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ABSTRACT
The iterative method of evaluating plasma eguilibria is especially simple
in a magnetic coordinate representation. This method is particularly useful
for clarifying the subtle constraintsof three-dimensional equilibria and

studying magnetic surface breakup at high plasma beta.

DISCLAINER

R Lt Lt




I. INTRODUCTION
The increased importance of the stellarator in the magnetic fusior

program implies the need for efficient and reliable equilibrium solvers. That

is, methods for solving

ﬁp: ;xﬁ (1)

al-=

are required. At present, there are several fully three-dimensional
equilibrium codes: the Betancourt--Garabedian,! the Chodura-Schluter,? and the
Hender or Near code.> All three ccdes are based on the principle of
minimizing the plasma energy under the assumptions of zero plasma resistivity
and entropy production. In addition, there has been considerable study and
application of the asymptotic theory of averaged equ:i.li.bri.a""8 and analvtic
work using expansions about a magnetic axis.?"'1  None of these equilibrium
solvers deals in a satisfactory way with the breakup of the magnetic surfaces
at high plasma beta., Since this effect gives the equilibrium beta limit in a
stellarator, its study is quite important. In addition to the energy
principle, averaged equilibria, and expansion around the axis, there is a
fourth method of finding equilibria. This method is based on a jerturbation
about a known magnetic field or equilibrium and is called the iterative
method. It was discussed and used in the early years of the magnetic fusion
program by Kruskal and Koenig,12 and Grad and Rubin.'3 1In recent years, it
has been used by Yamagishi ﬁﬂ.”’ to study equilibria in the Ohte device.
The basic formulation of the iterative method is gquite simple. Suppose

E—
we have a magnetic Field B (x) at some stage of the iteration. Then the next

gtage is evaluated using the equations
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VB, =0 - (4)

+> > > +
There is an exact egquilibrium if and omly if Bk“(x) = B (x}, These equations
have a number of attractive features. In particular, the subtle constraints
on three-dimensional equilibria are explicit, and there ia no assumption of
perfect magnetic surfaces. In this paper, we will give the relatively simple
mathematical procedure for evaluating equilibria iteratively if magnetic

coordinates are employed.

II. MAGNETIC COORDINATES

>
Let B be a magnetic field associated with a scailar pressure
+ +>
equilibrium. In a region of space in whic¢ch Vp # 0 one can represent B in two

15

forms - uging the magnetic coordinates ¢, 0, §:

wY
it

Gy x Bo + Ty x Ty , (5)

atp¥ie + 1(pIVe + B, (9.6 4 Wy . (5)

wi
it

The quantities vy, 9, ¢, pr(l{i)- gy}, and I{y) which appear in these
representations are defined In Fig. 1. The gquantity B.(0 8 ,4) is closely
related to the szrsch-Schl.x.xter current but will not play a major role in this
paper.

The demonstration that these two forms exist is simple. Let 8 and ¢ be



B d P> - >
any poloidal and toroidal angle which make Vp « (V 8 x V$) finite. Then p, §,

¢ can be used as coordinates. That 1s, they span the space and any vector can

be written

+B=a$px$9_+b$¢x$p+c$9_xs¢ . (7)

L d >
Since B+ Vp = 0, the coefficient ¢ = 0. Using the fact that the divergence

> +>
of crossed gradients is zero, V *+ E = 0 implies a and b can be written in the

form

- 3w = -a
a = aotp) + ao = B b = bo(p) ao s (8)

with w a function of p, &, ¢ Let a& = a_ dp, d, = b, dp, and ® =§ +uw,
then one finds Eg. {7) can be written in the form of Eg. (5).
- >
To demonstrate the covariant form for B, Eg. {6), write B in the general

form

%=u3¢ +y¥e + p¥p - (9)

> +» +»
Now(V x B) » Vp = 0 implies

(10)

