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"On the Use of the Finite Element Displacement Method
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1.0 INTRODUCTION

The study of the influence of fluids interacting with
structural vibration and dynamic behavior has been of
interest for hundreds of years. In 1779 Pierre Louis
Gabriel Du Buat published the results of pendulum bobs
vibration in alr and water that showed an apparent
change in mass through & water influenced reduction of
the frequency. Since that time, many solid-fluid
interaction problems have been investigated by many
methods. Because of the complexity of the solution of
the general field equations in a Fulerian frame, the
analyst has been reguired to consider special cases

or instances where varlable or boundary simplification
results in a more tractable problem. Generally fluid-
structural interaction problems may be divided into
strong and weak coupling problems such as discussed in
symposium volumes (1, 2, 3). With the lack of cou-
pling we have structural problems treated usually in

a lagrangian sense arxl fluid problems dealt with in a
Fulerian frame. Even a reduction or simplification in
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the field equations can still result in a complex
problem when three-dimensional geometries are con-
sidered. One such example is the dynamlc analysis

of coaxial cylinders which are found in reactor
vessels such as the Clinch River Breeder Reactor
(CRBR) illustrated in Figure 1. A vibration analysis
of such a structuwre can still be difficult when the
influence of the sodium is considered in concert with
supports, contact points, nozzles, and piping attach-
ments.

There have been many papers (4-17) that have treated
such problems theoretically, however, with consider-
able simplification of the structure. A popular
approach has been the finite element fluid pressure
formulation, discussed in (18-22). The finite ele-
ment method offers the ability to idealize the fluid
and structure for arbitrary shapes which makes it a

a popular technigue. Another approach thal has
received much less attention is the finite element
fluid displacement formulation as discussed in (23-25),
In this paper, we will consider the small deflection
vibration analysis utilizing the finite element dis-
placement method. For a discussion of interfacing
nonlinear solid-fluid analysis in vessels as shown in
Figure 1, the reader is referred to Belytschko (26,27)

This paper will attempt to briefly explore through
illustrative examples the advantages and disadvant-
ages of the finite element displacement method to
perform solid-fluild eigenvalue analyses.

2.0 THE FINITE ELEMENT METHOD

The finite element method concept is generally well
known and covered in such texts as (28-31). We will

* only briefly review some of the fundamentals as they
relate to the solid-fluid problem. Basically, the
displacement approach assumes the fundamental "dis-
placement” unknown at a node point of a fluid and

- structural element while the pressure method assumes
a scalar unknown "pressure" at a node point of the
fluid.

2.1 Finite element displacement method

In formulating the structural vibration problem
using the finite element technique, the governing
equations of motion can be expressed as

[(M] {4} + [c] @) + (K]} fu} =0 (1)

where [m], [c¢]), and [k] are the assembled mass,
damping, and the stiffness matrices for the idealized
structure. {u} corresponds to the vector of the dis-
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placement components and a dot on {ul denotes partial
differentiation with respect to time. By applying
the finite element displacement method to vibration
problems with solid-fluid interaction effects, the
mass matrix, [m), is camputed in the same mamner as
in the structural analysis. If the damping term is
neglected, the only difference will be in the formu-
lation of the stiffness matrix, [k] . The procedure
for the formulation of the stiffness matrix for the
fluid element is similar to that of the structural
element except that a special constitutive law which
relates the stress and strain by the material matrix
[G], must be defined for the fluid clement.

In order to convert a standard structural element
into a fluld element, we simply define the stress-
strain material malrix (0] (as discussed by Kalinowski
(24), as follows:

11100 0]
111000

_ 111000

G=K 000000 2
00000O0O0
0000 0 0

where K is the bulk modulus of the fluid.

We may note that ‘the acoustic velocity (c) of fluid

is calculated by
c =JK— or K= cear .
1o, ‘ 3

Pe = density of fiuid

The advantage of this approach can bte readily seen:
~any standard version of a finite element structural
analysis program may be used for the solid-fluigd
interaction problem by introducing an appropriate
material matrix, [G]. Now, the problem is reduced to
solving an algebraic eigenvalue problan of equation
(1) which yields the natural freguencies and the mode
shapes of the combined solid and fluid structures.

