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Abstract 

A finite element model has been developed for 
simulating the dynamics of problems encountered In 
atmospheric pollution and safety assessment studies. The 
model Is based on solving the set of three-dimensional, 
time-dependent, conservation equations governing incom­
pressible flows. Spatial discretization is performed via a 
modified Galerkin finite element method, and time 
Integration is carried out via the forward Eulor method 
(pressure Is computed implicitly, however). Several 
cost-effective techniques (including subcyellng, mass 
lumping, and reduced Gauss-l.egendrc quadrature) which 
have been implemented are discussed. Numerical results 
are presented to demonstrate the applicability of the 
model, 

Introduction 

Our modeling goals include the development and 
application of eost-elfeetive techniques (or simulating 
the evolution of the velocity, temperature, nnd pollutant 
concentration fields associated with air flow over 
complex terrain in the planetary bouivVy layer. Typical 
near-term applications of these models are related to 
energy production options and include: ( I I simulation of 
the dynamics associated with gravitational spreading und 
atmospheric dispersion ol heavy gBs releases into the 
atmosphere, and 121 nocturnal drainage winds and 
pollutant Irunsporl in regions characterized by rugged, 
mountainous terrain. Longer term applications will BISO 
focus on real time safety issues related to accidental 
releases of hazardous materials such as radioactive gases 
(c.g. Three Mile Island). 

he plan to achieve these goals hy solving the 
appropriate governing cqualions (Houssincsq equations or 
a variant thereof) approximately vin a modified finite 
element method. Since both the physics (e.g., stratified 
flows) ami the terrain are complex, and fairly accurate 
solutions are aesired, it appears that many node iwints (on 
the order of 1(H) will often be required. Further, our 
longer term goal of providing a code to be used tor real 
lime response to emergencies obviously requires that the 
running speed be significantly faster than real ti me. It is 
with these points in mind that we developed the 3-D FEM 
code which is described in this paper. 

In order to obtain a working code <n minimum time, we 
have thus far emphasized simplicity, This led to; (1) the 
choice of the simplest element - the 6-nodc isoparametric 
"brick" employing piecewise trilinear approximating 
functions for velocity, temperature, and concentration, 
and piecewise-constanl approximation for the pressure, 
and (2) the use of the simplest time integration method -
explicit (forward) Euler. The pressure, being an 
inherently implicit variable in an incompressible fluid, is, 
of course, treated implicitly. 

In what may be called "Phase 1" of our first 3-D code, 
we followed most of the rules of the Galerkin method and 
generated a code with only two ad hoc modifications 
("cheats" on the Galerkin method) which we summarize 
here (see Ref. 1 for further details): (1) the 

mass matrices, which couple the time derivatives in the 
honest FEM, were replaced by diagonal (lumped miss) 
Matrices much like the typical finite difference approach, 
(2) the nonlinear advectlon lerms (e.g, u'VT) were a 
priori modified to permit simpler and faster computation 
(in essence, the conventional triply-subacrlplcd 
coefficients were replaced by simpler doubly-subscripted 
ones by employing the clement ccntroid values for the 
adveeting velocities). Even with these simplifications, 
however, the resulting code was rather expensive and real 
time simulations appeared to be o i l of reach; for 
example, B simulation of heavy gas dispersion required 
about three hours of computer time on the CHAY-I (1/3 
CPU, 2/3 I/O!) to simulate several minutes of real lime,' 

In order to generate a Taster, more vectorized code, 
we modified the "Phase I" version to "Phase 2" by two 
further eost-effcetivc simplifications, which we will 
summarize and demonstrate in this paper and discuss In 
more detail in subsequent publications.?*3 The prin­
cipal additional simplification Is the use ol one-point 
Gauss-Lcgcndro quadrature (rather than 2x2x2 or higher) 
to evaluate the element level integrals associated with 
the I'KM. This approximation, which lends to result in a 
discrctizcd model which is perhaps better described as n 
blend of finite elements and finite differences, leads to 
significant cost reduction in two areas: ( I ) the clement 
"matrices" lire computed as needed ("on the fly") rather 
than being stored on disk (tins storage accounted lor most 
of the I/O cost in the Phase I code) and 121 the entire 
algorithm is more amenable to efficient vectorization. 
The second major simplification is associated with the 
time integration aspect of the simulation and is referred 
to as "subcyclmg." Hricfly, this trick permits us to reduce 
the frequency of the expensive (again, mostly I/O) 
pressure update calculation by using a combination of four 
Items: (I) the major time steps are based on temporal 
accuracy awl arc* dynamically computed via local 
truncation error estimates, (2) the minor (smaller) time 
steps, based on stability estimates, are user] to compute 
acivccttot'. and diffusion with n simple extrapolation 
approximation employed for the pressure gradient, (3) a 
mass adjustment scheme is employed at each major time 
step to re-enforce the satisfaction ol the continuity 
equation, and (4) the corresponding (compatible) pressure 
field is computed, 

