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ABSTRACT

Tlhe multigroup, discrete ordinates representation for the linear transport equation enjoys
widespread computational use and popularity. Serial solution schemes and numerical algorithms
developed over the years provide a timely framework for parallel extension. On the Denclcor
HEP, we investigate the parallel strncture and extension of a number of standard S_ approaches,
Concurrent inner sweeps, coupled acceleration techniques, synchronized inner-outer loops, and
chaotic iteration are described, and results of computations are contrasted. The multigroup
representation and serial iteration methods are also detziled. The basic iterative S method lends
itsell to parallel tasking, portably aflording an eflective medium for performing transport calcula-
tions on future architectures. This analysis represents a first attempt to extend serial S_ algo-
rithms to parallel environments and provides good baseline estimates on ease of parallel impe-
mentation, relative algorithm efliciency, comparative speedup, and some future directions. We
find basiz inner-outer and chaolic iteration strategies both easily support comparebly high degrees
of parailelism  Both aczommodate parallel rebalance and diffusion acceleradon and appear as
robust and viable parailel techniques for Sn produrtion work.
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1. INTRODUCTION

Solutions to the lincar transport equation for neutral and charged particles occupy a signifcant por-
tion of computational efforts in a wide variety of problems within production ard specialized code
environments. Solution schemes fall into two well-known classes: probabilistic1 (Monte Carlo) and deter-
ministice methods. Considerable effort has been expended to speed up and optimize solution algorithims
on serial machines for a wide range of applications using both methods. As we approach corniputational
limits on single processors, using optimized solution strategies, it is obvious that parallel architectures will
provide a faster and more eflicient means to perform both kinds of computations. Although parallel
machines are in carly stages of development, it is clear how parallel algorithms can now be extended from
serisl schemes for a broad class of transport romputations. Multi-acceleration and iteration processes,
mesh and material division, coupled forward-adjoint techniques, operator splitting, concurrent biasing,
and importance sampling for variance reduction and batching of particle histories are strotegies that lend
themselves to parallel processing. In this analysis, we examine parallelization of some standard, iterative,
multigroup methods for solving the linear Boltzmann equation in the discrete ordinates representation,
This particular representation enjoys widespread appeal and wse, forming the backbone of numerous pre-
duction transport and coupled physics analysis modules. We employ the prod ction transport code,

ont 3 . . . . . .
SN, a one-dimensional, Lagrangian, time-dependent S" moduvle to perform all caleulations,

Parallel processing of Sn iterative loops was performed on a single Denelcor HEP Process Execution
Module (PEM). The HEP incorporates with every 64-bit data memory word an additional bit for state
information which can take one of two states: full or empty. Aceess to data memary may or may not use
this state information. If the full/empty bit is used, memory access is prohibited if one attempts to rea!
from datia set empty or write into data set full. Memory access is allowed, on the other hand, if one
attempts to read from data set full. This process not only permit - read access to oceur but blocks subse-
quent reads by setting the state bit to empty. Conversely, writing inte data set empty resets the state bit
to full. Enforcement of these accesses is known as "scorcboarding” ana is iniplemented in hardware pro-

viding a very flexible, low-overhead synchronization mechanism,



Architecturally, the HEP is a pipelined machine which, combined with data level synchronization,
possesses the capability to execute multiple, cooperating parallel streams of instructions. Furthermore,
using minor language extcnsion55 to Fortran (namely, CREATE to spawn parallel pracesses and § vari-
ables to invoke scoreboardicg memory access), parallel algorithms are easily developed and tested on a
single PEN.

Section 2 briefly reviews the multigroup transport equation in the discrete ordinates picture,
describes the ncsted i?eration schemes used to solve the equation, and details two acceleration techniques
widely employed to speed calculations. Section 3 contrasts parallel extensions of basic serial strategies

and details resuts. Section 4 summarizes the analysis.

2. LINEAR TRANSPORT EQUATION AND METHODOLOQGY

The multigroup, discrete ordinates equation can be wri'.t(-n6

,.("mm . oM It
e QUdm + 0,0m = Y, VL ondiP(20) + Q. (1

A ) =]

v

as a compact representation of the transport equation with ¢ the particle flux, { the time, @ the external
source, v the velocity, ¢ the transport cross section, {1 a unit vector in the direction of particle travel, and
I Legendre polynamials. The indices g and m are the discretization indices on the energy and angula:
domains, respectively, 1 € ¢ < ¢, 1 < m < M. The multigroup angular luxes are functions ot parti-

cle position, direction, energy, and time ratisfying the relationship

LFER M
f dtfd(M(r,ﬂx,f):1ﬂ)_:11’"¢g" k ()

with r the position coordinate (one-dimensional slab, eylindrical or spherical geometry), ¢ the encrgy, and
w, Gaussian quadeature weights for (2, which integrate the azimuthally sy mmetric angular flus. The two
quantities with superseripts in Lq. (1), é, and n,{,, are the appropriate group-averaged Legendre mements

of the flux and differential cross aection. The diflerential eross sections also satisfy the norunalization,
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o= Y, 0. (3)
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Spatial differencing of the streaming term can be highly probiem dependent, particle dependent (neutral

or charged) and required to satisfy conservation I:w'm.e'3 Linear discontinuous, exponential, and diamond

r,cht-mesg‘s'ﬁ'8 have all been used with success in applications involving ncutral and charged particles.

