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ABSTRACT

Ti,c multigroup, discrete ordinates reprcscntotion for the linear transport equation enjoys

widespread computation, al usc and popularity. Serial solution schemes and numerical algorithms

dcvclnpcd over the yrars provide a timely framework for parallel extension. On the Denclcor

11111’, we invcsligatc the parallel strl~cture and extension of a number of standard Sn approaches,

(!oncurrcnt inner swccl)s, coupled acceleration tcchniqum, synchronized inner-outer loops, and

chmtic itcr~tion are dcscribcd, and results of computations are contrasted. The multigroup

rcprcsentatiorr and serial itcraticm methods are also drl~ilcd. The basic iterative Sn method !cnds

itself to parmilcl twsking, portably affording an eflcctive mrdium for performing transport calcula-

tions Un future archilccturcs. This analysis rcpr~sents a first attempt to extend mrinl S algo-
n.

rlthms (o p~rallcl environments and provldcs good bmcline estimates cm ease of parallrl implr -

rclatlvr algorithm ~flwicncy, comporalive spcedup, and mmc fulurc (i Ircctions.m~,nlxlion, \+ (-

find l):~$ic inner-outer an:l ch~olic iteration strategies both rMily support comparr.hly high cfcgrcc+

of p~r:~ilplism lloth ac:ommod:~tc pxrallrl rcbalxncc and diffusion accrlcr~,iou and appc:ir S*

robust :md vi:ll)lc pnrti]cl icchniqucs for SnP rodurtion work
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1. INTRODUCTION

Solutions to the linear transport equation for neutral and charged particles occupy a signiEcant por-

tion of computational efforts in a wide variety of problems within production and specialized code

environments. Solution schemes fall into two well-krrown classes: probabilistic (h!ont~ Carlo) and detcr-

ministic2 methods. Considerable effort has been expended to speed up and optimize solution algorittirns

on serial machines for a wide range of applications using both methods. As W? approach cor,lputationd

limits on single procrwmrs, using optimized solution strategies, it is obvious that parallel architectures will

provide ~ f:wter and more efficient means to perform both kinds of comput~tions. Although par:dlrl

machirrcs :*rr in rarly stagm of development, it is clear how parallel algorithms can now br extended fron)

scriul whemc.+ for a broad CIMA of transport ronlputations. Multi-accclerittion and iteration processes,

mesh and material division, coupled forward-adjoint techniques, operator splitting, concurrent biasing,

and imp(trtwrre sampling for vwinncr reducti(m am! batci)ing of particle histories art’ ;trotegim ~.b:it lend

[Ilrnlsrlvrs to p:ir:dlr] processing In this an:dysis, we rxxmine pxrallelization of sorer fitandard, itrrutive,

multi group mr-th(ds for solving the linear Iloltzmann equ:~tion in the discrctc ordinates rcprcsrrrtntion.

This p:lr:irul:lr rci)rrwnt:ltion enjoys wi(lmprwul :lppc:ll ilrl~lIJV, forming the t)ackt) one of nun)(’rom~ pr(-

(Iucti(m transport :~nd couplrd physics :malysis modulm. W’r cml)l,)y the prod lction transport r(, dr,

l~S~,:] a onr.(li rllrnsiorl:ll,” l,xgrnngi:in, tinw-(!cpcndrnt S1, Irl(x!lll(. to prrform d] c;~lcu!:ltions,

I’:ir;dlrl pr(wrssing of Sn
4

itcr:~tlvo loops W:is performed on :~ single Drnolcor Ill; t) l)rocrss l;xrruti[)n

RI()(IuI(I (1’lfl\l) ‘1’h(’ 111;1’ ;n(x)rporotrs with rv~ry Whit (Ixtm rllrmory word fin a:idition:d bit for st:ltr

inf(rl!l:lti(~n whirl) rnn t:tkr ouo of two sit:~trs: full nr rmpty. Arcww to rfat ~ memory may or tn:y not uw

this :it:ito it]f(rnl:lti(m If the fu]]/rmpty blt 1s used, TTIPTTIOP’rTC-rM k prohil)itcd if one attrlnptti to re:l,!
,.