in the remainder of the paper, we present one torm of 
the governing conservation equations, brieilj describe the 
finite element spatial discretization process and the tinie 
integration scheme, elaborate on the two new 
cost-effective techniques referred to above, und present 
two numerical examples which demonstrate the 
effectiveness of the Phase 2 code by comparing results 
with those from the Phase I version (which has already 
been briefly "verified" by comparison with some finite 
difference rcsuits.see1). 

Governing Equations and Spatial Discretization 

The principal set of equations of interest here are the 
equations of motion, continuity, and energy conservation 
for a constant property, incompressible Newtonian fluid 
in the Boussinesq approximation (turbulence parameter-
nation via K-theory, or better, will come later): 
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P »u/9t + u • 7u) = - VP + y?*u -PTKT , (la) 

V-u = o , (lb) 

ST/at+ u*7T= <VaT , (le) 

where u = (u, v, w) is the velocity, P is the pressure, T is 
the temperature deviation from a reference level, p is 
the density (constant, evaluated at the reference 
temperature), u is the viscosity, i is the volumetric 
coefficient of thermal expansion, g is the gravitational 
acceleration (directed opposite to the vertical 
coordinate), and K is the thermal dlffusivity, Given 
appropriute ini'.ial data for velocity and temperature 
(appropriate means, basically, that the initial velocity 
field must be solenoidal - V-u 0 = 0) and appropriate 
bountiHry conditions^ Eq. (1) can be used to solve for 
the velocity, pressure, and temperature as functions of 
spaCi ijiid 1in:e. 

Basic Spn'.ia) Discretization 

The finite clement spatial discretization of liq. (1) is 
performed using the tiolerkin method via the following 
expansion in the piccewise polynominn) bonis functions 
typicnl of the EDI, 

n 
u"(x,t) = I Uj(l)ip,(x) , 12a) 

i=l 

n 
•|'>(x,lJ = Z 'lj(0ipjlx> , (2b) 

i=l 

ami 

m 
PWX.I) = l PjiiHiix) , (2e) 

I=I 

where, in the discretized domain, there are n nodes for 
velocity nna temperature and m "nodes" for pressure (one 
per eiemcnl); the superscript h indicates a finite 
dimensional approximation. 

Inserting Eq. (2) into the weak (Galcrkin) form of Eq. 
(I) (which reduces differentiability requirements: (p, 
gun then he continuous with pieoewise-disoontinuous first 
derivatives and », can be pieccwise discontinuous), 
leads to the following set of ordinary differential 
equations (ODE'S) - the Gulerkin FEM equations, written 
inn compact matrix form, 

MU * lk * NlUI l l »CP=f (3o) 

C'l'U = 0 , (3b) 

and 

M s f + !Ks + Ns(U)]T = fs . (3e) 

Now U is a global vector of length In containing all nodal 
velocity components, P is a global m-veetor of elemental 
pressures, and T is a global n-veotor of nodal 
temperatures; f is a global vector which incorporates 
buoyancy forces and any traction boundary conditions oti 
velocity, and fs incorporates any of the natural 
boundary conditions associated with Eq, (lc). Specified 
nodal values of velocity and temperature are imposed 
directly on the assembled system. M is the mass matrix, 
M5 is an appropriate submatrix of M, K is the viscous 

matrix, Ks Is the thermal diffusion matrix, C Is the 
pressure gradient matrix and Its transpose, C?, is the 
divergence matrix, N(U) and NS(U) are the advectlon 
matrices. (For further details sec Ret, 1.) 

Extension to Anelastlo Equations 

One of the numerical examples to be discussed does 
not employ the boussinesq equations since the density 
variation is quite large. We have, accordingly, 
generalized the anelastic equations5 to permit large 
density changes on the premise that the important fluid 
dynamics are still basically Incompressible and that 
acoustic waves are therefore unimportant and can be 
filtered a priori. The key Ingredients of these equations 
arei (1) the replacement of the continuity equation by 
V'tou) - 0 where o is obtained from an equation of 
state (ideal gas law), (2) the replacement of u by pu 
(momentum) ns a principal unknown li.c, u| is replaced 
by (pu)| in Eq. (2a). For further discussion of these 
equations, sec Kef, I. 

