (c) and (d)).

The linear analysis shows that this model describes both the
external kink mode and the tearing mode by changing rje and that the
structure of the eigenmode is insensitive to pe .

2.3 Nonlinear Evolution
For the study of the nonlinear evolution of the external kink mode

we integrate eqs.(l)-(5) in time by using the Fourier expansion to both
the azimuthal and the longitudinal directions and the finite difference
method to the radial direction. In the cylindrical geometry we can use
the approximation of the single helicity. Typical numbers of the modes,
M, and the radial meshes, NT are i

v£=5 and NT=2Dl . Eigensolution of the
linear equations is used as the initial perturbation to save the
computational time. The resistivity used in the nonlinear study is
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r?o=10'' and nc=l .
Figure 4(a) and (b) show the time evolution of the magnetic energy

and the kinetic energy, respectively. The m=2/n=l rational .surface and
the conducting wall are placed at r=1.2aand b=2a, respectively, and
S/a=0.1. Both energies saturate at t ~ 30rp« . Here ZPH is the poloidal
Alfven transit time at r=a. The evolution of the magnetic flux surface
is shown in Fig.5 at t=0 (Fig.5(a)) and t=30rp« (Fig.5(b)),
respectively. The dense lines denote the contors of the resistivity.
From Fig.5(b) we have the saturation level of the plasma surface,
i/a ~ 0.1 , which corresponds to the saturation level of the magnetic
field fluctuation, Sr/Bg ->- 0.03. The dependence of Br/B> on the
position of the rational surface, rs, is shown in Fig.6. The saturation
level increses as the rational surface becomes close to the plasma
surface. The level and the dependence on rs agree with the result of
neighbouring equilibrium theory given by Itoh{7}.

Our preliminary results show that the highly resistive region
outside the plasma column can describe the external kink mode in
nonlinear evolution,

3. Comment on Resistive Internal Kink Mode
The intense heating by NBI in the JFT-2 tokamak has shown the

transition from the sawtooth oscillation to the continuous oscillation of
the soft X-ray signal{8}. We have studied this transition from the view
point of the m=l/n=l resistive MHD mode and have shown the saturation of
the m=l/n=I magnetic island due to the pressure-driven mode in the
cylindrical geometry{2}. The m=l/n=l ideal internal kink mode is,
however, always unstable for the finite-beta value in the cylindrical
model and the saturation width of the magnetic island is independent jf
the beta value. In the last workshop we have shown the toroidal effect
plays an essential role in this mode(4}, and proposed the new reduced set
of equations by using V • V/F?=Q in stead of Vx'Vi/R 2^. The new
equation covers both the resistive equations and the imcompressible ideal
equations.
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The other mechanism of the saturation of the m=l/n=l magnetic island
was pointed out by Biskamp{6}. He has shown that the kinetic effect
causes the saturation of the magnetic island by using the quasi-linear
theory. In this workshop we show the nonlinear effect on the kinetic
model due to the mode coupling.

The basic equations are given by

+
dt

V J/ - e_. B • VJ

,-ViVxVl/ + nV2U (10)

d t
+ ft)*- (in

Ly = GB • VJ (12)

where

and

B = Boeh +

J = V2* + Bo/Ko

V±

V = V • (NV$)

a, = Tpf/To/(eBa2) •>- <D,TPH

a = c/(Ri;pi) -v- ou/i8p

(13)

(14)

(15)

(16)

(17)

(18)

(19)

We use the same method as in section 2 by introducing the complex
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variables to our code. The safety factor and the density are chosen such
that

z*1a (20)

and
iV(r)=0.8U--(r/a)2)2+0.2 . (21)

The parameter ro is determimed so that the m=l/n=l rational surface is
placed at rs=0.5c.