' 2.2 Finite element _pressure method

This approach uses the “'pressure" wiawovm in the
fluid domain while retaining the "displacement"
unknown in the structural domain. The governing
equations representing the structure are given in
eguation (1). The derivation of the governing equa-
tions in the fluid domain are based on the Navier-
.Stokes eguations of fluid motion coupled with the con-
tinuity conditions. If we express the fluid pressure’
as a linear combination of a shape- function, hj’ then
P hjpj
where p represents the pressure at a grid point in
the fluid. Neglecting the viscous terws, the govern-
ing equations in the fluid can be expressed with the
boundary conditions, as

[Q) 8} + (M) {p) +p, (B) T (i} =0  (4)

where pg. is the density of the fluid, @ and H are

* defined in the manner of reference (18).

The matrices [Q], [H] and the boundary matrix, [B] can
be expressed as functions of :the shape functions, h,.
Note that the last term in equation (Y) represents J
the effect of motion of the structures on the fluid.
Similarly if we consider the effect of fluid motion




on the structure, the governing equation (1) of the
structure must be modified to take into account the
effect of fluid motion by adding a coupling term,

M) {u} + (k] {u} - (B} {p} =0 (5)

The damping term in equation (1) is again neglected.
Equations (4) and (5) together provide a set of equa-
tions for the structure and another set of equations
for the fluid. These two sets of eqguations are
coupled by the boundary matrix term, [B). Again the
problem is reduced to a set of algebraic eigenvalue
equations. The matrix generated from equations (4)
and (5) will be non-symmetric due to the coupling
terms, however, can be recast in a symmetric form
with suitable operations discussed in reference (18).

The basic formulation of this type of fluid element
follows the procedure as proposed by Everstine (19)
etc. The baslc assumption is that the fluid is

treated as an acoustic medium and is to be compressible
and inviscid. The fluid is further assumed to undergo
only small amplitude motion and the "pressure" field
within the medium satisfies the wave equation:

v%p = p/c? (6)

The boundary conditions at the fluid-structure inter-
face can be obtained from the momentum and continulty
conditions. Two types of approaches, consistent and
lumped methods have been suggested by Schroeder and
Marcus (20), to model the fluid-structure interface.

For linear material, the Hooke's law can be written

in terms of a symmetric material matrix, [G]. A neces-
sary and sufficient condition for G to be isotropic

and at the same time to satisfy the wave equation is

. 1 -2 -100 0

- - a2 13000

2111 1000
G =pgc 0 0 010 0 n

1 0 0 001 0

0O 0 00 01

To compute the stiffness matrix [k] of the fluid ele-
ment, it is only necessary to model the fluid with

- standard elastic finite elements having material
properties of G in equation (7).

By adopting the lumped approach in the fluid-structure
interface, the influence of the structural motion on
the pressure can be expressed as

P = ()2 A Y, (8)

In other words, if the outward normal component of
structural acceleration at a point is U _, the effect
on the fluid pressure is the "force" gioen by FP.
. The inverse relationship (that of fluid pressure on
" the structural motion) is obtained by applying a
normal force to the structural point by

.F° = PA (9)

The coupling terns(pfc)zA and A are precomputed in
~equations (8) and (9) at all solid-fluid interaction

boundaries, and inserted in the stiffness and mass

matrices for the solid-fluid system. These terms

are Inserted in the colums corresponding to the pres-

sure of the fluid grid point and in rows corresponding

to the structure displacements in the r direction




(assuming a cylindrical éoor'dinate is used to model
the solid-fluid system) of the structural grid point.

NASTRAN (32) provides the direct matrix input (DMIG)
and thus no program modification is required to solve
the solid-fluid interaction problem using the lumped
techniques for the pressure analog fluid element as
described above.

The Fourier approach assumes that the problem has

an axial symmetry so that the "structural" model is
defined by a set of fluid grid points in a plane that
includes the axis of synmetry.

The pressure within a fluid element can be expanded
in a FPourier series with respect to the azimuth

coordinate, ¢,

p (r,p,z) = p° +z

N n N n¥
p cos¢gn + I p sinnd
n=1 n=1

(10)

*

P The coefficients po, pn, and pn are a function of

position in a

radial plane.

