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Abstrget

A [linite element model has been developed for
simulating the dynamics of problems encountered in
atmospherie pollution and safety assessment studies. The
model is based on solving the set of three-dimensional,
time-dependent, conservation equations governing incom-
pressible flows, Spatie) discretization is performed via a
modified Galerkin finite element method, and time
integration js carried out vin the forwsrd Euler method
(pressure is computed implicitly, however). Several
cost-effective techniques (including subeyeling, mass
Jumping, and reduced Gauss-lLegendre quadrature) which
have been implemented are discussed. Numerical results
are presenied to demonsirate the applieability of the
model

Introduction

Qur modeling goals nclude the development and
application of cost-cifective technigues for simuluting
the evolution of the veloeity, temperature, and poliutant
concentration [iclds wsssociuted with air flow over
complea terruin in the planelary boun.cy layer. Typical
near-term applications of these models are related to
energy production options and ineludes (1} simulation of
the dynamies associated with gruvitational spreading und
atinospherie dispersion ol heavy gas releases Into the
atmosphere, and [2) nocturnal dramage winds and
pollutant trunsport in regions eluracterized by rugged,
mountainous terrain. l.onger term applications will also
focus on real time safety issues rolated to gceidental
releases of hazardous materials such as radioaetive gases
(e.g, Three Mile Island).

We plan ta uchieve these gouls hy solving the
appropriate governing equnlions {Boussinesq vquutions or
a variant thereol) epproximately vig & modificd fimic
element method. Sinee both the physics {e.g. Stratified
flows) and the terrain are complex, And fairly accurate
solutions are gesired, it appears that muny node points {on
the order of 104) will often be required. Further, our
fonger term goal of providing a code to be used for real
time response to emergencies obviously requires that the
running speed be significantly faster then reel time, 1t is
with these points in mina that we developed the J-D FEM
code which is described in this paper.

in order to obtain a working code in minimum time, we
have thus far emphasized simplicity. This led toi (1) the
choice of the simplest element - the B-node isoparametric
“orick” employing piccewise trilinear approximating
funetions for velocity, temperature, and concentration,
and piecewise-constant approximation for the pressure,
and (2) the use of the simplest time integration melhod -
explicit (forward) Euler. The pressure, being an
inherently {mplieit variable in an incompressible fluid, is,
of course, trcated implicitly.

In what may be celled "Phase 1" of our first 3-D code,
we followed most of the rules of the Galerkin method and
generated @ code with only two ad hoc modifications
("cheats” on the Gelerkin method) which we Summarize
here (see Ref. | for further detailsk (1) the
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mass matrices, which couple the time derivativos in the
honest FEM, were replmced by diagond) {lumped mass)
ratrices much like the typical (inite difference approach,
(2) the nonlincar advectlon terms (eg. u¥1) were a
priori modified to permit simpler and faster computation
(in  essence, the conventional triply~subsctipted
coefficlents were replaced by simpler doubly-subseripted
ones by employing the clement centroid values for the
adveeting velocities). Even with these simplifications,
however, the resulting code was rather expersive and real
time simulations appeared to be ait of reaeh; for
example, & Simulation of heavy gas dispersion required
about three hours of computer time on the CHAY-1 {1/3
CPU, 2/3 1/0'} 10 simulate several minutes of real time,

In order to generate a faster, more veetotized Code,
we modified the “Phase 1" version to "Pnese 2" by Lwo
further vost-effeetive simplifieations, which we will
summurize and demonstrate in this paper and diseuss in
more detafl i subsequent publications.23  The prin-
cipal adoitional simplifieation s the use ol vne-point
Guuss-Legendre quadenture {rather than 2x2x2 or higher)
to cvaluate the clement level integrals assorlaled with
the FEM. This npproximution, which lends to result i u
diseretized model which is perhnps better deserivd as u
blen¢ of finiie elements and fimte aifferences, leads to
significant cost reduction in two urcas: (1) the elemient
"Inatrices” nre eomputed as needed (on the My”) rather
than heing stored on disk (tus storage accounted for most
of the 1/O cost in the Phuse | eodel ung (2) the entire
ulgorithm 1s :nore amcuable to effieient vectonzation.
The seeond major sumplification is vssocwted with the
time integration aspeet of the simulution and 15 referred
to 45 "subeyeling.” Briefly, this trick permits us to reduce
the frequency of the expensive {ngain, mostly 1/0)
pressure update caleulation by using n combinution of four
items; (1) the major time sleps are based op 1emporal
nccuracy wn pre  dynnmjeslly  computed  van  locul
truneution error estimales, (2) the minor {smailet) time
sleps, based on stability estimates, are used to compute
udyeetion. und diffusion with u simple extrapolation
approximation employed for the pressure grudient, (3) a
mass Adjustment scheme 13 enwployeda at each mujor Ume
step to re-enforce the sanisfaction of the eontinuity
equation, und {4} the cotresponding Leompntible) pressure
field is compuled,