froll) (I:lt;i s(’t (’mpty or Writ(’ Into (f:\tX M’t full, hff’lnory nrc~$$l is al](lwt,(l, on the other h:ln(l, if on(I

attrn)l)ts to rend from (I:lt:i set full. This prorrw not only prrrrli( rrtul nccrss to (wrur but hlorks ~utw-

quvr)t r(’:ds I)y twtting the ~t:~tr I)it to empty, (:onvcrtwly, writing ir, to (iat:i rwt rmpty roscts the st:kfo I); (

to full, ltnft~rrrrr)cnt of thww :wressrs is known n~ “rworrt)(), w(lirlg” an{l is irll])lrlnenhl in h:~r(lwarr i)r{k

vidir)g a vrry Ilrxit)l(’, Iow-ovrrhr:d” synch roniznti~)n n:rrhani:;rn,



Archi~cturally, the HEI’ is a pipclined

possessrs the capability to execute multiple,

using minor Ianguagc extcnsions5 to Fortran

machine which, combinrd with data Icvcl synchronization,

cooperating parallel streams of instructions. Furthrrrnorp,

(n~mely, CREATE to spawn parallel prncesses and $ vari-

ables to invoke scoreboardi~g memory access), parallel algorithms a“e e=ily developed and lcstwl on a

single I’E51.

Section 2 briefly reviews the multigroup transport equa(ion in the

dt-scribes the nested iteration schcmcs used to SOIVCthe equation, and details

discrete ordinates picture,

two acceleration tccbniqum

widely employed to speed calculations, Sect!on 3 contrasts parallel r,xtensions of basic serial strategim

and details rmuts, Section 4 summarizes the analysis.

2. LINEAR TRANSPORT EQUATION AND METHODOLOGY

The multigroup, disc:ctr ordinritcs equation can be writtcnG

mom (; M. I
-1 — .; nvd~m + Ug’lgm = ~ ~“lgdjf’l(~m) + Qfn,IIg

(3t
(1)

A-11-=1

M x compact rrprrwntmtion of lhc transport cquxlion with II the particle flux, f the time, Q the vxtrrnrd

~m]rcr, II the vclocit:; , o the trmsport cross section, fl a unit vcc(or in tlrc direction of particle trnvcl. and

discwtizatitm indices on the energy and ~n~,ul~r

multi group angulor Ilrlxcs Nrc funrlioos 01 parli-

rlc posititm, dirm-tion, rnr-r~, nnd time ~ntisfying the rrlxtionship

(:)
‘t n -1

n~n (;:lussi:ln quxdr:~lurr wrights for f) “ which intrgr:itr thv n7,imuthfilly ~yl]lnlctrir fing,ul;~r llu~:. ‘]’hr twt~

qu:lntilir~ with ~ulwrwrillts in I’;q. (I), @~ and m~p, nrr thr apljr(lpri;ltr grolll~av(r:lgt-(1 I,t-grl}(lro lll(llll(.lll$

~~f lhr- flux :in[l diflrrrlltl;il rloss srclion, Thr diflf’rrnti:d rross nrc(ions also s:ltlsry thr norlll:iI17,:iti(jll,



a;= *go:*. (a)

Spatial differencing of the 6treaming term can be highly probiem dependent, particle dependent (neutral

or charged) and required to mtisfy conservation lawn. 2’3 Linear discontinuous, ●xponential, and diamond

wh.me/’3’f>8 have all been used with success in applications involving neutral and charged particles.

Angular differencing is usually b~ed on the diamond approximatinn2

with m+ 1/2 denoting the edge values In order to recover the exact represent~tirm of the angular part of

.
thr streaming operator: in the various one-dimensional geometries, we introduce recursive angular

coetTicicnts, am + lis, given hy

am }1/2 - ~m-r/? = -(k-l )wm~m , (!5)

with k=l ,2,3 for plnnr, cylindrical, or sphcriral gmmctry. Itrollows2’5 from llq. (4) for initinl dues,

= t-l (0)

+ ‘m l/2)/tl)m Pwn (u)

The timr drrlvxlivr is diffrrrnrml in thr implirit pir-

with k the timr indrx, All othrr qunntllim in 1121,(1) rnrry lhe currrnt vrilur of k,



particle consemation locally) and diffusion acceleration (coupling diflusion oolutions to kernel iterations)

*1’12 For clarity, it is convenient to rewrite the tran-techniques are employed to cut computational time.