The motions of the coupled solid-fluid system need
" not be axisymmetric. The NASTRAN hydroelastic option
provides a detailed description of this element. It
allows the user to solve a wide variety of fluid pro-
blems having structural interaction.
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Figure 2

2-D Mesh of Infinite Cylinder Surrounded by Water

3.0 SAMPLE PROBLEMS COMPARING THE PRESSURE

VS. DISPLACEMENT METHOD

3.1 The vibration 6f an infinitely long cylinder

surrounded by water

The model desc
carbon steel ¢

ribed in Reference (20) consists of a
ylinder that has radius of 10 inches

(250.4mm) to its centerline, a 0.25 inch (6.3m)
thickness, and water surrounding the outer surface.

The fluid regi
elements with

on is idealized by 2-D plane stress
the appropriate material matrix,[G] and

G o s = S St SR S A e T

sl e/ a2 A gt




the cylindrical shell is modeled with beam elements.
Figure 2 illustrates - a quarter model used to evalu-
ate the even mode and frequency results. Figure 3
illustrates the radial dimension and element refine-
ment influence on convergence for the quadrilateral
element with incompatable modes discussed by Wilson
(33). We observe that acceptable accuracy is achieved
for an outer fluid radius of about 30" (762mm) and a
radial refinement of 5 to 6 elements ( the modal
response for w, is jllustrated in Figure 4) . This
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Figure 3
Element and Radial Dimension Convergence of The -
Q-5 Displacement Element

agrees with the NASTRAN quadrilateral pressure element
data presented in Reference (20) which 1s summarized
in Table 1. The displacement [inite element and
theoretical data is included for comparison.

. Table 1
Method N6 Nr Outer Radius ﬁ*équency in Hz@
: Wy wy wg

Theoretical - - ® 35.8 227.9 592.7

Displacement* 8 6 32,6 38.3 235.0 599.0
(828mm)

Pressure*¥ . :

a) consistent 8 6 " 37.5 248.6 671.8

b) consistent 16 12 " 36.4 233.3 615.8

¢) lumped 8 6 " 36.9 236.5 618.2

d) lumped 16 12 " 36.2 230.3 601.0

number of circumferential
elements
number of radial elements

% SAP 6 (Ref. 35) No

*’_‘NASTRAN Nr

While the displacement method requires less computa-
tional time than the pressure method, the increase in
the fluid mesh introduces increasing member of fluid
frequencies for this and similar problems. This can
be an wdesirable feature of the method, but before
we discuss this further-let's consider an instance
where the fluid modes can be inhibited.
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Figure 4
2-D Modal Displacement For
wy = 35.9 HZ,Rf = 50" (1270mm)

3.2 The vibration of two thin co-axial cylinders
with water—-filled annulus

The radial dimensions to the cylinders centerlines
discussed by Levin (8) are illustrated in Figure 5.
The cylinders are made of carbon steel with anbient
temperature H,0 in the annulus. Only one quarter
‘of the stmctare is idealized by the finite element
method; and only even modes are evaluated by specify-
ing that M_#0 and no displacement normal to the plane
of synmetr'gf. Two finite element models are consid- .
ered in this problem: 4 x 2 and 8 x 2 meshes. Both
2-D and 3-D elements are used. All 3-D elements are
used with the boundary condition of plane strain in

* the Z direction. .

fioid outer cylinder
thich = e

Figure 5

3-D Co-axial Cylinders With Water in the Annulus

The metal cylinders are idealized by using the 3-D
plate element similar to Clough's (34). The 2-D
idealizations of the cylinders are performed using
beam elements. The fluid is represented by five
types of elements:
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a) 2-D displacement elements with incompatible modes
(@-5)/Reference (33)

b) 2-D pressure elements which are quadrilateral
formed from statlc condensation of triangular
elements/Reference (32)

¢) 3-D displacement 8 node elements with incompat-
ible modes (@-11)/Reference (33)

d) 3-D pressure element (CHEXA) with B nodes avail-
able in NASTRAN. The interaction between the
fluid and the structure is accomplished through
the lumping technique.

e) 3-D Fourier préssure ring element (RINGFL) avail-
able in NASTRAN. The ring fluid elements are
connected to the structure via (CFLUIDI) interface
elements.