In the remainder of the puper, we present one form of
the governing canservation equutions. brielly describe the
finite element spatial discretization precess and the time
integration scheme, elaborate on the two new
cast-effective techniques referred o ubove, und present
fwo numencal exemples which demonstrale the
effectiveness of the Phase 2 code by comparing results
with those from the Phase | version (which has already
been oriefly "verified" by comparison with some finite
difference results,see’).

Governing Equations and Spalial Diseretization

The principel set of equations of interest here are the
equations of motion, eontinuity, and energy conservation
far & constant property, incompressible Newtonisn fluid
in the Boussinesq aporoximatien (turbulence parsmeter-
ination via K-theory, or better, will come later):
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0 Gut +ue Vu)=-VP + 9% -pygT (1a)
Tyso {1b)
AL+ UL IT= VT, (10)

where u = (u, v; w) is the veloclty, P is the pressure, T is
the temperature deviation from a reference level, p is
the density {constent, cveluated st the reference
temperature), b is the viscosity, y is the volumetrie
coefficient of thermal expansion, g fs the gravitational
acceleration (directed opposite to the vertical
coordinate), ancd xk is the thermal diffusivity. Given
appropriate init1al data for veloeity and temperature
(approprinte means, basically, that the initial veleeity
field must be solenoidal - V+up = 0) and appropriste
boundary eonaitions,d Eq. (1) can be used to solve for
the velocity, pressure, and lemperature as funetions of
spate und lime,

Basie Spatial Discretization

The finite element spatial diseretization of tg. (1) is
performey wsing the Gulerkin method vie the [ollowing
expansion in the piecewise polynominal basis functions
typienl of the FIM,

a
whix,th= I wilthgle) {2a)
1=l
n
ixt) =2 Tiltgdxy (20)
i=l
and
m
P“t;\g.l):i Pilthtx) (2¢)

(2!

where, 1n the diserelized domain, there are n nodes for
velocity nnd temperature and m “nodes” for pressure (one
per ejement); the superseript b indicates & finite
dimensional approximation.

Inserting Eq. (2} into the weak {Galerkin) farm of Eq.
(1) (which reduees differentinbility requirements: ®;
cun then be eontinuous with piecewise-discontinuous first
derivalives end ¥; cen be piecewise discontinuous),
leads to the following set of ardinary differential
equations (ODE's} - the Guierkin FEM equations, written
in & compact matrix form,

MU ¢k + NUJ U+ CP=¢ (30)

clu=0 , (3b)
ang

MgT + [Kg + N(UNT = fg . (30)

Now U is a global vector of length 3n containing all nodal
velocity eomponents, P is a global m-vector of elemental
pressures, and T is a global n-veetor of nodal
temperatures; { is a global vector which incorporates
buoyaney forees and any traction boundary conditions ot;
velacity, and fg incorporates any of the natural
boundary conditions assoeiated with Eq. (le), Specified
nodal vaiues of velocity and temperalure are imposed
directly on the mssembled system. M is the mass matrix,
Ms is an appropriate submatrix of M, K is the viscous

matrix, Kg is the thermal diffusion matrix, C Is the
pressure gradient matrix and its transpose, CT, I8 the
divergence matrix, N(U)} and N4(U) are the advection
matrices, (For further detatls see Ref, 4.}

