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HYDROTHERMAL SYSTEMS IN TWO AREAS OF THE JEMEZ VOLCANIC FIELD: 
SULPHUR SPRINGS AND THE COCHITI MINING DISTRICT 

Giday Wol deGabri el 

ABSTRACT 

K/Ar dates and oxygen isotope data were obtained on 13 clay 
separates (<2 pm) of thermally altered mafic and silicic rocks from 
the Cochiti mining district (SE Jemez Mountains) and Continental 
Scientific Drilling Project (CSDP) core hole VC-2A (Sulphur Springs, 
Valles caldera). Illite with K20 contents of 6.68%-10.04% is the 
dominant clay in the silicic rocks, whereas interstratified 
illite/smectites containing 1.4%-5.74% K20 ccnstitute the altered 
andesites. 

Two hydrothermal alteration events are recognized at the Cochiti 
area (8.07 m.y., n = 1, and 6.5-5.6 m.y., n = 6 ) .  The older event 
correlates with the waning stages of Paliza Canyon Formation andesite 
volcanism (213 to 58.5 m.y.) , whereas the younger event correlates 
with intrusions and gold- and silver-bearing quartz veins associated 
with the Bearhead Rhyolite (7.54-5.8 m.y.). 
dates in the hydrothermally altered, caldera-fill rocks of core hole 
VC-2A (0.83-0.66 m.y., n = 4) indicate that hydrothermal alteration 
developed contemporaneously with resurgence and ring fracture Valles 
Rhyolite domes (0.89-0.54 m.y.). One date of 0 * 0.10 m.y. in acid- 
altered landslide debris of postcaldera tuffs from the upper 13 m of 
the core hole probably correlates with Holocene hydrothermal activity 
possibly associated with the final phases o f  the Valles Rhyolite 
(0.13 m.y.). 

are zonally distributed (-2.15 to +2.98'/00) around a 15-m-wide 
mineralized vein, while those farther out ( ~ 2 - 3  km) have +5 to 
+7.97'/00 suggesting a radial decrease in hydrothermal activity. 
samples from VC-2A get lighter with depth (-0.20 to +1.62'/00) 
indicating a thermal gradient in an extensive meteorically derived 
hydrothermal fluid-rock interaction. The 6180 values of meteoric 
water at Val les are about - 1 2 ° / o ~ ,  whereas hydrothermal fluids (220'- 
30OoC) average about -9O/oo. The K/Ar and oxygen isotope data 
provide strong evidence that the epithermal quartz-vein-hosted gold- 
silver mineralization at Cochiti and the sub-ore-grade molybdenite at 
VC-2A were deposited in the late Miocene (5.90 m.y.) and mid- 
Quaternary (0.66 m.y.) , respectively, by hydrothermal fluids composed 
primarily of meteoric water. 

The majority of K/Ar 

Oxygen isotope data from illites (SMOW) in the Cochiti district 

The 
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I .  INTRODUCTION 
The a c t i v e  hydrothermal systems of t h e  Jemez volcanic  f i e l d  (F ig ,  1) have 

been thoroughly explored and documented f o r  geothermal resources  and b a s i c  
research on magmalhydrothermal systems r e s u l t i n g  from geothermal research and 
development and, r e c e n t l y ,  research a s s o c i a t e d  with t h e  Continental  S c i e n t i f i c  
D r i l l i n g  Program (CSDP) (Goff e t  a l .  1986; Hulen and Nielson 1986; Vuataz and 
Goff 1986) .  The present  study i s  mostly concerned with t h e  temporal and 
s p a t i a l  r e l a t i o n s h i p s  of f o s s i l  hydrothermal systems and assoc ia ted  mineral iza-  
t i o n  a s  recognized in t h e  Cochiti  mining d i s t r i c t  (Wronkiewicz e t  a l .  1984; 
southeas te rn  Jemez volcanic  f i e l d )  and V C - 2 A  (Sulphur S p r i n g s ) ,  t h e  second CSDP 

core  hole in  t h e  Val l e s  c a l d e r a  (Hulen e t  a1 . 1988). 
Pervasive hydrothermal a l t e r a t i o n  i s  evident  in  t h e  Cochiti  mining 

d i s t r i c t  and surrounding a reas .  The Keres Group (Pa l i za  Canyon Formation, 
Canovas Canyon Formation, and Bearhead Rhyolite) , composed pr imar i ly  of Miocene 
a n d e s i t e ,  d a c i t e ,  and r h y o l i t e ,  r e p r e s e n t s  t h e  bulk of t h e  outcrops (Fig.  1, 
i n s e t  s t r a t i g r a p h i c  column) and i s  charac te r ized  by widespread p r o p y l i t i c  and 
l o c a l l y  advanced a r g i l l i c  zones around several  epithermal mineral ized quar tz  
veins  (S te in  1983; Wronkiewicz e t  a l .  1984). The Tewa Group, which represents  
t h e  l a t e s t  major episode of volcanism i n  t h e  Jemez volcanic  f i e l d ,  i s  r a r e l y  
thermally a f f e c t e d  except i n  a r e a s  of hydrothermal a c t i v i t y  such as  Sulphur 
Springs (Goff and Gardner 1980; Goff e t  a l .  1985). 
samples e x h i b i t  p h y l l i c  and p r o p y l i t i c  t o  a r g i l l i c  and advanced a r g i l l i c  
a l t e r a t i o n  (Charles e t  a l .  1986; Hulen e t  a l .  1987). 

An e s s e n t i a l  f e a t u r e  of hydrothermal a l t e r a t i o n  i s  t h e  conversion of t he  
i n i t i a l  (primary) mineral assemblage t o  a new s e t  o f  minerals  s t a b l e  in  t h e  
hydrothermal environment. I l l i t e ,  i l l i t e / s m e c t i t e ,  c h l o r i t e ,  kaol in i te - fami ly  
c l a y s ,  e p i d o t e ,  c a l c i t e ,  p y r i t e ,  and abundant secondary s i l i c a  a r e  t h e  dominant 
secondary mineral assemblages i n  hydrothermal l y  a1 t e r e d  rocks.  
mater ia l  i s  a very good K/Ar c lock ,  and t h e  K/Ar technique can be used t o  da t e  
hydrothermal a l t e r a t i o n - m i n e r a l i z a t i o n  sequences and d i a g e n e t i c  phases in 
di  f f e r e n t  geological  environments (Aronson and Lee 1986; G 1  asmann 1985; 
S i l l i t o e  1988). 
and s p a t i a l  r e l a t i o n s h i p s  between t h e  tectonomagmatic h i s t o r y  and t h e  super- 
imposed hydrothermal a l t e r a t i o n  in  two a r e a s  of t h e  Jemez volcanic  f i e l d .  

A t o t a l  of 16  s u r f a c e  and 26 subsurface core hole samples from the  
Cochiti  mining d i s t r i c t  and Sulphur Springs (CSDP core  hole VC-ZA), 

Here s u r f a c e  and subsurface 

I1 1 i t i  c 

In t h i s  r e p o r t ,  K/Ar d a t a  a r e  used t o  determine t h e  temporal 
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Fig. 1. S impl i f ied  geolcg ica l  map of t h e  c e n t r a l  Jemez volcanic  f i e l d  ( a f t e r  
Smith e t  a l .  1 9 7 0 ) .  The i n s e t  i s  a genera l ized  map t h a t  shows t h e  s t r a t i -  
graphy of t h e  Jemez volcanic  f i e l d  ( a f t e r  Gardner e t  a l .  1986).  Sample 
numbers a s  t abu la t ed  i n  Table I .  CFZ = Canada de Cochi t i  Faul t  Zone, CMD = 
Cochit i  Mining D i s t r i c t ,  JFZ = Jemez Faul t  Zone, PFZ = P a j a r i t o  Faul t  Zone, 
R = Redondo Dome, SD = Soda Dam, SFZ = Santa Ana Faul t  Zone, SPD = S t .  
Pe t e r s  Dome, T = Toledo Embayment, and VC = Valles  Caldera.  
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r e s p e c t i v e l y ,  were inves t iga t ed  (Fig.  1 ) .  
scanning e l e c t r o n  microscopy (SEM) imaging and x-ray d i f f r a c t i o n  (XRD) ana lyses  
were performed on a l l  of t h e  above-mentioned samples, and K/Ar da t ing  and 
oxygen i sotope work was c a r r i e d  out  on s e l e c t e d  c l ay  s e p a r a t e s  (hydrothermal 
a l t e r a t i o n  products)  from t h e  two l o c a l i t i e s .  

Most of t h e  c l a y s  (<2 pn) separa ted  from t h e  f e l s i c  rocks a r e  dominated by 
i l l i t e  with minor c h l o r i t e ,  whereas t h e  b a s a l t i c  and a n d e s i t i c  rocks conta in  
smec t i t e  and subord ina te  amounts of c h l o r i t e ,  i l l i t e ,  and k a o l i n i t e .  In s i l i c i c  
rocks ,  the a l t e r a t i o n  products  i n  t h i n  s e c t i o n  a r e  dominantly represented  by 
b i r e f r i n g e n t  and r ibbon- l ike  s e r i c i t e s  occur r ing  in  the  matr ix  around mineral 
g r a i n s  and a s  replacements of f e l d s p a r s ,  whereas i n  t h e  b a s a l t s  and andes i t e s  
smec t i t e  with minor amount of c h l o r i t e  r ep resen t  t h e  au th igen ic  c l ay  
assemblage. 

In add i t ion  t o  pe t rographic  s tudy ,  

11. ANALYTICAL METHODS 
Samples f o r  t h i s  s tudy were s e l e c t e d  on t h e  b a s i s  of l i t h o l o g i c  v a r i a t i o n ,  

degree of a l t e r a t i o n ,  and s i g n s  o f  minera l i za t ion .  S labs  f o r  t h i n  s e c t i o n  and 
c l ay  sepa ra t ion  were c u t  and thoroughly cleaned with de ionized  water  t o  e l imi -  
na te  s u r f a c e  contaminants such a s  d r i l l i n g  mud and weathering r i n d s .  
g raphic  s tudy of each ind iv idua l  sample was c a r r i e d  out  t o  determine t h e  degree 
of weathering and t o  e s t ima te  t h e  amount of l i t h i c s  a s soc ia t ed  with t h e  pyro- 
c l a s t i c  u n i t s  (Appendix A). 

Petro-  

Cleaned s l a b s  f o r  c l ay  sepa ra t ion  were powdered using a Spex 8500 S h a t t e r -  
box f o r  3 t o  4 min. 
500-700 m l  of deionized water  and s o n i f i e d  f o r  about 12  min. The homogenized 
s o l u t i o n  was placed on a v i b r a t i o n a l l y  s t a b l e  su r face  f o r  45 m i n  t o  1 h .  The 
superna tan t  suspension was decanted i n t o  l a r g e  labe led  tubes  (250 m l )  t o  
s e p a r a t e  var ious  c l ay  f r a c t i o n s  using a DuPont Sorva l l  superspeed ang le - ro to r  
c e n t r i f u g e .  
a c e n t r i f u g a t i o n  speed of 8000 rpm f o r  a sp in  time o f  1 h .  U l t r a f i n e  c l ay  
f r a c t i o n s  (<0.1 pm) were gene ra l ly  i n s i g n i f i c a n t  in  amount. Most of t h e  f i n e  
c l a y  f r a c t i o n s  from the VC-2A core  hole  samples were a i r  d r i e d ,  and random 
mounts were prepared f o r  X R D  a n a l y s i s .  Oriented mounts were prepared f o r  those 
samples t h a t  were dated by t h e  K/Ar method. 

a l s o  t r e a t e d  with chemicals t o  e l imina te  contaminants such a s  c a l c i t e ,  o rganic  

Rock powder s p l i t s  weighing 50 t o  100 g were mixed with 

The f i n e  c l ay  f r a c t i o n  used in  t h i s  s tudy (<2 pin) was separa ted  a t  

The s u r f a c e  samples from t h e  Cochi t i  d i s t r i c t  were t r e a t e d  s i m i l a r l y  and 
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mat te r ,  and i ron  oxides  using t h e  procedures ou t l ined  in  Jackson (1978). 

Carbonates were removed by t r e a t i n g  samples with a d i l u t e  mixture  of a c e t i c  
ac id  and sodium a c e t a t e  u n t i l  t h e  s o l u t i o n  reached a cons t an t  pH of 4. Organic 
ma t t e r  was decomposed by H202 t r ea tmen t ,  and i ron  oxides  were removed by adding 
Na-c i t r a t e  and b icarbonate  s o l u t i o n s  mixed with sodium d i t h i o n i t e  and by 
s t i r r i n g  samples i n  a water  bath of about 5OoC. The rock powder-chemical 
s o l u t i o n  s l u r r i e s  were cen t r i fuged  severa l  t imes a t  about 2000-3000 rpm by 
adding and mixing with deionized water .  This chemical t rea tment  was followed 
by a thorough d i a l y s i s  of each sample f o r  4 t o  5 days i n  de ionized  water  t h a t  
was r e g u l a r l y  changed every 4 h except during t h e  n igh t .  
chemical t rea tment  was monitored by x-raying t h e  samples before  and a f t e r  
chemical t rea tment .  Oriented mounts were made by p i p e t t i n g  c l a y  suspension 
onto g l a s s  o r  qua r t z  s l i d e s  and by g lyco la t ing  t h e  mounts  overn ight  in  a 
con ta ine r  a t  60'C. The X R D  a n a l y s i s  was performed with a Siemens D-500 
automated d i f f r a c t i o n  system using a C u  tube and 0.02' 28 s t e p s  with 1 s per  
s t e p  f o r  a l l  mounts (2-36' 28).  
ob ta ined  on t h e  pre-  and postchemical ly  t r e a t e d  c l ays .  
a l s o  examined using SEM equipped with an energy d i s p e r s i v e  x-ray (EDX) system 
f o r  determining elemental  composition, t h e  i n t e n s i t y  of a l t e r a t i o n ,  and 
d i s t r i b u t i o n  and morphology of secondary mineral assemblages. 

t h e  va r ious  c l a y  s e p a r a t e s  a t  t h e  Case Western Reserve Univers i ty  K/Ar 
Laboratory.  
mul t i load  system (Aronson and Lee 1986). 
approximately 195OC with cool ing  water  running i n  a c o i l  around t h e  s l i g h t l y  
i n c l i n e d  sample holder .  
equipped with an on- l ine  e x t r a c t i o n  system and a bulk-p ipe t ted  38Ar t r a c e r  
c a l i b r a t e d  by t h e  LP-6 i n t e r l a b o r a t o r y  s tandard  a t  19.3 x 10-10 mol of 
rad iogenic  Ar (40Ar*) pe r  gram. 
r e s u l t e d  i n  8%-61% of  the ex t r ac t ed  Ar being rad iogenic ,  enabl ing  a r e l i a b l e  
measurement of  t h e  40Ar* content  of  the young a l t e r a t i o n  products .  
ana lyses  were made on d u p l i c a t e  samples w i t h  a flame photometer on ac id  
s o l u t i o n  of sample beads fused i n  l i t h ium metaborate.  
cons t an t s  used in  t h e  age c a l c u l a t i o n s  are those  proposed by S t e i g e r  and Jage r  
(1977).  The r e l a t i v e  age unce r t a in ty  between samples from t h e  same loca t ion  i s  
l e s s  than 2%; however, t h e  e r r o r  a s soc ia t ed  with t h e  Quaternary  c l a y s  (VC-2A 

The e f f e c t  of 

Iden t i ca l  d i f f rac tograms (Appendix B) were 
The a l t e r e d  rocks were 

K/Ar age de te rmina t ions  were made on 13 samples (Table I )  s e l e c t e d  from 

Clay samples o f  100 t o  200 mg were used f o r  Ar e x t r a c t i o n  in  a 
The system was baked 12-14 h a t  

Argon was analyzed w i t h  an MS-10 mass spec t rometer  

Except f o r  a s i n g l e  sample, t h e  c l a y  ana lyses  

The K20 

Potassium decay 
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T A B L E  I 

K / A R  A G E  AND OXYGEN-ISOTOPE DATA OF CLAY FRACTIONS (<2 pm) FROM C O R E  H O L E  VC-2A 
A N D  COCHITI MINING DISTRICT HYDROTHERMALLY A L T E R E D  SAMPLES 

cmu Sample Sample K20 4Ok* 40h* 
Ageb $ 8 ~ c  

Tracera Number Weight,g ( X )  (10-l' mol/g) (%) b.Y.1 ( S M W  

Core Hole VC-2A. Sulphur Springs 
867 VC2A9-6 0.1269 8.3467 0 0 0 ffl.10 +0.42 

(9.9-13 m) 

866 ' 34-1 0.1166 9.9812 0.9446 7 . 1  0.6633.21 +1.66 

+2.96 

866 ' 66-2A 0.1739 8.7627 0.9606 8 .3  0.76ffl.14 +1.62 

864 119-9 0.1716 9.2462 1.4664 8 .1  1.09ffl.14e +1.61 

d (38.4-40.4 m) ----- ----- ----- ----- --------- ' 34-36 

(54.8-67.1 m) 

(169-161.3 m) 

863 ' 336E 0.1696 9.8267 1.0496 8 .0  0.74ffl.14 +0.82 
(480.2-482.9 m) 

862 ' 366D 0.1992 10.0429 1.2038 8 .2  0.83fo.11 -0.20 
(624.7-627.4 m) 

Cochiti Mining District. Southeast Jemea Mountains 

868 VG87 1 0.1773 7.3355 8. aa03 11.6 6.99ffl.36 +6.00 
869 VG87 2 0.1491 6.2009 4.1968 38.9 6.60M.29 +7.11 
870 VG87 6 0.1792 9.6632 11.1180 64.6 8.07m.22 +0.49 

872 VG87 10 0.1290 6.7496 6.3610 24.9 6.45m.31 +7.97 
873 VG87 12 0.1469 1.4092 1.3232 22.9 8 .6 im.96  ---- 

871 VG87 6f 0.1611 8.4616 7.1840 61.1 6.90ffl.19 -2.16 
861 VG87 7 2.0028 8.6844 6.8810 61.1 6.10M.11 +2.98 

* Radiogenic. 
8 CWRU Tracer = Case Western Reserve University K/Ar Laborat@jy identification number. 
Determined from decay constants and isotopic abundance of 
Jager 1977.1 
SMOW = standard m a n  ocean water. 
Quarts vein material. 
Filament of mass spectrometer (MS-10) failed. 
Whole rock dated. 

