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Abstract

The spin system analogues of recent studies of the string tension
and A parameters of SU(N) gauge theories in 4 dimensions are carried out for
the SU(N) x SU(N) and O(N) models in 2 dimensions. The relations between the
A parameters of both the Euclidean and Hamiltonian formulation of the lattice
models and the A parameter of the continuum models are obtained. We calculate
the one loop finite renormalization of the speed of light in the lattice
Hamiltonian formulations of the 0(N) and SU(N) x SU(N) models. Strong counling
calculations of the mass gaps of these spin models are done for all N and the
constants of proportionality between the gap and the A parameter of the
continuum models are obtained. These results are contrasted with similar
calculations for the SU(N) gauge models in 3+1 dimensions. Identifying
suitable counling constants for discussing the N + « limits, our numerical
results suggest that the crossover from weak to strong coupling in the lattice
0(N) models becomes less abrupt as N increases while the crossover for the
SU(N) x SU(N) models becomes more abrupt. The crossover in SU(N) gauge theories
also becomes more abrupt with increasine N, however at an even preater rate

than in the SU(N) x SU(N) spin models.
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1s Introduction

Considerable progress has been made recently towards understaading
the dynamics of asymptotically free field theories. The lattice -egulated
versions of these models have been studied using Monte Carlc computer simu-

lationsl, Monte Carlo renormalization groupsz'

4,5,6

, strong ccupling =2xpansions
tc. Many of the models have been shown to exist im z single phase for
all coupling and estimates of a few physical quantities, such as correlation
lengths, characterizing the continuum limits of the models Lave Seen made.
Other approaches to the same physics have been made direc:ly in the continuum
formulations of the models. These include dilute instanton gas Epproximation7
dense instanton calculationss, loop space approachesg, N—= l;nitslo, etc,
These approaches may eventually expose the physics in tae models more clearly
than the lattice formulations and they may lead to some useful amalytic results.
However, to this date only the lattice approach can claim t> have produced hard,
numerical results.

Lattice approaches consist of several steps. Alttoigh different calcu-
lational schemes vary in their details, one typically must first compute the
renormalization group trajectories of the theory's bare coipling constant. And,
second, properties of the continuum limits of the lattzce regulated theory are
extracted and in some cases, compared with experiment. The first step in this
program has shown that several of these models, asymptotically free spin
systems in two dimensions and gauge theories in four dimensions, experience a
sharp crossover phenomenon: at small coupling ordinary Feynman diagrams are
adequate but as the coupling increases a point is reached where the renormali-

zation properties of the theory abruptly change to those of the strong coupliing
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limit. Altaough interesting In their own right, such restlts are of limited
us2 because they refer to a particular lattice formulatior. of the model. The
realormalization group trajectories are uaiversal - indeperdent of the regulari-
zation procedure - only near the critical point at zero coupling. The inter-
mediate and strong coupling fcrm of the trajectories depend on details such as
the lattice approximation to the continuum derivative, the presence of irrele-
vant operators in the lattice action, the da2gree of asymmetry of the lattice
itself, etc. For this reason, the second step in the program is actually more
significant. Once the approach of the lattice theory to its renormalized con-
tinuum limit is mastered, relations between physical quantities independent of
tke lattice scaffolding can te found. It is these relations that allow one to
compare diZferent theories in a meaningful way.

To carry out the second step of the program one must set the scale of
lattice calculations in zerms of aphysicallr meaningful scale of the continuum
formulatioa of the theory. ©Ome sach quanti:y which has been used in the context

of gauge theories is tha A parameter chzracterizing the scale of the weak
coupling dzviations from thz fres field benavior. The precise meaning of A

w#ill be discussed below. Arnd onze A 1is in hand, other mass scales of the
continuum 1imit can be meastred in terms of it. These include mass gaps (inverse
correlation length) which must be calculated with non-perturbative methods and
are therefore accessible tc lattice aralysis. The proportionality between mass
and A it a pure number characterizing the continuum limit of the theory and

it is useful to study it for various families of models. Calculations of A
paramete=s and mass gaps for SU(N) x SU(N) and O{(N) spin systems in two dimen-—

sions and their comparisons to analogcus calculations in SU(N) gauge theories in
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four dimensicns constitute the major portion of the present work.

One of our findings will te the following. The vector models and
matrix models have different systematics as N varies. If we consider
the ratios C“=mass/A for each model, then it is observec that CN decreases
for the O(N) models as N increases, but increases for the matrix models.
The analogue of CN for the gauge models also increases as N increases at
an even swifter rate than for the spin systems. These results and possible
explanations for them have been presented recently in a chort summary of the

present rather lengthy analysis ll.

Our calculations of mass gaps amd A parameters will be presented in

considerable detail for the SI(N) x SU(N) spin systems. Discussion of the
0(N) models will be triefer because they are considerably simpler. Results

. on the SU(N) gauge theories will be taken from other recent contributionsA
in the literaxure.5 However, we have included Appendices on SU(N) 'group
theory so that the lattice calculations in the matrix models can be verified
to the precision we have done them and so they could be extended by the
interested reader. -

The lattice action of the SU(N) x SU(N) spin systems is,

§= - §2 :E: tr
X,

[u(x)u*(x + ) -1] + h.c.$ (1.1)

The model has the global SU(N) x SU(N) symmetry because Eq. (l.1) is invari-
- ant under the transformation,
U(x)— G U(x) G ¥
L R

vl ety — (G UGx+n) cq)* (1.2)

where GL and GR are two arbitrary members of the group SU(N).

The O(N) models have the action

. ,
s=-% g M(x) M(xtn) (1.3)

where g (x) is an N- component unit vector. And finally, the action

.of SU(N) lattice gauge theory is,

S = - -éz ; tr { [U(p)-l] + h.c.} a.4)

where U(p) is the product of SU(N) matrices around the boundary of the
plaquette p.

The first indication that the dynamics of the models Eq. (1.1) and
(1.4) should be similar came from the Midgal recursion relationlz. In this
approximate scheme the coupling constant renormalization problem is identi-
cal in both models. A puzzling feature of this suggestion is that the gauge
model has instantons for all N while the matrix spin systems do not.‘

Since instantons are a natural disordering mechanism one might expect that
this difference would appear in the renormalization group flows in thke cross-
over region. We shall find that the systematics in the spin and gauge systems
are similar, but the crossover phenomenon in ihe gauge systems is, in fact,
more abrupt. This may be due to instanéons but it may also be due simply to
the higher space-time dimensionality or other disordering mechanisms such as
vortices, etc. Another similarity between the two classes of models is the
possible presence of a Gross-Witten13 third order phase transition in their

14

N + © 1limits” . This singularity may also be contributing to the sharp

crossover found in these models at large but finite N. The recent suggestion
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that toughening15 in the flux tube sector of the gauge model contributes to
the rapid crossover phenomenon seems unlikely in view of several recent cal-
culations. In Hamiltonian lattice pauge theory the on-axis flux tube roughens

16. And recent

in the weak coupling region and not in the crossover regiomn
Monte Carlo investigations of the specific heat of che SU(2) models show
rapid crossover in the bulk thermodynamics of the modellj.

We have also carried out our calculations for the NE¥) models hecause
they have interesting properties. Their N + @ 1imit ic soluble and a well-
defined 1/N exbén;ion exists for this family of mndelslsm No solution is
yet in hand for the N + =« 1limit of the matrix models ard it appears unlfikely
that a 1/N expansion exists. In the context of our lattice calculations, we
shall find singularities of the deWit - “t Fooft tynelg vhich indicate that the
analyticity needed for a 1/N expansion does not appear to exist here. 0Of course,
such singularities do not exist for the DfN) models. We will compare our nu-
merical results with Monte Carlo renormalization group studies of the 0(3)
model and the exact solution for the N + @ limit and find good agreement. It
is amusing that the 0(3) model has the most abrupt crossodvar region in this
class of models and only it has instantons.

Now lets introduce the idea of the k paramezers sin=e thev nlay a central
role in our calculations. A convenient way to compare two definitions of coup-
ling constants in the weak coupling limit is in terms of the A parameters. For
bare coupling constants these parameters appear as follcws. Consider the two

loop Callan-Symanzik function for the ccntinuum models.

of

2 3
Mg = B(E) = -8 f -8 f (1.5)

aM
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where,
M = Pauli Villars cutoff mass

f = bare coupling constant

Eor the O'N) nodels one shouid let

(1.6)
and20
—_ 1l -2 1 .
B(B) = - = § - g
2t 42 (N-2) 1.7
| 21
For the Chira® models one hes
— = Np2
f= 2=he (1.8)
BOL = - bl - A3 (1.9
: Bu- 128w2 :
To integrate eq.(1.5) the scale of the cutoff mass M must be set. This
Ls done by introducing a mass patameter A ,
) S 2 . 3_
EFTTA BOF By £ e (1.10)
Integrating eq. (1.10) and choosing tire integration constant appropriately
one obtafns the two loop result,
1
f(M) = .
M E M (1.11)
By T+ + £o tn(lnx)

s
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The particular choice for the integration constant in eq. (1.11) has the
virtve that the two locp contribution does not add a constant to the de-
nomirator of eq. (1.11) and so does not affect the coupling constant used
in thke one loop‘apptoximacion. With this convention the A pafamgter, the

bare coupling’ £ and the cutoff mass M -are related by

=81, 2
/8,
A=M (Bof)

o

exp (_B—lf-) [L—O(f)] (1.12)

Note that for >> 1 1t is perfectly adequate to replace (1.11) by,

M
A

£QM) = ——IM— (1.13)
Bo‘“K ’

The same procedures that took us from eq. (1.5) to (1.13) can also be
carrzed out for the lattice regularized theory and one introduces iu this
way a ldttice AL . The cutoff mass M is replaced by the lattice cutoff
1/a and instead of f(M) one Las the bare lattice coupling constant fL(a).
Also eq. (1.1Z) is replaced by trecall that B, and £; are universal

cons:zants independent of regularization scheme)

“P1/p,2

R S L
A a (BofL) exp (' BolfL) [l+0(fL)] .14

In tne limit ;%— >> 1 one has again in analogy to eq. (1.13)
L

1

f (a) = 1 (1.15)
L 3,in ahy

The rela-ion between A and AL is fixed by requiring that the re-
norralized theories give the same physics independent of the regularization '

scheme. The renormalized contiauum theory is written in terms of the

renormalized coupling fR

1.4

= 1 y '
£ T %% + B() (1.16)

where we have written, 2, =1+ BODE

Similarly for the renormalized lattice theory one has,

.

