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We have looked at the possible transverse instability effects which 
are caused by the deflecting modes of the R.F. cavities in PE?. The results 
are obtained by applying the expression of the instability damping (or 
anti-damping if T " < 0) rate: 

-I . 3 K e 2 c £ R, (3k + vi + v R + «w ) J 2 f <3k + V + v. + mv - £) a] 
Tym 4iTT E v a ktic i ^ e s/ m L B s a J 
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where we have assumed that there are three equal bunches equally spaced in 
PEP. Symbols are defined in Table 1; v and TO are mode numbers. Derivation 
of Eq. (1) will be given in Appendix IV. 

In Appendix I, we have worked out the equivalent of Eq. (1) for a 
single bunch beam. The analysis follows that of Sacherer's . The effect 
of chromaticity £ is included as a frequency shirt in the bunch mode spectra. 
In Appendix II, we will rewrite this result in terms of the transverse wake 
field instead of the impedance. 

We include in Appendix III an application of the Sacherer formalism 
to the case of resistive wall. The resulting expression of the damping 
rate contains two terms. The first term corresponds to the effect of the 
short wake fields; it agrees with the result of the head-tail instability 

(2) as derived by Sands. A numerical estimate of this resistive-wall head 
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tail case for PEP Is given at the end of Appendix III. It re-confirms that 

the resistive wall instability is not a serious problem for PEP. The second 

term gives the effect of long wake fields and it agrees with the result of 
(3) Courant & Sessler . In particular, if £ = 0 and m = 0 (rigid dipole mode) 

the stability criterion is n < vfi < n + •=• for some integer n. In case itO 

and ra + O, we find that the stability criterion is n < v„ + mV < n + ̂  . 
p s I 

In Appendix IV we give a derivation of Eq. (1) for a three-bunch beam-

The head-tail type of instability is pronounced for a broad-band impedance 

for which the wake field decays before the next bunch arrives; the instability 

growth rate is sensitive to the chromaticity £. For the narrow-band impedances 

surh as the ones we will consider, the Instability is more sensitive to v_ 
p 

than to £ and in the following we will ignore the head-tail effect by setting 
£ - 0. 

(10) 
For a high-Q deflecting mode of an rf cavity, we have the impedance 

Cthrr M * U T - Q 2 2 ( 2 ) 

where R , ui„ and Q are the peak value in unit of ohms per meter, the resonant 
S K 

frequency and the Q-value of the impedance, respectively. This impedance 

has two peaks located around + u. -r„nd -toR. The half-width around each of 

the peaks is about Au • io,,/2Q. If this width is narrower than the revolution 
frequency w i.e., Aw < w , the only significant contribution in the summation 

of Eq. (1) occurs if 3k + ]i + v. + m\) is equal to ± Up/w within a range 

of Aay'ii) • o 
If 3k + p + v„ + mv is equal to + u^/w with a relative error 

6(|6|<1/2Q), the impedance (2) contributes to a damping of the (u,m) 
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mode with a damping rate 

_ ! » 3N e 2 c R ,. F « • 
Tum 4TTT E V e S 1 + 4Q 2 6 2 (3) o o 

Fm " 2"2m 
1 te a) 2m 

where we have assumed ^R a « 1 , i.e. the wavelength of the transverse wake 

field is much longer than the bunch length- We have used Che small argument 

approximation of the Bessel fur^"-n: J (x) «= x"/zmml if x : I. Th e f o r m 

factor F decreases rapidly wi. ' .ncreasing m and suppresses the effect of m 

the impedance on modes with higher values of m. In the later discussions, 

we will consider therefore only the cases m-O and m=l. 

If 3k + u + V 0 + tnv is equal to - û /co with a relative error of 6 p s ^ K o 
(|fi| < 1/2Q), we find that the (v,m) mode is anti-damped with a growth rate 

whose magnitude is the same as the damping rate predicted from Eq. (3). 

