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the f i e l d  equations can still resu l t  in a complex 
prob1.m when three-dimensional geometries a r e  con- 
sidered. One such example i s  the dynamic analysis  
of coaxial cylinders which a r e  found in reactor  
vessels such as the  Clinch River Breeder Reactor 
(CRBR) i l lus t ra ted  i n  Figure 1. A vibration analysis 
of such a s t ructure  can still be d i f f i c u l t  when the 
influence of the sodiim is  considered in concert with 
supports, contact points, nozzles, and pipine, attach- 
ment s . 
There have been many papers (4-17) tha t  have treated 
such problems theoretically,  however, with consider- 
able s b p l i f i c a t i o n  of the structure.  A popular 
approach has been the f i n i t e  element f lu id  pressure 
formulation, discussed in (18-22). The f i n i t e  ele- 
ment method offers  the a b i l i t y  t o  ideal ize  the  f l u i d  
and s t ructure  for  arbi t rary  shapes which mkes  it a 
a popular technique. Another approach that 11as 
received much l e s s  a t t e ~ t i o n  i s  the f i n i t e  element 
f lu id  displacement formulation a s  discussed in (23-25). 
In t h i s  paper, we w i l l  consider the mll deflection 
vibration analysis u t i l i z ing  the f i n i t e  element dis- 
placement method. For a discussion of interfacing 
mnl inear  solid-fluid analysis in vessels as shown i n  
Figure 1, the readei- is referred t o  Belytschl<o (26,27), 

This paper w i l l  attempt t o  br ief ly  explore t h r o w  
i l l u s t r a t i v e  examples the advantages and disadvant- 
ages of the  f i n i t e  element displacement methd t o  
perform solid-fluid eiget~value analyses. ' 

The f i n i t e  element method concept is  generally well 
known and covered in such t ex t s  as (28-31). We w i l l  

, only br ief ly  review same of the fundamentals as they 
r e l a t e  t o  the solid-fluid problem. Basically, the  
displacement approach assumes the fundamental "dis- 
placement" unlmown a t  a node point of a f lu id  and 
s t ructural  element while the pressure method assumes 
a scalar  unknown "pressure" at a node point of the  
f h i d .  

2.1 Fini te  element displacement method 

In formulating the  s t ructural  vibration problem 
using the  f i n i t e  element technique, the  governing 
equations of motion can be expressed a s  

where [m] , [ c] , and [ k] are the  assembled mss, 
damping, and the s t i f fhess  matrices f o r  the idealized 
structure.  (u) corresponds t o  the vector of the  dis- 



placement components and a dot on Id denotes pa r t id l  
d i f ferent ia t ion with respect t o  time. By applying 
the f i n i t e  element displacement metl-nd t o  vibration 
problens with solid-fluid interaction effects ,  the  
mass matrix, [ml, is computed i n  the m e  m 1 e r  as 
in the s t ructural  analysis. I f  the damping term is  
neglected, the only difference w i l l  be in the  formu- 
la t ion of the s t i f fness  matrix, [ I < ]  . The procedure 
f o r  the formulation of the s t i f fness  matrix f o r  the  
f lu id  element is similar t o  that  of the s t ruc tu ra l  
element except that a special  conskltutive law which 
r e l a t e s  the s t r e s s  and s t ra in  by the m a t e r i d  matrix 
[GI, must be defined for the f lu id  element. 

In order t o  convert 'a standard s tmctura l  eletiler~t 
in to  a f lu id  element, we simply define tbe s t ress-  
~ t m i n  material t ~ l a k r i x  [GI (as discussEd by Kdlinowski 
(24), a s  follows: 

where K is the bulk modulus of the f lu id .  

We m y  note tha t ' the  acoustic velocity (c) of f l u i d  
is calculated by 

2 o r  K'C9 
f - .  ( 3 )  

. pf = density of C.uid 

The advantage of t h i s  approach can be readily seen: 
.any standard version of a f i n i t e  e l a m i t  s t ructurdl  
analysis pmgrav may be used for the solid-fluid 
interaction problem by introduchg a1 appropriate 
m t e r i a l  matrix, [GI. Now, the probI.cn is  reduced t o  
solving an algebraic eigenvalue problm of equation 
(1) which yields the  natural  frequencies and t h e  mode 
shapes of the combined sol id  and f1i~i.d structures.  

2.2 F in i t e  element pressure method 

This approach uses the  '!pressurem wda-mm in t h e  
f lu id  domain while retaining the  "displacement" 
unbown in the s t ructural  domain. l'ne governing 
equations representing the s t ructure  are given in 
equation (1). The derivation of the pverniny: equa- 
t ions in the f lu id  domain a re  based 011 the Navier- 
.Stokes equations of f lu id  motion c6upld with the  con- 
t inu i ty  conditions. I f  we express the f lu id  pressure 
a s  a l inea r  canbination of a shape.fh~ction, h,, then 

where p represents the  pressure at a grid point in 
the f lu id .  Neglecting the viscous t e rm,  the govern- 
lng equations i n  the  f lu id  can be expixessed with the  
boundary co~di t ions ,  as 

*re pf is the density of the fluid,  Q and H are 
defined in the maivler of reference (1.8). 