Figure 7 shows the imaginary part of the eigenfrequency as the
function of <a*/yT for 7jo=10~5 and the different values of K. Here 77 is
the growth rate of the m=l/n=l resistive mode. The real part of the
eigenfrequency is co ~ <u* . The numerical result for l=\ (solid line)
agrees with the analytic one (dashed line) given by Waddell et al.{9}.
Figure 8 shows the eigenfunctions for « +/7T=5. The lines with the large
amplitude in * and N correspond to the real parts and * ~ i$. The
eigenfunctions show that the drift wave is excited at the rational
surface and propagates outward to decay rapidly. This means that the
kinetic effect on the ra=l/n=l mode is apparent near the rational surface
and the MHD behavior holds in other region.

In the nonlinear study we use M ^ 10, iVr=201 and r?o=10"
5 . The

analysis with <VM gives the same result as that of the quasi-linear
theory given by Biskamp{6}. Next we study the effect of the higher
modes. Figure 9(a) and (b) show the time evolution of the magnetic
energy for <a*/7T=0 and 3, respectively. We use W=5 in this case. For
u*/7T=0 the internal disruption occurs at t •>- 600-p« . This time is
almost independent of M. For <u+/7r=3 the evolution of the magnetic
energy seems to saturate. The level and time of the saturation, however,
increases as M. The saturation level of the m=0 component of the
magnetic energy, -&Vo» increases as A/2(Fig.10). This fact means the
impotance of the coupling with the higher modes and suggests the internal
disruption even for U*/7T>1 . The time evolution of the spectra of the
kinetic energy in Fig.11 also indicates the importance of the mode
coupling. The solid lines denote the amplitude of the each m componetnt
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of the kinetic energy for M=5 and the dashed lines are for <V=10. With
the lapse of time the higher mode are excited as much as M increases. To
confirm our conjecture we have to take the numbers of modes up to
M -v. 50.

4. Summary
In the analysis of the external kink mode the highly resistive

region outside the plasma column describes the "vacuum" both in the
linear c d the nonlinear regime. Hereafter we. are studying the nonlinear
behavior of the free boundary modes by varying the position of the
m=2/n=l rational surface and the profile of the plasma current with the
extension to the muliti-helicity simulation.

The analysis of the kinetic (iffeet on the m=l/n=l mode has shown the
importance of the higher modes in the single helicity and suggests the
internal disruption for <a+/7r>l .
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Fig.4 Time evolution of (a) magnetic energy and (b) kinetic energy for
o/'a=0.1. The m=2/n=l rational surface is placed at r=1.2a.
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Fig.5 Time evolution of the magnetic flux surface at (a) t=0 and (b) at
the time of the saturation t=30rp« . The dense lines denote the
cantors of the resistivity.
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Fig.6 Amplitude of the saturated poloidal magnetic field vs. the position
of the rational surface.

F i g . 7 Imaginary p a r t of the eigenfrequency vs . u*/7r for J?O=1O=1O"3
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b-QO

(b)

Fig.9 Time evolution of the magnetic energy for (a) cd*/7r=0 and .V=5, and
(b) av'7T=3. M=l, 5, 7 and 10.
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Fig. 10 Maximum value of -dVo vs. M for <a*/7r=3 . This value scales as
f

Fig.11 Spectrum of the kinetic energy at differnt t for iV=5 (solid line)
and iV=10 (dashed line). The diamagnetic frequency is chosen such
that u*/77=3.
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CALCULATIONS IN TOROIDAL GEOMETRY WITH FULL M.H.D. EQUATIONS*
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1. INTRODUCTION
A fully toroidal formalism has been developed which follows very

closely that of Ref. 1. This approach uses the full MHD equations with
no ordering assumptions. The fluid is, however, assumed to be
incompressible. It can be used to study either ideal or resistive
modes.

This formalism has been used to construct the computer code PAR,
which is linear and fully-implicit. The fully-implicit nature of the
numerics allows extremely fast calculations, as will be discussed
below. Detailed comparisons for n=l modes have been made with the
computer code RST [2], which uses an ordering formalism due to Strauss

[8].
All results presented in this paper are linear. This work,

however, is viewed as a first step toward nonlinear calculations.
Work, in fact, is well underway to be able to do nonlinear studies.

