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ABSTRACT 

The iterative method of evaluating plasma equilibria is especially simple 

in a magnetic coordinate representation. This method is particularly useful 

for clarifying the subtle constraints of three-dimensional equilibria and 

studying magnetic surface breakup at high plasma beta-
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I. INTRODUCTION 

The increased importance of the stellarator in the magnetic fusion 

program implies the need for efficient and reliable equilibrium solvers. That 

is, methods for solving 

5 p = ^ * » S (1) 

are required. At present, there are several fully three-dimensional 

equilibrium codes: the Betancourt-Garabedian, the Chodura-Schluter, 2 a n (j t n e 

Hender or Near code.3 All three codes are based on the principle of 

minimizing the plasma energy under the assumptions of zero plasma resistivity 

and entropy production. In addition, there has been considerable study and 

application of the asymptotic theory of averaged equilibria 8 and analytic 

work using expansions about a magnetic axis. None of these equilibrium 

solvers deals in a satisfactory way with the breakup of the magnetic surfaces 

at high plasma beta. Since this effect gives the equilibrium beta limit in a 

stellarator, its study is quite important. In addition to the energy 

principle, averaged equilibria, and expansion around the axis, there is a 

fourth method of finding equilibria. This method is based on a .perturbation 

about a known magnetic field or equilibrium and is called the iterative 

method. It was discussed and used in the early years of the magnetic fusion 

program by Kruskal and Koenig, and Grad and Rubin. 1 3 In recent years, it 

has been used by Yamaqishi et al.' 4 to study equilibria in the Ohte device. 

The basic formulation of the iterative method is quite simple. Suppose 
-»• + 

we have a magnetic field B^Cx) at some stage of the iteration. Then the next 

stage is evaluated using the equations 
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**k -l\*\ • <2> 

**Wf\ . 

* + + + 
There is an exact equilibrium if and only if Bj^fx) = \S*^' ' a i & a e equations 
hare a number of attractive features. In particular, the subtle constraints 
on three-dimensional equilibria are explicit, and there is no assumption of 
perfect magnetic surfaces. In this paper, we will give the relatively simple 
mathematical proceaure for evaluating equilibria iteratively if magnetic 
coordinates are employed. 

II. MAGNETIC COORDINATES 
Let B be a magnetic field associated with a scalar pressure 

+ + 
equilibrium. In a region of space in which Vp * 0 one can represent B in two 
forms using the magnetic coordinates if, 9, $: 

B = ftp x ?fl + $$ x fyi W>) , {5) 

\ = g(i|>i$* + Idj>)$6 + B t(i)) ,6 ,$ )$ip . (6) 

The quantities i|i, 6, <|> , 1(1 0(i), g<i|) J, and IM>) whioh appear in these 
representations are defined in Fig. 1. The quantity fS*M,9,<J) is closely 
related to the Pfirsch-Schluter current but will not play a major role in this 
paper. 

The demonstration that these two forms exist ie simple- Let 8 and 4 be 
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any poloidal and toroidal angle which make Vp • (V 9 x Vf ) finite. Then p, 9~, 

4> can be used as coordinates. That is, they span the space and any vector can 

be written 

B = aVp x V9~ + bVifi x Vp + eve" x ?$ (7) 

Since B • Vp = 0, the coefficient a = 0. Using the fact that the divergence 

of crossed gradients is zero, V * B = 0 implies a and b can be written in the 

form 

a = a tp) + a ^- , b = b (p) - a |f (8) 
O O _jr o o dtp 

with u) a funct ion of p , 9~, $ • Let dty = a Q dp, dty = bQ dp, and 9 = 6" + u , 

then one f inds Eq. (7) can be wr i t ten in the form of Eq. ( 5 ) . 
+ + 

To demonstrate the covariant form for B, Eq. ( 6 ) , wri te B in the general 

form 

% = a % + Y$6 + ??p . (9) 

