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The FY '80 program continued to  involve fu l l - s ize ,  prototype c e l l ,  
module and battery fabrication and evaluation, aimed a t  advancing the 
technical capabili ' t ies of the nickel-iron battery,  while simultaneokly 
reducing i t s  potential ;cost i n  material s and process areas. Improved 
El ectroprecipi ta t ion Process ( E P P )  nickel electrodes of design thickness 

(2.5 mm) are now .being. prepared tha t  display s table  capaci t ies  of 23 t o  
25 Ah fo r  the C/3 d r a i n  r a t e  a t  200+ t e s t  cycles, ' Iron electrodes of , the 

compbsi te-type a re  delivering 24 Ah a t  the t a rge t  thickness (.I .O mm); 

Iron e lec t rodes  are displaying capacity s tabi l  i,ty for  >I000 t e s t  cycles 

i n  continuing 3 plate  ce l l  t e s t s .  Finished .cel ls  have delivered 57 t o  61 

Wh/kg a t  C/3, and have demonstrated cycl ic  s t a b i l i t y  t o  500+ cycles a t  

80% depth of discharge prof i les  a t  Westinghouse. A 6-cell module tha t  
demonstrated 239 ~ h ' ,  1735 Wh, 48 Wh/kg a t  the C/3 drain ra te  has a l so  
been evaluated a t .  the National Battery Test Laboratory (NBTL)  , Argonne 
National ~abora tory .  ' I t  operated fo r  327 t e s t  cycles,  t o  a level of' 161 
A h  a t  the C/3 r a t e ,  before being removed from t e s t .  

'Reduction i n  n'ickel electrode swell ing (and concurrent stack 

s ta rva t ion) ,  t o  improve cyciing, continues to  be an area of major e t t o r t  
. r 

t o .  reach the final battery cycle 1 i f e  objectives. pasted nickel elec- 
trodes continue t o  show promise fo r  meeting the l i f e  objectives while, 
simul . taneously , providing a 1 ow' manufacturing ,cost. . 

Refinements have occurred i n  the areas of cel l  hardware; module 
man1 foldingand ce l l  interconnections as a resul t .  of a ' re lated DOEIJPL 

battery demonstration program. These improvements have been incorporated 
in to  the construction' and tes t ing 'of  the c e l l s  and modules f o r  t h i s  ANL/ 

DOE program. 

Temperature t e s t s  a t  O°C have been performed on a 6-cell module 

and have shown a decrease i n  capacity of only 25% i n  ampere-hours and 29% 

in watt-hours a s  compared t o  25'Cperformance. ~ d d i t i o n a l  t e s t s  a re  ' 

planned t o  demonstrate performance a t  -15°C and 40°C. 



. .. . .  P.0 EXECUTIVE SUMMARY . . 
. .  . 

The-basic program o b j e c t i v e  i s  t o  accelerate t h e  development o f  

n i c k e l - i  ron  b a t t e r i e s  .and demonstrate improved performance fea tures  i n  

e l e c t r i c  v e h i c l e  b a t t e r y  systems. . The Near term EV Bat tery ' ~ e v e l  opment , 

goal s  based on t h e  DOE/ETV-1 pe'rformance t o  be achieved by FY 1986 are: 
. . 

56 'Wh/kg ' g rav ime t r i c  energy  dens i t y .a t  C/3 r a t e  

100 wh/l vo lumetr ic  energy dens i t y  

. 104 w/kg power dens i ty  a t  50% s t a t e  o f  charge 
800 cyc les  . 1  i f e  a t  80% DOD cyc les  I .  

70 $/kwh 1977 $ OEM s e l l i n g  p r i c e  

The development approach was t o  u t i l  i z e  es tab l  ished ~ e i t i n ~ h o u b e  
- technology t h a t  i s  capable o f  meeting the  p'erformance, 1  i f e  and c o s t  

ob jec t ives .  The pr imary fea tures  o f  t h e  Westinghouse design a r e  the  use 
" 

o f  low c o s t  raw mate r ia l  s, minimal use o f  n i cke l ,  and u t i l i z a t i o n  o f  

es tab l i shed  manufacturing processes. A  t y p i c a l  example i s  t h e  use o f  

s i n t e r e d  s tee l  f i b e r  e lec t rode substrates t h a t  p rov ide  f o r  a  c e l l  design 
w i t h  l e s s  than  50 percent  the  n i c k e l  content  o f  o the r  c e l l s  con ta in ing  

. . 
conventional s i n t e r e d  n i c k e l  electrodes.. 

Performance improvements achieved s ince i n i t i a t i o n  of  contract .  
I 

. . 
and demonstrated i n  c e l l  s  and mu1 t i - c e l  1  modules a t  Westinghouse, 

inc lude:  1  ) >30% increase i n  grav imet r ic  energy dens i t y  t o  61 .Wh/kg, 

2 )  70% increase i n  vo lumet r ic  energy dens i t y  t o  120 Wh/l , 'and 3 )  a 5% 

increase i n  power dens i t y  t o  105 W/kg. I n  add i t ion ,  a conceptual design 

has been es tab l  i shed f o r  a  mu1 t i - c e l l  modular' package t h a t  can f u r t h e r  

enhance these performance parameters by p rov id ing  addit. iona1 9% weight  
. , 

and 15% -vo l  ume reduct ions. - 
The demonstrated performance a t  NBTL has i n d i c a t e d  t h a t  an e lec-  

t r i c  v e h i c l e  w i t h  c h a r a c t e r i s t i c s  s i m i l a r  t o  DOE ETV-1, w i t h  'a 

westinghouse n i c k e l - i r o n  bat te ry ,  cou ld  a t t a i n  a  100 m i l e  range on t h e  

SAE J227a "D" cycle. ' 



, , 

Several accompl i shments have been made i n  process devel . opment . by 
, operat ing p i l o t  1 i n e  f ac i l  i t i e s  t o  demonstrate the potenti  a1 f o r  $70/kwh 

OEM se l l  ing price. Cost reductions identified.  and incorporated in  the 
p i l o t  1 ine .production process include 1 ) demonstration of st i tched s teel  
f i b e r  metal blanket manufacturing, 2) decreased cycle time and increased . 

process' efficiency for.. e l  ectropreci p i  ta t ion process nickel electrodes, 
3 )  activation techniques and paste manufacturing . . process fo r  iron . 

electrodes, and 4 )  ident i f icat ion of sui table  separator syjtems. 

Cycle 1 i f e  objectives remain t o  be demonstrated fo r  modules and 

ba t te r ies .  The potential for  meeting the'800 cycle goal has been 

enhanced by demonstration of the  following: 1 ) iron electrode 1 i f e  
of >1,000 cycles a t  80% DOD, 2 nickel electrode 1 i f e  of >1,000 cycles a t  

50% DOD, 3 )  ce l l  1 i f e  (220Ah) of >500 cycles Q 80% DOD, and 
4 )  5-cell module l i f e  of >325 cycles ' 0  80% DOD. 

Several envi ronmental i ssues have a1 so been addvessed i n  1980. 
Low temperature performance of the battery has demonstrated tha t  on1y.a 
25% decrease i n  .capacity. occurs for  a 0°C ambient compared t o  25°C. In 
addition, no detrimental environmental, o r  biological e f f ec t s  fo r  the man- 
ufacture or end use of the Westinghouse nickel iron battery system have 
been iden t i f i ed ' a s  a r e su l t  of Environmental Impact and Safety Studies,. 

A materials analysis indicates n o  s igni f icant  raw material s impact w i  11 
occur f o r  annual commercial producti'o'n of 25 kwh'batteries i n  quant i t ies  

of 100,000 uni ts .  Recycling of nickel i s  possible, w i t h  the most proba- 
ble form being ferro-nickel alloys.  

Progress during FY '80 has been substantial i n  the aforementioned 
area$ o f  performance improvements and ident i f ied cos:t reductions,. A 

so l id  base has been established t6 demonstrate cycle l i f e  and performance 
i n  e l e c t r i c  vehicle systems during the next year. 

. 0 .  



2.0 TECHNICAL STATUS . 

The technical  e f f o r t  on the dur ing FY '80 was aimed a t  

meeting the performance ob ject ives o f  the program. These ob ject ives a n d  

present performance l eve l s  are summarized i n  Fig. 2 .l. 

The ob jec t i ve  o f  the System Development task o f  the n i cke l - i r on  

ba t t e r y  program was t o  demonstrate improved perfo'rmance c a p a b i l i t y  i n  

prototype c e l l  s, modules and bat tery.  These improvements include: 

a t t a i n i n g  53-60 Wh/kg and 120-1 35 Wh/l i n  the overal ' l  c e l l  , under 4-8h 

charge and 2-4h discharge condit ions, whi le  exh ib i t i ng  short-term,. stable 

cyc l i ng  capab i l i t y .  

The System Development task encompasses f i v e  major subtasks: 
. . 

(1  ) ni-ckel e lectrode 

( 2 )  i r o n  electrode 

(3)  c e l l  components 

( 4 )  c e l l  t e s t i n g  , .  . . 

(5 )  p i l o t  p l an t  operations. 
. . 

The progress toward meeting the  objectives.. o f  each of these' sub- . 
task areas and t h e i r  present s ta tus are now described. 

* 

2.1 NICKEL ELECTRODE 
. , 

The n icke l  e lectrode development consists o f :  

r .  cont ro l  1 i n g  electrode swell i n g  

a improving ac t i ve  mater ia l  u t i l  i z a t i o n  

improving the load f ac to r  and poros i ty .  

, . 

Concurrently, a1 1 these developments a r e  aimed a t  reduced materi-  

a l  s, processing and cap i t a l  equipment costs. 



Contract  ~ o a l  s Best Present 
C h a r a c t e r i s t i c s  " (Set  k k .  197.7) ' Demonstration 

25 .26.5 1 . Bat te ry  Capac.i t y  (kwh 
(100% ra ted )  . . 

. .  . 

2. Ba t te ry .  Dimension'm H 0.28 . ' 0.28 . . 

(m H x. m W ,x'm L )  m W 0.38 . 0.38 
m L  ' , . 2.21 2.21 . . 

.' . . Volume ( I I )  : .  233, 230, . 

\ . . 

417 - 420 3. , Weight ( kg )  

Volumetr ic Energy (Wh/R) . 
S p e c i f i c  Energy (Wh/kg) 

Spec i f i c '  Power (W/kg) 
Peak Ba t te ry  
Sustained @ C/3 

Duty Cycle 
Charge (h)  
Discharge ( h )  

b i  fe t ime 
Deep Discharges 

10. Energy ~ f f i c i e n c ~  ( % ) .  . >60 5 4 

~i gure 2.1 . N icke l - I ron  Ba t te ry  Technical. Go.3.l s . . . . . . 



The n icke l  plaque re fe r s  t o  the  cu r ren t  c o l l e c t o r  s t ruc tu re  t h a t  

i s  used both t o  conta in  the n icke l  e lectrode ac t i ve  mater ia l  and t o  pro- 
. v ide e l e c t r i c a l  . .conduct iv i ty  t o  and from the.  e lec t rode a c t i v e  mate r ia l  t o  

the c e l l  p o s i t i v e  terminal.  presently, a double plaque i s  processed ,. 

(Fig. 2.21, and i s  c u t  i n  h a l f  t o  produce the f i n a l  n i c ke l  electrode. : 

The plaque cons is ts  of s teel  wool t h a t  i s  n i cke l  p la ted  t o  provide corro-  

s ion  p ro tec t ion  t o  the s tee l  f i b e r s  during< the EPP process. The n icke l  
plaque contains 2 v e r t i c a l  grooves t h a t  serve as e l e c t r o l y t e  f l ow chan- 

nel  s  when the n i cke l  e lectrode i s  i n s t a l l e d  i n t o  the c e l l  stack. 

2.1.2 EPP NICKEL ELECTRODE 

The ob jec t i ve  o f  t h i s  subtask i s  t o  improve upon the.wel1-estab- 

1 ished Westinghouse EPP process f o r  preparing n icke l  electrodes. Specif-  

i c a l l y ,  t h i s  e f f o r t  i s  aimed a t  developing 25 Ah n icke l  e lectrodes w i t h  
0.25 Ah/g ac t i ve  mater ia l ,  0.14 Ahlg t o t a l  e lectrode and 0.075 ~ h / c m ~ ,  

a l l  a t  the 3h discharge rate.  These goals a re  t o  be a t ta ined  i n  p la tes  

o f  2.54 mm maximum thickness. The EPP process~technology, a t  the onset 
2 o f  t h i s  program, made 343 cm , 3.3 mm t h i c k  e lectrodes o f  the fo l l ow ing  .. 

spec i f ica t ions:  0.20 Ah/g ac t i ve  mater ia l ,  0.1 2 Ah/g t o t a l  e lec t rode and * 

2 0.07 Ah/cm a t  the  3h discharge rate.  

I n  add i t ion ,  e lectrode design and process techniques a re  be ing 

i nvestigated t o  improve electrode dimensional s t a b i l i t y  dur ing operat ion 

i n  a n f cke l - i r on  c e l l .  

Experiments:conducted t o  date show EPP, as app l ied t o  f i b e r  plaque 

substrates, i s most cons is ten t l y  accompl i shed by employing two 1 eve1 s o f  

impregnation. These l e v e l s  are: a )  "high" current ,  fo l lowed by b )  "low" 

current .  

Accord ing t o  the  concept a r i s i n g  from experiments, the "high1' cur- 

. ren t  step reaches a satura t ion l e v e l  w i t h  respect t o  accomplished 
. . 

I' ' 



Figure 2 .2 .  Nickel Electrode .Plaque '~es ign  



impregnation w i t h  Ni(OH) i n  a s h o r t  t ime. The " low" c u r r e n t  step,. 2 
which i s  requ i red  t o  complete t h e  Ni(OHI2 load ing  t o  t h e  d e n s i t i e s  

needed fo r  t a r g e t c a p a c i t y ,  can take from 16 t o  20 hours t o  reach comple- 

t ion,  ds p resen t l y  executed. 

An increase i n  e lec t rode capac i ty  was accompl i shed by. modi fy ing  

t h e  procedure between the  two l e v e l s  o f  EPP processing. The r e s u l t a n t  
e lec t rode  capac i ty  i s  25 Ah a t  a 2.5 mm e lec t rode thickness. To ta l  
elapsed processing t ime i s  approximately 48 hours. Th is  process has been 

employed f o r  a l l  n i c k e l  e lectrodes manufactured i n  the  p i l o t  p l a n t  du r ing  

1980. 

2.1.2.. 1 COBALT SUBSTITUTION 

Because of t he  p o t e n t i a l  shortage and sharply increased c o s t  o f  

c o b a l t  on t h e  open market, t h e  composit ion o f  t he  n i c k e l  e lec t rode was 

c r i t i c a l l y  examined.. An impor tant  c r i t e r i o n  f o r  s e l e c t i o n  o f  candidate 

s u b s t i t u t e  m a t e r i a l s  i s  t he  c r y s t a l  h a b i t  o f  t he  hydroxide species. I t  

i s  reasonable t o  expect t h a t  candidate hydroxides should be c r y s t a l  ana- 

l o g s  o f  CO(OH)~ i f  they are  expected t o  replace CO(OH)~ i n  i t s  func- 

t i o n  as a capac i ty  enhancer and c y c l e  1 i f e  extender f o r  t h e  p o s i t i v e  

e lectrode.  

: Known c r y s t a l  analogs of CI(OH)~ are: Mg(OH$, Fe(OH)2, 

Mn(OHI2, Cd(OHI2. The order  l i s t e d  i s  t h a t  o f  r e l a t i v e  u n i t  c e l l  

volume, a l though o the r  c r i t e r i a ,  such as f r e e  energy o f  formation., metal 

i o n  rad ius  o r  s o l u b i l i t y  i n  KOH may be more impor tant  p roper t ies .  Since .. 

p r i o r  work a t  Westinghouse had i n d i c a t e d  t h a t  barium was another poss ib le  

rep1 acement f o r  coba l t ,  b a r i  um was a1 so inc luded i n  t h e  i n v e s t i g a t i o n .  

An o b j e c t i v e  was es tab l ished t o  determine whether i nco rpo ra t i on  o f  

these a1 t e r n a t e  ma te r ia l  s  i n  EPP processing, as d i s t i ngu ished  from d i r e c t  

p a s t i n g  methods which a r e  a1 so be ing considered, can equal o r  improve 

performance o f  n i c k e l  electrodes. 