. ,
.% S T S B, (a) (1.17)
£2 £, (a) £, (a)

Regularization scheme independence requires

e SO t A
£ fL(a)
or
- 1 - fl = BOY - B (a) (1.18)
L(a) (H)

Inserting (1.13) and (1.15),

A, 1 -5 |
A aM exp [BO(B(M) BL(a))] (1.19)
In the next two sections we will calculate B(M) - BL(a) Vthrough

one loop and hence also A/AL . We consider both a Euclidean as well as a

spatial lattice regularization scheme. The importance of the number ‘A/AL

becomes clear when one recalls that physical masses, being renormalization

group invariants, obey relations such as eq, (1.12) and eq. (1.14) the ouly
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difference being that there are proportionality constanzs € and CL

on the R.H.S. of the two respective equations. In other words
Mass = CA = CLAL (1.20)

The constant C cannot be obtained within the framewort of ordinary

continuum weak coupling perturbation theory. The lattice setup, however,
also lends itself to "non-perturbative' analyses (e.g. stcrong coupling or
Monte Carlo) and one can estimate CL . Once CL is kmovn the quantity

of interest, the C of the continuum theory, car be obtzined from eq. (1.20)

and previous calculations of A/AL .

The rest of this article is organized as follows., Section 2 discusses
A/AE , where "E" stands for "Euclidean lattice regular_zation'., For the
SU(N) (X)SU(N) Cniral models we use the Backgrounc Field methodzz). This

method was adapted recently in ref., (23) to lattice theor.es involving matrix

degrees of freedom. For the O(N) models A/A
24)

E ‘has beem calculated pre-

viously by G. Pariasi . Section 3 presents calculatioas of A/I\}l , where

"H" denotes "spatial lattice regularization'. Sirce our mass gap calculations
are carried out within a Hamiltonlan framework it is thils ratio A/AH that
will be required to relate the physical mass to the A parameter of the con-
tinuun theory. Section 4 discusses the mass gap calculations themselves. We
use the results of this section both to obtain the valu2s for the '"C" 's as
well a; to investigate the crossover from strong to wea< coupling behavior in
the spin models. Finally all our 2D results are comparad with previous cal-

5)

culations on SU(N) gaugé theories in 4D.
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2, Regularization of SUtN) x 3U(N) Chiral Models.

The Background Fieid Tecanique.

The background field regulerization method has proven to be an effi-
cient and clear technique for czrrying out the one loop, perturbative
renormalization program Zor many continuum field theories. It has been
applied z¢ SU(N) lattice gauge theory im 3 + 1 dimension523and quanti-~
tative relationships to conzinuum renormalization procedures obtained‘by
more straight-forward tedicus methods have been redetived?s In this section
we shall apply the method to the continuum and lattice versions of the SU(N)
chiral spin systems in two Zuclidean dimensions. The amalogous calculations
for the lattice Hamiltonianm model will be presented in the next section.

Our calculations will Zollcw those of Ref. (23) quite closely. We

begin with the lattice actzon of Eq. 71.1%

s=- tr (u(x)n'*(;_+u) - 1) + h.c.] : (2.1)

X.d

The partition furction is given by

z =f[]c'J S (2.2)
X

and dU = invariant Haar maasur: over the group SU(N).

Sinca we are going to appl? ordinary perturbation theory here, we want
tc separate the fluctuations of the IJ(x: into two parts: ‘'low frequency"
fluctuations whose dynamics are renormalized when the "high frequency" fluc-
tuations are integrated out of :-he partizion function Eq. (2.2). This

physical idea -- the basis 0f all remormalization programs —- is nicely
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-igd (x+ i 1l 2 3
implemented by the background field method. Write, 18P (ki) 1gd ) exP[-igVu‘b ) + 587 [o0x +u),0(x)] + 0(g )]

(2.8)

. _ 12 1.2 2 3
Uix) = B8 Cyel 2.3 L ign, 000 78 ocx + w,000] - 587 000)° + 0(g™)

el where ¥V  denotes the discrete lattice difference. Similarly, the integra-
where U™ (x) solves the classical equations of motion of the lattice theory K )

tion measure should be expanded,
and ¢(x) parametrizes the quanzum flactuations of U(x). It is convenient

to define . NZ- a 2.2
di = [ d¢ [1 + 0(g"¢7)] 2.9)

a=1
0(x) = 2%%() ., a=1,2,..., N -1 (2.4)

The 0(g2¢2) correction to the measure does not affect one loop calculations

and can be ignored. This fact constitutes one of several advantages the back-
where the A% patrices provide a representation of the Lie Algebra & J

‘ ground method has over other renormalization methods. Next, it is convenient

't
[Aa AB] _ j_faBY\Y (2.5) to parametrize UCI(x)UCl(x + u) appearing in Eq. (2.7) as
R = ;
. +
with the normalization conditicn - U(:l(x)UCl (x +u) = exp(il-‘u (x)) (2.10)
tr().u)‘s) = % 6“8 : (2.6) where Fu is a hermitian matrix
Substituting 2q. (2.3) into (2.1) gives . Fu(x) = kan(x) (2.11)
1 cl cl+ . ‘ . .
§ = - 1 tr [(U (x)U (x + 1) - 1) + h.c. Expanding Eq. {2.10) in powers of 1-'u (x) and substituting the result along
3
- Xy M Q.1 with Eq. (2.7) into Eq. (2.8) we have,
-1 t
- LZ er [(e 18¢(x+u)eig¢(X) _ l)UCI(x)UCJ' x+p) + h.c.] L . ) ,
, = - = - -= (v 2-F
8 X, 1 . . . S gZZtrFuFu Z tr{ 2 ( u¢) ( u)‘
X,H X, U

. . (2.12)
where the terms have been organized in a convenient fashion. The exponentials . 2 4

+alotx+ w,0IF, h+ 0(s”F)
in Eq. (2.7) can be expanded in powers of g,
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And, finally, using Eq. (2.4) and (2.11) we can write § as the sum of three

pieces appropriate for perturbation theory

- ¢l 2 4 . )
§$=8" 45 +8, . +0@",F) (2.13a)
where
st = - L 2 a? (2.13b)
2g s
X,u
s =) L(veH? (2.13¢)
o &
X,u
and

_ 21 a,B,Y,8 a By
Sinc —Z{ 2 tr(ATATATA )Vu¢ Vu¢’ FJFf

X,H

(2.13d)

+ 1 B0 4 upeB oo |

It will also prove convenient to give the fields ¢u a spall mass m so
that all the integrals encountered in the perturbatioa :ca’culations are infra-

red finite
2
5 —» E Lo 6M2 + L o%C (2.14)
Q auT 2 u 2 -
’

We shall see that all the physical quantities of inte-est to us are actually
infrared finite and the limit m + 0 will be taken a: :he end of our calcula-
tions. However, to avoid possible ambiguities in int2rmediate steps the
modification Eq. (2.14) will be employed. More inpor:-aatly, the perturbation
theory calculations will also require renormalization. ‘Tie square lattice

will provide the cutoff in the formulation Eq. (2.13). This regularization

-14-

procedire will be compared witk the continuumPauli-Villars method which we
will discuss row. The continuwm form of Eq. (2.13) is quite clear. The
lattice difference operator becomes the differential Eu and Eq. (2.134)

simpliZies to

coat _ 1 _aBy a Y .2
Stor =3 f [aL_p ¢5€ud x (2.15a)
where

Y =Y

X) = 7 ) 2.15b
FL0 =7 x)/a ( )
and "a" 1is the Euclidean lattice spacirg. It is clear from Eq. (2.10)

that F:(x) is proportional to a, so Jﬁ:(x) has a finite continuum limit.
Note also that the first term of Eq. [2.13c) vanishes in the continuum model

since =t becomes proportional t> the lattice spacing a itself.

Now we can easily perZorm the one lcop renormalization on the continuum

partit-on functicn. From Eq. (2.13) and {2.15{,
-scl_s__s. )
‘T f Mage " 0T nefi + o(g?,E%)]

1
_ -s© ,8.-So1 1.2 |
- e [n@ R o } (2.16)

-scl {1 - <s,
= e int

)
>4 <gt >4 L.
*7 Sine }

The term <Siﬁt> vanishes identically because of the gradient in Eq. (2.15a).

The n=2xt cerm can be evaluated

1 .2 102 29 0By Y EPTTON -
L2 pelfdy oyt B B E Gigl y 0t 0ef 20" et 6>

(2.17)

N 2 2. v v i ' l' tye At ' 1ya ! 1
=X fe?y Byl o0z 316097 - A80-yaG6y")]
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0y T .
where we have used the identity £OPTEOPY " o NGYY, and G 1is a scalar

propagator of the free action So of 2q. (2.14),

) JU S i o1k (2.18)
G(y) = 75 5 = 7 = .
(21)° k* +m (2m)" D(k)

The two terms of Eq. (2.17) can de combined if we integrate by parts and

use the requirement that the background field 73 be slowly varying,

2B <F, o , 219

then

%<sint> = % /dzidzy'ﬁz(y)ﬁz(y')c(y -y R 6y -y . (2.20)

Now the spatial variation of 15 is negligible compared tc that of the Green's

funczions in Eq. (2.20). Therefore 1i:(y) can be replaced by 75:(y') and

the ¥-integration performed over the Green's functions. Then only the terms

in the p and v sums with p=v contribute to the integral and Eq. (2.20)

becomes

%<Sim> %/dzy'}f:(y')ﬁ()")fdzyc(y -y % éw-ai)c(y -y"

- %/dzy' %(ﬁ(y':-)zfazyc(y - y8y - M

Yoo [o¥y %(ﬁ;(y ))2

=360 - s _ (2.21)

Finzlly, substituting back into Eq. (2.16) and exponentiating,
v
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_ Gt @1 iR

-~ Z g
- .E%SC]-
e 8§ . (2.22)
where the coupling constant renormalization Zl is identified
2 .
7 =1-& no( (2.23)

’

Eq. (2.23) is a formal expression until we specify the continuum regularized
definition of G(0) . If thg Pauli-Villars scheme is used, then the usual

analysis shows that G(0) 1is replaced by

' 2
P.V. a2 1 1
F V(0 =f { - } (2.24)
@ b+ el

where M is the rggulator mass. Then Eq. (2.23) becomes

. 2 (2.25)
=1 - 75? Zn(M/m)

Eq. (2.25) contains some interesting physics. The minus sign is character-
istic of asymptotic freedom. It is clear from Eq. (2.23) that the renormal-
ized coupling constant is

4
2 2
g2 = g/z) = g7 + o tnt/m) + ... . (2.26)

Thus integrating out the "high frequency' fluctuations has increased the



coupling between the "low frequency" components of tha fizld. Describing
this in terms of a Callan-Symanzik B function, we cam ra2quire that gp

be fixed as the ultraviolet cutoff M is varied

4
3 2 sy g2y Ne ; —dars 2
Moy 8 = 0 = M3y e  + 5+ higher ovdars (2.27)
So
3 2. .,2 _ N 4 .
Mozg 288D =-gre + ... (2.28)

which agrees with the conventional result to this ordsr. We heve chosen to
write the renormalization group trajectory in terms of th2 bare coupling
and the ultraviolet cutoff rather than the renormalizad couplirg and a sub-
traction momentum. This calculation also illustrates some of the better
features of the background field method -- it led us direetly to the coupling
constant renormalization constant without any additional wave fanction re-
normalization calculations needed.