+ + + 
Now(V x B) • Vp = 0 impl ies 

I f - !}-* • 

This equation means one can write a and y in the form 

3v 3v 
a - g(p) + (g + *I) ̂  , Y = Kp) + (g + *I) f£ (11) 



with X = oty_/dty. Let 8-=3 + XV and $ K = • + v. The transformation from 8 ,<j> 
+ 

to 6 , ij> does not change the representation of Eq. (5) but does imply B can 

be written in the form of Eq- (&)• 

The evaluation of the transformation equations, x(i|> ,8 ,$), between the 

ordinary Cartesian coordinates x,y,z and magnetic coordinates ty , 9 , <)> can be 

made with field line integrations. 1 6 , 1 7 Here we outline the procedure for the 

coordinate y. The periodicities of the torus imply 

y(\|/, 9, $) = I y (*) exp [i(nfi - n6>] . (12) 
n 4m mil 

Equation (5) implies a field line has t|i constant and 9 = 6 - X$ constant with 

X " djî dil). This follows from the obvious implications of Eq. (5) that B » Vt|i 
+ 

" B « 7B o = 0. Equation (6) implies that if x is defined by x = ity It + 

I(i)>)6, then dj( = Bdl with dl the differential distance along a line- If one 

chooses the starting point of the field line integration so Q =4 = 0, then x 

and 9 0 vanish there. As one performs the field line integration one can 

evaluate x and hence y<x ) • By Eg- (12), y(x) must be of the form 

y(x> =1 y^exp ti|^fxl (13) 

The Fourier decomposition of y(x) has distinct peaks. The amplitudes of the 

peaks set the y and the locations determine the a and m as well as * « 

If a finite volume is covered by a single field line, then the treatment 

must be altered.18 The field lines, in such regions, are said to be 

stochastic. In cases of practical interest, one can still evaluate X(ifi , 8 , if ) 

and M (1(1), as described above, over much of the plasma volume. The stochastic 

regions can be included by smoothly interpolating x (̂1) and the Fourier 
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coefficients Xrmi<l>) across these regions- Given X(ifi, 6, $) and^dji) a unique 
magnetic lield with perfect surfaces is defined by Eg. (S). Consequently the 
construction of X(+, 9 , 41) and .* ty) divides the magnetic field into a field 
with perfect surfaces and a perturbation. 

III. PLASMA CURRENT 
Let B be the magnetic field at some stage of the iteration. We wish to 

find the relation between the presssure and the current usin'j 

Vp = ^ j X B . (14) 

In the next section we will find the new magnetic field given the current. 
+ 

For simplicity of discussion, we assume B has perfect surfaces. The procedure 

to be used when B has stochastic regions will be discussed at the end of the 
section. 

Since B is near a scalar pressure equilibrium, it can be accurately 
represented in the forms of Eqs. (5) and (6). Equilibrium, Eq. (14), implies 
the current perpendicular to B L 

+ c + ± 
j^-jBdp , (15) 

Using Eg. (6) and p = p(i(i), 

\ = ~ (g(+)fy> x % - lOJitf* x fa) J-E . (16) 
B 

Of course, the current must be divergence-free since it is the curl of the 
magnetic field used in the next interation step. This implies 
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"B. ?__=.#» j (17) 

The divergence of j, can be simply taken. We assume B has the form 

• 7 - "7 (1 + I \ m
 c o s< n* " « e )) H8) 

B B" n,m o 

with the prime implying the term n = 0, m = 0 is omitted from the sura. Then 

the solution to Eq. {18) is 

B *i 2 d( n-fl-m ran 

with en (̂> )/4n the general homogeneous solution, the so-called force-free 

current. In principle one should also have terras in sin(n$ - n6 1, but most 

stellarator designs have the appropriate symmetry so that these terras can he 

eliminated by a proper choice of the position 9 = 0, $ = 0 . The total plasma 

current is obtained fcy adding j. and (j /B)B, 

o 

^ B ^ n,m 
° f20) 

d I *, A p 4T dp _ 

p *! dp 

o 



8 

One can show using Eq. (6) that in equilibrium I_ •> I and g D => g. 