Calcium 

Calcium i n  N i ( O H I 2  loaded electrode fai led t o  produce the levels  

of performance . that was expected. Work on calcium was not pursued beyond 
the 3-pl a te  ce l l  eval uation stages. 

Bari um 

~ a r i u m  did:  show promise a s  a possible cobal t subst i tute ,  and two 
. . 

21 -pl  a t e .  cell  s were put on t e s t .  Barium-to-nickel .content i n  'these el ec- 
trodes was less than 1%. due  t o  the low so lubi l i ty  of barium n i t r a t e  i n  

the EPP solutiori ( the  loaded active material i n  the electrode tracks the 

Co:Ni r a t i o  of the EPP soluti,on). One ce l l ,  was. removed from t e s t  a t  175 
cycles, a t  which time the capacity had decreased to  160 Ah from an i n i -  

t i a l  195 Ah. 
. . .  

Iron 

Iron a1 so showed promise as  a cobalt subst i tute  i n  nickel elec- 
trodes made i n  the EPP' process. In the.case of iron, the solubi l i ty  of 
f e r r i c  n i t r a t e  i s  suf f ic ien t  t o  permit the formulation of an EPP n i t r a t e  

solution. However, EPP nickel plaques processed i n  s ~ ~ c h  a hath yield arl 

ac t ive  material containing a low iron:nickel ra t io .  T h i s  re f lec ts ,  i n  

t h i  s case, considerable preferential precipitation of nickel hydroxide 
'over i ron hydroxide from the bath. 

Nevertheless, nickel. e l  ec'trodes containing i ron,  were prepared 
w i t h  a capacity of 22 Ah and a thickness of 2.44.m. Three p l a t e  c e l l s  
were cycled and dropped. i n  tapaci t y ,  dramatically , a f t e r  10-20 cycles. 

; In okder t o  compare w i t h  performance i n  a constrained ce l l  , a 21 -plate , '  ' .  

stackup was evaluated. This ce l l  a1 so l o s t  capacity r a p i d l y  a f t e r  15 
cycles. 



Magnesium was the next  coba l t  subs t i tu te  t o  be evaluated. EPP 

condi t ions f o r  a  co -p rec ip i ta t ion  of Mg(OHI2 w i t h  N i  (OH)2 were inves- 
. . 

t i gated. 

An EPP bath, having magnesium n i t r a t e  and n icke l  n i t r a t e  was 

employed t o  produce magnesium-doped n icke l  pos i t ives.  

Ce l l  091CE was constructed, cycled nine times and demonstrated a  

nominal capacity o f  200 Ah a t  the 3-hour d ra in  rate.  I n  a  manner s i m i l a r  
t o  the t e s t s  on t ron, capacity of t h i s  c e l l  dropped r a p i d l y  a f t e r  10-15 

cycles. I t  was removed from t e s t  a t  approximately 100 cycles, a t  which 

t ime i t s  capaci ty was ,120 Ah. 
. 

Summary - Cobal t Subs t i tu t ion  

Co-prec ip i ta t ion o f  adequate amounts o f  the coba l t  subst i tu tes  

t h a t  were t r i e d  i s .  d i f f i c u l t  under any o f  t h e '  EPP process condit ions. 

New methods need t o  be developed t o  achieve the requ i s i t e  co-precip i ta-  

t i o n  rates.  

If these material 's can be employed a t  a l l  a i  coba l t  subst i tutes,  . , 
t h i s  should be ascertained by evaluat ing electrodes having a  nominal 

r a t i o  o f  Nickel:Mx, where Mx denotes the candidate coba l t  subs t i tu te  

mater ia l .  This can be done most eas i l y  by preparing electrodes v i a  the 

past ing route, ra ther  than by EPP, a t  t h i s  time. 

2.1'.2.2 NICKEL ELECTRODE EXPANSION 

An important design problem re l a ted  t o  cyc le  l i f e  o f  the n icke l -  

i r o n  c e l l .  i s  the stack e l e c t r o l y t e  s ta rva t ion  r e s u l t i n g  from an increase 

i n  the n icke l  e lectrode thickness o n  'cycl ing.  The design approach under 

development and evaluat ion t o  circumvent and/or minimize VP electrode 

swell  i n g  i s ,  bas ica l l y ,  a  high-strength, .l ow-1 oading, h igh  ac t i ve  mate- 

r i a l  u t i l i z a t i o n  electrode, v i a  a  h igh f i b e r  densi ty plaque design. 



N i n e  EPP runs, comprising 108 e lectrodes, .  were processed 

a te  t h e  e f f e c t  of g r i d  f i b e r  densi ty  on e lec t rode performanee. 
t o  eval  u- 

The data 

. f o r  e lec t rodes .having a nominal 2.54 mm th ickness '  were extended) f u r t h e r ,  

t o  p l o t s  o f  s p e c i f i c  n ickel .  a c t i v e  ma te r ia l  e f f i c i e n c y  versus the  r a t i o  

of a c t i v e  m a t e r i a l  (AM) volume t c u r r e n t  c o l l e c t o r  f i b e r  .volume. 

~ e l a t i v e  g r i d  f i b e r  has been fncremental l y  ' ra ised.  A t rend  t o  

g rea te r  AM ef f i 'c iency may be present  due t o .  increased pore volume b u t  t h e  

data  a re  n o t ' p r e c i s e  enough t o  reso lve  t h i s  e f f e c t  very c l e a r l y .  The 

r e s u l t s  have demonstrated t h a t  more a c t i v e  materf a1 e f f i c i e n c y  r e s u l t s  

when h igher  f i b e r  dens i t y  ( low AM t G r i d )  plaques a re  employed. 

To demonstrate these r e s u l t s ,  c e l l  048CE, employing h igher  f i b e r  

dens i ty ,  was constructed and cyc led  t o  e s t a b l i s h  the  r e l a t i v e  m e r i t  o f  

h i g h  f i b e r  d e n s i t y  on performance, p a r t i c u l a r l y ,  e lec t rode swel l  i ng. 

Discussion: C e l l  0 4 8 ~ ~  (High F i b e r  Dens i ty )  Results 
. . 

Ce l l  048CE, which . . reached' end-of-1 i - f e  a f t e r  258 charge-discharge . ' 

cyc les,  e x h i b i t e d  much 1 ess n i c k e l  e lec t rode expansion than i s normal l y  

observed. The e lec t rodes from t h i s  c e l l  were o r i g i n a l l y  2.44 mm t h i c k -  

ness. . When .removed' from the  case, they averaged 2.67 mm. Expansi,on .up 

t o  3.05 mm had been observed f o r  e lec t rodes having several hundred t e s t  

cyc les.  The c r i t i c a l  design aspect  o f  t h i s  c e l l  was a h i g h e r  f i b e r  den- '. 

s i  ty. Need1 e-punching 'was n o t  employed f o r  the'se p a r t i c u l a r  .ei ectrodes. 

F a i l u i e  of t h i s  c e l l  i s  a t t r i b u t e d  t o  stackup d r y o u t .  A f t e r  258 - 

cyc les ,  wet-weight determinat ions i n d i c a t e d  t h a t  a c t i v e  ma te r ia l  volume 

pe rcen t  -,had' increased, before re lease o f  compression. Th is  r e s u l t e d  i 'n a 

decrease i n .  po ros i  ty, a change t h a t  was i n s u f f i c i e n t  o f  i t s e l  f t o  account 
. . 

f o r  thi u n s a t i s f a c t o r y  stackup w e t t i n g  w i t h  e l e c t r o l y t e .  
, . . . 

The increase i n  a c t i v e  ma te r ia l  weight . and . volume on C e l l  048CE : 
. . 

may r e s u l t  f rom two processes: . . 
. . 

. . 

. . 



(1 i Ni ( O H ) *  l a t t i c e  incorporat ion of K+ and ~ i +  ions and, 
possibly,  incorporation of addit ional  water of hydration 
i n  t h e  crysta l  l a t t i c e .  

( 2 )  Addition of N i ( O H ) 2  and Fe(OH)2, due t o  corros'ion of 
both t he  nickel e lect rode and of the exposed s t ee l  
f i be r s  of t he  g r i d .  

S ince ' s ign i f ican t  corrosion of the  nickel p la t ing on the  s t ee l  
f i b e r s  has been observed by microscopy on extensively-cycl ed f i  be.r 

Plaques, mechanism ( 2 )  i s  qu i te  important. Of  the  t o t a l  of 309 typical  
weight pickups per electrode measured a f t e r  cycling,  analys is  shows t h a t  
only log can be a t t r i bu t ed  t o  a l k a l i  metal ion absorption. The remainder 
must be .due t o  e i t h e r  chemically-bound OH - ion, attached t o  the corroded 
f i b e r  g r i d  mater ia l ,  making mechanism ( 2 )  dominant on pickup of water of 

. . 
hydration. 

Chemical analysis  shows t h a t ,  a f t e r  258 cycles on Cell 048CE, the  
ac t i ve  material contains approximately 3.0 w/o i ron,  fu r ther  corroborat- 
ing t he  view t h a t  f i b e r  corrosion has taken place. In s p i t e  of this 

growth, of addit ional  N i  ( O H ) ,  and Fe(OH), material w i t h i n  the  n icke l  
L L 

elect rode,  a steady decrease, no t . an  i'ncrease, i n  capacity was observed. 
Decreasing porosity serves t o ,  hinder e lect rode performance, a1 though the  
5 V / O  porosity decline estimated i n  this case would not seem t o  be ttie 
s t rongest  influence. 

lns tead,  a t  l e a s t  two other  mechanisms should be considered: 

( 1 )  progressive l o s s  of e l ec t r i c a l  contact  due t o  t h e  forma- 
t ion  of a corrosion sca le ,  

( 2 )  "poisoning" of t he  ac t i ve  material w i t h  i ron.  



. . 
Since the o r i g i n a l  Edison c e l l  del ivered long cyc le  l . i f e  w i t h  

n icke l  f l a ke  as the cu r ren t  co l l ec to r ,  then mechanism: (2)  would appear t o  

be most 'p lausib le.  Detai 1  . s  . o f  the "poisoning" mechanism are unclear, b u t  

the e f f ec t  . o f  i r o n  has been suggexted t o  be one o f  lower ing charge v o l t -  

age. Therefore, f u r t he r  work was then or iented toward improvementof the 

coverage and bonding o f  the p ro tec t i ve  n icke l  p l a te  over the s tee l  f i b e r  

cu r ren t  co l lec to r .  The throwing power o f  the p l a t i n g  bath can be 

improved by ad jus t ing  cur rent  densi ty t o  lower val  ue,s' and employing, cor-  

respondingly, 1  onger p l a t i n g  time.. T h i s  approach was evaluated i n  a  

devel opment n icke l  p l  a t i  ng process 1  i ne. 

Ce l l  #80 (21 -p l  a t e )  had been constructed w i t h  h i  gh-densi t y  f i b e r  

plaques having needle-punched const ruct ion and an extended n icke l  - p l a t i ng  

t i m e .  The nYckel p l a t i n g  cu r ren t  was reduced, keeping p l a ted  n icke l  

.weight constant. Thus, t h i s  specimen should. have demonstrated advantages 

t h a t  could be der ived f r b m  a  more uniform n icke l  p l a t i n g  on the s tee l  

f i b e r s  . ' I n i t i a l  capaci.ty f o r  the electrodes on the EPP rack was 23.9 

~ h / ~ l a t e .  I n i t i a l  capaci ty o f  the c e l l  was230 Ah. ' A t  150 cycles, t h e  

. . . ce l l  de l ivered 180 Ah a t  thc  3 h  rate. 

. Fur ther  experiments were ca r r i ed  ou t  w i t h  1  onger n icke l -p l  a t i ng  

times and 1 ower p l a t i n g  cu r ren t  densi t ies.  The resu l t an t  plaques were, 

mechanically, quite weak, i nd i ca t i ng  t h a t  a  very low-cu.rrent density, 

cathodic p ro tec t ion  was i n s u f f i c i e n t ,  w i t h  respect t o  bath cond i t i on  t o  

prevent steel  f i b e r  corrosion i n  the ac id i c  p l a t i n g  so lu t ion.  

2.1.2.4 HIGH FIB,ER, DENSITY G R I D  STRUCTURE 

The eva luat ion o f  g r i d  s t ruc tures w i t h  heavier f i b e r  weight i s  

being continued. Seventy electrodes w i t h  the heavier g r i d  were f a b r i -  

cated i n ,  the EPP p i l o t  1  i ne  and processed' through ce l l ,  assembly and 



t es t ing .  Seven 21 -p la te  c e l l s  were tes ted t o  evaluate the m e r i t  o f  

hqavier  f i b e r  plaques.. The r e s u l t s  are  sumnarized be1 ow: 

' P l a te  Thickness (mm): . . 

Min Max Avg. S.D. 

2.37 2.49 2.41 . .04 

Ac t i ve  mater ia l  weight ---------- 89 g/e l  ec t rode 

Capacity f o r  a 70-Plate Rack ---- 23 Ah/el ectrode (averag.e ) 
. . 

I n i t i a l  (3-hour ' d ra in  r a t e )  capac i t ies  o f  t hese ' ce l l  s  were deter- 

mined on the  ' format ion bench: 

CELL NUMBER 

084CE 085CE 086CE 087CE 088CE 089CE 090CE 

Cycle #1 (Ah): 190 ,223 204 . 208 212 206 214 

Cycle #7 (Ah): 210 227 208 212 221 21 3' 227 

A s i x - c e l l  module, employing these c e l l s  has been constructed and 

was cyc led on the  module- t e s t e r  t o  compare performance versus standard- 

design c e l l  s. One c e l l  developed a short ,  c rea t ing  a high-temperature 

spot  on the bottom'of the c e l l  and a f f e c t i n g  the two adjacent c e l l s .  , The. 

t e s t  i s  being continued w i t h  the.remaining three unaf fected c e l l s .  

2.1.2.5 GAS PRESSURE RELIEF EXPERIMENTAL DESIGN 

Based upon the  ongoing work on n i cke l  e lectrode designs, a concept 

has been developed t o  permi t  gas pressure r e l i e f  dur ing the charge 

cycle,. Add i t iona l  e lectrode he ight  has been incorporated f o r  sel  ec.ted 

electrodes i n  the  n icke l - . i  ron c e l l ,  stackup design. These h igher  elec- 

trodes w i l l  extend i n t o  space t h a t  i s  present ly  no t  u t i l i z e d  above the 

stackup. Because o f  greater  separat ion distance, t h i s  p o r t i o n  o f  the 



p o s i t i v e  and negat ive electrodes w i  11 n o t  employ separators. The exposed 
e lect rode surfaces are  expected t o  gas f ree l y  on overcharge, thereby pre- 

vent ing  stackup dryout  and p l a t e  swel l ing. A1 so, the design should 

prov ide approximately 4 Ah add i t i ona l  capaci ty  i n  t he  planned 21-plate 

t e s t  c e l l .  These specia l  e lect rodes have been fabr ica ted  and c e l l  con- 

s t r u c t i o n  completed (Ce l l  093CE). To date, a t  32 cycles, t h i s  c e l l  i s  
s tab le  a t  215 Ah a t  the  C/3 d r a i n  ra te .  

2.1.2.6 "BRUSI~I" ELECTRODE SUBSTRATE 

The e lec t rode substrate comprises r a d i a l  ly-emanating cu r ren t  co l -  

l e c t o r  f i b e r s ,  o r i en ted  about a  s tee l  w i re  bus axis.  Many o f  these com- 
ponents, comprising i nd i v idua l  "brushes" are arranged i n  para1 l e l  , v e r t i -  

c a l l y ,  and connected t o  the top bar  and tab  (F igure 2.3). 

