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Introduction 
In this paper we study a longitudinal coherent bunch instability in 

which the growth time is comparable to or less than the period of 
synchrotron oscillations. Both longitudinal and transverse bunch 
instabilities have been studied by many authors. 1 - 9 In most treatments, 
however, the coherent force is assumed to be small and is treated as a 
perturbation compared with the synchrotron force. This makes the problem 
simpler because an individual synchrotron mode is decoupled. As bunch 
current increases, the coherent force is no longer small and the mode 
frequency shift becomes significant compared with the synchrotron fre­
quency. Therefore in this case it is necessary to include coupling of 
the synchrotron modes. Recently a fast blow-up instability which comes 
from mode coupling was studied in two papers. 1 0 - 1 1 Their method is to 
derive a dispersion relation for a bunched beam using the Vlasov equation 
and to analyze it as in a coasting beam. They showed that if mode 
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couplittg is included the Vlasov equation predicts a fast microwave insta­
bility with a stability condition similar to that for a coasting beam. 

In this paper we will partly follow their method and present a 
formalism which Includes coupling between higher-order radial modes as 
well as coupling between synchrotron modes. The formalism is considered 
to be generalization of the Sacherer formalism without mode coupling. 
This theory predicts that instability is induced not only by coupling 
between different synchrotron modes but also by coupling between positive 
and negative modes, 1 2 since negative synchrotron modes are included in 
the theory In a natural manner. This formalism is to be used for a 
Gaussian bunch and a. parabolic bunch, and is also useful for transverse 
problems. 

Derivation of Formalism 

We stare from the following Vlasov equation1* 

where 
ij> » distribution function 
G • synchrotron frequency 
T «• revolution period » 2ir/u 

k o • a w o / E o 
a * momentum compaction factor 
8 " angular coordinate « z/R 
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In Eq. (1), eV(9,t) is an increase in energy per revolution for a particle 
at longitudinal position 6 relative to the bunch center and does not 
contain the effect due to the stationary part of the distribution function. 
Let $ be written' as 

4.<r,<j) - i|p0(r) + f(r,$)e _ i £ 2 t , (2) 

where Q is a mode frequency. The beam current is 

i(t) - « e £ p(p)e-1<P"o + n ) t , (3) 

where the Fourier transform of the longitudinal charge distribution is 

given by 

p(p> = ̂ J j f Cr,*)e- i p r c 0 S*rdrd* . W 
o 

Since with impedance Z(w) 

eV(fl.t) = - e u o E P(P>Z(P« 0 + R e J l ) e i p e e " i Q t , (5) 
P 

we obtain 

eoi k cJuV 
(-ifl + a £ ) f < r , « - -f-f s i n - f ^ £ ?(p)Z(pu>0 + R e n ) e

i p r c 0 S * . (6) 

s p 

Taking into account the fact that f(r,<J) and the right-hand side in 
Eq. (6) have Che periodicity of 2v, we integrate with <J> and have 

eat k dty .. 1 ^ » 
f(r,*> - — S ^ - ^ r * * ft-2»" T 2-i p<p)SCpt>n + ReQ) 

TG e x P ° 
s 

* / * * a " " * ' sin*' . * * " " • • d*> . < 7 ) 

4 
where 

s 
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Perfonoing the integral as 

f*+2" e - U * ' sin*' e

l p r c ° s * V 

(8) 

we have 
em k d<i . 

TSls p 

« E ITT <«" J JP r > e i f f l * - <9> 
^™* m—A ID 

m 

Using Eq. (4) we obtain in the frequency domain 

*<*> - * H E i z<p"o+ R e») ?<p) E ^ 
ft T p in 

* / r - d f J m ( q r > J
mC Pr)rdr , (10) 

which already includes negative synchrotron modes. If we put X — m, 
Eq. (10) becomes approximately 

iWI - fl) ?<q) - - - ^ V ] A Z ( p ( l l + na ) 3(P) s T^ «-* p o s 

1 dip 
x / 7 - d T J m ( t l r ) J m ( p r ) r d r * ( 1 1 ) 

which is exactly equal to the Sacherer equation without mode coupling. 
In what follows we will treat a Caussian bunch and a parabolic bunch. 

For a Gaussian bunch 

*o ( r> ' M e ° 2 ' **»(- -H) ' (12> 

S o 



- 5 -

where 

ffooMdcdti = N 

N = number of particles in one bunch 
a »= r.m.s. bunch length in units of 8 - o /R 

v s = W 
and Eq. (10) becomes 

-2 
p o *-f m-A 5(q) - -i—jjs-s-j ]C 7 z(p«0 + R«O) P(P> 2 ra 

27iv E To p s o r 

r - t 2 / 2 
x f e ' J (oqt) J (op t ) td t . (13) 

o 

For the integral we have the following sum9 

S e _ t l 2 V " * ) JB«»Pt)t«it - £ C m k(aq) C m k(o P) , (14) 
0 k=0 

where 
2 2., n+2k 

C k ( a P ) = - = = 4 = e - P a / 2 / ^ \ . ( a 5 ) 

Using C v(op) which corresponds to the frequency spectrum of the k-th 
radial mode in the m-th synchrotron mode, we obtain 

— M 2 " 
P(q) - - l l j ) gCp.Re*) P(p) £ -f~2 £ C

m k ( o q ) C m k C ( I p ) ' ( 1 6 ) 

P m-1 m "* k=0 
where 

Ne2aZ 
K = ^ (17) 