If we do not exactly know the frequency spectrum of all the rf deflect­

ing modes, we may have to obtain the stability criterion by statistical 
(4) considerations . If the real part of impedance integrated over all PEP 

rf cavities contains N impedance peaks typically of height R , Q-value Q 

and resonant frequency o_, the damping/anti-damping rate of a given made 

(lJ,m) is estimated to be roughly 

K 
3 K e 2 c *• F m v / Z J r % W 
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One may try to avoid the instabilities by tuning the cavity or changinE the 

betatron tune v R. But since stability of the/Beam requires all modes with 

different values of y and a be stable simultaneously, this may not be easy 

to achieve in practice. To get some idea, we show this in the following 

by a semi-quantitative example. 

The impedance of one of the rf cavity cell designs to be used in PEP 

has been measured by Perry Wilson . It consists of ^ 23 narrow impedance 

peaks somewhat evenly distributed in the frequency ranging from ^ 600 MHz 

(corresponding to the lowest transverse rf mode) to **> 2 GHz (corresponding 

to the vacuum chamber cut-off). We assume that the impedance of the other 

cavity cells have at least roughly the same number of impedance peaks; each 

peak has about the same peak value and resonance width but the location of 

each of those resonance peaks is more or less randomly shifted by as much 

as ± 3%. We have ignored the impedance beyond cut-off. 

To obtain the total rf cavity impedance for PEP, we thus take Che 

impedance of the rf cavity cell measured by Wilson and randomly shift the 

location of each of the 23 resonance peaks by up to ± 3% (keeping the peak 

value and width unchanged) and call that the impedance for another cavity 

cell. The justification of this procedure lies in: (i) the 5 cells 

composing a PEP cavity station are coupled; therefore, the impedance of a 

cavity is not five times the impedance of a single cell, but is more like 

the impedance of the single cell with each of the impedance peak split ted 

into five peaks; and (ii) there are 8 different rf cell designs to be used 

in PEP, each having slightly different geometry and thus slightly different 

locations for the impedance peaks from the others. 



The above mentioned procedure of generating the rf cell impedance is 

first repeated 5 x 8 - 40 times. Then since there are 3 cavity stations 

fox each cell design, the height of each of the 23 x 40 impedance peaks is 

increased by a factor of 3. In order to take into account of the possible 

construction errors of the cavity cells, we have taken a slightly reduced 

Q-value of 5000 for all the impedance peaks. The total rf cavity impedance 

is then the sum of all the impedance thus obtained. 

RESULTS 

When this total impedance is substituted into Eq. (1) we obtain the 

results shown in Figs. 1 (for m=0) and 2 (for jn"l) for 4 GeV. The damping 

(anti-danping if negative) rate is plotted against the betatron tune vfi for 

various modes (p.m). In these calculations, we have used a beam current of 

5 mA/bunch and an res bunch length of 2.7 cm. Using these parameters and 

N - 800, Q = 5000, R - 5 Mfi/m and 7 * 1 GH , Eq. (4) gives [ T - I | - 450 sec"1 

S K z 

for m=0 and 70 sec for m=l, in rough agreement with (but slightly more 

pessimistic than.) Figs. 1 and 2. The rigid dipole modes (m-0) can be 

comfortably damped by a bunch-to-bunch feedback system: the required feedback 

damping rate would be about 1/4 of the design capability of the PEP 

feedback system at 4 GeV. The m-1 modes, which can not be easily handled 

by feedback system and have typically anti-damping rates greater than the 

radiation damping rate (which is 5 sec at 4 GeV), on the other hand, will 

most likely cause beam instabilities. The current threshold for a stable 

beam is about 0.4 mA/bunch. These results are only meant to be rough estimates 

due to the uncertainties in the impedance used. 

At 15 GeV and a beam current of 20 mA/bunch, the instability growth 

rate is essentially the same as shown in Figs. 1 and 2, but the radiation 



damping rate has increased to 120 sec - . A feedback system will be needed 
to damp the m«0 modes but the m»l modes are taken care of by the radiation 
damping. 
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Appendix I 

In this appendix we will derive an expression that is equivalent to 

Eq. (1), but is valid for a beam with only one bunch. Consider a single 

bunch executing a coherent dipole oscillation with time dependence given by 

D exp (-1Q t), where the mode frequency Q is yet to be determined. Let m in 
this oscillation mode also have a longitudinal structure given by the "snap­

shot" (i.e., taken at a fixed instant of time) distribution p (6) in unit 
m 

of charges per radian, where 6 = z/R is the angular coordinate measured re­

lative to the center of the unperturbed bunch. The (dipole moment) x (beam 

current) seen by an observer is proportional to (*) 