Angular differencing is usually based on the diamond approximation2
2¢qm = ¢'n+l/".‘ + ¢n-l/2 ’ (4)

with m= 1/2 denoting the cdge values. In order to recover the exact representation of the angular part of
f, 3 . » - n ]
the streaming operator” in the various one-dimensional geometries, we introduce recursive angular

cocflicients, apm, 172, given by
Omyrpe - Omoyje = -(k-1)wppy (%)
with k=1,2.3 for plane, evlindrical, or spherical geometry. It rollowsr‘!"5 from Eq.(4) for initial - lues,
ape = Qyarpa =0 (6)

that the full streaming operator can be writien generally

¢
n'végm = fom -()% + Um T r-l(¢"‘ - ¢m I/:.‘) (7)
for
Tm = (Omprpz + “m-l/’-‘)/wm"m (R)

and r the appropriate spatial coordinate, as hefore. The time denvative is differenced in the implicit pic-

ture
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with & the time index. All other quantities in Liq. (1) carry the current value of k.

Eguation (1) is an integro-cdhfferential expression that is solved by successive flux iteration on the

K10 Iter

first term of the right-hand ride, ations with A==g are the within-group, or innrr iterations, while

iterations for A # g represent outer iterations  To sapeed up these cycles, flow rebalance (enforcing



particle conservation locally) and diffusion acceleration (coupling diffusion solutions to kernel iterations)

11,12

techniques are employed to cut computational time. For clarity, it is convenient to rewrite the tran-

sport equation in compact operator form, where @ is the flux,
L)+ L&d=(S+ U+ D)+ Q (10)

and L, L, 8, 1" D and Q are the streaming, collision, self-scatter, upscatter, downscatter, and external
source operators, respectively. Upscatter or downscatter underscore energy transfers between higher or
lower encrgy groups, while self-scatter implies no energy tramsfer. Upscatter and downsecatter couple
different energy groups (outer), while self-scatter only couples within-group duxes (inner). Denoting an

iteration index, 1, the outer scheme takes the symbolic form
Lo't' + Lot =8¢+ 4+ (D+ U)d' + Q. (11)

The outer source, (D + U)®', is romputed from the previous iterate, and the external source, Q, is con-

stant. For inner iterations, we define a fixed eflective source, QQ,
eR' =(D+ UM + Q (12)

in the solution sweeps from higher to lower energy groups. Having obtained QQ', one then solves the

within-group equation in the inner strategy
Lo+t 4 pordltl = go'+ly 4 QQ', (13)

with j denoting the inner iteration eycle, in analogy to the outer index 1. In this computational eyele,
Fq. (13) i iterated until converpence is met. Each outer iteration thus involves one pass through all
energy groups in solving Eq. (13). At the end of each outer eyele, convergence i« again tested and QQ' ix
apdated for the next iteration, if necessary. This dual iteration strategy is popularly cualled the inner-
outer sweep, with spectral radius and convergence propertics determined by the norm of the iteration

matrix, (L + L)'S8

For most applications, the nested inner-outer scheme deserihed above converges rapidly. However,
there exist problems (optically thick regions, pure seattering, little absorption and spectral radius close to

1) for which algorithms require excessive iterations for convergence. To remedy these problems, both

11 011

0
mesh rebalance™ and diffusion acceleration " have proved useful. Mesh rebalincee effectively



enforces conservation after inner cycles in the following genmeral way. Defining leftward and rightward

flows in zone k,

k-1/2 MA: k-1/2 4 k-1/2
LL, - L wn“nA ¢gll

nme)
M o) n
RL;¥'W = Y wop, At g 008 (14)
ne=M /2
effective absorption,
k ad ko k
AB; = ((7’ - 0”) S Wy v d’gln (15)
am=]
and source,
P %) ¢ &
ssi= X w1 Q). (16)
ne=}

with 4 and V' the appropriate zone transverse areas and volumes, one rebalances the Auxes by first solv-

ing the equation for the rebalance factors, f,
JECLL YRy RLIYVE 4 AB} ) =SS} 4 [YRL; 4 [HLLIE (17)

and then applying the factors, f:. multiplicatively to the angular fluxes, ¢,‘,,,, before the next iteration.
Equation (17) represents a tridingonal system for the rebalance factors which may be solved by forward

elimination-hackward substitution. At convergence, f: — 1.

