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We have looked at the possible transverse instability effects which
are caused by rhe deflecting modes of the R.F. cavities in PE®. The results
are obtained by applying the expression of the instability damping (or

anti-danping if Tu;l < 0) rate:
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where we have assumed that there are three equal bunches equally spaced in
PEP. Symbols are defined in Table 1; p and m are mode numbers. Derivation
of Eq. (1) will be given in Appendix IV,

In Appendix I, we have worked out the equivalent of Eq. (1) for 2
single bunch beam. The analysis follows that of Sacherer‘s(}) The effect
of chromaticity £ is included as a frequency shirft in the bunch mode spectra.
In Appendix II, we will rewrite this result in terms of the transverse wake
field instead of the impedance.

We include in Appendix III an application of the Sacherer formalism
to the case of resistive wall. The resulting expression of the damping
rate containg two terms. The first term corresponds to the effect of the

short wake fields; it agrees with the result of the head-tail instability

as derived by Sands.CZ) A numerical estimate of this resistive-wall head
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tail case for PEP is given at the end of Appendix III. It re-confirms that
the resistive wall instability is not a serious problem for PEP. The second
term gives the effect of long wake fields and it agrees with the resulr of
Courant & Sessler(a). In particular, if £ = 0 and m = 0 (rigid dipole mode)
the stability criterion is n< v, < n + % for some integer n. In case £30

8

and m$0, we find that the stability criterion is n < VB + mvs < n+ % .
In Appendix IV we give a derivation of Eq. (1) for a three-bunch beam.

The head-tail type of instability is pronounced for a broad-band impedance

for which the wake field decays before the next bunch arrives; the instability

growth rate is sensitive to the chromaticity £. For the narrow-band impedances

such as the ones we will consider, the instability is more sensitive to Vg

than to £ and in the feollowing we will ignore the head-tail effect by serting

£ =0,
(10)
For a high-Q deflecting mode of an rf cavity, we have the impedance
R (EL_ - Rs mR/ w
1 ub 1+ QZ w wR 2 (2)
:-3)
where Rs' we and Q are the peak value in unit of ohms per meter, the resonant .

frequency and the Q-value of the impedance, respectively. This impedance
has two peaks located around + we and —lp The half-width around each of
the peaks is about Aw = mhIZQ. If this width is narrower than the revolution
frequency W, l.e., &< W the only significant contribution in the summation
of Eq. (1) occurs if 3k + u + Vg + my, is equal to % mn/mn within a range
of Amimo.

If 3k + p + ve + mvs 1s equal to + wh/wo with a relative error

§(|8| £1/2Q), the impedance (2) contributes to a damping of the (u,n)



mode with a dawping rate
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where we have assumed & a <<1, i.e. the wavelength of the transverse wake
field is much longer tlu:gn the bunch length. We have used the small argument
approximation of the Bessel fur ,," -n: Jm(x) = " if x° . The form
factor }‘m decreases rapidly wi. 'k.ncreasing m and suppresses the effect of
the impedance on modes with higher values of m. In the later discussions,

we will consider therefore only the cases m=0 and m=l.

if 3k +u + vs + mv_ is equal to - mR/wo with a relative error of &
(|8} < 1/2Q), we find that the (u,m) mode is anti-damped with a growth rate

vhose magnitude is the same as the damping rate predicted from Eq. (3).

If we do not exactly know the frequency spectrum of all the rf deflect-
ing modes, we may have to cbtain the stability criterion by statistical
consideral:ions(e'? If the real part of impedance integrated over all PEP
rf cavities contains N impedance peaks typically of height R_, Q-value q
and resonant frequency ER, the damping/anti-damping rate of a given made

(u,m)} is estimated to be roughly
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One may try to avoid the instabilities by tuning the cavity or changing the
betatron tune vs. But since stability of the bean requires all modes with
different values of y and m be stable simultaneously, this may not be easy
to achieve in pracéice. To get some idea, we show this in the following

by a semi-quantitative example.