2. EQUATIONS
A flux coordinate system (p.©.£) is used where p is a flux-surface

label, 6 is a poloidal angle-like variable and £ is the toroidal angle.
The angle 9 is determined from the straight magnetic field line
condition.

He start with the usual MHD aquations.

Research sponsored by the Office of Fusion Energy, U.S. Department
of Energy under contract DE-AC05-840R21400 with Martin Marietta
Energy Systems, Inc.

**c usion Energy Division.
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| | = - V X E . (1)

E + v x B = tjj , (2)
(VI (VI M <VJ

dv
v • Vv] = - V p + J XB . (3)

J = V x B , (4)
ft# f« t*4

V • B = 0 , (5)
ni AI

and

(6)

The fluid is assumed to be incompressible and the density constant
In time. This imp Iies

7 • (pmyj = 0 (7)

Therefore, it is useful to assume for the equilibrium mass density the
following form

Pm = PmO©2 • (8)

E<js. (1) to (5) can be written in terms of potential functions to

guarantee an exact solution of Eq. (5). To do so, the usual vector
potential, defined by
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B = V « A . (9)
<\» IM Al

is used with the gauge defined by Ap = 0. This choice of gauge allows
the remaining two components of the vector potential to be identified
with the poloidal and toroidal magnetic fluxes.

The time-dependence of A is given by

3A
^ = v x B - T|J + Va (10)

i\» <w AI iwi\» <w

with a the electrostatic potential. The above, together with some
rather lengthy algebra, gives six equations for the six unknowns to be
time advanced. These equations are

(11)

IjU-v^ + v^^jp. (13)

f£_ 9^ 9R2 3p \
He? *b$ dp 9p 9$ J

(14)



177

+ -=^L. i p u ^ - jPBS)l + l J r fj$Be - j%«) ) (15)

and

| f = - v P | H . - v e l | | - v « ^ . . (16)
at op p ao 09

The six unknowns are the poloidal flux i|), the toroidal flux %, the
poloidal velocity stream function (j>, the toroidal velocity stream
function A, the electrostatic potential a, and the pressure p. In
terms of these quantities, the magnetic field, velocity and vorticity
are given by

(M
B = TO x Vx + V^ x VtJ) (17)

(18)

U = V x v (19)
IV N M

A perfectly conducting wa11 at the plasma boundary (p=a) is assumed

which requires

(2°)
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• Both equilibrium and dynamic quantities are expanded in Fourier
modes as in Ref. 4.

3. NUMERICAL SCHEME
Accurate results must be convergent in the number of grid points

used in p and in the number of Fourier modes used in the expansion of
both the dynamic and equilibrium quantities. In Fig. 1, the n=l growth
rate as a function of the number of radial grid points is shown and
represents typical behavior. For large A (~0.1 Tj}p) results are
converged with ~iC0 grid points. For smaller A, (~Q.O1 Tfjp), however,
a convergence study is needed to extrapolate to an infinite number of
points. In Fig. 2, the convergence behavior when varying the number of
equilibrium modes is shown. The number needed (for errors $ 1%) varies
from a few at small £ to 5-10 for larger p. For the results presented
later (which are n=l), dynamic modes from m=-l to m=4 were used, which
gave errors of ̂  1%. Since the safety factor varied from 0.9 at the
magnetic axis to 2.3 at the edge, this distribution gave modes through
the resonant region with two additional, above and below.

In Fig. 3, a comparison with the ideal code ERATO [5] is shown.
The agreement is regarded as excellent.

