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FOREWORD 

The Shipp ingpor t  Atomic Power S t a t i o n  l o c a t e d  i n  Shipp ingpor t ,  Pennsylvania 
was t he  f i r s t  large-sca le,  c e n t r a l - s t a t i o n  nuc lear  power p l  a n t  i n  the  Un i t ed  
States and t h e  f i r s t  p l a n t  of such s i z e  i n  t h e  wor ld  operated s o l e l y  t o  
produce e l e c t r i c  power. Th i s  .program was s t a r t e d  i n  1953 t o  con f i rm  the  
p r a c t i c a l  appl i c a t i o n  o f  nuc lear  power f o r  1 arge-scale e l e c t r i c  power 
generat ion. It has prov ided much o f  the  technology be ing  used f o r  design and 
opera t ion  o f  t h e  commercial, c e n t r a l - s t a t i o n  nuc lear  power p l a n t s  now i n  use. 

/ 

Subsequent t o  development and successful  ope ra t i on  o f  t h e  Pressur ized  Water 
Reactor i n  t h e  Atomic Energy Commission (now Department o f  Energy, DOE) owned 
r e a c t o r  p l a n t  a t  the  Sh ipp ingpor t  Atomic Power S ta t i on ,  t h e  Atomic Energy Com- 
miss ion  i n  1965 undertook a research and development program t o  design and 
b u i l d  a L i g h t  Water Breeder Reactor co re  f o r  ope ra t i on  i n  the  Sh ipp ingpor t  
S ta t i on .  

The o b j e c t i v e  o f  t he  L i g h t  Water Breeder Reactor (LWBR) program has been t o  
develop a technology t h a t  would s i g n i f i c a n t l y  improve t h e  u t i l i z a t i o n  o f  t h e  
n a t i o n ' s  nuc lear  f u e l  resources empl o y i  ng the  we1 1 -es tab l  i shed water  r e a c t o r  
technology. To achieve t h i s  ob jec t i ve ,  work has been d i r e c t e d  toward analy-  
s i s ,  design, component t e s t s ,  and f a b r i c a t i o n  o f  a water-cooled,, thor ium 
oxide-uranium ox ide  f u e l  c y c l e  breeder r e a c t o r  f o r  i n s t a l l a t i o n  and ope ra t i on  
a t  t he  Sh ipp ingpor t  S t a t i o n .  The LWBR co re  s t a r t e d  ope ra t i on  i n  the  Shipping- 
p o r t  S t a t i o n  i'n t h e  Fa1 1 o f  1977 and i s  expected t o  be operated f o r  about.  4 t o  
5 yea rs  o r  more. A t  the end, o f  t h i s  per iod,  t h e  core  w i l l  be removed and t he  
spent f u e l  shipped t o  t h e  Naval Reactors Expended Core F a c i l i t y  f o r  a d e t a i l e d  
examinat ion t o  v e r i f y  co re  performance i n c l u d i n g  an e v a l u a t i o n  o f  breeding 
c h a r a c t e r i  s t i c s .  

I n  1976, w i t h  f a b r i c a t i o n  o f  t he  Sh ipp ingpor t  LWBR co re  near ing  completion, 
t h e  Energy Research and Development Admin is t ra t ion ,  now DOE, es tab l i shed  t h e  
Advanced Water Breeder Appl i c a t i o n s  ( AWBA) program t o  develop and d i  ssemi na te  
t echn i ca l  i n f o r m a t i o n  which would a s s i s t  U.S. i n d u s t r y  i n  eva lua t i ng  t h e  LWBR 
concept f o r  commercial - sca l  e appl i c a t i o n s .  The program i s  exp l  o r i n g  some o f  
t h e  problems t h a t  would be faced by i n d u s t r y  i n  adapt ing technology conf i rmed 
i n  the LWBR program. I n fo rma t i on  be ing  developed i nc l udes  concepts f o r  
commercial-scale prebreeder cores which would produce u ran i  um-233 f o r  1 i g h t  
water  breeder cores whi 1 e produc i  ng e l  e c t r i c  power, improvements f o r  breeder 
cores based on t h e  technology developed t o - f a b r i c a t e  and operate t h e  
Sh ipp ingpor t  LWBR core, and o t h e r  i n fo rma t i on  and technology t o  a i d  i n  
eva lua t i ng  commercial - sca l  e appl  i c a t i o n  o f  t h e  LWBR concept. 

A l l  t h ree  development. programs (Pressur ized  Water Reactor, L i g h t  Water Breeder 
Reactor, and Advanced Water Breeder App l i ca t i ons )  a re  under t h e  t echn i ca l  

' d i r e c t i o n  o f  ,the O f f i c e  o f  t he  Deputy Ass i s tan t  Secretary  f o r  Naval Reactors 
o f  DOE. They have t h e  goal o f  develop ing p r a c t i c a l  improvements i n  t he  
u t i l  i z a t i o n  o f  nuc lear  f u e l  resources f o r  genera t ion  o f  e l e c t r i c a l  energy 
us ing  'water-cooled nuc lear  reac to rs .  

Technical  i n f o rma t i on  developed under the  Shipp ingpor t ,  LWBR, and AWBA 
programs has been and w i l l  con t inue  t o  be pub l i shed  i n  t echn i ca l  memoranda, 
one o f  which i s  t h i s  p resen t  r epo r t .  
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Th i s  r e p o r t  descr ibes the  thermal e v a l u a t i o n  o f  t h e  
core  f o r  t h e  Shipp i  ngport ,Li  gh t  Water Breeder Reac- 
t o r .  Th i  s co re  con ta ins  unique thermal -hydraul  i c  
f ea tu res  such as (1 )  c l o s e  . rod- to - rod  p r o x i m i t y  , ( 2 )  
an o p e n - l a t t i c e  a r ray  o f  f u e l  rods w i t h  two d i f f e r e n t  
diameters and rod- to - rod  spacings i n  t he  same f l o w  
reg ion,  ( 3 )  t r i p l a t e  o r i f i c e s  l o c a t e d  a t  bo th  the  
ent rance and e x i t  o f  f u e l  modules and ( 4 )  a 
hydraul  i c a l  l y - b a l  anced movabl e - f ue l  system coup1 ed 
w i t h  (5) ax ia l - and - rad ia l  f u e l  zoning f o r  r e a c t i v i t y  
c o n t r o l .  Performance s tud ies  used r e a c t o r  thermal 
p r i  n c i  p l es  such as t he  hot-and-nominal channel concept 
and re1 a ted  nucl  ear /engi  neer ing  design a1 1 owances. 
These were a p p l i e d  t o  models o f  three-dimensional  
rodded a r rays  compr is ing t he  core  f u e l  reg ions.  
D i g i t a l  computer programs were employed t o  assess t h e  
co re  capab i l  i t y  us ing  qua1 i f i e d  procedures, models and 
c o r r e l a t i o n s .  The eva lua t i on  demonstrates t h a t  
thermal -hydraul  i c  design o b j e c t i v e s  and c r i t e r i a  a r e  
s a t i s f i e d  f o r  ope ra t i on  o f  t h e  co re  i n  t h e  
Shi pp ingpo r t  Reactor P l  ant.  

* 
SUMMARY OF THE THERMAL EVALUATION OF LWBR 

(LWBR Development Program) 

S. Lerner,  K.D.' McWil l  iams, J.W. Stout ,  J.R. Turner 

I.. INTRODUCTION 

The L i g h t  Water Breeder Reactor (LWBR) Program i s  develop ing t he  

technology t o  b reed  f i s s i l e  ma te r i a l  i n  a 1 i g h t  water r e a c t o r  i n  o rde r  t o  use 

nuc lear  f u e l  more e f f i c i e n t l y  i n  l i g h t  water thermal reac to rs . .  T h i s  core  

represents  the f i r - s t  f u l  1-core power reac to r  usdge o f  a thor ia -base  b i n a r y  

f u e l  o f  h i gh  dens i ty .  

Th i s  r e p o r t  descr ibes the  thermal eva lua t i on  o f  the  LWBR core. The 

h y d r a u l i c  eva lua t i on  o f  t h e  LWBR design i s  presented i n  Reference ( 1 )  and an 

o v e r a l l  view o f  the  design i s  presented i n  Reference ( 2 ) .  The LWBR co re  

design i nc l udes  severa l  unique therma l -hydrau l i c  fea tu res .  These f ea tu res  a r e  

descr ibed i n  Sec t ion  I 1  and r e s u l t  from the  o v e r a l l  o b j e c t i v e  t o  demonstrate 

breeding i n  a l i g h t  water environment. Sect ions I 1 1  through V I  p rov ide  a 

d e s c r i p t i o n  o f  t h e  a n a l y t i c a l  procedures and model s developed t o  



assess the  core  thermal c a p a b i l i t y .  A summary o f  the  core thermal performance 

i s  g iven i n  Sect ion V I I  and the  experimental q u a l i f i c a t i o n  o f  the  procedures 

i s  presented i n  Sect ion V I I I .  

I I. BACKGROUND 

A. Core Mechanical Desc r i p t i on  

The des.ign o f  LWBR was c o n t r o l l e d  t o  a  l a r g e  ex ten t  by the  

breeding ob jec t i ve .  Th is  o b j e c t i v e  necessi ta ted min imiz ing  p a r a s f t i c  neutron 

1  osses w i t h i n  the  c o n s t r a i n t s  permi t t e d  by meChanSca1 and thermal requ i re -  

ments. I n  general ,  t h i s  meant t h a t  the  number and s i z e  o f  mechanical s t ruc -  

t u r e s  were minimized and t h a t  the fue l  rods were spaced as c lose l y  together  as 

p r a c t i c a l  . 

F igu re  1  shows a  cross sec t ion  o f  the  LWBR core  i n s t a l l e d  i n  the 

Shi pp i  ngpor t  pressurized-water reac to r  vessel. The core i s  a  seed-bl anket 

c o n f i g u r a t i o n  cons i s t i ng  o f  an i nne r  reg ion  o f  movable-fuel seed assenlblies, 

each surrounded by a  s t a t i o n a r y  b l  anket assembly. Z i  r c a l  oy s t r u c t u r a l  she1 1  s  

separate each seed and b lanket  assembly. The combination o f  one seed and one 

b lanke t  assembly c o n s t i t u t e s  a  module. The inner  reg ion  has twelve hexagonal 

modules (Types I, I 1  and 111) arranged i n  a  symmetric array.  These modules 

are surrounded by an ou te r  r e f l e c t o r  f u e l  reg ion  composed o f  f i f t e e n  modules 

(Types I V  and V). The core design was developed f o r  operat ion w i t h  the  

e x i  s t i  ng major components o f  t h e  Shippi ngpor t  P l ant, i n c i  ud i  ng the pumps, 

p i  p i ng  systems, heat exchangers and 109-i nch i ns ide -d i  ameter reac to r  vessel . 
Ihe design simulates a  la rge-sca le  breedef envl ronment . in  the i n t e r i o r  o f  the  

core  ( t h r e e  Type I modules) w i t h  the  i n t e n t  t o  achieve n e t  breeding i n  the 

e n t i r e  core. 

The core has fou r  d i s t i n c t  f ue l  reg ions -- seed, b lanket ,  power- 

f l a t t e n i n g  b lanke t  and the r e f l e c t o r .  The f i r s t  t h ree  o f  these are arranged 

w i t h i n  the  i nne r  twelve modules. The Type I module i s  a  symmetrical hexagon 

i n  which t h e  standard b lanke t  reg ion  forms an annular hexagonal ' r i n g  about t h e  

seed region.  The Type I 1  and Type I 1 1  modules are symmetric non-regular 



STANDARD BLANKET POWER FLATTENING 
ROD REGION BLANKET ROD REGION 

F I L L E R  U N I T S  '(NON F U E L )  

FIGURE I. MODULE IDENTIFICATION 



hexagons w i t h  the  elongated, l a r g e r  cross sect ions conta in ing  the power- 

f l  a t t e n i  ng b lanket  ' f ue l  rods. The seed and these two b lanket  regions conta in  

about 14,200 Z i r ca loy -c lad  fue l  rods having f i s s i l e  f ue l  (U-233) i n  the form 

o f  t ho r ia -u ran ia  (Th02-u02) fue l  p e l l e t s  and f e r t i l e  mater ia l  i n  the form o f  

t h o r i a  (Tho?) f u e l  ,pe l  l e t s .  

The r e f l e c t o r  modules serve t o  r e s t r i c t  neutron l o s s  from the core 

and con ta in  about 3000 Z i r c a l  oy-cl  ad f u e l  rods bear ing on ly  Tho2 fuel 

pe l  l e t s .  . S i m i l a r l y ,  t h o r l a  fue l  i n  the seed and b lanket  i s  locd ted  i t  the top 

and bottom o f  these regions t o  a c t  as an ax ia l  r e f l e c t o r .  F i i l e r  modul'es, 

which a re  sol i d  blocks o f  s tee l ,  surround the c,ore t o  minimize bypass f low 

between the  a c t i v e  core and. t he  LWBK core ba r re l .  