One-Point Quadrature 

As mentioned earlier, we have resorted to the 
approximation referred to as 1 -point quadrature, in which 
nil element integrals arc approximated by their value at 
the element centroid multiplied by the clement volume. 
The reasons for resorting to such a simpllficctlon arc: (t) 
the I/O cost of storing (more accurate) element level 
information on disc nnd retrieving it ut every time step is 
very high (especially on the CRAY, where CPU 
performance Is quite high relative to I/O) and (2) the Cost 
of recomputing all Integrals at every time step using a 
more accurate Gauss rule is also loo high - by about an 
order of magnitude. 

Uo note first that the iden is not newi it hns already 
been successfully employed in explicit FEM solid 
mechanics codes,1"''" nnd it is this fact which 
encouraged us to try it. This trick, however, is not totally 
free of problems ns we discuss below. 

Element \olumc. Since it has been claimed' thnt 
convergence of the FEM requires, among other things, an 
exact calculation of element volume, we have not (yet) 
cheated in this urea, he use a 2x2x2 Gauss rule to 
compute element volumes und store the resulting vector 
in core. 

Gradient and Divergence. Although we are well aware 
that 1-point quadrature cannot integrate the C matrix 
(see Eqn. 3) correctly on the general distorted 
element,*1 and thus we probably do not retain Hie 
element level mass balances associated with the correct 
integration, preliminary results seem to indicate that the 
resulting errors are quite acceptable, he will continue to 
explore this point and report further findings in a 
subsequent publication.2 

Advection. IVe first describe the resulting 
approximation to u*VT on a regular mesh: the average 
(centroid) velocity" in an element is multiplied by the 
average temperature gradient in the element and the 
result is averaged over all elements (typically 8) sharing 
the node in question. For distorted elements, the 
interpretation appears to be similar except that a 
volume-weighted final average is employed (using, as 
mentioned earlier, exact element volumes). This 
approximation appears to be reasonable and well-behaved. 

Diffusion. The biggest problem thus far encountered 
with 1-point quadrature is the approximation to the 
Laplacian -.perator (K, Ks in Eq. 3). This problem can 
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be described very simply - the diffusion matrix is 
singular — but is subject to various Interpretations. In the 
Lagrangian codes of solid mechanics, the problem Is 
described in terms of so-called hourglass patterns"1 and 
is interpreted In terms of zero energy deformations or 
mode shapes, In fluid mechanics (In an Eulerian reference 
frame), it seems more appropriate to associate the 
problem with the common "2Ax" waves; these waves 
(null vectors of the singular matrix) are not diffused by 
the 1-point quadrature diffusion matrix. White there is 
only one such wave in 2-D (associated with alternating 
nodal values of +1 end - I ) , there are four In 3-D and the 
associated nodal values (on a single element) arc shown in 
Fig. I. The first of these is the three-dimensional wave 
and the other three are two-dimensional, one in each 
plane. 

i ' 1 

AJ\ £J\ Z7\ 
i i i i 

>v-r 
Fig. 1 "2Ax" wave patterns on a single element. 

The "patch job" for this deficiency, which is also 
borrowed from the solid mechanics community, is to 
augment the singular matrix with an "hourglass correction 
matrix", a procedure which appears to be both simple and 
effective. Rather than using the more rigorous (and 
expensive) corrections suggested by Kosloff,!" we 
employ the simpler procedure developed by llellquist and 
Goudrcuuj" vi?., the hourglass matrix is defined, 
element-wise, by on outer product of the associated null 
vector with itself. This matrix is then multiplied by nn 
"appropriate" scalar ("tuning"! see below) and added to the 
singular I-point diffusion matrix. Figure 2 shows the 
stencils (for a cube of side length l ) associated with 
several discrete approximations to 7 ! a* well as the 
throe-dimensionni hourglass mntrix, K|i<-,I- (Notes All 
the matrices except K |K ; | have been multiplied by 
48t ! . | Noteworthy here is thai K|p and even hjp 
12-point quadrature - rxael for a brick) look rather 
"suspicious" in that the coefficients closest to the central 
node ure cither positive or zero, in mnrkod contrast In Hie 
well-known finite difference stencil. 

A better perspective may lie ghined by siiidying the 
behavior of these schemes on an appropriate prototypical 
lest case, pure transient diffusion. If the "heal equation." 