Diffusion acceleration is similar to rebalance but relies upon solution of a corrected diffusion equation
for the scalar flux to accelerate transport iterations. The corrected diffusion equation for the scalar flux,

¢, is written

Vde'm + x'|¢' = QQ’,‘ ("91 “8)

where

v (19)



and the correction term, C,, represents the flow difference between the streaming transport and diffusion

ope:ators
C,=vi, + vid,vé, (20;
for
J, = [dand,(-.0,). (21)

The approach used to accelerate transport solutions is to first solve vhe transport equation for the angular
flux, ¢ m, construct the source correction, C,, using Eq. (20), and then obtain an estimate of the diffusion
corrected scalar flux from Eq. (20). This corrected estimate of the scalar flux is finally used in the scatter-
ing term on the right-hand side of Eq. (1) to accelerate iterations on the transport kernel. At conver-
gence, the balanced transport equatior {integrated over angle) results from Eqs. (18) and (20). Variants of

both methods have proved useful in pra.ct,ice.g'12

3. PARALLEL ITERATION SCHEMES

The foregoing strategies have evolved over a number of years in production applications. They form
a compact nucleus for developing parallel algorithms. Since their use is widespread, investigation of their
parallel implementation is also timely. Before detailing their parallelization, a few comments are

appropriate.

The particular inner-outer iteration scheme described above and employed in the bulk of existing Sn
computational modules is well suited for parallel processing. Each group can be preassitned a parallel
process for the energy sweeps in outright fashion, or self-scheduled among parallel processes as they
become available. Inner sweeps are then synchronized within outer loops in natural analogy with serial
methods. Convergence tests on the flux iterates can also be performed in the standard inner-then-cuter
fashion presently usee, or the flux iterates can be chaotically updated and tested for averall convergence.
Chaotie iteration methods are easily implemented inside the inner-outer loops, ranging from fully to par-

tially chaotic depending on the number of processes updating the flux iterates,



Acceleration schemes can aiso be coupled to inner-outer sweeps by employing flux iterates from pre-
vious cyclus to accelerate the calculation. Both rebalance and diffusion synthetic computations can be
backstepped one iteration cycle and synchronized with the preseat transport sweep. Parallel acceleration
routines can also be loaded inside loops. For chaotic iterations, acceleration techniques can e applied

randomly, sequentially, or after selective convergence tests.

We examine two parallel iteration schemes, termed TPMG (multigroup) and TPCC (chaotic conver-

gence), that take the operational forms, respectively,

L'+l 4 pne'tlotl - gty 4 (D + U)’I + Q (22)

Lottt 4 g+t = 8¢ty 4 Do+l 4+ (1-1)Us' + 7USH + Q. (23)

The parameter 4 quantifies the degree of chaoticity of TPCC. It dep>nds on the number of processes
spawned per total number of energy groups in thc application. With a single spawned process, v = 0,
while for spawned processes equal to the number of energy groups, v = 1. The chaoticily of TPCC
ranges from non-chaotic to fully chaotic as < ranges from 0 to 1. The scheme TPMG is completely
ordered, as in the serial case. On the other hand, TPCC becomes increasingly disordered as the number
of processes spawned approaches the number of groups. Because TPPMG is completely ordered, one
expects the total iteration count at convergence to be independent of the number of parallel processes
assigned to the task, and to equal the serial count. Iteration counts for TPCC are expected to vary with

spawned processes.

For test purposes, two model problems were chosen. The first is a 5-group boundary source of ¢lec-
trons, Maxwellian distributed in energy at T=10 keV and isotropic in direction, incident on a thin slab
varying in thickness from 2 to 4 mean free paths. The scattering ratio, 7, /o, + 0,, with ¢, and ¢, the
scattering and absorpuion cross sections, is unity (no absorption). Only adjacent groups are coupled by
the scattering matrix in a Fokker-Planck approximation. The second is a 16-group, isotropic houndaury
source of photons, Planckian distributed in energy at T=100 keV, incident on a sphere of 6 to 10 mean
free paths thickness. The scattering ratio varies from 0.6 to 0.85 and all energy groups are Compton cou-

pled. A 84 quadrature is assigned in hoth test cases. ESN3 is used for calculations with convergence cri-



teria of 10™%. Both problems induce representative demands on the Sn method that are realistic and com-

mon in applications.