In order to display the results seen when the time step was
varied, it is useful to define an eigenvalue and a growth rate. The
linearized problem is written as

L | l = RX , (21)

and the implicit time step algorithm relates the solution vector at
time t to that at t+At by
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In the above. L and R denote the matrices formed from the
operators L and R. In what follows, t will denote the physical time
only when At is small. The eigenvalue A is defined by

(23)
large t

where "large t" means that A is independent of t and <...> means an
average has been taken.

The growth rate is defined by

1=iln(-^rr- • (24)

In Fig. 4, q and A are shown for a cylindrical case and as a function
of step size. The eigenvalue is constant over a large range of At,
while the growth rate undergoes a resonant behavior with the resonance
occurring at At - 2/A. Also shown is the velocity in the poloidal
plane (vP and v®). The velocities are identical for values of At at
each end of the range shown and for a value near the resonance. The
behavior for the other unknown quantities is identical. Note that for
small At, A and *j are identical. It is thus possible to use a very
large step size and obtain a solution given by A and the eigenfunction.
This solution is identical to that found if one uses a small step size
to get a solution given by ̂  and the eigenfunction. The number of time
steps required to find an eigenfunction as a function of At is shown in
Fig. 5. The minimum required is at the resonance given by At = 2/A.
Very careful selection of the step size can give a solution in a \tery
few (1 or 2) time steps. In Fig. 6, the eigenvalue is shown over a
much wider range of At than that, shown in Fig. 4. Discrete changes are
seen at values of At = 2/VAjA: where Aj is the value before the change,
and A.- is the value after ths change. Also shown is the polotdal
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velocity given by the eigenfunction found for each X. The p component
of the velocity has no nodes for the largest X, one node for the second
largest, and two for the third largest. This is typical behavior for
the most unstable, second-most unstable, and third-most unstable modes.
This is. In fact, what is being selected by the choice of At. Also
shown, for reference, is the resonant values of At for each mode.

The numerical behavior shown in Figs. 4, 5,, and 6 can be
understood by assuming the set of eigenfunctions generated form a
complete orthonorma I set. Again we write the linear problem as

dx(r.t)
—^— =Sx(r.t) • (25)

Each member n of the complete set of solutions to the resulting matrix
problem satisfies

*»&0ak>0 (26)

with the stepping algorithm given as before as

™- (27)

and x_ and xfc related by

, Lim x* ( r . t ) = ±xn e1"* . (28)
t large ~ ~ ~n v '

When At i s small ^ n = Xn, of course. The soLcion vector at each time

step may be expanded as

xfc(r.t) = E a J x (r) . (29)
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Using Eq. (29) in Eq. (27), using Eq. (26), multiplying by L"1 and
projecting am by the assumed orthonormality gives

(30)

Thus, if At is properly chosen, the eigenfunction m will be selected
due to the denominator in Eq. (30). A resonance will occur at

JL (31)
Am

as observed in Fig. 4. Using Eqs. (28), (29), and (30), \m and ^ may
be related by

(32)

The results shown in Fig. 4 satisfy this relation with the plus sign
being correct to the left of the resonance and the minus sign to the
right.

The value of At for the transition from one eigenvalue to another
may be found by realizing that the minus sign in Eq. 32 applies to one
of the eigenvalues and the plus sign to the other giving

^ ^ ^ ^ (33,

or, by solving for At,
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At=—±—. (34)

This is the transition At shown in Fig. 6. Thus a fairly simple
algebraic treatment can reproduce the numerical results shown in
Figs. 4, 5 and 6.