This equation means one can writea and y in the form

3 2
a=g(p)+(g+XI)a—;' , Y = L)+ (g +xD) Sy (11



with ¥ = dPP/d'U- Let 8,.=0 + x0 and ¢, = é + v. The transformation from 84
to 8., ¢, does not change the representation of Eg. (5) but does imply +B can
be written in the form of Eq. (6). N

The evaluation of the transformation equations., X(}.8 ,4), between the
ordinary Cartesian coordinates x,y,z and magnetic coordinates ¢, 0, ¢ can be

made with field line integrations.16'17 Here we outline the procedure for the

coordinate y. The periodicities of the torus imply

ylg, 0, ¢) = n‘“:m Yom W) exp [ilnp - o)) . (12)

Equation (5) implies a field line has § constant and Bo =8 -x¢ constant with
Ed -

x = dJJP/d:p. This follows from the obvious implications of Eg. (5) that B« Wy

<

>
= B =

@, = 0. Equation (6) implies that if x is defined by x = g{{}p +
I{$), then & = BAl with d% the differential distance along a line. If one
chooses the starting point of the field line integration so 6= = 0, then x

and 6, vanish there. As one performs the field line integration one can

evaluate y and hence y(x). By Bg- (12), y(x) must be of the form

exp [i T—E2 {13)

yixy =1y g +aI

nm
The Fourier decomposition of y{x) has distinct peaks. The amplitudes of the
peaks get the y,. and the locations determine the n and m as well as x.

If a finite volume is covered by a single field line, then the treatment
must be altered.1® The Ffield 1lines, in such reqions, are said to be
stochastic. 1In cases of practical interest, one can still evaluate -;c(lp e B, 0)
and ¥ (), as described above, over much of the plasma volume. The stochastic

regions can be included by smoothly interpolating x () and the Fourier



+ +
coefficients X, (¢) acroas these regions. Given X(}, 8, ¢) and x(y) a unique
magnetic 1ield with perfect surfaces is defined by Bq. (5). Consequently the
»
construction of X(¢, 0, ¢) and x (p) divides the magnetic field into a field

with perfect surfaces and a perturbation.

ITT. PLASMA CURRENT
»>
Iet B be the magnetic fileld at some stage of the iteration. We wish to

find the relation between the presssure and the current usin,

(14)

#p =

Ol
oy
x
wv
L]

In the next section we will find the new magnetic field given the current.
>
For simplicity of discussion, we assume B has perfect surfaces. The procedure
R B
to be used when B has stochastic regions will be discussed at the end of the

serction.

>
Since B is near a scalar pressure equilibrium, it can be accurately

represented in the forms of Egs. {(5) and (6). Equilibrium, Eg. (14), implies

the current perpendicular to-; ic
Bx¥p . (15)
Using Bg. (6) and p = p(y},

jl

Y o= & (gpi¥e x By - 2ty x Fo) & (16)
52 &

Of courge, the current must be divergence-free gince it 1s the curl of the

magnetic field used in the next interation step. This lmplies
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+
The divergence of j.L can be simply taken. We agsume 32 has the form

1 1 '
? ) 5 (1 +n):m S nm SO8(Pb - ) (18}
(] ’ '

with the prime implying the texm n = 0, m = 0 1s omitted from the sum. Then
the solution to Eq. (18) ig!5
j! c 4 '

dp E mginl .

= £ £,
'B—-hu(‘#)*-

BZ ay n=rm nm cos(npy - md) (19)
[}

with cp{)/4n the general homogeneous solution, the so-called force-free
current. In principle one should also have terms in sin(njp ~ ), but most
stellarator designs have the appropriate symmetry so that these terms can be
eliminated by a proper choice of the position & = 0, ¢ = 0. The total plagma

+*
current is cbtained by adding '5_1 and (jl/B)B,

ar
! d !
Sl oG E L S b ool - )]0 - o)
o r
dg
d ]
+[-%11-3P-2+(g+!1)§55 n):m ni‘zmﬁnmaos(w —nﬂ]][$¢ xﬁ\p] '
ey .
{20)
a1
B _,_&dp
et o
[+

dg
& dp
—_— - - - 2
En u 2 & g (22)
=]
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One can show using Eq. (6) that in equilibrium Ip = I and 9y * 9-