To enhance breeding performance, the  standard b lanket  reg lon  has a 

h igh  metal - to-water r a t i o  o f  2.98. The power-f l  a t t e n i  ng-bl anket region has a 

lower metal- to-water r a t i o  of about 1.76 and a h igher  U02 concentrat ion than 

the  b lanket .  The power- f la t ten ing  b lanket  i s  loca ted  on the ou ter  per iphery 

o f  the  n ine  modules surrounding the three center  modules. As a resu l t ,  the  

o v e r a l l  r a d i a l  core power d i s t r i b u t i o n  i s  f l a t t ened .  

The rods i n  a l l  f ue l  regions are  approximately 10 f e e t  long and 

are supported i n  a c l  osely-spaced, t r i a n g u l  a r -p i  tched ar ray  by s ta in less-  

s tee l  , honeycomb support g r i d s  a t  several ax i  a1 1 ocat ions w i  t h i n  each 

module. The g r i d  support system i s  described i n  Reference (3) .  There are 

n ine  a x i a l  l e v e l s  o f  g r i d s  f o r  the seed, e i g h t  f o r  each b lanket  and s i x  f o r  

t he  r e f l e c t o r  f u e l  rods. F igures 2, 3, 4  and 5 show d e t a i l s ,  such as the  rod  

diameter and p i t ch ,  o f  the  f i v e  module types i n  the core cross sect ion. 
\ 
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B. Thermal -Hydraul i c  D e s c r i p t i o n  and Re1 a ted  Unique Features 

The LWBR thermal performance was evaluated a t  a  r a t e d  power o f  

236.6 thermal megawatts ( equ i va len t  t o  72 gross e l e c t r i c a l  megawatts) and a 

t o t a l  r e a c t o r  coo lan t  f l o w  o f  about 31 x l o 6  pounds pe r  hour a t  an average 

temperature o f  531'"F ( i n 1  e t  temperature o f  520°F) and o p e r a t i  ng pressure o f  

2000 ps ia .  The d i f f e r e n t  metal - to -wate r  r a t i o s  and f i  s s i l  e  f u e l  loadings 

requ i red  i n  each core  reg ion  produced v a r i a t i o n s  i n  t he  r e g i o n  average power 

d e n s i t i e s .  Table I shows core  parameters and t y p i c a l  d i s t r i b u t i o n  o f  power 

and f l o w  i n  t he  core  by f u e l  reg ion .  F igures  6, 7, 8 and 9 show t y p i c a l  a x i a l  

and r a d i a l  power shapes f o r  the  Type I seed and b l a n k e t  modu1.e~. Reference 

(4 )  prov ides more d e t a i l s  about t h e  nuc lear  design. 

TABLE I 

CORE PARAMETERS 

Power 
F r a c t i o n  

F l  ow* 
F r a c t i o n  

Average 
Heat F l  ux @ 100% 
Power x  1  -3, 
BTU/hr- ftq** 

Maximum 
Heat F l u x  @ 100% 
Power x 1 -3, 
BTUlhr- f  t8** 

Mas V e l o c i t y  
l b / h r - f t  5 

Fuel Rod 
Diameter. i n ,  

Hydrau l i c  
Diameter. 
( i n f i n i t e  
a r r a y ) ,  i n .  

Power- 
F l  a t t e n i n g  

Seed B lanke t  B lanke t  Re-fl e c t o r  



TABLE I (con t ' d )  

P i t c h .  i n .  

To ta l  Number 

Number o f  
G r i d  Levels  

F'l ow Area. f t2 

Heat Trans fer  
Area, f t2 

Heated Wetted 
Perimeter,  i n. 

Unheated Wetted 
Perimeter.  i n .  

Seed 

0.369 

Blanket  

0.630 

3234 

Power- 
F l a t t e n i n g  
Blanket  . Ref1 e c t o r  

0.901 

3047 

6 

* Remaining f l ow  goes t o  movable fue l  ba lancing system and bypass paths. 

** Heat Fluxes are f o r  100 f u l l  power hours o f  opera t ion  except f o r  the  
r e f l e c t o r  which i s  a t  18,000 hours. The heat  f l u x  i n  the r e f l e c t o r  
i n i t i a l l y  con ta in ing  on l y  t h o r i a  i s  low a t  beginning o f  l i f e .  With 
i nc reas ing  li fetime, t h e  thor ium i s  transmuted t o  uranium-233 and the  
power generated i n  the  r e f - l e c t o r  f ue l  rods increases. 



FIGURE 6. TYPE 1 SEED REGION RADIAL POWER DISTRIBUTION AT 
BEGINNING OF CORE LIFE 
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Figure  10 shows a schematic o f  the  various f l ow  paths through the  

one-pass core. Flow enters the  reac to r  vessel through fou r  bottom i n l e t  

nozzles. A p o r t i o n  o f  the  i n l e t  f l ow  passes between the  reac tor  vessel and 

t h e  outer  thermal s h i e l d  t o  cool both the  reac to r  vessel and thermal shie ld.  

Th is  f low then r e j o i n s  the  main coolant  stream above the reac tor  i n l e t  f l ow  

b a f f l e  where i t  proceeds i n t o  the  four  primary core regions, w i t h  the  f low 

being proport ioned as shown i n  Table I. The reac to r  i n l e t  f l  ow b a f f l e  i s  the 

same one used f o r  Shippingport PWR Core 2 and ac ts  as a f low st ra ightener f o r  

t he  reac tor  vessel i n l e t  plenum. I n  the  core, coo lant  v e l o c i t i e s  are 16 

f t /sec .  (seed), 15 f t /sec.  (b lanket) ,  18 f t /sec.  (power f l a t t e n i n g  b lanket )  

and 4 f t /sec .  ( r e f l  ec tor )  . I n  the  out1 e t  p l  enum above the core, the  f l  ow from 

the various paths r e j o i n s  and emerges through the  four  reac tor  vessel o u t l e t  

nozzles. Reference ( 1  provides a more de ta i l ed  hydrau l ic  descr ip t ion  of the 

core. 

During the development of the LWBR design, several unique features 

arose r e l a t i n g  t o  the  breeding and power object ives.  These were associated 

w i  t h  such concepts as: ( a )  movabl e- fuel  r e a c t i v i  ty cont ro l  w i t h  hydraul i c  

balancing,* (b)  module i n le t -and-ou t le t  o r i f i c i n g  w i t h  t h i n  boundary shel 1 s t o  

opt imize the core flow d i s t r i b u t i o n  and pressure d i f fe rences across the 

shel 1 s, ( c )  extensive fue l  zoning incorpora t ing  a stepped f i  s s i l e l f e r t i l e  f u e l  

arrangement w i  t h  both an ax ia l  -and-radial f e r t i l e  r e f l  ector ,  (d)  rod-to-rod 

spacings about one-half t h a t  present ly  employed i n  pressurized-water reac tors  

and ( e l  hydrau l ic  coupl ing o f  f ue l  regions conta in ing  rods o f  d i f f e r e n t  

diameters on the  same p i tch .  These features received extensive thermal-and- 

hydraul ic  t e s t i n g  and performance evaluat ion dur ing the development phase t o  

provide a h igh  degree o f  design assurance f o r  core operation. Addi t ional  

facets  o f  the design, t e s t i n g  and qua1 i f i c a t i o n  are high1 igh ted below. 

* Bypass I n l e t  Flow (BIF) System 
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1 . Hydraul i c  Bal ansing o f  Movable Fuel 

Core reac t iu f t y  i s  cont ro l led by a x i a l  mat iov fl the twelve 
movable fue l  assemtTTies. These i fssmbl i es  a m  maintai:w@ in it. uMfamTy 
banked conf i gura t i  on during power operations. Each assenblr f s suspended from 

a controT d r i ve  mechanism providing a seven-foot ax ia l  trave;?. Rse Tower and 

upper 1 iMts of t h i s  t rave l  consis;t; o f  f i v e  f ee t  below tn two feet h o v e  the 

a1 igned cor r f igu ra t i~n .~  Ffgure 71 shows the fue l  conffgu.ra$larr f a r  both the 

al igned and fu l l -dmn ray skakd.0~~) posit ions. Power operat iom occur between 
about two f e e t  below t%& f&t &we the aT igned positfan. Thls unique 

hydrwrl i c  fea tu~e ,  incTut@ffg .%ts pwfimmrrce character i  s t b  and @ l  T-seal e 

t es t i ng  ( w i t h  successful aperation a t  Sh ipp ingpr t l ,  i s  ckscrihcd tn  greater 

de ta i l  i n  References f5)', (6 1 am& (7  ) .. 

2. Modul-sa h T e t  an& Out le t  O r i f i c i n g  

The use o f  seed, blanket, and refTector fuel  regions wi th  

ch' f fererr t  fuel  Taadi ngs and metal-to-water r a t i o s  causes s i gn i f i can t  power 
differences among the regions. To optimize f low u t i l i z a t i o n  add core power 

capabi l i ty ,  the blanket and r e f l e c t o r  moduTes are or i f ice t i .  The s t ructura l  

she l ls  i sa la te  the fuel regions t o  el iminate the potent ia l  f a r  f low 

redistr ibution., T r i p l a t e  mr"-$ices are u t i l i z e d  a t  both the top and bottom o f  

the blanket and re f l ec to r  mad@Ies, as i l l u s t r a t e d  i n  Figure 12, t o  redwe 

Tateral Toads on the shel ls  by approximately 50 percent as compared w i t h  loads 

associated wi th  onTy in1 e t  o r i f i c i n g .  The reduced load d i s t r i bu t i on  minimizes 

the potent ia l  f o r  she l l  def lec t ion and increases assurance of a f ree path for  

scranr o f  the movsbl e fuel  assernbl ies. 

Testing o f  a f u l l - s i z e  prototypic assembly a f  a section o f  the 

core con f i  med the t v i p l  ate o r i f  i'ce pressu~e-Toss coef f ic ients  and the she1 1 

pressure l'oads, Reference ( T I .  I n  addition, f l  ows through seven o f  the  seed 
modules and s i x  o f  the blanket modules are measured a t  Shippingport. A l l  data 

obtained during ear ly operation demonstrated t h a t  fl ows are w i  t h i n  the 
aTTowable range, confirming the acceptab i l i ty  o f  the o r i  f i c ing ,  Reference (7 ) .  
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3. Axial and Radial Fuel Zonina 

Axial stepping o f  b inary (Tho2-U02) fuel and thor ia-only fue l  

and r a d i a l  zoning of U02 concentrations w i th in  the binary fue l  are employed i n  

the seed and blanket t o  improve the r e a c t i v i t y  character is t ics  o f  the mvable-  

fue l  cont ro l  system, t o  insure shutdown upon 1 ower'i ng o f  the seed mavabl e-fuel 
assemblies, and t o  provide an ax ia l  re f1  ector  region. Axial stepping o f  the 

fue l  was accomplished by usjng several lengths o f  f e r t i l e  Tho2 i n  the seed and 
b lanket  rods. Figure 13 i l l u s t r a t e s  both the rad ia l  zoning and axia l  stepping 

o f  f ue l  f o r  the seed and blanket i n  a Type I module. The radtial zoning 

cont r ibutes t o  reduced power peaking near water gaps. The combination -of fue l  

stepping, r ad ia l  zoning, and ax ia l  movement o f  the movable fue l  assemblies 

accounts f o r  a var ie ty  of power d i s t r i bu t i ons  t h a t  requ i re  thermal-and- 

hydraul ic  performance evaluation.' Resulting r a t i o s  o f  seed ax ia l  peak-to- 

average heat f luxes are as high as 2.6 and rad ia l  peaking factors are as high 

ds 2.4, tor example. 

4. Small Rod- to-Rod Soac i na 

To optimize breeding, fue l  rods are posit ioned on a t r i angu la r  

p i t c h  w i th  rod-to-rod spacing nominally about 0.060 inch i n  the seed and 

standard bl anket regions. Thi s c l  osely spaced array necessitated (a)  

development o f  adequate thermal/hydraul i c  a1 1 owances t o  account f o r  e f f ec t s  

in f luenc ing  the pos i t i on  o f  rods r e l a t i v e  t o  one another and (b)  imposi t ion o f  

adequate fab r i ca t ion  cont ro ls  t o  assure the qua l i t y  o f  fue l  rods and t h e i r  

support grids. The performance a1 lowances fnclude g r i d  p i t c h  biases, rod 

bowing, rod-gr id wear, and c l  addi ng oval i ty and diametral shrinkage o r  

swell ing. These considerations account f o r  a decrement i n  the power 

capabi 1 i t y  of approximately 17 percent. 
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5. Hyd rau l i c  Coup1 i n g  o f  Two D i f f e r e n t  Rod Diameter Regions 

As noted, t h e  power- f l  a t t e n i n g  b l a n k e t  r e g i o n  was designed , t o  

have a  lower  meta l - to -wa te r  r a t i o  than the  b l a n k e t  reg ion.  Since t he  rods i n  

these two reg ions  a r e  arranged w i t h  the  same p i t c h ,  t h e  diameters o f  the  power- 

f l a t t e n i n g  b l a n k e t  rods  were made smal ler  than those i n  t he  standard b lan-  

k e t .  The power- f l  a t t e n i n g  b l a n k e t  w i t h  about a  0.100-i nch rod- to - rod  spacing 

and a  1.2 p i t ch - t o -d i ame te r  r a t i o  i s  h y d r a u l i c a l l y  coupled i n  an open l a t t i c e  

t o  t h e  s tandard b l a n k e t  w i t h  a  0.060-inch rod - t o - rod  spacing and p i t c h - t o -  

d iameter  r a t i o  o f  1  .l. Since t h e  two ad jacen t  b l a n k e t  reg ions  have d i f f e r e n t  

hydrau l  i c  r e s i  stances, d i f f e r e n t  coo l  a n t  ve l  o c i  t i e s  occur across t h e i r  i n t e r -  

f ace  (18 f t / s e c .  versus 15 f t / s e c ) .  The i n l e t  and o u t l e t  o r i f i c e s  a re  de- 

s igned  t o  appo r t i on  t h e  f l o w  t o  each b l a n k e t  r e g i o n  so as t o  min imize c ross  

f l ow.  Hydraul i c  t e s t s ,  i n c l u d i n g  a  p r o t o t y p i c  t e s t  w i t h  ' the two coupled- 

b l a n k e t  reg ions ,  v e r i f i e d  t h a t  acceptab le  f l o w  c o n d i t i o n s  e x i s t e d  between 

,these two reg ions .  