31/11 = oTT (41 

is solved on the 3-D infinite span with an initial condition 
given by 

T(« - c1 ~ „rk(x+v+zl 15) 

the "sine-wave" diffuses according to the exact solution, 

T(x,y,z,t) = T I O V * * ' ' , (61 

Through a Fourier analysis, the effective diffusivity 
(5) associated with each scheme can be ohtained. 
Figure 3 shows the ratio of the effective diffusivity to the 
desired diffusivity, 5/a, of the discrete forms 
mentionpd above, as a function of wnve number, with 
k(- varying from 0 to i (the associated wavelength 
varies from infinity to the limit of the grid, 24x). The 
suspicion associated with the stencils corresponding to 
K]p and K2p is indeed verified - as is the singularity 
of Kip to the 2ix wave. As expected, K F D 
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1'IR. ".' t h e -1-1' "hourulnss'' nui l r iv penc i l (11) anil 
vurioits stencils (for a cuhe) associated will, 
discrete approximations 10 the l.uplneian 
operator*, (hi nnr-poinl quadrature stencil; (c) 
2x2 x 2 quadrature stencil; (d) finite 
difference stencil. 

performs much better. The much-unproved beliavior of 
Hie augmented l-point matrix is shown by the dashed line 
(here, and in the numerical results presented bcluw, a 
scalar multiplier 0! 1/2 was employed), 

It is noteworthy that the poor 'icrfornianec of Ksip 
is caused solely by the process of muss lumping. If the 
consistent mass matrix were employed, the (honest) FEU 
result would actually display overdnmping rather than 
underdnmping. 

In Kef. 2 we will discuss the "hourglass correction 
matrices" niore carefully, interpret tlieni as "balancing 
truncation error" term;, and show that they vanish in the 
limit of mesh refinement. 

Time Integration of the FEM Fquations 

Time Stepping Procedure 

The forward Fuler method of time integration, applied 
to Eqn. (3a) gives 
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Fig. 3 The ratio of effective diffusivity to the 
desired diffusivity vs non-dimensional wave 
numbers associated with various discrete 
approximations to the transient heat equation. 

U n , , = U n ' 4tM-'[f n-KU n-N(U n)U n - CPn] (71 

where U n is the vector of nodal velocities at time t n 

end ni is the step-size. Before this equation can be 
used to advance the velocity, however, the pressure at 
time t n must be computed. This is done by combining 
Eq., (3a) with a time-differentiated version of Eq. (3b) 
(r^'L^O since t'TU=0 for all time) to generate the 
consistent diseretized Poisson equation for the pressure, 
evaluated at time t n , 

(C T M-k')P n = rHl - l l fn-KVMUnlUn) (8) 

The sequence of steps for advancing the velocity and 
pressure from t n to t n +i is thus (given that U n is 
available mid that it satisfies C T U n = 0): 

(1) Form the acceleration vector (sans the pressure 
gradient) 

A n - M-l[fn-KUn-N(L'n)U„] (9) 

(2) Solve the linear algebraic system (discrete Poisson 
equation) for the compatible pressure via 

( c T M - l 0 P n = C T A n (10) 

(3) Update the velocity, accounting for the pressure 
gradient, 

U n t i = U n + o « A n - M " l c P n > (11) 

(4) Finally, in on "uncoupled step," update the 
temperature (and concentration, whe:, appropriate), again 
using the forward Euler method, 

T n t | = T„ * At Msllf S n-K sT n-N s(U n)T n). (12) 

This Is the basic scheme used in our Phase 1 code and 
is a straightforward and legitimate method for solving the 
ODE's of Eqn. (3). Several additional comments are 
appropriate before discussing the less legitimate shortcuts 
employed In Phase 2 (subeyeling); 

(1) The presence of M"1 i:i the above equations 
explains why we employ the lumped mass approximation 
(M"l is then a vector rather than a full matrix). While 
this approximation is known to reduce the accuracy 
(especially in record to phase speed errors"). It Is 
simple and probably cost-effective for very large 
problems. 

(2) The pressure "I.aplaclan" matrix, C T M-lc , is 
symmetric and Invariant with time. Hence we have 
chosen to solve (10) via direct methods, using a recently 
developed profile (or skyline) method.13 This matrix is 
formed and factored In the pre-processor code and stored 
on disk for Inter retrieval by the main code. During tie 
time Integration, each pressure update is obtained by 
reading the disk file and performing one forward 
reduction and a back substitution. 