Th i s  type o f  brush desi.gn (ax ia l l y -o r j en ted  f i b e r )  i s  uniquely 
- su i ted  t o  the  EPP method o f  impregnation. Such a  design, by v i r t u e  o f  

t h e  f i b e r  o r i en ta t i on ,  should .d isp lay both maximum res is tance t o  e lec-  

t rode expansion i n  the thickness d i r e c t i o n  and enhanced power c'apabil i ty . 
Since the .  s t a r t i n g  brush f i .ber  mater ia l  i s  cot ton,  the n i cke l  

p l a t i n g  n f  t h i s  s t r u c t u r e  has, .In t he  past, invo lved an e lec t ro less  

n i c k e l  " f lash"  coat,, fo l lowed by conven'tional e l e c t r ~ ~ l a t i ~ ~ .  An a l t e r -  

nate method has now been devised i n  which the co t ton  f i b e r s  are  rendered 
conduct ive w i t h  a  heat treatment. This  carbona'ceous. conductive s t ruc tu re  

i s e a s i l y  e lec t rop la ted  d l  r e c t l y  , thereby e l  im ina t ing  the  e l e c t r o l  ess 

n i c k e l  p l a t i n g  operat ion. The s t ruc tu re  employed i n  th is . 'design has 

a'spects which comprise improvements i n  c r i t i c a l  areas: I 
I 

( 1  E l e c t r i c a l  contac t  t o  the a c t i v e  mater ia l  i f  v i a  n ickel '  whis- 

kers  w i t h  a  carbon core, thereby reducing poss ib le  i r o n  con- 

t am ina t i on  of the  a c t i v e  mater ia l  and/or f i b e r  breakage when 

. . s tee l .  f i b e r  cor ros ion  can occur. 
. . 



Figure 2.3. Full Size "Brush" Type Nickel Electrode 



(2)  Radial f i ber/tubul a r  design, w i th  much 1 ess possi b i  1 i t y  o f  

expansion, compared t o  random f iber  or ientat ion i n  state-of- 

the-ar t  plaques. 

(3 )  Reduced average mean f ree  path from act ive material t o  the 
current c o l l  ector providing, potent ia l ly ,  more power capabil- 

i t y  than the standard EPP electrode. 

Therefore, the next generation brush-type design, comprising 

n ickel  p l a t i n g  d i r e c t l y  over carbon f o r  the en t i re  electrode could pro- 

v ide improved pos i t i ve  electrode c y c l i c  s tab i l  i t y .  Due t o  the emphasis 

o f  work i n  the area o f  sintered steel  wool plaque strengthening, the 

brush type electrode a c t i v i t y  i s presently suspended. 

2.1.3 PASTED NICKEL ELECTRODE 

The performance goals f o r  the pasted nickel  electrode are the sank 

as those c i t e d  f o r  the EPP nickel  electrode. However, independent prepa- 

r a t i o n  o f  act ive mater ial  and subsequent pasting i n t o  the plaque can 

o f f e r  a reduction i n  t o t a l  electrode manufacturing cost  and s ign i f i can t  

decrease i n  cap i ta l  equipment expenditure, r e l a t i v e  t o  the t o t a l  EPP pro- 

cess. E f fo r t  during the past year has centered on methods f o r  continu- 

ous, la rge  batch production and formulation o f  an optimum act ive material 

paste composition, f o r  incorporation i n t o  the nickel  plated f i b e r  metal 
p l  aque. 

2.1.3.1 PREPARATIVE METHODS 

Two development approaches are current ly  being used fo r  the pro- 

duction of n ickel  (paste) act ive material . The f i r s t  approach involves 

the incorporation o f  commercial ly-avai l ab le  green nickel  hydroxides i n t o  

the n ickel  plated steel  wool plaque. These comnercial materials have a 
3 densi ty of 3.5 t o  3.7 g/cm and electrode act ive material loadings o f  

90-100 g i n  345 c d  area are achievable a t  2.0 nn f i n a l  thickness. 



Additives, such as cobal t  hydroxide, are m i l l e d  w i th  the nickel  hydroxide 

p r i o r  t o  the paste making operation. 

A second development approach f o r  the production o f  nickel  act ive 

material involves the room temperature ozonation a f  a lka l ine  s l u r r i e s  o f  

nickel  hydroxide o r  carbonate. The ozone stream converts the n ickel  spe- 

c ies i n t o  a black, f locculant  powder of lower density than the i n i t i a l  
green powders. This 1 ower density resul t s  from incorporation o f  a1 ka l  i 

cations and water molecules i n t o  the nickel  -oxygen in te r1  ayer during the 

ozonation process. These black powders require only a few charge- 

discharge cycles t o  achieve maximum electrochemical u t i l i z a t i o n .  The com- 
pos i t ion  and structure o f  the act ive material prepared by using t h i s  

method i s  very s imi la r  t o  tha t  obtained as a f i n a l  product i n  the thermal 

process. I n  the ozonation process, the pH o f  the s lu r r y  can e i t h e r  be 
neutral , o r  s l i g h t l y  a1 ka l  ine, without affecting the performance s i g n i f i -  

cantly. Strongly a1 kal  ine  s lu r r i es  (>pH 10) tend t o  decompose the ozone 

and thus require longer ozonation time. 

The ozone react ion chamber tha t  i s  cuprently i n  use i s  p ic tured i n  
Figure 2.4. The u n i t  was constructed i n  house and i s  modeled a f t e r  the 

York-Schriver 1 iquid-1 i q u i d  extract ion column. I t  consists o f  a ve r t i ca l  
chamber separated i n t o  e igh t  react ion zones, each consist ing o f  a p a i r  o f  

b a f f l e  plates and a s t i r r i n g  paddle. Each b a f f l e  p la te  has a center hole 
and the  lower baff le o f  each p a i r  i s  extended t o  the glass chamber wal l  

by a t e f l o n  s k i r t .  Ozone enters the cy l inder  through a perforated r i n g  a t  

the bottom so t h a t  bubbling l i f t s  the s lur ry .  The counter e f f e c t  o f  grav- 

i t y  resu l t s  i n  a c i r c u l a r  ag i ta t ion  i n  each zone. A d ra in  a t  the bottom 

a1 lows easy removal o f  act ive material. New material i s  then entered 

through a top f i l l  hole connected t o  a pump and reservoir. Continuous 
p i l o t  production o f  act ive material can be achieved, by using t h i s  appa- 

- 
ratus, f o r  evaluation i n  f u l l  -size c e l l  si 





Nicke l  ac t i ve  mater ia l  i s  1  oaded i n t o  a  f i b e r  metal plaque, using 

a  r o l l  past ing procedure s i m i l a r  t o  t h a t  used f o r  the i r o n  electrode. To 

assure uniform d i s t r i b u t i o n  and r e p r o d u c i b i l i t y  o f  1  oading, the aqueous 

paste must mainta in sing1 e  phase f l u i d  proper t ies  dur ing r o l l  ing. Su i t -  
. . ab le  def l  occulants, which do n o t  a f f e c t  ac t i ve  mate r ia l  performance, are 

added t o  the paste t o  prevent curdl ing. '  A t  t h i s  step, coba l t  hydroxide, 

o r  o ther  performance improving agents, are incorporated. 

The performance goals f o r  pasted n icke l  e lec t rode i n  the n i cke l -  

i ron ba t t e r y  i s  0.14 .Ah/g - o f  f i n i shed  electrode a t  the C/3 discharge r a t e  

and a t  a  25% overcharge. A l a rge  number o f  f u l l  s i ze  e lectrodes (344 
2 cm ) have. been constructed and tes ted i n  order t o  meet the goals required 

fo r  a  f i n i shed  c e l l .  The past ing procedure begins w i t h  plaques about 4.5 

mm t h i c k  which a re  then, r o l l  pasted, d r i ed  and s ized t o  2.5 mm, o r  less.  

Loadings o f  90-105 g  ac t i ve  mater ia l  per  f u l l  s i ze  plaque are  achieved a t  

1.8 t o  2.3 mm f i n a l  s ized thickness. These have a  r e s u l t i n g  e lec t rode 

performance i n  the 20 t o  23 Ah range over hundreds o f  t e s t  cycles. 

2.1..3.3 ADDITIVES 

Cobal t  hydroxide continues t o  be the best  a d d i t i v e  t o  enhance the 

performance o f  pasted n icke l  electrodes. Add i t ion  o f  CO(OH)~ t o  the 

a c t i v e  powder enhances u t i l  i zat ion 20 t o  30% over n i cke l  hydroxide 

alone. Due t o  the cos t  of cobal t ,  o ther  add i t i ves  are  under invest iga- 

t i on .  Known c r ys ta l  analogs o f  CO(OH)~ were t r i e d  i n i t i a l l y .  ~ h e s e ,  

inc luded Mg(OHI2, Mn(OHI2, Ca(OH)2, Ba(OH)* and t h e i r  peroxide 

forms. These add i t i ves  were m i l l e d  w i t h  the n icke l  powders, p r i o r  t o  t he  

paste making procedure. No s i g n i f i c a n t  e f f e c t s  i n  performance were noted 

f o r  these add i t i ves  a t  var ious concentrat ion 1  eve1 s. Other mater ia l  s  

under i nves t i ga t i on  include: aluminum, chromium and t h e i r  mixed metal 

oxide analogs. 



2.1.3.4 FULL-SIZE.CELL CONSTRUCTION . . 

Full-size c e l l s ,  constructed using pasted nickel-electrodes, have 
achieved hundreds of stable,high performance cycles. Emphasis now i s  on 
production of additional c e l l s ,  using both green nickel hydroxide and 

ozonated ac t ive  material. These c e l l s  will encompass many process vari- 
ables ,  incl uding electrode thickness and additives other than cobalt 
hydroxide. 

Nickel electrode thickness increase on pro1 onged cycl i ng i s the 
most important factor  i n  determining l i f e  and performance of the nickel 
i ron ce l l  . Pasted nickel electrodes of fer  greater f lex ib i l  i ty  and con- 

t ro l  over electrode parameters. Uniform loading, optimum porosity and 
fixed final thickness can be effect ively achieved and. their  influence on 

long 1 i f e  can be determined. Cell s a re  bing constructed w i t h  nickel elec- 
trode thicknesses varying from 1.80 t o  2.30 mm. Cell l i f e  will be deter- 

mined as  a function of these i n i t i a l  thicknesses. Both active material 
types a re  being used i n  these experiments. 

2.2  IRON ELECTPODE 

Thc composi te-type i ran e l  ec tt*ode cor~tai  ns a f ibe r  metal -expanded 
' metal combination conducting grid system a s  the current car r ie r .  This 

s t ruc ture  a1 1 ows firm attachment of .the connecting tab and imparts excel - 
l e n t  power charac ter i s t ics  t o  the iro-n electrode. The battery design 

2 '  requires an iron electrode of 345 cm act ive area and approximately one 
mm thickness, having an output of 26.5.  Ah a t  t.he C13 discharge rate .   he. 
f inal  program goal i s  .to achieve. 0.27-0.28 Ah/g of total  electrode, 
en t l r e ly  on: the upper voltage discharge plateau.. . - 

2.2.1 IRON PLAQUE 

The current '  col l e c t o r f o r  the iron electrode i s  a porous struc- 

t u r e ,  presently formed from a combination of s tee l  f ibers  and an expanded 
metal iron sheet. The expanded metal i s .  the center layer  fo r  the f iber  



s t ruc tu re  which i s  s in tered t o  both sides using a  s i m i l a r  f i be r  lay-up as ,, 

developed f o r  the. plaque used f o r  the n icke l  electrode. The f i n a l  plaque 

i s  s in te red  i n  hydrogen and a v e r t i c a l  tapered tab i s  seam welded i n t o  

the plaque body (See Fi,g. 2.5). The open pa t te rn  i n  the expanded metal 
i s  diamond-shaped and the 1  ong d i rec t ion ,  having higher e l e c t r i c a l  con- . 
d u c t i v i  ty, i s  a1 igned with, the ax is  of the f i be r .  A process advantage o f  

t h i s  composite g r i d  s t ruc ture  i s  t h a t  the expanded metal center provides . 

i n t e g r i t y  i n  hand1 i n g  the plaque dur ing the seam welding operation. 

The basic process steps i n  the continuous production o f  f u l l  s ize  

electrodes are: (1 )  the loading o f  the g r i d  s t ruc tu re  w i t h  red i r o n  

oxide and carbon addi t ive .  ( 2 )  the reduct ion o f  t h i s  mix ture  and ( 3 )  the 

pressing o f  the electrode t o  a  f i n a l  thickness o f  1  mm. Control over the 

amount and un i fo rm i ty  o f  the load ing i s  based on the expansive s t ruc tu re  

of the s tee l  wool mat r ix  and on the use o f  a  su i tab le  paste o f  the oxide. * 

. . A f te r  the p a s t i n g  step, a. room temperature dry ing step i s .  required 

t o  remove most, o r  a l l ,  of the paste water. An open s t ruc tu re  resu l t s ,  

which of fers easy access f o r  the hydrogen gas dur ing the i n - s i t u  reducing 

step. A continuous b e l t  hydrogen furnace i s  used f o r  the reducing proce- 

dure. The overa l l  dimensions o f  the electrode are not  a f fec ted  by the 

reduct ion step. The f i n a l  e lectrode contains a  68-70 g  load ing and i s  

r e a d i l y  pressed t o  9.0 mm. 

2.2.2 COMPOSITE ELECTRODE 

The s t a r t i n g  mater ia l  f o r  the composi te-type i r o n  electrode con- 

s i s t s  o f  red i r o n  oxide and a carbon-producing addi t ive ,  such as phenolic 
' 

res in ,  o r  most recent ly,  corn starch. These components are  incorporated 

as an aqueous paste i n t o  the s tee l  wool g r id ,  as described previously.  

Overal l  e lectrode performance i s  s t rong ly  dependent on the proper- 

t i e s  o f  the red i r o n  oxide s t a r t i n g  mater ia l  . I n i t i a l l y ,  successful 

r e s u l t s  were obtained us ing Fisher Red I r o n  Oxide which i s  prepared by 

ca l c i n i ng  f e r r i c  su l fa te .  Some residual  su l fa te  (0.05 wt%) remains a f t e r  
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Figure 2 .5 .  Iron Electrode Plaque Design 
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calcination and t h i s  imparts a degree of ca ta ly t ic  ac t iv i ty  t o  the iron 
oxide. Pr ior  researkh and development e f fo r t s  indicate tha t  the f e r r i c  

su l fa te  calcination temperature i s  the most important factor  i n  determin- 
i n g  f inal  electrode performance. A summary of electrode performance ver- 
sus calcination temperature and residual su l fa te  concentration was 
included i n  the 1979 annual report. 

Several suppliers were contacted t o  provide iron oxides t o  the 
required specifications. Experiments w i t h  cer tain Pfizer and '~olumbian 
Carbon calcined red oxides yielded 25-30 Ah i n  fu l l  s i ze  electrode 
t e s t s .  These electrodes exceed the 23-25 Ah performance achieved using 
the Fisher oxide and cost  approximately 1/3 tha t  of the Fisher Red 
Oxide. In the past year,  material was obtained i n  ton-1 o t s  f o r  use i n  

battery manufacture. Electrodes prepared from this Pfizer material con- 
s i s t en t ly  exceed 26 Ah per fu l l  s ize  electrode a t  the C/3 discharge 
rate .  The Pfizer electrodes have shown no s ignif icant  loss  i n  capacity 
a f t e r  500 cycles of continuous testing. 

Evaluation of several types of carbon-producing additives has been 
completed i n  fu l l - s ize  electrode t e s t s .  The material s found most effec- 
t i  ve , i n i  t i  a1 ly  , were phenol i c  resins of the phenol -formal dehyde type. 
These materials 1 ose weight when reduced i n  hydrogen and leave behind a 
carbon residue evenly distributed throughout the electrode act ive mass. 
This carbon residue was found t o  increase electrode performance about 
20%; compared t o  iron oxide w i t h  no additive. Some eventual storage 
problems, partic111 ar ly caking. occurred using t h i s  material. Further 
experiments led t o  the selection of corn 'starch a s  an additive which had , 

a l l  the desired properties f o r  paste formulation and handling. Addition 
of corn starch t o  the iron oxide paste produces electrodes which meet the 
performance and l i f e  obtained us ing  the phenolic resin.  

New pressing techniques have recently' been incorporated in to  the 
iron electrode s izing.  process, resulting i n  s ignif icant  capacity 

increase. ' A l l  processing parameters and raw materials. are' the same, a s  C 



spec i f i ed  i n  the preceding paragraphs, except f o r  the f i n a l  s i z i n g  step. 

These new process i r o n  electrodes are  sized, us ing 0.97 mm shimstock and 

a  f a b r i c  i n t e r f a c e  between the electrode and the face p la tes  o f  the 

press. This in te r face  prevents c l os i ng  of m e t a l l i c  i r o n  pores a t  the 

e lec t rode surface dur ing pressing, thereby a1 1  owing b e t t e r  e l e c t r o l y t e  

access t o  the  e lec t rode i n t e r i o r  when placed i n  a  c e l l  stackup. Per for -  
mance i s  28-29 Ah, versus 24 Ah f o r  electrodes pressed i n  the former man- 

ne r  w i thou t  shims and fab r i c .  The 28-29 Ah capaci ty r e s u l t s  from a con- 

s t a n t  cu r ren t  charge i n p u t  o f  33 Ah (4  h r  x  8.3A) ' for  an Ah e f f i c i e n c y  o f  

about 87%. Th is  h igh  coulombic e f f ic iency should enable h igh  energy 

e f f i c i e n c y  t o  be obtained (2;/0%) i n  n i c ke l - i r on  c e l l s  b u i l t  w i t h  these 

e l  ectrodes. 