The matrices (61, [Ill and the boundary matrix, [Bl can 
be expressed a s  functions of :the shape Functions, . 
Note that  the l a s t  tenn i n  equation (4) represents hJ 
the effect  of motion of the structures on the f lu id .  
S M l a r l y  i f  we consider the effect  of f lu id  motion 



on the structure,  the governing equation (1) of the  
structure must be modified .to take in to  accol-ult the  
effect of f lu id  motion by adding a coupling term, 

The damping term i n  equation (1) is  again neglected. 
Equations ( 4 )  and ( 5 )  together provide a s e t  of equa- 
t ions  fo r  the s t ructure  and another s e t  of equations 
for the f lu id .  lh?se two s e t s  of equations a r e  
coupled by the boundary mtrix term, [B] .  Again the  
problein is reduced t o  a se t  of algebraic eigenvalue 
equations. Tlm matrix generated from equations ( 4 )  
and (5) ~l.11 be non-symetric. due t o  the  coupli~lg 
terms, however, can be recast  in a synunetric fonn 
with suitable operations discussed in reference (18). 

?he basic formulation of t h i s  type of f lu id  element 
follows the procedure as  proposed by Everstiiie (19) 
e tc .  The basic assmption is that  the f lu id  i s  
t reatea  a s  an acoustic medium and i s  t o  be compressible : 

ard i r l v i s c i d .  The f luid  is  fllrther assumed t o  undergo 
only mil amplitude motion and the "pressure" f i e l d  
within the medium s a t i s f i e s  the  wave equation: 

The boundary conditions a t  the fluid-structure in ter-  
face can be obtained from the  mamenturn and cbntinuity 
conditions. lkro types of approaches, consistent and 
lumped methods have been s w ~ s t e d  by Schroeder and 
Marcus (20), t o  model the fluid-structure in terface .  

For l inear  material, the Hooke's law c&i be w i t t e n  
in  terms of a symnetric material mtrix, [GI . A neces- 
sary and suff ic ient  condition f o r  G t o  be isotropic  
and a t  the same time t o  sa t i s fy  the  wave equation is 

'Ib.cmputc the s t i f fness  matrix [ k ]  of the  fl.uid ele- 
ment, it is only necessary t o  model the  f lu id  with 

'--.standard e las t i c  f i n i t e  elements having material  
- properties of G in equation ( 7 ) .  

By adopt% the lumped approach i n  the fluid-structure 
interface,  the  influence of the  s t ruc tu ra l  motion on 
the  pressure can be expressed a s  

In other words, i f  the outward normal component of 
s t ructural  acceleration a t  a point is ii , the  e f fec t  
on the  f lu id  pressure is the  lfforcel' giffen by FP. 
The inverse relationship ( that  of f l u i d  pressure on 
the s t ructural  motion) is  obtained by applying a 
normal force t o  the  s t ructural  point by 

. ys = PA ( 9 )  
2 

?he coupling terms(pfc) A and A a r e  preccmputed in 
equations (8) and ( 9 j  a t  a l l  solid-fluid in teract ion 
boundaries, ard inserted in the  s t i f f n e s s  and mass 
matrices for  the solid-fluid system. 'Ihese terms 
a re  inserted i n  the columns corresponding t o  the pres- 
su-e of the f lu id  grid point and i n  rows col~esponding 
t o  the  s t ructure  displacements i n  the  r direct ion 



(assuming a cylindrical  coordinate i s  used t o  model 
, the solid-fluid system) of the structural. grid point. 

N/LS!EW (32) pmvides the  di rect  matrix input (DIIG)  
and thus no p r o m  modification is required t o  solve 
the solid-fluid interaction problem using the  lumped 
techniques fo r  the pressure analog f lu id  element as 
described above. 

The Fourier approach assumes that  the problem has 
an ax ia l  symnetry so tha t  the "structural" model is 
defined by a s e t  of f1.uid gr id  points in a plane t h a t  
jncludes the  axis  of sylimetry. 

The pressure wit;hin a f l u i d  element can be expanded 
i n  a Fowier  set'ies with respect t o  the azimuth 
coordinate, +, 

The coefficients pO, p", and $* are a function of 
- position in a rad ia l  plane. 

The motions 01' the coupled solid-fluid system need 
not be axisymnetric. The NASTRM hydroelastic option 
provides a detailed description of t h i s  element. It 
allows the  user t o  solve a wide variety of f lu id  pro- 
blems having s t ructural  interaction. 