(3) The explicit Fulcr method, while simple and fast, 
hns one serious disadvantage (ns do essentially all explicit 
schemes): it is only conditionobly stable. The Integration 
may become unstable if any one of several stability limits 
Is exceeded: (I) the diffusive limit, (2) a linear 
advectivc-dlffusive stability limit, and (3) certain types of 
nonlinear advecllon stability limits.1 ,1 While we are not 
able to predict these At limits a priori for the nonlinear 
FFM system on nn arbitrary mesh, we have generally been 
reasonably successful by satisfying the following step-size 
restrictions, which come from analyzing the constant 
coefficient ndvection-diffusion equation via second-order 
centered finite differences on a grid with fixed Ax, 
Ay, and tai 

(a) Diffusive limit; 

(b) Linear advective-diffusivp limit: 

2K 

" i - i - i — i m 

II • V • w ' 

where < is the diffusivity (u/p for the 
Nnvier-Stokes equntions). While the diffusive limit is 
well-known le.g. Rooehc.'S), there has been some 
confusion regarding the ndvective-diffusive limit. 1 6 

Subcyeling 

The principal shortcoming of our Phase I code, which 
caused it to be uncomfortably expensive, is related to the 
following two points: (1) the stability-limited step-size is 
often much smaller than would be needed to accurately 
integrate the OLE's, and (2) the pressure updates, while 
not so expensive in CPU cost (typically 1 1 0 * of the 
total cost of a time step), are inordinately expensive in 
I/O cost - reading the large disc file (1-2 million words) 
containing the factored I.aplacian matrix requires several 
seconds. 

Based on the premise that the pressure and the 
associated continuity constraint equations have little or 
no effect on the stability of the explicit scheme, we have 
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r ig. i Schematic of the subcyoliiiR process, 

devised u subcycling strategy which permits less frequent 
updates of Hie pressure and a concomitant savings in 
computer time. The major ingredients of subeycltng have 
nlready been described; here we summarise the entire 
process with reference to the schematic in Fig, •!. 

We assume that the minor time step (flts) has been 
pre-seleeted hnsed on the more stringent of the criteria in 
(13) and (14) and will •» used throughout the time 
integration. This is the sutieyele step-si7C; the rest of the 
scheme is as follows: 

(1) Assume Hint t', I', and 1' nre known at t „ and 
tn- | , hslimnle the local time trunenlion error vector, 
elm for I via 

( M n ) ! . . i t , , • , 
d„= L„-L-H„J= - - J - L ' n = - T ' (Vn-U.,-1) , "5 ) 

where l '(t n) represents the (unknown) exact solution on 
the assumption thai l ' „ . | is exact, and l ' n = 
( t | | -U„- | ) / i ln . A similar error estimate is then 
made for '1 and u eombined. relative KMS norm, c, is 
computed, (lie nest (maj-.r) time step size is Mien 
obtained fron. 

M n l | =Wnlc /e) 1 ; Z , l l« l 

where we have used the fuel (from (15)) that the local 
error varit-.-. like (fll)a mid t is an (input) error 
tolerance parameter related to the desired local 
accuracy. A typical value for e is .001 which implies 
Hist a local enor of about 0.14 is acceptable. 

(2) Assuming that At-,,,i>> i l 5 (otherwise 
we do not subeyele), an estiitate of the pres lire at l ,m 
(P n+i) is obtained via linear extrapolation. This 
extrapokted pressure i used (alimg with P„ via n linear 
interpolation) to estimate the pressure gradient (CP) 
during the subcycle steps? i.e. the continuity equations are 
completely jgnored during subeyciiug. After the 
appropriate number («M n t ] /o.t s) of minor steps 
is completed, during each of which the advection and 
diffusion terms in both momentum and energy equations 
are updated (it. part, to maintain stability), the mass 
adjustment process is invoked; i.e., 

(3) Given Jj . and }i . as estimates to l n » | and 
P n+], the velocity is "adjusted" according to 

" n * l = U n + ] - M " ' C V l . <n) 

where Xn+] is a vector of Lagrange multipliers, 
obtained by first solving the linear system 

(C T M- 'C)X n + | =cT tJ n + i , (18) 

It can be shown" that this procedure is a minimal ICBSI 
squares velocity adjustment, from (J . to 
l „ + | , subject to the constraint that C TU,,t i = 0; 
I.e. t l n * i is mass consistent whereas Jr + . is 
not. 