The curves i n  F l g  2..6 .represent Ah capac i t ies  a t ' abou t  0.80 V 

. . (vs Hg/HgO) terminal  vol tage fo'r the  i r o n  electrodes.' 1f' on iy  25 Ah i s  

removed ;from these newer techno1 ogy e l  ectrodes , the f i n a l  vo l  tage i s 

about 0.86 V (vs Hg/HgO). Since t he  s t a r t i n g  vol tage i s  about 0.92 V . ' 

( vs  Hg/HgO), the t o t a l  drop f o r  these i r o n  electrodes i n  a  250 Ah d e l l  

i s  A 60 mV. This value exceeds the o r i g i n a l  program goal o f  A 80 mV and 

should a i d  g r e a t l y  i n  improving the thermal charac te r i s t i cs ,  i n te rna l ,  . . 

res is tance and charging e f f ic iency of c e l l s ,  s i n c e l l ~ c s e  i ' ron e lec t rodes 

a re  now operat ing on t h e  higher p o r t i o n  o f  the vol tage discharge curves. 

Spec i f ica t ion f o r  these improved i r o n  electrodes are  g iven i n  Table 2.1 . 
. . 

Fu r the r  improvements, i n  i r o n  e lec t rode performance can be expected 

w i t h  op t im iza t ion  o f  the oxide s t a r t i n g  mater ia l .  and re f i ned  pressing 

techniques. These areas a re  being explored t o  achieve a  goal o f  32 ,Ah 

output. 

2.2.3 LIFE TESTS RESULTS 

F u l l  s i z e  i r o n  electrodes were p u t  on continuous t e s t  i n  January 

1979 t o  determine the.  e f f e c t s  o f  a l l  compon'ents on e lec t rode l i f e .  The 

var iables,  inc luded n i cke l  p l a t i n g  o f  the  s tee l  wool mat r ix ,  carbon 
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TABLE 2.1 

Program Goal s 1979 
Thickness 1 .O mm (40 m i l s )  1 . D m  

Weights f o r  11 electrodes ( g ) :  

Gr id  & Tab 493 . 493 
Active Material  750 770 

'Present - 1980 . . 
.1.0 mm 

2 Act ive  area (cm ) 343 r 343 343 
I ' 

. . 

~erformance a t  C/3: 

Ah 2 5 25 
. , 

2 9 
Ah/g act ive  0.34 ' 0.34 0.4.0 

. ~ h ' / ~  electrode 0.22 .0 .22  0.25 



add i t i ve  content o f  the. ac t i ve  mater ia l  , tab conf igurat ion,  and s ize  of 

the  s tee l  wool f iber.  A l l  experiments were run using F isher  Red Oxide, 

since t h a t  was the raw mater ia l  a t  t h a t  time. These t es t s  were designed 

t o  g ive i n s i g h t  i n t o  the re1 i a b i l i t y  of these components over 1000 t e s t  

cycles. A summary o f  t e s t  r e s u l t s  i s  given i n  Table 2.2. 

Electrode FX901 was removed from t e s t  a t .  725 cycl-es a f t e r  i t s  per- 

formance had decl i.ned t o  17.3 Ah. Examination revealed ' tha t  the unpl ated 

s tee l  wool mat r i x  was severely corroded and had separated from the  

expanded metal 'center gr id .  The v e r t i c a l  tab remained f i rm ly  attached t o  

the  expanded metal gr id .   he ac t i ve  mater ia l  was very s o f t  thoughbi t  the 

e n t i r e  electrode. The electrode had expanded t o  1.40 mm from the i n i t i a l  

1 .OO mm va l  ue. F a i l u r e  was re1 ated t o  s tee l  wool. cor ros ion and .the'' 

, r e s u l t i n g  detachment. o f  ac t i ve  mater ia l  from the  electrode body. 

Elqctrode FX902 was removed from t e s t  a t  418 cycles since the 

capaci ty had f a l l e n  below 18 Ah a t  the C/3 discharge ra te .  F a i l u r e  was 

a t t r i b u t e d  t o  the i r o n  electrode. Electrode FX902 contained unpl ated 

s tee l  wool f i b e r s  and had a hor izonta l  tab connection. A steady dec l ine 

i n  performance was noted a f t e r  350 cycles and the electrode was removed 

a t  418 cycles where i t  had an output o f  15.7 Ah. The ac t i ve  mater ia l  f o r  

t h i s  e l  ectrode contained no phenol i c  res in .  Examination revealed t h a t  

the body o f  the electrode maintained i t s  m e t a l l i c  appearance and o r i g i n a l  

thickness w i t h  no not iceable corrosion o f  the s tee l  wool f i be rs .  Some 

de te r i o ra t i on  a t  the tab junc t ion  was apparent and would account f o r  the  

observed decl i ne i n  the discharge voltage. 

Electrode FX903 was removed a t  cyc le  412 w i t h  an output  o f  17.2 

Ah. The ac t i ve  mater ia l  throughout the e n t i r e  e lectrode was mushy, 

a1 though the f i b e r s  appeared i n tac t .  The electrode had swell ed t o  about 

1.9 mm from i t s  o r i g i n a l  1.0 mm thickness. This i s  i n  con t ras t  t o  FX902, 

which maintained i t s  ac t i ve  mater ia l  i n t e g r i t y  over a s i m i l a r  number o f  

cycles. The basic d i f ference between these two electrodes i s  t h a t  FX903 
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TABLE..  2.2 

CYCLIC' S T d B I L I T Y  OF COMPOSITE I R O N  ELECTRClDES 

Ac ti ve 
Mater i  a1 ' . E lec t rode .. Ah Capacity .vs. Cycles 

W t .  g W t .  g  5 10 5  0  125 500 1000 

'. 1.20 FX.901 ' .. 69 . , 21.9 24.2 . . 24.3 22.8 21.9 ( o f f  ' 17.3 a t  725) . . 

26.6 15.7 
( o f f  a t  418) 

. . 

2C. 0 17.2 ' 

( o f f  a t  412) 
, * 

22.6 21.8 18.0 
( o f f  a t  960) 

17'.2 . . 21.7 ' 18.0 . 

( o f f  a t  1050) '  

22.1 22.1 18.0 
( o f f  a t  1150) 

FX907 ' .69 11 5  13.3 22.9 23.0 20.9 18.0 
( o f f  a t  160) 

2  Ac t i ve  area = 53.2 i n 2  = 345 cn  

Thickness = 40 m i l s  = 1  mm 
4 

Elect rodes are F i she r  Red Oxide 

- Elect rodes are  discharged verscs n i c k e l  counter  e lec t rodes  t o  a  f i n a l  
c e l l  p o t e n t i a l  o f  0.97V f o r  each t e s t  cyc le .  



contained phenolic, compared ' to none f o r  FX902. However, FX901, 904 and 

906 a1 so contained phenolic and continued t o  perform wel l  a t  500 cycles. 

Electrode FX904 decl ined t o  a  steady output  o f  18.0 Ah ,and was 

taken o f f  t e s t  a t  960 cycles. This e lectrode contained a n icke l  p l a t i n g  

on the f i b e r s  and tab and a1 so contained phenolic i n  the ac t i ve  mate- 

r i a l .  Evaluat ion o f  t h i s  e lectrode revealed t h a t  the ac t i ve  mater ia l  

remained i n t a c t  and t h a t  no s i g n i f i c a n t  thickness increase had occurred. 

The average discharge voltage had decreased about 50 mV from ' i t s  optimum 

value i n  the f i r s t  500 cycles.' Some very t h i n  cracks were observed along 

the leng th  o f  the electrode body. Constant expansion and cont ract ion o f  

the  n icke l  counter electrodes most l i k e l y  caused the cracks t o  occur, 

r e s u l t i n g  i n  f a t i gue  and voltage loss. Electrode FX905, removed from 

t e s t  a t  1050 cycles, was s i m i l a r  t o  FX904. 

~ l e c t r o d e  FX905 was removed from tes t '  a f t e r  190 cycles since i t s  

capaci ty had decl ined t o  17.2 Ah. Ce l l  voltage p r o f i l e s  ind icated t h a t  

the n icke l  e lectrodes were 1  i m i t i n g  performance. The n icke l  counter 

electrodes were o f  p r i o r  design. New n icke l  electrodes were inser ted  and 

t e s t i n g  was resumed. An immediate increase from 17.2 t o  21.7 Ah was 

obtained. Simultaneously, new counter electrodes were inser ted  i n  a l l  
the t e s t  c e l l s .  Unfortunately, i t  was too l a t e  t o  r e b u i l d  e lectrode 

FX907 which was removed a few weeks e a r l i e r .  

Electrode FX906 decl ined t o  a  steady 18.0 Ah output  a t  1150 

cycles. ' The f a i l u r e  mode f o r  t h i s  e lectrode was ascribed t o  some f i b e r  

weakening and r e s u l t i n g  l oss  of ac t i ve  mater ia l  i n t e g r i t y .  The electrode 

body was s t i l l  adequately attached t o  the hor izonta l  tab. 

Electrode FX907 was removed from t e s t  a t  160 cycles a t  a  capaci ty 

of 18 Ah. Th is  e lectrode contained unpl ated s tee l  wool f i b e r s  and pheno- 

l i c  resin.  No measurable expansion from ,the 1  .OO mm ( i n i t i a l  1 thickness 

was observed. This e lectrode re ta ined i t s  hard and smooth tab' junct ion.  
A steady dec l ine i n  average 'discharge vol tage accompanied the decrease i n  

output. No cor ros ion i n  the main body ' o f  the electrode was observed. I t  
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possible tha t  degradation a t  the tab junction contritjuted t o  the 20% 

de'cl ine i n  capacity observed fo r  this electrode. 

I t  i s  concluded from these t e s t s  tha t  the sintered composite type 
. . electrode i s  capable of long l i f e  (>I000 cycles) in.nicke1-iron ce l l s .  

Since these t e s t s  were begun i n  ~ a n u a r y  1979, 'several. imp~ovements . . have 
been made i n  tab welding and grid structure integri ty .  These, along w i t h  
changes i n  ac t ive  material composition, have increased performance dra- 
matically,  a s  described previously. Electrodes manufactured using this 
newer technology a r e  currently on l i f e  t e s t  and are  approaching 600 
cycSl,es w i t h  capac i t ies  greater than 25.0 Ah,  representing l'ess than 5% 

decline.  from t h e i r  optimum values. Nickel .plating of the grid s t ructure 
is  now consf dered not necessaky f o i  1 ong 1 i f e  iron electrodes s i  rice 1500 

cycles a re  obtainable, using the newer techno1 ogy approach. 

2.3 CELL HARDWARE COMPONENT DEVELOPMENT 

. . Development work on ce l l  components includes: separator( s )  , ce l l  

and intercel l  connectors, ce l l  case and cover, and ce l l  auxi l ia r ies  t h a t  
deal w i t h  automatic water feeding and/or the electrolyte  circulat ing sys- 

tem. 

2.3.1 SEPARATORS 

A decision was made t o  use Cel gard K-501, suppl ied by Cel anese 

Fibers Company, a s  ' the standard separator. Th i  s deci sion was made 
because of the sat isfactory performance of ce l l  s i n  which i t  was used and 
because of i t s  good handling properties. In par t icular ,  since i t  i s  lam- . . 

inated into.one sheet,  adoption of a serpentine method of wrapping elec- 
t rodes ' i n  the stack assembly was possible. One shipment was received 
w i t h  h i g h  resis tance K-501, caused by excessive wetting agent, b u t  t h i s  

was rep1 aced by Cel anese w i t h  acceptabl e material . The qua1 i t y  control 
measurements made on 'incoming material a re  given in Tab1 e 2.3. 



TABLE 2.3 

QUALITY CONTROL MEASUREMENTS ON CELGARD K-501 

Ro l l  Thickness Weight . . Resistance ( 1  1. 
. . 

No. - M i l s  g/y d2 m Q-in 2 
. % 

6723* 13.3 69.9 77 
21 846 14.3 69.9 29.5 
21 847 14.2 70.1 31.5 

(1 ) Separator res i s tance  i s  measured by t h e  ac method, described i n  
A1 k a l  i ne Storage Ba t te r ies ,  by Fa1 k and Sal k ind,  pp 257-260. 

. . . . * Returned t o  supp l ie r .  
~. . . . 



I n  t h e  search f o r  an a l t e r n a t e  separator t o  K-501, b a r r i e r  .and 

absorber m a t e r i a l s  from W. R.- Grace Company were evaluated. Th is  was 

done by comparing measurements and performance. of th.e W. R. Grace mate r i -  

a l  s w i t h  those of Cel gard K-501 and i t s  components, Celgard 3401 - and . . 

F i be r tex .  An advantage o f  W. R.  race b a r r i e r  i s  t h a t .  i t has, poten- 

tial,ly, a much lower  p r i c e  than Celgard 3401 .' Thethickness, .  weight  and 

res i s tance  measurements a r e  shown i n  Table 2.4. 

TABLE 2 -4  

COMPARISON OF W. R. GRACE AND CELANESE SEPARATOR MATERIALS 

Thickness Weight Resistance 

Suppl i e r  M a t e r i a l  

W. R. - Grace. 90921 -BC-1 b a r r i e r  7 136 20 

W. R. Grace 114 absorber 6 63 10 

Cel anese K-501 laminate , 13.2 7 1 . 30 

Ce 1 anese 3401 b a r r i e r  1 11.3 5-1 0 

Crown Z e l l  erbach F i  ber tex  absorber 5.8 26.4 7.1 

Two' 21-p1ate :ce l l  . . s were assembled w i t h  , t h e  W. R. Grace mate r ia l s ,  

and two c o n t r o l  c e l l s  were assembled w i t h  Celgard K-501.   he serpent ine  . . 

method o f  assembly i s  t d o ' d i f f i c u l  t t o  use w i th '  t h e  "nlaminated W. R. 

Grace materials, ,  there fore  t h e  bag type of co.nstruct ion was used.. These 

bags were made 'w i th  one 1 ayer o f ,  absorber and one 1 ayer o f  b a r r i e r ,  t h e  

absorber being i n s i d e  t h e  b a r r i e r ;  t h e  bags were assembled on t h e  i r o n  

e lectrodes.  B a g s  were a l s o  made o f  K-501 f o r  t h e  i r o n .  e lec t rodes o f  t h e  

c o n t r o l  ce l l -s ,  thus t h e  type .of assembly used f o r  separa.tors i n . a l 1  f o u r  

o f  t h e  t e s t  c e l l  s was t h e  same. 

O n  the  i n i t i a l  charge-discharge t e s t  cyc les  t h e  c a p a c i t i e s  o f  t h e  

c e l l  s were s i m i l a r  but ,  by cyc les  7 and 8, t h e  average capac i ty  o f  t h e  



con t ro l  c e l l s  was 20 Ah greater than the capacity o f  the c e l l s  w i t h  W. R. 

Grace separators. In te rna l  resistance and pressure readings on the c e l l  s 

w i t h  W. R. Grace separators tended t o  be higher than on the c e l l s  w i t h  

Cel gard K-501. The capaci ty o f  the experimental c e l l  s was 1 i m i  t ed  by the 

i r o n  electrodes, which may have been af fec ted by reduced access o f ' e l e c -  

t r o l y t e  t o  these electrodes. 

Therefore, K-501 i s  the present "standard" separator f o r  n i cke l -  

i r o n  ce l ls . '  However, explo.rat ion and examination o f  o ther  candidate sep- 

a ra to r  mater ia l  s, as they become ava i lab le  from the commercial suppl iers, 

w i l l  continue. 