The out-of-phase 6th mode shape for wn. = 355 Hz is
illustrated in Figure 6. Table 2 provides a frequency
comparison of the various methods cited with experi-

- mental .data from Reference (8). The inphase modes
are characterized by both cylinders oscillating to-
gether in a somewhat parallel fashion. The fluid also
oscillates predominantly in the radial direction. The
out-of-phase modes are characterized by the inner and
outer cylinders moving in the radial direction but
opposite at the same angular (8) location. In this
instance, the fluid motion is predominantly a tangent
oscillation (to cylinder curved surface). As with
the previous example, the two methods - compare favor-
ably with the experimental data. The Q-5 2-D dis-
placement solution provides the correct solid-fluid
modes (no fluid modes/spurious modes were recorded).
The @-11 3-D displacement solution (8x2) provides the
correct solid-fluid modes plus 3 additional spurious
modes.
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3.3 Advantages and disadvantages

a) Computational consideration - the advantage of
using the displacement method is that any stand-
ard structural analysis program, such as SAP6,
can be readily used. However, due to the sensi-
tivity of the element formulation, shear viscosity,
material properties and boundary conditions, a
further discussion of these is provided in later
sections. The pressure method has the advantage
of requiring one (pressure) unknown per fluid
point rather than three unknovms for the dis-
placement method. However, the pressure method g
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has the disadvantage of generating nonsymmetrilc
matrices (which through several matrix manipulations
can be expressed in a symmetric form) in contrast to
a symmetric form generated by the displacement method.
The computer time for the Fourier pressure method is
approximately ten times that of the 3-D pressure ana-
log method. This is due to the fact that the NASTRAN
Fourier pressure method uses the complex eigenvalue
search routine. The computer cost between the dis-
placement method and the 3-D pressure analog method
is comparable, but the pressure method is several
‘times more expensive. The CPU seconds given in

Table 2 shows a qualitative comparison since the mesh
is too small to show an absolute quantitative compar-
ison.

Figure 6

3-D Modal Displacement of Co-axial Cylinders
: fop Y6 =355 HZ

b) Spurious Frequencies - The additional spurious
fluid modes generated from the displacement fluid
element creates problems when only the structural
modes are of interest. From this point of view,
the pressure approach appears to be more attrac-
tive provided that the analyst can correctly
predict the frequency range to be searched with-
in NASTRAN. Even with a proper range of frequency
specified, it is possible to generate additional
spurious frequencies when using the NASTRAN pres-
sure method (either the pressure analog or
Fourier pressure method).. There are several vays

"to determine which frequencies are actually fluid
or structural frequencies rather than fluid only
frequencies. The easiest way is to plot the
mode shapes. For the "fluid-only" modes, the
structure will show very little, if any, relative
displacement. For the fluid-structural modes the
structure as well as the fluid will have signifi-
cant relative displacements. A second way is to
_completely fix the structure and make a second
run. This will yield only fluid frequencies. By
comparing the results of the "fluid-only" run with
the normal run, the common frequencies can be
identified as fluid frequencies. This procedure
is not fool-proof. A third alternative is to
examine the mode displacement data from the full
run to determine which frequencies have the larger
structural values. Generally, the structural
frequencies are dominant. This procedure is sub-
Ject to significant judgement at times and selec-
tive mode shapes should be plotted for verifica-
tion. If a range of fluid frequencies 1s known
to exist, the eigenvalue shift may be used to
elimindte them. For example, the first few fre-
quencies found for the 3.1 problem are fluid
frequencies. By requesting the truncation of
frequencies below 30 HZ, the solution of these
fluid frequencies is omitted. Finally, the fluid
frequencies may be filtered from the solution by
1limiting those modes with relatively low internal




energy within the structural domain from the total
solution.