Now we turn to the Euclidean lattice calculation using Eq. (2.13). We

must again compute the terms in Eq. (2.16). The firs: is

._.E:_L @, By, 8y Y8 o oo 3.
<Sint> Zitr(). ATATA )FuFu<:u¢ ub k

X,u
(2.29)

+ % f“BYFIw" o+ webeos

The second term in Eq. (2.29) vanishes identically sinc2 It is the average
value of a vector quantity. The SU(N} indices of the Eirst term zan be

simplified by using the identity

AN = 1 (% §9B5YS _ gabagyda, joBagyvda_, cuBagra_p chagvéa

N S

2.3
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Only the first term of E3. (Z.30) contritutes to Eq. (2.29) when « and 8

are cor:itracted, as one can =2zsily show us:ng the tracelessness of the fuBY

By

and the 1% symbols. Now

__ 1 'l oy, 2 a2
<Sint” =~ Bm Z(Fv) <(Vu¢ )
X
(2.31)
= - LYy LnTia? o -
= SH_E SED 4@ - e - 6Q))
X
whecre G denotes a lattice proragator
T
2 ik * x
P 1 1 ., d’k :
6x) = <47 (x)4710)> = z : 732 (2.32)
(2n)° 4 - 2cosk1 - 2c:>sk1+ ma . :
- .
Using th2 amusing identity
G1) - GM) = - T + O(n’a’) (2.33)
whizh can easily be checkec. Eq. (2.31) becomes
. _F¥ -1 1.ovy2 _1 ., el
“Sine® = BN AN IS (2.34)
X

where we hrave identified the clzssical lartice action and the quadratic

"
Casimir of the fundamer.tal -epresentation CN = (N° - 1)/2n.,

The Yast term in Eq. (2.16) requires more care,
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2 P [ ' . ' A
TROTEEE Faal z : F;T <+ mef 6% v+ 6%y + 0

3 AN T
) (2.35)
-3 F W (" {6ly-y'+ 1 -v)Gly-y") ~Gly-y' +1) Gly-y' - v)
=3 " YIELY y-y H -V y-vy y-y H y-y
123 ATV
‘ \ .
where we used the identity f;BquBY = HGYY, - It is convenient to write the
prcpagators in momentum space using Eq. (2.32).//5;fine
. 22
A(k) 7 4 - 2cosk, - 2cos k2 4+ ma (2.36)
so
N
c ik [ -1k, -1k} 1k(y-y') ik'(y-y")
1 .2 N Y Yot dk  d%' e u(e k\’-e kv}e e
7S ime” g LB WE G 7.2 T
n N v @n)? @20 d(k>a(k")

(2,37)-

Th2 background field Fz(y') 1s slowly varying, so the y' summation can be

done by simply ignoring its spatial variation

. 2. 1k ( ~1ky ik,

1. .2 Rl . dk v -

2 Sme 8 Z F:uy)x-ﬁ(y)f R ) (2.38)
AR (2m) 8% ()

The momentum integral vanishes unless p = v, so

(2.39)

=
&
v
[

oz

. el f P P Y
(

2m)? 820

Tte momentun integral here is, in fact, a disguised formm of G(1). We show
this and discuss other relevant properties of lattice propagators in Appen-

dix A. Granting this, Eq. (2.39) becomes
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1 2 _N, . <C
2 Sppe” =3 0 08

1 (2.40)

Collecting Eq. (2.16), (2.34) and (2.40), we have the partition function

with the fluctuations integrated out

. ,
z

z = exp[— 4 Z%(F:)Z} (2.41)°
g X

with
L

C
. 2(N L 1o 2N Loy 4N _ N
z = 1-g (4 ¢ Q) + 3 CNB l1-g (4 G7(0) + 3 16) (2.42)
where the superscript L reminds us that these are lattice quantities. It is
clear that we can infer that the lattice theory is asymptotically free and
obtain the Callan Symanzik function as in Eq. (2.28). Now, nowever, g refers
to the bare coupling on the lattice of spacing "a" which replaces the inverse

of the Pauli-Villars regulator mass M.

Now we wish to go beyond the B functions and relate the length scales of

~

the continuum and lattice models as well. This is done along the lines dis-

cussed in the introduction. AE and AP y. are introduced and the require-

ment that the long distance physics be the same in both descriptions fixes

their ratio according to Eq. (1.19). Using (2.25) and (2.42) one obtains

P.V.

Ag

A

' 2 2
_ \/3—2eH(N -2)/2N (2.43)

and a large change of scale is observed. For comparison, we write down the
analogous A-ratio for the O(N) vector models
: s
P.V. T .
A _ 2(N-2) . A
= =y e (2.44)
o(N)

E
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Note that the O(4) result and the SU(2) x SU(2) calculazion agree as
they must. One also notices that the exponential fzctor &a Eq. (2.43) has
a finite non-trivial N - « 1imit in distinction tc the ON) model.

P.V.

A /2 — .
AE NT:e -\/32= (4.81047 ...)\ 32 ) (2.45)

The matrix vs. the vector character of the two models must be the reason be-

hind these different limiting features.
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3. Spatial Lattice Reguiarization

In this section we discuss the relaticnship between coupling constants
in the Hzmiltonian and the Euclid2an versicns of the theory.
First, recall that zhz Hamil:onian is obtained from the partition func-

tZon of thz Euclidean lactice bty letting the timelike lattice spacing a, tend

to zero in the transfer matrix. This corresponds to introducing couplings K

t
and KS for timelike and spacelike links and then taking a very anisotropic
limit.
So, w2 begin with the ac:ion,
g = —:E: K tr(U(r)U+fr+; Y+ h.c.) + K tr(U(r)Uf(r+; ) + h.c ) (3.1)
t - t 3 5 o .

sites
where ét(és) is a unit lattice vector in the time (space) direction. Standard

methods reveal the transfer matrizx,
. 1 =2 S PN
T = exp{- Z—Kt; EC2) + K Zl: ee(U(0UC24L) + h.c.)} (3.2)

wtere

sum over all sites in a gfven time slicz2

™

E® = oth gererator of left SU(Y) rotations (right SU(N)
rotaticns could have teen ‘used equally well)

N2-1 .
EZ = E B = cuadratic Casimfr operator of SU(N)
a=1
Furthermore, we are working im a space of state T |L'> diagonal in U.
links
v . _ (),
Uag [t> = Ugg ft>
(3.3)
ca L 1l . a’
[E , U] =-3 LRt)
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"y labels representations of-SU(N) and we omit this supersc;ipt when we are
using the fundamental representation.

Next we require that T~ 1- atﬁ + O(ai) as a, is taken to zero. Inspect-
ing Eq. (3.2), we see that both l/Kt and KS should be proportional to a, to

insure this. Therefore, it is convenient to define,

1 ..t
Pl

2

2 . t
t

(3.4

Note that when a =a these definitions of g and gg match onto the usual
convention K = 1/g2_ However, letrzing a > 0 in Eq. (3.2) and (3.4), we obtain

the Hamiltomnian,

B = 55 ; ia ) - —g-g(t‘ 5 il + h.c.)i (3.5)

where

= \’gi gi (3.6)
It is’impor:ant to note the presence of two coupling constants in the lattice
Hamiltonian — one (gz) setting the scalg of electric (static) effects and
aﬂbther (gi) governing magnetic (kinetic) effects.

In the remainder of this section, we shall relate gi and gi to the coupling
cons tant gz used in a continuum, Pauli-Villars regulatgﬂ version of the theory
in the limi: that all gz's are small. Only a slight modification of the back-
ground field method described in seztion 2 will be needed. Going through the
same steps that led to Eqs. (2.13) and using the definitions Eq. (3.4) for g:

and gi one finds that the action Eq. (3.1) is the sum of two pileces,

s=st s+ 3.7
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where
- az:/-dci% )%+ = (él_:z)zi (3.8)
2 2gt Zgs
and . :
: aZ/;lti%(at?)z + 51678 - & nd e r )’
X
+% £oBY [(3:4’0)4:8 FI +.i_ n¢“(§+és)¢ﬁ(z)<§§>]% (3.9)

In these equations we have made the substitutionms,

atz ->fdt

1 -
P Vt > at (3.10)
t
1 .« o
z Fe T F (a different notation was used in-
t section 2, where 17 . )
a’v v

appropriate to the at + 0 limit and have also introduced the parameter,

%
n 3= —2- (3.11)
&s
The free pilece of SH is
eff
. Lanlsl don?
= aZ/dti 5 QO+ 301G (3.12)
which leads to a free propagator of the form,
ik t
d2k e © eikz
Gyl = [ 5
(zm)" Du(k) (3.13)
w/a ikot ikz
=f f :
2n
Zila [k + ;—(2 2coska)+m ]



~25~

As in tke Euclidean calculation we must introduce ar inZrared rezm latcr mass
m2 in our formulas and check that the limit m2+-0 ic smootl. whea one calcu-
lates quantities of physical significance.

The last two terms in S:ff constitute Sgnt ar¢ we must now calculate as

in the Euclidean analysis,

~S 2
eff _ H l
<e >=1- <sint>° + 2 Si ¢ >0 + O(g F ) (3.14)
One obtains
2
H _N- 1,1 2
-<Sint>° = ZN (G 0) -6 (1\)[ 5 ( Y g':_ (3.15)
y
where we use the notation,
J=aX fay, (3.16)
y L

and

TN

12 <N fdzk ks )/1
= <§ > == =~ F
7 “int”0 T \2 7 2 2t
nt (@m° i /Yy
2 2 21ka\ [ .
C(EfE T e
(2m) D (k) :

Manipulations similar to those employed on the Euclidezn calculation enable

us to identify the momentum integrals in Eq. (3.17) as SH(OO and GH(l) ,

2
2 k
%f ‘“‘2 > = 36,0 (3.18)
(2m) D (k)
H
and,
2 2 2ika
k 1- N
a” Y (2n) D (k)
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Collectirg these results and substitutirg ir Eq. (3.14) we have,
N T1o 2 2- 112
6, J 3+ n | B (o -6 (1),+4c w|-[ 3Gy
K4
3 y

+ ... . (2.20)

Comparing Zc. (3.20) with Eq. (3.&) we find the following coupling constant

renormalizations,
A R 2 N
e e TR A
8, B, 8,
. z 2
. 18 _ 1§, 2wk ool N
70 - it elm fe,(0) GH(I))+,.GH(1)]§ (3.21)
Eg &g &g ’

Following Eq. (3.5) and (3.6) we define,

=
=

(3.22)

[ |H
j=- X
+
]
N

and note that

= Vst =1

z

§ i%\/?ca(m +(% - %)\F(Gﬁ(o)-cﬂ(l))s (3.23)

With these results we hzsve eZfectivel¥ calculated the logarithm of the

partition function, tn Z tkrougn 0(l) and can compare with a similar calcula-

1°
tion for the continuum theory usiag, for imstance, a Pauli-Villars regulator

mss M,

21 2z )iy 2
in(z,/2) = ?_/d >:;5?T (F.)