Extenalon to Anelastic Equations

One of the numerica)l examples to be discussed does
not employ the Boussinesq equations since the density
variation is quite large, We have, accordingly,
generalized the snelastic equations® to permit large
density changes on the premise thal the important fluid
dynamics are still basically incompressible and that
acoustic waves are therefore unimportant and can be
filtered & priori. The key ingredients of these equatlons
arer (1) the replacement of the continuity equation by
Pelou) = 0 where p is obtained from an equation of
stute (ideal ges law), (2) the replacement of u by pu
{memenlum) ns & prineipal unknown (i.e, uj is replaced
by ulj in Eg. (Za). For further discussion of these
equatfons, see Ref, 1,

One-Point Quadralure

As mentioned earlier, we have resorted t6 the
approximation relerred 1o us 1-point quadrature, in which
all clement integrals are approximated by their value at
the clement centroid multiplicd by the clement volume,
The reasons for vesorting to such & simplifiestion are: (1)
the 1/0 cost of staring (more accurate) element level
information on dise and retrieving it ut every time step is
very high (cspecially on the CRAY, where CPU
performanee I5 quite high relative to 1/0) and (2) the coat
of recomputing all integrais at every time step using a
more neeurate Gauss rule is also Loo high = by about an
order of magnitude,

We note first that the idea is not new; it hns already
been  successfully employed in  explicit FEM  solid
mechanics  codes,™? and il is this fact which
encouraged s 10 Iry il This trick, however, is nol lolally
free of problems, as we mseuss below.

Element Volume. Sinec 11 has been cimmed® that
convergence of the FEM requires, among other things, an
exact ealculation of element volume, we have not {yet}
cheated in this srea. We use n 2x2%xQ Gauss rule to
compute clement volumes und store the resulting veetor
in eore.

Gradient and Divergence. Although we are well awgre
4

that [-point quaudrature cannot integrate the ¢ matrix
(see Eq‘r.’\. 3} correetly on the gencral distorted
element,? and thus we probably do not retain (he
clement level mass balances ussoecigted with the correet
integretion, prelimingry results seem to indicate 1hat the
resulting errors are quite aceeptable, We will continue to
explore this point and reporl [urther findings in a
subsequent publicalion.

Advection.  We first deseribe the resulting
approximation to u-¥1 on a regular mesh; the average
(eentroid) veloeity in an element is multiplied by the
sverage lemperature gradient in the element and the
result is averaged over all elements (typically 8} sharing
the node in question. For distoried elements, the
interpretation appears to be similar execept that g
volume-weighted final average is employed (using, ms
mentioned earlier, exaet element volumes).  This
approximation appears to be reasonable and well-behaved,

Diffusion. The biggest problem thus far encounteted
with 1-point quedrature is the approximation lo the
Laplacian -.perator (¥, K¢ in Eq. 3}, This problem can
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be desaribed very simply — the diffusion matrix is
singular =- but is subjeet to various interpretations. In the
Lagrangian codes of solid mechanics, the problem is
deseribed In terms of so-called hourglass patterns!® and
is interpreted in terms of zero energy deformations or
mode shapes, In fluid meehanics (in an Eulerian refercnee
frame), it seems more appropriate to associate the
problem with the common "2Ax" waves; these waves
(null vectors of the singular matrix) are not diffused by
the 1-point quadratute diffusion matrix. Whilz there is
only one such wave in 2-D (assoclated with alternating
nodal values of +! and -1), there are four in 3-D and the
gssocjated nodal values {on a single element) are shown in
Fig. 1. The first of these is the three-dimensional wave
and the other three are two-dimensional, onc in each
plane,

Fig. 1 "24x" wave patterns on a single element,

The "patch job" for this deficicney, which is also
borrowed [rom the solid mechanies community, is to
augment the singular matrix with an "hourglass ecorrection
matrix", a procedure whieh appoars to be bath simple and
offeetive. Rather than using the more rigorous (and
expensive) correetions suggested by Kosloff,1l we
employ the simpler procedure developed by Hallguist and
Goudreau;!! viz, the hourglass matrix is defined,
element-wise, by on outer product of the associated null
vector with itself. This matrix is then multiplied by an
"appropriate" scalar ("uning"; see below) and added to the
sincular 1-point diffusion matrix, Figure 2 shows the
stencils {for 4 cube of side length 9.) nassocinted with
several diserete approximations to V2 a< well as the
three-dimensional hourglass mntrix, Kpge (Notes All
the matrices exeept l\||(,| have been  multiplied by
482%) Noteworthy here is that Kip und even Kop
{2-point quadrature - rxacel for n brick) look rather
"suspicious™ in that the enefficients closest 1n the central
node ure either positive or zero, in marked contrast to the
well-known finite diffcrence steneil.