(4) Finally, the compatible pressure field is obtained 
by solving nn equivalent linenr system for P n+i, a la 
liqn. (10) with n replaced by n+1; i.e., the mass consistent 
velocity field is employed to get Pn+1. 

It is clear that two re-solutions using the snmo 
factored matrix nre required nt each major limestep. 
Hence, subeycling con only be cost-effective when the 
subcycle ratio, A t n + ] / f i t s , is significantly greater 
than 2 (based on our current limited experience, this ratio 
can vary from \ 3 to 10 or more, depending on the 
"dynamics"); it can be especially effective if the solution 
is approaching n steady state. 

If and when this procedure (or a vnrinnt thereof) has 
proven to be sufficiently robust, only mnjor time stpp 
results would be reported. Thus fnr, we have been more 
carefully monitoring the behavior rclntivc to the wore 
rigorous approach. 

Numerical Results 

Two numerical experiments have been chosen to 
illustrate the performance of the Phase 2 code and also, 
hopefully, to justify the liberties taken by 
uiuier-integration and suhcyrlii,^. The two simulations, 
namely, (I) confined llc'nnrd-liko thermo-conveciion in a 
cavity nnd (2) the atmospheric dispersion of a heavy fas 
over complex terrain, exhibit very different dynamics and 
thus provioe a fairly wiilr range of tcsl conditions, 

natural rnnywlion in a . V I ' ' aviu-

lor our first example wc present the tinio-tiepeiident, 
oscillatory motion of a (luui contained in n three 
dimensional rectangular enclosure which is iipiupii irom 
below (T - II.5). cooled from above IT = - (l.fi), and 
insulated lutcrnlly. These boundary conditions will cause 
fluid aiolion if the temperature difieronee (i.e., Rayleigh 
number) between the upper am) lower isothermal plates is 
sufficiently large. 

A sequence of numerical experiments (see Kef. 18 for 
details) led to a three cell oscillatory solution which is 
schematically illustrated in Fig. (t; the computational 
domain comprises 8192 elements (li) v Id x 32), 9537 
no-1es, and approximately 10,000 equations. Note that (lie 
cell axes arc parallel to the smaller horizontal dimension 
(z) and alternate in rotational direction. The fluid motion 
is a function of the Hayleigh number, Rfl, the Prandtl 
number, Pr, and the aspect ratios of the cavity. For the 
present simulation, Ha - pjryi'oT/uK = 50,000, Pr = 
u/pc = n.S, and the aspect ratios arc 3.3 and 1,9 
(bnscd on the vertical dimension, V. For this pair of 
aspect ratios, the prevailing flow pattern consists of three 
cells (see Ref. 19 for impressive experimental 
visualizations). 
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Fiff. 5 Perspective view of the computationol domain nnd three roll cells. 
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Fig. 6 Predicted results on the mid-cavity vertical plpne (cross-section A-A): la) velocity fiildj (b) temperature 
distribution. 
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Since the main purpose here is to illustrate the 
differences caused by reduced integration and subcycling, 
we have chosen to present only a portion of the numerical 
results for this problem. Here we limit ourselves to a 
fully developed, transient, three cell solution integrated 
in time for five non-dimensional time units (which 
corresponds to about half of the oscillation period). The 
first run employs exact (2x2x2) quadrature on the 
element integrals and the second run, starting Willi the 
same initial condition, uses 1-point quadrature and 
invokes subcycling. 

Since the solutions at the end of the two runs are 
visually indistinguishable; most of the results to be 
presented are from run 2. Fig, 6(a) shows the three 
convection cell velocity field on the mid-oavity vortical 
plane, as indicated by cross-section A-A in Fig. 5, The 
temperature distribution on the same plane is shown In 
Fig. 6(b), in which the relatively isothermal vortex cores 
and the strong gradients near the walls due to the fluid 
motion are apparent. The vectors on the horizontal 
mid-plane (cross-section B-B of Fig. 5) are shown in Fig. 
7. This clearly reveals the three-dimensionality of the 
problem along with the complex fluid motion within and 
belween the convection cells. Figure 8 shows the time 
histories for u and v at a typical node. The small, abrupt 
jumps (solid curves) indicate the mass adjustment process 
invoked nt the end of each major time step. For these 
runs M s was II.IU (based on stability), and E was 
i n ' 1 , leading to nn average subcyele ratio of 7 and n 
maximum of 19. I!y repeating run 2 with no subcycling, 
we learned that the major discrepancy is caused by 
reduced quadrature; suheycling errors are much smaller. 
Based on the maximun. flow velocity, the results of run 2 
in Fig. 8 were less than 1.3% in error for u and less than 
2,2>i in error for the vertical velocity (v). 