! 1 1 2 11,2 '
; F 'ECFt) + \’nkfi(sfz) (3.24)
y
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where we have defined, . GH(O) and GH(l) are easily evaluated,
z g2 z -
1ls t 1s /
N, =n—-—— = — — (3.25) /e > n/a
R z Z z . _ ' 1
1t g, 1t /’ﬁ GH(O) = (2,,)2_/dk° f dk

. -»  -7/a [k°+i ia-a /ésinz(ka/Z)ﬁnzaz][ko—i /?n_ /ésinz(ka/Z)-l-mzaz]

n/a

Now we take the continuum limit of the Hamiltonian expression a»0 such

that nR+l and, adk

1
27
¥ -n/a 2/45in2(ka/2)m282 )
1 1 2 : 1,1 1 2 T
= a). [dt S(F +/'aS“f:1t—(—13)2 dcfd:§ =(F) (3.26)
ﬁa ./ 2(Fy) "R 247055, a_’;of ~7% %y . (3.30

1 1 K 1
232
thus insuring Lorentz invariance of the renormalized theory. The condition 2m /1+m232/4 +%)

nR+1 as a*0 1s simple to gusrantee., Note that if &g is set to g, so that

. where K 1is a complete elliptic integral. Using the asymptotic expansion listed
n=1 and the hkare theory is Lorentz invariant, then Eq. (3.21) states that the 7 ’

) . . in Appendix A we have,

divergent parts of the one loop corrections to 2z, and z are identical.

1t 1s
1 8
This implies that ng = 1l as a*( and the one loop rencrmalized theory is also /; GH(O) 2—2> T n (E) + 0(ma) . (3.31)
Lorentz invariant in the contintum limit. This is clearly an important prop-
Similarly we calculate,
erty of these spin systems. It is also a feature of SU(N} Hamiltonian lattice nla
° ©
- k.
gauge theory in 3 + 1 dimensions. I (GH(O)—GH(l)) - ln 5 fdko f ax Accoska
) en® L Td. D
Finally, in order to obtair. the same physics from the Hamiltonian partition
/
function Z, and the continuum partition function Z we must require, we 2
H _ sin”(ka/2)
= 5 adk (3.32)
z z. -n/a V&sinz(ka/Z)hnzaz -
e (3.27) :
2 2 ’ )
g 8y 1
. -_— -
or, ) m2a2+0 T
2
L1 c(0) = 2 ‘ 1 /56 (0)+<N_‘_1 24 /7 (6,(0)-G, (1) (3.28) Collecting all these results, recalling that G(0) = % 2n(M/m), and sub-
Ngz A Ng2 G ¥ H a2 - 8/ H H
H stituting into Eq. (3.29) we have,
We introduce the A-parameters A and AH as discussed in the introduction 2
A 8 M N"-2 .
) A - exp tn (=) -12n (£)]| exp —5 (3.33)
and write the explicit form for Eq. (1.17) A H -ma ™ N

I[.‘A; = exp 2n[ﬁ GH(o)-c(c)] - exp n[/T (% -u (GH(O)-GH(I))] (3.29)
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So,

Ao exp(1-2/N2) (3.34)

A few comments about this result are in order. We observe a large
change in scale when passing from the Hamiltonian lattice to the continuum
theory. On the other hand, the relatior between the Euclidean and Hamiltonian

scales follows from Eq. (2.43),

Ah = /l?exp[(%-l) (1-2/N2)] (3.35)
E

and this ratio only varies from .94065 ... at N = Z to 1..2513 ... at

We have also calculated I\/AH for the O(N) vector models by generalizing

the Euclidean calculation of ref. ( 24 ) to an asymmetric Llattice. One finds

(t) = 8 exp(N—}?) (3.36)
o)
and
AH) 1 [ 5 1
(E - 2 e [G-1 ] @37
0O(N)

Egs. (3.34), (3.35), (3.36) and (3.37) will b2 usec extemsively in later

sections of this article.
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4. Hamiltonian Lattice Calculations, Cont-nuum Results for the SU(N) x SU(N)

Models and Comparisons with J(N) Spin Systems and SU(N) Gauge Theory

We wish to calcula:te the mass géps of each of the SU(N) x SU(N) spin
Eystems. This will allow us to obtain each model's B-function for all
coupling as well as the numarical ralatior. between each model's scale break-
ing A parameter and the renarmalized single particls mass of the continuum

Limit of the lattice moiel.

We bezin with the damiltonian int-oduzed in Sec. 3,

. /ng‘s N
He 2 1 - e[Dut + D+ bc] (.1)
[ - g
2 : 2 2,2
where g stands for the gy of the previous section and n = gt/gS as before.

In gq. €4.1) we take n to te a fixed constant number. This enahles us
‘to perform a single-coupling strong coupling anélysis in l/gz. The actual
value for n i1s fixed by the requirement that at the matching point onto weak
coupling tehzviour the rencrmalized N of Eq. (3.25) become equal to one and
Lorentz irvarianca be restcred. Ir the comtext of a more sophisticated cal-
culational framework ore cculd imagine exzloring the 8,78, plane for curves
which minimize the lattice breaking of Lorentz invzriance in the intermediate
and strong coupling regions. However, Eq. (4.1) has th2 advantage that fairly
respectable strong couprling series can be developed for it and analyzed in a
traditionzl “ashion. Here we shall calculate matrix elzments of Eq. (4.1)
to O(g—16: and match onto known weak coupling, Lorentz invariant perturbation
theory to calculate physiczl quantities.

To calculate the mass gap using stromg coupling methods we must calcu-

late the erergy of the vacuum and the first excited state(s) of the model
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and take the difference. At strong coupling (llga = 0) the vacuum must

minimize the first term in Eq. (4.1)

1]
(=)

E o> “.2)

The lowest lying excited states constitute a NZ-fold degenerate subspace. A

member of this subspace at zero momentumis described ty the wave function

1
la8> - % AU g @) 0> (4.3)

Since the quadratic Casimir operator for the fundamental representation of

2
SU(W) is Eiil , the mass gap at stromg coupling is,

/riNg (N°-1) 4
M= M (/g » 0) (4.4)
2a N

The higher order correcticns to this trivial result are obtained by system-
ati: application of Rayleigh-Schrédinger perturbation theory. All of the
ingredients in this calculation are routine and have been illustrated else-
where except for the SU(N) group theory. The group theory techniques needed
to -arry out the perturbative calculations can be found in Appendices B and
C. The resuits recorded there are a’so useful in computations of SU(N) gauge
theory. These methods could be extemded so that higher orders in the mass
gap series could be calculated.

To organize the weak and strong coupling calculations most efficiently

2
one scales the coupling constant g~ ,
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A= g2N (4.5)
Then the mass gap series have the form,
n——@ﬁi m =n® - (4.6)
= Za 2 S 0 X :
2N” /m=0

with c0 = 1. Then by direct calculation one finds that the coefficients cn
have finite limits as N is taken to infinity. A proof of this observation
can be made most simply using the Euclidean version of the model and following
the arguments of ref. 19 fBr gauge theories rather closely. We have collected
the values of Cm for various N in Table 1.

There are several ways of extracting the physics of the continuum limits
from these calculations. I? one method w; choose to renormalize the theory
so that M is fixed, independent of a, the lattice spacing. A familiar argu-

ment then leads to an expression for the theory's Callan-Symanzik B8 function,

B(x
- —— = = (4.7)
A dina o/

<
Q
-
-]
b
-

where W is the series z:cmxm of Eq. (4.6). Eq. (4.7) will be useful in the
strong and intermediate coupling regions. We also can calculate the B func-

tion in the weak coupling region. The one loop calculation was done.in

Sec. 2 and the two loop result is known,21

B _ 1 1 2 :
- —8"A+——>\ + ... (4.8)
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Note that with the definition A = gzN the second lcop of Ec. {(4.8) becomes
independent of N. This is in sharp contrast with the O(H) models where only
the first loop survives the limit. However, it is the same behavior as the
SU(N) gauge theories.

One can now plot Eq. (4.7) and (4.8) and see if the=ze is a region in A
where the expressions match. In Fig. (1) we show such a plot for the SU(2)
model. There is clear evidence for a match A = 4 so the curves suggest
that the model has a 8 function whose only zero is at zevo coupling. Thus,
the continuum limit of the theory is expected to realize the SU(2) x SU(2)
symmetry algebraically and possess a non-vanishing renormalizad mass gap.-
Since SU(2) x SU(2) = 0(4) plots similar to Fig. () havz appeared in the-
literature and we note that the low crder calculat-on pr2santed here is in
good agreement with the more extensive studies.6

In Fig. (2) we present the B functions for N = 2, 6 aad infinity. Sirce
our series are rather short we have had to make the assumpzion that the B8
functions for all of these models only have zeros at zer> —oupling. Since
the B Eunctions descend very rapidly in the crossower region short series
are not capable of describing the match with weak coupling in any detail.
However, this working assumption 1s certainly plausible since the SU(2) x
SU(2) model is almost certainly a single phase mod21 and those models with
larger N are expected to be more disordsred at the same value of A. Although
the details of the strong-weak coupling match for the large N models is not
accessible by these calculations the bulk of the crossover region appears to
be well-described by our short series. One can chack thzt the higher order
terms in the series of Table 1 are small compared to the low order terms

throughout the intermediate and strong coupling regions:

34~

It i3 interesting that che crossover regions of these models become
sharper as N increases. S:zmilar behavior has been noted for SU(N) gauge
theories in 3+1 dimensions.S This phenomeron has led to the suggestion
that thes2 lattice regulated models experience the Gross-Witten third
order phase transitionl3 in theN+® lirit, and that at finite N the near-
ness of taose singularitias in the complex A-plane causes the abrupt
departure from weak coupling behavior. One can check that the Gross-
Vitten nmechanism occurs in s2veral Zinite size SU(N)xSU(N) spin systems,lb
so our observation that the systzmacics of the spin and gauge models are
similar seems quite sensiblz2. If we had longer strong coupling series we
could follow the path of thz singulariries in the Padé approximates to the
mnodel's B Zunctions as N varies and verify or refutz these remarks.