-in ' . f ^ - v ),, (i.i) 
m i \ a rc/c D e . o (9) . e m 

where the extra factor exp i p- - v ) 8 describes the "snap-shot" head-

tail betatron phase factor in which £ « Avg/(Ap/p) is the chromaticity 

parameter and a is the momentum compaction factor. Symbols are defined in 

Table 1. The term Involving £ in this head-tail phase factor has been 

explained in Refs. 1 and 2; it comes from an accumulation of the single-

particle betatron phase during its synchrotron motion. The additional term 

Involving v comes from a tlme-of-flight effect. 

(*) We note that a "longitudinal impedance" samples the signal (monopole 

moment) % (beam current), where the monopole moment is nothing but the total 

electric charge. The definition of "transverse impedance" given here samples 

(dipole moment) x (beam current). One can go on and define impedances which 

sample (quadrupole moment) x (beam current), {sextupole moment) x (beam current), 

etc. A similar analysis as that given in the appendix should be applicable to 
the other cases as well. 
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The signal sampled by the Impedance and summed over all revolutions 
can be written as 

* , j o t 1(£ - v ) ( - « t + 2irk) 
b> JL D* n» P <ru t + 2irk) e a m ° (1.2) 

If we introduce a Fourier transform of p by 

V*> " h J™ e"iP6 p
n
 (6) <I"« 

the signal (1.2) can be re-written as 

r -i(p + V )d> t 
Z* in "m ""m 
P 

The s ignal (1.4) produces a wake f ie ld and the t ransverse kick received by 

a p a r t i c l e at location 6 from the wake f ie ld i s then obtained, by def in i t ion 

of the t ransverse impedance Z : 

.(I + - f x \ - g j - <-, D E z2 (P + V - >p> + vB - H) e 

• u , D e B l 2 - z ( P + v . ) p (p + V - £) e O P i m m r m C, 

knowing Che expression for the transverse kick, one can write down Che single 
particle equations of motion 

x + ^ x - m - y 1 c 'i 
& ° (1.6) 
2 

e + to e - o 
s 

where x represents the betatron coordinate; whether it is horizontal or 
vertical does not concern us here. The right hand side of Che 6-equation 
has been ignored, assuming that the wake field does not change significantly 
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in a Jir.tance _s (bunch length), 
u 

Tl-e Vlasov equation that describes the coherent notion of the particle 

bunch Is 

3t + x f c + ( U B M + e 3 e - u s ° 3 f " ° ( I ' 7 ) 

If we make a transformation of coordinates from (x,x) and (fc',6) to (r , «f ) 

amd (r r f ) according to 

x - r cos t 6 » r cos V 

x = ~ t i : s r j t

 s i n * x 9 * - (i) r s i n V 
(1-8) 

the Vlasov equation (1*7) becomes 

$ + •**•* \W * ' 9 - • ' 
X s 

The linearized solution to this equation eao be written as the sun of an 
unperturbed distribution and a first order perturbation term; 

it in <p -ifl c 

* " W *o<r
6> + fl<rx> e " • «.<V e S . e " (lilfl) 

unperturbed 1-st order 
distribution perturbation 

in which the unperturbed distribution f and g are assumed to be known 
tr O 

but f,, g and 8 are yet to be determined. Substituting (I.10) into 
(1.9) yields 

£ » +lmV -iQ t F a £ sin p * 0 - 1 ^ - ^ - m ^ f ^ e ^ • - - ^ ° ^ ( i u ) 

If we assume the mode frequency shift is small compared with the betatron 
if I frequency u Q T the factor sin f can be replaced by e x/2i to a good p x 
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approximation. The solution for f, is then obtained by inspection 

f i - -D f 0'(r x) a . 12) 

This distribution gives a dipole moment 
if 

Ac f. e x r dr d* 
) 1 x x x „ D 

f (1.13) 
/ f r dr d? 