K according to Steiger and 
C 

e 

samples) i s  much h igher  compared w i t h  t h e  o l d e r  l a t e  Miocene ones from the  
Cochi t i  d i s t r i c t  because measuring a minimum amount of rad iogenic  argon i n  

younger rocks,  e s p e c i a l l y  c l a y ,  i s  a problem. 

Case Western Reserve Univers i ty  S t a b l e  Isotope Laboratory using t h e  technique 
o f  Clayton and Mayeda (1963) and f r a c t i o n a t i o n  f a c t o r s  o f  Es l inger  and Savin 
(1973a and 1973b) and Taylor (1976). 
d e l t a  n o t a t i o n  r e l a t i v e  t o  s tandard mean ocean water  (SMOW). 

Oxygen i s o t o p e s  on c l a y s  and a s s o c i a t e d  q u a r t z  ve ins  were analyzed a t  the 

Data a r e  presented using the  s tandard 
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111. GEOLOGIC OVERVIEW 
The Jemez volcanic  f i e l d  i s  loca ted  a t  t h e  i n t e r s e c t i o n  of  t h e  western 

margin of t h e  Rio Grande r i f t  and t h e  NE-SW-trending Jemez Lineament (Aldrich,  
1986). The Jemez volcanic  f i e l d  i s  bounded on t h e  west by Precambrian basement 
rocks and Paleozoic  sedimentary u n i t s  of t h e  Colorado Pla teau .  
f i l l  con t inen ta l  sediments of  t h e  r i f t  f l o o r  a r e  exposed on t h e  e a s t  s i d e  of 
t h e  f i e l d  underlying t h e  var ious  u n i t s  of t h e  volcanic  f i e l d .  In t h e  Jemez, 
composi t ional ly  d i v e r s e  volcanic  rocks ranging i n  age from mid-Miocene 
0 1 3  m.y.) t o  t h e  l a t e  P le i s tocene  a r e  documented (Bai ley e t  a l .  1969; Smith e t  
a l .  1970; Gardner e t  a l .  1986). The samples f o r  t h i s  s tudy ,  a s  mentioned 
e a r l i e r ,  were obta ined  wi th in  and near  t h e  Cochi t i  mining d i s t r i c t  i n  t h e  
south-cent ra l  Jemez Mountains and from t h e  Sulphur Springs a r e a ,  loca ted  i n s i d e  
t h e  western s t r u c t u r a l  margin of t h e  Val les  ca lde ra  (Fig.  1).  

The o l d e s t  rocks i n  t h e  Cochi t i  a r ea  belong t o  t h e  Keres Group (Pa l i za  
Canyon Formation) and c o n s i s t  of gabbro, b a s a l t ,  a n d e s i t e ,  d a c i t e ,  and volcanic  
b recc ia  t h a t  a r e  in t ruded  by consanguineous qua r t z  monzonite and monzodiorite 
s tocks  (11.2 * 0.3 m.y. o ld )  (S te in  1983). These rocks c o n s t i t u t e  t h e  e a r l y  
s t ra tovolcano-bui ld ing  s t a g e  of t h e  Jemez volcanic  f i e l d  (Smith e t  a l .  1970) 
and were der ived  p r imar i ly  from magmas of two d i s t i n c t  sources :  upper mantle 
d i f f e r e n t i a t e s  (two-pyroxene andes i t e s )  and lower c r u s t a l  mel t s  ( h i g h - s i l i c a  
r h y o l i t e ) ,  r e s p e c t i v e l y  (Gardner and Goff 1984). These in  turn a r e  in t ruded  
along t h e  northwest boundary by younger d a c i t e s  and a n d e s i t e s  of  t h e  Keres 
Group (28.5 m.y.) and along t h e  southern and western margins by Bearhead 
Rhyoli te  (7.54-5.8 m.y.) (S te in  1983; Gardner e t  a l .  1986). 

by i n t e n s e l y  f a u l t e d  and f r a c t u r e d  rocks permeated by major epithermal qua r t z  
ve ins ,  t r a v e r s e s  the Cochi t i  mining d i s t r i c t  (S te in  1983; Wronkiewicz e t  a l .  
1984). 
contemporaneously formed during t h e  e rupt ion  of t h e  Keres Group, some lavas  and 
domes of which were emplaced along t h e s e  f a u l t s  (Gardner and Goff 1984). On  

t h e  b a s i s  of t h e  d i s t r i b u t i o n  of qua r t z  veins  in  t h e  Keres Group rocks ,  S t e i n  
(1983) specula ted  t h e  ex i s t ence  of two hydrothermal events  i n  t h e  Cochi t i  
d i s t r i c t  r e l a t e d  t o  qua r t z  monzodiorite and Bearhead Rhyoli te .  On t h e  o t h e r  
hand t h e  p r o p y l i t i c  and advanced a r g i l l i c  a l t e r a t i o n  in  t h e  Cochi t i  d i s t r i c t  
has been a t t r i b u t e d  by Wronkiewicz e t  a1.(1984) t o  t h e  f e l s i c  i n t r u s i o n s  of 
Bearhead Rhyoli te  t h a t  ac ted  a s  a hea t  source,  e s t a b l i s h i n g  a c losed -ce l l  

T e r t i a r y  basin-  

A nor th- t rending  f a u l t  zone (0.75 km wide and 3 . 6  km long) ,  cha rac t e r i zed  

This s t r u c t u r a l  zone (Canada de Cochi t i  f a u l t  system) was 
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meteoric  water  convection system c i r c u l a t i n g  along a c t i v e  tens iona l  f a u l t s  
r e l a t e d  t o  t h e  Rio Grande r i f t .  S t r u c t u r a l  r e l a t i o n s h i p s  suggested t o  t h e  

l a t e r  au tho r s  t h a t  t h e  Au-bearing mine ra l i za t ion  occurred between 6.5 and 1.4 
m.y. ago. However, a s  w i l l  be s u b s t a n t i a t e d  l a t e r ,  €he age of t h e  c l a y s  from 
t h e  a l t e r e d  a n d e s i t e s  and r h y o l i t e s  (8.07-5.6 m.y.) i s  concordant with t h e  

Keres Group volcanic  ex t rus ions  (13-6 m.y., Fig. 1) , implying a contemporaneous 
a l t e r a t i o n  a s soc ia t ed  w i t h  t h e  waning phases of each tectonomagmatic episode. 

Unlike t h e  Cochi t i  d i s t r i c t ,  Sulphur Springs i s  loca ted  between t h e  r ing  
f r a c t u r e  and the western resurgent  dome of t h e  Val les  ca lde ra  (Fig.  1). 
Volcanic a c t i v i t y  r e l a t e d  t o  t h e  Jemez Mountains ca lde ras  began 3.6 m.y. ago i n  
t h e  form of  l imi t ed  ash flows from c a l d e r a s  o b l i t e r a t e d  by t h e  Quaternary  
To1 edo-Val 1 e s  ca l  dera-formi ng e rup t ions  (Ni e l  son and Hul en 1984; Sel f e t  a1 . 
1986). 
Val les  c a l d e r a s  a t  1.45 and 1.12 m.y. ago, r e s p e c t i v e l y ,  r e s u l t e d  i n  t h e  
emplacement of large-volume f e l s i c  ign imbr i tes  of t h e  Otowi and Tshirege 
Members of  t h e  Bandel ier  Tuff (Doell e t  a l .  1968; Smith 1979; I z e t t  e t  a l .  
1980; Gardner and Goff 1984; S e l f  e t  a l .  1986). 

was soon followed by c e n t r a l  resurgent  a c t i v i t y  and a s e r i e s  of r h y o l i t e  domes 
t h a t  developed along t h e  c a l d e r a  r i n g  f r a c t u r e  between 1.15 and 0.13 m.y. ago 
(Smith and Bai ley 1968; Marvin and Dobson 1979; Gardner e t  a1 . 1986). 

the Val les  c a l d e r a  i s  p re sen t ly  loca t ed  a t  Sulphur Spr ings ,  t h e  s i t e  of CSDP 
co re  hole  VC-2A (Goff e t  a l .  1987). Surface  hydrothermal a l t e r a t i o n  i s  
represented  by bleached c a l d e r a - f i l l  t u f f s ,  b r e c c i a s ,  and v o l c a n i c l a s t i c  
sediments up t o  advanced a r g i l 1  i c  grade (Goff and Gardner 1980; Goff e t  a l .  
1985; Charles  e t  a l .  1986). 
major units. 
horizons (Fig.  2). The f o u r  major units a r e  (1) a near -sur face  i n t r a c a l d e r a  
sequence of l a n d s l i d e  d e b r i s  and v o l c a n i c l a s t i c  sediments (0-21.6 m), (2) 
densely welded f e l s i c  ash-flow t u f f  comprising t h e  Upper Tuffs  (21.6-64.8 m ,  
<1.12 m.y.), (3) the Bandel ier  Tuffs  (Tshirege Member, 79.9-354 m; Otowi 
Member, 361.7-477 m; 1.12-1.45 m.y.), and (4) the pre-Bandel ier  Lower Tuffs  
(477-527.6 m ,  1.45-3.6 m.y.) (Hulen e t  a l .  1987). 
a l t e r a t i o n  products ,  K/Ar ages,  and oxygen i so tope  d a t a  of  s e l e c t e d  samples 
from both a r e a s  i s  p resented  i n  Table I.  

Following t h i s  ep isode ,  c a t a s t r o p h i c  e rup t ions  from t h e  Toledo and 

The Val les  ca lde ra  c o l l a p s e  

The most a c t i v e  hydrothermal system (hot  sp r ing  and fumarol ic  a c t i v i t y )  i n  

The 527.6-m-deep VC-2A core  hole  pene t r a t ed  fou r  
The upper t h r e e  u n i t s  a r e  separa ted  by t h i n  v o l c a n i c l a s t i c  marker 

A d e t a i l e d  d i scuss ion  of t he  
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Fig. 2. Generalized l i t h o l o g i c  a l t e r a t i o n ,  vein m i n e r a l i z a t i o n ,  and l e s s  than 
2-pn c l a y  s i z e  f r a c t i o n  log f o r  CSDP core  hole VC-2A (modified from Hulen e t  
a1 . 1987). Bulk X R D  a n a l y s i s  of a sample from a leve l  marked by an a s t e r i s k  
(*) contained 8% anhydr i te  ( Je f f  Hulen, Universi ty  of Utah Research Center ,  
personal communication, 1988); <2-l,rm s i z e  f r a c t i o n  i s  gypsum. 

The Quaternary Valles-Toledo c a l d e r a s  of t h e  Jemez volcanic  f i e l d  have 
been t h e  s u b j e c t  of i n t e n s e  study because of t h e i r  high-temperature geothermal 
p o t e n t i a l  (Dondanvi 1 l e  1978; Laugh1 in  1981; Hulen and Nielson 1986; Truesdell  
and Jan ik  1986). The bulk of t h e  hydrothermal system and outflow plume within 
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Valles  i s  c o n t r o l l e d  by f r a c t u r e  and subord ina te  s t r a t i g r a p h i c  permeabi l i ty  
along no r theas t - t r end ing  f a u l t s  of t h e  Jemez f a u l t  zone (Dondanville 1978; 
Hulen and Nielson 1983; Goff e t  a1 . 1988). The Neogene thermal h i s t o r y  of t he  
Jemez volcanic  f i e l d  has been inves t iga t ed  by severa l  methods (K/Ar and U -  
s e r i e s  geochronology and pal eomagneti c da t a )  . 

eval ua te  t h e  temporal and s p a t i  a1 evolu t ion  of t h e  Val 1 e s  hydrothermal system 
(Ghazi and Wampler 1987; Goff and Shevenell  1987; Geissman 1988; S tu rch io  and 
Binz 1988). 

Age de termina t ions  and s t a b l e  i so tope  s t u d i e s  have been c a r r i e d  ou t  t o  

K/Ar d a t e s  of c l ays  (0.2-2.0 and <0.2 pm) from b recc ia t ed  and 
hydrothermally a l t e r e d  rocks of t h e  Madera Limestone from V C - 1  (Fig.  1) y 
an age of about 1 .0  * 0.3 m.y. t h a t  i s  presumably a s soc ia t ed  with t h e  Val 
caldera-forming e rup t ion  a t  1.12 m.y. ago (Ghazi and Wampler 1987). The 
of t h e  c l a y  f r a c t i o n s  from t h e  Madera Limestone and t h e  underlying Sandia 
Formation have K/Ar ages (67.6-2.9 m.y.) o l d e r  than t h e  volcanic  rocks o f  

e l  ded 
es 
mest 

t h e  
a rea  (Ghazi and Wampl e r  1987). 
i so tope  a n a l y s i s  o f  t r a v e r t i n e  d e p o s i t s  accumulated on Paleozoic  and 
Precambrian rocks a t  Soda Dam (Fig.  1, i n s e t  map) i n d i c a t e  pu l se s  i n  t r a v e r t i n e  
depos i t i on  around ~ 1 . 0  t o  0.48 m.y., 0.107 t o  0.058 m.y., and 0.005 m.y. t o  
p re sen t  (Goff and Shevenell  1987).  Moreover, thermal p e r t u r b a t i o n s  cons t ra ined  
from paleomagnetic and rock magnetic d a t a  on unoriented core  samples o f  V C - 1  

revea led  t h a t  a l t e r a t i o n  and mine ra l i za t ion  in  t h e  l a t e  Paleozoic  sequences a r e  
contemporaneous with the development of t h e  Toledo-Valles caldera-forming 
e rup t ions  (Gei ssman 1988). In t h e  1 abora tory ,  unblocking temperature  
information ind ica t ed  t h a t  t h e  Paleozoic  s e c t i o n  was heated t o  temperatures  of 
approximately 2 5 O 0 - 3 O O 0 C  r e l a t e d  t o  To1 edo- and Val 1 es-age s i  1 i c i c  a c t i v i t y .  
Radioisotope d i l u t i o n  ana lyses  of U and T h  by a lpha  spectrometry (uranium- 
s e r i e s  di  sequi 1 i b r i  um geochronology) on c a l c i t e  ve ins  from t h e  Madera Limestone 
in  CSDP core  hole  V C - 1  were used t o  determine t h e  temporal and s p a t i a l  
r e l a t i o n s h i p  of  the c a l c i t e  veins  t o  t h e  hydrothermal a c t i v i t y  of t h e  a rea  
(S turchio  and Binz 1988).  
and 1.0 m.y. and i n d i c a t e  d i f f e r e n t  pu lses  of hydrothermal a c t i v i t y  s i n c e  
ca lde ra  formation.  The o l d e s t  U-ser ies  d i sequ i l ib r ium age ( ~ 1 . 0  m.y) reported 
on V C - 1  c a l c i t e  ve ins  i s  s i m i l a r  t o  t h e  age of t h e  Soda Dam t r a v e r t i n e  obtained 
by t h e  same technique (Goff and Shevenell 1987). 
s i m i l a r  t o  those  from t h e  i l l i t e  age (0.83 t 0.11 m.y.) (Ghazi and Wampler 

However, U-Th d i sequi  1 i b r i  um d a t e s  and s tab1 e 

The ages obtained by t h i s  method range between 0.095 

The U-ser ies  d a t a  a r e  a l s o  
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1987),  and a s  suggested e a r l i e r ,  they could be r e l a t e d  t o  t h e  beginning s t ages  
of hydrothermal a c t i v i t y  a f t e r  t h e  formation of t h e  Val les  c a l d e r a .  

IV. HYDROTHERMAL ALTERATION PRODUCTS 
Petrographic  and c lay  mineralogic  information supplemented by K/Ar and 

oxygen i s o t o p e  d a t a  i s  e s s e n t i a l  in  cons t ra in ing  t h e  thermal and a l t e r a t i o n  
h i s t o r y  of a vo lcanic  f i e l d .  
l e v e l s  of t h e  527.6-m-deep VC-2A core  hole a t  Sulphur Springs (Fig.  2) on t h e  
b a s i s  of degree of a l t e r a t i o n  and s igns  of minera l iza t ion  i n  o r d e r  t o  
i n v e s t i g a t e  t h e  temporal and s p a t i a l  r e l a t i o n s h i p s  of t h e  a l t e r a t i o n -  
m i n e r a l i z a t i o n  episodes.  
i t s  i n t e n s i t y  v a r i e s  with depth.  
occur throughout t h e  core  hole ,  b u t  c a l c i t e  and c h l o r i t e  appear below about 
171  m. 
t h e  Cochiti  mining d i s t r i c t  were analyzed in  t h e  same manner. 
EDX ana lyses ,  and pe t rographic  summary of t h e  individual  samples a r e  presented 
in  t h e  fol lowing two t a b l e s  and Appendix A ,  r e s p e c t i v e l y .  

Twenty-nine samples were s e l e c t e d  from various 

A l t e r a t i o n  i s  pervasive in  t h e  core  samples, although 
I l l i t e  and i n t e r s t r a t i f i e d  i l l i t e / s m e c t i t e  

Moreover, 16 outcrop samples of a l t e r e d  r h y o l i t e s  and a n d e s i t e s  from 

Clay mineralogy, 

A .  Petrography 
Generalized pe t rographic  d a t a  of a l l  t h e  samples 

descr ibed  here a r e  presented i n  Appendix A. The s t r a t i g r a p h y ,  temperature 
p r o f i l e ,  and major mineralogic  assemblages observed i n  VC-2A a r e  given by Hulen 
e t  a l .  (1987) (Fig. 2) .  The uppermost two samples (VC2A 9-4 and 9-5) were 

obtained from near-surface c a l d e r a - f i l l  sediments and d e b r i s  flows t h a t  c o n s i s t  
o f  a b r e c c i a  i n t e n s e l y  a l t e r e d  t o  q u a r t z - s e r i c i t e - p y r i t e  aggregates  and 
v o l c a n i c l a s t i c  sediments with a c c r e t i o n a r y  l a p i l l i  t h a t  extend between 
7.9-17.4 m .  
dominated by f r a c t u r e d  quar tz  and m i c r o c r y s t a l l i n e  s i l i c a  overgrowth. 
f e l d s p a r s  a r e  t o t a l l y  replaced by b i r e f r i n g e n t  r ibbon- l ike  s e r i c i t e .  The 
matr ix  conta ins  abundant r e c r y s t a l l i z e d  m i c r o c r y s t a l l i n e  s i l i c a ,  s e r i c i t e ,  and 
a few minor accessory minerals  of a p a t i t e  and c a v i t y - f i l l i n g  euhedral p y r i t e  
g r a i n s .  Based on g r a i n  c o n t a c t s ,  p y r i t e  appears t o  have formed l a s t  a f t e r  
a u t h i g e n i c  s e r i c i t e  and quar tz  formation. 