There is one other int=resting technical feature ir the strong coupling
zalculazion. It is easy to see that tae classes of graphs for a particular
order of parturbation theory depends oa N explicitly. For example, in the
3U(3)xSU(3) model the vacuum expectation value for three U matricéﬁ is non-
varishing, while in the SU(2)xSU(2) model it is identiczlly zero. The
zalculations done here to O(g-16) required specizl cases for N=2,3,4 and 5.
Inly for N > 6 d;es the class of graphs not change with N. Such complica-
tions have beer noted for gauge ;heories as well. 1In addition, not only
does one have to include nesw sets of graphs as one comes down in N, one
must alsc modify some grephe that already existed for large N (large com-
pared to the order of perturbation theor7y) in order to avoid vanishing
energy denominacors at small N. These zero energy denoninators would appear as
singularities in the strong coupling coefficients if one were to naively
continue in N. These facts indicate that it is not possible to ext;apolate

betwveen differeat SU(N) grcups in any simple fashicn.
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The appearance of special graphs in the O(g_ls) coefficients for N = 3,4
and 5 render these series rathrer irregular. This ié the reason we have not
plotted their B-function in Fig. (2). It has been noted in ref. 26 that
such irregularities occur in simple models. However, short series for these
models with N sufficiently large do, in fact, well approximate the known
exact results. Thus, we believe that ou?Ashort series results for N = 2 and
al_’ N 2 6 are good guides to the rezl behavior of the SU(N)xSU(N) models;
The existence of these complications should be ;ontrasted with a family of
models, like the O(N) vector models, which possesses a simple solution in
tﬁeN-*=’limit. In these cases the class of graphs for each order of per-
tugbation theory i1s independert of N, there are no singularities in the
strong coupling expansion coefficients for N > 1 and simple 1/N expansions
exist. This will be discussed further below.

Next it is interesting tc use the asymptotic scalirng laws to set the
sczle of the mass gap calculation. As discussed in Sec. 1 the ﬁass scales
of the theory can either be set by studying the deviaticns from free field
behavior in the vicinity of the critical point A = 0, or by renormalizing
the theory holding the mass gap fixed. In a proper rencrmalized continuum
limit these procedures must be related since one mass scale determines all
the scales in these models. We can compute the constants CH relating the

gaps M to each theory's AH parameter,

M=CA (4.9)

by plotting the strong coupling calculation for M and fitting it with the

wezk coupling scaling law for AH
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ry= L BT 8R4 o) (4.10)

as discussed in Sec. 1. Such plots are shown in Fig. (3) for N = 2,6 and

infinity, and the resultant values of CH are collected in Table 2. To com-

plete this exercise the n parameters of Eq. (4.1) were determined to ensure
Lorentz invariance of the lattice models at the matching points of the weak
and strong coupling expansions. Recall from section 3 that the one loop re-

normalization of n was found to be,

z . L R2 '
AJNT -]
nR=n.El§=n l';[_;‘%] (4.11)
1t 2N

and 'Y must be fixed at unity so that Lorentz invariance is restored on the
lattice of finite lattice épacing and finite bare coupling. The values of A
at the matching can be substituted into Eq. (4.11) and n cén be computed.
The physical significance of n being different from unity is that the spatial
laFtice induces a finite calculable renormalization of the speed of light.
The effect is not large numerically. For example, vn = 1.08 for N = 2 and
increases to /n = 1.15 for the N + « limit.

It is particularly interesting to use our calculation of AH/A from

Sec. 3 and write Eq. (4.9) in the form
M = CA (4.12)

because Eq. (4.12) is free of lattice scaffolding--it involves quantities

defined in the renormalized continuum limit of these model. The values of C
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for various N are also listed in Table 2. Eq. (4.1Z) is this model's ana-
logue of the gauge theory relation between str£ng tension acd the scale-
breaking parameter of deep inelastic scattering. The error bars in Table 2
reflect our uncertainty in the fits of Fig. (3). It is interesting that
the Taylor series for the gaps suffice for the determinatioam of the constaats
C. If the mass gap series were replaced by Padé approximates our estimates
of C change by only a few percent. This stability refl=cts the fact that at
the match between strong and weak coupling expansions ia Fiz. (3), the higa-
er order strong coupling terms are considerably smaller thaa the low order
terms.

We feel that tabulations of the constants C ar2 a particularly clear
way to compare different models. The B functions taemselves are only univer-
sal near the critical point X = 0, and the various shapes in Fig. (2) in the
intermediate coupling region can be changed by changing the lattice formula-
tion of the model. However, the constants C are invariart to such technical-
ities--they are properties of the continuum limit and zre potentially measur-
able quantities. A large value of C indicates that noz-perturbative effects
occur abruptly at a relatively small coupling of a regularized continuum
version of the mode. It is interesting that C increases significantly as N
increases and that the N = 6 results are very close to the N = « limit.

We have also carried through this calculationzl progrem for the O(N)
spin systems. A great deal is known about these models, Their N + =
is the soluble mean spherical model whose continuum limi: describes a massive,
free scalar field. They possess a well-behaved 1/¥ ex»ansZon. Detailed
studies of the 0(3) model using strong coupling6 and Monte Carlo Renormaliza-

tion Group methods3 have been done. The 0(4) model has also been studied
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using strong coupling mechods to aigher orders.6 The Hamiltonian is,

~
L DE Y [(Pe-xam - a@+ D) (4.13)
o

vhere gz is the angular momeatum squared in N dimensions and g(m) is an N-
compcnent uait vector on the spatial lacztiea2. The lowest lying excited
states éf tae strong couplingz limit of Zq. (4.13) constitute an N-fold
degenerate subspace. A membzr of this .ubspace at zero momentum is described

¢
by the wave function,

14> = % N (@ [0} (4.14)

L
A

where lO) i1s the strong coupling vacuum,

i2m) fo} =0 (4.15)
zppropriate for N > 1. To discass the N + o limit it is convenient to scale
the coupling constant,

- _ 2 x
g=@-2)g , y = 3T 37 (4.16)
g W -2

Then the mass gzp series can be writtenm ir the form,

M=_"'}_s.(="fl)§ ay .17



and the'coefficients a; tave finite N + « limits. Explicit calculations

give the first five coefficients of Eq. (4.16),

ao =1
2
L N -2)
3, = 23w -D
o - 2
2" Pw-1
o - 9%@n? - %N +3)

P - im o+ 2)

a o - D8ser® - 2868’ + st + 357 - 16on® - 67N + 46)
8N (N - D3 + D+ 28 - DN + 1)

4

(4.18)

These coefficients were obtained by =xtending the O(N) group theory techniques
of ref. 30 t> handle the produzt of six spins on a site. The general N calcu-
lation was checked against the N = 2,3,4 and mean spherical model results
already in the literature. Note that the explicit expressigﬁé\are well-
bekaved in the region N > 1 whzre the state Eq. (4.14) lies above the vacuum
Eq. (4.14). (Since J2 = 3(3 + N - 2), the sp;n 1 state has greater energy

than the spin zero state only Zor N > 1). The B functioas for the O(N) models
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are obtained from these series as described for the SU(N) x SU(N) models.
The resulting curves aré shown in Fig. (4). In addition, the.constants CH
can be obtained from these fits as described above and using our result for
AH/A they can be rewritten as results for the more interesting constants C.
These results are tabulated in Table 3. Just as in the SU(N) x SU(N) models
the values for n in Eq. (4.13) were fixed by requiring that ;he renormalized
g be equal to unity at the matching poi#t onto weak coupling behavior. 1In

the O(N) models the one loop renormalization of n is given by,

no=n{1-%8. ‘ 4.19)

We learn from Fig. (4) that as N is increased.the crossover from weak
to strong coupling becomes less abrupt and shifts to larger g. As a con-
sequence of this the constants C decrease from 3.40 * .30 for :he 0(3) model
to 1.00 for the N + » limit. Some of these resuits can be_éompared with
others in the literature. The N + o limit of Eq. (4.13) is soluble27 and
one can determine lim CH = 8 and lim C = 1 in excellent agreement with our

Nooo Nooo :
approximate analysis. This is not a new result--it was observed in ref. 27
and 28 that short strong coupling series describe the crossover region of the
mean spherical model to good precision. It is more interesting to consider
the 0(3) model result. A recent Monte Carlo Renormalization Group study3 of

the Euclidean version of the 0(3) model determined the correlation lemgth {

in terms of AE’

£l = (100 + 30) A ‘ (4.20)
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5_1 is precisely the mass gap of the thecry. Since we have calcuiated KE/A

27.212... for N = 3, Eq. (4.19) becomes,

M= (3.7% 1.1) A (4.21)
in good agreement with our result

M= (3.40 £ ,30) A (4.22)
These two successes of our calculations suggest that. they aze quantitative
for all N.

And finally, compare these results with SU(N) gaugz thsories in 3 + 1

dimensions. The Hamiltonian is

Yag? 2 2
H = '2‘a zz: E - xzp:tr[U(p) + h.c.]‘ » X = ? (4.23)

where Ef is the quadratic Casimir generator of SU(N) on ttre link [ of a three-

dimensional cubic lattice and U(p) is the unitary findamer.tal representation
of the product of group elements on the boundary of a placuette. As dis-
cussed at length elsewhere, the analoz of the mass gap of the spin system is
the string tension T of the gauge theory. It can be ccmputed by strong ccup-

ling methods.

/(¥ -1 1y\"
P JETIRALLY LS 3 | W N (4.24)
ZaZ( a? >Z m(A2> :
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where A = gZN 1s the approprizte coupling constant to discuss the N + « 1limit
since the ccefficienats Ym ther: have finite limics?1 These calculations have
been done ttrough O(X-s). As in the spin systems, the expansion for T leads
tc an expancion Zor the E£ function by requiring that T be a fixed, physical
quantity independent of the lattice spacing. The 3 function at weak coupling

i,

- )
_B(D u/g A+ 34432 24 (4.25)
A (1577) (167°)

and the Hamiltonian lattica IA._l parameter is,

1 48“2 51/121
H a

11

exa(-2an2/110[1 + C(V)] (4.26)
r .