Our hist (5-group, pure scatt rer) test problem was run serially in both standard inner-outer and
chaotic modes, with and without acceleration, to provide basclines. The 5 static, inner, group loops were
preassigned and processed in parallel. Synchronization was ecforced on the inner loops before outer con-
vergence tests. Simple coarse mesh rebalance was employed to accelerate convergence at the beginning of
each outer cycle, u ing the previous, or last, set of flux iterates. The execution times (sec) for various
cases are compared below in Table 1, with TPMC ard TI'CC denoting the parallel inner-outer and

chaotic iteration strategies, respectively. lteration cycle counts are listed ia Table 2.

TABLE 1. Scatterer Tst Problem Exccution Times (sec)

MODE ACCELERATION TPMG TPCC

serial
none 1642.2 12084
rebalance 1314.5 982.6
paralle}
none 341.3 318.6
rebalance 738 2241

TADBLE 2. Scatterer Test Problem Iteration Count

MODE  ACCELERATION TPMG TPCC

serial
none 300 240
rebalance 2410 187
parallel
none 300 212
rebalance 240 150

Tables 1 and 2 exhibit some interesting features. I’arallel speedup in execution time is near the thenrvli-.
cal m:\xirnuml‘r’ of 5, with and witkout acceleration. This is not surprizing since the very large granular-
ity of the iteration schemes overshadow overhead in executing 5 processes in parallel. Chaotic iteration
schemes are certainly faster than ordered inner-outer sweeps, but by a smaller margin in the parallel case.

Rebalance easily accelerates both serial and parallel computations by factors of 200G to 3970, Clearly



parallel chaotic iteration with rebalanc~ is about 8 times faster than serial inner-outer iteration with no
acceleration as the slowest case. lIteration counts for the standard inner-outer schemes are the same seri-
ally or in parallel. Again, this is to be expected since inner loops were synchronized before outer conver-
gence tests and is, of course, the reason the parallel speedup in this test problem is close to 5. Cencrrrent
rebalance acceleratiqn cut both run tirﬁes and iteratinn counts. The parallel chaotic sweeps require fewer
iterations than parallel inuer-outer sweeps and less time to inner convergence. The performance (speedup)
of the parallel chaotic scheme results from the fact that inner loops are also passing converged flux
iterates to all other loops as scattered outer sources. Both the inner-outer (TPMG) ané chaotic (TPCC)

iteration patterns show noteworthy parallel gain and are easily implemented in any standard Sn module.

The second test problem (16-group., absorber-sclatterer) was run serially and in paraliel. A dvnamical
scheduling technique was implemented allowing group sweeps to be executed in parallel using varying
numbers of processes (1 to 16). Diffusion synthetic acceleraticn was employed in the inner sweeps in all
calculations. Both inner-outer and chaotic iteration patterns were tested. Results are summarized in Fig-
ures 1 through 3. Figure 1 contrasts raw execution times (100 sec) for inner-outer (TPMG) and chaotic
(TPCC) schemes. Figure 2 plots reiative speedup over serial processing time, and Figure 3, in analogy

with Table 2, contrasts total iteration counts *vitk 1 to 16 processors.

Results for the secord problem reinforce the first. Execution time- for TPCC are consistently lower
than TPMG for any number of processes assigned to the inner loop, except in the case of 8 or 9 processcs
for which execution times are roughly the same. Both ileration schemes exhibited t'eir optimal perfor-
mance with 16 processes. The overall parallel gain with increasing numbers of processes is a monotonic
curve for both schemes. Although TPCC is faster than TPMG overull, the relative speedup, or gain, over
single process execuyiion time is greater for the parallelized inner-outer scheme. Both schemes show
dramatic relative speedup for 16 processes, corresponding to the execution time minima at 16 processes.
Iteration counts for TPMG are requisite constants, as in the proceding case. The iteration count for
TPCC also has a relative minimum at 16 processes, diopping down by a factor of roughly 457 over adja-

cent values. Again. both the inner-outer and chaotic schemes show significant parallel gain.



4. SUMMARY

Analysis of the foregoing iteration stratcgies on the transport kernel indicate speedup roughly pro-
portional to the number of processcs for inner-outer and chaotic schemee with concurrent acceleration.
Cbhaotic iteration is slightly faster than the parallelized standard inner-outer algorithm. Both schemes
easily generalize to parallel environments. Concurrent rebalance or diffusion acceleration appear similarly
eflective in both the parallel and serial case. In both iteration strategies, major loops are parallelized to
take advantage of the large compntational granularity necessary fc;r eflective parailel performance. Sim-
ple parallel processing of Sn inner group swocps has been shown to aflord significant savings in computa-
tional time with an absolute minimum of rerro::ramming aud retrofitting. In production modules, we

have dumonstrat~d that these approaches will have unusually high payof.

These initial parallel processing efforts suggest a number of additional research activities which we
are actively pursuing. Coupled inncr-outer and chaotic schemes for specialized physicai situations (such
as upscatter predominance or pure scatter), chaotic divergence, block iteration, and optimized acceleration

techniques are under investigation.
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