A botter perspective may be ghined by studving the
behavior of these schemes on un appropriatc pratotypical
test ease, pure transicnt diffusion. If the "heat equation,”

ATAL=a?T )

15 solved on the 3-D infinite span with an jnitinl condition
given by

T(0) = oik(xty4z) | {5)
the "sine~wave" diffuses according Lo the exact solution,

Tlxgadt) = TOledK (6)

Through a Fourier analysis, the effective diffusivity
(@) sessociated with eseh scheme can be obtained.
Figure 3 shows the ratio of the effective diffusivity to the
desired  diffusivity, G, of the discrete forms
mentioned above, as a function of wave number, with
kf. varying from 0 to n (the nssociated wavelength
varies from infinity to the limit of the grid, 2&x). The
suspicion associated with the steneils corresponding to
K1p and Kpp is indeed verified - as is the singularity
of Kip to the 2ix wave. As expected, Kfp

(@ K ot Ken

Fig. 2 The =D “hourglnss” tntnn stensil (0} oaned
various stencils (for s cune) wssocinted with
diserete  approximations  to the  Lapincian
operators (b} one=point quudrature steneil; (e)
Ix¥%2  quadrnture  slencily () finite
difference steneils

performs mueh better. The much-mproved belavior of
the augriented I~point matrix is shown by the dushed Jine
(here, vl in the numerical results presented below, #
sealar miltiplier of 1/2 was employed),

It is noteworthy that the poor performance of Kop
1s caused solely hy the process of mass lumping. If the
eonsistent mass matrix were emploved, the (honest) FEM
result would nctually display overdamping rather than
underdamping.

In Ref. 2 we will discuss lhe "hourglass correction
matrices” more carefully, interpret them as "balancing
truncation error” terms, and snow that they vanish in the
limit of mesh refinement.

Time Integration of the FEM Equations

Time Stepping Procedure

The forward Fuler method of time integeation, applied
1o Eqn. (3a) gives




kt/n

Fig, 3 'The ratio of effective oiffusivity to the
desired diffusivity vs non~dimensiona) wave
numbers  assoctated  with various diserete
approximations 10 the transient heat equation.

Up+] = Up * I [f-K U= N(URIU, - CPg) a

where Up is the vector of nodal veloeities at time t,
and Al is the step-size. Before this equation can be
used to ndvance the velocity, however, the pressure at
time 1, must be computed, This is done by combining
Eq. (3a) with » time-differentiated version of Eq. (3b}
(cT0=0 since UTU=0 for ol time) to generate the
consistent diseretized Poisson equation for the pressure,
evaluated at time tp,

(CTHLOYP, = CTNHify-KUR-N(URIUR) (8)
The sequence of steps for advancing the veloeity and
pressure from tp to tp+] is thus (given that U is
available and that it satisfies CTUp = 0):

(1) Form the acceleration vector (sans the pressurc
gradient)

Ap = MK Up=N(UR)U,) (9)

(2) Solve the linear algebraic system (discrete Poisson
equation) for the compatible pressure via

(€Tw-1c) py=cTay (10}

{3) Update the velocity, accounting for the pressure
gradient,

Upe] = Up * &t(an - M71CPy) (1)

(4) Finally, in an ‘uncoupled step," update the
temperature {and eoncentration, whe: appropriate), again
using the forward Euler method,

Trel = Tn *+ &t M5 Tg KeTo=Ng( Un)Tp)e a2

This is the basle scheme used in our Phsse | code and
is a straightforwerd and legitimate method for solving the
ODE's of Eqn. (3} Several additional comments are
appropriate before discussing the less legitimate shorteuts
employed in Phase 2 (subcyelingh:

(1) The presence of M-l iy the above equations
explains why we employ the lumped mass approximation
(M-] is then a vector rather than a full matrix) While
this approximation is known to reduce the mceuracy
(especially in regard to phase speed errorsi?), it is
simple and probobly cost-effective for very large
problems.