I I I. BASIS FOR PERFORMANCE. EVALUATION 

The co re  thermal -and-hydrau l ic  o b j e c t i v e  was t o  p rov i de  adequate f u e l -  

r o d  hea t  t r a n s f e r  f o r  normal, r e a c t o r  ope ra t i on  and pos tu l  a ted acc iden t  condi -  

t i o n s .  The co re  design p rov ides  c o o l a n t  c o n d i t i o n s  t o  meet t h i s  o b j e c t i v e  and 

o t h e r  f u e l - r o d  performance requirements as g iven  i n  Reference ( 2 ) .  The hy- 

d rau ' l i c  aspects  ' o f  t h e  design, Reference (11, ensure reasonable f l u i d  ve lo -  

c i t i e s  f o r  c o o l i n g  and p ressu re  d i s t r i b u t i o n s  c o n s i s t e n t  w i t h  acceptab le  

s t r u c t u r a l  loads.  Resu l t s  ob ta ined  from a n a l y s i s  and t e s t  programs descr ibed  

l a t e r  i n  t h i s  r e p o r t  and from p r i o r  PWR Core I/.PWR Core 2 design and operat. ing 

exper ience,  Zeferences ( 8 )  and (91, show t h e  core  i s  conse rva t i ve l y  designed 

f o r  ope ra t i on  a t  r a t e d  power. 

The design has been eva luated f o r  s teady-s ta te  opera t ion ,  p l a n t  

upe ra t i ona l  t r a n s i e n t s ,  and pos tu l a ted  acc iden t  c o n d i t i o n s  r e s u l  ti ng from 

o p e r a t o r  o r  equipment f a u l t s ,  us i ng  the Design Power R a t i o  (DPR) concept* and 

two thermal c r i t e r i a :  

* The DPR i s  a  numerical  i n d i c a t i o n  o f  t he  co re  power margin and i s  de f ined  as 
t h e  power t o  a t t a i n  a  thermal 1  i m i  t d i v i d e d  by t he  r e a c t o r  power r a t i n g .  
Fo r  l o s s - o f - f l o w  acc iden ts ,  t h e  r e a c t o r  power r a t i n g  i s  taken as the  maximum 
co re  power f o r  the mode o f  ope ra t i on  j u s t  before t he  acc ident .  For over-  
power acc iden ts ,  t h e  power r a t i n g  i s  taken as t h e  maximum core  power t h a t  
c o u l d  r e s u l t ,  i n c l u d i n g  al lowance f o r  a l l  p r o t e c t i o n  system u n c e r t a i n t i e s ,  
f o r  t h e  mode o f  opera t ion .  



*A; C r i t i c a l  Heat F l u x  

A c r i t i c a l  heat  f l u x  (CHF) c o n d i t i o n  s h a l l  n o t  occur  on any f u e l  

r o d  i n  t h e  core.  The minimum ,DPR f o r  t h e  CHF s h a l l  be no l e s s  than 1.05.* 

C r i t i c a l  h e a t  f l u x  rep resen ts  a c o n d i t i o n  a t  which a  small 

i nc rease  i n  hea t  f l u x  c o u l d  r e s u l t  i n  a  r e l a t i v e l y  l a r g e  inc rease  i n  t h e  f u e l  

r o d  temperature.  The CHF c o n d i t i o n  i s  d iscussed a t  l e n g t h  i n  s tandard t e x t s ,  

References (10 )  and (1  1 ) .  The f u n c t i o n a l  r e l a t i o n s h i p  of CHF w i t h  respec t  t o  

t h e  parameters o f  impor tance ( h e a t  f l u x ,  c o o l a n t  f l ow,  en tha lpy ,  p ressure  and 

geometry) has been determined exper imenta l  l y  (see  S e c t i o n  V I  I I 1. By p re -  

v e n t i n g  CHF, adequate hea t  t r a n s f e r  i s  ensured between the  f u e l  r o d  c l a d d i n g  

and r e a c t o r  coo l  an t .  

B. Flow S t a b i l i t v  

The co re  f u e l  r e g i o n  gross and l o c a l  f l o w  s h a l l  be upward and 

s t a b l e  w i t h  1  i m i t e d  l o c a l  c r o s s - f l o w  p e r m i s s i b l e .  The minimum f l o w  s t a b i l i t y  

DPR s h a l l  be no l e s s  than 1.05. 

The f l o w  s t a b i l i t y  l i m i t  r ep resen ts  a  c o n d i t i o n  a t  which a  smal l  

i n c r e a s e  i n  power c o u l d  r e s u l t  i n  an uns tab le  f l o w  c o n d i t i o n .  T h i s  1  i m i  t i s  

imposed t o  i n s u r e  t h a t  t h e  c o r e  c o o l a n t  s h a l l  n o t  e x h i b i t  e i t h e r  susta ined o r  

t r a n s i e n t  f l o w  o s c i l l a t i o n s ,  f l o w  r e v e r s a l s ,  o r  i n t e r m i t t e n t  uns tab le  f l o w  

c o n d i t i o n s  d u r i n g  s t e a d y - s t a t e  co re  opera t ion ,  normal p l a n t  t r a n s i e n t s ,  o r  

p o s t u l a t e d  a c c i d e n t  c o n d i t i o n s .  Exper imental  . t e s t s  have shown t h a t  open- 

m a t r i x  r o d  bundles such as those con ta ined  i n  LWBR a r e  i n h e r e n t l y  conducive t o  

f l o w  s t a b i l i t y  as shown i n  Reference ( 1 2 ) .  

* The DPR f o r  a  CHF l i m i t  shou ld  n o t  be confused w i t h  t h e  s tandard c r i t i c a l  
h e a t  f l u x  r a t i o  which i s  t h e  r a t i o  o f  t h e  c r i t i c a l  hea t  f l u x  a t  t h e  l i m i t i n g  
c o r e  l o c a t i o n  t o  t h e  l o c a l  heat  f l u x  a t  a  c o n s t a n t  mass v e l o c i t y  i n  the  h o t  
channel .  The c r i t i c a l  hea t  f l u x  r a t i o  can g i v e  a  f a l s e l y  h i g h  i n d i c a t i o n  o f  
t h e  power margin. The DPR i s  a  t r u e r  measure o f  c o r e  power margin than i s  
t h e  c r i t i c a l  hea t  f l u x  r a t i o ,  because i t  accounts f o r  t h e  change i n  mass 
v e l o c i t y  i n  the  h o t  channel as power i s  changed. 



Reactor p l  a n t  c o n t r o l  s  and se tpo in ts ,  toge ther  w i  t h  the  b l anke t  

and r e f 1  e c t o r  f l  ow o r i  f i c i  ng, have been es tab l  i shed t o  assure adequate 

performance wi t h  respec t  t o  the  above two c r i t e r i a .  

I V .  GENERAL ANALYTICAL PROCEDURE 

The o b j e c t i v e  o f  t he  thermal and h y d r a u l i c  ana l ys i s  i s  t o  determine a  

conse rva t i ve  s e t  o f  l o c a l  f l u i d  cond i t i ons  which de f i ne  t he  a l lowab le  power t o  

meet t h e  c r i t e r i a  p r e v i o u s l y  descr ibed. The ana l ys i  s  technique consi  s t s  o f  

f o u r  bas i c  steps. 

A. Pressure-Drop Fo rc i ng  Func t ion  

Thermal - a n a l y s i s  computer programs ( s e c t i o n  I V - D  1 determine l o c a l  

f l u i d  c o n d i t i o n s  i n  t h e  h o t  channel f o r  a  g iven i n p u t  pressure drop and power 

d i s t r i b u t i o n .  A lower-bound pressure drop a long t he  f u e l  r od  i s  de f ined  us ing  

t h e  procedures and models descr ibed  i n  Reference ( 1 ) .  ~ r i e f l y ,  t h i s  pressure 

drop i s  es tab l i shed  by means o f  a  hyd rau l i c  model o f  t he  e n t i r e  pr imary s i de  

o f  t he  p l a n t  us ing  t h e  HAFMAT computer program. Th is  program determines t he  

c o r e  f l  ow d i  s t r i  b u t i o n  and component pressure drops gJven the pump-head 

. c h a r a c t e r f s t i c s  and t h e  h y d r a u l i c  res is tances  o f  a l l  t he  loop  and core  

components. To es tab l  i sh the. pump head and component hydraul  i c  res is tance ,  

nominal va lues are de f i ned  and then unce r ta i n t y  bands are ,assigned t o  account 

f o r  to1  eranees. 'I'he HAFMA'I' ana'l y s i  s  i s  performed by apply! ng t he  unce r ta i n t y  

1  i m i t s  i n  t h e  d i r e c t i o n  o f  m in im iz ing  t he  pressure drop a long a  nominal f u e l  

r o d  channel. Table I 1  summarizes the  d i r e c t i o n  i n  which t he  l i m i t s  f o r  pump 

head and hydrau l  i c  r es i s tance  are assumed ( i  .e., minimum o r  maximum), 



TABLE I 1  

HYDRAULIC BIASES 

I tem 

Pymp-Head Curve 

Loop Loss C o e f f i c i e n t  
Reactor I n l e t  and Out1 e t  Loss 

C o e f f i c i e n t  
B a f f l e  Loss C o e f f i c i e n t  and 

Thermal. S h i e l d  

Seed 

Flow Meter Loss C o e f f i c i e n t  max 
O r i f i c e  Loss C o e f f i c i e n t  - - 
Base .P la te  Loss Coeff. max 

Rod and G r i d  LOSS Co- mi n  
e f f i c i e n t  

Seed Annulus Loss Co- 
e f f i c i e n t  

Leakage.Loss C o e f f i c i e n t  
(Core) 

B I F  Loss C o e f f i c i e n t  

B ias  

m i  n* 

max* 
max 

max 

Bl  k t .  

max 
max 

max 

Comment 

Gives !east a v a i l a b l e  pump 
head 
Max .paras i  t i c  hydrau l  i c  
l osses  t o  p rov i de  min. 
f l o w  t o  rodded r e g i o n  

- - 
max 

m i  n  Gives m i  n. i n-core pressure 
drop 

Maximizes bypass f l o w  
i n  para1 l e l  wi th .  rodded 
r e g i o n  . 

* "minll i s  minimum. 
"max" i s  maxlmum. 



A f u e l  - r eg ion  and time-dependent c rud  depos i t i on  model, Reference 

(131, i s  a1 so used t o  produce a  c o r e  1  i fetime-dependent pressure-drop f o r c i n g  

f u n c t i o n  f o r  each o f  t h e  f o u r  pr imary f u e l  reg ions  o f  the  core. Th i s  

pressure-drop f o r c i n g  f u n c t i o n  i s  ad jus ted  t o  account f o r  the  p o s s i b i l i t y  o f  

f l o w  m a l d i s t r i b u t i o n  r e s u l t i n g  from i n l e t  and o u t l e t  plenum e f f e c t s  and 

p r e f e r e n t i a l  c rud  as discussed i n  Sect ion V I .  

B. ~aximurn Resi stance Thermal Model 

To account f o r  the p o s s i b i l i t y  t h a t  one l o c a l  p o r t i o n  o f  a  core 

f u e l  r e g i o n  c o u l d  have a  maximum hydraul  i c  r es i s tance  ( i  .e., a  h o t  channel 1, 
and t h e r e f o r e  reduced f lows, thermal models f o r  each reg ion  o f  the core a re  

e s t a b l i s h e d  assuming t h a t  a l l  res is tances  f o r  f u e l  rods and g r i d s  are a t  the  

maximum s ide  o f  t h e i r  u n c e r t a i n t y  bands. Th i s  maximum res i s tance  model , a1 ong 

w i t h  t h e  minimum pressure-drop f o r c i ng .  f unc t i on ,  ensures t h a t  a  conserva t i ve  

hydrau l  i c  env i  ronment i s es tab l  i shed. 