The impedance of one of the rf cavity cell designs to be used in PEP
has been measured by Perry Wilsoﬁsl It consists of ™~ 23 narrow impedance
peaks somewhat evenly distributed in the frequency ranging from * 600 MHz
(carresponding to the lowest transverse rf made) to v 2 GHz (corresponding
to the vacuum chamber cut~off). We assume that the impedance of the other
cavity cells have at least roughly the same number of impedance peaks; each
peak has about the same peak value and resonance width but the location of

each of those resonance peaks is more or less randomly shifted by as much

as * 3%, We have ignored the impedance beyond cut-off.

To obtain the total rf cavity impedance for PEP, we thus take the
impedance of the rf cavity cell measured by Wilson and randomly shift the
location of each of the 23 resonance peaks by up to * 3% (keeping the peak
value and width unchanged) and call that the impedance for another cavity
cell. The justificatiom of this procedure lies in: (i) the 5 cells
composing a PEP cavity station are coupled; therefore, the impedance of a
cavity is not five times the impedance of a single cell, but is more like
the impedance of the single cell with each of the impedance peak splitted
into five peaks; and (ii) there are 8 different rf cell designs to be used
in PEP, each having slightly different geometry and thus slightly different

locations for the impedance peaks from the others.



The above mentioned procedure of generating the rf cell impedance is
first repeated 5 x 8 = 40 times. Then since there are 3 cavity stations
for each cell design, the height of each of the 23 x 40 impedance peaks is
increased by a fac;or of 3. 1In order to take into account of the possible
construction errors of the cavity cells, we have taken a slightly reduced
Q-value of 5000 for all the impedance peaks. The total rf cavity impedance

is then the sum of all the impedance thus obtained.

RESULTS

When this total impedance is substituted into Eq. (1) we obtain the
results shown in Figs. 1 (for m=0) and 2 (for m=l) for 4 GeV. The damping
{anti-danping if negative) rate is plotted against the betatron tune vs for
various modes (u,m). In these calculations, we have used a beam current of
5 mA/bunch and an rms bunch length of 2.7 em. Using these parameters and
¥ = 800, § = 5000, is = 5 M{Q/m and ?R = 1GH_, Eq. {4) gives [1‘1| - 450 sec™t
for m=0 and 70 set:-1 for m=1, in rough agreement with (but slightly more

pessimistic than) Figs. 1 and 2. The rigid dipole modes (m=0) can be

comfortably damped by a bunch-to-bunch feedback system: the required feedback
damping tate would be about 1/4 of the design capability of the PEP
feedback system(a) at 4 GeV. The m=l modes, which can not be easily handled
by feedback system and have typically anti-damping rates greater than the
radiation damping tate {(which is $ sec-1 at 4 GeV), on the other hand, will
most likely cause beam instabilities. The current threshold for a stable
beam is about 0.4 mA/bunch. These results are only meant to be rough estimates
due to the uncertainties in the impedance used,

At 15 GeV and a beam current of 20 mA/bunch, the instabiliry growth

rate is essentially the same as shown In Figs. 1 and 2, but the radiation
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damping rate has increased to 120 sec’l. A feedback system will be needed
to damp the m=0 modes but the m=1l modes are taken care of by the radiation
damping.
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Appendix 1
In this appendix we will derive an expression that is equivalent to

Eq. (1), but is valid for a beam with only one bunch. Consider a single
bunch executing a ;oherent dipole oscillation with time dependence given by
D exp (-iqmt). where the mode frequency %m is yet to be determined. Let
this oscillation mode also have a longitudinal structure given by the "smap-
shot" (i.e., taken at a fixed instant of time) distribution Py (8) in unit
of charges per radian, where ©& = z/R is the angular cocrdinate measusred re-
lative to the center of the unperturbed bunch. The (dipole moment) x (beam

current) seen by an observer is proportional to (¥*)