4.0 THE DISPLACEMENT METHOD

From the previous two illustrative problems, it is
evident that the desirable structural frequencies
with interacting fluid can be obtained by the dis-
placement method. In this section, we will explore
further the displacement method with respect to:

. effect of element formulation

. influence of shear viscosity

. effect of mesh distribution, geometry

. effect of boundury conditions

. study of integration or-der, plane stress,
plane strain

4.1 Effect of element formulation for the displace-
ment method '

A question that problem 3.2 raises is what is the

function of the fluid element formulation in charac-
terizing the inphase and out-of-phase modes of the
co-axial cylinders? We provide a limited comparison
in this paper by choosing a 3-D 8 node element as the
base and vary the stiffness characteristics. The
five formulations considered are:

Table 3
Element identity . * Descriptions
- a. Q8 o compatible mode
b. Q-8/one point compatible mode using one
integration point integration

c. Q9 Incompatible mode with

B respect to centroid in
one(l) degree of freedom

d. Q11 - incompatible mode with
respect to centroid in
three(3) degree of freedom

e. Q-1l4 incompatible mode with
respect to centroid of
six(6) surfaces

For the @-8, the displacement approximations are
assumed to be

_ u:j = hiuji ' (11)

where in indicial notation j = 1,2,3 (coordinate
frame) and 1 = 1 to 8 (nodal reference)

hy = 1/8 RST hg = 1/8 RST

h, = 1/8 RST © hg = 1/8 RsT

hy = 1/8 RST h, = 1/8 RST

hy =1/8 RST hy = 1/8 RST
where R=(1+r), S=(1+5s), T=(1+¢t)

R=(Q1-r),8§=(1-5),T=(Q-¢t)

and r,s,t are the local coordinate frame. For a
single point integration the same element is used
with an adjustment of the weight function and inte-
gration points.

For the Q-9 element, equation (11) takes the form

uJ = hiuji + hgaj . (12)




where 59 = RRSSTT

The @-11 displacement polyrionial is written as

uy = hylyy ey (13)

where k = 9,10,11

= TT

= RR, h 11

= 8§, and h

hg 10

For the Q-14 element equation (11) is rewritten as
uJ = hiuji + hlujl
where 1 = 9,10,11,12,13,14

and
hg = RRSST hyp = RSSTT
hyg = RRSST hy3 = RRSTT
hll = RSSTT hl'-l = RRSTI‘

The centroids of each bending coefficient is located
at six element faces.
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Table ¥ provides a comparison of frequencies obtained
for the problem discussed in section 3.2 using the
element formulations in Table 3 with an 8x2 mesh. Q-8
is an element without incompatible modes. Table 4
indicates that both @11 and Q-8 (with one point inte-
gration) provide acceptable results as compared with
the experimental results by Levin(8). Element types
Q-8, -9 and Q-14 do produce the inphase modes, but
the lowest three out-~of-phase modes are missing.
Between Q-11 and the one point integration Q-8, the
latter requires less computer time to formulate the
element stiffness but at the same time it generates
additional spurious fluid modes which need to be
removed for structural response spectrum analysis.

It should be pointed out that with a smaller u (say
0.0319 - see Table 2), Q11 will provide a better
comparison with the experimental data. The influ-
ence of the element formulation with respect to shear
stiffness and its importance to solving many solid-
fluid interaction problems can be further illustrated
by the following example.

Consider a simple rectangular container with the
dimensions AxB [4" (101.6mm) x 25" (635mm)] whose
walls are rigid and bound water.

N T T, R IR 7




P The properties of water at 70°F(21.1°C) are:
- 5] K (bulk modulus) = 319,000 psi (219.9MPa)
e v (poisson's ratio) = 0.5 3 3
p (density) = 0.03605 # / in° (0.5775 Kg/M°)
Pt .
r From the fundamental mechanics of vibration, we can
i show that
i ) hnz e
o Dilatational Medes: w = c,f(A%) (B%) (14)
s
: Rotational Modes: = 0.0 (15)
:'n smyn = 1,2’3

Only motion tangent to the rigid wall is permitted
at the boundaries. The remaining nodes have two
degrees of freedom. Two types of elements are used
in this illustrative problem: (1) the NASTRAN 2-D °
quadrilateral formed by triangular elements (Q-3)
and (2) the Wilson 2-D Q-5 incompatible mode element.
Finite element meshes (3 x 19), (4 x 25), (5 x 31),
to (8 x 50) (Number of elements in the A dimension