From plots »f Eq. (@.24), the derived B funztion series end Eq. (4.25) we
determine the B function curves shown in FZg., (5). Furthermore fits of the
string tensior series to the .asymptotically free scaling law Eq. (4.26) give
estimates of the parameters (h. Using calculations in the literature which
relate lattice /i parameters to ccntinuum gumantities we can determine the

constants C,

/T = CA__. (4.25)

vhere the subscript P.V. reminds us that the continuum ragularization pro-

cedure is that of Pauli-Villars. From refs., 23, 25 and 29 we have
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2, A
h/hpy = 02368 exp (3n°/11N")

4,26
( ) calculatiens.

2
AH/AE = .6111 expliﬁ

N
———~
=z
[
zl
Nt
-
—
| N

The values of C for various N are recorded in Table (&).

Now let us briefly discuss rhese results: The B functions show the
"same trends as the SU(N) x SU(N) matrik models. Note, however, that the
c;ossover region 1is even more adrupt hzre. The N + = curve goes from the
weak coupling match to .9 in abouat 2.5 pnits of gzN while the N = « curve
of the spin system requires 8.5 units. This difference also shows up in
the constants C. They increase with increasing N but their absolute values
are considerably larger in the gauge theory in 3 + 1 dimensions than in the
spin system in 1 ; 1 dimensions.

And finaily a word about the theoretical error estimates in Table (4).
The SJ(3) estinate of C comes from a higher order calculation reported in
ref. & . It was observed there that although short series were adequate to.
obtaia a good f function in the intermediate and strong coupling regions,
" they were not sufficient to determine C to better than a factor of 2-3.
In eszimating the values of C fcr higher N we have assumed that the same
systematic trends observed in the_SU(3) calculations occur for all N. It
is clear from the plots of the B functfons that C increases with N but our
calculations are not strong enough to give good quantitative estimates. For
N = 2 and 3 the results of Table (4) are in good agreement with computer

simulations.1
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Appendix A: Lattice Propagators

We wish to discuss some properties of lattice propagators here. The
first is an explicit evaluation of the two dimensional Euclidean square

lattice propagator at the origin. We shall find,

1 1 10 (4.1)
G(o) = - K
2n ﬁ+u2/“‘ ((l+u2fu)2) .

where K is the complete elliptic integral in the notztion of ref.(32) and
2 = m?a2 , In the limit that the infrared mass m is taken to zero, Ec¢. (A.1)
becomes

32

G(o) ~ %}En thzl+ 0(m2a2) (A.2)

using an asymptotic expansion in ref (32). _This result is frepently used in
the statistical physics literature. We begin with the definitdon of the
lattice propagator,

s ©

~~[—v2+u2 ] G(x) =Z [ZG(x) - G(x+v) - G(x-v)]+ w2G(x) = 5_ (A.3)

where the sum runs over the two unit vectors of the squace lattice and zhe
right hand side is a kronecker symbol. Introducing the Fourier transform of

G(x),

n n
G(x) =f%l %2 eIk X 5aw) (A.4)
-7

and substituting into Eq. (A.3) we find

G(k) = X%ET = (4-2cosk1-2cosk2+u2)—l " (A.5)

as used in the text, Note that in Eq. (A.4) we have used the fact that the

Brxillouin zone corresponding to a square two dimansionai lattize 1is a
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square, -n<ki<n,i=1,2. G(o) can be obtained from Eq. (A.4) by inte-

grating first over k2 since this 1s a s:andard trigorometric integral,

R

~ dk
1 1
Cle) = o3 /,_ (A.6)
_# \lﬂ+4 sin? (¥ ¥3) V4+u?+é sin?(’s k)
Next chamge variables to x = sin? (g.kl}’
P
uw=#j o .7
N 4w - —
b V xQ0 (27, 4% 3/, +)
which is an elliptic integral of the Zirst kind,
<1 1 z 2 ~.-1)
6 = 3. T r(z ,((1+u /4 ) (A.8)

In tie rotation of ref. ¢a2), Eq. (A.3) can be written as the more familiar
complete elliptic integral K as stated in Eq. (A.1) and the logarithm and
the scale of the logarithm in G(o) follow from the asymptotic expansion of
K . The fact that G(o) depends logarithmically on u is clear from Eq.(A.4)
and (A.3). It takes considerable care, nowever, to fiad the scale in the
logarithr ~ the factor of 32 - and thds Is the gquantity crucial to the dis-
cussions of AE'V'/AL given in the text.

Nexzt we need to show that
42K ejki(e-ikl-eikl)

Gtl) i‘ an< Az(k)

(A.9)

to complete the derivation of Eq. (2.40). First consider Eq. (A.4) for x=1,

e1k1

" d2k
6l) = o7 T (A.109
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We exponentiate the denominator using the identity

«
1
fdse“‘e e (A.11)
P (k)
and find,
- 2 )
6(1) =/d8e B(4+u )/d_:L coskle+28cosk1/‘£%z oH28cosk,
° o pd
- 2
=/Il(2e) 1, 028)e B ag (a.12)
o

vhere we have identified the k1 and ks integrals as the Besel functions

Iy (28) and 10(28), respectively. Next consider the righ: hand side of

Eq. (A.9),
- T m
ik ~-ik ikqd .
4%k e le™* 1-e 1 dkq dka sinzml
/‘(2?!)“r AZ(k) = 2[5 2n 8E(ke
< -7
© w m
- 2 R 3Bcosky
=2 [ age BT [ L5102k o280%K1 / wld: e
° o o
B2 )
= /e Bla+u®) 1,(28) 1(28) d8 (a.13)

o

where Eq. (A.ll) was used to exponentiate the denominator 42(k) and the
Bessel functioms 1/2 11(28) and IO(ZE) were identified using ref. (32 . So
Eq. {A.13) 4is identical with Eq. (A.12) and we are done. It was important to

check that the infrared mass u? enters both expression identically.
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Appendix B: OQuadratic Casimir Onerators and Grouo Weights for General SU(N)

Group theoretical inputs into the strong counling expansion coefficients
include the values CZ(A) of the quadratic Casimir overator for various
renpresentations A and so-called groun weights CH(Al,AZ---) which depend on all
nontrivial representations [Ai} apvearing in a piven sranh. The CZ(A)'S
appear in the energv denominators and ﬂU(Al,Az---) tells us how to weight the
contribution from'each set of representation (Al,Az,'~'). The entire graoh
will then give,

[constant]} x zz: [GW(AI,AZ"')]-[Function of CZ(AI),CZkAZ)"'] (B.1)

AI’AZ...

The [constant] factor depends only on the geometrv of the graoh (e.g., on the
dimension of space time) and not on the svimetrv groun. In this appendix we
show how to calculate C2(A) and GN(Al,AZ---) for the groun SUCY).

Table B.1 lists low lving representations of SU() and some of their
properties. The second colurmn lahels renresentations in terms of (M-1) integers

qi(: 0), wvhere,
a, = (rnumber of boxes in row i) - (number of hoxes in row (1 + 1)) (1.2)

Columns 3 and 4 pive the dimension of the renresentation and the value of the

quadratic Casimir operator, C A useful formu%a for the latter nuantitv can

2°

be found for instance in ref. (33)

2C, = L” + 2R.L (B.3)

where f: highest weight vector
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<'8';A"|AaB> = 8, 8 8

z : a' B
23: ; = sum over positive root v=c-ors 0 Up! (R.6)

. Tre inner product <|> is defined thrcupgh the invariant intepration over
(Note that the Casimir operator of ref. (33) differs bv a factor of 2 from our
the grcun Jdg and eq. 'B.6) follows from,

N
C,.) Given the qi's one can calculate L for any frreducilkle representation in

2
terms of the (N - 1) so called fundamental weights i(:) (- =1,2,...n -1) . . '
ag UM (@ 58 V(@) = s, 6% 68 ®.7
a B o B! dirA A,A'"a B' .
N-1
-+ >(1)
L= z a,L (R.4) 1) - ’ = +
=1 i (Ve use che notation aUB H 3Ua')
Let
+(1) - ]
L and 2R can be found in the literature (see n. 5 of =ef.(33) and n. 299
of ref. (34). For completeness they are renroduced in. Table B.2. The com- £ = 25; |L:°B><°B:A] (R.8)

ponen:zs of the vectors in Table B.2 are not all inder2ndeat and obev,
be the projection operator onto the subsrace snannad by |A:uﬂ> for fixed A.
N
z components = 0
1

We will be interested in calculating the following exnectation value at each

active site,

. . 1
Given Table B.2 and equations (B.3), (D.4) one can derive the 02 s listed in ) (v,) )

k 2 RS
..... 0
. EA), ™ £(ap), 1 | 0>

v, 1)

K+l
<0} U f(A)_ T
b M 2 z Py 1™

Table B.1. .7 241 Pral b

We now go on to discuss proun weiphts for thz strcng counling diaprams.

hoh_eoel
Pecall that the zeroth order vacuum is determined by hzving all sites in the . P 12 hk+1(A

= | e f ven a
=Paa eeay (AI'AZ ‘k) 1M ) (. )4
172 41
singlet state. We denote it hy
|vacuum>0 = | l |”> where
sites
) vi = Nor N representation
Excited states are obtained bhv annlving UéA) on Iva:u=n>0 at various sites.
@ Ai = anv representation that can anpear in the
Ue shall label single site states by,
intermeciate states
lAso8> = Yatma 1M o> . (8.5) .
' o B ) The righ: hand side oF ea. (R.%) introdices the auantities Pa (Al,Az"')

. 1290
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which can be regarded as '"projection onerators” onto the set of representations

(Ai}' Henceforth the term 'prcjection operator' will refer to the P's and not

to the f's of eq. (B.8). The latter act on the Hilbert space.

To obtain the group weiéhc GW(Al,Az---) for a given strong counling granh

PP P
one first writes down the projection operators Pa a ([Ai))‘D

12277 %
for each active site. DNependirg on whether vy © N or N the indices a1 and bi

1 bi are

conzracted oct among the active sites in a way dictated by the particular

must be raised or lowered apprcpriately. Finallv all indicesca

graph. We will give examples cf such grouo weight calculations later in this
appendix. Here we first discuss how to ohtain the P's.
The unitary representation matrices of SU(MN) can bhe related to each other

via the Clebsch-Gordan Series

(A) (A
2 1 (A)
U U = 2 : (Aja,:A a]ae) U™ (ABllA B, ;AD.) (B.10)
a,’b, a'b) AewaEE: Apafac) Ug 1P138902

i

where (ABJA Azbz) = C-G coefficient and (A az:A131”Aa: is obtained from

"1 2
(AalAlal:Azaz) by lovering the upper indices and raising the lower indices.