C. Hot Channel Allowances 

Thermal a n a l y t i c a l  models (descr ibed  i n  Sec t ion  V) assume nominal 

r od - t o - rod  spacing over the  e n t i r e  l e n g t h  o f  the  f u e l  rods. The ac tua l  

spacing v a r i e s  because o f  g r i d  dimensional to1 erances and p o t e n t i a l  f u e l  rod  

e f f e c t s  such as bowing and c l  adding d i  amet ra l -sh r i  nkage, grooving, oval  i t y  and 

wear. To account f o r  these e f f e c t s ,  power p e n a l t i e s  f o r  the h o t  channels a re  

de f ined .  S i m i l a r l y ,  mechanical e f f e c t s  producing p o t e n t i a l  heat  f l o w  

asymmetry a f f e c t i n g  entha l  py r i s e  and l o c a l  heat  f l u x  peaki ng a re  

considered. These e f f e c t s  i n c l u d e  p e l l e t s  stacked o f f  cen te r ,  c l add ing  

oval  i ty, and fo rmat ion  o f  i n t e r - p e l l e t  a x i a l  gaps a1 ong the f u e l  p e l l e t  

s tack.  The h o t  channel al'lowances are d e t a i l e d  i n  Sect ion V I .  



D . Thermal Capabil  i t y  

The above , th ree  steps and the  co re  power d i s t r i b u t i o n  a re  used 

w i t h  bo th  two- and three-dimensional  d i g i t a l - compu te r  programs t o  determine 

t h e  thermal c a p a b i l i t y  o f  t h e  core.  These programs a re  XITE, Reference (141, 

and HOTROD, Reference (15) .  I n  t he  ana l ys i s  procedure, t he  en tha lpy  r i s e  i n  

t he  h o t  channel i s  c a l c u l a t e d  by us ing  a subchannel mode1 o f  t he  f ue l  reg ions  

which descr ibes t he rma l l y  1  i m i t i n g  rods i n  d e t a i l  (see Sec t ion  V). Besides 

t h e  l i m i t s  app l i ed  t o  r e a c t o r  p l a n t  c o n t r o l s ,  a l lowances a re  inc luded  f o r  such 

i tems as manufactur ing to1  erances, crud, and u n c e r t a i n t i e s  i n  t he  a n a l y t i c a l  

o r  'empi r i c a l  d e s c r i p t i o n s  used f o r  nucl  ear,  thermal , and hydraul  i c phenomena 

which occur i n  t h e  core.  

Overpower acc iden ts  a re  eva luated by t h e  s teady-s ta te  HOTROD 

program a t  a  r e fe rence  coo lan t  temperature and pressure and an i n i t i a l  power 

l e v e l .  The i n i t i a l  power i s  ad jus ted  by the  program t o  f i n d  t he  l e v e l  a t  

which CHF j u s t  occurs f o r  t he  pressure drop imposed on t h e  h o t  channel. 

HOTROD i s  a1 so used t o  eva lua te  s teady-s ta te .  bu l  k  b o i l i n g .  Loss -o f - f l ow 

acc iden ts  a re  analyzed us ing  bo th  t h e  HOTROD and t r a n s i e n t '  XITE programs w i t h  

t r a n s i e n t  decay f u n c t i o n s  ca l  c u l  a ted  by t he  XITE (Reference (14 )  1, PARK 

(Reference (16 ) ) ,  and FIGRO (References (171, (18)  and ( 1 9 ) )  computer 

programs. The. XITE program i s  a1 so used t o  eva lua te  f l  ow s t a b i l  i t y .  

The XITE program t r e a t s  two-dimensional conserva t ion  o f  mass, 

~nanenturn and energy, a1 ong w i t h  t h e  CHF and pressure-drop c o r r e l a t i o n s  

descr ibed i n  Appendix A. The t ime  d e r i v a t i v e  o f  f l u i d  d e n s i t y  i s  i nc l uded  i n  

t he  c o n t i n u i t y  equat ions so t h a t  r a p i d  t r a n s i e n t s  can be analyzed. For  

t r a n s i e n t s ,  t he  t ime  v a r i a t i o n  i n  power, i n l e t  entha lpy,  pressure,  and e i t h e r  

mass v e l o c i t y  o r  channel pressure drop a re  imposed as t r a n s i e n t  d r i v i n g  

func t ions .  

The HOTROD program i s  s i m i l a r  i n  concept t o  the three-dimensional  

COBRA-I I program (Reference (20) 1 , w i t h  improvements made i n  t h e  numerical  

techniques and c o r r e l a t i o n s .  L i k e  XITE, t h e  HOTROD program pe rm i t s  a  smal l  

amount o f  coo l  a n t  m i x i  ng caused by t he  t ransverse  r e d i  s t r i  b u t i o n  o f  f l  ow among 



t h e  subchannels t o  s a t i s f y  an a x i a l  momentum balance. I n  add i t i on ,  a  m ix ing  

model (Reference (21 )  ) i s  i nco rpo ra ted  i n t o  HOTROD t o  descr ibe  t he  t u r b u l e n t -  

eddy-di f f u s i o n  mix ing  o f  ad jacen t  cool  a n t  streams i n  bo th  t he  s i ng le -  and two- 

phase c o o l a n t  s t a t e s  o f  t h e  f l u i d .  Th is  m ix ing  e f f e c t  reduces t ransverse  

en tha l  py g rad ien t s  caused by t h e  nonuni form t ransverse  power d i  s t r i  b u t i o n  i n  

t h e  r o d  a r ray ,  and so HOTROD r e a l  i s t i c a l l y  p r e d i c t s  a  h igher ,  b u t  s t i l l  

conserva t i ve ,  power c a p a b i l i t y  compared t o  XITE. The HOTROD model ing 

o therw ise  i nco rpo ra tes  t h e  same c o r r e l a t i o n s  and parameters as does XITE. 

A  summary o f  t h e  core  thermal capab i l  i t y  for. 1  i m i  t i n g  acc idents ,  

as determined by the above a n a l y s i s  procedure, i s  presented i n  Sect ion V I I .  

V. ANALYTICAL MODELS FOR XITE AND HOTROD 

A. XITE Models 

The X I T E  seed model used t o  eva lua te  CIiF, shown i n  F igu re  14, 

s imu la tes  t h e  e q u i l a t e r a l  t r i a n g u l a r  a r r a y  o f  619 rods i n c l  uding t he  annular  

channel formed by the seed s h e l l  (which con ta ins  one-inch-diameter ho les t o  

min imize t ransverse  pressure d i f f e r e n t i a l s )  and the  s t a t i o n a r y  b l anke t  guide 

tube. The model i s  composed o f  10 t r a c k s  each d e p i c t i n g  an annular  hexagonal 

p o r t i o n  o f  t h e  module r o d  a r ray .  Each t r a c k  i s  descr ibed by an app rop r i a te  

heated per imete r ,  wet ted per imete r  and f l ow  area assoc ia ted w i t h  t he  t o t a l  

number o f  rods w i t h i n  and t h e  boundary c h a r a c t e r i s t i c s  o f  t h e  g iven  t r a c k  

c ross  sec t ion .  Wi th  t h i s  represen ta t ion ,  each r o d  o f  a  g iven t r ack  i s  

ass igned t h e  h i ghes t  power i n p u t  o f  any rod  assoc ia ted  w i t h  t h a t  s p e c i f i c  

t r ack .  The azimuthal power i s  thus considered un i fo rm and maximized. Each 

t r a c k  i s  a x i a l l y  d i v i d e d  i n t o  t h i r t y  c o n t r o l - v o l  ume increments.  
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I n  F i g u r e  14, Tracks 1, 2  and 3 d e p i c t ' s e v e r a l  phys ica l  rows o f  

rods  i n  t h e  i n n e r  p a r t  o f  t h e  seed reg ion  where t he  r a d i a l  power i s  uni form. 

Tracks 4 and 5  represen t  t he rma l l y  l i m i t i n g  rods i n  Row 11, which i s  

subd iv ided  i n t o  an i n n e r  h a l f  (Track 4 )  and-an ou te r  h a l f  (Track 5) .  Rod Row 

11 i s  d i v i d e d  i n  t h i s  way t o  account f o r  the e x p l i c i t  power g rad ien t  which 

e x i s t s  i n  t h i s  r o d  row as a  r e s u l t  o f  i t s  l o c a t i o n  ad jacent  t o  rod  rows (Nos. 

12 through 15 corresponding r e s p e c t i v e l y  t o  Tracks 6  through 9) o f  d i f f e r e n t  

f u e l  composi t ion and f u e l  s tack leng th .  Track 10 represents  an unheated 

annulus bounded by t h e  seed s h e l l  and the b l anke t  guide tube. 

.Two methods f o r  hydraul  i c  r ep resen ta t i on  o f  t he  g r i d s  have been 

s tud ied .  These i nc l ude  . ( 1  an e x p l i c i t  r ep resen ta t i on  of the  g r i d  hydraul  i c  
l o s s  c o e f f i c i e n t  w i t h i n  t he  c o n t r o l  volume corresponding t o  t he  a x i a l  l o c a t i o n  

o f  t he  g r i d ,  and (2 )  a  d i s t r i b u t i o n  o f  t he  t o t a l  g r i d  l o s s  c o e f f i c i e n t  i n  

p r o p o r t i o n  t o  t h e  a x i a l  l e n g t h  o f  each c o n t r o l  volume ( t o t a l  o f  30). The 

1  a t t e r  method r e s u l t e d  i n  the  most conserva t i ve  ( 1  owest) p r ~ d i c t i o n  o f  

a1 lowab le  core  power and i s  t he  one used f o r  eva lua t ion .  

Simi 1  a r  thermal model s  were cons t ruc ted  f o r  the standard h l  a-nket., 

power - f l a t t en ing  b lanke t ,  and r e f l e c t o r  as shown i n  F igures  15, 16 and 17. As 

i n  t h e  seed model, t he rma l l y  l i m i t i n g  rod  rows were subdiv ided i n t o  t r acks  t o  

a1 1  ow t o r  t h e  e x p l i c i t  r ep resen ta t i on  o f  t he  r a d i  a1 power g rad ien t .  Posts , 

used f o r  g r i d  support  were conse rva t i ve l y  dep ic ted  as power-producing rods. 

The method of g r i d  s imu la t i on  used f o r  the  seed was a l so  a p p l i e d  t o  t he  

b l a n k e t  and r e f 1  e c t o r  model s. 

For  f l ow  s t a b i l i t y  c a l c u l a t i o n s ,  t he  XITE model dep i c t s  a  s i n g l e  

r o d  a t  t he  h o t t e s t  power i n  the  f u e l  reg ion.  A 5-percent pu lse  o f  0.1-second 

. d u r a t i o n  i s  app l i ed  t o  the  hat-channel pressure drop and the res111t.snt. flows 

a re  examined f o r  s t ab le  performance ( i  .e., damped response). 
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B. HOTROD Models 

Three-dimensional  HOTROD models p resen t  a more exac t  thermal-  

h y d r a u l i c  r e p r e s e n t a t i o n  o f  t he  f l o w  area surrounding t he  f u e l  rods than do 

t h e  XITE two-dimensional  hot-channel  t r a c k  models. The HOTROD model s were 

a p p l i e d  t o  a t o t a l  o f  38 thermal ana l ys i s  b locks,  shown i n  F i gu re  18, which 

mapped t he  power d i s t r i b u t i o n  w i t h i n  the  one -s i x t h  symmetrical core., 

The f u e l - r o d  and f l ow  areas i n  t h e  HOTROD subchannels a re  

descr ibed  by a hexagonal t r a c k  arrangement whereby t he  subchannels enclose t he  

f u e l  rods.  I n  t h i s  subchannel arrangement, the  h o t t e s t  subchannels have 

greater d e t a i l  than t h e  c o o l e r  subchannels ( t h rough  us ing  hal f -hexagonal  

subchannel s s i m i l  ar  t o  t he  XITE ha1 f - t r a c k  concept) .  The subchannel s 

enc los i ng  t he  h o t t e s t  rods a r e  surrounded by a b u f f e r  zone of ad jacen t  

subchannels. These b u f f e r  subchannels p rov ide  a t r a n s i t i o n  zone away from the  

h o t t e s t  subchannels by p e r m i t t i n g  a gradual i nc rease  i n  t he  s i z e  o f  t he  

c o n t r o l  volumes t o  i n c l u d e  more f u e l  rods w i t h i n  a subchannel. The b u f f e r  

model ensures t h a t  t h e  thermal l i m i t  i s  reached f i r s t  i n  the  subchannels 

enc los i ng  t h e  h o t t e r  rods, s i nce  t h e  b e n e f i t s  o f  t ransverse  m ix i ng  a re  reduced 

by  t h e  b u f f e r  subchannel s. Th i s  model p r e d i c t s  lower  power l e v e l  s t o  reach 

thermal 1 i m i  t s  compared t o  a model o f  l e s s e r  subchannel d e t a i l .  