X Number of elements in B dimension) are constructed
for this study and v = 0.0. The frequency response
of the Q-3 and Q-5 are illustrated in Figure 74, As
the mesh is refined,-we observe the convergence of
the Q-3 solution for the first rotational frequency
to the exact value of zero. The Q-5 element solution
(illustrated in Figure 7) shows that the coarse mesh
results in all permissible rotational modes (for this
mesh) falling below 58 HZ. The first rotational fre-
quency is 0.77 HZ for this Q-5 solution.
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Our results show that the rotational modes of the
3 finite element tend to zero and zero pressure is
: assocliated with them for the w and boundary condi-
g tions chosen. An important point is the ability of
';;
K =




the incompatible mode element (Q-5) to achieve zero
for the more refined meshes. This is a consequence
of the shear condition assumed with respect to the
shape function for the Q-5 element, i.e., local shear
stiffness is zero in a bending mode. We would expect
that if the vorticity (Q = 20) were zero where

and i

W, =% E,, W, =X, ¥, 2

i k "jk I
ik 7 i=x, Y, 2
k=x,¥,2

then the rotational modes are not permissable.

In order to obtain scme measure of irrotationality,
let’s consider the fact that in a two dimensional
shear flow, we have .

u=f(y), v=0,w=0

R, = 2WZ = VX - u,y = u,y = £(y),y.

If we remember that shear is defined as

ny

=vox tu,y =u,y = £(y),y

we can influence the irrotationality of the field by
modifying u or G. As shear stiffness approaches
infinity the shear strains become zero.

In Figure 7b, the response of the 3 x 19 element mesh
for variable G or p using the Q-5 element is illus-
trated. The first dilatation mode is wnaffected but
the Uth through 56th rotational frequencies become
greater than the first dilatation frequency (1118 HZ)
@ u+10/ psi. The 1st, 2nd and 3rd rotational fre-
quegcies appear to have converged to some value below
1118 HZz. ;
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Inphase and Out-of-phase Frequency
vs G For Co-axial Cylinders //'4>
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For a more coarse mesh, the 1lst, 2nd and 3rd rotational
frequencies increase above 1118 HZ. Our data indicates
that the boundaries and modeling assumptions tend to
lead to a combination of compressability and rota-
tionality for this particular mesh. This study shows
that irrotationality (R = 0) can eliminate rotational
frequencies of the fluid when they are undesirable

and that a no pressure state is associated with these
frequencies.

4.2 Influence of shear viscosity

Again, we consider the vibration of the co-axial
cylinders of infinite length connected by a fluid gap
discussed in section 3.2. This is modeled by the Q-5
Wilson 2-D . element with a 2 x 8 mesh illustrated
within Figure 14.

Because of our choice of boundaries and a 909.model,
only even modes of vibration are evaluated. For large
shear coefficient values, only inphase frequencies
(212 Ni, 61) are present (see Figure 8).

The irrotational or circulation modes (I') are inhibited
in 2-D problems by stiffening or increasing the G or
p. In Figure 8, we see that as p*0 the out-of-phase
frequencies (2 , 4 , 6 and 8 ) appear. The finite
element solutigns 8omp8re quige well to the experi-
mental data for G = 0. No spurious frequencies were
-encountered. :

A similar evaluation was repeated using the 3-D Q-11
fluid element.. The results were comparable, but some
spurious frequencies were encountered and easily
identified.

4.3 Aésessﬁent of mesh, boundaries, and other para-
meters ‘

Risking the pdssibility of over generalizing because
of space limitations, we will summarize the effect of
some of the parameters in the type of solid-fluid
analyses we have presented rather than present the
tabular numerical data. Using the flexible co-axial
cylinder problem with annular fluid we find:

. mesh refinement: a slight increase in accuracy
with a significant increase in rotational fluid
frequencies.

. integration order: an increase in integration
order does not have a measurable influence. This
may not be the. case for large aspect ratio ele-
ments.

. Tfree displacement surface versus plane strain
(plane strain is effectuated by constraining 2
displacements at one evaluation or side of the
thickness of the fluid) more spurious fluid fre-
quencies are encountered by the free surface
than plane strain.