The top  p a r t  of t h e  Upper Tuffs (24-32.3 m )  (Fig.  2) conta ins  l e s s  c r y s t a l  
(about 5%) in  a matr ix  c o n s t i t u t e d  by abundant s e r i c i t e  and secondary 

1. V C - 2 A  Core Hole. 

In t h i n  s e c t i o n  t h e  rocks contain 10%-15% c r y s t a l  conten ts  
The 
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m i c r o c r y s t a l l i n e  s i l i c a  ( c h e r t y ) .  Rock fragments and pumice c l a s t s  a r e  a l s o  
t o t a l  l y  a1 t e r e d .  Feldspars  a r e  moderately transformed t o  s e r i  c i  t e ,  and t h e  
qua r t z  g r a i n s  a r e  cracked and show wavy e x t i n c t i o n s .  
i n t e n s e  below about 36.6 m. These rocks a r e  p a r t  of t h e  Upper Tuffs  and a r e  
moderately a f f e c t e d ,  although t h e  mat r ix  l i k e  t h e  over ly ing  samples conta ins  
a l t e r e d  g l a s s  with abundant secondary s i l i c a  t h a t  occas iona l ly  appears 
s p h e r u l i t i c .  
t o  t h e  replacement of secondary s i l i c a .  
wrapped with s e r i c i t e .  
s u r f a c e  samples,  s e r i c i t e  i s  confined t o  c leavage t r a c e s .  
s e r i c i t e  formation a r e  recognized a s  ind ica t ed  by t h e  paragenet ic  a s s o c i a t i o n  
( con tac t s )  of t h e  secondary mineral s. 
contemporaneously with m i c r o c r y s t a l l i n e  q u a r t z ,  and p y r i t e  c r y s t a l l i z e d  l a s t .  
The i n t e n s i t y  of a l t e r a t i o n  inc reases  again from about 61 m down, a s  judged by 
t h e  complete t ransformat ion  of f e l d s p a r s  t o  s e r i c i t e  and t h e  amount of 
secondary s i l i c a  overgrowth around t h e  semirounded ( resorbed)  qua r t z  g r a i n s .  

Crys ta l  con ten t s  a l s o  decrease  t o  about 1%. 
c l a s t s  a r e  transformed t o  s e r i c i t e .  

sandstone u n i t  ( S 2 ,  Nielson and Hulen 1984) t h a t  con ta ins  more than 45% 
c r y s t a l s  by volume mostly represented  by subrounded t o  rounded qua r t z  g r a i n s  
t h a t  a r e  rimmed by s i l i c a  overgrowth and che r ty  aggrega tes .  The i n t e r s t i c e s  
a r e  f i l l e d  with s e r i c i t e .  Altered f e l d s p a r s  a r e  replaced by secondary s i l i c a .  
Three types  of  qua r t z  g r a i n s  were recognized,  and they were i d e n t i f i e d  by (1) 

s t r a i n e d  qua r t z  g r a i n s  with undulatory e x t i n c t i o n ,  (2 )  c l e a r  uns t ra ined  g r a i n s  
with secondary s i l i c a  overgrowth, and (3) c l e a r  uns t ra ined  g r a i n s  t h a t  imply a 
complex mul t i source  p e t r o l o g i c  h i s t o r y .  This sedimentary horizon r ep resen t s  a 
t ime gap between t h e  Upper Tuffs  and t h e  Tshirege Member of t h e  Bandel ier  Tuff 
e rup t ions  (Nielson and Hulen 1984). 

below t h e  sandstone i s  f a i r l y  c r y s t a l  r i c h  0 1 0 % )  compared with t h e  over ly ing  
ign imbr i te  flows. 
s e r i c i t i z e d ,  and t h e  qua r t z  g r a i n s  a r e  coa r se ,  anhedra l ,  and s t rong ly  s t r a i n e d  
(sheared g r a i n s )  with coarse  au th igen ic  s i l i c a .  
few a l l a n i t e  g r a i n s  were recognized in  some of  the samples; p y r i t e  formed l a s t  
i n  a l t e r e d  f e l d s p a r s  and open c a v i t i e s .  

A l t e r a t i o n  i s  l e s s  

Collapsed pumice fragments show p e c t i n a t e  s t r u c t u r e s  t h a t  a r e  due 
Resorbed and cracked qua r t z  g r a i n s  a r e  

Unlike t h e  t o t a l  replacement of f e l d s p a r s  in  t h e  near- 
Two s t ages  of 

Two phases of s e r i  c i  t e  devel oped 

Like t h e  f e l d s p a r s ,  welded pumice 

The base of t h e  Upper Tuff ( c r y s t a l  poor) a t  about 67 m i s  marked by a 

The p a r t i a l l y  a l t e r e d  Tshirege Member of t h e  Bandel ier  Tuff (80-354 m) 

The mat r ices  a r e  r e c r y s t a l  1 i zed ,  f e l d s p a r s  a r e  moderately 

Two phases of s e r i c i t e  and a 
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A t  about 244 m c a l c i t e  and c h l o r i t e  appear a s  p a r t  of t h e  secondary 
mineral assemblage. These rocks a r e  moderately welded and conta in  10%-15% 
phenocrysts  with p l ag ioc la se  (po lysyn the t i c  twinning) p a r t i a l l y  a1 t e r e d  t o  
s e r i c i t e  and rep laced  by c a l c i t e .  
overgrowths around t h e  edges. 
s p h e r u l i t i c ,  and c a l c i t e  seems t o  have developed a f t e r  s e r i c i t e  bu t  before  
c h l o r i t e  and p y r i t e .  
( ~ 3 3 0  m), t h e  degree of a l t e r a t i o n  i s  moderate, c a l c i t e  and c h l o r i t e  d i sappear ,  

and c r y s t a l  con ten t s  decrease  t o  about 5%,  except  f o r  a sandstone l a y e r  a t  
about 360 m t h a t  con ta ins  abundant f ine-gra ined  c r y s t a l s .  Point  counts  of t he  

S3 i n  VC-2A average 41.6% c r y s t a l s  and 12.6% l i t h i c  c l a s t s  ( J e f f  Hulen, UURI, 

personal communication, 1988). This u n i t  i s  probably a reworked v o l c a n i c l a s t i c  
d e p o s i t ,  cha rac t e r i zed  by angular  and subrounded qua r t z  g r a i n s  and p a r t i a l l y  
a1 t e r e d  f e l d s p a r s  (a1 ka l i  and p l ag ioc la se  f e l d s p a r s ) .  Minor amounts of 
s e r i c i t e ,  c a l c i t e ,  and p y r i t e  a r e  a l s o  noted. This u n i t  corresponds t o  t h e  S3 

sandstone t h a t  s e p a r a t e s  t h e  Tshirege and Otowi Members of t h e  Bandel ier  Tuff 
(Hulen e t  a1 . 1988).  

The lower Bandel i e r  Tuff (Otowi) core  samples unl ike  t h e  upper Bandel i e r  
has lower c r y s t a l  con ten t s  0 5 % ) .  The matr ix  i s  t o t a l l y  r e c r y s t a l  1 ized ( i  . e .  , 
pumice c l a s t s  and g l a s s  shards  a r e  f u l l y  replaced by m i c r o c r y s t a l l i n e  s i l i c a  
and f e l d s p a r ) .  Quartz g r a i n s  a r e  p a r t l y  corroded,  and f r a c t u r e d  f e l d s p a r s  a r e  
rep laced  by s e r i c i t e  and c a l c i t e .  P y r i t e  c r y s t a l s  a r e  confined t o  c a v i t i e s ,  
a l t e r e d  f e l d s p a r s ,  pumice, and c h l o r i t i z e d  mafics.  
i n  t h e  Otowi Member i s  uniform, and t h e  secondary mineral assemblages a r e  
dominated by s e r i c i t e ,  c h l o r i t e ,  c a l c i t e ,  p y r i t e ,  and secondary s i l i c a .  
a l t e r e d  a n d e s i t e  l i t h i c s  a r e  a l s o  noted. 

A t  about 480 m t h e  a l t e r e d  p y r o c l a s t i c  u n i t s  a r e  c r y s t a l  poor (<1%). 

matr ix  i s  dominated by s e r i c i t e  and secondary s i  1 i c a  aggrega tes  ( c h e r t y ) .  
Welded pumice fragments and g l a s s  shards  a r e  replaced by m i c r o c r y s t a l l i n e  
s i  1 i ca.  Moreover, a1 t e r e d  acc re t iona ry  1 api 1 1  i (Hul en e t  a1 . 1988) a r e  
recognized i n  t h e s e  samples. 
c r y s t a l s  form t h e  bulk of t h e  secondary minerals  i n  chronological  o r d e r  from 
o l d e s t  t o  youngest.  
c u t t i n g  v e i n l e t s  on/through c h l o r i t e  c l o t s ,  sugges t ing  some of i t  pos tda t e s  
c h l o r i t e  ( J e f f  Hulen, UURI, personal communication, 1988).  EDX analyses  of 

Quartz i s  resorbed and con ta ins  s i l i c a  
The matr ix  i s  s t rong ly  r e c r y s t a l l i z e d  and 

A t  t h e  base of t h e s e  f a i r l y  c r y s t a l  r i c h  welded t u f f s  

The i n t e n s i t y  of  a l t e r a t i o n  

A f e w  

The 

S e r i c i t e ,  s i l i c a ,  c a l c i t e ,  c h l o r i t e ,  and p y r i t e  

In some samples from t h i s  u n i t ,  s e r i c i t e  forms c ross -  
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c l a y s  from VC-2A a r e  s i m i l a r  t o  analyses  f o r  s tandard i l l i t e  and t o  
i n t e r s t r a t i f i e d  i l l i t e / s m e c t i t e  chemical a n a l y s i s  d a t a  (Table 11) .  

2. Cochiti  Mining D i s t r i c t .  
a r e  dominated by p o r p h y r i t i c  a n d e s i t e s  with minor amounts of d a c i t e  (Pa l iza  
Canyon Formation of t h e  Keres Group). These rocks were l a t e r  intruded by 
Bearhead Rhyoli te  o f  t h e  Keres Group. The a l t e r e d  a n d e s i t e s  a r e  greenish gray,  
p o r p h y r i t i c ,  and sometimes s t r o n g l y  sheared.  Most of t h e  phenocrysts a r e  
transformed i n t o  s o f t  white spo t s  of clayey t e x t u r e .  In t h i n  s e c t i o n  t h e  rocks 

a r e  o l i v e  gray ,  and t h e  matr ix  i s  replaced by secondary s i l i c a  with minor 
e p i d o t e ,  s e r i c i t e ,  c h l o r i t e ,  and c a l c i t e .  
b i o t i t e ,  and magnetite a r e  a l s o  present .  

road c u t s  (Fig.  1 ) .  The rock i s  p o r p h y r i t i c ,  and l i k e  t h e  a n d e s i t e s ,  i t  

conta ins  abundant secondary s i l i c a - f i l l e d  f r a c t u r e s  and s e r i c i t e  with c a l c i t e  
rep1 acing t h e  moderately a1 t e r e d  f e l d s p a r s  (pl agiocl  ase)  . 
hornblende and  p y r i t e  a l s o  form part o f  the  mineral assemblage. 

s i l i c i f i e d  and e i t h e r  l i e  unconformably beneath t h e  Bandel ier  Tuff o r  i n t r u d e  
t h e  Keres Group a n d e s i t e s .  
t h e  a n d e s i t e s .  These d ikes  a r e  narrow (4-5 m wide) , flow banded, f i n e  gra ined ,  
s t r o n g l y  sheared,  and occas iona l ly  studded with s u l f i d e s  ( p y r i t e ) .  
ou tcrops  a r e  cu t  by quar tz  ve ins ,  mainly along b r e c c i a  zones. Petrographic  
examination i n d i c a t e s  t h a t  most of t h e  flows a r e  d e v i t r i f i e d  ( l e s s  than 5% f o r  

VG87-3,-7, and -11 and about 30% f o r  VG87-5), s e r i c i t i z e d ,  and s p h e r u l i t i c .  
Q u a r t z ,  a l k a l i  f e l d s p a r s  and minor amounts of hornblende, b i o t i t e ,  muscovite 
(coarse  s e r i c i t e ) ,  z i r con ,  c a l c i t e ,  and p y r i t e  c o n s t i t u t e  t h e  mineral 
assembl age. 

samples from t h e  Sulphur Springs and Cochiti  mining d i s t r i c t ,  r e s p e c t i v e l y ,  
show t h e  morphology and d i s t r i b u t i o n  of t h e  secondary minerals .  
d r iven  hot hydrothermal f l u i d s  have l e f t  t h e i r  mark by a l t e r i n g  t h e  var ious 
rocks of t h e  Jemez volcanic  f i e l d  t o  d i v e r s e  au th igenic  products  deposi ted by 
rep lac ing  a l t e r e d  rock fragments,  minera ls ,  and by f i l l i n g  secondary pore 
spaces .  
o u t l i n e d  in  Table I1 and Fig. 3. 

The l a t e  Miocene volcanic  rocks o f  t h i s  area 

P a r t i a l l y  a l t e r e d  hornblende, 

A d a c i t e  (VG87-1) d i r e c t l y  underlying t h e  Bandel ier  Tuff i s  exposed along 

Mi nor amounts of 

The rhyol i t e  samples (VG87-3, VG87-5, VG87-7, and VG87-11) a r e  whi t i sh  and 

They a r e  g e n e r a l l y  emplaced a s  d ikes  c u t t i n g  across  

Some of t he  

SEM analyses  on s e l e c t e d  hydrothermally a l t e r e d  core  hole and s u r f a c e  

Magmatic- 

The morphology and analyses  of t h e  a l t e r a t i o n  products  a r e  b r i e f l y  
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T A B L E  I 1  

E N E R G Y  DISPERSIVE X-RAY (EDX) ANALYSES O F  INTERSTRATIFIED ILLITE/SMECTITE 
A U T H I G E N I C  CLAYS FROM C O R E  HOLE VC-2A A N D  T H E  COCHITI MINING DISTRICT 

VC-PA Cochi t i  Mining D i s t r i c t  
9-5 34-1 55-2A 119-9 336E V687-1 V687-5 V687-7 V687-11 

Si02 

A1203 

Fe203 
FeO 

MgO 
CaO 

Nap0 

K20 
Ti02 

H20+ 

H20- 

58.9 

26.2 

0.82 

-- 
0.13 
-- 

12.3 

80.4 

11.0 

1.42 
-- 

0.6 

0.33 

0.61 

6.9 

63.0 

22.4 

0.6 
-- 

0.9 

0.4 
-- 

12.8 

86.4 

7.92 

0.01 

58.79 

26.86 

2.22 
-- 

0.79 

0.60 
-- 
10.69 

-- 

74.31 

15.66 

2.70 
-- 

1.19 

0.33 

1.36 

4.17 
-- 

65.22 

22.89 

0.19 
-- 

1.40 
-- 
1.63 

8.86 
-- 

58.84 

22.15 

3.42 
-- 

0.50 

0.61 

14.59 

53.86 

29.03 

2.68 
-- 

0.34 

0.32 
-- 

13.46 

The Cochi t i  d i s t r i c t  rocks e x h i b i t  abundant au th igen ic  i n t e r s t r a t i f i e d  
I /S ,  q u a r t z ,  and p y r i t e .  The mixed-layer c l ays  a r e  c r y s t a l l i z e d  a s  t h i n  f l a k e s  
in  c a v i t i e s  and on t h e  su r face  of primary qua r t z  and f e l d s p a r  phenocrysts  (Fig.  
3 ) .  EDX ana lyses  of t h e  au th igenic  c l ays  a r e  s i m i l a r  t o  t h e  chemical formulas 
of d i a g e n e t i c  c l ay  types  (Table 11). The i n t e n s i t y  of a l t e r a t i o n  in  V C - 2 A  i s  
shown by t h e  SEM images of s e l e c t e d  core  samples from var ious  l e v e l s .  Stacks o f  

coarse  and f i n e  au th igen ic  i l l i t e  mat with a f l aky  hab i t  a r e  commonly not iced 
i n  t h e s e  a l t e r e d  rocks.  EDX analyses  y i e l d  t h e  major elements S i ,  A l l  and K, 

with minor amounts of Fe, Mg, Ca, and Mn (Table 11) .  Authigenic qua r t z  and 
minor amounts of p y r i t e  a r e  a l s o  a s soc ia t ed  with t h e  i l l i t i c  c l ays .  The EDX 
s to i ch iomet r i c  r e s u l t s  (Table 11) and t h e  X R D  p a t t e r n s  (Appendix B) a r e  s i m i l a r  
t o  s tandard  i l l i t e  and mixed-layer I /S chemical ana lyses  d a t a  presented  by 
Weaver and Pol 1 ard (1975).  

B. Clay Mineralogy 

s t r o n g l y  d i c t a t e d  by t h e  composition of  t h e  parent  rock (Table 111, Appendix 

B) .  

The composition of c l ay  products  (<2 pn) from t h e  var ious  a l t e r e d  rocks i s  

The i l l i t i c - r i c h  f r a c t i o n s  a r e  c l o s e l y  a s soc ia t ed  with r h y o l i t e s  and 
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a 

Fig. 3 .  SEM photographs of  f o u r  a l t e r e d  VC-2A core  (a-d) and f o u r  samples from 
t h e  Cochi t i  mining d i s t r i c t  (e-h) show a l t e r a t i o n  and morphology of 
au th igen ic  c l a y  and qua r t z  minerals .  
o t h e r  c l a y s  a r e  given in  Table I1 (IL - i l l i t e  f l a k e s ,  F - f e l d s p a r s ) .  

Data from EDX analyses  of t h e s e  and 
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VC-2A 33.3-E 

Fig. 3 .  (cont.) 
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?G 8 7-6 

Fig .  3. (cont . )  
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LGFi-13 

Fig.  3 .  (cont.)  
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T A B L E  I11 

X-RAY DIFFRACTION ANALYSIS OF CLAY FRACTIONS (<2 pm) FROM H Y D R O T H E R M A L L Y  
A L T E R E D  ROCKS OF T H E  JEMEZ VOLCANIC FIELD 

Samp I e No. 