TTV E To-s o 

ZQg(P.ReA) - - Z(poiQ + Reft) (18) 

and Z is a real impedance for normalization. Since C . (op) has a 
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speclal relation 

we can transform the double summation with m and k in Eq. (16) Into a 
single summation as 

p(q) - - i K £ gCp.Re*) p(p) 13 B k^ 2) Ffc(oq) Fk(op) , 
k«l 

where 

and 

e 3 ( x ) = 9fe + l i ? ' 3 • 
M*> - life + *fe •4 > 
a f \ 36 , 1 6 , , k . c S,(x) • •=2— + T Z — * 6 + T — • 15 6 36-x 16-x 4-x 

He look for an eigenmode freqency spectrum p(q) given by 
CD 

P(q) - Z2 \ FkCoq) . 
k-1 

This transformation leads to 

(20) 

Fk(cp) - Cko(ap) , (21) 

(22) 

(23) 

CO 

a k - -i K 3k(X2) £ ^e£(ReX)o , (24) 
a=i 

where 
^(ReX) - £ g(p.ReX) Fk(op) FJ,(crp) . (25) 
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We can now determine X so that He. (24) has a non-trivial solution: 

detjfikfi + i K 6 k U 2 ) M^CKei)! = 0 (26) 

On the other hand, since 

^(-ReX) = (-l) k + J l + 1 Mj(ReX) , (27) 

6*(X2) - S k(X* 2> , (28) 

we can derive from Eq. (24) 

(-l)k a* = -i K 6 k(C-X*> 2) 2 M^(-BeX*)(-l) 1 a* . (29) 
£«1 

(30) 

Therefore, if X is a mode frequency with a mode spectrum 
CO 

Pn(P> " Z J « k Fk(<JP) . 

* we always have another mode frequency -X with a frequency spectrum 
CD 

2 (-DK \ Fk(ap> - P*(-P) . (3D 
k=l 

except in the case that X « -X . Returning to Eq. (3), the beam current 
for the mode -X is given by the complex conjugate of that for the mode 
V 

-i( p w - n*)t . -i( p u +n)tf 
» 0 2]» a w< = "0{Z) *yp) e > • ( 3 2 ) 

p p 

Therefore in solving Eq. (26) it is necessary only to pick up roots with 
a positive real part. 

For a parabolic bunch 
2 li+l 

V r ) • r J T - r * 2 (" + 2>( 1 - ( f ) ) * > - 1 • ( 3 3 > 
2irv E a s o 
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and Eq. (10) becomes 

- 5 , 2 
p<q> - - i Hv + 2)(p + 1> K 2 J g(P.ReX) p(p) 2-r - f " , 

p m«l m -X 

•J- 2V 

x f (1 - t ) J (oqt) J (opt)tdt . (it,) 
*j m m 
o 

We can also expand the above integral a s 9 

/ (1 - t ) J m (oqt) J m (opt)tdt - 2-» W ^ c a f c ( a p ) * ( 3 5 ) 

where 

- / „x . / (w + u + 2k + 1) r(u + k + 1) r(ffl + u + k + 1)V* 
C m k ( o p ) V 2 • k!Cm + k ) ! J 

* ( i f 1 w 2 k + i^> • <*> 
Since we have again a special relation for a parabolic bunch, 

c ( 0 0> - ((' + 2 M • rfr + * + i ) r(m + n + k + i)V» 
ink1"1" V̂ k ; rCn + 1) r(m + u + 2fe + 1) / 

we can follow exactly the formalism for a Gaussian bunch and derive an 
equation similar to Eq. (2$), which determines the node frequencies. 

For a general bunch distribution it is not known whether special 
relations as In Eqs. (19) and (37) exist or not. Therefore this 
formalism Is useful so far only for Gaussian and parabolic bunches. 

Discussion 
He will consider how this theory predicts instabilities. We treat 

here only a wide-band impedance, which means that the frequency shift 
can be neglected in the impedance function. That is, 
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Z(p(uo + Refi) = Z(pu o) (38) 

Therefore M. in Eq. (26) does not depend on \. 

As a first example, we take only the first term in Eq. (30). The 
mode frequency is determined by 

(l-n+ill^-fl , (39) 

where 
Mil * i 2 { I m 8<P>>tF1(op)}2 . (40) 

Since Mi;, is pure imaginary, Eq. (39) can have an unstable solution 
which comes from coupling between m = ±1 modes. The threshold is given 
by 

K • M u - 1 , (41) 

and is determined only by the Imaginary impedance. Recently B. Zotter 
has also pointed out that by including negative mode numbers, even an 
imaginary impedance can lead to instability.12 

Next we take the first two terns in Eq. (30). The node frequency 
is determined by 

( 1 - n + i S M. 11 1 K M 

i K M. 12 

12 
!j(4 - A ) + i K M, 22 

D(X't) = 0 (42) 

where 

M 1 2 - ̂  {Re g(p))F1(op) F 2(ap) , 
P 

M 2 2 - i £ Urn g(p)HF2(<rp)}2 . 
P 

We analyze the mode frequency by plotting the parabolic function D(x) 
with changing K. If D(x) • 0 has a complex root or a negative root, 

(43) 

(44) 
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instability occurs. If K is small, D(x) is shown in Fig. la and mode 
frequency shafts are small. As K or bunch current increases, two cases 
are possible. Xn the first case D(x) • 0 has complex roots as in 
Fig. lb. This instability is induced by coupling between the n - 1 and 
JE » 2 nodes. In the second case D(x) - 0 has a negative root as In 
Fig. lc. This case comes from coupling between m - ±1 modes, as in the 
first example. Which case first occurs when bunch current increases 
depends on the value of M... 

If we take more terms in £q. (30), this theory also predicts that 
each synchrotron mode splits into several modes because higher-order 
radial modes are Included. For example by taking the first five terms, 
we have one mode for m - 5 and m • 4, two nodes for m » 3 and m = 2, 
and three m - 1 modes. 
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Fig. 1 The deterainant D(x> In Eq. (42) for three values of the 
parameter K. 