. element compatibility: there is bending stress
associated with pure shear or with pure bending
there is shear associated with this action. As a
consequence of this, rotational modes are inhibi-
ted. Only the inphase modes are determined by
this option and no spurious fluid freguencies.
Inclusion of incompatibility modes results in the
correct inphase and out-of-phase frequencies with
spurious shell and fluid modes.
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shear viscosity (MorG): u=0 for out-of-phase

modes

fluid mass: for thin gaps between the inner and
outer cylinders, the inphase frequencies are less
sensitive than out-of-phase modes. As fluid den-

sity (p)*0 the out-of-phase modal frequencies
increase.

beam or boundary elements: the use of beam ele-

ments or boundary elements interfacing between

the fluid and structure may or may not be neces-
sary. For the co-axial cylinder problem, boundary

elements did not J.mpmve accuracy versus diréct

attachment™ of the fluid to the structure. "In this

pr'oblem, the acoustic frequencies were ununpor'tant

- In the rectangular container problem, direct
attachment of the fluid to the er'ucture will
inhlbit the dllatatlon modes

(7
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Figure 9

3—D Mesh of Co-axial €antilever and Blgld
“Eylinders Tilled With Water’ "~

5.0 3-D SOLUTION OF SOLID-FLUID INTERACTION PROBLEMS

In order to illustrate the use oi‘ the 3-D finite ele- .

ment dlsplacement method to solve fjrute co-axial’
cvlm&er‘ v1brat10n pr'oblems in the presence of a

f‘luld (such as f‘ound in nuclear' react:or's), let's con=

suspended by a flange and capped at the other end,

discugsed in Reference’ (11). The’ ‘cylinder is mnersegi
0'and has a 1 inch (25.4m) radial

in 70°F(2122%) H
gap between it ang an outer mgla cylmder‘ Thé
dimensions of the’ flexible cylinder are: ' 0.125"
(3.175m) thick shell,” 22" {558, 8m) 0.D. x Ly

(111"{' Exrrn) Jength of Lhe cyl:mder' 0.5 (12. 7mm) end
p;at:e$ and a flange with a 1 (23 bim) thigkngss X~

21,750 (552.45m) 1.0, x 27,5" (698.5m) 0.0, = poit

circle “The 3-D mesh’ U>mg the Q—ll ‘elemént for Fluid
and the she_.‘ll element prevlously diScussed for thé™ ™~
str'ucture, is illustrated in Flgure 9 and itemized in
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Table 5.
Table 5
3-D Solid-Fluid Cantilever Cylinder
No. of Elements Element
cylinder 300 Q-19 Plate (Ref. 34)
inner water hoo Q-8 compatible (Table 3)
outer water 400 Q-11 incompatible (Table 3)
total 1100

The .outer fluid nodes are fixed to simulate the rigid
outer cylinder, and the upper surface fluid nodes

. (see Figure 9) in the annulus are constrained to no
displacement in the Z direction. A resevoir of H,0 is
under the end plate of the cylinder, hence the lover
surface amular fluid is not constrained. The irnner
fluid surface is also free. A comparison of the fre-
quency results from experimental tests and the finite
element displacement method are provided in Table 6
for the following cases: no water present, water in
the inner cylinder, and water in the inner and outer
cylinders. The results agree quite well. The only
discrepancy is the evaluation by finite element of
some modes that were ill defined or difficult to lo-
cate experimentally.

Table 6

Frequency (HZ) Comparison

Mode (n,m) Experimental Analytical Model
(Support Stand)

Cylinder in air :

1,0 33.8 46.6
2,1 331 359.8
3,1 - 205 209.3
4,1 196 196.7
5,1 255 261.6
CPU = 124 sec. (CDC 7600)
JInner cylinder filled with H,0:
1,0 30.3 ’ 26.1, 105.1
2,1 NR(Could not locate) 110.3
3,1 103 119.3
4,1 - 106 131.0
5,1 145, 148 1441

CPU = 293 sec. (CDC 7600)

Inner and outer cylinder filled with H29_ :
4,0 NR 11.0, 24.8
1,0 30.5% " 29.6
1,0 30.5% 4y 4
2,1 64.4 69.7
3,1 53.5 '52.8
L] 59.7 61.4
531 - 89.4 93.7