Figure 2 

2-D Mesh of I n f i n i t e  Cylinder Surrounded by Water 

. . 
3.0 W E  PROBLEMS COMPARING THE PRESSURE 

VS. D I S P L A C ~ ~  MEI'HOD 

3.1 Tfle vibration of an Inf ini te ly  long cylinder 
surrounded by water 

The model described i n  Reference (20) c o ~ l s i s t s  of a 
carbon steel. cylinder tha t  has radius of 10 inches , 

(250.4m) t o  i ts  centerline,  a 0.25 inch (6.3nm) 
thickness, and water s u r r o u ~ ~ d i ~  the outer surface.  
n7e f lu id  region is idealized by 2-D plane s t r e s s  
elenents with the appropriate material mtrix,[G] and 



the cylhdrical shell is modeied with beam el~ments. 
Figure 2 illustrates . a quarter model used to evalu- 
ate the even mode and frequency, results. Figure 3 
illustrates the radial dimension and element refine- 
ment Mluence on convergence for the quadrilateral 
element with incompatable modes discussed by klilson 
(33). We observe that acceptab1.e accuracy is achieved 
for an outer fluid radius of about 30" (76hn) and a 
radial refinement of 5 to 6 elements (the modal 
response for w2 is illustrated in Figure 4). This 
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Figure '3 

Element and Radial Dimension Convergence of The . 

&5 Displacement Element 

agrees with the NASTRAN quadrilateral pressure element 
data presented in Reference (20) which is s m i z e d  
in Table 1. The displacement finite element ar~d 
theoretical data is included for comparison. 

Table 1 
.Met hod NO Nr Outer Radius frequency in Hz@! 

03 

("2 W6 
Theoretical - 35.8 22'7.9 592.7 
Displacement* 8 6 32.6 31.3 235.0 599.0 

(828mn) 
Pressure** 
a) consistent 8 6 37.5 248.6 671.8 
b) consistent 16 12 36.4 233.3 615.8 

8 6  36.9 236.5 618.2 
d) l ~ d  36.2 230.3 601.0 

* SAP 6 (Ref. 35) NO = number of circumferential 
elements 

**NASTRAN Nr = number of radial elements 

While the displacement method requires less computa- 
tional the than the pressure method, the increase in 
the fluid mesh introduces increasing member of fluid 
frequencies for this and similar problems. This can 
be an undesirable feature of the method, but before 
we discuss this further-let's consider an instance 
where the fluid modes can be inhibited. 





a )  2-D displacement elenients vnth inconpatitile modes 
(Q-5 )/Seference (33 

b) 2-D pressure elements which a re  quadr i la tera l  
formed from s t a t i c  condensation of t r iangular  
elementsfieference (32) 

c l  .3-D displacement 8 node el.ements with incanpat- 
i b l e  modes (Gll )/Reference (33 ) 

d) 3-D pressure element (CHEXA) with 8 nodes avail-  
able in NASTRAN. The interaction between the  
f lu id  and the  s t ructure  i s  accomplished through 
the lumping technique. 

e )  3-D Fourier pressure ring element (RUJCFL) avail-  
able in I J A S W d .  The r ing f lu id  elements a re  
connected t o  the  s t ructure  via (CFLUIDI) in terface  
elements . 

The out-of-phase Gth lvode shape fo r  uO6. = 355 Ilz i s  
i l lus t ra ted  in Figure 6. Table 2 provldes a frequency 
cornpison of the  various methods c i ted with experi- 
mental .data frm Reference ( 8 ) . The inphase modes 
a re  characterized by both cylinders osc i l l a t ing  to- 
gether in a somewhat paral le l  fashion. The f l u i d  a l so  
osci l la tes  predominantly i n  the radia l  direction. The 
out-of-phase modes a re  characterized by the inner and 
outer cylinders moving in the  rad ia l  direction but 
opposite at t h e  same angular (8) location. I n  this 
instance, the f lu id  motion is predomiruntly a tangent 
osci l la t ion ( t o  cylinder curved surface). A s  with 
the previous exarilple, the  two methods - compare favor- 
ably with the  experimental data.  The Q-5 2-D dis- 
placement solution .provides the  correct solid-fluid 
modes (no f l u i d  modes/spurious n~odes were recorded). 
The Q-11 3-D displacement solution ( 8x2 ) provides the 
correct solid-fluid modes plus 3 additional spurious 
rra3de.s. 