4. STABILITY RESULTS
In Fig. 7 stability results are shown for a sequence of

flux-conserving equilibria with a safety factor profile ranging from
0.9 to 2.3. In the lower figure, the eigenvalues as a function of (3Q
are shown when the full equations of Section 2 are used. In the upper
figure, results for the same sequence are shown when the reduced
equations of Strauss [3] are used. Both ideal and S=108 results are
shown for the full equations, with only S=106 results shown for the
reduced equations since the reduced equations give ideal stability.
The ideal peak for the full equations results from the ideal internal
kink mode, which is not in the reduced equations since it is of higher
order than that included. The S=108 results for the full equations are
dominated by the ideal internal kink except for the points at the
highest and lowest values of |3Q. These two points, in fact, are in
good agreement, both in eigenvalue and mode structure with the reduced
equations and are eigenvalues for a tearing mode (for the lowest |3n)
and a resistive ballooning mode (for the highest (3Q) . Thus, for n=l,
the reduced and full equations agree at high and low J9Q, but disagree
at intermediate j9g where the ideal internal kink is unstable. As seen
in the figure, a second stability region for the internal kink exists.

We would like to acknowledge very useful conversations with
M. Azumi.
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FIGURE CAPTIONS

Fig. 1. Convergence with number of radial (p) grid
ints (M). The scale is r 2 .

Fig. 2. Convergence with number of Fourier modes.

Fig. 3. Comparison with the ideal code ERATO [4].

Fig. 4. Eigenvalue \ and growth rate n as a function of
step size At for the most unstable mode.

Fig. 5. Number of time steps to converge (N) as a
function of step size At.

i ("g. 6. Eigenvalue A as a function of step size At.

Fig. 7. Eigenvalue as a function of |3g for n=l and for
both the reduced and full equations.



185

ORNL-DWG 84C-2328 FED

O.1O

_ a
• z

0.05 -

CO 100

Fig. 1



186

ORNL-DWG 84C-2329 FED
O.O6

0.05

0.04

fc 0.03

O.02

0.01 h

n =

= 0.09%

iS0 == 0.35%

6 8 10 12
max

meq

FiS . 2



187

ORNL-DWG 84C-2330 FED

i r

O.1O
n - 1

O FAR (FULL EQUATIONS)
• ERATO (IDEAL)

0.05

± L _
8 10

Fin. 3



188

ORNL-DWG 84-2326 FED
0.4

0.3
-10

-20

t x

0.1 —

iO

-20

1

1

1 
1 

1 
1/

1/1 Vr

1 
1 

1 
1

1/1 V*

0.5
f

1.0

— • - • • • • • • - • o—o

• X, EIGENVALUE
O T, GROWTH RATE

1/1 Vs

0.5 1.0

10 15 20 25 30 35

Fig. 4



189

10

ORNL-DWG 84C-2331 FED

i I
CYLINDRICAL
n 1, m = 1

10
At(T

15

HpJ

o

20 25

Fix. 5



25
ORNL-DWG 84-2327 FED

20

15
• • • — • —

I

-40

- 2 0

2

0

-2

I

•f
'/ ,

4/4 V

-

-

4/4V8

f

I I I
CYLINDRICAL

n=1 m-1

o.s 1.0

4.0

4/4 V

4/1V*

• O 0.5 (.0

M \

\i\ v'

0.5 4.0

20 40 60 80 100 120 140
At(TH p)

160

Fig. 6



191

ORNL-DWG 84C-2332 FED
0.03

8 12 16 20

Fig. 7



192

LIST OF ATTENDEES

US-JAPAN THEORY WORKSHOP ON 3-D MHD STUDIES

Oak Ridge, Tennessee

March 19-23, 1984

Dr. M. Aizawa
Atomic Energy Research Institute
College of Science and Technology
Nihon University
Chiyoda-ku Kanda Surugadai 1-8
Tokyo, JAPAN

Dr. Daniel C. Barnes
Institute for Fusion Studies
University of Texas
Austin, Texas 78712

Dr. B. A. Carreras
Oak Ridge National Laboratory
P.O. Box Y
Oak Ridge, TN .37831

Dr. L. A. Charlton
Oak Ridge National Laboratory
P.O. Box Y
Oak Ridge, TN 37831

Dr. M. S. Chu
GA Technologies Inc.
P.O. Box 81608
San Diego, California 92138

Dr. R. A. Dory
Oak Ridge National Laboratory
P.O. Box Y
Oak Ridge, TN 37831

Professor K. Hanatani
Plasma Physics Laboratory
Kyoto University
Gokasho, Uji
Kyoto, JAPAN