The C-G coefficients obey

[Pl . . = ;¢
az s (A'a ”Alal.Azaz)(Azaz.AlaluAu) oa'éA,A' (R.1l1a)
1'%
> o - a5k |
T, 1y o =
- (Au”Alal.Azaz,(Azaz.AlalLAu) calsaz (B.11h)

Eq. (B.10) can be used repeatecly to ohtain,

v, ) ) () z E
<0| u, KL Oy 2 L 1 |o> = [(vk+lak+1:Akad|0)

1
a
272 171 AyiAy e [{a 1By}

k a, - bi .
TT(vjaj;Aj_laj_llAjuj) (uzazzvlalquaz) o~ By

3=3

({Ai})
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Fach term in the sum Z corresnonds to a projection of the form (B.9).
A2’A3. ..
So one sees that

P e BByt A ) = E (product of C-f coefficients)

172 k+1 a0 e
273 (B.12)

(Ve omit Al and 1\.k since they alwavs refer to the N or N renresentations.)
In practice it is simpler to use C-C series to come in hoth from the
right +|0> and from the left <nN|+, Take for examnle the case k = 3 (4U!'s)
v,) (v
2 1 E (A)
U U o> = (v,a,;v.af|Aa) (A8] b, b v b)) 127 [0
a, b a, hl Aa,B 27277171 1'17722°a8 "

2 (B.13)

< (va)a Utfv3) - Z (A'a'll5,a,:9,a) (b5 b [|A8")<0| T, (A7)
aJ%A 3 °3 Norufth 4347V333) (Vaha7v by, a'lp

Upon using

(A} (A) 1 a' B .
-1y . 14
<Ol Tgr Vg 17 = erda,n%a g R

one finds from (B.13) that

- ~ _
P : (A) = Z(v a,iv.alllAe) —— (Ad|v,a, v.qal)
aj3,343, p 272°7°171 Jaimh 64477373
- T A
= (v,a,v,a |lAe) (v, a v, a, ]| Aa) (.15
T 272711 37377474
b,b,b.b
1727374 1 -
P (A = —— 3 (a8, b. v b ) RBllv, b, tv.ba)
AimA B 1717722 47477313

In the same way one finds for 6 U's:



-53-

1
P (A, ,A,A,) = (v,a,:v,a IAqu,)(v a,:A,a "A c.)
aja,343,3.3, 227374 FinA. 0. e a 2727717 "2z 3737727217373
3 2°734
x (vaaa:Aaa4“A3a3)(vsafzvﬁaéuhaah) (R.18)
byby*b

and a similar expression for P 6(AZ,A3,A4).

Once one has the C-G coefficients one car. calcilate the groun weights.
We mention here that since all the "magnetic indicec" ay and bi are contrzcted
out one should be able to express the groun weipght CW(AI,A:---) in terms of
quantizies such as dimA and 6~j symbols that depend cnlv' oma the representations
(Al,AZ---). In other words one can obtain GV withomt z2var having to make the
ai; bi dependence in Palaz"' explicit. For SU(2) and SU(3) we were indead
ahle to simplifv the GW calculations considerablv bv usiap existing tahles cf
6-31 gsymbols. For general N, however, such tables aTe not available and one
has to go through explicit expressions for the P's.

In the next aprendix we derive C-C coeffi:ients Eor general M.
Plugeging them into equations (B.15) and (B.lR) we arrive at exnressions for
the P's summarized i{n tahles B.3 and P.4. As one s2es & fair amount of notation

and definitions had to be introduced to make un th2se tehles. lLet us first

explain what the svmbols mean.

Svmmetrization Svmbols:

a.a a, a
blbz % <6b16b2 o s 2)
12 12 P2hy
(r.17)
,"13233 . _1_( 2172 %3, [M1%2] "3, | P1%2), 33)
: .
hibybal * 3\ [b b, %y F bab, %) T biba i,

54—
With this normalization one nas
232 P15 _ rlaz(
bibalte eyt ey
(B.18)
3)3)33|1PyPy23| 13,353,
b132>3‘ €1€y84 l-:lczc3
where ail repeate¢ indices are surmed Zrom 1 to M, and also
algz...ak‘ -k - 1! (R.10)
. - 1! .
8j8,c 0 0a, & 1)k
Antisvrmetrization svmbnls
-[a,a 2 a
[blhz] : %(5:1%2 - 6b15b2>
172 .1 2 271
®.20)
[313233] . l([af‘z]sa: _ ["132]633 _ [31"’2] "3)
blb2h3 3 -hlbz h} b3b2 bl hlh3 h3
In genercl
[a]aZ"'ak] N 1 calaz-.-ak;k+l...cﬂc 5.om)
e T - 1kt sen o °
RIS % BN Y by RSty
a.a.--+a
) '
[alaz...ak] = IG ?.k)lkl (3.22)
172 k o

Thase syntols also ohey
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["‘1"2]["1"2] . [31"2]
blb2 €169 €3¢

(B.23)
2185715152737 Pk
b.b l,~c....-c =0
1 “172 k
Symbols with mixed upper and lower indices
These are of the form
a,a, .- b s .
1727 % | Ckrr" (8. 26)

Bee---3p T Dybytby

a
They are traceless, i.e., they vanish identically when contracted with 5aj

b 1
or Gbi (L <k, > k). Examples that we need are:
3
a S a, b a, b
1, %2 1,72 1 .*1.°2 .
s . 24,74 -=4é_6 (B.25)
[az 91] b1 a, N 32 bl
LY I LAY Y 1 aybg] Py {By3y] Py
aa, F by | T aya, %) T D \lagay|®, ¥ gl (7.26)
3833 71 22331 0y 2830 1 2?31 7y

The antisymmetric analogue of (B.26) is

Ay byag] [hobs] 1 a;hgl Py [Peag] b3
':b = Gb -m . Gb + a 6b (B.27)
283 " 3234 0 3830 ™ 283 P11

Me final object that appears in Tahle B.4 is

[ m . blbz-..bn_z] . bbby o _1_Niz[},l...hi_lmhiﬂ...hn_z Ghi
alaz-..an-z n alaz...an-z n 3 1=1 alnz- e e e .an_z n

(B.28)
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We hope Tables B.3 and B.4 are now a little less mvsterious. All
repeated dummy variables are summed from 1 to N. Projection operators for‘
other combinations of 4 or 6 U's and/or U's can be obtained bv appropriately
raising and lowering indices. Ome should also mention that the overall signs
of the P's are just a matter of convention. Thev do noé affect the prouo

weights in which the P's are alwavs paired together and appear as
blbz...
P (A,,***) x P (A, ).
aa, 2 2

Let us now work through a sample group weight calculation. Consider
the 4th order graph of Fig. B.l. We lahel the three active sites 1, 2 and 3
from left to right and follow the time evolution at each site.

d, a a, d
site 1: o vl o=t st (B.29)

1 1 N < bl

(eq. (B.29) is a special case of eq. (R.14))

d, a a, d .
site 3: o v % j0> =367 (8.30)
€ 2 R
. ' c c b 1}
a's 2 1- 2 1.8
site 2: <0} Tgr g £OA) T4 E(Ay) U fA), U U [0>
2 1 2 1
¢c.c.a’ Bh, b
<P . 120 ,p lzdde. (R.31)
%24 172
By multiplving (B.29), (B.30) and (B.3l) one ohtains:
a,aq'\/f gbyb
1—2<v 12 )(v 1 zb b (8.32)
N\ 8213 1728

L}
This 1s to be identified with CW(AZ‘AJ'AA) x % 52 5:,, where it is necessarv
a
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A
to factor out —;— 6: 6:, to properly take into account the mormalization of our

one particle state. So

a,a o' Bb.b '
1 ( 1%2 )( 172 ) . 2 .e'3
—= |P P ] 2 CH(AL AL LE 6 6., (B.33)
N2 oa,a, bleB 220300 ¥ 3

To evaluate the left hand side of (B.33) one looks ur the apnropriate P's &n

Table B.4, WUe must choose the case (vl,vz,-'-v6) = 'NMAMNN) ard one sees that

there are 6 P's to consider.

Take for instance the first P in Table B.4

» 1% J'—e——
aa,a N(N + 1) (N + 2)

12

Bb.b
12 - {EEDEED
Similarly P b b 8' o GB

'
alazu

(131&2

’(ﬂ $ 2)(1 + 1) 6:x'
6M a

1 Or+ 20 + 1) & 63

So the left hand side of eq. (B.33) = &1 == 8, a1 (R.35)
and one reads off
R N N+
o, - SRR+ D (B.36)

6n

One can go through similar procedures for the other five nossihle P's to

obtain the results listed in Table B.S.
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Appendix C: Clebsch-Gordarn Coefficients for Gemeral SU(N)

Let ¢a and t‘,a (a =1,2,...N) denote two N dimensional (covariant and
contraveriant) vectors correspending to the N and N representations of
SU(N). In this appendix we consider the cases WN>2, so that N and N are in-
ecuivalent. However, with-a few provisos the results are also applicable to
the SU(Z) case. Irreducible representatlons can be found by decomposing

Kronecker products of ¢'s and £'s. ¢ and £ are related by -

1
£ = ———¢ ‘ It (c.1)
a SV ablbz. . 'bN-l

In Table C.1 we express the representations zlready introduced in Table B.1l
as tensors built out of ¢"s and £'s. We use the same symbols defined in eq. (B.17)
through (B.28). They can actually be viewed as generalized Kronecker deltas e.g.