J O X X X 

but we have assuned a dipole rooaent of D exp iP| - v )3j , so in order 
to be self-consistent we Bust take (*) 

Substituting into {I.11), we obtain 

-i(n -».-«.> g e ^ 5 + #Tv?° 5 zi <P + V *.<> + V f> 
m p s m o o a p 

i{T3 + v - •?) r cos 9 

(1.15) 
If we further assume the mode frequency shift is small compared with the 
synchrotron frequency w , we can extract the relevant Fourier component by 

1 /•̂ lr -im IP applying 4- / d<P e Ts to Eq. (1.15) and obtain 
o 

-i(n m - a,e - u ) 8 m + f f ^ - S o £ Z^PH-VJ ^ ( P + V f) ± \ [ ( P + V |.)rj- 0 
o o t p 

(1.16) 

(*) This step is plausible but not rigorous. A rigorous treatment of the 
chruaatieity effects seems to require a nonlinear theory. 
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where J 00 i* the Bessel function. To solve (1.16) for g . we need to 
•v express p in terms of g . Since, by definition, 

ID J "Tn s 
we can use (1.3) to obtain the identity 

P„<B> " J& S^rJ e t e < fs (1.17) 

>" »• / p <q> - (-i)'" u I r dr g (r )J (qr ) (1.18) 
m s f s s m s m s 

£q. (1-18) can be substituted Into (1.16). The solution to the resulting 
equation is in general very difficult to find. In the following we assume 
a "hollow bunch" beam which has the impevcurbed distribution in the 
synchrotron phase space 

g ( r ) , -f^_«(r s-a> CI.19) 
*o s' 2iraw. 

where a is related to the rms bunch length a by a* y/2b /R. The solution 
for this special case is easily found to be 

g m(r s) <r fi(ra-a) <1.20) 

When substituted into Eq. (1.16), this solution yields the final expression 
for the complex mode frequency shift 

W e 2c T; Z,(p+v ) jf fcp+V - | ) a] (1-21) 
R _ w _ , . _i -—— p A * m L m o J "m & s *"T„E v Q

 H 

o o p 
In practice, the v 's on the right hand side of Eq. (1.21) are replaced by 

S3 
i t s approximate value Ma -t aV . The real part of (Q -wB-nua ) gives the 

P S TO p S 

frequency shift of the node under consideration, while the imaginary part 
gives the instability growth rate. 



Appendix II 
In Eq. (1.21), the node frequency is given in terns of the transverse 

impedance in the frequency domain. In the following we will rewrite 
Eq. (1.21) ir the time domain, using a transverse wake field U(6) which is 
related to Z^(q) by a Fourier transformations 

<q) (II.1) i A / e l q 6dq V W(9) 
4ir*"R "-» 

This wake field is nonvanishing only if 9 < 0. Using (II.1), Eq. (1.21) 
becomes 

2 r F t r° - K P + v >e 
K R c V J (p + v - f) a / d6 W(6) e m 

0 6 " (II.2) 
If we now (i) exchange the order of summation and integration in (II.2); 
(ii) split the integral over 6 into integrals in steps of 2TT'S and sum 
over all the steps, i.e. 

o » (0, ir-2*k) 

JO - £ / d8 

"(-n-27;k ) 

where the integration involving k-0 i s from -ir to 3 and a l l the other 

integrals are from -ir-2irk, to Tr-2irk and ( i i i ) make a change of variable 

6—2ir(k + x ) , we find 

.% i2irv (k+x) 

ft - <da - moL - - •S | £ TT- £ I dx W(-2irk-2iT5c) e B(x) 

° B k _ ° -<0,-W (II. 3) 

CO /*' v s f 
D V B k-0 -L 

where we have Introduced for abbreviation a function 

i2llpx V 2 r £ 1 p x 

»<*> - ̂  J« [ ( P + Vm ' b *] * (II.4) 
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If we assume the bunch is very short compared with the radius of the 
machine, i.e. a « 1, the summation over p can he replaced by an integral, 
i . e . 

i2frpx 
B ( X > * ijp j™ f ( p + ^ • * a ] 

i2n | x 
x e a " Idu cos(2 - ^ u) J 2 ( u) J a m o 

(II .5) 

which, after some algebra, is equivalent to 

B(x) = 5 e I du cos (2 — uI -Tin ' s 

o 
The integration that appears in (II.6) vanishes when |xj>a/ir. 