The sinqular form of the equation for the parallel current, Eg. (19),
requires comment. This equation implies the parallel current will hava non-
integrable singularities on every surface in which the transform is a rational
nunber unless all the ﬁnm's associated with that ratioral number are zero, or
dp/d) vanishes there. The vanilshing of the asgociated §'s is equivalent to

UfG&/B being identical on every field line of the rational surface. Actually
the parallel current, Eq. (129), gives a constraint on the pressure gradient if

We apply the physical requirement that there be no singular socurces or sinks

of particles. One can show the Pfirach-Schther diffusion coefficient15
nI+m 2
Dx J (—ﬁn_‘rTn § ) . (23)

The particle flux I'(y) crossing a surface is given by the sources of particles

ingide that surface. The pressure gradient satisfies

= T(y)/D()) (24)

Jjgk}

and therefore vanishes wherever D(y) is singular. 1If all the Gnm were finilte,
the pressure gradient would have a quadratic zero near each rational surface
and the prassure driven or Pfiruch—SchlEter part of the parallel current would
have a linear zerc. The physical constraint that the pressure yradient vanish
at the rational surfaces on which the resonant §'s do not vanigh is manifast
in the iterative scheme and more subtly cbscured, although present, in other
methods of finding equilibria.

If one uses the gimple Ohm's law, with n, the parallel resistivity, the

force~free current is simply related15 to the locop voltage V:

e
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N ——cnl g_—-brI . (25)

+
If the magnetic field B does not have perfect surfaces, one must make yu

+*
and p constant over regions in which B is stochastic. This follows from the

+ + + +
constraints B* Vu = D and B« Vp = 0.

IV. MAGNETIC FIELD DUE TO THE PLASMA
> >
The plasma current at each point in space j{x} is determined by Eq. (20)
+
and the transformation eguation X(%.9 .4$). The magnetic field due to the

+ +
plasma b(x) obeys the eguations

Ixd- -gl'-*j (26)
and
b0 . (27)
> ¥
The physical boundary condition 1is npormally b(x + <«) = 0. Fixed boundary

equilibria correspond to ; s ;1 = 0 on the boundary with ;\ the normal to the
boundarv. If ? is calculated using the kth iteration oxrder magnetic field,
then b is added to the vacwm field te obtain the k + 1 order magnetic field.

Although the evaluation of the nagnetic field, glven the current, 1is in
principle straightforward, in practice 1t can be difficult. Por plasmas
without net current the evaluation of b can be reduced to the solution of
Poisson's equation. With no net current, both u{y) and I(p) are zero, am

shown in Eg. (21). The case with net plasma current is considered in the
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appendix.
E
To reduce the evaluation of b to Poisson's equetion, divide the plaama

field into two parts
L=h+¥s . (28)

+
The field h can be made to vanish outside the plasma and have its curl equal

the plasma current, Eg. (20), inside with the choice

<
o

n=rm

_ a 4ng d dp v' _om
beU R (0 5 2] sintg - )%y 29)
Q o

+
with ¢, the value of ¢ at the plasma 2dge. The condition that b have zero

divergence implies
v = b (30)

L d
which 1is Poisson's eguation. Since h vanishes outside the plasma, the

- 3
boundary conditions on b become boundary conditions on VE.

V. APPROXIMATE SOLUTION
If the magnetic surfaces were straight circular cylinders, the Poisson
equation for f could be gimply solved. In many equilibria the circularity
assumption is an accurate approximation. Even in equilibria with significant
noncircularity, the simple circular surface formulas may give a reasonable
estimate of the sgurface shift and hence the beta limit. Although some
analytic generalizations are possible, we consider only the simplest

approximation to eclarify the physics.
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With circular surfaces of radius r.