P - E
_1Qm i(a - \Jm)e (1-1)
D e . om(S) ., e

where the extra factor exp [i (% - vm) B] describes the "snap-shot" head-
tail betatron phase factor in which § = AuB/(Ap/p) is the chromaticity
parameter and & is the momentum compaction factor. Symbols are defined in
Table 1, The term involving £ in this head-tail phase factor has been
explained in Refs. 1 and 2; it comes from an accumulation of the single-
particle betatron phase during its synchrotron motion. The additional term

involving v, comes from a time-of-flight effect.

(*} We note that a "longitudinal impedance” samples the signal (monopole

moment) x (beam current), where the monopole moment is nothing but the total
electric charge. The definition of "transverse impedance”™ given here samples
(dipole mement) x (beam current). One can go on and define Impedances which

sample (quadrupole moment) x (beam current), (sextupole moment) x (beam current),

etc. A similar analysis as that given in the appendix should be applicable to
the other cases as well.
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The signal sampled by the impedance and summed over all revolutions

can be written as

1(% = v ) (et + 2TK)

—igt
W, }l_:, DT plu,tt 2m) e (1.2)

If we introduce a Fourier transform of P by

", 1 ®  -ip
B (p) = 37 e e o, () (1.3}
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the signal (I.2) can be re-written as

A, - "i(P + vm)(ﬂot
w D T By (v, dp, @4y e (1.4)
P

The signal {I.4) produces a wake field and the transverse kick received by

a particle at location © from the wake field is then obtained, by definition
of the transverse impedance ZL :

-i(p + vm)wot

-
¥] N ie el -
— XB)y= Fxu D S z, (p+ VIR P+ v =) e

o
+

el

-i2 t ip®
- le m N i *
378 %C © § Z ety p(pty-)e
(1.5)

inowing the expression for the transverse kick, one can write down the single

particle equations of moticn

. e (F
x+m§x-moy (E +

elcd
u

~§§+
e
o

(1.6)
6 + w 20 = 0
s
where x represents the betatron cocrdinate; whether it is horizontal or

vertical does not concern us here. The right hand side of the 8-eguation

has been ignored, assuming that the wake field does mot change significantly




~11-~

in a dincance is_ (bunch length).

[
X

The Vlasov equation that describes the cuvherent motion of the particle

bunch is

‘ ) |
W Wy (o ¥+P) W 2 By
3t T % s t 93 -w 0 3 =0 (LD

If we make a transformation of coordinstes frem (x,%) and (£,8) to "x'“é)

amd (rs, ?s) according to

z= r cos px 0 = ¥ cos |
. . (1.8)
% = Wl sin F& H= - w.r, sin ?;
the Vlasov equation (I.7) becomes
kD . £ W .o
e T oY Be t U 1) PR (1.9)

The linearized solutivn to this equation ¢ay be written as the sum of an

unperturbed distribution and a first corder perturbation term:

19 ime_ -mm“
b= £ (r) g (r) + £(x) e . gm(}'s) e e (1.10)
unperturbed l~st order
distribution perturbation

in which the unperturbed distribution £_and B, are assumed to be known

but fl’ By and qm are yet to be determined. Substituting (I.10)} into
(1.9) yialds
¥
ip Hm¢-iQ ¢ E gf, sing =0
=10 - w, -mw ) £f. 3 e -
m B 8" "1 ~m x (1.11)

If we assume the mode frequency shift is small compared with the betatron

iy
frequency MB, the factor sin ¢x can be replaced by e x/&i tc a good
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approximation. The seolution for f, is then obtained by inspection
1

L]
fl = -Df (rx] (1.12)

This distribution gives a dipole moment

ie,
fx £ e rdrdd, o

ffrdrds’
0OX X X

(1.13)

£

but we have assumed a dipole moment of D exp [i(a - ym)él » 50 in order

to be self-consistent we must take (*)