(2) The pressure "Laplacian" matrix, cTu-le, is
symmetric and invariant with time. Hence we have
chosen to solve (10} via direct methods, using a recently
developed profile (or skyline) method.J3 This matrix is
formea and factored in the pre-processor code and stored
on disk for later retrieval by the main code. During tre
time integration, esch pressure update is obtained by
reading the disk file ond performing one forwerd
reduetion and a back substitution.

(3) The explicit Euvler method, while simple and fast,
has one serious disadvantage {as do essentially all explieit
schemes): it is only conditionably stable. The integrsilon
may become unstable il any one of several stability limits
Is exceeded: (1} the diffusive limit, (2} a linear
advective-diffusive stability limit, and (3) certain types of
nonlinear adveetion stebility limits.!4 While we are not
able to prediet these At limits a priori for the nonlinear
FEM system on an arbitrary mesh, we have generally been
reasonably suceessful by satislying the following step-size
restrictions, which come from analyzing the constant
coefficient ndveetion=diffusion equation vin sceond-order
centered finite differences on & grid with fixed 4x,
By, and b

() Diffusive limit;

1/2¢

A€ e 13
=t syt e 1 w

(b) Linrar adveetive-diffusive limit:

P 0
Sl eview? !

where x is  the diffusivity {wp for the
Navier-Stokes equntions). While the diffusive limit is
well-known le.g. Rooche,!), there has been some
confusion regnrding the advective-diffusive limit.)

Subeyeling

The prineipal shortcoming of our Phase | cade, which
caused it to be uncomfortably expensive, is related to the
following two paints: (1) the stability-limited step-size is
often mueh smaller than would be needed to accurately
integrate the OLE', and (2) the pressure updates, while
not so expensive in CPU cost (typically ~ 10% of the
total cost of a time Step), are inordinately expensive in
1/0 cost - reading the large dise file (1-2 million words)
containing the factored Laplacien matrix requires several
seconds.

Besed on the premise that the pressure and the
associated continuity constraint equations have little or
no effeet on the stability of the explicit seheme, we have
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Fig. 5+ Sehematic of the subcyeling process.

devised u subcycling stralegy which permits less frequent
updates of the pressure and & concomitant savings in
computer lime. The major ingredients of subeyeling have
ulready heen deseribed; here we summarize the entire
process with referenee o the sehematie in Figs 4.

We amssume that the minor time step (Atg) has been
pre-selected based on the mare stringent of the criteria in
(13) and {14} and wili -+ uscd throughout the time
inegeation. This is (he subieyele step-size; (he rest of the
seheme is a5 follows:

(1 Assume that U, U, and P are known mt Ly nnd
tn-l» Lstimate the local time truncalion error vector,
th, for U vis

Blpfes By . o
B & Ly-Llip)= - iTn) L"n=‘T‘” {(Up-Up-) o U5
where Ultp) represents the (unknown) exaet solution on
the  assumption  that Uyl s exaet, and Up =
(Uy=Up-))ibtpe A similer error ostimte i then
made for 1 and u combined, relative RMS norm, e, is
computed.  The nest (majoel time stop size s then
obtuined fron.

e N A L (6}

where we have used the fael {from (15); that the locul
error varics like (81F and € s an Onput) crror
lolerunce purameter related to  the desired loeal
aecuracy, A lypieual value for € 1s 001 which implies
that n local ertor of about 0.1% is aceeptable.

(2) Assuming  that Aty >> Mg (etierwise
we do not subeyele), An estimate of the pres ure nt Ly
{Pn+t) is obtained vie linear extrapo:2tion.  This
extrapoluter pressure i used (aloug with Py vin o linear
interpolntion) 1o estimale the pressure gradient (CP)
during the subcycle steps; i.e. the continuity equations are
completely ignored during  subeveiing.,  After  Lhe
appropriate  number  (wbin;)/Atg) of minor steps
is completed, during each of which the adveetion &nd
diffusion terms in both momentum and energy equations
are updated (ir. part, 1o maintain stability), the mass
adjustiment protess is invoked; i.e.,

(3) Given {y und_?l“(] as eslimates 1o Ups) and
Pn+], the velocity is "adjusle " aceording to

N
Unep = Upsg =N 1C00 (1

where An+) s & vector of Lagrange multiphiers,
obtained by first solving the linear system

A
(€™M 'C) ) = CTURY & (18)

It ean be shawnl? that this procedure is & minime) least
squares  velocity  ndjustment,  from ﬁnﬂ to
Upspo subject to the constraint that CTUp4) = 0;
i, Ups) is moss consistent whereas L is
not.

