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Introduction

In this paper we study a longitudinal coherent bunch instability in
which the growth time is comparable to or lees than the period of
synchrotron oscillarions. Beth longitudinal and transverse bunch
instabilities have been studied by many authors.l™® 1In mest treatments,
however, the coherent force is assumed to be small and is treated as a
perturbation compared with the synchrotron force. This makes the problem
simpler because an individual synchrotron mode is decoupled. As bunch
current increases, the coherent force is no longer small and the mode
frequency shift becomes significant compared with the synchrotron fre-
quency. Therefore in this case it is necessary to include coupling ef
the syanchrotron modes. Recently a fast blow=up instability which comes
from mode coupling was studied in two papers.l®™1! Their method is to
derive a dispersion relation for a bunched beam using the Vlisov equation

and to analyze it as in a coasting beam. They showed that if mode
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coupling is inciluded the Vlasov equation predicts a fast microwave insta-
bility with a stability condition similar to that for a coasting beam.

In this paper we will partly follow their method and present a
formalism which includes coupling between higher-order radizl modes as
well as coupling between synchrotron modes. The formalism is considered
to be generalization of the Sacherer formalism without mode coupling.
This theory predicts that Instability is induced not only by coupling
between different synchrotron modes but also by coupling between positive
and ncgative modes, }2 since negative synchrotron modes are included in
the theery in a natural manner. This formalism is to be used for a
Gaussian bunch and a parabolic bunch, and is also useful for transverse

problems.

Derivation of Formalism

We start from the following Vlasov equation

k,
_lg 3y , ev(8,t) o Y _
+nsa¢ a ns sin ¢—a% o , (1)

where
¢ = distribution function
©_ = synchrotron frequency
T = revolution period = ZnIuD
k . = uuolEo
o = momentum compaction factor

6 = angular coordinate = z/R
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In Eq. (1), eV(6,t) is an increase in energy per revolution for a particle
at longitudinal position 8 relative to the bunch center and does not

contain the effect due to the stationary part of the distribution funection,

Let ¢ be written as
$(,8) = 4 () + £ade T, )

where 2 is a mode frequency. The beam current is
o«
~ - +
i(e) = u Z p{ple :!.(pmo Mz ’ (3)
p:-m

where the Fourier transform of the longitudinal charge distribution is

given by

2 :
5y = 2 = ffEtr 00 PP argy (4)
o

Since with impedance Z(w)

eV(8,t) = -ew zp: B(pYz(pu, + RemelPOeTi (5
we obtain
: k dy
g - s %o o - iprcosé
(10 + e, -ﬁ)f(r,:;) T sing—=2 ; B(p)z{pu, + Refe . (&)

Taking into account the fact that f£(r,4) and the right-hand side in

Eq. (6) have the periodicity of 2w, we integrate with ¢ and have

ew k dy . 1
Ap ———— -
£r,) = —22 0 M T — Y Szt + Red)
? ,mz ar e -1 o
s
+2n

x fq' o ire! sing’ oipreoss' ', (7

¢

where
_ 0
A= o .
[



-

Performing the integral as

$+2n v
f e-:l.M:' sing’ eiprcos@ A
¢ -
=ihé - =2mix _ J (pr)e ’ (8)
=1e (e pr m-z_w ()" o l

we have

2 t dr P

av
£(x,0) = t—— Moo 1 E L 2(pu, + Rem) 5(p)
o P °
s

x E Py (:l.) Jm(pr)em'b . 9
m
VUsing Eq. (4) we obtain in the frequency domain

27e
o 2 Z S Z(pu, + Ref) 4(p) Z F—ry
5

P

f T 3 Jpler) I er)xdr (10)

which already includes negative synchrotron modes. If we put A ~ m,

Eq. (10) becomes approximately

o =

ia, - 2) 8@ = - 332 Y 2 2(pu + 02 ) 5(p)
p

T
1 d"’o
x f; ey Jm(qr) Jm(pr)rdr . (11)
which is exactly equal to the Sacherer equation without mode coupling.

In what follows we will treat a Gaussian buach and a parabolic bunch.

For a Gaussian bunch

Nea 1.'2
bo) = (- £ az)
21y sEos 20




where
S v, (x)dede = N
N = number of particles in one bunch
¢ = r.m.s. bunch length in units of 8 = ozIR
Vg = Qsl“‘o’
and Eq. (10) becomes

2
F(q) = _1__1;.9._.“__ Z %Z(pmo + Req) o{p) Z m—T;\'

2
ZwsEo'l‘o p m
« f “6*12 5 (oqr) 3 (optita (13)
3 ¢ m'oq m P :

For the integral we have the following sum®

] 2 ®
- 2
of et / Jm(cqt) Jm(apt}tdt = E ka(crq} ka(cp) , {14)
k=0
where
22 o2k
1 - o /2 spo
C,{ap) = ————= e . (13)
wk Vem + 101k (ﬁ)