' £ _
£, = D, (tx) e i(ﬁ ﬁn)e (1.14)

Substituting into (I.11), we obtain

img ce A £
T E —_—fy 2: Z (p+rvdplptv-2)
—i{nm g mus) g, © + 2'1‘0}'.0\:3 P 1 mn m m o

. 3

ifo+v - r cos ¥
% e m o s S .o
(1.15)

If we further assume the mode frequency shift is small compared with the

synckrotron frequency W, we can extract the relevant Fourier component by
27

applying % f d'Ps e-imps to Eq. (I.15) and obtain
o
1R - w, - ce ¥ (ot - B P [ - & ]=
i(nm wﬁ mws) gm + zTQEOu& o % Zl (P+vm) pm(p+\’m u] + J‘m (p+vm -a_] rs ¢

(1.16)

(*) This step is plausible but not rigorous, A vigorous treatment of the

chrumaticity effects seems to require a nonlinear theory.
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where Jm(x) iz the Bessel funetion. To solve (I1.16) for By W need to

express B; in terms of By Since, by definition,

p_(B) = faé g r,) AR (1.17)

we can use (1.3) to obtain the identity
=]
B (qy = 1" d J
AL Wy rdr_ g (r.) L(ar ) (1.18)
Eq. (I1.18) can be substituted into (I.16). The solution to the resulting
equation is in general very difficulc to find. In the following we assume
a "hollow bunch" beam which has the unpetturbed distribution in the

synchrotron phase space

-a) (I.19)

Ne
go(rs) 2nau%

where a is related te the rms bunch length o, by ﬂ’v/fﬁz/R- The solution

for this special case is easily found to be
g(r) = 6(r-a) (1.20)

When substituted into Eq. {I.16), this solution yields the finzl expression

for the complex mode frequency shift

s Ne'e c 2 z ('p+\l } Jz [(P+Um- ‘E) a] (1.21)
nm-wB-mws = - lﬂr'.l‘ E Vg
In practice, the vm's on the right hand side of Eq. {I.21) are replaced by
its approximate value VB + mvs. The real part of (Qh—wa-mus) gives the
frequency shift of the mode under consideration, while the imaginary part

gives the instability growth rate.




Appendix II
In Eq. (1.21), the mode frequency is given in terms of the transverse
impedance in the frequency domain. In the following we will rewrite

Eq. ¢I.21) in the time domain, using a transverse wake field W(8) which is

related to Z;(q) by a Fourier transformation:
-

;.2 iq6
e U f e dg zl(q) (11.1)
10172R =

This wake field is nenvanishing only if 0 < 0. Using (I11.1), Eg. (I.21)

we) =

becomes

2 £ o -i(p + v )¢
KRc J [G+v——)ﬂjlemme

P A
o8 = (11.2)

Qr-w, —mw = -
m 8 s

If we now (i} exchange the order of summation and integration in (II.2);
(ii) splir cthe integral over £ into integrals in steps of 27m's and sum

over all the steps, i.e.

° 0 (0, m-27mk)
J’.ae —_— 2 a8
- k-o
(-n~-27k )

where the integration involving k=0 is from -1 t» J and all the other

integ:als are from -m-2nk to m-2mk and (iii) make a change of variable

O=-2w(k + %}, we find
12ﬂvm(k-m)

@ Y
NRe
Q- wﬁ - Dy, w - -z-?va- Eg f dx W(-2nk-2mx) e B(x)
(0,-%) {11.3)

where we have introduced for abbreviation a function

i2mpx
2 g
Bx) = §: Jm [(l:| VT @ a] e {11.4)
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1f we assume the bunch is very short compared with the radius of the

machine, i.e. a << 1, the summation over p can be replaced by an integral,

i.e.
o

2
B(x) = fdp I [(p+um— .5) a] e
-Ol
which, after some algebra, is equivalent to

121§ -y )x f

i27px

i 2
B(x) = %e du cos (2 %'-‘) I W
o]

The integration that appears in (I1.6) vanishes when |x|>a/7.