6por~ equation in compact operator form, where * is the flux,

LO+ ZO==(S+U+D)4+Q (lo)

and L, Z, S, ?~, D and Q are the sheaming,collision,oelf-scatter, upscatter, downscatter, and external

source operators, rcsfwctivcly. UpscM.er or downscatter underscore energy transfers between higher or

lower energy group~, while self-scatter implies no energy transfer. Upscattcr aml downscattcr couple

different energy groups (outrr), while self-scatter only couples within-group duxes (innrr). Denoting an

iteration index, i, the outer scheme takes the symbolic form

L@l+l + ~+1+1 =SI#I’+l+ (D+ U)@’+ Q, (11)

The outer source, (D + U)@’, is “omputrd from the prrvious iterate, and the external source, Q, is con-

stant, For inner itcratimrs, we define a flxcd effective source, QQ,

QQ’ = (D -i U)*’ + Q (12)

in the solution r+wm-psfrrwn highrw to Iowrr tnrrgy groups. Ilaving obtained QQ’, cm~ thrn srdvrs thr

within-group rquation in the innrr stmtcgy

with j drnoting thr innrr itrmtion CYCIO,in analogy to the outer indrx i, In this romputfition:d cyclr,

Ij’q, ( 13) i itrr:llrd until ronvrr~rnre is met. Fhch rmtrr itrrntion thus il,volvrs onr P:WI through xII

enrrgy groups in s~~lvingItq, ( 13), ,41 thr cnd of rarh outer cyclr, ronvrrgrncc i~ agnin trslrd ,~nd QQ’ is

vpdntml for ~hr nrst itrr:ltion, i; nrcmsar:~, Thi~ durd itcr,~ti.m ~1.ratr~ is populsrly r:dlrd thr innrr-

tmt rr swrrp, with sprrt r:d r:ulius and ronvcrgrncr propcr!irs drtrrnlirrcd I)y thr norm of thr ilrrnt i~m

mntrix, (L + Lj 1 S



enforces conservation after inner cycles in the following general way. Defining Ieflward and rightward

flows in zone k,

Lq-1/2
= ~w&i ‘-’/’@:; I/’

❑ =1

effective ab~orpt:on.

Ah’; = (“, -- a,,) Sw“ 1“4;.,
m=1

(14)

(15)

.%s; = : UI. ~“ QQ;n , (16)
n=]

with .4 awl 1’ the approprirde zone lransvmc arexs and volumes, onc rrhdanrr.~ the fluxrw hy Ijrst wdv-

An; ) == m;+ J’ ‘ffL; ‘ + /~+ ’LL;+’ (17)

and thrn applying [ho fartors, j$, multi plirativcly to the angular fluxes, ti~”, bcforr thr nrxt itwatkn.

Itqu:ltion ( 17) rcprrsents a tridingonal Rystcm for the rebalance factors which may bc solvmf by forward

clinlinnti(ln-l)wkw:~r(l substitution. At convrrgcncr, J$ ~ 1.

Ilitlusioo nm.olrratmn ix r.imilfir to rchalancc but

thr sr:~l:w flux to arrrlrrxtc transpnrt iterations.

is writtrn

rrlics upon Rolution of a corrrctrd diflusion m~u;~tinn

The corrcctcd diflusirm ●quation for thr scdm flux,

whrrr

(lo)



and the correction term, C9, represents the flow difference between the streaming transport and diffusion

ope: atom

(20;

for

The approach used to accelerate transport solutions ia to first solve the transport equation for the angular

flux, 4P, construct the source correction, C~, using Eq. (20), aod then obtain an estimate of the ditTusion

corrected scafar flux from Eq. (20). This corrected estimate of the scalsr flux is finally used in the 6catter-

ing term on the right-hand side of Eq. (1) to accelerate iterations on the transport kernel. At conver-

gence, the balanced transport equatior (integrated over angle) results from Eqs. (18) and (?0). \’ariants of

both methods have proved useful in practice.
~1~

3. PARALLEL ITERATION SCHEMES

The foregoing stra!rgics have evo!vcd over a number of years in production applications. They form

a compart nucleus for developing pmallcl algorithms. Since their use is widesprcarl, investigation of their

parallel implcmentat ion is 31s0 timely. Before detailing their parallclization, a few comments arc

appmprixte.