3.3 Advantages and disadvantages . 

a )  Computational consideration - the advantage of 
using the  displacement method is that  aqy stand- 
ard s t ruc tu ra l  analysis 'program, such a s  SAP6, 
can be readi ly  used. However, due t o  the sensi- 
t i v i t y  of the  element formulation, shear viscosity, 
material properties and boundary conditl.ons, a ,, 

fur ther  discussion of' these is  provided in l a t e r  
sections. The pressure method has the advantage 
of requiring one (pressure). unknown per f l u i d  
point ra ther  than three unla?owns for  the  dis- 
placement method. However, the  pressure method 



has the disadvantage of generating nonspqetr ic  
m t r i c e s  (which through several ~natr ix  w ~ l i p ~ ~ l a t i o n s  
can be expressed in a syrr~netric form) in contrast  t o  
a symnetric form generated by the displacement method. 
The computer time for  the  Fourier pressure method is  

>sure am- approximately ten times that  of the 3-D pre- 
log method. Tkis is due t o  the fac t  tha t  the  NASTRAN 
Fourier pressure method uses the complex eigenvalue 
search routine. The computer cost between the dis- 
placement method and the 3-D pressure analog method 
.is comparable, but the pressure method i s  several 
times more expensive. The CRJ  seconds given in 
Table 2 shows a qual i ta t ive  comparison since the  mesh 
is  too small t o  show an absolute quantitative conpar- 
ison. 

3-D Modal Displacement of Co-axial Cylinders 
for  uO6 =. 355 HZ 

b) Spurious Frequencies - The additional spurious 
fluid modes generated f r o m  the  displacement f l u i d  
element creates problems when only the  s t rudtural  
modes are  of in teres t .  From t h i s  point of view, 
the pressure approach,appears t o  be more a t t rac-  
t i v e  provided that the  analyst can correct ly  
predict the frequency range t o  be searched with- 
i n  NASTRAlI. Lken with a proper range of f'requency 
specified, it is possible t o  generate additional 
spurious f'requencies when using the  NASTRAI.1 pres- 
sure method (e i ther  the pressure analog o r  
Fourier pressure method). . There a re  several  ways 

' t o  determine which frequencies a re  actual ly  f l u i d  
o r  s t ructural  frequencies ra ther  than f l u i d  only 
frequencies. The eas ies t  way is t o  p lo t  the  
mode shapes. For the  "fluid-only" modes, the  
structure w i l l  show very l i t t l e ,  i f  any, r e l a t i v e  
displacement. For the fluid-structural  modes the  
structure a s  well as the  f lu id  w i l l  have s ign i f i -  
cant re la t ive  displacements. A second way is  t o  

ccmpletely f i x  the structure and make a second 
run. Tkis w i l l  yield only f lu id  frequencies. By 
comparing the resul ts  of the "fluid-only" run with 
the n o d  run, the common frequencies can be 
identified as f lu id  frequencies. This procedure 
is not fool-proof. A th i rd  a l ternat ive  is  t o  
examine the  mode displacement data from the  f u l l  
run t o  determine which frequencies have the  larger  
s t ructural  values. Generally, the . s t ructural  
frequencies a re  d b l a n t .  This procedure i s  sub- 
ject  t o  significant judgement a t  times and selec- 
t i v e  mode shapes should be plotted f o r  verifica- 
t ion. If a range of f lu id  frequencies is known 
t o ' e x i s t ,  the eigenvalue s h i f t  may be used t o  
e1imirdt;e them. For example, the  f i r s t  few fy- 
quencies found for  the 3.1 problen a re  f luid 
frequencies. By requesting the truncation of 
frequencies below 30 HZ, the solution of these 
f lu id  f'requencies i s  omitted. Finally,  the  f l u i d  
frequencies m y  be f i l t e red  from the  solution by 
1 M t h g  those modes with re la t ively  ].ow in te rna l  



energy within the structural domain from the t o t a l  
solution. 

4.0 THE DISPLACEivIEWT METHOD 

l9-m the  previous two i l lus t ra t ive  problems, it is 
evident that  the desirable structural fiequcncies 
with interacting f1uj.d can be obtained'by the dis- 
placement method. In th i s  section, we w i l l  explore 
further the displacement method with respect to: 

. effect of element formulation . influence of shear viscosity . effect of mesh distribution, geometry . effect of boundary conditions . study of integration order, plane s t ress ,  
plane s t ra in  

4 .1  Effect of element formulatio~~ for  thedisplace- 
ment method 

A question that  problem 3.2 raises is  what i s  the 
f'unction of the f luid element formulation i n  charac- 
terizing the i ~ p h a s e  and out-of-phase modes of the 

. cc+axial cylinders? We provide a limited comparison 
in t h i s  paper by chooshg a 3-D 8 node element as the 
base and vary the s t i f fness  characteristics. The 
f ive formulations considered are: 