Combining (II.6) and (II.3), we obtain

aln
fugme, = - EEE-;- > dx W(-2mk-21x} e "
m 4 ‘o B k=0 (o ,-,?r)

£ ®

i2n 2 x
X e o Idu cos(2 =X w) 32 (u)
o a ul

(11.5)

(11.6)

(11.7)

Although £t looks more complicated than Eg. (1.21), this expression is more

convenient if we want to separate the instability effect into contributions

from individual revolutions. The integration over u in (I1.7) can be written

in closed form in terms of some lependre function if desired.
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Appendix IIT

The transverse impedance of a resistive wall of a circular vacuum

chamber of radius b and conductivity o is

The wake field produced by the resistive wall is, using (17.1), given by

wey - o if9>0
2 [7) (1I1.2)
353 o if 8< 0
b ale|

We separate the single-turn and the multi-turn effeets of this wake field
by dividing Eq. (II.7) into two terms: the k=0 term and the term invelving

the sum over k from k=1 to ®. The first (k=0) term can be writtem as
alw e i2nEx >

2 [+ e d 2
(Qm-us—mm ) = - 2_"9_R':_____ dx T— du cos (2 3 u Jm(u)
y single turn E v ah Ll QT (111, 3)

k=0
The double integral on the right hand side of (IIT.3) can be shown to be

identically equal to

11 2 2 v
\/—-[ f d\) cos my . 12a sin 3 cos u
{IIT1.4)
cos u /Isin -

This expression (III.ls) becomes, if a é« 1 as is the case for PEP,

(el 2]

+ :I.Za [Idu ‘/cos u][ dU €05 my /s:ln - ] {II1.5)

The imaginary term that is proporticnal to £ gives the instability growth

Y

rate for small values of £. These results are a factor of 2 different from

the results of Ref. 2.
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The second (kf0) term which pives the multi-turn effects is, assuming

a <<1 but arbitrary E,

2
. 28N e Rc . ei2nkqm
Q -t =M B o m—— ———
( o8 s)mult:l.--t:v.um 0\JB«'.-11>311 \/UTD El vk (111.6)

k#0

a/w ©
xj‘ dx cos (27 % x) I du cos (2 % u) J:‘(u)
-a/T o

The double integral on the right hand side can be shown to be equal to

a2, £
sz( z a). Thus,

2 - 121rk\:m
(g, ) - B S Re) L t——
multi-tura Eavﬁb T UTO k=l k
¥+0
(111.7)

Bue to the factor J (£ a/u), we find that for the case £=0, only the rigid
dipole mode m=0 is affected by the resistive wall. On the other hand, the
factor tha% involves the sum over k determines whether the beam is stable; it
has been extensively studied in Ref. 3. 1In particular, the stability cond:ition
Im(ﬂm)< 0 is satified if n<\)m<n+35, or

1

n< v6+m\as< n+ 3 {III.B)

for some integer n. For w=0, the stability criterion reduces to the Courant-
Sessler result n < vB <n+ %*
For PEP, if we take the single-turr
2R = 2200 m
N = 2.3x10'! {5 ma/bunch)
E = 4 Gey

-]

\)B-ZO




we find

-1.0

1.0

These resistive wall growth rates are smaller than the radiation damping

rate 5 s:ec"1

1.1x10°
5 ¢m

17
3Ix10

'0.003

I
4]
1

at 4 GeV.

-13~

4 (o, = 2.7 cm)

-1
sec {(aluminum}

srowth rate

-1

2.7 sec

0.53 sec
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Appendix IV
We will derive Eq. (1) in this appendix. Let the three bunches in
PEP be specified by £ = 0 for the reference bunch, £ = 1 for the bunch in
front and L = - 1 for the bunch behind., There are three modes of oscillation
for a given longitudinal mode m; let the three modes be specified by the
additional mode number u which has three possible values 0, 2 1. The mode

oscillation phase from the £ = 0 bunch to the bunch £ is equal rto Z; 2 .