The p~rtirular inner-out.m iteration scheme dewribed above and ●mployed in the bulk of existing Sn

comput ntion al moduhw is w(, IIsuitrd for parallel prrmwsing. Each group can be prcmsiqml a pnrnllrl

process for thr enrr~v Kwmps in outright fz~hion, or self-scheduled amrmg parallel prormsrs as they

Iwcomr availahlr. Inner swrvps arc thm rynchrrmized within outer loops in natural analogy with ~itrinl

mclhnds. c~onvcrgrncr tests on the flux itrratcs cm also be perforrncti in the strmdsrd inner.thm-r-outrr

fashiorr prmrntly usrd, or thr flux iterattw can hc chnntirdly upda[mf and tw+tml for ovrrall ronvcrgollr~,,

(’hm~tir itrr:itifm mrthm.ls arr rmily implrmctltrd insidi- (IIC inrrrr-outct Im)lw, r:mging fr(m) ful!y t,, I):~r-

tinlly rhaotir dcprntting on the numlwr of pr(wrssrs updating the flux itrratm,



.4cceleration schemes can also be coupled to inner-outer sweeps by ●mploying flux iterates from pre-

vious cycles to accelerate the calculation. Both rebalance and diffusion synthetic comp’]tations can be

b~ckstepped one iteration cycle and synchronized with the present transport sweep. Parallel acceleration

routines can also be loaded inside loops. For chaotic iterations, acceleration techniques can Le applied

randomly, sequentially, or after selective convergence tests.

We examine two parallel iteration schemes, termed TPMG (multigroup) and TPCC (chaotic conver-

gence), that take the operational forms, respectively,

L41+lJ+~ + ~~l+l,J+l = Sa’+lIJ + (D + U)+’ + Q (~~)

L~l+l,)+l + ~@l+l,J+l = s41+1.J + D@I+l + (1

The parameter q quantities the degree of chaoficity of TPCC.

spawned per total number of energy groups in the application.

- q)U@ + 7U*’+1 + Q . (23)

ItdcT xrds on the number of procmses

With a single spswncd process, 7 = O,

while for spawned processes equal to the number of energy groups, q = 1. TtIc chaoticify of TPCC’

ranges from non-cbmt ic to fully chaotic .W 7 ranges from O to 1. The scheme TPMG is cmnplrtely

ordered, as in the serial c~%e, on th~ other h~nd, TPCC becomes increasingly disordered ZMthr number

of proces.scs spawned approaches the number of groups. Because TPMG is complclcly ordrrrd, onc

expects the total iteration count at convergence to be independent of the number of parxllrl processes

assigucd to the t~sk, and to equal tbe serial count. Iteration counts for ‘l’I)CC are exprcted to vary will]

spawnrd processes.

For lCSt purposes, tW(J Mode] prob]rrns were chosen. The first is a 5-group boundary murcr of clrr-

trons, Maxwellian distributed in energy at T= 10 kcl’ and isotropic in direction, incident on a thin slab

varying in thickness from 2 to 4 mean free paths. The scattming ratio, IY~/o~+ u~, with o, and CU thr

scattering and absorption cross sections, is unity (no absorption). Only adjacent group~ are coupled by

tht scn.ttming matrix in a Fokker-Planck approximation. Tbe rwcond is a I&group, isotropic hound:iry

source of photons, Plnnckian distributed in energy at T= 100 kel’, incidmt on a sphere d 610 10 mmm

frw pathR thickness. The m.attcring ratio varies from 0.6 to (),85 and all enqgy groups arr Compton cou-
.

plrd. A S4 qundtnturc is assigned in both ttwt cases. ESNi$ is used for c;dculations with cnnvmgmwe cri-



teria of 10+. Both problems induce representative demands on the Sn method that are realistic and com-

mon in applications,

Our hrst (&group, pure scat! ‘rer) test problem was run serially in both standard inner-outer and

chaotic modes, with and without acceleration, to provide b=clines. The 5 static, inner, group loops were

preassigned and processed in parallel. Synchronization was enforced on the inner loops before outer con-

vergence tests. Simple coarse mesh rebalance was employed b accelerate convergence at the beginning of

each outer cycle, u ing the previous, or last, set of flux iterates. Tbe execution times (see) for various

TDCC denotingthe ptiallei inner-outer andcases are compared below in Table 1, with TPVIC SSd . .

chaotic iteration strategies, respectively. ltcration cycle counts are listed in Table 2.