VC-SA 9-6 
28-9 
34-1 
66-2A 

104-3 
119-9 
166-7 
184-4A 
197-38 
209-12 
230-5 
249-18 
266-28 
266-2 
263-38 
264-38 
277-1 
285-1 
298-18 
323D 
336E 
3860 

(9.91-12.99 m) 
(30.18-32.16 m) 
(38.41-40.40 m) 
(64.79-87.13 m) 
(136.07-138.26 m) 
(158.98-181.25 m) 
(213.11-216.65 m) 
(266.79-267.93 m) 
(277.16-279.73 m) 
(293.6-296.34 m) 
(326.49-327.93 m) 
(361.98-354.57 m) 
(369.24-362.2 m) 
(382.2-362.8 m) 
(371.49-373.78 m) 
(373.78-378.43 m) 
(391.71-394.21 m) 
(406.79-408.08 m) 
(426.68-429.12 in) 
(460.98-463.41 m) 
(480.18-482.93 m) 
(524.70-627.44 m) 

Coch i t i  Mining D i s t r i c t  
VG87-1 
VG87-2 
VG87-3 
vG87-4 
VG87-6 
VG87-6 
VG87-7 
VG87-8 
VG87-9 
VG87-10 
VG87-12 
VG87-13 
VG87-14 
VG87-16 
VG87-18 

Rock Type Type o f  Clay or Other M ine ra l  

Sed i men t 
Upper Tu f fa  

n n 

Sed i men t Sp 
Tsh i rege 

Member 
n 
n 
n 
n 
n 
n 
n 

Otow i 
Member 
n 
n 
n 
n 

Lower T u f f  
n n  
n n  

Dac i te? 
Andes i te 
Rhyo I i te 
Dac i te  
Rhyo I i te 
Breccia 
Rhyo I i te 
Andes i te 

n 
n 
n 

Basa I t 
Sandstone 
Basa I t ?  

n 

I I  I ite 
n 
n 
n 
n 
n 

I l l i t e  + Minor Ch lo r i t e  
I l l i te  

I l l i t e  + Ch lo r i t e  
n w  n 
n n  n 
n n  n 
n n  n 
n n  n 
n n  n 

I I  I ite 
n 

Gypsum 
I l l i te  + C h l o r i t e  

n n  n 
n m  n 
n n  n 

I l l i te  + Smecti te 
I l l i te  + Smecti te + C h l o r i t e  

n n  n n  n 

II I ite 
n 
n 

whole rock 
I l l i t e  + Smecti te + C h l o r i t e  

I l l i t e  + Smectite 
n n  n 

I l l i te  + Smecti te + C h l o r i t e  
Smecti te 

C h l o r i t e  + I l l i te  
Smecti te 

n 

a Upper Tu f f  o f  Hulen end Nielson (1986). 
Lower Tu f f  o f  Hulen and Nielson (1986). 

d a c i t e s ,  whereas montmori l loni tes  ( smec t i t e s )  and c h l o r i t e s  a r e  dominant i n  
a l t e r e d  mafic rocks ( a n d e s i t e s ) .  However, i t  i s  a l s o  known t h a t  with increased 
temperature  and compositional changes smec t i t e s  undergo t r a n s i t i o n  t o  
i n t e r s t r a t i f i e d  I / S  and t o  pure i l l i t e  (Roberson and Lahann 1981; Bish 1981; 
Horton 1985; Whitney and Northrop 1987). X-ray d i f f r a c t i o n  p a t t e r n s  o f  t he  
f i n e r  c l ay  f r a c t i o n s  (<2 pm) were obtained on a i r - d r i e d  random and o r i en ted  
mounts. Peak p o s i t i o n s  and i n t e n s i t i e s  f o r  t h e  o r i en ted  samples changed 
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s l i g h t l y  a f t e r  glycol  s o l v a t i o n ,  showing t h a t  most of t h e  i l l i t i c  c l a y  
f r a c t i o n s  (<2 pm) from VC-2A a1 t e r e d  samples a r e  i n t e r s t r a t i  f i e d  with small 
amounts of smec t i t e  (Reynolds 1980). For example, t h e  I /S  0 9 5 %  i l l i t e )  
separa ted  from t h e  near -sur face  ca lde ra - f i  1 1  v o l c a n i c l a s t i c  sediments (VC-2A 
9-5) i s  cha rac t e r i zed  i n  t h e  a i r - d r i e d  condi t ion  b!y s t rong  peaks a t  10.26 1, 
5.0 8,  and 3.31 1; t h e s e  change t o  9.75 1, 5.05 1, and 3.33 1 a f t e r  
g l y c o l a t i o n ,  i l l u s t r a t i n g  t h e  i n t e r s t r a t i f i e d  na tu re  of  t h e  c l a y  (Fig.  4 ) .  The 
i l l i t i c  c l ay  i s  very well c r y s t a l l i z e d  with f a i r l y  sharp  basal r e f l e c t i o n s  

typ ica l  of hydrothermal environment with temperatures  approaching 200°C a s  
documented in  o t h e r  geothermal systems (Srodon and Eberl 1984).  Homogenization 
temperature  d a t a  (193°-2150C) f o r  primary f l u i d  inc lus ions  in  qua r t z  intergrown 
with s i m i l a r  s e r i c i t e  a t  depths  a s  shallow a s  39 m from t h e  su r face  (Hulen e t  
a l .  1987) support  t h e  above conclusion.  I t  sugges ts  t h a t  t h e  shallow I /S  and 
a s soc ia t ed  qua r t z  could have developed under l iquid-dominated cond i t ions ;  
however, t h e  200°C temperature  requi red  f o r  very i l l i t i c  I / S  formation i s  not 
a t t a i n a b l e  i n  t h e  p re sen t  hydrothermal system u n t i l  a depth of about 400 m i s  
reached (Goff e t  a l .  1987). I t  does not seem l i k e l y  t h a t  t h e  shal low I /S  was 
developed e i t h e r  i n  t h e  p re sen t  vapor cap o r  i n  t h e  a s soc ia t ed  condensate zone; 
i n s t e a d ,  t h e  c l a y  formed i n  a l iquid-dominated condi t ion  near  200°C under 
normal h y d r o s t a t i c  cond i t ions  provided by a t h i c k  (>200-m) c h a o t i c  l a n d s l i d e  
d e b r i s  from t h e  ad jacen t  e a s t e r n  va l l ey  wall ( J e f f  Hulen, UURI, and Grant 
Heiken, L A N L ,  personal communication, 1988) probably about 0.10 m.y. ago. 
d e b r i s  flow (b recc ia )  depos i t  e a s t  of t h e  Sulphur Springs a c t i v e  hydrothermal 
zone i s  more than 250 m t h i c k  (Goff and Gardner 1980). The b recc ia  t h a t  f i l l e d  
t h e  v a l l e y  of the Sulphur Springs hydrothermal zone was probably removed 
quick ly  by e ros ion  because of  i t s  unconsol idated na tu re  and t h e  g r a d i e n t  of t h e  
v a l l e y .  As a r e s u l t  t h e  a r g i l l i c  a l t e r a t i o n  zone was exposed. 
c a l d e r a  in  San Diego Canyon a t  t h e  Soda Dam s i t e ,  more than 400 m o f  Bandel ier  
Tuff was eroded away in  l e s s  than 100,000 y e a r s  (Goff and Shevenell  1987). 

The remaining I /S  c l ays  from var ious  s e c t i o n s  of t h e  core  hole  a l s o  
conta in  minor smec t i t e  a s  depic ted  by t h e  c o l l a p s e  of t h e  peaks a f t e r  glycol  
s o l v a t i o n .  Traces of  c h l o r i t e  a r e  observed i n  the deepes t  sample (VC-2A 
366-1). The c l a y  s i z e  (<Z-pm) f r a c t i o n  (VC-2A 285-1) from about 406 m i s  
e n t i r e l y  gypsum (Appendix B ) .  Bulk XRD from 402.5-111 depth i n d i c a t e s  53% 
q u a r t z ,  8% anhydr i t e ,  2% p y r i t e ,  1% leucoxene, and 36% i l l i t e  ( J e f f  Hulen, 
UURI, personal communication, 1988). 

The 

Outside t h e  
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A t  Sulphur Springs gypsum occurs  on t h e  su r face  without o t h e r  su lpha te  
minerals  i n  t h e  extreme south o f  t he  main fumarole a rea  (Charles  e t  a l .  1986). 
However, gypsum in  hydrothermal depos i t s  i s  s t a b i l i z e d  below 57'C (Holland 
1967) and could not have ex i s t ed  a t  t h e  406-m depth in  a 200'C environment. 
i s  suggested t h a t  t h e  gypsum c r y s t a l s  (<2 pm) may have formed on t h e  su r face  
a f t e r  t h e  core  was removed from t h e  borehole (Robert Char les ,  LANL, personal 
communication, 1988) o r  during t h e  processing of core  samples f o r  c l ay - s i ze  
mi neral  s epa ra t ion .  Mi neral  ogi cal  s t u d i e s  o f  Red Sea geothermal b r ines  (44'- 
56'C) and sediments i n d i c a t e  t h a t  t h e  most abundant form of s u l f a t e  i s  an 
admixture of anhydr i t e  and some gypsum (Kaplan e t  a l .  1969). According t o  
t h e s e  au thors  t h e  gypsum formed by invers ion  from anhydr i t e  during s to rage  a t  
low temperature  and a s  au th igenic  euhedral c r y s t a l s  and twinned p l a t e s  
surrounding anhydr i t e  prisms. 
remove b r i n e s  may a l s o  cause anhydr i te  t o  r e v e r t  t o  gypsum (Hardie 1967). 

con ta ins  a wide v a r i e t y  of vo lcanic  rocks ( f e l s i c  and mafic) emplaced from a t  
l e a s t  11 .7  t o  6.2 m.y. 

I t  

Sediment samples washed by d i s t i l l e d  water  t o  

As b r i e f l y  summarized in  t h e  in t roduc t ion ,  t h e  Cochi t i  mining d i s t r i c t  

The hydrothermal a l t e r a t i o n  products  o f  t hese  rocks 
(<2 pm) a r e  cha rac t e r i zed  by sm 
i l l i t e .  Clay f r a c t i o n s  from t h e  
i l l i t i c  with minor i n t e r s t r a t i f  
c o l l a p s e  a s  t h e  VC-2A core  hole 
o t h e r  hand conta in  i n t e r s t r a t i f  

c t i t e ,  c h l o r i t e ,  i n t e r s t r a t i f i e d  I / S ,  and 
a l t e r e d  l a t e  Miocene Bearhead Rhyoli te  a r e  
ed smect i te .  
i l l i t i c  c l ays .  
ed I /S  c l a y s  and c h l o r i t e s .  General ly  chemical 

They e x h i b i t  t h e  same amount of 
Mo'st of t h e  a n d e s i t e s  on t h e  

t rea tment  followed by d i a l y s i s  f o r  about fou r  days r e s u l t s  i n  sha rpe r  
d i f f rac togram p a t t e r n s  than those  in  t h e  unt rea ted  but  mine ra log ica l ly  
identical c lays  ( F i g .  5 ) .  

The temperature  ranges and nature  o f  t h e  fossil hydrothermal systems t h a t  
were r e spons ib l e  f o r  t h e  a l t e r a t i o n  processes  a t  S'ulphur Springs (core  hole V C -  
2A) and t h e  Cochi t i  mining d i s t r i c t  a r e  h ighl ighted  from publ ished f l u i d  
inc lus ion  s t u d i e s  (Wronkiewicz. e t  a l .  1984; Hulenl e t  a l .  1987). D i f f e ren t  
s a l i n i t i e s  and temperature  ranges were recognized a t  both loca t ions .  
Wronkiewicz e t  a l .  (1984) recognized t h r e e  types  of primary f l u i d  inc lus ions  
from qua r t z  and c a l c i t e  vein mater ia l  i n  t h e  Cochiti  mining d i s t r i c t .  
Homogenization temperatures  f o r  t hese  primary f l u i d s  range between 193'-377'C, 
and t h e  i n c l u s i o n s  conta in  hydrothermal f l u i d s  d i sp l ay ing  highly v a r i a b l e  
s a l i n i t y  equ iva len t  of 0-5 w t %  NaC1. Inc lus ions  in  qua r t z  and f l u o r i t e  from 
t h e  VC-2A core  hole  a r e  of low s a l i n i t y  (0.2-0.5 w t %  NaC1) and a r e  two phase 
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Fig. 5. Comparison of d i f f rac togram p a t t e r n s  of chemical ly  unt rea ted  and 

t r e a t e d  and g lyco la t ed  c l a y  f r a c t i o n s  ((2 pm). 

and water  dominated a t  room temperature;  they homogenize a t  temperatures  
between 195' and 215OC (Hulen e t  a1 . 1987). The paleotemperature  g r a d i e n t s  
def ined  by t h e s e  homogenization temperatures  suggest  a cool ing  t r end  i n  t h e  
hydrothermal system, so t h e s e  f l u i d  inc lus ions  may have been t rapped during t h e  
waning phases of  t h e  volcanic  e rup t ions  i n  t h e  r e spec t ive  a r e a s .  
t h e s e  d a t a  i n d i c a t e  t h a t  two t o t a l l y  d i f f e r e n t  hydrothermal pu l se s  were 
r e spons ib l e  f o r  t h e  alteration-mineralization episodes a t  both l o c a l i t i e s .  
Sulphur Spr ings  inc lus ion  f l u i d s  a r e  very s i m i l a r  i n  s a l i n i t y  t o  deep f l u i d s  
p re sen t  i n  t h e  hydrothermal system today (Goff e t  a l .  1987).  

Furthermore, 

The 
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Fluid inc lus ion  information on hydrothermal f l u i d s  from t h e  Paleozoic 
sequence (Ab0 Formation and Madera Limestone) of t h e  V C - 1  core  hole loca ted  
halfway between t h e  Cochiti  d i s t r i c t  and core hole VC-2A (Sulphur Springs)  
(Fig.  1) r e p r e s e n t s  low- and h i g h - s a l i n i t y  compositional groups (Hulen and 
Nielson 1988; Sasada 1988). Low (<1 w t %  NaCl equiva len t )  and high (up t o  5 w t %  
NaCl equiva len t  and higher) s a l i n i t y  i n c l u s i o n s  homogenize t o  t h e  l i q u i d  phase 
a t  temperatures  ranging from 229.5' t o  283.9'C and 189.4' t o  245'C, 
r e s p e c t i v e l y .  The s a l i n i t y  and homogenization temperature d a t a  obtained in  t h e  
Cochiti  d i s t r i c t  and V C - 2 A  core  hole could c o r r e l a t e  t o  e i t h e r  of t h e  low o r  
high compositional o r  thermal ranges documented i n  V C - 1 .  The v a r i a t i o n  in  
s a l i n i t i e s  and homogenization temperatures i n  t h e  t h r e e  l o c a t i o n s  probably 
i n d i c a t e s  t h a t  t h e  magmatic-driven, meteoric ,  water-dominated hydrothermal 
f l u i d s  were d i f f e r e n t  during d i f f e r e n t  tectonomagmatic per iods .  

Understanding t h e  tectonomagmatic s e t t i n g  of t h e  t h r e e  l o c a t i o n s  mentioned 
above i s  important t o  s u b s t a n t i a t e  t h e  sal ini ty-homogenizat ion temperature 
v a r i a t i o n s  o u t l i n e d  in  t h e  previous paragraphs.  
i n t r o d u c t i o n ,  t h e  Jemez volcanic  f i e l d  formed a t  t.he i n t e r s e c t i o n  of t h e  NE-SW- 
t rending  Jemez Lineament and t h e  Rio Grande r i f t  (Aldrich 1986). Pervasive 
hydrothermal a l t e r a t i o n  in  some p a r t s  of t h e  Jemez volcanic  f i e l d  i s  apparent  
in  t h e  Cochi t i  mining d i s t r i c t  and in  t h e  Val les  c:aldera complex. 
were t r a v e r s e d  by t h e  l a t e  Miocene Canada de Cochiti  f a u l t  systems and 
Quaternary c a l d e r a  r ing  f r a c t u r e s ,  r e s p e c t i v e l y .  VC-2A was d r i l l e d  between the  
western r ing  f r a c t u r e  of t h e  c a l d e r a  and t h e  resurgent  dome, whereas V C - 1  i s  
loca ted  along t h e  preca ldera  Jemez f a u l t  zone ad jacent  t o  t h e  southwest r i ng  
f r a c t u r e  of Val les  ca ldera .  The Val les  c a l d e r a  hydrothermal plume i s  
s t r u c t u r a l l y  dominated by l a t e r a l  flow through t h i s  f a u l t  zone (Goff e t  a l .  
1988). 

in  t h e  V C - 1  hydrothermal b r e c c i a s  a r e  younger than t h e  h i g h - s a l i n i t y  low- 
temperature i n c l u s i o n s  and have been assigned t o  syn- or post-Valles/Toledo 
c a l d e r a  formations (Hulen and Nielson 1988). The homogenization temperature 
d i f f e r e n c e  between V C - 1  and VC-2A i n c l u s i o n s  can be explained a s  mentioned 
e a r l i e r  by t h e  f a c t  t h a t  V C - 1  was d r i l l e d  along an o l d e r  a c t i v e  f a u l t  zone, 
which has ac ted  a s  t h e  main channel t o  t h e  hydrothermal plume of t h e  Val les  
ca ldera .  The o l d e r  h i g h - s a l i n i t y  low-temperature i n c l u s i o n s  in  V C - 1  could 
belong t o  hydrothermal f l u i d s  assoc ia ted  with t h e  Toledo c a l d e r a  formation 
(<1.45 m.y. ago) o r  t h e  Bearhead Rhyolite i n t r u s i o n  of t h e  Cochiti  mining 

As highl ighted  in  t h e  

These a reas  

The l o w - s a l i n i t y  f l u i d  i n c l u s i o n s  t h a t  were t rapped a t  shallow l e v e l s  

25 



district about 16 km southeast of VC-1. Many (or all) of those inclusions in 
Precambrian clasts could have been trapped during Precambrian hydrothermal 
events (Jeff Hulen, U U R I ,  personal communication, 1988). The high salinities 
(0-5 wt% NaC1) and the homogenization temperatures (193O-377'C) from the 
Cochiti district could be correlated spatially and temporally to the high- 
salinity (0-5 wt% NaCl equivalent) and low-homogenization-temperature (189.4'- 
245'C) fluids from VC-1. The younger hydrothermal fluid (<1 wt% NaCl 
equivalent and homogenization temperature 229 -283.9'C) from VC-1 was related 
as suggested by Hulen et a1 . (1987) to that observed in VC-2A (0.2-0.5 wt% NaCl 
equivalent and homogenization temperature of 193°-2150C). 