. tetal} a'al mdilm N . a.a.
s 12 s; 122 . o am™) " 4 = g 12‘ - HUHD
« B 1 (32 a.a 2

12 a=1 l,a=1 12

A well Erown example is the decompositior. of the product of two ¢'s into a totally

symmetr=c and a totally actisymmetric paxrt.

a. a a, a, b a,a a,a b, b
L3 1% PP [fa1% 122 102
4 7o = §°8 ')# ( (‘*[ ])¢¢
b1bz lb ) b1b2
a.a <,
+[b1b][12])¢ ¢
1°24 L5916

1 2 1® 2 232 fege,)
! |[D [c,cz] ISR 2

1P:°;

[ c.c,

From eq. (C.2) cne reads off the following C-G coefficients
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{c c . _a a,a
2| g™ oy - (3% .3 -
(m e, . The last two terms in Eq. (C.6) can be written as (using the symmetry under
interchange of a, and a,)
( B[CICZ] “ D D ) - ﬁllaz 1 2
!__1 ) .
2 {122 ;P ®3| o"1¢"2 2 |22 ’P b3‘ ¢b1¢"2 ; '8
More complicated C-G coefficients can be obtained in the same manner. We give (N+1) Pq byb,) “ag P a,} Ibb, by :
a few more examples
P b3 I:v1 b
a “a. b. b a b 1 a. by b One then notes that b b ¢ [ Eb must be proportional to I[]p> . So
¢ 153 - 6bl 632 ¢ leb - ([ ;bz] +N Gal 6b2) ' % ) ve
s 1 2 2, by 2 by - Eq. fC.8) becomes
y a.a P
-] b1, , 1 f1 o B2 A ~2_ci O
a az’c e b [} Elb 7l Gb [} €b (N+1) P a,
1’72 L N 2 /8N "1 2 (C = normalization constant)
c c : 3 . and
= [81: 2] lAdj[ 1] >+ Lol @ (c.4)
ac c 3
z ‘1 2 /N %2 p {a,a — a,a
[==Rei= N
’ a N+1 a (c.9)
Eq. (C.4) leads to 3 P a5
c a, — a .
(Adj [ 1] n a1 ;L ),: [ 1 ; cz] The constant C 1s fixed by the condition Eq. (B.lla) or
c a a c
2 2 2 1 .5 P {aja,} _ faa,) p'
. . | 2 ([ Im B (B D) e
1 ‘ 1 1 3 3
O, 4= =56 812273
, 3,0 w e .
1] 1]
conatder 2 1 total . ac? | %1%2) (P'%3) | ac? Pray 42 M ' L !
on. er a less trivial example: —_— = — —_— =
- P a2 (P 23) (212) w2 (P a3)  gupp?2 2 @
{a a,} a.a b b, b
T 1 _2 Ea ble 633 ¢ l¢ 2 Er) N , sy
3 172 3 <3 . -—C = 5
b b So (C.9) becomes
=(31 %, P ‘ 1 {™Phs 5241 _ 3 2| & o Lo 2 (aga,)
ay by by)" (WIh [bb,| “ay T WD) a b — [7_ %172
3 3 172 1 2 3 3 p . = <
R “G:] > Da3 N+l (p a5 (€.10
, (C.6) ‘
The First tern gives . In Table C.2 we list other C-G coefficients that were obtained in the
c. ¢ {a av} ’ a c A same way. From them one can construct.the projection operators of Table B.3
T2 oo™ ET..,)= 1%, % . |
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Table Canticns

Exoénsion coefficients for tie mass gan of the SU(N) x SU(N) snin svstems.

The constaats QI and C for the SU(CT) x SU(QT) models.

1

Same as Table 2 hut for the A(N) spin systems.

The constants'c for the SU(N) gauge theories. These do not include /; corrections.

Lov lying irreduciEle representations of SUQCIH).

Fundamental weipht vectors of SU(T).

Projection operators for 4 U's (see text for definiticn of the svmbols).
Projection operators for 6 U's.

Group weights for the graph of Wip.‘ﬁ.l

Tensor notation for the representations of SN(M).

Clebsch~Cordan coefficients for SU(M). N

16

32

Cl‘
-21.33333
-9

-8.53333
-8.33333
-8.22857
-8.126984
-8.031373
-8.00782

- -8.0

64~

Table 1

85.33333
-~139.9500

-7.20593
-4.00132
-2.58612
-1.35862

-.31895

-.07852

0.0

G

+796. 4444
554.7825
-15112.8957
-123.2105
~125.9475
~127.41R9
-127.9672
~127.9980

-128.0

€4
1120. 4400
400715, 66095
43476879
-18302.2934
-967.9992
-551.7410
-256.9152
-195.5264

-176.0
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Table 2 ~ahle B.1
CH c Your:gr Tableau (ql.qz...q“_l) Dimension Ouad. Casimir, C2
26.14 + 2.6 1.83 ¢ .2 [ fundamental e W21
. 1,07 %) N —_—
101.21 ¢ 2.1 4.92 ¢ .1 L
115.29 ¢ 2.1 5.47 = .1 S _ N-2 N2 -1
0 (0 '+ 1) N 5
131.56 + 2.2 6.05 = .1 :
a0 G N
= adjoint
. M2 N+ 1) N - 1N+ 2)
2,0 %) —— e Rea
Table 3
N-3 N(Y - 1) M+ DA - 2)
:, . (¢,1,07 ) —5 N
e 0.\:—’2) N+ D+ 2) I - M+ 3)
73.95 + 6.5 3.40 £ .3 ' 6 2N
24.14 £ 2.6 1.83 ¢ .2 ) ne? - 1y 3 - 3
3 N
13.76 L.34 2
4 MM - 1) - > Yy -
11.33 125 L cer 102) (O,C,l,OF- ) (N 12(1 2) 301 + ;%(! k)
8.00 .29 .0% 5 1) N+ 2 - 1) (31 - DA+ 1)
: ’ 2 oM
N-& NI - 2 = 1) O+ DO - 1)
(0,1,00 ,1) 3 N
Table 4 (Zor N>2)
N c ['_..x_.\
H Q 0.‘-1-3 2) MO+ 2)(N - 1) (3N - 1Y + 1)
2 3.71 ¢ .93 “ ' i 2 nm
[
3 (663 % 144 = 94 N - 2) 01+ 1) (Y + DO - 1)
= : N-4 . MY - N+ N+ 1) (Y -
5 12 - 13 “'1} ~[ (L, ,5.0m z 2N
6 13 - 15 -

(fcr 1U>2)
30 16 - 18
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Tahle B.2

) P .
ﬁ(d-l, =1, -1, . . . 000, =1

le(n-z, N-2, -2, -2, . . .. D)

%(N-s, Ne3, N-3, =3, . v . ., =3

1 v
ﬁ(l' 1, « ¢ v o oo, =(3-1))

(N-1, N-3, ¥-5, . . ., -(3-3), -{N-1))
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Tahle B.3
(v,v,v.v,) A P (A
1 2°3°4 a1a2a3aa
®INN
. : a, a
singlet = (:) %-Gazéa

N NFR

N-1 { 2 Adj

e

‘/"_z— {33
(N + %) al 2
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Table B.4
ORI IATAPY A, Ay A, Paa,a.e aca, Aarreehy)
172%3%,4%5%
QN NNNN:
T 0

B

'YD
[ o= H

B @

H

o

ua

’ 24253
N(H+1)(’I+2) 123
' 6 [%?%%
N - 1)(N -2) aja,ag

3'1(V - 1p 3 z g
/3 (63“ [asaﬁ]
Ve -1\ f3l®

s L
nev? - 1y LAl it

|

]

1[5
[&23)

‘4

2 ga[_: z[asas
Vhe? -y (a%ilee

o t H
NNENED:

1 — L 2 a3 3%
o, L. a: RO - DI + 2, ;alaz Foa, }
B P B el

N-1 :‘ MN + 1Y(N - 2} a,a, ’ 8,
4
rrnrreal Mg
[ i - M+ A (2 |
—=La0 ]
_ o
H - & - 1)& a

Table B.Z (cont'd)
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[t a3] 5%
Al ) T Vaer? - 1
t a
_ 0 3 [ 5 6]
o o ]-j ‘J-]m 1)
(GNFENN:
Q@ ] @ 1 ,%2,%,%
‘ I T
J— 7 a a t a
o -1 LA 3 %
! a,a a
A= 7 2?3 . % |
Adj X ¢’E Adj J-—————-ﬂ(n A= [31 : al‘aJ
E ind a,a a
Adj N-1 ‘[j Adj J———-—z———— 23, 6
\ RO -DO+2) |a, °agag
al —_— —L 532 3 %
&€ L Adj Vied -1 %1 % 3
1 a a. a
- —L 1% #] %
. ! : : §
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|

m

12 B [3536]
NV¥N -1 ay aaaa

1 A b [asas]
'(N -1+ a; T3, Lta,
1,7 % 8536‘
N¥N+1 a 3334

1 J"‘_ ,az Ct ]l es%
MN+1) ¥n- 1. a, ' a,) [t a,

2 [ & ,asas]
Vigs DD ;

3133 84
‘[ ] 3 3%
‘ NN - 1N + 2) aja, a,
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Table B.5
A2 A3 A4 Grouo Weight
aon N R ST )
jure m ] pre
g @ B M- -2
e
tn E_‘ m N -1
12n2
B B F o
‘ 128
g P o r? -1
an?

D
|~
=z

N
]
[
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Table C.1

"Magnetic" Index

Young Tableau a Tensor enresentation
d a o2
b, b b
—_— 1 2 N-
O a a’ ab.b, = h R
_ JIN - 11 21" T PNl
= .
N-1 {ﬁ:‘  Adj [31] [al : 2]0 .
= 2 a, Py ™,
(2122]) b1 2
! {2122} N R
a,e b, b
1%2 | P12
B (2122] [‘h !}-2] ¢k
aja.a b. b, b
122 3] 1.°2.73
nan {212223} [b PO AL
] & <
[ m ] m . Eptas b.\I—Z] o"E £ -k
EE a2, Ay 5| 12122 "2 n . by Thy
Ve
- ar_":’:.] by Py s
E (2122%3] [h,bﬁb, 3 e
~0
. 218 a2, by B
N-1 §{:: a a, ~ b.b L Eh
! 3 3 2 3
P a,a g.a ® k, b
= 0 I O R
n-13:: 3 3 7w 3

~ (@||51;5'3;>-7%-5:1
> LI a . b:.
(Ui, ) [

(T N U;{alazi;cf'zs) . 13‘31“233}

dbybyby

a,a

172
mt

ta3blh2- «+b,

Il

N-2

E

(ﬂlr:’z"-b“_z]ll
( = [hl:z. . '*’N-z]” ol g

(B[";bzhﬁ;l%a[alaz];a%) ) ["‘1"“2“3]

{3132} -Da3> 2 L !
' ‘/; VY

1 c“lazc €27 -2 [ )
C

BEFL

b.b

2t
1527 S-2

m
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. Table C.2 (cont'd) . b Fipure Captions
Y: e}b1b2l||'1"{ala2}-iif ) xélaz . b3 ‘ Fig. 1 B function for the SU(2) x SU(2) model.
1i-14: .} Lia ’ . * b.b .
= b3 az 33 172 Fig. 2 B functions for the SU(N) x SU(XN) spin svstems. The choice of scale.

which differs from that of Fig. 1.makes the SU(2) x SU(2) curve

identical to the 0{4) model cdrve.of Fig. 4.

Gil el ;533) 5

212,
b a3

Fig. 3 Mass gap fits tﬁ asymptotic freedom. The labelled lines are the
aM

strong coupling series for and the straight lines are /X aAp of

n
Eq. (4.1D).
Fig. 4 B functions for the 0(N) models.

Fig. 5 B functions for SU(N) gauge theories. The X used here differs from

that of ref. 5 by a square root..

a a 3 a a . . Fig. Bl Example of a fourth order diagram; Arrous pointing upwards (downwards)
b 1,773 N 1.3 .
o llaa) " ;07 ) =43 Y
2 N -1 .

represent U(ﬁ) matrix elements. A2, A3 and A4 stand for representations

i

~TJ ’ \ of SU(N) that can occur in the intermediate states.
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