Dr. T. Hayashi
Institute for Fusion Theory
Hiroshima University
1-1-89 Naka-ku
Hiroshima, JAPAN

Dr. C. L. Hedrick
Oak Ridge National Laboratory
P.O. Box Y
Oak Ridge, TN 37831

Dr. T. C. Hender
Oak Ridge National Laboratory
P.O. Box Y
Oak Ridge, TN 37831

Dr. J. A. Holmes
Oak Ridge National Laboratory
P.O. Box Y
Oak Ridge, TN 37831

Dr. Jae Koo Lee
GA Technologies Inc.
P.O. Box 81608
San Diego, CA 92138

Dr. J. F. Lyon
Oak Ridge National Laboratory
P.O. Box Y
Oak Ridge, TN 37831

Dr. Brendan McNamara
Lawrence Livermore National Laboratory
Box 5511
University of California
Livermore, CA 94550

Dr. A. A. Mirin
Lawrence Livermore National Laboratory
P.O. Box 5509
Livermore, CA 94546

Dr. D. A. Monticello
Princeton Plasma Physics Laboratory
Forrestal Campus
Princeton University
P.O. Box 451
Princeton, NJ 08540



193

Dr. R. A. Nebel
Los Alamos National Laboratoy
MSF 642
P.O. Box 1663
Los Alamos, NM 87545

Dr. Allan Reiman
Princeton Plasma Physics Laboratory
Princeton University
Princeton, NJ 08544

Dr. Spilios Riyopoulos
University of Texas/IFS
RLM Building
Austin, TX 78712

Dr. Tetsuya Sato
Institute for Fusion Theory
Hiroshima University
1-1-89 Naka-ku
Hiroshima, JAPAN

Dr. Dalton Schnack
Science Applications, Inc.
P.O. Box 2351
LaJolla, CA 92038

Dr. A. G. Sgro
Los Alamos National Laboratory
MSF 642
Los Alamos, NM 87544

Dr. John Sheffield
Oak Ridge National Laboratory
P.O. Box Y
Oak Ridge, TN 37831

Dr. Toshihide Tsunematsu
Japan Atomic Energy Research Institute
Tokai-mura, Naka-gun,
Ibaraki-ken, JAPAN



194

\ '



195

AGENDA

U. S.-JAPAN WORKSHOP ON 3-D MHD STUDIES

March 19-23, 1984

Fusion Energy Design Center, Oak Ridge, Tennessee

Monday, March 19, 1984

9:00 -

9:15 -

10:00 -
10:15 -

11:00 -

12:00 -

1:30 -

2:15 -

3:00 -
3:15 -
4:00 -

9:15

10:00

10:15
11:00

11:45

1:30

2:15

3:00

3:15
4:00
5:00

9:15 - 10:00
10:00 - 10:15
10:15 - 11:00

11:00 - 11:45

12:00 - 1:30

1:30 - 2:15
2:15 - 3:00

3:00 - 3:15
3:15 - 4:00

4:00 - 5:00

Welcome
Morning Session Chairman - K. Hanatani
A. Reiman, "Calculation of Island Widths in Three-
Dimensional Equilibria."
COFFEE BREAK
K. Hanatani, "A 3-D Algorithm for Calculating Drift
Orbits in Nonaxisymmetric Toroidal Devices."
T. C. Hender, "Equilibrium Studies for Helical Axis
Stellarators."
LUNCH
Afternoon Session Chairman - A. Reiman
K. Hanatani, "Analysis of a Pressure-Driven Instability
in Heliotron-E."
J. A. Holmes, "Stellarator Expansion MHD Studies of a
High Beta Torsatron."
COFFEE BREAK
M. S. Chu, "Reduced Equations in 3-D Geometry."
Discussion on 3-D MHD calculations for Stellarators,
Chairman - B. Carreras