Some of the ages (7 0.2 m.y. and 1.0 0.3 m.y.) obtained on clays from 
VC-1 (Ghazi and Wampler 1987) are similar to those obtained from VC-2A 
(0.83-0.66 m.y.) and the Cochiti district (8.07-5.60 m.y.), thereby supporting 
the hypothesis that the low and high salinities and temperatures obtained from 
the VC-1 fluid inclusions may have originated from two hydrothermal phases 
associated with the late Miocene Keres and Quaternary Tewa Group silicic 
eruptions. 

The chemical composition and temperature o f  the geothermal fluid are 
evidently important factors controlling hydrothermal alteration. 
temperature thermal environments enhance illite diagenesis. 
illite laths are transformed to platy illite in hotter zones (>200°C) (Glasmann 
1987). 
that illite/smectite formation proceeds from random interstratification to an 
ordered illite/smectite by solid-state transformation and dissolution/ 
precipitation mechanism in a temperature range of 25Oo-45O0C consistent with 
the fluid inclusion homogenization temperature ranges recognized in the Jemez 
volcanic field. 
C. K/Ar Data 

dike were dated by the K/Ar method, and the results are presented in Table I. 
Six of the illite clays were selected from various subsurface units of VC-2A, 
and the remaining seven were surface samples collected from the Cochiti mining 
district. 
illite/smectite clays vary from 7.34%-10.04% K20 for felsic rocks and 
1.4%-5.75% K20 for the mafic flows (Table I). 
volcaniclastic sediments (VC-2A 9-5) was found to be of recent age (0.0 0.10 

These high- 
In the Salton Sea 

Moreover, Whi tney and Northrop (1987) have experimentally documented 

A total of 13 clay separates (<2 km) and a devitrified whole rock rhyolite 

The potassium contents (% K20) of the illite and interstratified 

The illite from the near-surface 



m.y.). Because VC-2A was cored i n t o  an a c t i v e  hydrothermal system having ac id-  
s u l f a t e  hot sp r ings  and su r face  temperatures  near  t h e  b o i l i n g  po in t  (Goff e t  
a1 . 1985; Charles  e t  a1 . 1986) , i t  i s  1 i kely t h a t  t h i s  sample r e f l e c t s  t h e  age 
of p re sen t  su r f ace  a l t e r a t i o n .  Moreover, t h e  maximum age (0.10 m.y.) obtained 
on t h e  near -sur face  i l l i t e  c o r r e l a t e s  t o  t h e  l a s t  phase of vo lcanic  e rup t ions  
(0.13 m.y.) a long t h e  southwest r i ng  f r a c t u r e  of t h e  Val les  ca lde ra  (Smith and 
Bailey 1968; Marvin and Dodson 1979; Gardner e t  a1 . 1986; S e l f  e t  a l .  1988). 
The o t h e r  f i v e  samples s e l e c t e d  from var ious  l e v e l s  o f  VC-2A core  hole  range in  
age from 0.83-0.66 m.y., with an anomalous age of 1.1 m.y. from t h e  middle 
s e c t i o n .  The o l d e r  age (1.1 m.y.) i s  ques t ionable  because t h e  mass 
spectrometer  (MS-10) f i lament  was uns tab le  and f a i l e d  dur ing  t h e  d a t a  
a c q u i s i t i o n .  The age d a t a  suggest  t h a t  t h e  a l t e r a t i o n  phase and c l a y  
d i agenes i s  took p l ace  about 0.3 m.y. a f t e r  t h e  formation of  Val les  ca lde ra  
(1.12 m.y. ago; Doell e t  a l .  1968). The age range sugges ts  two p o s s i b i l i t i e s  
about t h e  t iming of t h e  hydrothermal a l t e r a t i o n  processes  a t  Sulphur Springs.  
In t h e  f i r s t  case  a l t e r a t i o n  processes  s t a r t e d  soon a f t e r  ca lde ra  c o l l a p s e  
( ~ 1 . 1 2  m.y.) , and c l ay  products  were subjec ted  t o  high-temperature (>200°C) 
hydrothermal f l u i d s  u n t i l  0.83 m.y. when t h e  system s t a r t e d  t o  cool o f f .  The 
o t h e r  p o s s i b i l i t y  i s  t h a t  t h e  hydrothermal f l u i d s  r e spons ib l e  f o r  t h e  
a l t e r a t i o n  processes  were a s soc ia t ed  with t h e  formation of t h e  r i n g  f r a c t u r e  
r h y o l i t e s  of t h e  Val les  ca lde ra .  Those r i n g  f r a c t u r e  r h y o l i t e  domes c l o s e r  t o  
Sulphur Springs range i n  age between 0.88 and 0.54 m.y. (Doell e t  a l .  1968). 
Fau l t s  and f r a c t u r e  systems r eac t iva t ed  o r  formed during t h e  Val les  ca lde ra  
c o l l a p s e  and kept a c t i v e  during resurgence may have aided in  channel ing 
hydrothermal f l u i d s  respons ib le  f o r  t h e  widespread p h y l l i c - p r o p y l i t i c  
a l t e r a t i o n s  recognized in  and around t h e  Val les  ca lde ra .  This and t h e  K/Ar da ta  
a r e  c o n s i s t e n t  with t h e  suggest ion t h a t  resurgence was l a r g e l y  complete 100 ,000  

yea r s  a f t e r  t h e  ca lde ra  formation o r  about 1.0 m.y. ago (Smith and Bai ley 
1968). 
q u a r t z - s e r i c i t i z e d  t u f f  of VC-2A was depos i ted  toward t h e  end o f  t h e  
hydrothermal event  (0.66 m.y. ago).  There i s  no evidence in  VC-2A of  a 
s e p a r a t e  a l t e r a t i o n  event  r e l a t e d  t o  t h e  formation of  t h e  Toledo c a l d e r a ,  even 
though t h a t  event  must have been a s soc ia t ed  with a magmatic hea t  source s i m i l a r  
t o  t h a t  of t h e  Val les  (Heiken e t  a l .  1986). The c l a y  K/Ar ages (0.83-0.66 
m.y.) from VC-2A probably i n d i c a t e  a s t rong  hydrothermal pu l se  a t  0.83 m.y. ago 
and may have r e s e t  t h e  ages of s e r i c i t e s  formed previous ly  during t h e  Toledo 

Moreover, t h e  shallow molybdenum mine ra l i za t ion  i n  t h e  i n t e n s e l y  
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caldera-forming e rup t ion  a t  about 1.45 m.y. and during o r  a f t e r  t h e  Val les  
c a l d e r a  col 1 apse.  

S u r f i c i a l  samples were c o l l e c t e d  randomly from a wide a rea  of a l t e r e d  
outcrops  wi th in  and surrounding t h e  Cochi t i  mining d i s t r i c t  (Fig.  1). Two 
concordant age groups were obta ined  on s i x  c l a y  f r a c t i o n s  and a r h y o l i t e  sample 
(8.07 and 6.1-5.6 m.y.). 
whereas t h e  younger ones a r e  from t h e  Bearhead Rhyoli te  and a p o r p h y r i t i c  
andes i t e .  
c o l l e c t e d  from Keres Group rocks c l o s e  t o  t h e  sou theas t  topographic  margin of 
t h e  Val les  ca lde ra  (Fig.  l ) ,  a r e  6.45 and 6.51 m.y. o l d ,  r e spec t ive ly .  An 
i l l i t e  s e p a r a t e  from a r h y o l i t e  flow (VG87-5) about 10 m e a s t  of  t h e  Albermarle 
qua r t z  vein gave an age of 8 .07  m.y. This r h y o l i t e  i s  o l d e r  than t h e  t ime 
range of t h e  Bearhead Rhyoli te  e rup t ions  (7.54-5.8 m.y.) and may belong t o  an 
o l d e r  group of s i l i c i c  flows (Canovas Canyon Rhyoli te?;  Fig. 1, i n s e t  
s t r a t i g r a p h i c  column). The i l l i t e  (VG87-6) from t h e  Albermarle ve in ,  a 
s t r o n g l y  b recc ia t ed  and f r a c t u r e d  zone, i s  5.90 m.y. o ld .  A n  a l t e r e d  and 
d e v i t r i f i e d  r h y o l i t e  d ike  (VG87-7), an i l l i t e  f r a c t i o n  from a r h y o l i t e  flow 
(VG87-l) , and a p o r p h y r i t i c  a n d e s i t e  (VG87-2) c l o s e  t o  t h e s e  rhyol i t e  
i n t r u s i o n s  range i n  age between 6.1 and 5.6 m.y. The Albermarle mineral ized 
ve ins  g e n e r a l l y  occupy a f a u l t  zone between Keres Group a n d e s i t e s ,  a qua r t z -  
monzodiorite s tock  (11.7 m.y., S t e i n  1983),  and flows of t h e  Bearhead Rhyoli te  
(7.54-5.8 m.y.). I t  has been suggested t h a t  t h e  mine ra l i za t ion  was a s soc ia t ed  
with t h e  r h y o l i t e  i n t r u s i o n s  (Wronkiewicz e t  a l .  1984).  A g rada t iona l  age i s  
observed between t h e  main vein zone (5.9 m.y.) and t h a t  of t h e  ad jacen t  a l t e r e d  
r h y o l i t e  (8.07 m.y.); however, t h e  o t h e r  a l t e r e d  s i l i c i c  rocks a r e  d i s t r i b u t e d  
a k i lometer  o r  more e a s t  of t h e  main vein and t h e i r  K/Ar ages a r e  much younger 
(6.1-5.6 m.y.) implying d i f f e r e n t  ages of e rup t ion  and a l t e r a t i o n  phases.  The 
Bearhead Rhyoli te  flows a r e  bracketed between 7.4 and 5.8 m.y. (Gardner and 
Goff 1984) and a r e  s i m i l a r  t o  t h e  c l ay  ages (6.1-5.6 m.y.) mentioned above. 
This temporal and s p a t i a l  r e l a t i o n s h i p  i n d i c a t e s  t h a t  t h e  a l t e r a t i o n -  
mine ra l i za t ion  process  a s soc ia t ed  with t h e  Cochi t i  ve ins  took p l ace  more o r  
l e s s  contemporaneously with t h e  var ious  u n i t s  of t h e  Bearhead Rhyoli te  
e x t r u s i o n s ,  although t h e  p re sen t  d a t a  s t rong ly  i n d i c a t e  t h a t  t h e  main 
alteration-mineralization episode along t h e  Albermarle vein system and ad jacent  
zones occurred about 5.9 m.y. ago. 

The o l d e r  age comes from an a l t e r e d  r h y o l i t e  flow, 

Two I / S  c l a y  f r a c t i o n s  from a l t e r e d  a n d e s i t e s  (VG87-10 and VG87-12), 
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D. Oxygen Iso tope  Data 

oxygen-isotopic  c h a r a c t e r i s t i c s .  
used t o  compare and c o n t r a s t  t h e  i l l i t e  and i n t e r s t r a t i f i e d  i l l i t e / s m e c t i t e  
c l a y s  from t h e  var ious  l o c a t i o n s  with publ ished minera l ,  whole rock,  and 
meteoric  water  i so tope  d a t a  from the a r e a  (Lambert and Epstein 1980; Vuataz and 
Goff 1986; Musgrave e t  a l . ,  i n  p repa ra t ion ) .  Such information can be used t o  
d e l i n e a t e  the o r i g i n  of hydrothermal f l u i d s  r e spons ib l e  f o r  t h e  a l t e r a t i o n -  
mine ra l i za t ion  occurrences i n  volcanic  reg ions  (Taylor 1974; C r i s s  and Taylor 
1986). 

gave s i m i l a r  
i s o t o p i c  r e s u l t s  (Fig.  6 ,  Table I )  and g e t  gene ra l ly  l i g h t e r  with depth (+1.65 
t o  -0. 20°/oo) , r e f  1 e c t i  ng a possi  bl e approach toward i so topi  c equi 1 i b r i  u m  
(Es l inge r  and Savin 1973a). 
t h e  deeper  l e v e l s ,  an i l l i t e  s epa ra t e  (VC2A 9-5) from t h e  near -sur face  b recc ia  
i s  1 i g h t e r  (+0.4Z0/0O). 
(195°-2150C, Hulen e t  a l .  1987) water-rock i n t e r a c t i o n  c o n s i s t e n t  with t h e  
i n t e n s e  s u r f a c e  a l t e r a t i o n  of t h e  a c t i v e  Sulphur Springs hydrothermal zone 
compared with t h e  underlying shallow horizons t h a t  a r e  p a r t i a l l y  a l t e r e d  a s  
documented from pe t rographic  examination ( s l i g h t l y  a1 t e r e d  f e l d s p a r s ) .  Several  
i n t e r v a l s  deeper  in  t h e  core  hole  a r e  a s  a l t e r e d  a s  t h e  near -sur face  rocks.  A 
s i m i l a r  v a r i a t i o n  . i s  ind ica t ed  by 6180 values  of t h r e e  qua r t z  vein samples 
c o l l e c t e d  from a l t e r e d  cores .  Fragments of  qua r t z  from vein (VC-2A 34-35) from 
t h e  shal low l e v e l s  (-40 m) a r e  heavier  (+2.95O/oO) than t h e  c l a y  f r a c t i o n s  but  
s l i g h t l y  l i g h t e r  than those  repor ted  by Musgrave e t  a l .  ( i n  p repa ra t ion )  from 
t h r e e  l e v e l s  a t  about 59 m (4.O0/0O), 118 m (3 . l0/Oo),  and 343 m (6.5O/OO). 

Such d i f f e r e n c e s  a r e  a t t r i b u t e d  t o  r e s i s t a n c e  t o  i s o t o p i c  exchange during 
hydrothermal i n t e r a c t i o n ,  t o  d i f f e r e n c e s  i n  i so tope  c h a r a c t e r  and temperature  
of hydrothermal f l u i d s  with t ime,  o r  t o  cont inuous hot meteoric  water / rock 
i n t e r a c t i o n  (Es l inge r  and Savin 1973a). 
(+2.95'/00 on qua r t z  and +0.42'/00 on i l l i t e )  from t h e  near -sur face  samples of 
t h e  a c t i v e  Sulphur Springs hydrothermal source zone i s  i s o t o p i c a l l y  
e q u i l i b r a t e d  and probably r ep resen t s  t h e  e f f e c t  of a younger hydrothermal phase 
unl ike  t h e  r e s t  of t h e  core  hole samples. This assumption i s  f u r t h e r  supported 

by t h e  f a c t  t h a t  t h e  near -sur face  a l t e r a t i o n  product i s  -90% i l l i t i c  and 0 * 
0.10 m.y. o ld .  This impl ies  t h a t  t h e  f l u i d s  may have exceeded 200°C t o  form 

All c l a y  samples da ted  by t h e  K/Ar method were a l s o  i n v e s t i g a t e d  f o r  t h e i r  
The 6180 va lues ,  although few i n  number, a r e  

The i l l i t e s  from t h e  fou r  main s t r a t i g r a p h i c  u n i t s  of VC-2A 

However, un l ike  t h e  t r end  shown by samples from 

This value i n d i c a t e s  probably a high-temperature 

However, t h e  l i g h t e r  6180 va lue  
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t h e  f a i r l y  pure i l l i t e  a s  experimental ly  demonstrated by Eberl and Hower 
(1976) , Roberson and Lahann (1981) , Whitney and Northrop (1987) , a1 though these  
au thors  suggest  t h a t  t ime,  f l u i d ,  and s o l i d  compositions in f luence  t h e  course 
and r a t e  of r eac t ion  in  i l l i t e  formation. 

The i l l i t e  from t h e  Albermarle b recc ia  zone (VG87-6) i s  much l i g h t e r  

(-2.15O/OO) than t h e  ad jacent  su r face  samples and t h e  VC-2A c l a y  sepa ra t e s .  
Oxygen s t a b l e  i so tope  da ta  from t h e  Cochi t i  a r ea  appear t o  be d i s t r i b u t e d  
zonal ly  and t o  g e t  heavier  away from t h e  vein zone, which i s  c o n s i s t e n t  with 
t h e  a r g i l l i c  and p r o p y l i t i c  zones around t h e  vein system. 
i so tope  d a t a  vary from -2.15"/00 a t  t h e  vein zone t o  +0.49'/00 c l o s e  t o  t h e  
vein ( < l o  m away) , +2.98'/00 about 300-400 m outward and +5 t o  +7.97'/00 
ki lometers  away, sugges t ing  a decrease in  temperature  and water / rock 
i n t e r a c t i o n  away from t h e  vein.  
t h e  a n d e s i t e  c l a y s  a r e  heavier  than those  obtained from t h e  s i l i c i c  u n i t s  
(Table I ) .  

Whole rock and mineral (quar tz  and c a l c i t e )  oxygen-, deuterium-, and 
carbon-i  sotope d a t a  (Musgrave e t  a1 . , i n  p repa ra t ion )  on VC-2A samples e x h i b i t  
general  p a t t e r n s  s i m i l a r  t o  those  of c l a y  f r a c t i o n s  (Fig.  6 ) .  The 6180 values  
of a l t e r e d  whole rocks (+7 t o  +4.l0/0O) and 613C of c a l c i t e  ve ins  (-4.1 t o  
-5.5'/00) g e t  l i g h t e r  w i t h  dep th ,  whereas bD values  show t h e  oppos i t e  t r end  
(-148 t o  -85O/Oo). Oxygen-isotope d a t a  of  a1 t e r e d  whole rocks a r e  heavier  by 
+4 t o  +6O/OO than a r e  c l ay  f r a c t i o n s  due t o  incomplete a l t e r a t i o n  of t h e  bulk 
rock,  although rocks from t h e  Val les  ca lde ra  a r e  regarded a s  having been 
moderately exchanged i s o t o p i c a l l y  with a meteoric  water-dominated hydrothermal 
f l u i d  (Fig.  7)  (Lambert and Epstein 1980). 