Table 3 

Element identity 

a. &8 
b. &8/one point 

integration 
c. €2-9 

Descriptions 

compatible mode 
compatible mode using one 
point integration 

Incoqmtible mode with 
respect t o  centroid i n  
one(1) degree of freedom 

incompatible mode with 
respect t o  centroid in 
three(3) degree of freedom 

inconpatible mode with 
respect t o  centroid of 
six ( 6  surfaces 

Fbr the Q-8, the .displacement approximations are  
assumed t o  be 

where In indicial  notation j = 1,2,3 (coordinate 
frame) and i = 1 t o  8 (nodal reference) 

hl = 1/8 RST h5 = 1/8 RST 

h2 = 1/8 %T h6 = V 8  @!f 
h3 = V 8  ET h7 = 1/8 ET 

" h - 1/8 RST 4 - htl = V 8  RST 

where R = ( 1  + r ) ,  S = (1 + S), T = ( 1  + t )  
f j =  ( 1  - r),  3 = (1 - s ) ,  T =  (1 - t )  

and r,s,t are the local coordinate frame. For a 
sitlgle point integration the same element i s  used 
with an adjustment of the weight f'unction and inte- 
gratfon points. 

For the Q-9 element, .equation (11) takes the form 

~ E ~ ~ ~ ~ ~ ~ ~ w J ~ ~ ~ w w ~ ~ u ~ P W ) - ~ W ? I ' L ' L ' ~ W Q ~ . W ' ~ ~ <  ... . . . .  . . . . :.: . ., .-  
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The Q-11 displacement polynomial is writ ten as 

(13) 

where k = 9,10,11 

For the  Q-14 e l q e n t  equation (11) is rewrit ten as 

where 1 = 9,,.10,11,12,13,14 

The centroids of each bending. coefficient is located 
at. six element faces. 

19.1 -- I & &  - ' ' 11% - 

, . m2.1 . - 
I Y  310 

( . w,.e,-pl.n. . 

Table 4 provides a canparison of frequencies obtained 
, f o r  the  problem discussed in section 3.2 using the  

element fornulations in Table 3 with an 8x2 mesh. &8 
is an element without incanpatible modes. l k b l e  4 
indicates t h a t  both Q-11 and Q-8 (with one point in te-  
gration) provide acceptable r e su l t s  a s  compared with 
the experimental r e su l t s  by Levin(8). Element types 
Q-8, Q-9 and Q-14 do produce the  inphase modes, but 
the  lowest three out-of-phase modes a r e  missing. 
Retween Q-11 and the  one point integration Q-8, t h e  
l a t t e r  requires l e s s  computer time t o  formulate the 
element s t i f fness  but a t  the  same time it generates 
addit ional spurious f lu id  modes which need t o  be 
removed f o r  s t ructura l  response spectrum analysis.  
It should be pointed out tht with a s m l l e r  p (say 
0.0319 - see lkb le  2),  Q-11 w i l l  provide a b e t t e r  
comparison w i t h  the  experimental data. The inf lu-  
ence of the  element f o m l . a t i o n  with respect t o  shear 
s t i f fness  and its importance t o  solving many sol id-  
f lu id  interaction problems can be M h e r  i l l u s t r a t e d  
by the  following example. 

Consider a simple rectangular container with t h e  
dimensions AxB [ 4 "  (101.6nm) x 25" ( 6 3 3 4 1  whose 
walls are r i g i d  and bound water. 

/ /  

. . ..'. . .  .. . ~ . . .  . ." . . 



The propefiies of' water a t  70°~(21. iOc) are:  

K (bulk mdulu.5) = 319,obo p s i  (Zlg.glb1~a) 
v (poisson's r a t i o )  = 0.5 
P (density = 0.03605 f t  / in3 (0.5775 ~ g / ~ 3 )  

From the fundamental mechanics of vibration, we can 
show that 

Dilatatio!ml Modes : w = c ,,/(F~) (F~) (14) 

Rotational Modes: w = 0.0 
;m,n = 1,2,3 

Only srhstion Langent t o  the r ig id  wall is  permitted 
a t  the boundaries. The remaining nnrlcs imve two 
degrees of freedom. T\.ro types of elanents a re  used 
in t h i s  i l l u s t r a t i v e  problem: (1)  the N A S T T i  2-D 
quadrilateral  formed by triangular elements (Q-3) 
and (2) the Wilson 2-D Q-5 incompatible mode element. 
Fini te  element meshes (3  x 19),  ( 4  x 25), ( 5  x 31), 
t o  (8 x 50) (Number of elements i n  the A dimension 
X Number of elements in  B dimension) a re  constructed 

. for t h i s  study and P = 0.0. The frequency response 
of the Q-3 and Q-5 a re  i l lus t ra ted  in Figure 7,. A s  
the mesh is refined,-we observe the convergence of 
the Q-3 solution for  the first rotational frequency 
t o  the  exact value of zero. The Q-5 element solution 
( i l lus t ra ted in  Figure 7)  shows that  the coarse mesh 
resu l t s  in  a l l  permissible rota t ional  modes ( for  t h i s  
mesh) f a l l i n g  below 58 HZ. The f i r s t  rotational fre- 
quency is 0.77 HZ fo r  t h i s  (4-5 solution. 