Tuesday, March 20, 1984

Morning Session Chairman - T. Hayashi
T. Sato,"Self-Reversal Mechanism in the RFP."
COFFEE BREAK
D. D. Schnack, "Three-Dimensional MHD in the Reversed
Field Pinch."
D. C. Barnes, "Compressible Simulations of RFP
Sel f -Reversa l ."
LUNCH
Afternoon Session Chairman - D. Schnack
T. Hayashi, "3-D Simulation of Spheromak Dynamics."
A. Mirin, "Nonlinear MHD Simulations of the Spheromak and
the Reversed Field Pinch."
COFFEE BREAK
M. Aizawa, "Finite Element Method and Its Application to
3-D Dynamic System."
Discussion on 3-D MHD calculations for RFP and CT,
Chairman - T. Sato

Wednesday, March 21, 1984

9:00 - 10:00

10:00 - 10:15
10:15 - 11:00

11:00 - 11:45

12:00 - 1:30

Morning Session Chairman - T. Tsunematsu
B. McNamara, "Rapidly Convergent Algorithm for 3-D Tandem
and Stellarator Equilibria in the Paraxial Approximation."
COFFEE BREAK
C. L. Hedrick and L. Owen, "Magnetic Equilibria for
Square and Circular EBTs."
D. Monticello, "The Total De-reduction of the Reduced
Equations."
LUNCH
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Afternoon Session Chairman - M. Aizawa
1:30-2:15 J. K. Lee,"3-D Simulations of Limiter Stabilization

of High Beta External Kink-Tearing Mode."
2:15 - 3:00 T. Tsuneroatsu, "Nonlinear Evolution of External Kink Mode

in Tokamak."
3:00 - 3:15 L. A. Charlton, "Calculations in Toroidal Geometry with

Full MHD Equations."
4:00 - 5:00 Discussion on 3-D MHD calculations for tokamak,

Chairman - D. Monticello

Thursday - Friday, March 22-23, 1984

Continue discussions at Fusion Energy Division,
Bldg. 9201-2



PREFACE

The US-Japan theory workshop on 3-D MHD studies was held at
Oak Ridge, Tennessee on March 19-23, 1984. It was attended by 25
participants.

The main purpose of the workshop was to determine what important
problems are ahead of us in 3-D MHD studies. In the meeting physics
problems were addressed, as well as computational ones for different
devices. The first day of the workshop was devoted to discussion
of MHD equilibrium and stability issues related to stellarators.
The MHD properties of RFP and compact torii were considered during
the second day. Finally mirrors, EBT, and tokamaks were discussed
on the last day of the workshop. The discussions were held in a
very informal fashion, which allowed a frank and open exchange of
views between the participants.

These proceedings include the manuscripts that were presented
at the workshop. They cover most of the oral presentations and are
organized in the way they were delivered. An attendance list, and
the agenda are also included in the proceedings.

The Japanese delegation was led by Professor Tetsuya Sato of
the Institute for Fusion Theory at Hiroshima. His cooperation in the
organization of the workshop is gratefully acknowledged.

The workshop was sponsored by the Fusion Energy Division, Oak
Ridge National Laboratory and could not have been successful without
the efforts of many dedicated individuals - Session chairman, authors,
participants, and last but not least, the workshop secretaries.

I would like to acknowledge special appreciation to: Janice Cox,
who handled the problems of organization prior to the workshop in
an efficient and professional manner; June Jernigan and Gladys Warren,
who acted as workshop secretaries during the workshop, taking care of
all the details and problems which normally are associated with such
meetings in an excellent way. I am particularly grateful to June
Jernigan and Gladys Warren for assembling the contributions of the
proceedings, and handling much of the workshop paperwork.

Benjamin A. Carreras
Oak Ridge, Tennessee