The (dipole moment) X (beam current) seen by the transverse impedance
is
. t 27 40 .. E
i =i - =2 -
;(oum +3 ) - i~ v8
L p_(8) e
Kk
(Iv.l)

(9=-wot+2nk+§—“fc}

where we are summing over the bunches £ and the revolutions k. In terms of

the Fourier transform defined in Eg. (I.3), Eq. {IV.1) czn be written as

27

. _ 2T
-1(Qm: 3 “2) g, IeCu it 32 gy 9

n . - &
EE Pn P+ ¥ "o @

D u 2: e

'3
For each p the summatfon over 2 vanishes unless p~u iIs an integral multiple
of 3. Let p-u=3k, we have

~1(3k + u + Vum) Wt
e (1v.3)

)
alm
S

Du, 3 ?:‘m (3k+u+vm
k

By definition of the transverse impedance, this gives a transverse kick

(to a particle located at 8) given by



t
-if2
o ie um
> v - - — 3Dw e

(2 *'&"‘B)l mR ° (Iv.4)
i3k + 1) &

z 5 £

Z (3k+u+ + - =

x Loz, ( nE L) Bkt Uty -2 e

Same procedure as the single bunch case is then followed as is done in

Appendix I. This gives the final expression for the complex mode frequency

shife
3N 2
- - _ Nec 2 ] -t
(gum""s mws) i —-—~——~,IMDEDVB )E z, (3k + U F vm) Jm{(?lk tutvo2 )a]

(1v.5)

In practice we replace the vum's on the right hand side by its approximate
value ve + mus. The total number of particles in this 3-bunch-beam ig 3N.
The imaginary part of Eq. (IV.5) gives finally Eq. (1).

In Eq. (IV.S5), the frequencies at which the impedance is evaluated

are not integral multiples of the revolution frequency because v is in

Hm
general not an integer. A similar sitwation that happens in the longitudinal
case gives rise to the well-known Robinson damping effecé7'a’9). In the present

case, therefore, this might be referred to as a "transverse Robinson effect".
{The main difference is that vum is usually far away from an integer and the
growth rate involves the algebraic difference between the impedances at two
freqﬁenciea that are, in contrast to the longitudinal case, rather far aparc).
The Courant-Sessler resistive wall instability is a direct consequence of this
transverse Robinson effect. This effect is pronounced if the impedance is

narrow-band in frequency (long range wake field).
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Tha bunch mode spectrum, which in this example is given by the
Bessel function in Eq. (IV.5), is evaluated at a frequency that depends on
the chromaticity. This "head-tail effect" will be pronounced if the impedance is

broad-band in frequency (short range wake field).
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Table 1

electron rest mass

electron charge

speed of light

wumber of particles per bunch
particle energy

Ea/moc2
AvBI(AP!P) = chromaticity

momentum compaction factor

mean radfus of machinc

2wR/c = revolution period

revolution angular frequency

z/R= azimuthal coordinate (head of bunch has 8 > V)

mode number that specifies the iongitudinal bunch structure

mode number that specifies the relative motion of the 3 bunches

v,V ow .
m o' Mm o = mode frequencies

-1
= - = f the mode {u,m)
T Im(2 ) = damping rate © ’

mB = vme = hetatron frequency

“s

-V
B 0

= gynchrotron frequency

P e, meﬂ) = lengitudinal bunch structure

Z, (wlwo) = transvers: impedance at freguency W

R, (m/uz) = real part of zl

Pix,%,0,8,£) = Jistribution function of the reference bunch in phase space

= (maximum longitudinal excursion) /R for a hollow-bunch model; see

EQn (I- 19)
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