2.3.2 ELECTRICAL CONNECTORS 

' The cont inu ing ob jec t i ve  of t h i s  subtask i s  the development o f  

re1 i a b l  e, . e a s i l y  manufactured and .h ighly conductive e l e c t r i c a l  connec- 

tors .  The.connectors in te r face  w i t h  two types o f  environment -- the 
i n te rna l  connections ( requ i r ing  caus t i c - res is tan t  components) and the 

- , connections external  t o  the c e l l  ( i n  a i r ) .    he present i n t e rna l  design 

fo r  t he  c e l l  terminal assembly i s  a fou r  component system, i nvo l v i ng  

three j o i n t s :  (1 ) electrode-to-tab, ( 2 )  tab- to-co l lec tor  and (3 )  co l  lec-  

tor- to- terminal  post, w i t h  experimentation being conducted on j o i n i n g  

mater i  a1 s and/or techniques. The. external  i nterce l  1 connections -are 

lengths o f  f l e x i b l e  cables, w i t h  mechanical fastener j o i n t s  a t  each end, 

t h a t  clamp onto the c e l l  terminal posts. 

The i n t e r n a l  connections between the electrode tab and the  termi-  

na l  post  have received much a t t en t i on  dur ing the past  year. Here devel- 

opment work was focussed i n  two major areas: (1 1 cos t  reductions i n  comb' 

fab r i ca t ion ,  and ( 2 )  e l im ina t ion  o f  the tab and comb. S ign i f i can t  

r e s u l t s  were seen i n  (1 )  where combs were assembly welded ( r a the r  than 

machined) from i nd i v i dua l  blanks and bar stock pieces. Prel iminary work 

i n  ( 2 )  involved a technique t h a t  u t i l i z e d  cables and a through-the-cover 

cab1 e c o l l  e c t i  on terminal . 



The cost savings achieved i n  the assembly welding of combs led t o  
the,method now being used. Here a bar stock piece i s  f i r s t  spot welded 
t o  each electrode tab i n  an operation tha t  eliminates the melt down of 
separator a t  the tab region on top of the plates ,  which was always a 
problem when the machined comb was welded t o  each electrode tab,  despite 

various heat sinking schemes tha t  were employed. Later, during ce l l  
stack assembly the electrodes a re  gathered and welded t o  the col lector  

assembly (See Fig. 2.7). This not only reduced the cost  of the assembly 
b u t  improved the stacking operation. The second development a c t 1  v i  ty was 
no 1 onger neces,sary and. was d i  scontinued. 

Work i n  t h i s  area was two-fold: ( 1 )  design and procurement'of 
molded prototype ce l l  containers and covers, ( 2 )  dqvelopment of new join- 
i ng and seal'i ng techniques, ' having compatabil i ty  t o  a mul.ticel1 module 
case and cover. , 

. . A new design of ,case and cov6.r i s  being ut i l ized.  Improvements i n  

the circul.ation ports and the external connections.associated w i t h  them 

necessitate changes i n  the cover,. a s  shown i n  Fig. 2.8. . A t  the same 
time, s t ructural  changes were made t o  strengthen and improve the seal'  

in tegr i ty  of the area '  around t h e  terminal s. The case design. f ina l ly  
selected remains very close t o  the original.  Previous core s h i f t .  prob- 
lems were resolved by t igh te r  a1 ignment during the mold setup. 

The induction we1 d sealing process (cover-to-case) was a1 so aban- 
doned. . Dimensional variations i n  the adjoining pieces, a1 though sa t i s -  

- factory fo r  an adhesive'method, proved too large for  the sensi t ive induc- 

, t ion  equipment. Burns and leaks in  the jo in t  area were unacceptable,. 

A conceptual, design fo r  a mu1 t icavi  ty  module was completed.  he 
aim w d s  td reducesthe volume and weight of a six-cell module by packaging , 

a1 1 a s  a 'group. ~dd i . t i ona l ly ,  manifolding and in terce l l  connections were 



Stock 

Figure 2.7.  Electrode Tab Weld Assembly 



Fiaure 2.8 Cell Case Cover 



made in te rna l l y .  Figure 2.9 shows the design. Here, about 9% reduction 
i n  weight and 14% i n  volume can be achieved. 

2 -3.4 ELECTROLYTE MANAGEMENT SYSTEMS 

Development work on aux i l i a r i es  r e l a t e  t o  e lec t ro ly te  water makeup 

and e lec t ro ly te  recirculat ion. Emphasis i s  on an automated system capa- 
b i l i t y .  

An e lec t ro ly te  management system (EMS) has been developed t o  pro- 
vide minimum maintenance features through sing1 e po in t  water rep1 enish- 

ment, charge temperature control ,  and safe gas handling. E lec t ro ly te  

c i  r cu l  a t ion  through the bat tery  during the charge cycle provides ef fec-  

t i v e  heat removal thus enabl i ng  2-5 hour charging and cool ing  o f  a 100% 

discharged battery. The primary elements o f  the EMS are pump, reservoir, 

heat exchanger and associated f low control  s and i n te r1  ocks. Development 

work during the past year was concentrated on design of a system f o r  

on-board vehicle use. Several improvements have been made i n  the safety 

and re1 i a b i l  i t y  of the e lec t ro ly te  management system, including flow, 

level ,  temperature and s p i l l  protection. The i n t e g r i t y  o f  the f l u i d  
seals a t  the c e l l s  has also been increased. The manifolding has been 
changed t o  incorporate f l e x i b l e  feed and exhaust hoses and e l  as t i c  seals, 

making the system not  only less sensi t ive t o  motion and misalignment 

stresses, bu t  a1 so more sui table f o r  c e l l  interchanging. Leaks a t  the 

manifol d/cel 1 j o i n t  have been completely e l  iminated . Fig. 2.1 0 shows a 

f l e x i b l e  hose manifold attached t o  a c e l l  str ing. 

2.4 CELL TESTING 

The purpose o f  the tes t i ng  program i s  t o  demonstrate the s ta te  o f  

techno1 ogical advancement, w i th  respect t o  the overal l  n ickel  - i ron  bat- 

t e r y  goals. The u l t imate purpose o f  the tes t i ng  program i s  two-fold: 

(1 provide performance information f o r  use by the developer as feedback 
t o  determine operating character ist ics,  suggest modifications, and 



Figure 2.9. Si x-Cel 1 Module Design Concept 



Figure 2.1 0. Twenty-One Cel l  St r ing Manifold 



improve design, (2 ) provide information o f  i n te res t  t o  potent ia l  users, 

who have a need t o  know many performance, environmental and safety 
aspects o f  the system. 

For Task 2, the System Development por t ion of the contract, test -  

i ng  continues t o  concentrate i n  several areas. Prototype-size i r o n  and 
n icke l  electrode tes ts  are being performed t o  ass is t  i n  evaluating 
design, mater ials and process changes and determining t h e i r  e f fec t (s )  on 

improving performance. A1 so, f u l l  s ize n icke l - i ron  c e l l  s are being 

tested i n  f inished, molded containers. Six-cel l  modules, as used f o r  the 
DOE/JPL "2 x 4" battery, are also being tested f o r  performance and design 

evaluation. Testing o f  f u l l  s ize bat ter ies i s  now p a r t  o f  the DOE/JPL 

program o f  near term e l e c t r i c  vehicle evaluation. Two 90-cell batter ies,  
inc lud ing e lec t ro l y te  management systems, have been suppl i e d  t o  JPL. 

The tes t i ng  i s  t o  provide, ul t imately,  information on the opera- 

t i ona l  and performance character is t ics  i n  the f o l l  owing areas: (1 ) pre- 
tes t ,  (2) charging and charge efficiency, (3)  capacity, (4)  power, 

( 5 )  charge retent ion, ( 6 )  l i f e ,  and ( 7 )  environmental aspects, as temper- 

ature. 

Developmental cell s and modules (and ba t te r ies  are Les ted wi th  

c i r cu la t i on  of e lec t ro l y te  during both charge and discharge. Up t o  f i v e  

charge/discharge 80% DOD cycles can be run each day, w i th  20 fu l l - s i ze  

c e l l  t e s t  posi t ions available. Up t o  25 f u l l - s i z e  i r o n  and/or n ickel  
. electrodes can a1 so be tested a t  t h i s  same rate. 

A special, var iab le depth-of-discharge t e s t  s ta t i on  was designed 

t o  simultaneously t e s t  up t o  three 6-cell ,  f u l l - s i z e  modules. The system 
was chosen i n  an e f f o r t  t o  cease the pract ice of t es t i ng  c e l l s  a t  100% 

DOD and t o  provide information on c e l l s  tested i n  a condit ion more 

c lose ly  approximating bat tery  usage. These stat ions can ass i s t  i n  

obtaining added depth-of-discharge and l i f e  data. The system i s  capable 

o f  cyc l ing  the modules a t  d i f f e r e n t  DOD's and can a lso be used i n  temper- 

a tu re / l  i fe  tests.  



The 3-station, f u l l - s i z e  module tes ter  i s  shown i n  Fig. 2.11 . 
Here 3 modules are shown under test ,  complete w i th  the e lec t ro l y te  circu- 

l a t i o n  system. Controls and instrumentation are i n  the rack a t  the r i g h t  

and power supplies and the voltage recorder are i n  the rack t o  the l e f t  

o f  the modul es . 

' 2.5 PILOT PLANT OPERATIONS 

P i l o t  p lan t  operations include a l l  operations f o r  plaque, n ickel  

and i r o n  electrodes, c e l l  , module and bat tery  f a b r i  cation. 

Production i n  the p i l o t  1 i ne  f a c i l i t y  proceeded i n  the past year 

t o  the extent t ha t  the c e l l s  required f o r  the 2 JPL batter ies,  2 addi- 
t iona l  ANL/NBTL t e s t  modules and f u l l  s ize experimental c e l l  s were fabr i-  

cated. P i  1 o t  1 i ne- equipment and operations are presently being trans- 

fer red t o  the Westinghouse Advanced Energy Systems Div is ion a t  Large, PA, 

where fu tu re  c e l l  s and bat ter ies w i l l  be manufactured. 

2.5.1 G R I D  FABRICATION 

Gr id  fabr ica t ion  continued u n t i l  the present shut-down w i th  the 

only change imp1 emented comprising need1 e-s t i  tched steel wool as the 
feed-stock material i n  making the grids. 

2.5.2 IRON ELECTRODE FABRICATION . 

From September 1979 through August 1980, 6,050 composi te-type i r o n  

electrodes were fabr icated and co l la ted  i n t o  550 c e l l  stacks. During 

t h i s  period, the basic raw material, Fisher 1-1 16 red i r o n  oxide, was 

successfully replaced w i th  a low cost  red i r o n  oxjde, prepared and sup- 

p l i e d  by the P f i ze r  Company. 

The raw act ive material was 1 oaded i n t o  the electrode plaque by 

means o f  the same process as used i n  the p r i o r  year, i .e., two f a c i l  i t i e s  

were used, one fo r  each basic process step. I n  the loading step, the 



Figure 2.1'. Module Test Fac i l i t y  



plaque was purposely loaded wi th  excess aqueous i ron oxide paste. I n  the 

s iz ing  step, contro l led amount of the paste was retained i n  the plaque, 

by s iz ing  i t  down t o  a predetermined thickness. 

To lower labor costs and t o  reduce material waste, a design study 
was undertaken t o  combine the loading and s iz ing  steps i n t o  one fac i l -  

i ty.  The best approach was a system containing, i n  addit ion t o  the 

paste, a ser ies of loading r o l l s ,  followed by a set  o f  s iz ing  r o l l s .  As 
the plaque i s  propelled through the system, i t i s  f i r s t  loaded w i th  
excess paste and then Sized-down, p r i o r  t o  i t  leaving the process 1 ine. 

2.5.3 EPP NICKEL ELECTRODES 

The e l  ectroprecipi t a t i  on process (EPP ) u t i l  ized f o r  producing 

nickel  electrodes i s  essent ia l ly  as described i n  2.1 -2.4. 
-. e 

- - ,$y 
With respect t o  the nickel  electrode fabr icat ion, analy t ica l  data 

i s  gathered as p a r t  o f  Maxi-line p la t i ng  and EPP solut ions QA/QC. Other 
data, taken from QA/QC, include recording steel weight ( g r i d  p lus tab), 

nickel  p l a t i n g  weight, and thickness of the gr ids p r i o r  t o  EPP, as wel l  

as thickness and immersed electrode weights afterwards. E ight  locat ions 

are consistent ly measured f o r  the thickness determination. The weights 

talcen p r i o r  t o  EPP and the immersed weight o f  the f inished electrode per- 

m i t  a ca lcu lat ion of the act ive wbights. Both quant i t ies are s ign i f i can t  
f o r  QA/QC means, and were determined f o r  10% of the electrodes i n  every . . 

run. 

2.5.4 CELL ASSEMBLY 

Changes i n  c e l l  fabr ica t ion  were discussed i n  Section 2.3. Cel ls  
assembled fa1 1 i n t o  one of the fol lowing groups: (1  1 developmental c e l l  s 
SCT vehicle contains two o f  these 21-cell str ings, as wel l  as one 18-cell  

s t r i n g  and two 15-cell  s t r ings (90 c e l l  s/battery), designed t o  f i t  i n t o  
the SCT Rabbit bat tery  compartment. 



Six modules have been tested on the auto l i f e  cycler. An addi- 

t i ona l  four modules were recent ly sent t o  the NBTL, two as p a r t  o f  t h i s  
program and two as p a r t  o f  the JPL program. 

2.5.5 BATTERY ASSEMBLY 

Three hundred twenty-nine (329) c e l l s  have been fabricated f o r  the 

JPL program t o  permit bu i ld ing and del iver ing the two f u l l - s i z e  bat ter ies 

and spare c e l l s  required. One battery system has been delivered; the other 

i s  presently on t e s t  a t  Westinghouse and schedlrled f o r  de l ivery i n  November, 

1 980. 

Fig. 2.12 shows the present method o f  assembling f u l l - s i z e  nickel-  

i r o n  c e l l  s i n t o  str ings. Strings of c e l l  s are designed i n  such a w a y  as 

t o  e f f i c i en t l y  use the pa r t i cu la r  vehicle battery compartment. I n  the 
f igure, a 21-cell s t r i n g  i s  shown, complete w i th  c i r cu la t i ng  system mani- 

fo lding, end clamping p lates and s t r i n g  binding. The f i r s t  bat tery  tha t  

has been constructed on the JPL/DOE program a t  Westinghouse f o r  the SCT 

vehic le  contains two o f  these 21-cell str ings, as wel l  as one 18-cell  

s t r i n g  and two 15-cell  s t r ings (90 ce l ls /bat tery) ,  designed t o  f i t  i n t o  

the  SCT Rabbit bat tery  compartment. 





3.0 .' TECHNICAL PERFORMANCE 

I n i t i a l  program goals and pro jec ted demonstration values a re  pre- 

s e n t e d  i n  Table 3.1. Ful l . -s ize c e l l s  and three p l a t e  c e l l s  were i n i -  

t i a l l y  cycled t o  100% depth of discharge each cycle. These c y c l i n g  t e s t s  
were more s t r i ngen t  than th.ose required f o r  1  ong 1  i f e  cyc le  tes t ing ,  

which a re  now conducted on c e l l  s  i n  f i n i shed  mol ded case/covers , to '  80% 

depth of  discharge, based on ra ted  capacity. The cyc le  1  i f e  t e s t  c e l l s  

employ. e l e c t r o l y t e  c i r c u l a t i o n ,  e l e c t r o l y t e  composition and temperature 

con t ro l ,  and minimizat ion o f  C O ~  formation i n  the e l ec t r o l y t e .  A l l  

these con t ro l s  have been incorporated i n t o  the auto cyc le r ,  s i ng l e  c e l l  

t e s t  system and i n t o  the "closed," 3-module t e s t  system, which i s  used ' to  

t e s t  up t o  6 cells/module. The c e l l  t e s t  system operates w i t h  20 t e s t  

s t q t i ons  i n  the auto. cyc le  l i f e  tes te r .  Twenty-five 3-plate c e l l  s  can be 

simul taneously tested. 
. . 

F u l l - s i z e  c e l l s  have always been on t e s t  i n  containers ' o f  the  

proper volumetr ic  const ra in ts ,  as per  design spec i f i ca t ions .  Ce l l  s  made 

w i t h  molded cases and covers a re  being rated. on performance, based on 

t h e i r  ,actual weights, i nc lud ing  e l ec t r o l y t e .  Ce l l  s are  being fab r i ca ted  

w i t h  cases and covers made o f  GE Noryl 225. 

3.1 THREE-PLATE CELL TESTS 

F u l l  s i ze  e lectrodes a re  tes ted  i n  a  3  p l a t e  c e l l  con f igu ra t ion  t o  . 

provide i n i t i a l  performance evaluat ion of design and process conf igura-  

t i o n s  p r i o r  t o  f u l l  s i ze  c e l l  evaluation. The f o l l ow ing  sub-sections 

summarize t he  r e s u l t s  o f  t h i s  t e s t  program. 