Figure ?a 
, Dilatation (fh and Rotation (f 

Frequency vs Element ~efinemenq 

. - 
Figure 7b 

Rotational Frequency (fn ) vs Shear Modulus ( G )  

Our resu l t s  show tha t  the rota t ional  modes of the  
f i n i t e  elanent tend t o  zero and zero pressure is  
associated with than fo r  the p and boundary condi- 
t ions  chosen. An important point is the a b i l i t y  of 
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t he  Incompatible mode elenlent (&5) t o  achieve zero 
f o r  the  more r e f i n d  mehes.  This is a consequence 
of the  shear condition assumed with respect t o  t h e  
shape function f o r  the  Q-5 element, i . e . ,  local  shear 
s t i f fness  is zero Jn a bending ~llode. We ~ o u l d  expect 
tha t  i f  t he  vor t i c i ty  (Q = 2w) were zero where 

s. = % EUh Wjk and i = x, y, z 
1 

J = x, Y, z 
. k = x ,  y, z 

then the  r o t a t i o r y l  modes a r e  not permissable. 

In order t o  obtain some measuTe of i r ro t a t . i oml i ty ,  
l e t ' s  consider the  f ac t  that in a two dimensional 
shear flow, wc have 

U = f ( y ) ,  V = 0, w , =  0 

I f  we remember t h a t  shear is  defined as 

we can influence the  i r ro ta t iona l i ty  of the  f i e l d  by 
modifying v o r  G.  A s  shear s t i f fbess  approaches 
in f in i ty  the  shear strains become zero. 

I n  Figure 7b, the  response of the  3 x 19 element mesh. 
f o r  variable G or. ).I using the  Q5 element is i l l u s -  

Fieure 8 

Inphase and.0ut-of-phase Wequency 
vs G For Co-axial Cylinders 
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For a more coa-se mesh, the ls t ,  2nd and 3rd rota t ional  
frequencies increase above 1118 HZ. O w  data. indicates 
that  the  boundaries a ~ d  modeliw assumptions tend t o  
lead t o  a.cornbination of compressability and rota- 
t i o m l i t y  for  t h i s  part;icular mesh. This stucly' shows 
that i rmta t iona l i ty  (R = 0) can e l k i n a t e  rotational 
frequencies of the f lu id  when they a re  undesirable 
and that  a no pressure s t a t e  Is associated with these 
frequencies. 

4.2 Influence of shear viscosity 

Again, we consider the vibration of the co-axial 
cylinders of i n f i n i t e  length connected by a f luid  gap 
discu33ed in sec t io i~  3.2. l'his is  inodeled by the Q-5 
klilson 2-D.element with a 2 x 8 mesh il.lustrated 
within Figure 1 4 .  

&cause of our choice of boundaries and a 90~.model, 
only even.modes of vibration a re  evaluated. For large 
shear coefficient values, only inphase frequencies 
(2i, Qi, 6i) a re  present (see Figure 8 ) .  

The i r r o t a t i o m l o r  circulation modes ( r ) a r e  inhibited 
in 2-D problems by stiffening or  increasing the  G o r  
P. I n  Figure 8, we see that  a s  p+O the out-~f-phase 
frequencies (20, 4 , 6 and 8 ) appear. The f i n i t e  
element solutions 8omp%re quiee well t o  the experi- 
mental data for  G = 0. No sp*ious frequencies were 
.encountered. 

A similar evaluation was repeated using the  3-D Q-11 
fluid  element.. The resu l t s  were comparable, but some 
spurious frequencies were encountered and eas i ly  
identified.  

4.3 ~ssessment of mesh, boundaries,' and other para- 
meters 

Risking the  pdssibi l i ty  of over generalizing because 
of space l imitations,  we w i l l  sumr~wize the effect  of 
scene of the  parameters in the  type of solid-fluid 
analyses we have presented rather than present the 
tabular numerical data.  Using the  f lexible  co-axial 
cyl.lnder problem with annular f lu id  we find: 

. mesh refinement: a s l igh t  increase in accuracy 
with a significant increase in rotation-al f lu id  
'frequencies. 

integration order: an increase in integration . ' 

order does not have a measurable influence. This 
may not be the-case fo r  large aspect r a t i o  ele- 
ments. 

. f ree  displacement surface versus plane strain 
(plane s t r a i n  is effectuated by constraining Z 
displacements at one evaluation o r  side of the 
,thickness of the  f lu id )  more spurious f l u i d  fre- 
quencies a r e  encountered by the  f ree  surface 
t l m  plane s t ra in .  

. element compatibility: there is bending s t r e s s  
assocl.ated with pure shear or  with pure ben- 
there  i s  shear associated with this action. A s  a 
consequence of t h i s ,  ro ta t ional  modes a r e  inhibi- 
ted.  Only the inphase modes a re  determined by 
this option and no spurious f lu id  frequencies. 
Inclusion of incompatibility modes resu l t s  in the 
con-ect inphase and out-of-phase frequencies with 
spurious she l l  and f lu id  modes. 