The hexagonal subchannel s a re  used i n  t he  LWBR e v a l u a t i o n  i ns tead  

o f  an a l t e r n a t e  t r i a n g u l a r  subchannel arrangement f o r  de te rmina t ion  o f  co re  

thermal performance because: 

( 1  ) The hexagonal subchannel s p rov i de  a means o f  keeping rods w i t h  

d i  s s i m i l  a r  hea t  f l  uxes i n  d i  f f e r e n t  subchannel s, thus  p r e d i c t i  ng t he  i n c e p t i o n  

o f  nuc l ea te  b o i l i n g  a t  lower  power l e v e l s .  

( 2  1 The hexagonal subchannel ( s )  , each enc los ing  the  rod(  s)  , tend  

t o  inc rease  the  en tha lpy  r i s e  f o r  such r o d ( s ) .  A comparison o f  t he  hexagonal 

and t r i a n g u l a r  subchannel concepts showed t h e  hexagonal model t o  be 

conserva t i ve .  
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( 3 )  The hexagonal subchannel s  b e t t e r  represen t  annular  f l  ow 

which i s  cons idered t o .  e x i s t  a t  t h e  1  i m i  t i n g  l o c a t i o n .  

1. Seed Model 

Th i s  HOTROD three-dimensional  model (F i gu re  19) represents  a  

1/6 s e c t i o n  o f  a  seed assembly i n  t he  core. The seed model was used t o  

t h e r m a l l y  analyze the  h o t t e s t  sec to r  w i t h i n  the  Type I module, as w e l l  a s ' l e s s  

1  i m i  ti ng sec to rs  o f  t h e  seed r e g i o n  f o r  t h e  Type I, Type I I, and Type I 1 1  

modules. The model, which i nc l udes  hnth the  heated rod  p o r t i o n s  and the  . 

unheated f l o w  annulus between t he  seed s h e l l  and b lanke t  guide tube, i s  

d i v i d e d  l'!rlu 36 subchann~ l s .  A t o t a l  o f  103-1/6 seed . rods a re  represented by 

t h i r t y  power source rods  as shown i n  F igu re  19. The l i m i t i n g  subchannel, No. 

12, i s  surrounded by smal l  subchannels. 

Subchannels Nos. 29 through 31 con ta in  t h e  ou te r  row o f  f u e l  

r ods  which a re  bounded by t h e  i n n e r  sur face o f  t he  seed suppor t  s h e l l .  I n  the  

model, these subchannels a re  in te rconnec ted  (assuming n e g l i g i b l e  h y d r a u l i c  

r e s i s t a n c e )  a t  a1 1  a x i a l  l e v e l s  w i t h  the  subchannel s  (Nos. 33 through 36) 

d e f i n i n g  t h e  unheated f l ow  annulus. Th is  t reatment  permi ts  maximum 

r e d i s t r i b u t i o n  o f  coo lan t  f r om the  heated rod  reg ion  i n t o  the  annulus. thereby 

reduc ing  coo l  a n t  a v a i l  ab le  t o  t he  rods. The model ing o f  t he  f l o w  annulus as 

an i n t e g r a l  p a r t  o f  t h e  f u e l  r e g i o n  w i t h i n  the module i s  t he  same as t h a t  

employed i n  t he  XITE modeling. Since t he  ac tua l  communication o f  heated f l u i d  

w i t h  t he  annulus i n  f a c t  i s  l i m i t e d  t o  the  d i s c r e t e  a x i a l  l e v e l s  corresponding 

t o  t h e  f l o w  ho les  ( w i t h  f i n i t e  hydraul  i c  r es i s tance )  i n  the  seed she1 1  , t h i s  

t r ea tmen t  has been shown t o  be c a l c u l a t i o n a l l y  conserva t i ve  f o r  p r e d i c t i n g  a  

thermal 1  im i  t. 
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2. B lanke t  Model 

The HOTROD three-d imensional  b l a n k e t  model, F i g u r e  20, 

r ep resen t s  a  b l a n k e t  segment i n  t h e  co re  (1/12 o f  t h e  annu la r  b l a n k e t  r e g i o n  

i n  a  Type I, module) . T h i s  model consi  s t s  o f  t h i r t y - f o u r  subchannel s  w i t h  

t h i r t y - s e v e n  heated rods  (and one-ha1 f o f  a ' s t r u c t u r a l  p o s t )  represented b y  

t h i r t y  power source rods. I n  c o n t r a s t  t o  XITE, t h e  p o s t  i s  r e a l i s t i c a l l y  

represen ted  w i t h  low hea t  ou tpu t  based on gamma hea t ing .  Subchannel No. 21 i s  

t h e r m a l l y  l i m i - t i n g  and i s  surrounded by smal l  subchannels hav ing s i m i l a r  

geoinetry. The p o r t i o n  o f  t h e  b l a n k e t  modeled i s  t h e  h o t t e s t  segment w i t h i n  

t h e  Type I module. The model was a l s o  appl i e d  t o  geome t r i ca l l y  s i m i l a r  b u t  

t h e r m a l l y  l e s s  1  i m i  t i n g  segments w i t h i n  t h e  Types I, I 1  and I 1  I modules, as 

shown i n  F i g u r e  18. 

3 .  B lanke t  and Power-Fl a t t e n i  ng-Bl anket  I n t e r f a c e  Model 

The model o f  t he  i n t e r f a c e  between the  b l a n k e t  and power- 

f l a t t e n i n g  b l a n k e t  reg ions ,  as w e l l  as t h e  boundary between t h e  Type I I and 

Type I 1 1  modules, F i g u r e  21, combines t he  coupled, b u t  d i f f e r e n t ,  h y d r a u l i c  

c h a r a c t e r i s t i c s  and power d i s t r i b u t i o n s  o f  these two f u e l  r o d  reg ions .  ( I n  

t h e  XITE t reatment ,  t h e  b l a n k e t  and power - f l a t t en i ng  b l a n k e t  reg ions  a re  

sepa ra te l y  modeled, as i f  hydrau l  i c a l  l y  , i s o l a t e d )  . The i n t e r f a c e  model 

c o n s i s t s  o f  f o r t y .  subchannel s, e igh teen  f g r  the  b l a n k e t  and twenty-two f o r  t he  

p o w e r - f l a t t e n i n g  b l a n k e t  reg ions.  The f i f t y - t w o  heated rods and two posts  a re  

represen ted  by t h i r t y  power source rods. The h o t t e s t  subchannels (Nos. 6, 14, 

23 and 35)  a re  assumed i n  t h e  model t o  have no c o o l a n t  m i x i ng  w i t h  t h e  

ad jacen t  unheated and thus c o l d e r  subchannel No. 28. S tud ies  showed t h i s  

t r ea tmen t  produces more conse rva t i ve  (1  ower) power p r e d i c t i o n s  t o  reach 

thermal l i m i t s  than had been noted when these h o t  subchannels were d i r e c t l y  

coup1 ed t o  t h e  c o l d e r  subchannel No. 28. 

4 .  Type I V  R e f l e c t o r  Model 

F i gu re  22 shows one-ha l f  o f  the  symmetrical Type I V  r e f l e c t o r  

r eg ion .  Th i s  model cons i  s t s  o f  twenty-one subchannel s  which i n c l  ude one- 

hundred and. fou r teen  r e f l e c t o r  rods represented by twenty-one power source 

rods. The t he rma l l y  1  i m i  t i n g  subchannel s  (Nos. 1, 2, 3, .4 and 7 )  a re  shown 

w i t h  more d e t a i l  so t h a t  a  t r a n s i t i o n  i n  subchannel f l ow area toward the  

c o o l e r  zones i s  prov ided.  
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V I .  HOT CHANNEL ALLOWANCES 

Off-nominal  nuc lear  and mechanical cond i t i ons  were accounted f o r  i n  

t h e  thermal ana l ys i  s  by i n c o r p o r a t i  ng h o t  channel a1 1  owances. These i nc l  ude 

v a r i a t i o n s  i n  l o c a l  ( h o t  subchannel ) parameters which a f f e c t  l o c a l  f l o w  and 

hea t  addi  t i  on. 

A. Nuclear A1 1  owances 

Unce r ta i n t y  f a c t o r s  f o r  entha lpy r i s e  and l o c a l  heat  f l u x  

a p p r o p r i a t e  t o  t he  nuc lea r  m ~ d e l  of the  core, which model i s  descr ibed i n  

Reference (22 ) ,  accounted f o r  p o t e n t i a l  v a r i a t i o n  between nomi nal-and worst- 

case power i n  t h e  h o t  subchannels. These f ac to r s ,  shown i n  Table 111-A and 

d iscussed i n  Refe rence ' (4 ) ,  were incorpora ted  i n t o  the XITE and HOTROD models 

t o  account f o r  ( a )  t h e  e f f e c t  o f  movabl e-fuel-assembly m i  sa l  ignment which 

cou l  d  cause power asymmetry and ( b )  d i f f e rences  between nuc lear  a n a l y t i c a l  

c a l c u l a t i o n s  and nuc lear  mockup experiments. Tab1 e  11 I-B presents  f a c t o r s  

which account f o r  o f f - e q u i l  i b r i u m  poison cond i t i ons  due t o  power changes, such 

as swi ngload opera t ion  and shutdowns, which a f f e c t  co re  power d i s t r i b u t i o n .  

B  . Engi  nee r i  ng (Mechanical ) A1 1  owances 

The engineer ing f a c t o r s  account f o r  v a r i a t i o n s  i n  manufactur ing 

to le rances ,  v a r i a t i o n s  i n  f u e l  r od  a t t r i b u t e s ,  and poss ib l e  b iases i n  f l o w  
d i s t r i b u t i o n .  These f ac to r s  a re  descr ibed i n  two ca tego r i es  be1 ow. 



TABLE I 1 1  

A. Nuc lear  U n c e r t a i n t y  F a c t o r s  

Seed Reaion 

Exper imen t l ca l  c u l  a t i o n  

T o t a l  F a c t o r  

B l a n k e t  Region 

Loca l  Heat  F l u x  
Fuel  Rod Rows 

Rod Power (En tha l  py)  
A1 1 Rod Rows 

Local  Heat F l u x  Rod Power (En tha l  D V )  . "  - 
Fuel  Rod Rows. Fuel  Rod Rows 

1-2 3 4 - - 5 -6 - 1 - V  - - 5-6 

S teady -s ta te  
overpower* 

T o ~ a l  F a c t o r  

* I n c l u d e s  module m isa l  ignment,  ca; o r i m e t r i c  i n s t r u m e n t  accuracy,  and genera to r  l o a d  c o n t r o l  v a r i a t i o n .  



TABLE I 1 1  ( con t ' d )  

Power-Fl a t t e n i  ng Blanket i eg ion  

Local; Heat Flux Rod Power (En tha l  py) 
Fuel Rod Rows A1 1 Rod Rows 

- 3 - - - 

Experiment/Cal cu l  a t i o n  1.235 1.193 1.160 

Steady-state 
overpower* 

Tota l  T a c t o r  

Ref1 e c t o r  Blanket  Region 

Experiment/Cal cu l  a t i o n  

Steady-state overpower* 

Local Heat Flux Rod Power (En t h a l  py) 

Tota l  Fac tor  

* I n c l  udes modul e m i  sal ignment, ca l  o r ime t r i c  inskrumeqt accuracy and generator 1 oad con t ro l  va r i a t i on .  

** Time dependent gamma heat ing fac to rs  were appl i e d  i n  add i t i on  t o  these factors.  The v a r i a t i m  i n  gamma heat ing  
f a c t o r s  f o r  rod row 1 i s  3.80 t o  1 .Q1 and . f o r  o ther  rod rows i s 2.20 t o  1.00. 



TABLE 111 (con t ' d )  

B. Thermal Of f -Equi l  i b r i  urn Factors 
(Re la t i ve  t o  Eau i l i b r i um Poison Power D i s t r i b u t i o n )  

Core 
L i  fet ime, Seed ~ e g i o n '  B lanket  Region f 
Hours Local Heat -Power F lux  (Enthal py ) Local Heat F lux  Rod Power (Enthalpy) 

1  OO* 1 .o 

1,000 1.015 

3,000 1  .048 

5,000 1.039 

10,000 1  .013 

i4,500 1.038 

* Core i s  o f f - e q u i l i b r i u m  a t  0  and 100 hours. 

.1 A1 so ,appl ies t o  power- f la t ten i  ng b lanket  and r e f l e c t o r .  



1. Heat I n p u t  Ho t  Channel Fac to r s  

Allowances f o r  v a r i a t i o n s  from nominal fue l .  l o a d i n g  and f o r  

hea t - f l  ux e c c e n t r i c i t y  were de f i ned  t o  account f o r  to1 erances on hot-channel 

h e a t  i n p u t .  Measured manufactur ing data on f i s s i l e  con ten t  o f  t h e  f u e l  

p e l l e t s  were examined ahd used t o  e s t a b l i s h  a s e t  of conserva t i ve  f u e l  l o a d i n g  

f a c t o r s  f o r  l o c a l  and r id-average hea t  f luxes.  These f a c t o r s  a r e  shown i n  

Table I V .  