The 6180 of present-day meteoric  waters  i n  t h e  Val les  c a l d e r a  average 
about - 1 Z o / 0 O ,  whi 1 e hydrothermal f l u i d s  (22O0-3OO0C) average about - 9 O / O o  

(Truesdel l  and Jan i  k 1986; Shevenell  e t  a l .  1987).  
d e v i t r i f i e d  Bandel ier  Tuff (+7.3 t o  +7.4'/00) and i t s  hydrothermally a l t e r e d  
equ iva len t  (+1.8 t o  +2.4'/00) (Lambert and Epstein 1980) a r e  cons idered ,  t h e  
i l l i t e  f r a c t i o n s  of  t h e  a l t e r e d  Bandel ier  Tuff from VC-2A (-0.20 t o  +1.65'/00) 
a r e  l i g h t e r  bu t  s i m i l a r  t o  t h e  whole-rock-altered Bandel ier  Tuff i n  Baca No. 7 ,  
700-930 m depth.  A t  deeper  l e v e l s  (969-1539 m depth)  i n  Baca No. 4,  t h e  
Bandel ier  Tuff i s  even l i g h t e r  than VC-2A samples, implying a more profound 
hydrothermal a l t e r a t i o n  a t  higher  temperatures  where t h e  water-rock i n t e r a c t i o n  
g e n e r a l l y  l eads  t o  s i g n i f i c a n t  reduct ion of t h e  180/160 of t h e  rock with 

The i l l i t e / s m e c t i t e  

In gene ra l ,  among t h e  a l t e r e d  volcanic  rocks,  

When t h e  6180 of  welded and 
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Fig. 7.  P lo t  of 6D versus 6180 f o r  var ious hydrothermally a l t e r e d  CSDP core  
hole VC-2A samples i n d i c a t i n g  (A) t h e  inf luence  of  thermally dr iven  meteoric 
water  a l t e r a t i o n  (da ta  from Musgrave e t  a l . ,  in  p r e p a r a t i o n ) .  Isotopes of 
p r e s e n t  220' t o  3OO0C hydrothermal f l u i d s  (B)  a r e  from Truesdel l  and Jan ik  
(1986). One near-surface (29-m-deep) sample (C) i s  d i f f e r e n t  from t h e  r e s t  
of t h e  a l t e r e d  rocks.  Jemez Mountains meteoric  l i n e  from Vuataz and Goff 
(1986) . 

corresponding enrichment of t h e  water (Lambert and Epstein 1980; Cr i s s  and 
Taylor 1986). 
( l a t e  Miocene) and Sulphur Springs (Quaternary) a r e  a t t r i b u t e d  mainly t o  
temperature d i f f e r e n c e s  o f  50'-100°C a t  t h e  time o f  a l t e r a t i o n  r a t h e r  than t o  
i s o t o p i c a l l y  d i f f e r e n t  formation waters .  
deduced from f l u i d  i n c l u s i o n s  were higher  in  the Cochiti  a r e a  (240°-3150C) t h a n  
i n  V C - 2 A  (195°-2150C) (Wronkiewicz e t  a1 . 1984; Hulen e t  a1 . 1987) .  Moreover, 
the general  decrease  with depth of 6180 o f  whole rocks and c l ays  samples (Figs .  

The oxygen-isotope v a r i a t i o n s  of  t h e  c l a y  f r a c t i o n s  from Cochiti  

Temperatures during a l t e r a t i o n  a s  
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6 and 7) i n d i c a t e s  an approach toward i s o t o p i c  equi l ibr ium with increased  
temperature  (Es l inge r  and Savin 1973a) and poss ib ly  time o r  water / rock r a t i o .  

V .  DISCUSSION 
Evidence of  f o s s i l  hydrothermal a c t i v i t y  in  t h e  form of a r g i l l i z e d  

au reo le s  and widespread a l t e r a t i o n  zones,  pervas ive  s i l i c i f i c a t i o n  and 
ox ida t ion ,  s u r f i c i a l  a c i d - s u l f a t e  a l t e r a t i o n ,  and a c t i v e  fumaroles and hot 
sp r ings  i s  we1 1 documented i n  t h e  Val l e s  ca lde ra  (Doe1 1 e t  a1 . 1968; 
Dondanville 1971, 1978; Goff and Gardner 1980; S t e i n  1983; Wronkiewicz e t  a l .  
1984; Hulen and Nielson 1986; Goff and Shevenell 1987). K / A r  ages  and oxygen- 
i s o t o p i c  d a t a  have been used t o  help cons t r a in  t h e  cond i t ions  and t iming of t he  
d i f f e r e n t  c l a y  mineralogies  t h a t  r e s u l t e d  from two major a l t e r a t i o n  events  i n  
t h e  Jemez volcanic  f i e l d .  

As mentioned i n  t h e  in t roduc t ion ,  i l l i t i c  mater ia l  from a v a r i e t y  of  
geologic  s e t t i n g s  such a s  f o s s i l  hydrothermal systems and d i a g e n e t i c  processes  
can be dated by t h e  K/Ar method (Aronson and Lee 1986; Eberl e t  a l .  1987; 
Glasmann 1987). The ages of seven i l l i t i c  and i n t e r s t r a t i f i e d  i l l i t e / s m e c t i t e  
f r a c t i o n s  from t h e  Cochi t i  d i s t r i c t  and surrounding a r e a s  a r e  l a t e  Miocene 
(8.C-7-5.6 m.y.) i n  age,  whereas s i x  o t h e r  c l a y  samples from t h e  VC-2A core  hole 
a t  Sulphur Spr ings  a r e  Quaternary  i n  age (0.83-0 m.y.) with most ages bracketed 
around 0.75 m.y. The age ranges r ep resen t  a t  l e a s t  f o u r  phases of hydrothermal 
a l t e r a t i o n  ( c l ay  format ion) :  8.07 m.y.; n = 1; 6.5-5.6 m.y., n = 6; 0.83-0.66 
m.y., n = 4; and 0 * 0.10 m.y., n = 1. The o l d e s t  event  c o r r e l a t e s  with waning 

whereas a somewhat younger event i s  consanguineous with i n t r u s i o n s  and gold- 
and s i  lver -bear ing  qua r t z  ve ins  a s soc ia t ed  w i t h  t h e  Bearhead Rhyoli te  (7.54 t o  
5.8 m.y.). Most of  t h e  t h e  K/Ar d a t e s  i n  t h e  hydrothermally a l t e r e d ,  ca lde ra -  
f i l l  rocks of co re  hole  VC-2A developed about 0.3 m.y. a f t e r  t h e  formation of 
t h e  Val les  ca lde ra  (1.12 0.03 m.y.). A s i n g l e  age of  0 0.10 m.y. was 
obta ined  from a near -sur face  (upper 13 m of the hole) pos t ca lde ra  a c i d - a l t e r e d  
l a n d s l i d e  d e b r i s .  This probably r ep resen t s  t h e  d a t e  of t h e  c u r r e n t  ac id -  
su lpha te  hot sp r ing  a c t i v i t y  through which VC-2A was cored. I t  i s  l i k e l y  t h a t  
t h i s  hydrothermal system i s  poss ib ly  r e l a t e d  t o  t h e  youngest s i l i c i c  a c t i v i t y  
a long t h e  southwest r i n g  f r a c t u r e  o f  t h e  ca lde ra  dated a t  0.13 m.y. (Gardner e t  
a l .  1986). Such a r e l a t i o n s h i p  would be c o n s i s t e n t  with r ecen t  d a t a ,  obtained 

stages o f  the Paliza Canyon Formation andesitic volcanism (213 to 18.5 m.y.), 
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using U-seri es geochronology (Goff and Shevenel 1 1987; S turchio  and Bi nz 1988) , 
t h a t  suggest  s eve ra l  hydrothermal per iods ,  some o f  which a r e  i n  the  t ime range 
o f  0.10 m.y. and l e s s .  Moreover, t h e  d i f f e r e n c e  i n  oxygen-isotope between t h e  
upper 13-m l a n d s l i d e  d e b r i s  (t0.42°/oo) and the  r e s t  of the  deeper  samples t h a t  
g e t  l i g h t e r  with depth (t1.62 t o  -0.20°/OO) poss ib ly  i n d i c a t e s  t h e  e f f e c t  of 
two types  o f  hydrothermal f l u i d s  a t  Sulphur Springs s i m i l a r  t o  what p r e v a i l s  
today: a deep-neutral-chlor ide f l u i d  2200°C and a shallow a c i d  s u l p h a t e  f l u i d  
s 120Oc. 

The tectonomagmatic a c t i v i t y  i n  the  Jemez volcanic  f i e l d  s t a r t e d  about 
16.5 1.4 m.y. ago (Gardner and Goff 1984; Gardner e t  a l .  1986). This episode 
was followed by t h e  Keres Group (13-6 m.y.) and Polvadera Group (Lobato Basa l t ,  
Tschicoma Formation, and E l  Ruchuelos Rhyoli te ;  14.05-2 m.y.) e r u p t i o n s  (Fig.  
1, inse t  s t r a t i g r a p h i c  column). These flows and domes a r e  composed of d i v e r s e  
magmatic types  ranging from o l i v i n e  t h o l e i i t e  b a s a l t  t o  high s i l i c a  r h y o l i t e  
t h a t  a r e  volumetr ica l ly  dominated by a n d e s i t e  vented along d i l a t i o n a l  condui t s  
of t h e  Canada de Cochi t i  f a u l t  zone i n  the  southeas te rn  Jemez volcanic  f i e l d .  
The K/Ar d a t a  on c l a y  s e p a r a t e s  from t h e  hydrothermally a l t e r e d  P a l i z a  Canyon 
Formation a n d e s i t e s  a r e  s i m i l a r  t o  t he  age range o f  t h e  una l te red  rocks 
(13.2-7.4 m.y.). For example, i l l i t e  and i n t e r s t r a t i f i e d  i l l i t e / s m e c t i t e  
s e p a r a t e s  from two a n d e s i t e s  and a r h y o l i t e  flow y i e l d e d  d a t e s  o f  8.07-6.45 
m.y. However, t h e  t h r e e  samples were c o l l e c t e d  from widely separa ted  s i t e s  
(Fig.  1)  and had undergone d i f f e r e n t  degrees  o f  a l t e r a t i o n .  The 8.07-m.y.-old 
r h y o l i t e  flow (VG87-5) i s  in t ruded  by a 15-m-wide q u a r t z  vein system and i s  
s t r o n g l y  b r e c c i a t e d ,  d e v i t r i f i e d ,  thermally a l t e r e d  and c o n t a i n s  abundant 
p y r i t e  c r y s t a l s .  Fluid i n c l u s i o n  and oxygen-isotope d a t a  i n d i c a t e  t h a t  the  
rock was a f f e c t e d  by a high-temperature hydrothermal f l u i d .  Homogenization 
temperatures  of  primary i n c l u s i o n s  i n  q u a r t z  and c a l c i t e  ve ins  from t h e  Cochiti  
d i s t r i c t  suggest  a primary hydrothermal temperature  o f  240' t o  3 1 5 O C  

(Wronkiewicz e t  a l .  1984).  
+0.49'/00) , i n d i c a t i n g  a high-temperature f l u i d - r o c k  i n t e r a c t i o n .  However, t h e  
age and i s o t o p e  d a t a  o f  an i l l i t e  f r a c t i o n  from the  vein zone (VG87-6) a r e  
younger (5.9 m.y.) and l i g h t e r  (-2.15 ' / O O )  than t h e  age (8.07 rn.y.) and 
i s o t o p e  value (t0.49°/OO) o f  t h e  i l l i t e  s e p a r a t e s  from t h e  a l t e r e d  r h y o l i t e  
sample (VG87-5) about 10 m away from the  vein zone. I t  i s  suggested here t h a t  
t h e  c l a y  ages r e p r e s e n t  two hydrothermal even t s ,  and t h e  o l d e r  c l a y s  were not  

Moreover, t h e  r h y o l i t e  i s  deple ted  (6180 = 
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r e s e t  probably due t o  impermeabili ty c rea t ed  by t h e  high i l l i t e  conten t  i n  t h e  
o l d e r  thermal ly  a l t e r e d  r h y o l i t e .  

Unlike t h e  r h y o l i t e ,  t h e  a n d e s i t e  samples (VG87-2 and VG87-10) were 
c o l l e c t e d  along shea r  zones a few ki lometers  t o  t h e  no r theas t  (Fig.  1) .  They 
a r e  l e s s  a l t e r e d  by hydrothermal f l u i d s ,  and t h e i r  oxygen-isotope va lues  a r e  
s l i g h t l y  dep le t ed  (+7.11 t o  +7.97°/oo), which i s  c o n s i s t e n t  with t h e i r  per iph-  
e r a l  l oca t ion  with r e spec t  t o  t h e  vein- intruded f a u l t  zones. In l i k e  manner, 
i l l i t i c  c l a y s  separa ted  from a l t e r e d  Bearhead Rhyoli te  flows and d ikes  gave 
concordant ages (6.1-5.6 m.y.) t h a t  c l o s e l y  match t h e  d a t e s  of t h e  f r e s h  rocks.  
The pervas ive  a l t e r a t i o n  respons ib le  f o r  t h e  formation of p r o p y l i t i c  and 
l o c a l i z e d  a r g i l l i c  zones i s  c o n s i s t e n t  with d a t a  r e l a t e d  t o  i l l i t e  d iagenes is  
recognized i n  geothermal a reas  and experimental  work a s  mentioned above. For 
example, i n  t h e  Sa l ton  Sea,  i t  has been repor ted  (Glasmann 1987) t h a t  i l l i t e  
l a t h s  a r e  formed from des t ab l i zed  smec t i t e s  i n  a thermal g r a d i e n t  of 150'- 
20O0C/km, whereas i n  t h e  deeper  zones ( temperature  >2OO0C) t h e  i l l i t e  l a t h s  a r e  
transformed t o  p l a t y  i l l i t e .  These two a l t e r a t i o n  age groups demonstrate t h a t  
rocks of t h e  Cochi t i  mining d i s t r i c t ,  which i s  considered t o  r ep resen t  t h e  
exhumed i n t e r i o r  of Keres Group volcanoes (Gardner e t  a l .  1986) ,  were a f f ec t ed  
by two hydrothermal events .  This observa t ion  i s  c o n s i s t e n t  with an e a r l i e r  
s tudy t h a t  recognized two hydrothermal phases induced by hydrothermal 
convection a s soc ia t ed  with t h e  Pa l i za  Canyon Formation and a second phase t h a t  
postdated t h e  Bearhead Rhyoli te  flows (S te in  1983; Wronkiewicz e t  a l .  1984; 

Gardner e t  a l .  1986). However, t h e  present  K/Ar d a t a  c o n s t r a i n  p r e c i s e l y  the  
temporal and s p a t i a l  a l t e r a t i o n  processes  in  t h e  a rea .  The s i m i l a r i t y  between 
the  ages of  the  c lay  and the  unal tered un i t s  suggests t h a t  the  a l t e r a t i o n  

events  were the  r e s u l t  of meteoric-water-dominated l a t e - s t a g e  r e s idua l  hydro- 
thermal f l u i d s  from e i t h e r  t h e  l a t e s t  d a c i t i c  e rup t ions  of t h e  Pa l i za  Canyon 
Formation (10.1-7.4 m.y.) o r  t h e  e a r l i e s t  flows of t h e  Bearhead Rhyoli te  
(7.54-5.8 m.y.). 

Unlike t h e  Cochi t i  d i s t r i c t ,  which i s  cha rac t e r i zed  by l a t e  Miocene hydro- 
thermal a l t e r a t i o n  a c t i v i t y ,  t h e  VC-2A core  hole  samples from t h e  Sulphur 
Springs a rea  r ep resen t  Quaternary events .  The hydrothermal a l t e r a t i o n - m i n e r a l i -  
z a t i o n  episodes formed a f t e r  ca lde ra  c o l l a p s e  and were a s soc ia t ed  with pos t -  
ca lde ra  hydrothermal a c t i v i t y  (Hul en e t  a l .  1987). Most of t h e  hydrothermal l y  
a l t e r e d ,  c a l d e r a - f i l l  rocks of core  hole  VC-2A developed between 0.83 and 0.66 

m.y. ago, and another  episode occurred 0.1 m.y. ago. These ages demonstrate a 
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progres s ive  I /S  formation from deeper t o  shal lower l e v e l s .  
r e s e t t i n g  was probably i n h i b i t e d  by t h e  growth of c l a y s  and diminishing 
permeabi l i ty  i n  t h e  a l t e r e d  rocks.  
r e a c t i v a t e d  dur ing  c o l l a p s e ,  resurgence of Val les  c a l d e r a ,  and r i n g  f r a c t u r e  
pos t ca lde ra  r h y o l i t e  i n t r u s i o n s  may have aided i n  channel ing hydrothermal 
f l u i d s  r e spons ib l e  f o r  t h e  widespread p h y l l i c - p r o p y l i t i c  a l t e r a t i o n s  recognized 
i n  and around the ca lde ra .  
i s  consi s t e n t  with increased  temperature .  
ca l  c i t e )  oxygen- , deu te r i  um- , and carbon-i sotope d a t a  (Musgrave e t  a1 . , i n  
p repa ra t ion )  on VC-2A samples e x h i b i t  s i m i l a r  general  p a t t e r n s  a s  t h e  c l ay  
f r a c t i o n s  (Fig.  6 ) .  The 6180 values  of a l t e r e d  whole rocks (+7 t o  +4.l0/0O) 
and 613C of c a l c i t e  ve ins  (-4.1 t o  -5.5"/00) g e t  l i g h t e r  with depth ,  whereas 6D 
values  show t h e  oppos i t e  t r end  (-148 t o  -85'/00). 
a l t e r e d  whole rocks a r e  heavier  by +4 t o  +6O/OO than t h e  c l a y  f r a c t i o n s  
p r o b a b l y  due  t o  incomplete a l t e r a t i o n  o f  t h e  bulk rocks (Fig.  6). 
t h e  Val les  c a l d e r a  a r e  regarded a s  having been moderately exchanged 
i s o t o p i c a l l y  with a meteoric  water-dominated hydrothermal f l u i d  (Lambert and 
Epstein 1980). 