CPU = 477 sec. (CDC 7600)

n = circumferential

m = longitudinal

- ¥.= 111 defined




6.0 DISCUSSION AND CONCLUSION

In this paper, we have shown through comparison to
experimental, theoretical, and other finite element
formulations that the finite element displacement
method can solve accurately and economically a cer-
tain class of solid-fluid eigenvalue problems. The
problems considered are small displacements in the
absence of viscous damping and are 2-D and 3-D in
nature. A problem analyzed in detall by the authors
using the finite displacement method, but not pre-
sented here because of space limitations, is the
analysis of finite co-axial flexible cylinders
connected by a fluid filled annulus (as discussed
in Reference 16). 1In this study the advantages of
the finite element 'method (in particular the displace-
ment formulation) is apparent in that a large struc-
ture consisting of the cylinders, support flanges,
fluid and other experimental boundaries could be
modeled to yield good correlation to experimental
data. The ability to handle large problems with
standard structural programs is the key advantage of
the displacement fluid method. The greatest obstacle
is the inability of the analyst to inhibit those
rotational degrees of freedom that are unnecessary

to his fluid-structure vibration problem. With judi-

clous use of element formulation, boundary conditions
and modeling, the displacement finite element method
can be successfully used to predict solid-fluid
response to vibration and seismic loading.
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COMPARISON OF FREQUENCIES (HZ)

TABLE 2

DISPLACEMENT (FESAP) VS PRESSURE (NASTRAN) METHOD |

Method

Mesh
Dist.

Mode 2

Mode 4

Mode &

Computer Time

(CPU second)

* Displacement
(2D Model QM5
-element)

* Displacement
(3D Model Q-11
element)

* Displacement
(3D Model Q-11
element)

**Fourier Pressure
(3D Model Axi-
fluid element)

**Pressure Analog
(3D Model HEXA

element)

*%Pregssure Analog

(2D Model CQDMEM

element)

Experimental

8 x 2

74.2

78

79.2

90.1

89.6

85.8

50.0

25.4

12.5°

12.7 .

24.6

22096

10.0

21.6

394.7
420
446“
529.7
473.4'
453.8 |

340.0

111.6

107

125

253.4

" 209.4

185.5

105.0

968.4  339.1

1006 355
936 418
1857.4 - 1337.8

1114.8 660.6

'1011.9 502.6

750 330

- 1.4

10

2.2

140

8.6

3.7

(@ T T

SAP6
*NASTRAN
= inphase modes

out-of-phase modes



TABLE 4

COMPARISON OF FREQUENCIES WITH VARIOUS ELEMENT FORMULATION

USING DISPLACEMENT METHOD

Element . Mode 2 Mode 4 Mode 6

Formulation I 0 - I 0 I 0
Q-8 1048 - 4813 L R—
Q-8 : 82.6  25.4 - 446 107.7 1074 574
(One Point R : .
"~ Integration) ‘ |
Q-9 | 89.2 - e - 1158 -
Q-11 8206 " "25.4 . 446 . 107.6 1074 574
-1 82.1 . - 515 - 1448 . -
Experimemtal - . - 50.0  10.0 . 340 105 . 750 330

Note: All frequencies are computed using shear coefficient = 0.319 psi (7.213 KPa)
Thickness of inner & outer cylinders = .118(3mm)

I = inphase mode ' 0 = out-of-phase mode -
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w - frequency in HZ
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w frequency (HZ)

r, = 0.079" , r = 0.118"
(o)
= 2mm = 3mm

W
1200 4
1000 J
800 4 @ 6
o 8,
600 1
—
P
&
o
@
g
-
u
@
400 | %
4.
e %5
o
6
200
o 40
0 o 2,
lO8

G (Shear Modulus - psi) X 6
(1 psi = 6.895 KPa)




frequency - HZ

frequency - HZ

1200
1000 4 -
: (f = 1118 HZ Q-3 triangle element
exact
zgslst dilatation mode
800 - o
Alst rotational mode
-5 incompatible mdde
600 _ Q l P
A Olst dilatation mode
400 _ A ‘lst rotational mode
| A A
™ Q-5 lst 56 rotational modes
Ea1 = 0)
0 N A ’ ,,7—/,.11’1;‘,,‘:_’ exact N
1 2 3 4 5 6 7 8
Element Refinement in A direction
w
1200 4 ¢ .
Al 1st dilatation mode
1000
4th rotational 3rd rotational
800 mode and mode
greater
600 2nd rotational -
- Q-5 element mode
. (3 x 19 mesh)
400
1st rotational
mode
200 4
(o
1;1 T | T Ts ¢
10 10 10 10

Shear Modulus G (psi)
(1 psi = 6.894 KPa)
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outer cylinder
) thi Ck = 2mm
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