The singular form of" the equation for the parallel current, Eq. (19), 

requires comment. This equation implies the parallel current will have non-

integrable singularities on every surface In which the transform is a rational 

number unless all the S„ '» associated with that rational number are zero, or nm 
dp/aty vanishes there. The vanishing of the associated S'a la equivalent to 

•dt/B being identical on every field line of the rational surface. Actually 

the parallel current, Eq. (19), gives a constraint on the pressure gradient if 

we apply the physical requirement that there be no singular sources or sinks 

of particles. One can show the Pfirsch-Schluter diffusion coefficient 

*• ln-.iTi nm-' 

The particle flux V (̂i) crossing a surface is given by the sources of particles 

inside that surface. The pressure gradient satisfies 

|£ = -r(ip)/D<i|0 (24) 

and therefore vanishes wherever D(i)i) is singular. If all the 6 were finite, 

the pressure gradient would have a quadratic zero near each rational surface 

and the prasaure driven or Pfirsch-Schluter part of the parallel current would 

have a linear zero. The physical constraint that the pressure gradient vanish 

at the rational surfaces on which the resonant C s do not vanish is manifest 

in the iterative scheme and more subtly obscured, although present, in other 

methods of finding equilibria. 

If one uses the simple Ohm's law, with n the parallel resistivity, the 

force-free current is sifflply related to the loop voltage V: 



u = — -?-r . (25) 
en, g+*r 

+ 
If the magnetic field B does not have perfect surfaces, one must make y 

and p constant over regions in which B is stochastic* This follows from the 

constraints B • Vy = 0 and B • Vp = 0. 

IV. MAGNETIC FIELD DUE TO THE PLASMA 
* + 

The plasma current at each point in space j{x) is determined by Eq. (20) 
> 

and the transformation equation X(I|I ,9 ,$). The magnetic field due to the 

plasma b(x) obeys the equations 

? x b = 4!-$ (26) 

and 

5-b = (27) 

The physical boundary condition is normally b(x + <•) = 0. Fixed boundary 

equilibria correspond to b • n = 0 on the boundary with n the normal, to the 

boundarv. if j is calculated using the kth iteration oraer magnetic field, 

then b is added to the vacuum field to obtain the k + 1 order magnetic field. 

Although the evaluation of the magnetic field, given the current, is in 

principle straightforward, in practice it can be difficult. For plasmas 

without net current the evaluation of "b can be reduced to the solution of 

Poisson's equation. with no net current, both uty) and Hf) are zero, as 

shown in, Eq. (21). The case with net plasma current is considered in the 
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appendix. 

TO reduce the evaluation of b to Poisson'g equation, divide the plasma 

f ie ld into two parts 

% = t + it (28) 

The field h can be made to vanish outside the plasma and have its curl equal 

the plasma current, Eq. (20), inside with the choice 

B B 
o o 

+ 
with ifra the value of ip at the plasma 3dge. The condition that b have zero 

divergence implies 

v 2 f = -$.h (30) 

Which is Poisson's equation. Since h vanishes outside the plasma, the 
+ + 

boundary conditions on b become boundary conditions on Vf. 