and paleomagnetic r e s u l t s  from o t h e r  l o c a t i o n s  in  t h e  Jemez Mountains (VC-1 and 
Soda Dam) (Ghazi and Wampler 1987; Goff and Shevenell  1987; Geissman 1988; 
Stu rch io  and Binz 1988), i n d i c a t i n g  t h a t  t h e  Val les  ca lde ra  hydrothermal system 
began development 1 m.y. ago. 
t ime i n t e r v a l  of 0.83 t o  0.66 m.y. The near -sur face  b recc ia  zone i s  leached 
and t o t a l  l y  transformed t o  c l a y s  0 9 5 %  i 1 1  i t e )  , compared with t h e  underlying 
t u f f  t h a t  con ta ins  l e s s  a f f e c t e d  f e l d s p a r s  and minor amounts of secondary 
s i l i c a .  In t h e  middle and bottom of t h e  core  hole ,  a l t e r a t i o n  i s  i n t e n s e  again.  
This would imply t h a t  t h e  young (<0.10 m.y.) hydrothermal system a t  Sulphur 
Spr ings  was confined t o  very shal low l e v e l s .  The v a r i a t i o n  in  t h e  i n t e n s i t y  of 
a l t e r a t i o n  can be a t t r i b u t e d  t o  the impermeabili ty of welded t u f f s  t o  thermal 
f l u i d s ,  t h e  d e s t r u c t i o n  of po ros i ty  by secondary mineral growth i n  pore spaces ,  
and t h e  l o c a l i z e d  hydrothermal e n t r y  p o i n t s  a s soc ia t ed  with f r a c t u r e d  zones. 
The samples from g r e a t e r  depths  a r e  p re sen t ly  a t  temperatures  near  o r  a t  200°C, 
a temperature  t h a t  could have a f f e c t e d  (lowered) t h e  ages of t h e s e  c l ays .  
I /S  a t  40 m (0.66 m.y.) occurs  i n  a zone of i n t e n s e  p h y l l i c  a l t e r a t i o n  

Additional thermal 

Fau l t s  and f r a c t u r e  systems c rea t ed  and 

The dep le t ion  of oxygen i so tope  values  with depth 
Who1 e rock and mineral (quar tz  and 

Oxygen-isotope d a t a  of 

Rocks from 

Data from VC-2A a r e  c o n s i s t e n t  with K/Ar and uranium-ser ies  geochronology 

The growth of I /S  a t  VC-2A spans an apparent  

The 
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assoc ia t ed  with t h e  sub-ore-grade molybdenite,  bu t  t h i s  zone i s  now in  a vapor 
cap of t h e  Sulphur Springs hydrothermal system having a p re sen t  temperature  
range of about 95'to 150'C. 

hydrothermal system developed well a f t e r  i n i t i a l  formation o f  a l i q u i d -  
dominated system. 
m.y., Goff and Shevenell  1987) and breaching of the southwestern ca lde ra  wall 
(0.50 t o  0.43 m.y., Doell e t  a l .  1968),  Goff and Shevenell (1987) suggested 
t h a t  vapor cap formed sometime a f t e r  0.5 m.y. due t o  d ra in ing  of ca lde ra  l akes ,  
l o s s  of  hydrau l i c  head, and lowering of water  t a b l e .  The d a t e s  from VC-2A 
i n d i c a t e  t h a t  t h e  vapor cap formed no e a r l i e r  than 0.66 m y .  ago. Moreover, 
t h e  e rup t ion  of t h e  El Caje te  Pumice and t h e  Banco Bonito Obsidian (0.13 m.y, 
Marvin and Dobson 1979) was regarded t o  have been respons b l e  f o r  t h e  
resumption of t r a v e r t i n e  depos i t ion  a t  Soda Dam about 0.1 m.y. ago (Goff and 
Shevenell  1987).  This l a t e s t  episode i s  contemporaneous w i t h  a s i n g l e  age of 0 

* 0.10 m.y on i l l i t i c  c l ay  from a near -sur face  pos t ca lde ra  a c i d - a l t e r e d  
l a n d s l i d e  d e b r i s  t h a t  probably r ep resen t s  t h e  d a t e  of t h e  c u r r e n t  ac id-su lpha te  
hot sp r ing  a c t i v i t y  through which VC-2A was cored. 
of t h e  t r a v e r t i n e  and i l l i t e  formation i n d i c a t e  t h a t  t h e  hydrothermal 
a c t i v i t i e s  were r e l a t e d  t o  the  tectonomagmatic pu l se s  o f  t h e  a c t i v e  ca lde ra  
environment. 

T ra ine r  (1984) has ind ica t ed  t h a t  t h e  vapor cap t o  t h e  p re sen t  Val les  

Based on ces sa t ion  of t r a v e r t i n e  formation a t  Soda Dam (0.48 

The temporal r e l a t i o n s h i p s  

In summary, a l t e r a t i o n  was pervas ive  ( i . e . ,  p h y l l i c  t o  advanced a r g i l l i c )  
i n  t h e  two a r e a s  of t h e  Jemez volcanic  
I / S  c l a y s .  The K/Ar d a t  
hydrothermal episodes i n  

contemporaneous with t h e  
l a t e  Miocene and e a r l y  P 
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APPENDIX A 

SELECTED PETROGRAPHIC DESCRIPTIONS 

I .  VC2A 

9-4 
(7.62-9.91 m) 

9-5 
(9.91-12.99 m) 

24-9 
(24.09-25.79 m )  

28-9 
(30.18-32.16 m) 

34-1 
(38.41-40.40 m )  

Al tered b recc ia  and v o l c a n i c l a s t i c  sediments with 
abundant rock fragments.  
t o  s e r i c i t e ,  whereas qua r t z  g r a i n s  a r e  anhedral and 
f r a c t u r e d  and conta in  abundant t r a i n s  of  i nc lus ions .  
Secondary s i l i c a  overgrowth observed around primary 
qua r t z  g r a i n s ,  without  o p t i c a l  d i s c o n t i n u i t y .  Matrix 
i s  r e c r y s t a l l i z e d  and pumice and g l a s s  sha rds (? )  a r e  
a l s o  r e c r y s t a l l i z e d  and show p e c t i n a t e  s t r u c t u r e s .  
P y r i t e  c r y s t a l s  a r e  common in  c a v i t i e s ,  and minor 
a p a t i t e  g r a i n s  were noted. 

Feldspars  a r e  mostly a l t e r e d  

Vo lcan ic l a s t i c  sediment: I t  con ta ins  abundant rock 
fragments.  The mat r ix  i s  c o n s t i t u t e d  by 
r e c r y s t a l l i z e d  s i l i c a  and s e r i c i t e ,  poss ib ly  der ived  
from t h e  a l t e r a t i o n  of rock fragments and f e l d s p a r s .  
Rock conta ins  10%-15% o f  c r y s t a l  con ten t s ,  mostly 
dominated by crushed qua r t z  g r a i n s ,  w i t h  wavy 
e x t i n c t i o n s  and conchoidal f r a c t u r e s .  Secondary 
s i l i c a  overgrowth, represented  by che r ty  aggrega tes ,  
i s  common. 
s e r i  c i  t e .  Euhedral p y r i t e  g r a i n s  a r e  a s soc ia t ed  with 
t h e  s e r i c i t e .  
formation of s e r i c i t e .  

Feldspars  a r e  mostly transformed t o  

P y r i t e  g r a i n s  formed a f t e r  t h e  

Altered Upper Tuff.  The rock con ta ins  l e s s  than 5% 
c r y s t a l .  The matr ix  i s  c o n s t i t u t e d  by abundant 
s e r i c i t e  and secondary che r ty  s i l i c a .  
g r a i n s  a r e  cracked and show wavy e x t i n c t i o n s .  Rock 
fragments a r e  mostly represented by a l t e r e d  pumice 
fragments .  Coarse muscovite and p y r i t e  c r y s t a l s  were 
a l s o  noted. Grain con tac t s  i n d i c a t e  t h a t  t h e  o r d e r  of 
formation i s  represented  by s e r i c i t e ,  secondary s i l i c a  
aggrega tes ,  and p y r i t e .  

Primary qua r t z  

Altered and welded Upper Tuff.  
and s t rong ly  r e c r y s t a l l i z e d .  
poor,  except f o r  few f r a c t u r e d  (cracked) qua r t z  g r a i n s  
with abundant i ncl usi ons and f e l d s p a r s  t o t a l  l y  a1 t e r e d  
t o  s e r i c i t e .  
fragments a r e  a l s o  transformed t o  s e r i c i t e .  
secondary s i  1 i ca (cher ty)  and euhedral p y r i t e  g r a i n s  
a r e  a l s o  common. 

The rock i s  a l t e r e d  
I t  i s  gene ra l ly  c r y s t a l  

The co l lapsed  pumice and o t h e r  rock 
Abundant 

Moderately a l t e r e d  Upper Tuff.  This rock i s  l e s s  
thermally a l t e r e d ,  compared with t h e  over ly ing  samples 
descr ibed  above. The matr ix  of t h e  rock i s  
cha rac t e r i zed  by r e c r y s t a l l i z e d  g l a s s  with abundant 
secondary s i l i c a .  Collapsed pumice fragments show 

45 



43-5 
(46.95-49.33) 

p e c t i n a t e  s t r u c t u r e s  caused by the  r e c r y s t a l l i z a t i o n  
of s i l i c a .  Resorbed q u a r t z  g r a i n s  a r e  wrapped with 
s e r i c i t e .  S e r i c i t e  in  f e l d s p a r s  i s  confined t o  
cleavage t r a c e s .  S e r i c i t e  preceded secondary s i l i c a  
and p y r i t e  c r y s t a l l i z a t i o n  r e spec t ive ly .  

P a r t i a l  l y  a1 t e r ed  Upper Tuff.  
r e c r y s t a l l i z e d .  
sample (34-1).  Welded shards  and pumice c l a s t s  a r e  
r e c r y s t a l l i z e d  t o  s i l i c a  with cher ty  aggregates  
represent ing  several  v e i n l e t s .  Radial chalcedony 
repl acing pumice c l a s t s  i s a1 so common (spherul i t i  c )  . 
Feldspars  a r e  p a r t l y  a1 t e r ed  t o  s e r i  c i  t e ,  whereas 
quar tz  g ra ins  a r e  cracked. 
s e r i c i t e  and was followed by secondary cher ty  s i l i c a  
growth .  Two s t ages  of s e r i c i t e  formation a r e  
recognized. The sequence of formation i s  represented 
by s e r i c i t e ,  secondary s i l i c a ,  s e r i c i t e ,  and p y r i t e .  
Euhedral p y r i t e  g r a i n s  a r e  mostly confined t o  
c a v i t i e s .  

Moderately a1 t e r ed  and 
The rock i s  s i m i l a r  t o  the  previous 

Vein f i l l i n g  preceded with 

54-3 
(62.96-64.79 m) 

Al tered Upper Tuff .  
abundant r e c r y s t a l  1 ized secondary s i  1 i c a  ( c h e r t y ) .  
Feldspars a r e  a1 t e r e d  t o  s e r i  c i  t e .  Resorbed q u a r t z  
g r a i n s  have s i l i c a  overgrowth around them. Minor 
amounts of p y r i t e  a r e  a l s o  noted. Total c r y s t a l  
conten t  i s  l e s s  t h a n  2%.  

The rock i s  a l t e r e d  and conta ins  

55-2A 
(64.79-67.13 m )  

Vo lcan ic l a s t i c  sediments ( S z ) .  A 1  t e r a t i o n  followed by 
widespread r e c r y s t a l l i z a t i o n  dominated by secondary 
s i l i c a ,  sometimes aggregat ing in  c a v i t i e s .  Crystal  
poor  (1%) with the  f e l d s p a r s  t o t a l l y  s e r i c i t i z e d .  A 
dark brown clayey s t a f f  dominates t h e  matr ix .  
and ep idote  form accessory secondary minerals .  

Py r i t e  

63-5A 
(74.24-77.13 m )  

71-2B 
(88.72-91.16 m )  

Vo lcan ic l a s t i c  sediment ( S 2 )  . 
subrounded t o  rounded quar tz  g r a i n s .  These g r a i n s  a r e  
rimmed by s i l i c a  overgrowth and cher ty  aggrega tes .  
Mi c roc rys t a l  1 i ne s i  1 i ca a1 so repl aced a1 t e red  
f e l d s p a r s .  The i n t e r s t i c e s  between the  mineral g ra ins  
a r e  f i l l e d  by s e r i c i t e s .  Some f e l d s p a r s  show 
"microcl ine- type" twinning, poss ib ly  der ived from the  
basement rocks.  Three types of q u a r t z  g ra ins  a r e  
noted : 
(1) s t r a i n e d  quar tz  with u n d u l a t o r y  e x t i n c t i o n ,  
( 2 )  c l e a r  unstrained g r a i n s ,  and 
(3) c l e a r  unstrained g ra ins  with secondary overgrowth. 
Crystal  conten ts  of t he  rock a r e  almost 50%. 

Rock conta ins  abundant 

P a r t i a l l y  a l t e r e d  Tshirege Tuff.  Rock i s  c r y s t a l  r i ch  
0 1 0 % )  with p a r t i a l l y  r e c r y s t a l  1 ized matr ix .  
Feldspars a r e  moderately s e r i c i t i z e d  and quar tz  g ra ins  
a r e  coarse ,  anhedra l ,  and s t rong ly  s t r a i n e d  (sheared 
c racks)  with secondary s i  1 i c a  growth .  Py r i t e  c r y s t a l  s 
a r e  confined t o  a l t e r e d  f e l d s p a r s  o r  c a v i t i e s .  Two 
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84-2 
(10%. 54-110.82 rn) 

104-3 
(136.07-138.26 m )  

119-9 
(158.99-161.25 m) 

156-7 
(213.11-215.55 m )  

184-4A 
(255.79-257.93 m )  

197-3B 
(277.16-279.73 m) 

phases of s e r i c i t e  formed before  and a f t e r  t he  cher ty  
s i l i c a  c r y s t a l l i z a t i o n .  P y r i t e  i s  t he  l a s t  mineral t o  
form. 

P a r t i a l l y  a l t e r e d  Tshirege Tuff.  Rock i s  c r y s t a l  r i ch  
0 1 0 % )  with matr ix  a1 t e r e d  and r e c r y s t a l  1 i zed. Quartz 
g r a i n s  a r e  anhedral and coarse  and contain s i l i c a  
overgrowth along t h e i r  edges. 
moderately s e r i c i t i z e d .  
c a v i t i e s .  R e l i c t s  of a l t e r e d  shards  and co l lapsed  
pumice a r e  replaced by secondary s i l i c a  aggregates  
( c h e r t y ) .  

Feldspars a r e  
P y r i t e s  a r e  confined t o  

Altered Tshirege Tuff.  Rock has l e s s e r  amount o f  
c r y s t a l  con ten t s ,  compared with previous sample 
(84-2).  Quartz g r a i n s  show a glomeroporphyri t ic  
t e x t u r e ,  whereas f e l d s p a r s  a r e  s c a t t e r e d  and 
moderately a l t e r e d  t o  s e r i c i t e .  
s e r i c i t e  a r e  concentrated along cracks a s  v e i n l e t s .  
Rock conta ins  abundant minute g r a i n s  of p y r i t e .  

Secondary s i l i c a  and 

Moderately a1 t e r ed  Tshi rege Tuff.  Sparse ly  c r y s t a l  - 
r i ch  rock (-5%) w i t h  f e l d s p a r s  p a r t i a l l y  s e r i c i t i z e d  
and cracked subangular quar tz  g ra ins .  
dominated by secondary s i l i c a  aggregates  and s e r i c i t e .  
P y r i t e  i s  a l s o  widely d i s t r i b u t e d  in  t h e  matr ix .  
S e r i c i t e  formation was followed by secondary s i l i c a  
and p y r i t e .  

Matrix 

Moderately a1 t e r ed  Tshi rege Tuff.  Crystal  - r i c h  
(15%-20%) with s t rong ly  r e c r y s t a l  1 ized (devi t r i  
matrix conta in ing  mic roc rys t a l l i ne  s i l i c a .  
D e v i t r i f i e d  g l a s s ,  shard-wrapped q u a r t z ,  and f e  
g ra ins .  Recrystal  1 i zed pumi ce c l a s t s  a r e  noted 
Minor p y r i t e  and a l l a n i t e  g r a i n s  c o n s t i t u t e  t he  
secondary mineral s .  

rock 
i ed) 

dspar  

Altered Tshirege Tuff. 
and conta ins  few r e c r y s t a l l i z e d  pumice c l a s t s .  
conta ins  10%-15% c r y s t a l s  with p l a g i o c l a s e ,  moderately 
a l t e r e d  t o  s e r i c i t e  and c a l c i t e .  Quartz g r a i n s  a r e  
subrounded (resorbed?)  and contain secondary s i  1 i c a  
overgrowth. S p h e r u l i t i c  t e x t u r e s ,  represented  by 
s i l i c a  aggrega tes ,  a r e  a l s o  noted. From g ra in  
con tac t s  c a l c i t e  seems t o  have formed a f t e r  s e r i c i t e .  

The rock i s  moderately welded 
I t  

Moderately a l t e r e d  and welded Tshirege Tuff.  
s i m i l a r  t o  the  previous example (184-4A). I t  con ta ins  
r e c r y s t a l l i z e d  pumice c l a s t s ,  p a r t i a l l y  a l t e r e d  
f e l d s p a r ,  and resorbed quar tz  g r a i n s .  C a l c i t e  i s  t he  
dominant secondary mineral followed by s e r i c i t e ,  
c h l o r i t e ,  p y r i t e ,  and mic roc rys t a l l i ne  s i l i c a .  
C a l c i t e  i s  confined t o  the  a l t e r e d  f e l d s p a r s .  The 
o rde r  of formation among the  secondary minerals  i s  

Rock i s  
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209-12 
(293.6-296.34 m )  

230-5 
(325.49-327.93 rn) 

249-1B 
(351.98-354.57 m )  

255-2B 
359.24-362.20 m) 

256-2 
(362.2-362.8 m )  

263-3B 
(371.49-373.78 m) 

represented by s e r i c i t e ,  c a l c i t e ,  c h l o r i t e ,  and 
p y r i t e .  

Altered Tshirege Tuff.  Rock i s  s i m i l a r  t o  t h e  
previous example (197-38). Matrix i s  s t r o n g l y  
dominated by secondary s i l i c a .  
replaced by c a l c i t e ,  whereas quar tz  g r a i n s  a r e  
moderately resorbed and cracked and contain abundant 
i n c l u s i o n s .  Rock i s  c o n s t i t u t e d  by 10%-15% c r y s t a l s  
with secondary minerals  of s e r i c i  t e ,  secondary s i 1  i c a ,  
cal  c i  t e ,  c h l o r i t e ,  and p y r i t e  i n chronol ogi cal  o rder .  
Feldspars  show polysynthe t ic  twinning (p lag ioc lase  
composition).  
observed. 