H e a t - f l  ux e c c e n t r i c i t y  e f f e c t s  were a1 so evaluated f o r  t h e i r  

impact on en tha lpy  r i s e  and 1 ocal  heat  fl ux. Allowance was made f o r  p o t e n t i a l  

Increased hot-Channel enthalpy r i s e  f o r  a f u e l  p e l l e t  stack t h a t  cou ld  be 

e c c e n t r i c a l l y  l o c a t e d  i k s i d e  a f u e l  rod  and f o r  oval  c ladding.  Local hea t -  
I 

f l u x  sp ikes  due t o  any 1 ocal  pe l  l e t  e c c e n t r i c i t y  w i t h i n  t he  c ladding,  

nonuni form d i s t r i b u t i o n  o f  f u e l  p o r o s i t y  w i t h i n  t h e  p e l l e t s ,  c l add ing  o v a l i t y ,  

and a x i a l  pe l  l e t  gaps were a1 so considered. Based on hea t - f lux -sp ike  CHF 

t e s t s ,  performed a t  B e t t i  s ( ~ e f e r d n c e  (23) and e l  sewhere (Reference (24) ),  
. 

these i tems were determined t o  have no e f f e c t  on CHF. 

2. Channel 1 Flow Hot Channel Fac to rs  

Manufactur ing to lerances,  f ue l -  r o d  mechanical c h a r a c t e r i s t i c s ,  

and pressure m a l d i s t r i b u t i o n s  a t  t he  f ue l - r eg ion  i n l e t  and o u t l e t  cou ld  

i n f l u e n c e  t he  fl ow i n  t h e  h o t  channel . These e f f e c t s  were covered by t he  use 

o f  hot-channel f a c t o r s  ifor r od  bowing, r od  p i t c h ,  and f l o w  m a l d i s t r i b u t i o n .  

The corresponding f a c t o r s  a r e  g iven i n  Table I V  and a re  descr ibed below. 



- - 
TABLE I V  

HOT CHANNEL FACTORS. 

Rod Power (Entha l  py)  Factor  Local Heat F lux  Fac to r  
Power-Fl a t t e n i  ng Power-Flat tening 

Seed Bl  anke-, Blanket  Ref1 ec to r  Seed B lanket  B lanket  R e f l e c t o r  

1. Fuel Loading ( a l l  1'.008 1.004 1.004 
l i f e t i m e s )  

2. Fuel P e l l e t  Eccen- 1.012 1.005 1.005 1.02 1 .OOO 1 .OOO 1 .OOO 1 .ooo 
t r i c i t y  !a1 1 l i f e t i m e s )  

between l i f e t i m e s  
.shown) 

1.05 ( a t  11 Hrs) 1.05 ' ( a t  0 Hrs)  
1.922 1.07 (>O : i r s )  1.07 1.07 1.022 1.07 ( > O H r s )  1.07 

100 Haurs 1.922 1.07 1.07 1.07 1 .022 1.07 1 .01 1.07 

13,000 Hours 1 .D29 1 .01 1 .Of 1 .01 1.029 1.07 1 .O/ 

14,500 Hours 1.030 1 :07 1.07 1.07 1.030 1.07 1.07 1.07 

18,000 Hours 1.039 1.07 1 .O? 1.07 1.039 1.07 1.07 1.07 

4. ~ o d  P i  tclh ( I i near 
between 1 i fet imes 
shown) 

0 Hours 
3,000 b u r s  
5,000 Hours 

10,000 Hours 
18,000 Hours 

5. Flow 
Wedi s t r i b u t i o n *  

a. Plenum f a c t o r  1.335 1.04 1.04 1.07 

ib. P r e f e r e n t i  a1 Var ies  from 1.0 t o  1.05 depending on t ime i n  l i f e .  
c rudd i  ng Sane f o r  a l l  regions.  

iFApplied t o  reduce f l ow  r a t h e r  than power. 



Hot channel fac tors  f o r  rod bowing were a n a l y t i c a l l y  

developed, based on power p e n a l t i e s  der ived from e x p l i c i t  considerat ion o f  

bowing between gr ids .  I n  t he  analys is ,  th ree  rods were permi t ted  t o  bow t o  a 

p r o x i m i t y  o f  .009, .011, and .017 inch  i n  the seed, b lanket ,  and r e f l e c t o r  

regions,  respec t i ve l y .  These values are  compatible w i t h  the ob jec t ives  o f  the 

fue l - rod /gr id -suppor t  design t o  mainta in spacings t h a t  would preclude s i g n i -  

f i c a n t  adverse CHF e f f e c t s .  The bowing ho t  channel f a c t o r  was determined as a 

CHF power pena l ty  and, therefore;  was inc luded on both enthalpy and heat f l u x .  

The h o t  channel f a c t o r  f o r  rod p i t c h  accounts f o r  v a r i a t i o n s  

i n  t he  hot-channel f l ow  area due t o  g r i d -ce l  l p i t c h  tolerances, rod diameter 

to1 erances, f ue l  -rod-c l addi ng diameter shrinkage, c l  addfng oval 1 t y ,  cl  add1 ng 

grooving (shr inkage i n t o  pel  l e t  tapers) ,  and c ladd ing  wear. Reference ( 3 )  

prov ides  add i t i ona l  d e t a i l s  on these condi t ions.  A1 1 o f  these e f f e c t s  s h i f t  

r od  cen te r  l i n e s  r e l a t i v e  t o  each o ther  and, therefore,  a f f e c t  f low area. 

These e f fec ts  were evaluated on a worst-case basis  us ing an expl i c i t  thermal 

ana lys i s  model. 

Allowances were a1 so app l ied  t o  the h o t  channel f low t o  

account f o r  po ten t i a l  non-uni formi t y  i n  i n l e t - a n d - o u t l e t  reactor-vessel plenum 

pressure and v a r i a t i o n s  i n  crud deposits.  These allowances assumed t h a t  the 

f l ow  was reduced along the e n t i r e  length  o f  the  channel. 

V I  I . SUMMARY OF THERMAL PERFORMANCE 

A. C r i t i c a l  Heat f l u x  Performance 

Thermal eva lua t i on  o f  the core has demonstrated t h a t  the minimum 

thermal margin t o  CHF occurs dur ing  postu lated accidents. The accidents 

considered i n c l  ude over-steam demand, 1 oss-of-coolant (under f l  ow), inadver ten t  

scram o f  an i n d i v i d u a l  movable f u e l  assembly, continuous withdrawal o f  the 

bank o f  movable fue l  assemblies, low pressure, and co ld  water accidents. Each 

o f  these accidents has been evaluated i n  d e t a i l  (see Reference (13) ) .  

Table V summarizes the  core thermal performance i n  terms.of  the 

minimum power r a t i o  f o r  steady-state operat ion and worst-case t rans ien ts .  The 



TABLE V 

SUMMARY OF THE MINIMUM POWER RATIOS 

FOR LWBR STEADY-STATE/TRANSIENT,CONDITIONS 

Cond i t ion  

1. Nominal steady s t a t e  

2. Design steady s t a t e  (109% o f  r a t e d  power) 

3 .  R e a c t i v i t y  i n s e r t i o n  t r a n s i e n t  (126% o f  r a t e d  power) 

4. Loss o f  f l ow  acc iden t  (109% o f  r a t e d  power) 

5. Loss o f  pressure acc iden t  ( a t . t h e  low scram 

s e t p o i n t  and 109% o f  r a t e d  power) 

6. Steam. 1 i ne rup tu re  acc iden t  

Minimum Power R a t i o  

>2 .o 



performance i s  based upon t he  a s - b u i l t  nuc lear  power d e s c r i p t i o n  w i t h  the 

r e a c t o r  a t  f u l l  f low. As noted i n  the  t ab le ,  t h e  most t he rma l l y  l i m i t i n g  

a c c i d e n t  i s  an overpower r e a c t i v i t y - i n s e r t i o n  t r a n s i e n t  w i t h  a  minimum DPR of 

F i g u r e  23 shows t h e  li fe t ime CHF power c a p a b i l i t y  exceeds 100 

pe rcen t  o f  r a t e d  power f o r  b o t h  t h e  overpower and under f low accidents.  The 

d i s c o n t i n u i t y  i n  power c a p a b i l i t y  a t  2000 hours i s  a  r e s u l t  o f  t he  assumed 

c r u d  model. F i gu re  24 shows a  balance between seed and b lanke t  power 

capab i l  i t y  has Seen achieved. A d iscuss ion  of t he  core thermal response t o  

t h e  1  i m i  t i ng overpower and u n d e r f l  ow acc idents  f o l l  ows. 

1  . OverpoNer Acc iden t  

The most 1  i m i  ti ng overpower acc iden t  i s the  power-range 

r e a c t i v i  t y - i n s e r t i o n  t r a n s i e n t  (RIT) .  The RIT r e s u l t s  from cont inuous upward 

mo t i on  o f  t he  movable f u e l  bank ( i .e., a1 1  twe lve  seed assembl i e s  move upward 

simul taneouslg , resu l  ti ng i n  a  ramp-type power, inc rease) .  An RIT i nvol v i  ng 

outward mot ion o f  l e s s  than twe lve  movable f u e l  assemblies i s  prevented by 

i n t e r l o c k s .  The maximum power reached i n  t h e  h o t t e s t  r eg ion  o f  the  core  f o r  

t h e  CHF- l im i t ing  RIT t r a n s i e n t  i s  equ i va len t  t o  126 percen t  o f  the  stead,y- 

s t a t e  core  power. The acc iden t  i s  te rmina ted  by e i t h e r  t he  reacto'r  operator ,  

t h e  h i g h  power- to- f l  ow i n s e r t i o n  se tpo in t ,  t h e  h i gh  power - to - f l  ow scram 

s e t p o i n t ,  o r  t he  h igh-coo l  ant- temperature ITh)  scram se tpo in t .  Since t h e  

movable-fuel  -assembly bank RIT i s  a  re1 a t i v e l y  slow t r a n s i e n t ,  t he  thermal 

eva l  ua t i ons  have been based on a  conserva t i ve  s teady-s tate ana l ys i s  w i t h  t he  

c o r e  a t  126 pe rcen t  o f  r a t e d  power. 



FIGURE :23. LWBR THERMAL CAPABILITY VS LIFETI'ME 
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The most thermal l y  1  i m i  t i n g  seed-and-bl anket  h o t  channels a r e  

l o c a t e d  i n  t h e  Type I modules. The Type I I and Type I1  I seed and b l anke t  f u e l  

reg ions,  t he  power-f l  a t t e n i n g  b lanke t ,  and a1 1  r e f l  e c t o r  modules have a  

g rea te r  thermal margin than t h e  Type I modules which have a  minimum DPR o f  

1.17 (equ iva l  e n t  t o  11 1-percent power capab i l  i t y )  o c c u r r i n g  a t  100 hours. A t  

100 hours, t h e  minimum DPR va lues f o r  t h e  Type 11 and Type I11 modules and t h e  

power- f l  a t t e n i n g  b l a n k e t  r e g i o n  a re  1.22, 1.37, and 1.47, r e s p e c t i v e l y ,  and 

t h e i r  thermal margin increases t h e r e a f t e r  throughout  l i f e .  The core  thermal 

margin increases e a r l y  i n  l i f e  w i t h  t he  upward mot ion o f  t h e  movable f u e l  

bank, which r e s u l t s  i n  a  more f avo rab le  power d i s t r i b u t i o n .  The Type I seed 

i s  t he  t he rma l l y  1  i m i t i n g  co re  r e g i o n  u n t i l  approx imate ly  6000 hours a f t e r  

which t h e  Type I b l a n k e t  r e g i o n  becomes 1  i m i t i n g .  

The r e f l  e c t o r  modul es have an i n h e r e n t l y  d i  f f e r e n t  1  i fe t ime  

thermal behav ior  than o t h e r  module types. Since t he  r e f l e c t o r  assemblies 

i n i t i a l l y  con ta i n  o n l y  t h o r i a ,  t h e  b e g i n n i n g - o f - l i f e  heat  f l u x  i s  low. Wi th  

i nc reas ing  1  i fet ime,  t h e  r e f l  e c t o r  tho r ium i s  transmuted t o  uranium-233 and 

t h e  power generated i n  the  r e f l e c t o r  rods increases.  The r e f l e c t o r  

performance c a p a b i l i t y  decreases because o f  t h i s  increased power p roduc t ion .  

The minimum thermal margin i n  t he  r e f l e c t o r  modules occurs  a t  t he  end-of-1 i f e  

and i s  always g r e a t e r  than t h e  most t he rma l l y  l i m i t i n g  r e g i o n  o f  t h e  core.  

2. Loss-of-Fl  ow Acc ident  . ,, 

- .  

A l o s s - o f - f l o w  acc i den t  i s  pos tu l a ted  t o  occur through.  ( a )  a  

1  oss o f  e l e c t r i c a l  power t o  one o r  more r e a c t o r  coo l  a n t  pumps, ( b )  .a . . . . 
mechanical f a i l u r e  o f  a  pump, such as a  se ized i m p e l l e r ,  o r  (c), t h e  

i nadve r t en t  c l o s u r e  o f  a  r e a c t o r  coo l  an t  s top  valve.  A l o s s - o f - f l o w  causes a  

decrease i n  the  r e a c t o r  coo l  a n t  f l o w  r a t e  w i t h  an a t t endan t  ,heatup o f  t h e .  

c o o l a n t  and a  s lowing down i n  t he  r a t e  a t  which hea t  i s  .removed fcom t h e  . f ue l  

rods.  To p r o t e c t  t he  co re  from reaching thermal l . i m i  ts,, a  r e a c t o r  .scram i s  

i n i t i a t e d  whenever the  f l o w  i s  l e s s  than the  se lec ted  f l o w  cond i t i on ,  . . 