V. APPROXIMATE SOLUTION 

If the magnetic surfaces were straight circular cylinders, the Poisson 

equation for f could be simply solved. In many equilibria the circularity 

assumption is an accurate approximation. Even in equilibria with significant 

noncircularity, the simple circular surface formulas may give a reasonable 

estimate of the surface shift and hence the beta limit. Although some 

analytic generalizations are possible, we consider only the simplest 

approximation to clarify the physics. 
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With circular surfaces of radius r. 

ax o 

and the radial component of the h field, as shown in Eg> (29), is 

o 

If we assume |n/K| « |m/r| with 

^ tf <H » (33) 

then Poisson's equation, Eq_. (.30), becomes 

13 S f ^ 1 3 2 f 1 d . . . , „ , , 
r 3~r" r Br" + I 2̂ = ~ r dF ( r V * < 3 4 ) 

r do 

Since the equation is linear, we can assume h r has only one Fourier terra and 

sura the various Fourier terms only at the end of the calculation. The 

simplest boundary condition,, and the one that is used, is that f goes to aero 

for large r. The solution inside the plasma, r <_ a, is 

f = ^ U'r 7=T ̂  - £ R Uo '"" hr *) • »*> 

Outside the plasma, r > a, only the term proportional to 1/r is present. 

The radial field is given by b = h + 9f/Br or 
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It is, of course, the radial field which dominates the change in shape of the 

vacuum surfaces. Equations (32) and (36) give an easily evaluated expression 

for this field. The change in i , at low beta, is dominated by the Vif 
+ + 

component of h, as given in Eq. (29). This component of h is divergence-free 
+ 

if B is vacuum magnetic field. One finds, with 0 (ij)) the local beta value 

— = -J*- • (37) 

Civen the magnetic field b one can simply evaluate numerically the 

magnetic surfaces in the presence of the plasma. Of course the major features 

can be illustrated analytically. In analytic evaluations of the perturbed 

surfaces, one must first look for resonant surfaces. These are surfaces on 

which a Fourier term in b satisfies n = xm. Although b has a singular form 

near such surfaces, the consistency of the equilibria with finite transport 

implies b r is actually finite, as shown in Sec. III. A finite b r still breaks 
in £ 

the topology of the magnetic surfaces by opening a magnetic island. If b 

is the magnitude of the resonant terms in b , then the half-width of this 

island is 

A i 
4 r 

mdir/dr B o 

1/2 
(36) 

When neighboring islands overlap, the field lines stochastically cover a 

finite volume rather than lying in surfaces. 

Away from resonant surfaces, one can evaluate the change in shape of the 

magnetic surfaces by perturbation theory. If we define A by 
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B 0 r* b = - -?- J (n --*») A sinfnf - nB) , (39) r R *• nm 

then the local radius r(r , 8, $) of a surface which had an unperturbed radius 

r = r o + 7 4 cosfi^ - n6} (40) 

provided r Q >> lA^l- The m = 1 components of the A ^ l r ^ go to a constant as 

r + 0 and shift the magnetic axis. The horizontal axis shift, along 6 = 0 , 

is I A f i 1 cos (n^) and the vertical shift, along 6 = ir/2, is 2, i n 1 sin (m|>) • 

Although BJ. (32) for h r and Eq. (36) for b r can be easily integrsied to 

obtain the finite pressure equilibria, it is illustrative to consider a simple 

approximation to h • Consider the approximate forms 

6 . . 2 
— - r' and p= p j 1 - ~ ) . (41} 

a 

We a l s o assume g = R B O < which i s general ly an accurate approximation. One 

then f inds 

B „2 5 (r) , , 
. o R ran , , r , ra / r \ 2 i . 

(n-A-m) ' 
( 4 2 ) 

3 „2 « (a) i , 
, o H nm lm| rasa f 

nm ~ 4 r [n-* (a)mj [n-* (r)m] 1+|m| l r' 

6 s 8rt p / B 1 

o r o o 

In t h i s approximation the s h i f t o f the surfaces a t the plasma edge i s ha l f the 
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shift of the axis for m = 1 terras. This relative shift was derived many years 
12 ago. One can summarize the most important feature of these results by 

defining ̂  by 

a 2 H| n| 0 ( 4 3 J 

nm 

which implies 3 is given by 

a - of±1 2 (n-»m) 
nm 

as long as the plasma beta is small compared to all the (L^i the shifts are 

small. It should be noted, however, that for Ajjn/a = 1/2m nonlinear terms 

become important in determining the plasma equilibrium by modifying the S — 's. 