Combining (II.6) and (II.3), we obtain 

HC ^ f a / ¥ l 2 7 r v k 

SI -ci)0-mtis - - ~ Is I dx K(-27rtc-2TTx) e m 

01 6 a E o V k=c Ao.-a) (n.7) 

Although it looks more complicated than Eq. (1.21), this expression is more 
convenient if we want to separate the instability effect into contributions 
from individual revolutions. The integration over u in (II.7) can be written 
in closed form in terms of some Legendre function if desired. 
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Appendix III 
The transverse impedance of a resistive wall of a circular vacuum 

chamber of radius b and conductivity o is 

Ak) • ? V^r ( " "" i } (iii.i) ~o' b 

The wake field produced by the resistive wall is, using (II.1), given by 

if e > o 
2e'' ^ 

U(9) - 0 
2 

B _ 
3 V] o 

a|e| 
( I I I .2 ) 

if e < o 

We separate the single-turn and the multi-turn effects of this wake f ie ld 

by dividing Eq. (II .7) into two terms: the k"0 term and the term involving 

the sum over k from k-1 to « . The f i r s t (k»0) terra can be written as 
, a/u 12TF C * 

2Ne Re fdx ^ ^ (W^s) 
single turn 

k-0 

2Ne Re f dx - ^ = / du cos (2 :^- u ) r ( u ) 

Eov6ab * V^o * , 
( III .3) 

The double integral on the right hand side of ( III .3) can be shown to be 

identical ly equal to 

ir/2 12a — sin 7 cos u 

r̂ p? ( i n . 4 ) 

This expression (III.A) becomes, if a — « 1 as is the case for PEP, 

JL IT 
2ir "V/TI LI^JLJO^ vdryj 

+ 12a j I jdu ycos u II Jdu cos mu /sin j j (III.5) 

The imaginary term that is proportional to £ gives the instability growth 
rate for small values of £. These results are a factor of 2 different from 
the results of Kef. 2. 
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The second (MO) term which gives the multi-turn effects is, assuming 
a « 1 but arbitrary \, 

(W^). I 

2 „ 
2N e Re i2ukv « e in 

| E v D ab v JoT 
o B v o 

'S* m u l t i - t u r n 
k#> 

E v D ab v JoT 
o B v o k*l v 

a/Tt f" 
dx cos (2TT ^ X) 1 du cos 

• 'o 

, - nx . T 2 , . (2 — u) J (u) a in (2TT ^ X) 1 du cos 
• 'o 

, - nx . T 2 , . (2 — u) J (u) a in 

(III.6) 

The double integral on the right hand side can be shown to be equal to 

*T*< | a). Thus, Z n a 

2 « i2trkv 
Ne Re T2 /£ J\ y- e ^_ 

1 m S s multi-tar^ E v . b 3 * V S T m l c ' 
V*0 ° 6 ° 

k-i y r o e 

(111.7) 

Due to the factor J m (? a /a) , we find that for the case £«0, only the rigid 

dipole mode m»0 i s affected by the res i s t ive wall . On the otheT hand, the 

factor tha": involves the sun over k determines whether the beam is s table; i t 

has been extensively studied in Ref. 3. In particular, the s tab i l i ty condition 
ItnCfJ )< 0 i s sat i f ied if n<v <n+b, or m m 

n < V Q + mv < n + ^ (III . 6) 

P S i. 

for some integer n. For w«0, the s tab i l i t y criterion reduces to rhe Courant-

Sessler result n < v„ < n + -=' 

For PEP, i f we take the single-turr 

2TTR » 2200 m 

N - 2.3X10 1 1 (5 mA/bunch) 
E - 4 GeV o 
Vg - 20 
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we find 

a « 1.1x10"* (a = 2.7 cm) z 
b « 5 cm 

O * 3x10 sec (aluminum) 

a - 0.003 

_£ m growth rate 

-1.0 0 2.7 sec - 1 

1.0 1 0.53 sec" 1 

These resistive wall growth rates are smaller than the radiation damping 

rate 5 sec at 4 GeV. 