3.J .1 EPP NICKEL ELECTRODE TESTS 
. . 

Table 3.2 summarizes 3-plate c e l l  t e s t  r e & l  t s  on EPP n i cke l  e l  ec- 

trodes. ..Electrodes comparabl~e t o  s ta te-o f - the-ar t  techno1 ogy . .  . del  i v e r  21 

t o  26 Ah, depending on EPP processing condi t ions.  From 6 t o  33% dec l ine 



TABLE 3.1 

P re l  i m i  nary 
Contrac: Goal s Best Present 

Cha rac te r i s t i c s  (Set Dec. 1977) Demonstration 

1 . Ba t t e r y  capaci ty (kwh) 25 26.5 
, , ( 1  00% ra ted )  

0.26 0.28 . 2. 'Battery ~ i m e n s i o n  m H' 
.(m H XIII W x m L 1 . m  W 0.38 - . . 0.38 

. m  L 2.21 2.21 . . 

Volume ( 8 ) .  2 30 230 . . 

3. Weight (kg) 41 7 4 20 

4. . .Volumetric Energy (Wh/R) 1 00 143 

W '  
I 60 - 5er 
N 5. Spec i f i c  Energy (Wh/kg) 

6. Spec i f i c  power (W/kg) 

Peak Ba t t e r y  1 00 175 

Sustained 8 C/3. .20 -- . 
. . 

Duty Cycle 

Charge (h )  

Discharge (h )  

L i f e t i m e  
Deep Di  sc harges 

p r i c e  /Ene rg.yC i $,/Kwh ) 

C/3 f o r  4h ,. 

3 

> 60 54 . l o .  Energy E f f i c i e n c y  ( % )  . . 



Ini t i a l I b  
Capacity 

Ah 

TABLE 3.2 

EPP-TYRE NICKEL 1ELlECTRODE 3-PLATE CELL TEST RESULTS 

Ini t i ' a l  
Alh Eff., %C 

Life  lCharacteristics 

d '% Decl i nke 
Cycles 'Capacity ~emarks" 

50 2 0 Control, Pure N i  ( O H ) 2  

625 58 038CE 'Comparison Cell -- 'Cross- 
'Fiber , Standard Densi ty  

344 3 7 026CE Compari son -- 3.23 mm dirameter 
hol e s  

248 3 2 ,#I Fiber Plaque 

560 (5 9 Control f o r  1007 

13.0 ' 39 21 5 9 ,Manganese Dopant 

48 15.8 208 15 Cal c i  um Dopant 

22.4 67 307 58 EPP Process Variation 

0 ,Bari urn (Dopant 

12 Iron Dopant 

17 Need1 e-Punched Fibers 

0 High Fiber Density 

39 O68CE Comparison Cell 

Brush Design Pla te  

B r u s h  Design P la te  

36 High Fiber Density 

39 0.25CE Compari son Cell 
3 channels, 3/0 s teel  wool 



TABLE 3.2 (CONTINUED) . 

.. I n i t i a l  b. L i f e  Charac te r i s t i cs  
P l a t e  . Capaci ty  . I n i t i a l  d % Decl i nee 

Desc r ip t i on  Ah ~h ~ f f . ,  %' ' ~ y c l  es Capacity Remarks a 

Barium Dopant .. 

,083CE Ccmpari son C e l l  . 
React ive ly  Sintered 

092CECanparison . ' 

React ive ly  Sintered 

O94CE Compari soh C e l l  
S i n t e r  + N i  Replate 

Pure N i c t e l  F ihe r  cont ro l '  

Pure Nickel  F ibe r  Control  

a. Special feature,   component.^, weight (kg.) and volume ( I ) . .  - 
b.  C/3 discharge, 4-8 hour charge: 
c. Based on a t  l e a s t  5 consecutive cycles.  . 

d. ' "Greater than" symbol s denote c o n t i n u i n g  operat ion. 
e. Percent decl i n e  , from' i n i  t i a l  . . . 



i n  capaci ty i s  usua l l y  noted a f t e r  200-300 t e s t  cyc les  o f  standard tech- 

nology p la tes (Table 3.2, annual r epo r t  f o r  FY '79). 11E and 1004E, 

d r i ven  t o  ap.proximately 500 t e s t  cycles, f u r t he r  extends t h i s  capac i t y  

decl i'ne.; showing ' 51 % t o  59% decl i ne. 
1 

Tests t o  evalua,te the m e r i t  o f  standard f i b e r  thickness range 

against  a  more coarse (Electrode 49E) and f i n e r  (Electrodes 27E and 2114 

f i b e r  range d i d  no t  reveal any e f fec t  o f  f i b e r  s i ze  on r a t e  o f  capaci ty 
. . 

decl ine. ~ o w e v ~ r ,  the 49E electrode t e s t  suggested t h a t  coarse f i b e r s  

may no t  co l l 'ec t  el 'ectrode i u r r e n t  e f f i c i e n t l y ,  r e s u l t i n g  i n  a  lower i n i -  

t i a l  capacity f o r  the electrode. 

Experimental electrodes 1005E, 1006E, 1008E, 1009E, and 31 83E rep- 

resent the present s ta te  of EPP technology, w i t h  respect t o  the pos's ib i l -  

i ty ,  of rep lac ing coba l t  ac t i ve  mater ia l  dopant w i t h  more economical, 

a1 ternate  mater ia ls.  As discussed i n  2.1.2.1, i t  i s  s t i l l  a  moot ques- 

t i o n  as t o  whether EPP methods can be adapted so  t h a t  higher, and, there- 

fore, more e f f e c t i v e  concentrat ions o f  these add i t i ves  can be evaluated. 

The p a r t i c u l a r  e lectrode t e s t s d o  serve t o  show, however, t h a t  t h e  low 

dopant l eve l  s  obtained d i d  serve t o  mai n t a i  n  the percent '  capaci ty decl i n e  

w i t h i n  the range observed f o r  cobal't-doped electrodes. . t l i t hou t  any dop- 

an t  whatsoever, pure Ni(OH)2 ac t i ve  mater ia l  decl ines t o  approximately. 

20% of i t s  i n i t i a l  capaci ty value, i n  50 cycles (e lec t rode 3E, the con t ro l  

sample). With the so le  exception of i ron,  a l l  dopant mater ia ls  tes ted . 
appear t o  remain candidates f o r  f u t u r e  subs t i t u t i on  o f .  cobal t .  

Electrodes employing higher - densi ty f i b e r s  (101 2E, 1013~., 1048E) 

d i d  no t  show s i g n i f i c a n t  increase i n  cyc le  l i f e ,  b u t  d i d  demonstrate more 

e f f i c i e n t  use o f  ac t i ve '  mater ia l .  This change i n  e lectrode design demon- 

s t r a ted  t h a t  some n icke l  could be removed and replaced w i t h  l e s s  expen- 

s i ve  steel', y i e l d i n g  a  p o t e n t i a l l y  lower  - cos t  electrode. 

Treatment o f  the h i gh  dens i ty  f i b e r s  i n t h e  reac t i ve  s i n t e r i n g  

process (2558E, 2650E , fu r the r  improved. the electrode .design. by producing . . 



a stronger f i b e r  plaque, showing l e s s  capacity decl ine while .on cycle 

l i f e .  These two c e l l s  a re  continuing on t e s t .  

Electrode 2707E, a1,though not very 'far in cycle t e s t ,  shows tha t  - 

nickel replate  over the reactively - sintered f ibers  does provide addi- 
t ional 'performance benefits. Judgement i s  reserved on .the need for  
nickel replating, however, u n t i l  t h i s  contfnuing t e s t  i s  completed. 

Electrodes 2801E and 2902E are baseline c e l l s  employing pure 
nickel f iber  current col lectors ,  which w i l l  provide a comparison of the 

performance of nickel posit ive act ive material which i s  not affected . by 
any possible i ron cantamination. 

3.1.2 PASTED NICKEL ELECTRODE TESTS 

Fulil,-size pasted nickel' electrodes (2.00 t o  2.40 mm i n i t i a l  thick- 
ness) display 20 t o  22 Ah capacity a t  'the C/3 drain rat.e i n  the best' 
3- p l a t e  t e s t  ce l l  s t o  1 .OV cutoff voltage, versus iron counter elec- 
trodes. These electrodes were desygned t o  investigate various act ive 
materi a1 s and . . paste  formulations. Active material s under 'investigation 
include:' ozonated nitkel 'hydroxide s lurry,  commercially available green 

, , 

nickel hydroxide and ni cke,1 carbonate. ~ h e s e  mateiZ,ial s represent a 
departure from the thermal preparation procedure, previously :used, since 
they a re  eas ie r  and l e s s  expensive t o  obtain i n  large quant i t ies  and show 
similar performance and l i f e  character is t ics .  

Tests on these electrodes which r e f l ec t  continuing process and 
material improvements, a re  between 100 and 200 t e s t  cycles. Tests w i t h  

ozonated nickel hydroxide and commerci a1 green nickel hydroxide, both 
containing 5 W/o C O ( O H ) ~ ,  a re  nearing 200 t e s t  cycles and a re  producing 
21 .Ah' w i t h  1 i t t l e  decline from t h e i r  peak values. The ozonated material ' 

achieved maxiium electrochemical capacity of 22 Ah i n  a few forming 

cycl es ,  whereas electrodes made from commerci a1 green nickel hydroxide 

required about 10 cycles t o  achieve a level output- of .22. Ah. Testing of 
fu l l - s ize  electrodes, using nickel carbonate a s  the s t a r t ing  material a re  

d .. 



i n  the early stages of cycling b u t  show promise of achieving 23-25 Ah 

o u t p u t  a t  loadings comparable t o  the ozonated material o r  commercial 
nickel hydroxide. 

3.1.3 BRIQUET I RON ELECTRODE TESTS 

A1 1 e f f o r t  on the briquet type i ron .  electrode has been deferred t o  
enable concentration on improving the composite electrode approach. 

. . 

3.1.4 COMPOSITE I RON ELECTRODE TESTS 

Results on ful l -s ize t e s t  electrodes have been summarized i n  

Tables 2.1 and 2.2 of Section 2.2. The composite-type iron electrodes 

have demonstrated a stable capacity of 22-23 Ah a t  up t o  1,000 test  
. cycles t o  date a t  80 and 100% d e p t h  of discharge cyclic 1 i f e  testing. 

T h i  s s tabi l  i ty has been maintained i n  electrodes having variations i n 
nickel plating, s teel  wool f ibe r  type and phenolic content of the jactive 

material paste, suggesting none of these factors a re  c r i t i ca l  t o  s table  

performance, i n  the ranges specified i n  Table 2.2. T h i s  improved perfor- 

mance has been attained i n  1.00 mm thick electrodes. Some electrodes 
have tested t o  .I ,150 cycles to date,  delivering 18.0 Ah/plate a t  tha t  

t e s t  level in the 3-plate test. Nickel plating i s  not necessary on the 
i ron electrode grid s t ructure fo r  1 ong cycle 1 i fe. Newer technology i ron  
electrodes are  approaching 600 t e s t  cycles w i t h  capacities a t  25 Ah. 

.* 

3.1.5 SUMMARY OF THREE-PLATE TEST RESULTS 

EPP electrodes are  wet and therefore cannot be accurately weighed 

f o r  act ive materia.1 content. However, based- on electrodes of 23 Ah 

capacity, performance of EPP electrodes i s  estimated a t  0.26 Ah/g act ive 

material and 0.11 Ah/g to ta l  electrode weight ( ta rge t  performance i s  
0.25 Ah/g active and 0.14 Ah/g electrode). EPP nickel electrodes indi- 

ca te  ?6% loss  i n  capacity i n  300 t e s t  cycles in  one of ' the be t te r  



electrodes. A t  up t o  500 test  cycles, a decline of u p  t o  50% of the 

original capacity 'can occur i n ,  the '  unrestrained, 3-plate t e s t .  

Full-size, pasted nickel electrodes deliver 20 t o  23 Ah for  sev- 

e ra l  hundred cycles, t o  date. These loadings are  90-1059 active material 
in electrodes of 1.80 t o  2.30 mm thickness (-.22 Ah/g active material 1 .  

With respect t o  individual electrode gravimetric performance 
goal s , composite iron electrodes are  approaching target  performance 

(0.40 Ah/g act ive material, a ~ d  0.27 Ah/g to ta l  electrode) a t  0.40 Ah/g 

act ive and n,25 Ah/g clcctrsde, based on 29.0 Ah capacity nhtained for  
the electrodes. 

work i s  con'tinui ng t o .  improve the performance of nickel electrodes 

by modifications i n  electrode construction, active material formulation 

and processing. 

3.2 FULL-SIZE  CELL TESTS 

Testing of a l l  c e l l s  i s  done w i t h  e lectrolyte  circulation fo r  the 

100% and 80% DOD test  cycles. Based on a nominal capacity of 230 Ah, the 

c e l l s  have been charged a t  83.3A/3.7h (300 Ah, i n )  and discharged a t  

83.3A/1 .OV per 100% nnn cycle. For the 001 DOD cycl e,  the ce l l s have 

been charged a t  83.3A/2.9h (240 Ah, i n )  and discharged a t  83.3A/2.2h 

(184 Ah, o u t ) .  

  gain', these t e s t s  use a circulated and. temperature control led 

electrolyte  condition (30°C on charge and 40°C on. discharge -- bulk elec- 

t ro ly te  temperature). Occasionally a l l  ar.e given a fu l l  charge. of 83.3A 
fo r  4 hours. .and discharged a t  83.3A t o  1 .OV cutoff t o  establ ish to ta l  

; c e l l  capacity. 

1 

. 3.2.1 FULL-SIZE CELL TEST RESULTS 

F i g .  3.1 shows the appearance of .the present fu l l - s ize  ce l l  t ha t  

i s  used t o  eval uate the in-house state-of-the-techno1 ogy. The 21 -plate  



Figure 3 , l .  Nickel-Iron Cell Canfiguration 



c e l l  has barbed tube f i t t i n g s ,  which secure the e lec t ro ly te  c i r cu la t i on  

and exhaust gas manifolding (see Fig. 2.81, as p a r t  o f  the e lec t ro l y te  

c i r cu la t i on  and gas venting system. 

Table 3.3 presents the nature o f  some of the f u l l - s i z e  experimen- 

t a l  and/or p i 1  o t  1 ine  n ickel - i ron ce l ls '  tested, o r  on test ,  t o  date. 

Couloumbic ef f ic ienc ies have not  been optimized i n  the t e s t  

resu l t s  reported i n  these tables, since the c e l l  s were cycled by in-house 
standard procedures, p r imar i l y  t o  obtain the e f fec ts  o f  variables i n  

electrode and C e l l  constructiun perfurilrance, as a funct ion o f  eycl i ng . 
However, c e l l  resu l ts  have indicated the feasf b i l  i ty o f  a t ta in ing  

50 t b  60 Wh/Kg a t  the C/3 drain ra te  i n  fu l l - s i ze  n ickel - i ron ce l l s ,  shav- 

i n g  the design volumetric constraint  and using EPP n icke l  and composite- 

type i ron electrodes. 

Cycl ic  l i f e  t es t i ng  was modified t o  a mixture o f  10& and 80% 

depth o f  discharge cycles a t  the C/3 dra in ra te  and was fu r ther  Modif ied 

t o  permit e lec t ro l y te  composition, c i r cu la t i on  and temperature control. 

Table 3.4 summarizes the best resu l ts  obtained t o  date on f u l l -  

s i ze  n ickel - i ron ce l ls .  I n i t i a l  capacit ies o f  these c e l l s  ranged from 

189 t o  232 Ah a t  the C/3 drain rate. The be t te r  c e l l s  sustained up t o  

80% o f  t h e i r  i n i t i a l  capaci t ies a f t e r  325 cycles (Cel l  128CE), 464 cycles 

(Cel l  186CE) and 511 cycles (Cel l  270CE). Maximum t e s t  cycles t o  date 

have been completed on Cel ls  169CE (556 cycles and 27% degradation), Cel l  

186CE (541 cycles and 24% degradation) and Cell 270CE (650 cycles and 28% 

degradation i n  capacity). Cel l  194CE degraded only 9% i n  355 t e s t  

cycles, bu t  was only 192 Ah, i n i t i a l l y .  Gravimetric energy density on 

these c e l l  s, based on an estimated 10869 contr ibut ion from elect ro ly te,  

case cover and terminals, ranged from 45 t o  61 Wh/Kg a t  the C/3 dra in  

r a t e  f o r  c e l l s  made w i t h  molded cases and covers. These c e l l s  ranged 

from 5.2 t o  5.5 Kg per c e l l s  i n  t o t a l  weight. 