(4) Finally, the compatible pressure [ield is obtnined
by solving an cquivalent linear system for Pps), & la
Egn. {10} with n replaced by n+1; i.e., the mass consistent
velocity field is employed 10 get Po4|.

W is clear that two re-solutions using the snme
fuetored matrix ore required nt cach major imestep.
Henee, subeyeling can only be cost-effective when the
subeyele ratio, Atp4)/Alg, is significantly greater
than 2 {hased on our eurrent limitea expericace, this ratio
can vary from 43 to 10 or more, depending on the
"dynamies™); it can be espeeinlly effeetive if the solution
is approaching n sleady state,

If and when this proeedure {or n vorinnt thereof) hns
proven to be sufficiently robust, only mnjor time step
results would be reported. Thus far, we huve been more
carefully monitoring the hebnvior relntive to the more
rigorous approach.

Numerical Results

Tuo numericn) experiments fmve heen chosen to
illustrote the performance of the Phase 2 code and alse,
hopefully, lo  justify  the  liberties  taken by
under-integration and subeveling. The two simulntions,
namely, (1) confined Bénard=like thermo-conveetion in a
cnvity nnd (2) the atmospheric dispersion of o heuvy pas
over complex terrain, oxhibit very different dynsmios umd
thus provioe a fairly wide range of test conditions,

Uaturn] Convertion in a 3-D Caviy

For our Nirst expmple we present the Gme-tependent,
osilletory  motion of u flut contmned o three
dimensional rectungulsr enelosure which is heated from
velow (T = 0,5}, cooled from nubove 1T = - (.5), and
insulated luternlly, These boundury conditions will cause
fluid motion if the temperature difterence (.., Ruyleigh
fumer) between e upper and lower isothermal plates is
sulficiently large.

A sequenee of numerical experiments (see Ref. 18 for
detnils) led to a three eell oseillatory solution which is
schemgtieally illustrated in Fig. & the computationsl
domain comprises 8192 elements {10 « 16 x 42), 9537
nodes, and approximately 46,000 cquations. Note that the
cell axes are porollel to the smaller horizontnl dimension
(2) ond alternale in rotntional direction. The fluid motion
is & function of the Rayleigh number, Ra, the Prandtl
number, Pr, and the aspeet ratios of the cavity, For the
present simulation, Ra = pgy2’aT/uw = 50,000, Pr =
uipx = 0.5, and the aspeet ratios are 3.3 and 1.9
{based on the vertien! dimension, ). For thus pair of
aspeet ratios, the prevailing flow puttern conssts of three
colls (see Ref. 19 for impressive eaperimental
visualizations).

|



Perspeetive view of the computational domain and three roll eells.

Fig. §

R

TSNS S S

A R Y

-

P

|~045

08

16

12

04

-08

1.2

16

05

Fig. 6 Previcted results on the mid-cavity vertical plene (cross-section A-A): (a} velocity ['ald; (b) temperature
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Since the main purpose here is to illustrate the
difterences caused by reduced integration and subeyeling,
we have chosen to present only a portion of the nutmerical
results for this problem. Here we limit ourselves to a
fully developed, transient, three cell solution integrated
in time for five non-dimensional time units {which
corresponds to about half of the gscillation period). The
first run employs exact (2x2x2) quadrature on the
element integrals and the second run, starting with the
same initial conditiun, uses l-point quadrature and
invokes subeyeling,