. shear viscosity (p or  GI: I.! = 0 f o r  o ~ t - p f ~ p h a s e  
modes 

. f lu id  mss: for  thin gaps between the inner and 
outer cylinders, the jxphase frequencies a r e  l e ss  
sensit ive than out-of,plnse modes. As f lu id  den- 
s i t y  (P b O  the out9f-phase modal frequencies . . .  Increase. 

. beam or  boundary elements: the use of beam elel- 
ments o r  bouldary elements interfacing between 
the  f lu id  and structure may-or'may not be neces: . . 
s q .  For the co-axial cylinder problem, boundary' 
elements did not iiipimve accui-acy-versus d i rec t  -' 
a t t a c h n t - o f  the-fluid t o  the structure.  -Ln t h i s  
crobiem; the acoust ic  frequencies were unin@ort&t. 
I n  the r e c t a l g u l q  conl;ah~ttr. problem,. d i rect  
sttachmknt of the f lu id  t o  the' s t k c t u r e  w i l l  
5ihibif;'-the - ... - di la ta t ion - . . . . .  modes. ' ' ' - - .  . . . . . .  . -  . 

5.0 .................. 3-3 SWJTXON OF ...-_ SOLID=WfD XWEfblCETON P R O B W  

In t o  g l u s t r ~ t e  the use df the 3:D f i n i t e  elel- . 
%nt displacement .methcd"io' solve f in i t e '  co!eial--'. .... 
cylinder Gibration pi-oblei~s ~YI- the- presence of- a 
f l u s  ( s u c ~ " ~ '  found iti"iuc1ear ' reactors ) , ' lef; s conT 
sider the problah 'of a f lexible  carbon steel .cyli t ider 

i 
suspended by ' a' f large anh capped' at t l ~  other end, . 
discu sed in Reference (11). .The"cylinder is  imnersH 

i6%(21:30Cl iis6.&g has 9 ? l n ~ h  j25.11h) Fadial . 
gap petween- i t  outer r i g i d  cylmder. The'.---' 
dimensions (3.. i75 of the flexible c y i i d e r  are:  ' 0.125'' 

:. . m) thick ............ shkil.-22" ? ... (558.h)-0.1) .  x'34!' 
!&$ j?.:'$?n) le@h of the  cylinder ,' 0.5'! t l '2.7mn) end 
prpt,e , a d  $"'fi&igk' vi;.$h a Pll ' .  (25 : 3 5 )  th ich&s 's  n" - 
21 .?sf1 ]552:4$5j-$.~: 27; ~ J I !  {698:'5mn)'~6:b.'''~-'b6;~t 
iikc!e: ' +  djk 3+1 mgsh <Siilg the  &r1.i.'6~cm@ht ' roc' 'flicld 
$d $ 9 ~  s.he-1.l' ?>enlent ~ ~ ~ ~ i o ~ d . y ' d i s c U S s ~  'for the--- 
styuctu.e Ls i-llustrated G"~igtge' q.and it,gnized .... &I . -.-:.- ! -- ....................... r- ,, .-.,. .. -. Q - 



Table 5 

3-D Solid-Fluid Cantilever Cylinder 

No. of Elements Element 

&19 Plate (Ref. 3 4 )  
Q-8 compatible (Table 3) 
Q-11 incompatible (Table 3) 

The.outer f lu id  nodes a re  fixed t o  simulate the r ig id  : 

outer cylinder, and the upper surface f lu id ,noJes  
(see Pigwe 9) i n  the  annulus a re  constrained t o  no 
displacement in the Z direction. A resevoir of H20 is  
under the  end p la te  of the cylinder, hence the lower 
surface annular f lu id  is not constrained. The inner 
f lu id  surface is  a l s o  f ree .  A comparison of the  fre- 
quency resu l t s  from experimental t e s t s  and the f i n i t e  
element displacement method a re  provided @ Table 6 
fo r  the following cases: no water presenl;, water i n  
the inner cylinder, and water i n  the inner and outer 
cylinders. The resu l t s  agree qui te  well. The only 
discrepancy is the  evaluation by f i n i t e  element of 
some modes that  were ill defined o r  d i f f i c u l t  t o  lo- 
cate  experimentally. 