TABLE 3.3 

CONSTPUCTION DETAILS OF FULL-SIZE NICKEL-IFON CELLS 

C e l l  Construct ion D e t a i l  s, Separator System 
Code - Nickel  Electrodes Absorber, B a r r i e r  Pemark s 

025CE 2.45 mm th i ck ,  EPP, coarse f i b e r ,  Sf4 263.4, 3501 P e b u i l t  i n t o  new case and cover 
3 v e r t i c a l  channels having e l p e c t r o l y t e  c i r c u l a t i o n  

capabi 1 i ty . Uncl amped and re-  
clamped a t  c y c l e  114. 

048CE 2.44 mm t h i ck ,  EPP, 2 v e r t i c a l  KC 49696 50% > f i b e r  densi ty ,  1/0 f i b e r  
channel s 

049CE 2.54 mm t h i c k ,  EPP, 2 v e r t i c a l  KC 49696 Speci a1 f i b e r  
channel s 

W 
I 
-1 
A 050CE 2.56 mm t h i c k ,  EPP, 2 v e r t i c a l  KC 49696 ~ar ium-doped'  n i c k e l  e lec t rodes 

channel s 

169CE 2.51 mm t h i c k ,  EPP, 2 v e r t i c a i  SM 263.4, 3501 
channels 

186CE EPP, 2 v e r t i c a l  channels SM 263.4, 35Q1 

270CE . EPP, 2 v e r t i c a l  channel s 

194CE EPP, 2 v e r t i c a l  channels 

260CE EPP, 2 v e r t i c a l  channels SM 263.4, 3501 

r356CE 2..64 mm th i ck ,  EPP, 2 v e r t i c a l '  K501 
. channels . 

P i  1 o t  1 i n e  c e l l .  Uncl amped and 
reclamped a t  c y c l e  75. 

P i l o t  l i n e  c e l l .  

P i l o t  l i n e  c e l l .  

P i l o t  l i n e  ce.11. 

P i l o t  l in,e c e l l .  

249 outer  f i b e r  1 ayer. 

057CE 2.44 mm t h i c k ,  EPP, 2 v e r t i c a l  K501 10g outer  f i b e r  l aye r .  
channel s 

060CE 1.78 mm t h i c k ,  EPP', 2 v e r t i c a l  K501 35-pl a t e  ce l l ' .  



TABLE '3.3 (continued) 

Ce l l  Constrrrction De ta i l  s, Separator System 
Code - Nickel Electrodes Absorber, Ba r r i e r  

062CE 2.28 mn th i ck ,  EPP, 2 v e r t i c a l  49696, 3501 
channel s 

042CT 2.00 mn th i ck ,  thermal, 2 v e r t i c a l  49696, 3501 
channel s 

0 6 1 ~ ~  2.28 m th ick ,  EPP, 2 ver t ical .  - 49696, 3501 
channel s 

063CE EPP, 2 v e r t i c a l  channel s 49696, 3501 

065CE 2.54 mn th ick ,  EPP, 2 v e r t i c a l  49696, 3501 
channel s 

.330CE 2.31 mn thick, '  EPP, 2 v e r t i c a l  49696, 3501 
channel s 

331CE 2.31 mm t h i ck ,  EPP, 2 ver't ical 
- .  

49696, 3501 
channel s 

066CE 2.29 mn th ick ,  EPP, 2 v e r t i c a l  K501 
-.  channels 

O67CE 2.43 mm th i ck ,  EPP, 2 v e r t i c a l  K501 
channels 

068CE 2.43 mn t h i ck ,  EPP, 2 v e r t i c a l  K501 
channel s 

336CE 2.39 mm th i ck ,  EPP, 2 v e r t i c a l  K501 
channel s 

Remarks 

Increased f i b e r  density. 

Nickel p la tes  bagged w i t h  
separator, seal ed onsides, 
bottom open. 

Increased., f i b e r  densi.ty. 

Increased f i b e r  density. 

Needle punched n icke l  
plaques (from vendor) 

Need1 e punched. n icke l  
plaques ( f rom vendor) 

~ e e d l  e punched n icke l  plaques 
( f rorn vendor). 

Higher f i b e r  densi ty  

Higher f i b e r  density, need1 e-, 
punched p l  aques (from vendor) 

Seryenti ne wrapped. 



TABLE 3.3 (Continued) 

Construct ion D e t a i l  s, 
N icke l  E l  ectrodes 

2.39 mm t h i c k ,  EPP, 2 v e r t i c a l  
channel s 

2.56 mm thi 'ck, EPP,. 2 v e r t i c a l  
channel s 

Separator System - 

Ab,sorber, B a r r i e r  Remarks 

K501 .19-plate stack (9  n i cke l  e lec-  
t rodes 1 

. . 

. K5Ol' ' 19-p late stack ( 9  n i c k e l  e le& 
t rodes 1 . . 

077CE 2.23 mm t h i c k ,  EPP, 2 v e r t i c a l  K501 
channel s 

079CE 2.29 mm th i ck ,  EPP, 1 v e r t i c a l  - K501 
channel s 

728CE 2.40mm t h i c k ,  EPP, 2 v e r t i c a l  SM 263.4,' 3501 
channels . 

080CE 2.50 mm t h i c k ,  EPP, 2 channels K501 

081CE 2.41 ,mm th i ck ,  EPP, 2 channels K5Ol 

391CE 2.61 mm t h i c k ,  EPP, 2 channels K501 

393CE Four extra-height  n i cke l  s, th ree ex t ra-  K501 
he igh t  i r o n s  

50% > f i b e r  dens i ty  , need1 e-  
punched 

Barium s u b s t i t u t i o n  f o r  cobal t 
. .. 

C e l l s  ' f rom'~odu1e '  6-1, t es ted  
a t  ANLIWRTL f o r  337 cyc les  

Mini-1 i n e  run  n i c k e l s  

Flg-doped ni,ckel a c t i v e  
ma te r ia l  

Gas pressure r e l i e f  design 



SUMMARY OF SOME OF THE'BEST FULL-SIZE NICKEL-IRON CELLS TEST DATA 

T o t a l  'Tota l  % 
C e l l  I n i t i a l  Capacity Best Cycles t o  -80% T e s t  Loss o f  

No. - Ah Cycle Wh/Ks o f  I n i t i a l  Ah ,Cycles I n i t i a l  Ah 

* S t i l l  on t e s t  a t  >800 cycles 



The module design o f  FTg. 2.9 should e f f e c t  a  decrease i n  average 

weight  o f  9% and 14% i n  volume. Th is  would improve the  grav imet r ic  

energy dens i ty  per  c e l l  t o  49 t o  59 Wh/Kg f o r  the t e s t  c e l l  s  described. 

F ig .  3.2 shows t he  1  i f e  cyc l e  h i s t o r y  o f  Ce l l  270CE which remains 

on t e s t  a f t e r  800 t e s t  cycles. Th is  c e l l  suf fered an i r r e t r i e v a b l e  l oss  

o f  lOAh a f t e r  a  2,000h open c i r c u i t  stand a t  410 t e s t  cycles. A t  cyc le  

650 t he  c e l l  de l ivered 167Ah, a t  c yc l e  511 ( inc lud ing  the lOAh l o s s )  the 

c e l l  was s t i l l  a t  80% o f  i t s  i n i t i a l  capacity. Figs. 3.3, 3.4, 3.5\, 3.6 

and 3.7 show t h e  discharge cha rac te r i s t i c  o f  t h i s  c e l l  a t  t e s t  cycles 52, 

366, 510 and 659 (100% DOD) and cyc l e  304 (80% DOD). Good average d is -  

charge voltages are obtained on t h i s  c e l l ,  even a f t e r  659 cycles 

1  2 1 V  F ig .  3.8 shows the charge-discharge cha rac te r i s t i c  o f  n i c ke l -  

i r o n  p i l o t  l i n e  c e l l s  t o  1  .OV and 0-8V c u t  o f f  a t  the C/3 d ra i n  rate.  

3.2.2 LOW TEMPERATURE TESTS 

Low temperature t e s t s  were performed on f i v e  c e l l s  t h a t  were 

grouped i n t o  a  module conf igurat ion.  Each o f  the c e l l s  had been p rev i -  

ous ly  bench tested, i nd i v i dua l l y ,  f o r  th ree cycles, t o  determine t h e i r  

capac i t ies ,  w i t h  30°C c i r c u l a t i o n  dur ing charge and 40°C c i r c u l a t i o n  dur- 

i ng discharge. The f i r s t  th ree cycles o f  the  c e l l s  i n  the module conf ig-  

u ra t i on  were run  t o  conf i rm capacity, bu t  w i t h  30°C c i r c u l a t i o n  dur ing 

charge and no c i r c u l a t i o n  dur ing discharge. I n  these i n i t i a l  ambient 

temperature cycles, no open c i r c u i t  t ime ex is ted  between charge and d is -  

charge. I n  the  nex t  th ree cycles, charging was performed i n  ambient con- 

d i t i o n s  w i t h  30°C c i r cu l a t i on ,  the  module was then cooled t o  -5°C ( t y p i -  
I 

c a l l y  over a  14 hour per iod),  placed i n t o  a 0°C water / ice bath, and d is -  

charged w i t h  no c i r cu l a t i an .  Three add i t i ona l  t e s t  cyc les  were then run  

under ambient cond i t ions t o  conf i rm capacity. The e l e c t r o l y t e  concentra- 

t i o n  was then increased and the  module t e s t  schedule was repeated. 

I n  analyzing the data, open c i r c u i t  losses i n  the  c e l l s  a t  -5°C 

were assumed t o  be one-ha1 f those a t  25°C ( t h i  s  tended t o  make the 
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'Figure 3.3. Cell 270CE Cycle 52 Full Discharge Curve 
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Figure 3.4. Cell 270CE Cycle 366 Full Discharge Curv.e 
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- Figure 3.5. Cell 270CE Cycle 510 Full. Discharge Curve 
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temperature e f fec t  seem greater) .  F igure  3.9 ill ust ra tes  the  e f f e c t s .  

Average discharge p o t e n t i a l  dropped from 1.23V t o  1.17V. Capacity a t  0°C 

was s t i l l  measured t o  l .OV ,  where capaci ty  losses ranged from 20 t o  30%, 

w i t h  an average decrease o f  25%. Energy l o s s  averaged -29% a t  O°C, 

compared w i t h  25°C. Th is  performance i s  much b e t t e r  than predic ted a t  

t he  onset o f  the  program, where up t o  40% l o s s  i n  capaci ty  was expected 

a t  O°C, when compared w i t h  room temperature capacity.  Other recent  c e l l  

t e s t s  show even b e t t e r  low temperature performance. Only 12% decrease i n  

capaci ty  a t  0°C and 25% decrease a t  -1 7°C at. the  C / 3  ra te .  A t  the  C 

ra te ,  a 22% decrease i n  capaci ty  was observed a t  0°C. 

3.2.3 DISCUSSION OF RESULTS 

I n i t i a l  capac i ty  performance o f  f u l l - s i z e  c e l l s  i s  on ta rge t ,  w i t h  

230Ah per  c e l l  a t  the  C/3 r a t e  r e a d i l y  a t ta inab le  w i t h i n  the c e l l  design 

volumetr ic  cons t ra in t .  Gravimetr ic energy dens i ty  o f  f u l l - s i z e  c e l l s  

having the design volumetr ic cons t ra in t ,  range from 49 t o  61 Wh/Kg i n  

f i n i s h e d  c e l l  s, more t y p i c a l l y ,  50-54 Wh/Kg. This  value can be 

improved -10% w i t h  the  concepted 6 -ce l l  monoblock design. Extended 

c y c l i c  capabi 1  i ty has a1 so been demonstrated, w i t h  some c e l l  s  opera t i  nq 

SUU t o  800 cyc les t o  date. Low temperature ( 0 ' ~ )  performance has exceeded 

expectat ions. However, c y c l i c  l i f e  t e s t  capaci ty  s t a b i l i t y  i s  below expec- 

t a t i ons ,  w i t h  long-cyc le t e s t  c e l l s  showing about 21% t o  35% loss,  based 

on i n i t i a l  capaci ty .  The best c e l l s  have shown 20% loss  i n  i n i t i a l  capaci ty  

a t  464 cyc les (Ce l l  186CE) and 51 1  cyc les (Ce l l  270CE). 

Several f a c t o r s  can con t r i bu te  t o  n i c k e l - i r o n  ce3 1 capac'i t y  1  oss , 
d u r i n g  1  ong t ime c y c l i n g  1  ) stack e l e c t r o l y t e '  's tarvat ion,  2)  f i b e r  metal 

g r i d  corrosion, 3 i n t e r n a l  gas pressure on charging; 4 )  deact iva t ion  

and/ordetachment o f  the  a c t i v e  mater ia l ,  and,  5 )  excessive CO; p ickup 

i n  t h e  e l e c t r o l y t e .  

. Stack e l e c t r o l y t e  s t a r v a t i o n  can be caused f o r  'severa l  reasons. 

The f i r s t  can be due. t o  i n s u f f i c i e n t  po ros i t y  i n  the e lec t rode .ac t i ve  . ; 



mater ia l  , 1 i m i t i n g  wicking of e lec t ro ly te .  This condi t ion,  i n  turn,  can 

cause 1 ocal ized overheating on f a s t  charge (as a t  the C/3 r a te ) ,  w i t h  

i r r e v e r s i b l e  damage t o  ac t i ve  mater ia l  and/or poor charge acceptance. 

Nickel  e lectrode charge acceptance i s 'best a t  -35-45OC. Dimensional 
change, due t o  s t r uc tu ra l  change i n  the a c t i v e  mater ia l  duri,ng charge and 

discharge, r e s u l t s  i n  swell i n g  of the n icke l  electrode. This swell i n g  
can compress and reduce the wicking capab i l i t y  o f  the separator between 

the p la tes,  causing l oca l i zed  dry ,out  regions and, possib ly,  .overheating 

of the ac t i ve  mater ia l  on 'charge. It has been determined t h a t  a  .42% vo l -  

umetric increase i s  associated w i t h  the charge-to-discharge ca t i on  (K+ 

and L i + )  movement -- i n  (charge) and ou t  (discharge) o f  the ac t i ve  mate- 

r i a l  and t h i s ,  l a rge ly ,  cont r ibutes t o  the dimensional i n s t a b i l i t y  o f  the 

n i c k e l  e lectrode i n  the thickness d i rec t ion .  Th is  swel l ing,  as a  func- 

t i o n  o f  charge-discharge cycl ing,  i s  the most c r i t i c a l  f ac to r  a f f e c t i n g  

performance and 1 i f e  o f  c e l l  s  t h a t  contains n icke l  electrodes. Sintered 

n icke l  powder plaques have been developed and used f o r  many years i n  the  

i ndustry, (espec ia l l y  f o r  nickel-cadmium ba t t e r i es )  t o  a  r i g i d  

s t ruc tu re  t h a t  w i l l  r e s i s t  swell ing, but, such s t ruc tures are inheren t l y  

expensive, when aimed a t  a  s e l l i n g  p r i c e  o f  $80/KWh (1980) i n  a  n i cke l -  

i r o n  bat tery .  For  t h i s  reason t h i s .  so l u t i on  t o  the n icke l  e lectrode ' 

swell  i ng problem has been discounted f o r  the Westinghouse 'program. 

Loss o f  c o l l e c t o r  g r i d  i n t e g r i t y  can be another cause o f  capaci ty 

1  oss dur ing c y c l i c  l i f e  t e s t i n g  o f  n i cke l - i r on  c e l l s .  Increasing the 

mean f i b e r  diameter, n i cke l  p l a t i n g  a t  h igher w/o pickup, r e l a t i v e  t o  the  

g r i d ,  and reac t i ve l y  s i n t e r i n g  the n icke l  e lectrode and rep1 a t i n g  w i t h  

add i t iona l  n i cke l  are  a l l  po ten t ia l  so lu t ions t o  t h i s  problem and are a l l  

being ac t i ve l y  pursued. Ce l l s  w i t h  extreme c y c l i n g  st i1. l  have displayed 

n icke l  electrodes w i t h  good s t r uc tu ra l  i n t e g r i t y  (>300 cycles),  so t h a t  

g r i d  c o l l c c t o r  f a i l u r e  does not. seem t o  be a predominant fac to r ,  if, any, 

i n  1  oss o f  capaci ty w i t h  'cycl i ng. 