Since the solutions &t the end of the two runs are
visually indistinguishable; most of the results to be
presented are from run 2. Fig, 6(a) shows the three
convection cell velocity field on the mid-cavity vertical
plane, a5 indicated by cross=section A-A in Fig. 5. The
temperature distribution on the sume plane is shown in
Fig. 6b), in which the relatively isothermal vortex cores
snd the strong gradients near the walls due to the fluid
motion are apparent. The wveetors on the horizontal
mid-plane (cross-section B-B of Fig, 5) are shown in Fig.
7. This clearly reveals the three-gimensionality of the
problem along with the complex fluid motion within and
belween the convection cclls. Figure & shows the time
histories for u pnd v at & typical node, The smnll, abrupt
jumps (solid furyes) indicate the mass adjustment process
invoked at the end of each major time step. For these
runs Atg was .04 (based on stability), and & wns
107%, leading to an average subeycle ratio of 7 and p
maximum of 19, By repeating run 2 with no subeyeling,
we learned that the maejor diserepancy is caused LY
reduced quadrature; siheyeling crrors are much smaller.
Based on the maximun. (low veloeity, the results of run 2
in Fig. 8 were Jess thun 1.3% in crror for u end less than
2,2% in error for the verticnl velocity (v).

Even though this simple and repetitive mesh permitted
an efficient run using the Phase 1 code (Run 1) = only the
element matrices associnted with 64 of the 8192 elements
needed to be stored, and this was done in core - the cost
diffcrential was sUfl substantinl, Run 1 required 1.34
seconds of CPU and 12,3 seconds of 1/0 (mainly to
retrieve the factored Laplacion matrix at cach time step)
per time step. On the other hand, Kun 2 requircd only
0,44 seeond of (°PL and 2.63 seconds of /0 per subeyele
step.

Simulation of n Heavy Cas Release

This example concerns the simulation of the dynamies
associnted with the gruvitetionn) spread and  vapor
dispersion of LLNG (iiquefied nntural gas) spills in the
atmosphere. Since the NG {nalural ges) density at its
boiling temperuture is significantly greater than that of
the gmbient air (by approximately §0%), the use of the
Boussinesq equations for modeling such flows is probably
irmp;:\rﬂpri.me.20 Wwe heve therefore cmployed the
generalized anelastic formulation described earlier (see
Ref. 1 for more details). In addition to solving equations
in the form of {i), we also solved th: concentrntion
equation for NG mass fraction (designated as w). Again,
the sume simulation was performed with both codes.
Since most of the results from the two simulations differ
by only u few per eent and are egain hardly
distinguishable graphicaily, we present bherein, unless
noted otherwise, only the results obtaincd with our Phase
2 eode,

Figure 9 shows the topography at the LNG
experimentel facility near China Lake, California. The
horizontal extent of the computational domain, also
shown in the figure, is 500 m X 400 m and the vertical

extent is only 20 m. The same graded mesh consisting of
6400 elements (40 x 20 ¥ 8) was used in both simulations.
The total system comprises 7749 nodal points and
approximately 45,000 equations. Figure 10 is an unwind
view of g portion of the mesh in the spill pond vieinity.

The initial condition for the simulation was a steady
isothermal wind field (v3 to 4 m/sec at the top of the
grid with the nominal wind diveetion from left to right)
without NG vapor. Constant diffusivities, typical of the
planetary boundary layer (0.4 mZ/see verticnlly and 2.0
méfsec  herizontally), were used throughout the
simulation. The bofl=of{ of ING was simuleted es &
source area over |2 of the 30 elements comprising the
spill pond, Over this area, a vertienl injection veloeity of
w01 m/sec, along with a temperature of -160°C (NG
boiling temperature), and & constant rate of NG mass flux
were specified. Away from the source aren, we used u = 0
ond 3T/An = w/n = 0 at the ground, The
remnining boundary conditions cmployed were; speeified
u, Ty w al the inlet plane, natural boundary conditions at
the outlet, and symmetry conditions at the top and two
latera) surfaces.