F.ven though this simple and repetitive mesh permitted 
an efficient run using the Phase 1 code (Hun 1) - only the 
element matrices associated with 64 of the 8192 elements 
needed to be stored, and this was done in core — the eos! 
differential was still substantial. Kun I required 1.34 
seconds of Cl'U and 12.3 seconds of I/O (mainly to 
retrieve the factored Uplaeiim matrix nt each time step) 
per time step, On the other hand, Kun 2 required only 
0.44 second of ('PL' and 2.6,1 seconds of I/O per subcyclc 
step. 

Simulation of a Heavy fins Release 

This example concerns the simulation of tbe dynamics 
associated with the gravitational spread and vapor 
dispersion of I.NO (liquefied nntural gas) spills in Ilic 
atmosphere. Since the Nfi (natural gas) density at its 
boiling temperature is significantly greater than that of 
the ambient air (by approximately 60%), the use of the 
Boussinesq equations for modeling such flows is probably 
inappropriato.20 ive have therefore employed the 
generalized anelastic formulation described earlier (sec 
Ref. 1 for more details). In addition to solving equations 
in the form of (I), we also solved th i concentration 
equation for NG mass fraction (designated as u). Again, 
the same simulation was performed with both codes. 
Since most of the results from the two simulations differ 
by only a few per cent and are again hardly 
distinguishable graphically, we present herein, unless 
noted otherwise, only the results obtained with our Phase 
2 code. 

Figure 9 shows the topography at the LNC 
experimental facility near China Lake, California. The 
horizontal extent of the computational domain, also 
shown in the figure, is 500 m x 400 m and the vertical 

extent is only 20 m. The same graded mesh consisting of 
0400 elements (40 x 20 x 8) was used in both simulations. 
The total system comprises 7749 nodal points and 
approximately 45,000 equations. Figure 10 is an upwind 
view of a portion of the mesh In the spill pond vicinity. 

The initial condition for the simulation was a steady 
Isothermal wind field (i>3 to 4 m/sec at the top of the 
grid with the nominal wind direction from left to right) 
without NG vapor. Constant diffusivltles, typical of the 
planetary boundary layer (0.4 mfysee vertically and 2.0 
m2/sec ' horizontally), were used throughout the 
simulation. The boil-off of I.NG was simulated as a 
source area over 12 of the 30 elements comprising the 
spill pond, Over this area, n vertical injection velocity of 
T.D.1 m/sec, along with a temperature of -I60°C (NG 
boiling temperature), and a constant rate of NC mass flux 
were specified. Away from the source area, we used u = 0 
and 3T/3n = 3u/3n = 0 at the ground, "The 
remaining boundary conditions employed were: specified 
u, T, ID at the Inlet plane, natural boundary conditions at 
Fhc outlet, and symmetry conditions at the top and two 
lateral surfaces. 

A sample of the numerical results (for the region 
enclosed by dashed lines in Fig, 9) is shown in figures 11 
through 14. Fig. 11(a) shows the initial horizontal 
velocity (with topography contours superimposed) on the 
surface defined by the nodes located 1 m above the 
ground, which already indicates some terrain effects (e.g., 
"downslope" flow to the lower right of the spill pond) even 
though the flow field is isothermal. Fig. 1Kb) shows the 
horizontal velocity on the same "plane" after 104 seconds, 
and demonstrates clearly the gravity-induced flow in M_ 
directions near the vapor source area and also the 
accentuated "downslopc" flow. In l ig . I?, concentration 
contours (in volume fraction) on the same plane as 
predicted by the two codes are compared. As seen In the 
figure, the gravitational spread in all directions and the 
shift of Hie cloud ccelerline away from the mean wind 
direction (both of which luivo heen observed at China 
Lake) have been correctly predicted In hath codes. 
Furthermore, the agreement between ll»' iwo predictions 
regarding the predicted flammable /.one (S to 15V Nil 
vapor) is also very good, figures 13(a) iwc (b) show, 
respectively, the initial velociiy anil the resulting velocity 
and concentration along a longitudinal planr through the 
pond center line at t = 104 seconds; again the influence of 
the dense cloud is apparent, Ibis lime in Hie form of a 
rollup vortex near the upwind edge of llic cloud. In Fig. 
14, we compare the results of velocity components (u,v,w) 
nnd density (p) versus time fcr n roprescnlniive point as 
predicted by the two codes. The locution of the poinl is 
133 m downwind from the spill point, I m above ground, 
nnd in the region where the terrain has a slope of 
1.7° (sec Fig. H). This is the region where the terrain 
is fnirly complex nnd numerous distorted elements (rather 
than regular prisms) are therefore employed. Pespite the 
fact that element level mass balances urc not maintained 
by reduced quadrature, the results obtained with l-polnt 
quadrature appear to compare quite well with those 
obtained using more exact quudroiiirc. The greatest 
discrepancy appears to exist in the vertical velocity 
component (v), where n difference of about 20 percent 
occurs. This velocity component, however, is at least an 
order of magnitude smaller than the other component (u) 
and therefore any Inaccuracy introduc.J by the combined 
effects of 1-point quadrature and subcycling is expected 
to have a stronger effect on such a component rather than 
on the larger and presumably more important ones. With 
a tighter error tolerance parameter (E), the accuracy 
can, of course, be improved, but at additional 
computational cost. 
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Fig. 7 Velocity vectors on the mid-horizontal plane 
(oross-seolion B-B) of the Cavity. 