V. SUMMARY 

The iterative method for finding net-current-free stellarator equilibria 

can be simplified by the use of appropriate magnetic coordinates. At any 

stage of the iteration, a magnetic field B(x) is assumed known. The initial 

guess can be the vacuum field B . Given the desired pressure function pty), 

with ij/ the radial flux coordinate, the plasma current j can be explicitly 

given in contravariant form, Eq. (20), using appropriate magnetic 

coordinates. The magnetic field due to the plasma b is determined by the 
* • 

current j. This field can be evaluated by solving only Polsson's equations. 
+ + + + 

To do this, let b =* h + Vf. The vector h is chosen to solve Amphere's law in 
+ 

the plasma region but be zero outside. An analytic expression for h is given 

in Bq. (29). The field h io not divergence-free. However, b can be made 

divergence-free by choosing f to be a solution of Poisson's equation, Eq. 
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(30), with Vf having the 3arae boundary conditions as b. Once the plasma field 

b is added to the vacuum field B v, a new magnetic field is obtained for 

further iteration. 

The most important quantity, which enters the evaluation of b, is the 

magnetic field strength expressed in the appropriate magnetic coordinates, 

B(^,8,4>}. If other geometric information is ignored, which can be justified 

if the surfaces are nearly circular, then the iterative method is almost 

trivial to implement. All that is required is that the field strength be 

obtained in Fourier-decomposed magnetic-coordinate form, ror which codes 
16 17 + 

exist, ' and then one-dimensional integrals can be performed to obtain b. 

The new magnetic surfaces can be obtained by the obvious numerical integration 

although much information can be obtained analytically. This approximation is 

discussed in Sec. V. With further approximations, a generalisation to complex 

geometry of the tokamak beta limit estimate, e/q , can be obtained, Eqs. (43) 

and (44). 

The iterative method is simple and also makes the implicit contraints on 

the pressure function p{^> explicit. These constraints are the constancy of 

pty) in a region of stochastic field lines and near a rational surface on 

which 4t3H/B is not constant. 
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APPENDIX Plasma With Net Current 

The obvious generalization of Sec. v. to the case of finite plasma 

current is 

B 
° (B1) 

with I = I (1J1 ). This expression for %. is zero outside the plasma ana almost 

has the plasma current, Eq. (20), as its curl. -*e say almost because the curl 

of ft) does not vanish at the magnetic axis, 

5x(?6) = Stytfty x ?6 . (A2) 

Let %v he the field produced by a wire carrying a unit current along the 

magnetic axis. A formalism similar to that of Sec. V. follows if we let the 

field due to the plasma equal 

b = n + i £ + $ f . (A3) 
a w 

The function f is then a single valued function of position. Of course, both 

h and b are singular near the axis but 

h# - h + i t v (A4> 

i s f in i te there. Tfce function f sat i s f ies Joisson's equation 

V 2 f - -$•£„ . <A5) 
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One can equally veil use V«h since V«h and V«h» are equal. The field "b can 

be evaluated numerically by placing current along the magnetic axis. The 

boundary conditions on f remain relatively simple. If b vanishes at infinity, 
* t * ' then so does Vf. If b»n is fixed on a surface, then the normal derivative of 

+ » 
f plus I„b • n is fixed. 

^ aw 
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Figure Caption 

Fig. 1. Magnetic Coordinates 

A topologically toroidal constant pressure surface has two other surfaces 

associated with it which are the domain of the toroidal and the poloidal area 

integrals. The toroidal flux function i|> and the "plasma current" I are 

defined on one such surface. The poloidal flux function if> and the "coil 

current" g are defined on the othe.'. The pressure, ii , g, 'ind I are all 

functions of ip alone. 
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