Altered f e l d s p a r s  a r e  

Some spherul i t i c  t e x t u r e s  a1 so 

Moderately a l t e r e d  welded Tuff.  
and conta ins  r e c r y s t a l l i z e d  co l lapsed  pumice c l a s t s  
and o t h e r  rock fragments. Rock conta ins  10%-15% 
c r y s t a l s  dominated by f e l d s p a r  rep1 aced by c a l c i t e .  
Quartz g r a i n s  a r e  moderately resorbed and cracked. 
Secondary minerals  a r e  represented by s e r i c i t e ,  
secondary s i l i c a ,  c a l c i t e ,  c h l o r i t e ,  a.nd p y r i t e  i n  
chronological  order .  

Matrix i s  d e v i t r i f i e d  

Altered and welded Tshirege Tuff.  Rock i s  c r y s t a l  
r i ch  (-15%) with matr ix  and co l lapsed  pumice fragments 
s t r o n g l y  r e c r y s t a l  1 i zed ( d e v i t r i f i e d )  t o  secondary 
s i l i c a .  
s i g n i f i c a n t  s e r i c i t e  o r  c a l c i t e  replacement. 
g r a i n s  a r e  p a r t i a l l y  resorbed and s t r a i n e d  with 
numerous cracks.  Few euhedral p y r i t e  g r a i n s  observed. 

Feldspars  a r e  moderately a l t e r e d  b u t  without 
Quartz 

Sandstone? (S3). Rock i s  c r y s t a l  r i ch  ( ~ 3 5 % )  w i t h  
angular  t o  subrounded quar tz  g r a i n s .  
minor conten t  and a r e  p a r t l y  a l t e r e d .  
g r a i n s  a r e  s t r a i n e d  and show v a r i a b l e  twinning 
p a t t e r n s ,  probably implying t h e i r  xenocrys t ic  o r i g i n .  
C a l c i t e  and s e r i c i t e  replaced f e l d s p a r s  and occur i n  
c a v i t i e s  too.  
secondary s i l i c a .  

Feldspars  a r e  of 
Some mineral 

Rock fragments a r e  replaced by 
Minor p y r i t e  and ep idote  a r e  noted. 

Altered and welded Otowi Tuff.  Rock c h a r a c t e r i z e d  by 
s t r o n g l y  d e v i t r i f i e d  ( r e c r y s t a l l i z e d )  mat r ix ,  pumice 
c l a s t s ,  and g l a s s  shards .  Crystal  conten ts  a r e  about 
5% with coarse ,  f r a c t u r e d ,  and p a r t l y  resorbed q u a r t z  
g r a i n s .  Feldspars a r e  replaced by s e r i c i t e  and 
c a l c i t e .  
primary quar tz  g r a i n s .  
t o  c a v i t i e s  and a l t e r e d  f e l d s p a r s  following t h e  
formation of s e r i c i t e  and c a l c i t e .  

Secondary s i l i c a  overgrowth noted around 
P y r i t e  c r y s t a l s  a r e  confined 

Altered Otowi Tuff.  Matrix and pumice fragments a r e  
s t r o n g l y  r e c r y s t a l l i z e d .  
cracked quar tz  g r a i n s ,  whereas t h e  f e l d s p a r s  a r e  
t o t a l l y  replaced with c a l c i t e  and s e r i c i t e .  

Rock conta ins  coarse  and 

A dark 
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264-2B 
(373.78-376.43 m) 

277-1 
(391.71-394.21 m )  

285-1 
(405.79-408.08 m )  

298-16 
(426.68-429.12 m )  

323D 
(460.98-463.41 m) 

336E 
(480.18-482.93 m )  

brownish-gray clayey s t a f f  i s  a s soc ia t ed  with t h e  
a l t e r e d  matr ix .  
t h e  secondary mineral aggrega tes .  

P y r i t e  and c h l o r i t e  a l s o  form p a r t  of 

Altered welded Tuff.  
g l a s s  and co l lapsed  pumice c l a s t s  w i t h  s e r i c i t e  and 
c a l c i t e  d i sseminat ions .  Quartz g r a i n s  conta in  s i l i c a  
overgrowth, whereas t h e  f e l d s p a r s  a r e  replaced by 
s e r i c i t e  and c a l c i t e .  Minor p y r i t e  g r a i n s  a r e  
s c a t t e r e d  throughout t h e  rock a s soc ia t ed  with 
secondary s i l i c a .  S e r i c i t e ,  secondary s i l i c a ,  
c a l c i t e ,  and p y r i t e  formed in  chronological  o rde r .  

Matrix represented  by welded 

Altered Otowi Tuff .  Matrix i s  replaced by secondary 
s i l i c a ,  c a l c i t e ,  and s e r i c i t e .  Phenocrysts a r e  
represented  by corroded edges,  occas iona l ly  with 
secondary s i l i c a  overgrowth. 
transformed and replaced by c a l c i t e  and s e r i c i t e .  
Abundant euhedral p y r i t e  g r a i n s  a r e  a s soc ia t ed  with 
t h e  secondary minerals .  

Feldspar  g r a i n s  t o t a l l y  

Altered and welded Otowi Tuff.  Rock con ta ins  l e s s  
than 5% c r y s t a l s .  The phenocrysts  (mostly qua r t z )  a r e  
meshed in  a s e r i c i t e  matr ix .  
a r e  replaced by s e r i c i t e  and secondary s i l i c a .  Coarse 
and glomeroporphyri t ic  muscovite i s  a s soc ia t ed  with 
a1 t e r e d  f e l d s p a r s .  Rock cha rac t e r i zed  by a layered 
sequence of a s t rong ly  r e c r y s t a l l i z e d  and poorly 
a l t e r e d  matr ix .  
a l s o  noted. 

Welded pumice fragments 

A few s c a t t e r e d  p y r i t e  g r a i n s  a r e  

A 1  t e r e d  Otowi Tuff.  F a i r l y  c r y s t a l  -poor rock ( < 2 % ) .  
Phenocrysts represented  by coarse  qua r t z  g r a i n s  and 
moderately a1 t e r e d  f e l d s p a r s  ( p l a g i o c l a s e ) .  S e r i c i  t e  
and c a l c i t e  a r e  t h e  replacement minera ls .  
shards  a r e  a l s o  replaced by secondary s i l i c a  
a g g r e g a t e s  (cher ty)  and s e r i c i t e .  

Welded 

A1 t e r e d  Otowi Tuff .  F a i r l y  c r y s t a l  -poor rock (<5%). 
Matrix i s  replaced by secondary s i l i c a  and s e r i c i t e .  
Feldspars  (p l ag ioc la se )  a r e  moderately a1 t e r e d  and 
f i l l e d  with c a l c i t e  and s e r i c i t e .  Quar t z  g r a i n s  a r e  
corroded and conta in  che r ty  aggrega tes  of secondary 
s i l i c a .  A few a l t e r e d  a n d e s i t i c  l i t h i c s  a r e  a l s o  
noted. 

Altered pre-Bandel ier  t u f f .  
(<1%), and the matr ix  i s  dominated by s e r i c i t e  and 
secondary s i  1 i ca  aggregates  ( c h e r t y ) .  We1 ded pumice 
fragments and shards  a r e  replaced and show l i n e a r  
aggrega tes  of s e r i c i t e  and s i l i c a .  T o t a l l y  a l t e r e d  
rock fragments and acc re t iona ry  l a p i l l i  0 4  mm) a r e  
commonly noted. S e r i c i t e ,  s i l i c a ,  c a l c i t e ,  c h l o r i t e ,  
and abundant p y r i t e  c r y s t a l s  form t h e  bulk of t h e  
secondary minerals  i n  a chronological  o rde r .  

I t  i s  a c rys t a l -poor  rock 
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366D Al te red  pre-Bandel ier  t u f f .  Rock i s  cha rac t e r i zed  by 
(524.70-527.44 m) d e v i t r i f i e d  mat r ix  with secondary s i l i c a  and s e r i c i t e .  

A few phenocrysts  of  p a r t i a l l y  a l t e r e d  f e l d s p a r s  and 
corroded qua r t z  a r e  a s soc ia t ed  with c h l o r i t i z e d  
a n d e s i t i c  rock fragments.  C a l c i t e  replacement 
conf i ned t o  a1 t e r e d  f e l d s p a r s .  

11. FIELD A N D  P E T R O G R A P H I C  DESCRIPTIONS O F  SURFICIAL, A L T E R E D  SAMPLES FROM 
COCHITI DISTRICT (See Fig. 1 f o r  sample loca t ion . )  

VG87-1 Daci te?  Rock exposed along a roadcut  (Fores t  Route 268) 
underlying t h e  Bandel ier  Tuff.  
f r i a b l e ,  and l imon i t e  coa ted .  I t  i s  p o r p h y r i t i c  with 
a1 t e r e d  (ghost)  phenocrysts .  In t h i n  s e c t i o n ,  the  
phenocrysts  a r e  moderately a l t e r e d  and a r e  represented  by 
s e r i c i  t i z e d  p l a g i o c l a s e ,  hornblende, p y r i t e ,  and abundant 
si 1 i c a  overgrowth ( che r ty ) .  Coarse r e c r y s t a l  1 ized s i  1 i c a  a r e  
conf i ned t o  "heal ed" c racks .  

I t  i s  t o t a l l y  a l t e r e d ,  

VG87-2 Porphyr i t i c  andes i t e .  Sample c o l l e c t e d  from an a d i t  south 
of  t h e  d a c i t e  ou tcrop  (Route 268). 
con ta ins  coarse  p l ag ioc la se  phenocrys ts ,  e p i d o t e ,  and 
c h l o r i t e s .  In t h i n  s e c t i o n  the rock i s  o l i v e  brown with 
p l ag ioc la se  pseudomorphs transformed t o  g r a n u l a r  and r ad ia l  
c r y s t a l s  of  secondary s i l i c a .  The rock i s  s p h e r u l i t i c  and 
con ta ins  few rock fragments.  

I t  i s  greenish  gray and 

VG87-3 Rhyoli te?  S o f t  and wh i t i sh  i n  co lo r .  Phenocrysts a r e  
a l t e r e d  and the  rock under1 i e s  the  Bandel i e r  p y r o c l a s t i c  
sequence. Pe t rographic  examination i n d i c a t e s  moderately 
a1 t e r e d  a1 kal i f e l d s p a r  p a r t i  a1 l y  rep1 aced w i t h  ca l  c i t e .  
Matrix i s  r e c r y s t a l l i z e d  and con ta ins  abundant m i c r o l i t e s  
wrapping around the  phenocrysts .  
c h e r t y  secondary s i l i c a  with p e c t i n a t e  s t r u c t u r e s .  Epidote,  
p y r i t e ,  and rock fragments a r e  a l s o  noted. 

C a v i t i e s  a r e  f i l l e d  with 

VG87-4 Daci te .  Col lec ted  along the  road t o  t h e  Albermarle Mine, 
south  o f  the main en t r ance  t o  the  Bland Mine. The rock i s  
s o f t ,  whi te ,  and l imon i t e  coa ted .  Feldspar  phenocrysts  a r e  
moderately a1 t e r e d .  P l ag ioc la se  with a1 bi t e  twinning 
dominate the  c r y s t a l  con ten t s .  The mat r ix  con ta ins  abundant 
secondary s i  1 i ca  and s e r i  c i  t e .  C a l c i t e  i s assoc i  a t ed  with 
t h e  a1 t e r e d  f e l d s p a r s .  

VG87-5 Rhyoli te .  Flow banded and f i n e  g ra ined ,  p a r t i a l l y  
si  1 i ci  f i  ed (mi crovei  nl e t s )  . 
con ta ins  abundant t i n y  c r y s t a l s  of  p y r i t e .  The rock i s  
p l a t y  and crops ou t  e a s t  o f  the  Albermarle qua r t z  vein 
m). In t h i n  s e c t i o n ,  t h e  rock i s  s t rong ly  r e c r y s t a l l i z e d  
showing a g r a n u l a r  texture  with i n t e r l o c k i n g  qua r t z  g ra ins .  
P e r l i t i c  c racks  f i l l e d  with secondary s i l i c a  and s e r i c i t e  
a r e  a l s o  common. 
i n  random d i r e c t i o n s .  

I t  i s ye1 1 owi sh gray and 

(-10 

Tiny s i l i c a - f i l l e d  v e i n l e t s  cu t  t h e  matr ix  

VG87-6 Fau l t  (vein)  b recc ia .  Sample c o l l e c t e d  along t h e  roof of  an 
a d i t  a long the  main Albermarle q u a r t z  vein.  The rock i s  
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s t rong ly  b recc ia t ed ,  p y r i t i z e d ,  and s i l i c i f i e d .  I t  s h a t t e r s  
i n t o  p i eces  when hammered. In t h i n  sec t ion  i t  i s  dominated 
by r e c r y s t a l l i z e d  che r ty  s i l i c a  and s e r i c i t e .  
s t rong ly  sheared. Aggregates of ep ido te ,  euhedral p y r i t e  
c r y s t a l s ,  and need le l ike  g r a i n s  of r u t i l e ( ? )  were noted. 
Abundant s i l i c a  v e i n l e t s  c u t  t h e  matr ix .  

The rock i s  

VG87-7 Rhyoli te  d ike .  Very f i n e  gra ined ,  whi te ,  do t t ed  with brown 
spo t s  (hemat i te ) .  Col lected about 1 / 2  km e a s t  of t h e  
Albermarle vein.  The d ike  c u t s  a coarse  a n d e s i t i c  flow. 
The rock i s  spa r se ly  p o r p h y r i t i c  with a s t rong ly  
r e c r y s t a l l i z e d ,  and s e r i c i t i z e d  matr ix .  Quartz ,  a1 ka l i  
f e l d s p a r ,  minor hornblende, and z i rcon  a r e  t h e  e s s e n t i a l  
phenocrysts ;  however, muscovite from r e c r y s t a l l i z e d  s e r i c i t e  
and c a l c i t e  a r e  a l s o  noted. The rock e x h i b i t s  a s p h e r u l i t i c  
t e x t u r e  . 

VG87-8 Andesite.  I t  i s  g reenish  gray and coarse  p o r p h y r i t i c  with 
a l t e r e d  phenocrysts .  Col lected about 1 km south of t h e  
Bland Mining en t rance  (Route 268). In t h i n  sec t ion  t h e  
coarse  p l ag ioc la se  phenocrysts  a r e  replaced with c a l c i t e .  
Hornblende, b i o t i t e ,  magnet i te ,  minor a p a t i t e ,  c h l o r i t e ,  and 
abundant s i l i c a  overgrowth a r e  t h e  main mineral assemblages. 

VG87-9 Andesite.  Po rphyr i t i c ,  s t rong ly  sheared ,  and a l t e r e d .  

The rock i s  extremely 

Sec t ion  i s  exposed along a road cu t .  The sheared zones a r e  
co lo r fu l  ranging from v i o l e t  t o  ye l lowish  brown implying a 
d i f f e r e n t  degree of a l t e r a t i o n .  
f r i a b l e  and was not s tud ied  pe t rog raph ica l ly .  
along Route 280 about 0.5 km e a s t  of t h e  Route 268 
i n t e r s e c t i o n .  

Col lected 

VG87-10 Andesite.  Col lected about 100-150 m west of VG87-9, along 
t h e  same road c u t .  The rock i s  not sheared l i k e  the  
previous sample, but  i t  i s  t o t a l l y  a l t e r e d  with most of t he  
phenocrysts  changing from a c l e a r  t o  a milky c o l o r .  The 
t h i n  s ec t ion  i n d i c a t e s  a p o r p h y r i t i c  t e x t u r e  w i t h  a m a t r i x  
replaced with secondary s i l i c a ,  s e r i c i t e ,  c h l o r i t e s ,  and 
c a l c i t e .  
c a l c i t e .  
noted. 

The p l ag ioc la se  phenocrysts  a r e  replaced with 
P a r t l y  a l t e r e d  b i o t i t e  and magnet i te  a r e  a l s o  

VG87-11 Rhyoli te .  
a l t e r e d  a n d e s i t e  flow. I t  i s  banded, s i l i c i f i e d ,  and p l a t y  
in  outcrop with l imoni te  coa t ing .  The sample was c o l l e c t e d  
about 50 m from Highway 4 on Route 286. The matr ix  in  t h i n  
sec t ion  i s  dominated by r e c r y s t a l l i z e d  s i l i c a  and s e r i c i t e .  
Minor opaque mineral ( p y r i t e ? )  aggrega tes  a r e  noted in  the  
matr ix .  

This rock i s  a f ine-gra ined  d ike  t h a t  c u t s  an 

VG87- 12 Andesite.  Po rphyr i t i c  and o l i v e  gray in  co lo r .  The rock i s  
s t rong ly  sheared and most o f  t he  in t ense  a l t e r a t i o n  occurred 
along these  zones. 
VG87-11. Micro l i t e s ,  c h l o r i t e ,  and secondary s i l i c a  
dominate the  matr ix .  

Sample c o l l e c t e d  a few meters north of 

The p l ag ioc la se  phenocrysts  a r e  
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s e r i c i t i z e d  and p a r t i a l l y  replaced with c a l c i t e .  
magnet i te  c r y s t a l s  were a l s o  noted. 

A few 

VG87- 13 Basal t .  Sample c o l l e c t e d  from a shear  zone along a 
l a n d s l i d e  b a s a l t  block ad jacent  t o  New Mexico S t a t e  Highway 
4. I t  i s  f i n e  grained and dark gray i n  co lo r .  The sample 
from t h e  shea r  zone i s  s o f t .  So i ly  and ye l lowish  brown in  
co lo r .  No t h i n  sec t ion  was prepared. 

VG87-14 Paleozoic  sandstone. Col lected about 8 km from Highway 126 
along Fores t  Route 376 i n  t h e  San Antonio Canyon. 
f i n e  grained and well so r t ed  and conta ins  abundant c h l o r i t e .  

I t  i s  

VG87-15 and -16 Altered andes i t e s .  Col lected about 2 km from Highway 126 on 
Route 376 south of VG87-14. The rock i s  completely a l t e r e d  
and powdery in  outcrop (no t h i n  s e c t i o n ) .  
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APPENDIX B 

DIFFRACTOGRAMS OF THE LESS THAN 2-pm FRACTION OF HYDROTHERMALLY ALTERED 

( I n  most cases t h e  random and o r i e n t e d  mounts o f  i d e n t i c a l  
samples a r e  p l o t t e d  t o g e t h e r . )  

(Samples a r e  d e s c r i b e d  i n  Appendix A.) 

CORE HOLE VC-2A AND C O C H I T I  M I N I N G  D I S T R I C T  VOLCANIC SAMPLES 
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