The thermal consequence o f  a  l o s s - o f - f l o w  acc iden t  f o r  the 

LWBR core  has been' s i g n i f i c a n t l y  minimized through t he  use o f  f lywheel  

genera to rs  (FWG). Each r e a c t o r  coo lan t  pump has an assoc ia ted FWG which 

con t i nues  t o  p rov ide  e l e c t r i c a l  energy t o  t he  pump f o r  some t ime a f t e r  a  l o s s  

o f  e l e c t r i c a l  pumping power. Th i s  energy i n p u t  from the  FWG reduces t he  r a t e  

o f  t h e  c o o l a n t  f l ow  coastdown and thereby ma in ta ins  a  h i ghe r  heat t r a n s f e r  

r a t e  from the  fuel rods than would e x i s t  w i t h o u t  t he  FWG's. 

F i gu re  23 shows t he  1  i r e t  i~r~t! v a r i a t i o n  o f  t h e  LHt- power 

c a p a b i l i t y  f o r  a  complete l o s s - o f - f l o w  acc iden t  from an i n i t i a l  f u l l  f l ow  :- 

c o n d i t i o n .  The Type I b l a n k e t  r eg ion  i s  1  i m i t i n g  throughout  co re  l i f e  f o r  t he  

compl c t e  l o s s - o f - f l  ow acc iden l .  

Flow S t a b i l i t y  Performance -- z 

The f l o w  s t a b i l i t y  a n a l y s i s  has been used t o  e s t a b l i s h  a  lower  

bound on t he  power l e v e l  r e q u i r e d  t o  induce an uns tab le  f l o w  c o n d i t i o n  i n  t h e  

h o t t e s t  r eg ions  o f  t h e  core.  The power l e v e l  t o  i n i t i a t e  f l o w  i n s t a b i l i t y  has 

been found t o  exceed the  maximum CIiF power l e v e l s  f o r  t h e  RIT and LOFA. The 

minimum design power r a t i o  f o r  f l ow  i n s t a b i l i t y  i s  g rea te r  than 1.4 and occurs 

i n  t h e  b l a n k e t  r eg ion  a t  beg inn ing  o f  l i f e .  

I* 

The seed f l o w - s t a b i l i t y  power l i m i t  a t  beginn ing o f  l i f e  i s  h igher  

than t h a t  o f  t h e  b l a n k e t  even though the  seed s teady-s ta te  CHF l i m i t  i s  below 

t h a t  of t he  b lanke t .  Th i s  c o n d i t i o n  a r i s e s  because the  a x i a l  f l u x  

d i s t r i b u t i o n  i n  the seed i s  skewed toward the  t op  o f  t he  seed modules, whereas 

t h e  b l a n k e t  a x i a l  shape i s  f l a t t e r .  Stud ies o f  f l o w  i n s t a b i l i t i e s ,  such as 

those r e p o r t e d  i n  Reference (25). have shown t h a t  channels hav ing f l u x  shapes 

peaked toward the t o p  a re  more s t a b l e  than genmc t r i ca l l y  s i m i l a r  channels 

peaked otherwise.  A t  end o f  l i f e ,  the  seed a x i a l  f l u x  d i s t r i b u t i o n  s h i f t s  t o  

t h e  bottom o f  the module which thus causes t h i s  r eg ion  t o  become more l i m i t i n g  

tha*  t h e  b l anke t .  



V I  I I. QUALIFICATION 

Thermal-analysis computer programs, models, and c o r r e l a t i o n s  used t o  

eva luate t he  core performance were shown t o  be p h y s i c a l l y  v a l i d  f o r  thermal -  

hydraul  i c  d e p i c t i o n  o f  t h i s  co re  c o n t a i n i n g  w ide ly - rang ing  a x i a l  -and-rad ia l  

h e a t - f l  ux d i s t r i b u t i o n s ,  a  c l o s e l y  spaced r o d  a r ray ,  and a  coup1 ed-reg ion 

i n t e r f a c e .  An. ex tens ive  thermal /hydrau l  i c  t e s t  program prov ided  the  necessary 

con f i rmat ion .  The thermal a n a l y s i s  programs w i t h  assoc ia ted  CHF and pressure-  

drop c o r r e l a t i o n s  were qua1 i f i e d  us ing  data from 19 r o d  bundles which p rov ided  

over 850 CHF data po in t s .  

I n i t i a l  scopi ng t e s t s  i nc l uded  rod  bundles cover ing  p i  t ch - to -d iamete r  

r a t i o s  va r y i ng  from '1.02 t o  1.36, r od  spacings from .015 t o  .090 inch ,  va r i ous  

a x i a l  -and-rad ia l  h e a t - f l  ux d i s t r i b u t i o n s ,  and var ious  g r i d  designs. The t e s t s  

were conducted a t  pressures rang ing  f rom 400 t o  2000 ps i a ,  mass v e l o c i t i e s  

f rom 0.1-to 4.0-mil 1  i o n  1  b s / h r - f t 2 ,  and i n 1  e t  temperatures from 200°F t o  

600°F. Tests were a l so  performed w i t h  p r o t o t y p i c  bundles which i nco rpo ra ted  

t h e  core  f u e l - r e g i o n  heat  f l u x  d i s t r i b u t i o n s ,  r o d  spacings, and the  coupled 

i n t e r f a c e  reg ion.  The t e s t s  a re  summarized i n  Table V I  and documented i n  

Reference (26 ) .  The t a b l e  i d e n t i f i e s  t he  t e s t  geometry, hea t  f l u x  

d i s t r i b u t i o n s ,  and t h e  number o f  CHF data p o i n t s  ob ta ined  i n  each t e s t .  

The CHF and pressure-drop c o r r e l a t i o n s  used f o r  co re  thermal evalua- 

t i o n  were based on t h e  data used t o  ensure t h e  safe ope ra t i on  of t he  two 

p rev ious  Sh ipp ingpor t  cores,  PWR Core 1  and PWR Core 2. These c o r r e l a t i o n s  

a re  descr ibed i n  Appendix A. A r e l a t e d  des ign CHF c o r r e l a t i o n  based on l o c a l  

f l u i d  cond i t i ons  was developed such t h a t  n e a r l y  a1 1  o f  t h e  CHF da ta  ( i n c l u d i n g  

t he  rod  bundle data descr ibed above) were conse rva t i ve l y  p r e d i c t e d  by t h e  

c o r r e l a t i o n .  F i g u r e  25 il l u s t r a t e s  t h i s  r e s u l t  by showing the  design- 

p r e d i c t e d  CHF and t he  exper imental  CHF f o r  r o d  bundle t e s t s  conducted i n  t h e  

co re  range o f  ope ra t i on  a t  2000 p s i a  and i n l e t  temperatures from 500°F t o  



TABLE V I  
ELEC,TRICALLY-HEATED ROD E!UNDLE CHF TEST GEOMET7't 

I n f i n i t e  
Rod Array 

Heated C+ornetry Hydraul i c  Tota l  Number 
Number Fod Dianeter  P i  t s h  Lengtn P i t c h /  Diameter H e a t F l u x D i : . t r i b u t i o n  Support o f  CHF 

Test  o f  Rods ( i n . )  ( i n . )  ( i n . )  Di ameter ( i n . )  Axi a1 rransverse System** Data P o i n t s  - 

0.7.5 0.765 94 1.02 0.1 104 Uni f o ' n  -1.5:l 
0.75 0.765 94 1.02 0.1104 Uni form i .5:1 
0.7:s 0.7,65 94 1.02 0.1 104 Uni form Uniform 

4. A.4.a.l 20 0.25 0.340 54 1.36 0.2599 Uni fo,rm 1.5: l  C 
5. A.4.a.2 20 0. in 0.340, 54 1.36 0.2599. Uni form 1.5:l C 
6. A.4.b 20 0.25 0.340 54 1.36 0.2599 Uniform Uni form C 
7. A.4.g 2 0 0.2:50 0.340 54 1.36 0.2599 Non-uniform Uni form C 
8. A.6.a 20 0.250 0.310 54 1.24 0.1738 Uni form 1..13:1 C 

9. A.4.d 2 0 0.250 0.340 54 1.36 0.2599 Uniform Jon-uni form 6 66 
10. A.1O.a 2 0 0.2.50 0;340 54 1.36 0.2599 Uni form $on-uni form 66G 
11. A.4.e 2 0 0.250 0.34Q .54 1.36 0.2599 Uni form Ur i form 6 66 

12. A.4.f.l 20 0.250 0.340 54 1.36 0.2599 Uni form Ur i f o r m  6 7G 
13. A.l l .a.2 20 0.250 0.340 54 1.36 0.2599 Uni form Ur i f o rm 6 76 

14. A.4.h.l 20 0.280 . 0.340 54 1.21 0.1 750 Uni form Ur i form 6 86 45 
15. A.4.h.2 20 0.281) 0.310 54 1.21 0.1752 Uni form Uni form 6 86 5 5 
16. A.7.b 20 0.301 . 0.368 84 1.22 0.1951 Non-uni form :Jon-uniform 686 6 
17. A.l 29 0.303 0.358 , 85 1.21 0.1898 ZJon-uni form b n - u n i  form 6 86 42 

18. A.9.a 20 0.695 0.755 94 1 .I01 0.2335 Uni form 1.37:l .O 686 
19. A.2.a 24 0.526/0.571 0.631 84 7.105/1.20 0.304/0.198 Non-uni Form Ubn-uni form 6 86 

** Rod support  system: G=>re-1966 Gr ids ;  W=k'arts ( r a i s e d  meta" dimples on rods) ;  C=Spacer c o l l a r s ;  f%G, 676 and 686 r e f e r  t o  r o d  g r i d  support  
system designs evolved I n  1966, 1967, and 1963 (p ro to t ype ) .  
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600°F. A1 1  qual i f i  c a t i o n  p r e d i c t i o n s  were performed us i ng  t he  HOTROD computer 

code. 

Tab le  V I I  summarizes t h e  range o f  t e s t  c o n d i t i o n s  and the  range o f  

c o n d i t i o n s  over  which t h e  LWBR CHF and pressure-drop c o r r e l a t i o n s  were 

qual  i f ied .  The range o f  LWBR c o r e  c o n d i t i o n s  i s  a1 so -shown i n  t he  tab1 e  f o r  

compari son purposes. 

I X .  CONCLUSION 

The co re  f o r  t he  l i g h t  Water Breeder React.nr was eva lua ted  and shown 

t o  f u l f i l  1  t h e  o b j e c t i v e  o f  produc ing 236.6 thermal megawatts. A n t i c i p a t e d  

and p o t e n t i a l  modes of co re  opera t ion ,  i n c l u d i n g  s teady-s ta te  behav ior ,  normal 

t r a n s i e n t s ,  and pos tu l a ted  acc iden ts  were analyzed. The performance 

e v a l u a t i o n  has  shown t h a t  t h e r e  i s  no CHF n o r  f l o w  i n s t a b i l i t y .  The minimum 

'design power r a t i o s  a re  1  .17 and 1.24 f o r  t h e  1  i m i  ti ng overpower ( r e a c t i v i t y  - 
i n s e r t i o n  t r a n s i e n t  eva lua ted  a t  26 percen t  above r a t e d  power) and under f low 

acc i den t s  (1  oss -o f - f l ow  acc i den t  i n v o l v i n g  a1 1  f o u r  coo l  an t  l oops ) ,  

r e s p e c t i v e l y .  I n  a d d i t i o n ,  a  balance between seed and. b l a n k e t  power 

c a p a b i l  i ty has been achieved. The eva lua t i on  accounted f o r  spec i  a1 f ea tu res  

o f  t h e  co re  design which were devised t o  promote the  b reed ing  f unc t i on .  These 

features i itc l uded t i g h t l y  spaced three-dimensionai  rodded a r rays  compr is ing  

b o t h  hydrau l  i c a l  ly-coup1 ed and -i sol a ted  core  f ue l  reg.ions. 

The a n a l y t i c a l  procedure f o r  e v a l u a t i n g  core performance used 

fundamental r e a c t o r  thermal p r i n c i p l e s  s ~ ~ c h  s s  t.hrl hot-and-nominal channel 

concept  and nuc l  ea r /enq ineer i  ng a1 1 awances. The hot. channel 4 wpre 'def ined 

us i ng  b iases  app l i ed  t o  power and f l o w  and t o  ins t rument  v a r i a t i o n  and 

u n c e r t a i n t y .  Computer programs were used t o  i n t e g r a t e  a l l  components o f  t h e  

a n a l y t i c a l  pr0cedur.e f o r  performance eval  ua t i on .  The programs combi ned t he  

qual  i f i e d  procedures, co re  data, a n a l y t i c a l  models, and c o r r e l a t i o n s  f o r  hea t  

t r a n s f e r  and fl u i d  f l o w  w i  t h ' p h y s i c a l  conserva t ion  laws. A1 1  procedures, 

model s ,  a1 1  uwances, and c o r r e l  a t i o n s  were c a r e f u l  l y  qual  i f i e d  by a n a l y t i c a l  

e f f o r t  and an ex tens ive  program o f  h e a t - t r a n s f e r  and f l u i d - f l o w  t e s t i n g .  