A sample of the numerical resulls (for the region
enclosed by deshed lines in Fig, ¥) is shown in figures 11
through 14, Fig. 11(a} shows the initial horizontal
velocity (with topography contours superimposed) on the
surface gefined by the nodes located 1 m ahove the
ground, which already indicates some terrain effeets (e.g.
"downslope" flow to the lower right of the spil} pond) even
though the flow ficld is isothermal. Fig. 11(b} shows the
horizonta) veloeity on the same "plane” after 104 seconds,
and demonstrates clearly the gravity-induced flow in all
directions near the vapor source arce and alss the
accentuated "downslepe” flow. In tig. 10y coneentratien
contours (in volume fruction) on the sume pline as
prodicted by the two codes are compared. As seen in the
figure, the gravitaticnal spread in all direetions and the
shift of the cloud rertertine away from the mesn wind
direction (bath of which have becn observed st China
Lake) have been correctly predicted by hoth codes,
Furthermore, the agreement between 1he Lwo predietions
regarding the predieted [lammable zone (5 to 4% NG
vapor} is nlso very good, ligures 13tn) wne (b) show,
respectively, the initinl veloeily and the resulting velocity
and conpeentrution along # longilwdinal plane through the
pond center line #t t = 104 sveonds; again the influence of
the dense eloud is apparenl, (his time in the form of a
rollup vortex nesr the upwind edge of the cland, In Fig.
14, we compare the results of velority components (u,vyw)
and density (p) versus time for o represenintive point as
predieted by the two codes. The loeation of the point is
133 m downwind from the spill point, | m shove ground,
und in the region where the terrain has p slope of
A 70 (see Fige 9 This is the region where the terrain
is fairly complex and numerous distorted elements (rather
than reguler prisms) are therefore emploved. [espite the
fact that clement level mass balances are not maintained
by reduced quadrature, the results obtuined with 1-point
quadrature appear to compare quite well with those
obtained using more exacl quudrature. The greatest
diserepaney uppears to cxist in the vertical velocity
component (v), where n difference of nbout 20 percent
oceurs. This velocity component, however. is at least an
order of magnitude smaller than the other component (u)
and therefore any inaceuracy introduc-J by the combined
effects of ]-point quadrature and subeyeling is expected
1o have a stronger effect on such A component rather than
on the larger and presumably more important ones, With
a lighter error tolerance psrameter (g), the aceuracy
ean, of ecourse, be improved, but at addilional
computaticnal cosl.
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Fig.9  Topography at China Lake LNG spill faeility.

Regarding computation time for this particular
simulation, the new code has gained at least an order of
megnitude improvement in both CPU and I/0 over the old
code. With 8h error tolerance parameter (¢) of 1073,
the new code required only 36 major time steps, with an
average of 7 subeyeles (the maximum number of subeycles
wes 14) to simulate 104 seconds of real time. The
average cost per minor time step (0.4 secong of real time)
is approximately 0.3 second of CPU and 1.3 seconds of

Fig. 10 Upwind view of a portion of the mesh layout
on the ground in the spill pond vicinity.
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spill.
[/0. On the other hand, the old code required

approximately 7 seconds of CPU and 13 seronds of 1/0 per
time step.
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Summary and Conclusions
In this paper we have presented a viable algorivhm for
numerically  simulating  three~dimensional,  time-

dependent, incompressible flows via a modified Galerkin
finite element method. The model is simple and fast in
that we use the simple 8-node isoparametric 'brick"
element and employ the simplest time integration method
- explieit (foward) Euler, which is made [easible by
lumping the mass matrix. To solve for the pressure, we
form the consistent Poisson equation from the discretized
momentum and continuity equations, which is then
effectively solved via a disk-based skyline solver. To
further improve computational efficiency, numerical
techniques including reduced Gauss-Legendre quadrature
and subeyeling in conjunetion with the use of variable
time steps, have been introduced for the first time and
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Fig. 14 Comparison of time histories for veloeity and
density of a representative point: —-
one-point quadrature with subeyelings - = = -
2x 2% 2 quadrature,

demonstrated to be very cost-effeative, With these newly
devised techniques, an improvement of nn order of
magnitude in computational costs, yet with comparable
aceuracy as compared with the more rigorous algotithm,
has been shown to be aitainable.

As with essentially all explieit schemes, the present
algorithm must respect certain stability time siep limits,
which can sometimes be very stringenl-espeecially the
linear advective-diffusive limit for some enses of interest
to us. Also, even witk subeyeling, the 1/0 cost is still the
major part of the totel computational cost. We are
currently working toward further reducing these costs
such as exploring the feasibility of adding balancing
diffusiond and the use of a more efficient technique
(less 1/0 cost) for solving the pressure equation.
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