TABLE 1. Scatterer Test Problem Execution Times (see)

MODE ACCELERATION TPMC TPCC
serial

none 164?.2 1208.4
rebalance 1314.5 gg~j

parallel
none 341.3 318.6
rebalance ?73.8 ??~ ~

TAIILE 2. Scatterer Test Problem Iteration Count

MODE ACCE1.ERATION TPhfG TPCC
wrial

none 300 240
rebalance ~,lo 187

parallel
none 300 ~1~

rcbalanrc 24(I 150

Tables 1 and 2 exhibit some interesting features, Parallel specdup in execution time is nc~r th~ theoreti-

cal m.xirnum15 of L, with and without accelerztirm. This is not surprising since the very Iargr granul;m-

ity of th? iteration schrmcs ovmshadow overhead in exrcuting 5 procesnrs in parallel. Chwtic itcrstion

schrmm arc crrtainly faster thnn ordered innrr-outrr sweeps, but. by a ~mallrr margin in the parallrl cm.e.



parallel chaotic iteration with rebafanr” is about 8 times f~ter than aerial inner-outer iteration with no

acceleration ~ the slowest caw. Iteration counts for the standard inner-outer schemes are the same smi-

afly or in parallel. Again, this is to be ●xpected since inner loops were synchronized before outer conver-

gence tests and is, of course, the re=on the parallel speedup in this test problem is close to 5. Ccmr!. rrent

rebalance acceleration cut both run times and iteratinn counts. The parallel chaotic sweeps require fewer

iterations than parallel inuer-outer sweeps and less time to inner convergence. The performance (speedup)

of the parallel chaotic scheme results from the fact that inner Icmps are also paxsing converged flux

iterates to all other loops as scattered outer sources. Both the inner-outer (TPMG) ad chaotic (TrCC!)

itera~ion patterns show noteworthy parallel gain and are easily implemented in any standard Sn module.

The second test problem (l&group, absorber-scatterer) was run serially and in parallel. A dynamical

scheduling technique wzc implemented allowing group sweeps to be executed in Farallel using varying

numbers of processes ( 1 to 16). Diffusion synthetic acceleration was employed !II the inner sweeps in all

calculations, Both inner-outer and chaotic iteration patterns were tested. Results are summarixec! in Fig-

ures 1 through 3. Figure 1 contrmts raw execution times (100 see) for inne:-outer (TPhlG) and chaotic

(TP(’C) schemes. Figure 2 plots rriative speedup over wrial processing time, am-l Figure 3, in anafogy

with Table 2, cnntr~ts total i~ration counts ‘L’itli 1 to 16 procestmrs.

Results for the secord problcm reinforce the tlmt. Execution time- for TPCC are consistently lower

than TPhlG for any number of proresscs assigned to the inner loop, except in the ccu~eof 8 or 9 processes

for which execution times are roughly tbc same. Roth iteration schemes exhibited t’ eir optimal p~~ior-

mancr with 16 procosscs. Thr ovmall pmdlcl gain with incre~ing numbers of processes is a monntonie

curve for both schcmcs. Although TPCC is fkstcr than TPMCJ overtill, the relative speed up, or gain, over

single prnccss exccaiion time is greater for the paraflelized inner-outm scheme. Both Schrmes show

drnm~tic relative speedup fnr 16 processes, corresponding to the execution time minima at 1(’Jprocwxws,

ltcralion counts for TPMG are requisite constants, as in th~ prficm!ing case. The iteration count for

T1’CCI also has z rrlativc minimum at 16 procvsws, d~opping down by a fmtor of roughly 45F~ over adja-

cent vmlum. Agnin, both the innm-outer and chaotic schcmrs show significant parallel gain.



4. SUMMARY

Analysis of the foregoing iteration stratcgiee on the transport kernel indicate opeedu~ roughly pr~

portional to the number of procetwcs for inner-outer and chmtic echwnc~ with concurrent acceleration.

Chaotic iteration is slightly fast.el than the parallelized standard inner-outer algorithm. 130th schemes

easily gemerzlize to parallel environments. Concurrent. rebalance or diffusion acceleraticm anpear similarly

etiective in both the parallel and serial case. In both iteration strahgim, major loop9 are para!!clized to

take advantage of the large comrm~atiooa! grmularity ❑ecessary for eflective parailcl performance. Sim-

ple parallel processing of Sn inner group swwps has been shown to at?ord significant savings in computa-

tional time with an absolute minimum of repo,:ramming aud retrofitting. In production modules, we

have drmonstrat,ad that these approaches will have unusuallyhigh Pwdf.

These initial parallel processing efforts suggest a number of additional resw.wrh activities which we

arc actively pursuing. Coupled inner-cmtm and chaotic schemes for

M upsrnttrr predominance or pure scatter), chaotic divergence, block

specialized physicai situatirms (such

itwation, and optimized acceleration

trchniqurs are under invcstigntion,
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