. . 



TABLE V I  I 
LWBR CHF AWD PRESSURE-DROP CORRELATION PARAMETER-RANGE SUMMARY 

Parameter T e s t  Cond i t i ons  Qua1 i f i c a t i o n  Cond i t i ons  Core C o n d i t i o n s  

1. Pressure,  p s i a  400 t o  2000 1200 t o  2000 2200* 

2. Mass ve l  c i t y  8 0.05 t o  4.0 
I b / h r - f t  x  l o 6  

3. I n l e t  temperature,  OF 200 t o  500 400 t o  600 480 .to 530 

4. Heat f l u x  0  t o  98% o f  CHF f o r  (Same as t e s t  c o n d i t i o n s )  
u n i f o r m  rad ' ia l  , u n i f o r m  
r a d i a l  , non-uni form axi,al 
and non-uni form r a d i a l  
and a x i a l  d i s t r i b u t i o n s  

5. Hydraul i c  d iameter,  0.11 t o  0.63 
i r c h e s  

6. Rod p i  t ch -  t o -  r o d  1.02 t c  1.36 
d iameter  r a t i o  

7. Heated channel l e n g t h ,  28 t o  96 
i nches 

To 95% o f  CHF w i t h  non- 
u n i f o r m  r a d i a l  and a x i a l  
heat  f l  u x - d i s t r i b u t i o n  

(Same as t e s t  c o n d i t i o n s )  0.18 t o  0.31 

(Same as t e s t  c o n d i t i o n s )  1.02 t o  1.21 

(Same as t e s t  c o n d i t i o n s )  104** 

8. Rod suppor t  s t r u c t u r e s  Warts, c o l l a r s ,  and (Same as t e s t  c o n d i t i o n s )  G r i d s  
g r i d s  , . 

* Beginn ing-of -1  i f e .  nominal pressure i s  2000 p s i a .  T r a n s i e n t  c o n d i t i o n s  can r,esul t i n  t h e  pressure go ing t o  
approx imate ly  2200 p s i a .  

** Core power i s  generated predominant ly  i n  t h e  b i n a r y  f u e l ' r e g i o n  which i s  approx imate ly  42 t o  84 inches  i n  
l e n g t h  depending on r o d  type. 
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APPENDIX A 

ANALYTJCAL CORRELATIONS 

C r i t i c a l  Heat F l u x  

The c r i t i c a l  hea t  f l  ux c o r r e l  a t i  ons used f o r  LWBR thermal and hydraul  i c  

eva lua t i on  a re  s i m i l a r  t o  those p rev i ous l y  used f o r  t h e  Sh ipp ingpor t  Core, PWR 

Core 2. (References'  A-1 , A-2, and A-3). 

The f o l l  owing equat ions express t h e  Shi p p i  ngpor t  c r i t i c a l  heat  f l u x  

c o r r e l a t i o n  i n  terms o f  t he  c o o l a n t  f l u i d  c o n d i t i o n s  o f  l o c a l  entha lpy,  mass 

v e l o c i t y ,  and pressure:  

where f o r  b e s t  es t imate  c a l c u l a t i o n s  

and f o r  des ign c a l c u l a t i o n s  

300 1 0 ~ 1 ~  
and H* = H  - 0.275 H  - 0.725 ( H  ) 9 ( E q  .A-7 ) 

f g  9  fg  f g  



w i t h  

DCHF = C r i t i c a l  Heat F lux ,  ~ ~ u l h r - f t ' .  
2  G = Mass v e l o c i t y ,  1  b l h r - f t  . 

HCHF = Local  en tha lpy  a t  t he  c r i t i c a l  hea t  f l u x ,  BTUIlb. 

H = Entha lpy o f  sa tu ra ted  vapor, BTUIlb. 
9 

Hfg = L a t e n t  hea t  o f  vapor i za t ion ,  BTU/lb. 

P = Pressure, ps i a .  

B. Heat T rans fe r  

The D i  t tus -Boe l  t e r  hea t - t r ans fe r  c o r r e l a t i o n  has been conf i rmed i n  LWBR 

t e s t i n g  t o  be app rop r i a t e  f o r  co re  thermal and h y d r a u l i c  eva lua t ion .  The 

c o r r e l a t i o n  f o r  c o n d i t i o n s  o f  f u l  l y  developed t u r b u l  e n t  f l ow  i n  t h e  absence o f  

b o i l i n g  i s  

The accuracy f o r  r e a c t o r  a p p l i c a t i o n  i s  2 20 percen t  w i t h  f u l l y  developed f l o w  

i n  t h e  Reynolds Number range o f  l o 4  t o  l o 6  and bu lk  c o o l a n t  temperatures o f  

100°F t o  640°F. The accuracy i s  accounted f o r  i n  t h e  c o r r e l a t i n g  c o e f f i c i e n t  

C where: 

h  = hea t  t r a n s f e r  c o e f f i c i e n t ,  ~ ~ ~ / h r - f t ~ " F .  

C = c o r r e l a t i n g  c o e f f i c i e n t  w i t h  a  va lue  o f 0 . 0 2 3  f o r  t h e  b e s t  

es t imate  value, U.019 f o r  t h e  lower  l i m i t ,  and 0.030 f o r  t he  

upper-1 i m i  t h e a t - t r a n s f e r  c o e f f i c i e n t .  

Kb = bu lk  water thermal c o n d u c t i v i t y ,  BTUIhr- f t °F ,I a t  t h e  

ope ra t i ng  pressure.  

D, = equ i va l en t  h ~ d r a u l  i c  d iameter  n f  thp si~bchannel  , f t .  
(NRE)b = Reynol ds Number eva lua ted  a t  t h e  'bulk f l u i d  temperature 

and t h e  system ope ra t i ng  pressure (NRE = DeG/p ) .  



(NpR) = Prand t l  Number eva luated a t  t h e  bu l k  f l u i d  temperature and t he  
, b .  

system ope ra t i ng  ~ r e s s u r e  (NpR = Cp p/Kb): 

p - =  f l u i d  v i s c o s i t y , ' l b / h r - f t .  ; 
Cp = f l u i d  s p e c i f i c  heat, BTU/lb°FF 

G = l o c a l  mass v e l o c i t y ,  1 b / h r - f t 2 ,  

I n  genera l ,  l o c a l  nuc lea te  b o i l i n g  begins a t  a g iven  l o c a t i o n  i n  a f l o w  

channel when the  w a l l  temperature (Tw) a t  t h a t  p o i n t  reaches a c e r t a i n  l e v e l  

above t h e  s a t u r a t i o n  temperature (TSit)  o f  t h e  channel coo lan t .  Th i s  

d i f f e rence  i s  termed 'the w a l l  superheat, Tw - Tsat. The  ens-and-lottes 
c o r r e l a t i o n ,  Reference A-4, has been used t o  p r e d i c t  t h e . w a l l  superheat 

r e q u i r e d  f o r  i n c i p i e n t  l o c a l  b o i l  i ng :  

where 
., 

Tw = w a l l  temperature, OF. 

T = s a t u r a t i o n  temperature, OF. 

0 = l o c a l  heat  f l u x ,  ~ ~ u / h r - f t ' .  ' . 

P = system pressure,  ps i a .  

Th i s  equa t ion  i s  used f o r  those a p p l i c a t i o n s  where the  w a l l  temperature i t s e l f  

i s  o f  p r imary  concern. The t e rm  Jens-and-Lottes superheat i s  de f i ned  by ATJAL 

= (Tw - TSat) us i ng  t he  preceding equat ion.  The t r a n s i t i o n  f rom non-bo i l  i n g  t o  

nuc lea te  b o i l  i n y  . is defined by t h e  1 oca l  hot-channel c o n d i t i o n s  which s a t i s f y  

t h e  f o l l  owing equat ion:  

Tw = Tb + 0 / h 2 T '+ ATJBL . .  . s a t  



where 

h  = D i t t u s - B o e l t e r  fo rced-convec t ion  hea t - t r ans fe r  c o e f f i c i e n t  

( l ower  1  i m i  t f o r  non-bo i l  i n g  wa l l  temperature c a l c u l a t i o n s ) ,  

~ ~ u / h r - f t * - " ~ .  

Tb = bu lk  f l u i d  temperature, OF. 

0 = l o c a l  su r f ace  hea t  f l u x ,  ~ ~ ~ l h r - f t ' .  

Tsat andaTJhL have p r e v i o u s l y  been d e f i  ned. 

However; i n  de te rmin ing  t h e  i n c e p t i o n  o f  b o i l  i n g  f o r  channel vapor- 

f r a c t i o n ,  pressure-drop and CHF-pred ic t ion purposes, t h e  f o l l o w i n g  

m o d i f i c a t i o n  i .s used: 

Th i s  i s  e q u i v a l e n t  t o  s e t t i n g  t h e  Jens-and-Lottes term t o  zero.  

Equa t ion  (A-11) i s  used t o  p rov i de  a  conse rva t i ve  b i a s  i n  t h e  c a l c u l a t i o n  

o f  t h e  b o i l  i n g  l eng ths  and p o i n t  o f  b o i l  i n g  i n c e p t i o n  f o r  . vapo r - f r ac t i on ,  

pressure-drop.  and CHF-pred ic t ion purposes s ince  nuc lea te  b o i l i n g  i s  assumed 

t o  occur  a t  t h e  p o i n t  where t h e  w a l l  temperature equals  t h e  s a t u r a t i o n  

temperature.  . . 

The s i  ng l  e-phase h e a t - t r a n s f e r  c o e f f i c i e n t  ( h )  i n  Equat ions (A-10 and A- 

11 )' i s  c a l c u l a t e d  f rom 

where t h e  d e f i n i t i o n s  a re  s i m i l a r  t o  those o f  Equat ion (,A-8) except t h a t  t h e  

s u b s c r i p t  L  app l i es  t o  t h e  l i q u i d .  The lower  express ion o f  Equat ion (A-12) i s  . 

t h e  minimum va l  ue f o r  the  1  ami n a r - f l  ow h e a t - t r a n s f e r  c o e f f i c i e n t .  I n  t he  

s ing1 e-phase reg ion,  t h e  b u l k  and 1  i b u i d  p r o p e r t i e s  a re  i d e n t i c a l .  



C .  Pressure Drop 

The p ressure  drop c o r r e l a t i o n s  used f o r  LWBR a n a l y s i s  a r e  as fo l . lows:  

. . 

( 1  ) S i n g l e  phase en t rance  and e x i t  p ressure  changes a r e  g i v e n  by 
'J  

and 

- - .  G2v ( 1  - c 2  + Kc)  
e n t  29, 

( 2 )  The e l e v a t i o n  p ressure  d rop  i s  expressed as  

' 1 
( 3 )  The a c c e l e r a t i o n  p ressure  drop i s  expressed as  

1 
( 4 )  The f r i c t i o n - p r e s s u r e  d rop  between Z1 and Z 2  i s  expressed as 

( 5 )  The fo rm l o s s  ac ross  g r i d s ,  base p l a t e s ,  and o r i f i c e  p l a t e s  i s  

expressed as 



where: 

u = t h e  r a t i o  o f  t h e  sma l l e r  t o  t he  l a r g e r  f l o w  area. 

G = mass v e l o c i t y ,  Ib /h r - f t2 ,  i n  t h e  sm-aller area. 

Kc = unrecoverab le  c o n t r a c t i o n  pressure l o s s  c o e f f i c i e n t .  

Ke = unrecoverab le  expansion pressure l o s s  c o e f f i c i e n t .  

f t -1  b, 
gc = g r a v i t a t i o n a l  cons tan t ,  32.2 

1  bf-sec 2  

g = a c c e l e r a t i o n  due t o  g r a v i t y ,  f t  
2 sec 

P = average d e n s i t y  i n  a c o n t r o l  volume bounded a x i a l l y  by Z1 and Z2. 
2  A = f l o w  area, ft. . 

Z = a x i a l  e l e v a t i o n ,  ft. 

v1 = s p e c i f i c  volume-, f t3/ l  b. . . 

n  = fiso v F. 

f i s o  = f r i c t i o n  f a c t o r  (Reference A-51, dimension1 ess. 
- v  = average s p e c i f i c  vo lume, f t3 / lb ,  i n  a  c o n t r o l  volume bounded a x i a l l y  

by Z1 and Z2. 

F = a  c o r r e l a t i n g  parameter account ing f o r  two-phase f l o w  e f f e c t s .  

K = Exper imenta l l y  determined l o s s  c o e f f i c i e n t ,  d imensionless.  

Qua1 i f i c a t i o n  o f  t he  CHF and pressure-drop c o r r e l a t i o n s  i s  based on LWBR 

r o d  bundle  t e s t s  (see main t e x t ) .  The hea t - t r ans fe r  c o r r e l a t i o n s  have been 

q u a l i f i e d  us i ng  the LWBR t e s t s  and data from References A-4 and A-6. 
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