Frequency (HZ) Comparison 

Analytical blodel 
(Support Stand) 

. ,  . 
l a0  33.8 46.6 
291 331 359.8 

209.3 

30.3 26.1, 105.1 
NR(Could not locate)  110.3 

- 106 

11.0, 24.8 

n = circumferential 
.m = longitudinal 

-. * .= ill defined 

.. . . . .-, :.- . .. , : , ' . . ' .  . . ,. .. , , . .s . ..t.:- . . . , <- , ..% r . , . , '? .3.=...".- .. . . t. . .. . . -- 



6.0 DISCUSSION AND CONCLLISIOM 

In thts paper, we hwe shown through canparison t o  
experimental, theoretical ,  and other f i n i t e  element 
fo~mulations that the f i n i t e  element displacement 
methcd can solve accurately and econ&cally a cer- 
t a i n  c lass  of solid-fluid eigenvalue problems. The 
problems considered a r e ' s m l l  displacements in the  
absence of viscous damp- and a re  2-D and 3-D in 
nature. A problem ar~alyzed in d e t a i l  by the authors 
using the f i n i t e  displacement method, but not pre- 
sented here because of space l imitations,  i s  the  
analysis of f i n i t e  co-axial f lexible  cylinders 
connected by a f lu id  f i l l e d  amulus (as discussed 
j11 Reference 16).  I n  t h i s  study the advantages of 
the f i n i t e  element 'method ( i n  par t icular  the displace- 
n ~ n t  fo~mul.ation) is  apparent i n  that a large struc- 
t u r e  consisting of the cylinders, support flanges, 
f lu id  and other experimental boundaries could be 
modeled t o  yield good correlation t o  experhentdl 
data. The a b i l i t y  t o  handle large problems with 
standard s t ructural  programs is the  key a d v a n t ~ e  of 
the displacement f lu id  method. The greatest  obstacle 
is  the inabi l i ty  of the analyst t o  inhibi t  those 
rota t ional  degrees of freedom that a re  unnecessary 
t o  his fluid-structure vibration prohlm. With judi- 
cious use of element formulation, boundary conditions 
and modeling, the displacement f i n i t e  element method 
can be s u c c e ~ s ~ l l y  used t o  predict solid-fluid 
response t o  vibration and seismic loading. 

The authors would l i k e  t o  thank M. E. Fox, J. R. Wool- . 
sey and D. A. blcKinley fo r  the i r  assistance i n  
generat- some of the f i n i t e  element resu l t s  and 
T. L. Jurs ik  fo r  her assistance in preparing this 
m u s c r i p t .  The authors vrould a lso  l i k e  t o  thank the 
Clinch River Breeder Reactor Program.for the  p a r t i a l  
funding of this study. 
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. , .  . . . . . ..; . .. . . . . . . . . ,  
TABLE 2 

_ .. .. ._ . , . . 
- .  

. " 

.. '. COMPARISON OF FREQUENCIES (HZ) . . . . 

Xethod 
Mesh Mode 2 Mode4  . . 

D i s t .  I 0 I 0: 
Mode 6 . . Computer Time 

I 0 (CPU second) 

* D i s p l a c e n e n t  8 x 2  74.2 25.4 394.7 111.6 968.4 339.1 1.4 
(2D Model QM5 

I element)  
1 

* D i s p l a c e n e n t  8 x 2  7 8 
. (3D Model Q - 1 1  

e lement)  

* Displacement  4 x 2  79.2 1 2 . 7 .  446 ' ' 1 2 5  936 418 
(3D Model Q - 1 1  
e lement)  

**Fourier P r e s s u r e  4 x 2  90.1 24.6 529.7 253.4 ' .  1857.4 :1337 .8  
(3D SIodei A x i -  
f l u i d  eleinent)  

**Pressure  Analog . 4 x 2  89.6 '22;:96 473.4 209.4 1114.8 660.6 
(3D Modei HEXA 
element)  

.SZ-Dr 
,.,.A - e s s u r e  Analog 4 x 2  85.8 21.6 453..8 185.5  , 1011.9 502.6 

(2D Model CQDHEM 
.. . 

# .  . e l e n e n t )  
. .  . 

Exper imenta l  50.0 10.0 3 4 0 . 0  105.0 750 33 0 

. * S A P 6  . 
1 '  

**NASTm . . 

I = i n p h a s e  nodes  
0 .  = out-of-phase nodes  



TABLE 4 

COMPARISON OF FREQUENCIES WITH VARIOUS ELEMENT FORMULATION 

USING DISPLACEMENT METHOD 

Element Mode 2 Mode 4  ode 6 
Formulation I 0 I 0 I 0 

4-8 104.8. i- . 481.3 . -- 934 -- 

I .  4-8 
82.'6 25.4 446 107.7 1074 574 

' (One P o i n t  
.' ~ n t e g r a t i o n )  . 

. . 

89.2 -- Q-9 444 -- 1158 -- 
. . 

50.0 10.0 . 340 105 . 750 330 Experimental . . ' . . 

Note: Al l : f r&quencies  are computed us ing  shear  coef ' f ic ien t  = 0.319 p s i  (7:.213 KPa) , 

Thickness of inner  & o u t e r  cy l inde r s  = .118(3mm) 

I = inphase mode 0 = out-of-phase.mode ' 
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