54 55 56 57 58 59 

Time 

-160 - 1 

Regarding computation time for this particular 
simulation, the new code has gained at least an order of 
magnitude improvement in both CPU and I/O over the old 
code. With an error tolerance parameter (e) of 10"3, 
the new code required only 36 major time steps, with an 
average of 7 subcycles (the maximum number of subeyeles 
was 14) to simulate 104 seconds of real time. The 
average cost per minor time step (0.4 second of real time) 
is approximately 0.3 second of CPU and 1.3 seconds of 

Fig. 10 Upwind view of a portion of the mesh layout 
on the ground In the spill pond vicinity. 

Fig. 8 Comparison of time histories for u and v at a 
representative point: — one-point quadra- -120 
lure with subeyoling; — 2x2x2 quadrature, 

-160 

I !.. I...J.....[.... 
1̂ m/sac 

(a) 

-r' r" r L i L 
-80 -40 

Fig. 9 Topography at China lake LNG spill facility. - 1 6 0 b 

Fig. II Horizontal velocities Im above the ground: 
(a) t = 0; (b) t = 104 seconds after the LNG 
spill. 

I/O. On the other hand, the old code required 
approximately 7 seconds of CPU and 13 seconds of I/O per 
time step. 
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Fig. 12 Comparison of predicted NC concentrations 
(volume fraction) l m above the ground at t 
= 104 seconds after the I.NG spill: — 
one-point quadrature with subcyclingi 
2x2x2 quadrature. 
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Fig. 13 Velocity and concentration on a longitudinal 
plane through the pond center line: (a) 
velocity at t = Oj lb) velocity and 
concentration at t = 104 seconds. 

Summary and Conclusions 

In this paper we have presented a viable algorithm for 
numerically simulating three-dimensional, time-
dependent, incompressible flows via a modified Galerkin 
finite element method. The model is simple and fast in 
that we use the simple 8-node isoparametric "brick" 
element and employ the simplest time integration method 
- explicit (foward) Euler, which is made feasible by 
lumping the mass matrix. To solve for the pressure, we 
form the consistent Poisson equation from the discretized 
momentum and continuity equations, which is then 
effectively solved vie a disk-based skyline solver. To 
further improve computational efficiency, numerical 
techniques including reduced Gauss-Legendre quadrature 
and subcyding in conjunction with the use of variable 
time steps, have been introduced for the first time and 

0 20 40 60 80100 
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I -0.015 
- -0.020 

0 20 40 60 80100 
Time (ne) 

1.176**' 

0 20 4060 80100 
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Tlm»(HC| 

Fig. 14 Comparison of time histories for velocity and 
density of a representative point: — 
one-point quadrature with subcyolingj 
2x2x2 quadrature, 

demonstrated to be very cost-effective, With these newly 
devised techniques, an improvement of nn order of 
magnitude in computational costs, yet with comparable 
accuracy as compared with the more rigorous algorithm, 
has been shown to be attainable. 

As with essentially all explicit schemes, the present 
algorithm must respccl certain stability time step limits, 
which can sometimes be very string'ent-especlally the 
linear advective-diffusive limit for some cases of Interest 
to us. Also, even with fubcycling, the I/O cost is still tho 
major part of the total computational cost. We arc 
currently working toward further reducing these costs 
such as exploring the feasibility of adding balancing 
diffusion'' and Ihe use of a more efficient technique 
(less I/O cost) for solving the pressure equation. 
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