Using ka(up) which corresponds to the frequency spectrum of the k-th

radial mode in the m~-th synchrotron mode, we obtain

o 2
Bla) = -1 K ) glp,Red) B(p) D, -2 3 € (0a) C (o) , (16)
P A k=0

m=l @~
where
2
Ne azo
K=—3 5 an
mv E To
5 0
1
Zog(p.ReA) - -l-; Z(pmo + Reft) (18)

and Z o is a real impedance for normalization. Since ka(op) has a




special relation

ka(op) = ‘ﬂm-i:.’k . Cm+2k,0(ap) . (19)

we can transfotm the double summation with m and k in Eq. (16) into a

single summation as

p(g) = - 1K Z g(p,Rer) 5(p) Z Bk(Az) Fk(oq) Fk(UP) »  20)
P k=1

where
Flop} = C (op) , (21)
and
1
B (x} =33
4
B, (x) = x °
=2 L1,
B0 =g *1x 3
16 4
By = fex thm " 4 -
25 g 1
B =gt gm "ot " 10
36 16 4
B = g x P Tem " Ot " 1 o
cee o (22)
We look for an eigenmode freqency spectrum p{q} given by
B = 2, o Flod) @3
k=1
This rransformation leads to
. 2
@ = =i X8 (%) ;l H.kQ(Re)\)uE , (24)
where
Mkz(kel) = :E: g{p,Rer) Fk(cp) ?L(cp) . (25)

4
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We can now determine A so that Zq. (24) has a non-trivial solution:

det|s,, + 1K g (%) M (Red)| = 0 (26)
On the other hand, since -
4, (Re)) = DF oy Mgy (27
600 =800 (28)
we can derive from Eq. (24)
- op = -1 & 8, ((21?) E M, -Rer ) (1) @) . (29)

Therefore, if An is a mode frequency with a mode spectrum

~ 30
pn(p) = Z o Fk(O'P) » (30)
k=1
*
we always have another mode frequency -)\n with a frequency spectrum
* .k
Z S a, Flop) =5 (-p) , (31)

k=1
*
except in the case that An = -An. Returning to Eq. (3), the beam current
*
for the mode -An is given by the complex conjugate of that for the mode

An:

~1lpu = 2t ~1(pu + Dt }*

= {E B () e YY)
?

K
u, 2 o .{-p)
P
Therefore in solving Eq. {26) it is necessary only tec pick up roots with

a positive real part.

For a parabolic bunch
+1

2 W
v = — 6+ a1 - (B) ) p> -1, (33)
vaBan




g
and Eq. (10) becomes

BGa) = -1 4y + D + 1) K Z £(p,Re)) 3(p) 21 : ;2
ol m -

1 u
x [~ 3 oqr) ¥ (opt)ede . (34)
-]

Wa can also expand the above integral as®

1 2 u =
S -t e gm0 - 2 o o0 Culom + 03)
where
¢ (op) = (mn+p+2k+ 1) T(u+k+1) Ttm+u+k+1) .
mk \OP 2 » Kitm + K)!
2 utl
x (EE T2kt (P (363

Since we have again a special relation for a parabolic bunch,

(op) = ((m +2Y T(u+k+1) TMm+yu+k +1))¥
o %P T+ 1) Tm+n+ 2k + 2)

3n

* Caak,o(P) -

we can follow exactly the formalism for a Gaussian bunch and derive an

equation similar to Eq. (26), which determines the mode frequencies.
For a general bunch distribution it is not known whether special

relations as In Eqs. (19) and (37) exist or not. Therefore this

formalism 1s useful so far only for Gaussian and parabolic bunches.

Discussion
We will consider how this theory predicts instabilities. We treat
here only a wide-band impedance, which means that the frequency shift

can be neglected in the impedance function. That is,
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Z(pmD + Ref}) = Z(pmo) . {38)

Therefore ng in Eq. {26) does not depend on A.
As a first example, we take only the fipst term in Eq. {30). The

mode frequency is determined by

A-2) +ikM, =0 , (39)
where
2
M, =i ; {Im g(p) HF, (o)} . 40
Since Hll is pure imaginary, Eq. {39) cau have an unstable solution

which nomes from coupling between m = il modes. The threshold is given

by

K- Mll =i , (41)

and is determined only by the imaginary impedance. Recently B. Zotter
Las also pointed out that by including negative mode numbers, even an
imaginary impedance can lead to instability.l2?

Next we tgke the first two terms in Eq. (30). The mode frequency

is determined by

2
@L-2)+1KM 1 KM
I 1 12 =p0dH =0 , (42)
2
l 1KM, (4 - 2%) +1 KN,
where

M, - ; {Re g(P)IF, (op) Fy(op) , 43)
My %1 3 {In (@ HE, (e P . 44)

P
We analyze the mode frequency by plotting the parabolic function D(x)

with changing K. If D{x) = 0 has a complex root or a negative root,
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instability occurs. If K is small, D(x) is shown in Fig. la and mode
frequency shifts are small. As K or bunch current increases, two cases
are possible. In the first case D(x) = 0 has complex roots as in

Fig. 1b. This ihstrability is induced by coupling between the m = 1 and
e = 2 modes. In the second case D{x) = 0O has a negative root as in
Fig. lc. This case comes from coupling between m = *1 modes, as in the
first example. Which case first occurs when bunch current increases
depends on the value of Mij'

If we take more terms in Bq. (30}, this theory also predicts that
each synchrotron mode splits into several modes because higher-order
radial modes ave included. For example by taking the first five terms,
we have one mode form = Sand m = 4, twoe modes form= 3 and @ = 2,

and three m = 1 modes.
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Fig. 1 The determinant D(x) in Eq. (42) for three values of the
paraseter K.