.@-:
3r B r {31)

Y
and the radial component of the h field, as shown in Eg. (29), is

(=]

h =

) Ry IR gintmp - ) - (32)

n-xm

o“th

If we assume |n/R| << |m/r| with
1.
2z el . (33

then Poisson's equation, Eq. (30), becomes

L) £ 1 3 1d
—if—rit s ST =S (rh) . {34)
r3xr " 3r r238 r dr r

Since the equation is linear, we can assume hr has only one Fourier term and
sum the various Fourier terms only at the end of the calcplation. The
simplest boundary coandition, and the one that 1s used, is that f goes to zexo

for large r. The solutlen inside the plasma, r € a, 1s

r r

f:rw (s2 % ar) = —— (X ™ ar)
z Vr TTal = Yo % (35)
r 2r
Outside the plasma, r > a, only the term proportional to ‘1,/:_-“"i is present,
The radial field is given by b = h_ +3E8r or
p_ =Bl [ Iml(ja x ar) + == ([ 1% 0 )] 36)
r 2r r _im] Im{ Vo r i ¢



12

It is, of courae, the radial field which dominates the change in shape of the

vacuum gurfaces. Eguations (32) and (36) give an easily evaluated expression

L d

for this field. The change in r, at low beta, is dominated by the V¢
+

. +
component of h, as given in Eg. (29). This component of h is divergence-free

+
if B is vacuum magnetic field. One finds, with 8(y) the local beta value

Ar _ Bly)
F2E ° (37)

Given the magnetic field ; one can simply evaluate numerically the
magnetic surfaces in the presence of the plasma. Of course the major features
can be illustrated analytically. In analytic evaluations of the perturbed
surfaces, one must first look for resonant surfaces. These are surfaces on
which @ Fourier term in br gatisfies n = ym. Although br has a singular form
near sguch surfaces, the consistency of the equilibria with finite transport
implies b, is actually finite, as shown in Sec. ILI. A finite b_still breaks

*
the topology of the magnetic surfaces by opening a magnetic island.19 It br

is the magnitude of the resonant terms in b, then the half-width of this

igland is

y 2
4 th 1

mk/dr B, : (38)

i:

When neighboring islands overlap, the field lines stochastically cover a
finite volume rather than lying in surfaces.
Away from resonant surfaces, one can evaluate the change in shape of the

magnetic surfaces by perturbation theory. If we define Anm by
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Bo '
b === 1 (n=am A o sin(oh - wd) . (39)

r ®
then the local radius r(ro, 8, ¢) of a surface which had an unperturbed radius

ro a9

'
r= r°+z A . cos(ng - mb) (40)
provided r  *> \Anm]. The m = | components of the Am(ro) go to a constant as
X, * 0 and shift the magnetic axis. The horizontal axis shift, along 9 = 0,
is E‘An'1 cos {np) and the vertical shift, along & = n/2, is I‘AM sin (ng ).
Although Bg. (32) for h, and Eq. (36) for b_ can be easily integrated to
obtain the finite pressure equilibria, it is illustrative to consider a simple

approximation to hr‘ Congider the approximate forms

6nm Imi r2
e and p= p°(1 - -—2—] . (41)

We also assume g = RB., which 1s generally an accurate approximation. One

(o]
then finds
B .2 & (x)
o R nm Im] ry2
A = Imi{1 ~ - (3] forr ¢ a
nm 4 r (n-xm)z 1+{m[ ‘a
(42}
[} 2 § {a}
- 2R nm Il raym
b =% T Tnoriaym (oot (2om] #+im] (D" gorr>a
- 2
Bu = en ,po/Bo .

In this approximation the shift of the surfaces at the plasma edge is half the
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shift of the axis for m = 1 terms. This relative shift was derived many years

ago. 2 one can summarize the most import‘ant. feature of these results by

defining ma by

m 1 _Iml "o
2 (43)

which implies ﬂmn is given by

2
— o2 (n=tm)
Hnm- 2[R] e . (44)
nm
As long as the plasma beta is small compared to all the B, ., the shifts are

small. It sheuld be noted, however, that for Anm/a = 1/2m nonlinear terms

become important in determining the plasma equilibrium by modifying the Gm's.