-19-

Appendix IV 
We will derive Eq. (1) in this appendix. Let the three bunches in 

PEP be specified by £ ~ 0 for the reference bunch, S. = 1 for the bunch in 
front and I - - 1 for the bunch behind. There are three modes of oscillation 
for a given longitudinal mode m; let the three modes be specified by the 
additional mode number y which has three possible values 0, i 1. The mode 
oscillation phase from the 9. = 0 bunch to the bunch Jc is equal to -r- S-v . 

The (dipole moment) x(beam current) seen by the transverse impedance 

D co V e \ Vm 3 ' o *-• o 
£=-1 

i ( I ._ v )6 
T ^ a Urn 
Z- P m 

(8) e 
k m 

- U) t + 
0 

2TTk + 2TI 

3 *) 

(IV.1) 

where we are sutaming over the bunches St, and the revolutions k. In terms of 

the Fourier transform defined in Eq. (1.3), Eq. ;'IV.l) can be written as 

D « r <= U m 3 ' £ P (P + v - £> e ° 3 ( I V 

a Z- ^ m V K Urn a 
£ P 

For each p the summation over t vanishes unless p-u is an integral multiple 
of 3. Let p-y»3k, we have 

-i(3k + V + vm) uot 
3 D % £ Pm (3k + v + V a) e (IV-3) 

k 
By definition of the transverse impedance, this gives a transverse kick 
(to a particle located at 9) given by 
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-J.R, ' 
IS. i n ,, „ Um 

x 2-. Z (3k + v + v \ p (3k + u + « - £> e ^ 1 I urn/ m um a 

Same procedure as the single bunch case is then followed as is done in 
Appendix I. This gives the final expression for the complex mode frequency 
shift 

2 
fa -ti)fi-mu) \ = - i 7"jL-§-£- H Z /3k + u + V \ J 2 W3k + u + v ~ 1 ) a 
^ urn $ s / 4 7 r T

0

E o V 6 k x \ ura /ml l M u m o / J 
(IV.5) 

In practice we replace the V 's on the right hand side by its approximate 

value Vg + nvu . The total number of particles in this 3-bunch-beam is 3N. 
The imaginary part of Eq. (IV.5) gives finally Eq. (1). 

In Eq. (IV.5), the frequencies at which the impedance is evaluated 

are not integral multiples of the revolution frequency because v is in 
general not an integer. A similar situation that happens in the longitudinal 
case gives rise to the well-known Robinson damping effect ' ' . In the present 
case, therefore, this might be referred to as a "transverse Robinson effect . 
(The main difference is that v is usually far away from an integer and the 

ym 
growth rate involves the algebraic difference between the impedances at two 
frequencies that are, in contrast to the longitudinal case, rather far apart). 
Ihe Courant-Sessler resistive wall instability is a direct consequence of this 
transverse Robinson effect. This effect is pronounced if the impedance is 
narrow-band in frequency (long range wake field). 
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The bunch mode spectrum, which in this example is given by the 

Bessel function in Eq. (IV.5), is evaluated at a frequency that depends on 

the chromaticity. This "head-tail effect" will be pronounced if the impedance is 

broad-hand in frequency (short range wake field). 
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Table 1 

m 
o 

" electron rest mass 
e V electron charge 
c = speed of light 
N = number of particles per bunch 

£ o = particle energy 

y = E > o ° 2 O 0 
6 - avfi/(aP/P) - chromaticity 
a 4C momentum compaction factor 
R = mean radius of machine 

T 0 = 2irR/c « revolution period 

ui - C/R = revolution angular frequency 
6 * z/R= azimuthal coordinata (head of bunch has 9 > 0> 

m = mode number that specifies the longitudinal bunch structure 

u = mode number that specifies the relative motion of the 3 bunches 
S},JJ • v u , \> to , , m urn m o IB D • node frequencies 

T
 _ i < _ in,(n ) m damping rate of the mode <V,m) um urn 
u 0 » v„u • betatron frequency p p o 
ai » v » • synchrotron frequency 
P _ (6), p (6) - longitudinal bunch structure 
Z. (w/to ) * transverse impedance at frequency u 
R^ (M/ID ) • real part of Z, 
^(x,x,6T§,t) • distribution function of the reference bunch in phase space 
a » (maximum longitudinal excursion)/R for a hollow-bunch model; see 

Eq. (1.19) 
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