V. SUMMARY
The iterative method for finding net-current-free stellarator equilibria

can be simplified by the use of appropriate magnetic coordinates, At any

+ > .

stage of the iteration, a magnetic field B(x) is assumed known. The initial
+

guesg can be the vacuum field B, . Given the desired pressure function p(y),

+
with ¢ the radial flux coordinate, the plasma current j can be explicitly

given in contravariant form, Eq. (20), using appropriate magnetic

coordinates. The magnetic field due to the plasma t is determined by the

»>
current j. This field can be evaluated by sclving orly Peisson's equations.

+ + + +
To do this, let b = h + Vf. The vector h is chosen to solve hmphere's law in

>
the plasma region but be zero outside. An analytic expression for h is given
»>

>
in Eg. (29). The fleld h is not divergence-free. However, b can be made

divergence-free by choosing f to be a solution of Poisson's equation, Eq.
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* >
(3D), with V£ having the same boundary conditions as b. Once the plasma field

*> +
b is added to the vacuum fileld Bv' a new magnetic fleld is obtained For

further iteration.
>
The most Iimportant quantity, which enters the evaluztion of b, is the

magnetic field strength expressed in the zppropriate magnetic coordinates,
B(Y,8,$). If other geometric information 1s ignored, which can be justified
if the surfaces are nearly circular, then the iterative method is almost
trivial to implement. All that 1s regquired is that the field strength be
obtained in Fourier-decomposed maqnetic-coordinate Fform, rfor which codes

3
16,17 and then one-dimensional integrals can be performed to obtain b.

exist,
The new magnetic surfaces can be obtained by the obvious numerical integration
although much information can be obtained analytically. This approximation is
discussed in Secs V. With further approximations, a generalization to complex
gecmetry of the tokamak beta limit estimate, e/qz. can be obtained, Egs. (43)
and (44).

The iterative method is simple and also makes the implicit contraints on
the pressure function p{y) explicit. These constrainta are the constancy of

p¥) in a region of stochastic field lines and near a rational surface on

whichfdz/ﬂ is not constant.
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APPENDIX Plasma With Ne=t Current

The obvious generallization of Sec. V., to the case of Ffinite plasma

current 1g

s
+ _ _ algwD) dp o,
h = [gp(il] gp(wa)ﬁqn{ 1) Iaﬁm{ Bg sz n’_‘:‘m sin(ng-u0 )Ty

° (a1)

with I, = Ip(wa). This expression for % is zero outsige the plasma and almost
has the plasma current, Eg. (20), as its curl. e say almost because the curl

of VG does not vanish at the magnetic axis,
Txfo) sy x Vo . ' (a2)

Let Bw he the field produced by a wire carrying a unit current along the
magnetic axis. A formalism similar to that of Sec. V. follows 1f we let the

field due to the plasma equal
b=-t+1h +¥¢ . (A3)
a w

The function £ 1is then a single valued function of positio... Of course, both

t ana Bw are singular near the axis but
h,=h+1b, (a4)
ig finite there. The function f satisfies Poisson's equation

7% = $.h, . (AS5)

2 ACTTRGITATY TR L s e e ¢

s

T
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One can egually well use Veh since Ye¢h and V+h, are equal. ‘The field'ﬁw can
be evaluated numerically by placing current along the magnetic axis. The
boundary conditions on £ remain relatively simple. If $ vanishes at infinity,
N )

then so does Vf. If Pen ig fixed on a surface, then the normal derivative of

+  a
£ plus I b n is fixed.
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Figure Caption

Fig. 1. Magnetic Coordinates

A topologically toroidal constant pressure surface has two other surfaces
agssociated with it which are the domain of the toroidal and the poloidal area
integrals. The toroidal flux function § and the "plasma current"” I are
defined on one such surface. The poloidal flux function “p and the "coill
current®” g are defined on the othe.. The pressure, lbp, g, and I are all

functions of ¢ alone.
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