Deact ivat ion o f  the n icke l  e lectrode ac t i ve  mater ia l  can occur f o r  

several reasons. These include; physical detachment from the  g r i d  cur-  

r e n t  co l l ec to r ,  ! by i n te rna l  gas pressure and/or corrosion o f  the g r i d )  

thermal damage, dryout  and, possibly, l o s s  of water o f  hydrat ion from the 

a c t i v e  mater ia l .  These fac to rs  are best  con t ro l led  by maintaln lng elec- 

t r o l y t e  a v a i l a b i l  i t y ,  by con t ro l l ed  electrode poros i t y  and e l e c t r o l y t e  

f l ow  channel cont ro l .  Thermal damage can be avoided by e l e c t r o l y t e  

a v a i l a b i l i t y  dur ing charge and discharge, e l e c t r o l y t e  f l ow on charge, gas 

bubble release and back-wicking of e l e c t r o l y t e  on discharge. Detachment 

of ac t i ve  mater ia l  usua l l y  r e l a tes  t o  f i b e r  g r i d  cur ros ion and/or mechan- ' 

i c a l  breakdown o f  bonds between the f i b e r s  (usual ly  a  l oca l i zed  cnndi- 

t i o n ,  only, b u t  s i g n i f i c a n t  enough t o  show up i n  capaci ty l o s s  i n  the 

e lec t rode and c e l l  1. 

Carbonate pickup i n  the e l e c t r o l y t e  can occur . i f  .i t i s  exposed t o  

a i r  and absorbs C02 from it. Maximum permissib le concentrat ion i s  

about 50g/1 K2C03 i n  the e l ec t ro l y t e ,  a t  which l e v e l  the' e l e c t r o l y t e  

must be changed. A t  h igher concentration, . lower capaci ty and lower d is -  

charge vol tage can result , '  probably due t o  carbonate having an adverse 

e f fec t  on the  i r o n  electrode. Carbonate p i c k u p i s  avoided by operation 

i n  an essen t i a l l y  closed loop system. Gas produced dur ing charge i s  

vented through an i s o l a t i n g  water bubbler, which a l so  serves t o  sh ie l d  

the e l e c t r o l y t e  r ese rvo i r  from d i r e c t  contact  w i t h  the atmosphere. 

Therefore carbonate pickup should no t  be a  major f a c t o r  causing capaci ty 

loss.  

I n  summary, the  l o s s  i n  c y c l i c  capaci ty o f  the n i cke l - i r on  c e l l s  

appears t o  be due, p r i n c i p a l l y ,  t o  n icke l  e lectrode ac t i ve  mater ia l  

swel l ing,  which i s  i r r e v e r s i b l e  and can l ead  t o  e lectrode dryout, over- 

heat ing on charge and permanent deact ivat ion o f  ac t i ve  mater ia l  i n  over- 

heated regions. Th i s problem i s  being addressed i n  several areas.. . 
opt imizat ion o f  pore vol  ume/active mater ia l  /.grid volume; gassing con t ro l  , 
strengthening the gr i .d i t s e l f ,  u t i l i z a t i o n  o f  g r i d  designs aimed a t  . . 



maintain ing thfckness i n t e g r i t y  and u t i l  i z q t i o n  o f  a (paste formulat ion 

n icke l  ac t i ve  mater ia l ,  whose dens i ty  and chemistry may produce less  

overa l l  e lectrode swell i ng. 

3.2.4 CELL POST OPERATION EXAMINATION' 

Three modules from the f i r s t  2 x 4 ba t te ry  were returned by JPL 

a f t e r  13 cycles because they had developed defect ive  c e l l s .  Two c e l l s  

appeared t o  have i n te rna l  shorts and three had very h igh charge v o l t -  

ages. The three c e l l  s  which had been observed t o  have h igh  charge v o l t -  

ages (1 72CE, 21 9CE, 221CE were found t o  have i n l e t  tubes blocked w i t h  

epoxy. Shorts were found i n  the o ther  two c e l l s  (1 38CE, 146CE). Both 

shorts were a t  the top o f  a pos i t i ve  electrode. The separator, which had 

been acc iden ta l l y  folded down on assembly, l e f t  the top o f  the electrode 

bare, a l lowing the p o s i t i v e  electrode t o  contact  and shor t  t o  the adja- 

cent  negative electrode. Condit ions which caused these f a i l u r e s  have 

been a l l ev i a ted  by changing the method o f  seal i n g  i n l e t  tubes and by 

using a serpentine wrap t o  assemble separators. 

Fourteen experimental c e l l  s  which had been cycled were d i  smantl ed 

when c y c l i n g  was completed. Table 3.5 gives a summary o f  the construc- 

t i on ,  performance and f i na l  cond i t i on  o f  these c e l l s .  Changes i n  c e l l  

construct ion,  made as a r e s u l t  o f  these and other tes ts ,  are discussed i n  

other sections o f  t h i s  report .  

Module 6-1 was de l ivered t o  AML/NBTL f o r  t e s t i n g  i n  J u l y  1979. 

P r i o r  t o  shipment the capaci ty o f  the module was 239Ah t o  6.OV a t  the C/3 

rate.  Ce l l  102CE f a i l e d  a t  cyc le  34 and c e l l  120CE f a i l e d  a t  cyc l e  100. 

Each c e l l  was bypassed when i t  f a i l e d  so t h a t  c y c l i n g  o f  the remaining 

c e l l s  could continue. Four c e l l s  were tes ted f o r  a t o t a l  o f  327 cycles, 

when c e l l  107CE fai led.  Typical  capac i t ies  obtained a t  NBTL were: , 

Cycl e I n i t i a l  1 50 200 250 . :  30b 3 27 

Ah .215-220 1 80 172 ,165 . 157 161 



SUMMAF:Y OF NICKEL -I RON CELL POST-OPERATION .EXAM1 NATIONS - 

Final 
Capacity . 

Ah. Performance . , 

Capac" t y  Final 
. . Ah Cycle 

Cell 
No. Construc.ti on 

- .  

.Max. 
Cyc 1 e Observations 

01 7CE Kendall SP126 
' absorber 

12.1 . 58 cy.cl es t~ 100% 
capacity . 

Separator &- pl a t e s  
i n  good condition 

022CE 0.635 cm holes i n  
nickel p la tes  

182 31 cycles t o  100% 
capacity 

Nickel p la tes  expanded 
t o  3.05 mm 

023CE High density s teel  
f i be r s  

147 15 cycles t o  100% 
capacity 

Nickel p la te  
channel s bl ocked 

262 383 153 Cell r e s t r a i n t s  Nickel p la tes  
1 oosened expanded t o  3.1 7 mm 

250 84 105 18 cycles ta 100% Nickel p lptes  
c apac i ty  expanded t o  3.05 mm 

2 24 48 224 A1 1 cycles to 100% Plate  & separators 
capaci ty i n  good condition 

025CE Finer gage s teel  
f i b e r  

026CE Kimberly-Cl ark 
S 49023 absorber 

.030CE K-C 49696 absorber 
No b a r r i e r '  

246 .45 21 4 All cycl e s  .ti 1 00% Nickel p la tes  s o f t  
capacity 

031CE Celgard K-501 . 
Separator 

'032CE K-C S49023 absorber 
No ba r r i e r  , 

21 2 48 21 0 A1 1 cycles t o  100% Nickel p la tes  tough 
capaci ty 

038CE Cross f i be r  nickels 
K-C S49033 absorber 

21 4 2 3 A1 1 cycles t o  100% Nickel p la tes  
capaci t y  expanded t o  2.96 mm 

225 246 1 37. ~ o o s e n i n ~  c e l l  r e s t r a i n t s  2% iron i n  nickel 
gave sl ight  improvement act ive  material ' ' 

Oi2CT Thermal nickel 



TABLE 3.5 (CONTINUED) 

F i  nal 
Ce l l  Max. Capacity F i  nal Capacity 

No. Construct ion - Cycl e Ah Cycl e Ah 

%0CT Barium i n  n i cke l  9 . 197 ' 263 113 
a c t i v e  mater i  a1 

058CE 19 p lates,  K-C 31 21 2 1 30 131 
' S 49696 absorber 

C60CE Low poros i t y  n i cke l  2 237 91 1 00 
p l  a t e s  

194CE Celgard 3501 b a r r i e r  100 . 233 355 175 
Kendal l  263.4 absorber W 

I 
N . .  
rD 

Performance 

Cycled t o  80% o f  
ra ted  capac i ty  

Low e l e c t r o l y t e  
f 1 ow 

Ce l l  case s p l i t  on 
cyc les  225, 348, 355 

Observations 

Co i n  a c t i v e  m a t e r i a l  
o f  one n i c k e l  p l a t e  

Separators w i t h  b l  ack 
res idue stuck t o  p l a t e s  

P la tes  and separators 
very d ry  

P la tes  and separators 
i n  good c o n d i t i o n  



The th'ree'cell  s 102CE, 120CE and 107CE fai led because of shorts between 

adjoining .plates. In ce l l  102CE the short was due t o  separator me1 tdown 
a t  the nickel tab regi.on, d u r i n g  TIG welding of the electrode tab t o  the 
post comb. The short i n  ce l l  120CE, which occurred a t  the bo-ttom of the 
stack, may have been caused by a sharp edge or  f ibe r  penetrating through 
the separator bag tha t  sealed the iron plate. 

A new method of fabricating the comb, using bar stock, helps pre- 

vent separator meltdown a t  the electrode. tab regi.on (see,  Section 
2.1.3.2 ) . ~ n s p e c t i n "  o f  electrode edges before a 'ssen~bl~ Insures t h a t  no 

f ibe r  o r  sharp sheared edge protuberences exis t ,  t o  cause shorts .  Serpen- 
t i n e  separator wrapping ("ow belng used) will avoid shor t s  caused by 

faul ty  bag sealing. . , 

Table 3.6 summarizes procedures tha t  are used i n  post operation 
examination .of. nickel -i ron ce l l  s. 

" 3.3 MODULE TEST RESULTS 

F i g .  2.12 i l l u s t r a t e s  the module concept tha t  i s  presently fabri-  
cated i n  the nickel-iron battery p i lo t  l i ne  and tha t  was used t o  con- 

s t r u c t  the ba t te r fes  t h i s  year. I t  d i f fers  from the m'odulc eonstructeil 
and used to  build the 2 .x  4 battery (see Fig. 2.7 of the FY '79 Annual 
Report) for  JPL i n  1979. Principal construction changes include: 1 oca- 
t ion of manifolding a t  the outside edges of the c e l l ;  f lexible  rubber 
i n l e t  and ou t l e t  manifolds, which zeal onto barbed posts coming out o f  
the ce l l  cover; f lexible  lntercel l  cables  tha t  are  of the s h o r t e s t  length 

possible and t h a t  a re  mechanically clamped onto the a l l  terminal posts. 

Fig. 2.1 1 i l l u s t r a t e s  the 3 s tat ion nickel-iron module t e s t e r .  

Modules are tested w i t h  e lectrolyte  circulation on charge and w i t h  o r  

without electrolyte  circulation on discharge. Testing temperatures a re  

controlled t o  30°C on charge and 40°C on discharge, via a cooling loop i n  

the electrolyte  reservoir. Tables 3.7 t o  3.10 i l l u s t r a t e  some module 
data obtained a t  the onset of testing. Excellent control p'erformances 



TABLE 3.6 
POST-OPERATIONS ANALYSIS PROCEDURE FOR IRON-NICKEL CELLS .IN MODULES 

t 

Step Action 

(1 ) record open c i  rcu i t  voltage , 

( 2 )  record c e l l  weight 
(3)  cu t  ce l l  from module w i t h  hacksaw, ' cu t  open top of manifolds a.nd 

inspect i n l e t  and ou t l e t  tubes 
( 4 )  pour out and bo t t l e  e lectrolyte  f o r  analyses, i f  desired 
(5 )  cu t  off case bottom w i t h  hacksaw, examine bottom of stack and 

channel openi ngs, examine case bottom fo r  sediment 
(6)' cu t  off ce l l  cover a t  j o in t  w i t h  hacksaw 
(7 1, unbol t terminals and remove cover 
(8) examine tubes, separator posts/comb welds 
( 9 )  cu t  off posts w i t h  hacksaw, direct ly  below comb-visual l y  inspect 

we1 ds 

(10) cu t  off case body from stack w i t h  hacksaw, by cut t ing a t  one 
vertical  edge where the most stack t o  case clearance exists--  
careful ly  pry off case from stack 

(11 ) cu t  stack binding tapes 
(1 2 ) careful ly  remove electrodes, checking ;eparator external condition 
(13) inspect unbagged nickels, remove bags from outside and central iron 

and inspect 
(14) measure outer and central ly-1 ocated nickel and iron electrodes f o r  

thicknesses a t  corners and between flow channels 
(1 5) inspect separator 1 ayers removed from outer and central  iron 

electrodes fo r  appearance, dryness, overheating, st icking, strength 
(1 6) s tore  iron and nickel electrodes i n  separate t rays of e lec t ro ly te  of 

the same composition a s  i n  the t e s t  reservoir 



TABLE 3..6 (Continued) 

Step .Ac t i on  

(1 7 )  i f  electrodes are t o  be post  tes ted f o r  performance, a1 low excess 
e l e c t r o l y t e  t o  d r i p  o f f  and seal i n  p l a s t i c  bags u n t i l  ready f o r  
'3-plate t e s t  assembly 

(1  8) depend1 n g  on observations, chemical and metal 1 ographi c procedures 

may be used t o  evaluate e l e c t r o l y t e  ac t l ve  materid1 for  c lues t n  
exp la i n  observed behaylor of module; electrodes should be bagged i f  ' 

. long storage' periods (> I  day) 'are' anticipated, p r i o r  t o  analysee 

(19) if i r o n  electrodes are t o  be discarded, they should be a1 lowed t o  

completely oxid ize,  f i r s t  i n  a hood, i n  a ' ve r t i ca l  p o s i t i o n  r e s t i n g  

. . 
i ' n  a t r a y  having 1/2." of water as a heat sink, a t  l e a s t  a week, o r  

u n t i l  i t  i.s obvious they have oxidized; a l low bottom p a r t  t o  ox i d i ze  

dur ing  t h i s  per iod  by i n v e r t i n g  the p l a tes  
. . 

. .  . 
I . '  

. . . ,. 
i 



TABLE 3.7 

MODULE NO. 6-18 TEST DATA 

C e l l  Voltage a t  End 
o f  Discharge 

Avg:Form , Cycle No. 
Pressure R j  Bench Cap. 

C e l l  No. ( p s i )  (m) V, (Ah) 1 2 3 '  - - 

Module .Capacity a t  c u t - o f f  (Ah) 

Modul e Voltage a t  cu t -o f  f 

Charge Temperature Range ( i nl,et )  .OF 

Charge Temperature Range ( o u t l e t )  ' O F  

' 

D i  scharge Temperature Range ( i n 1  e t )  OF 

D i  scharge Temperature :Range (out1 e t )  OF 

+ removed before  shipment t o  ANL, as a '5 -ce l l  module 



TABLE 3.8 

MODULE NO. ,6-19 TEST DATA 

.Avg. Form 
Pressure Bench Cap. 

C e l l  No. ( p s i )  ( 1  (Ah) 

C e l l  Voltage a t  EndA 
o f  Discharge 

Cycle No. 

Module Capacity a t  cu t -o f f  (Ah) . - 
Module Vul tags a t  c u t - o f f  6.0 - 
Charge Temperature Range ( i n l e t )  "F - 86 
Charge Tempera,ture Range ( out1 e t )  O F  86 - 
Discharge Temperature Range ( i n l e t )  O F  - 104 
D i  scharge Temperature Range (out1 e t )  OF 1 04 - 

+ removed before  shipment t o  ANL , as a' 5-cel' l  modul e . , 

Chg. 70 A-6h - Testing: 
Dschg. 70 A t o  1 .Oco 

* Ce l l  #504 had 5h Chg. 
A Ah capac i ty  t o  1 .OV 

. . 



TABLE 3.9 

MODULE NO. NIPAK #5 TEST DATA 

C e l l  Voltage a t  End 
of Discharge 

Cycle No. Avg. Form 
Pressure R V 

a Bench f dp. 
c e l l ~ o .  ( p s i )  (dl - (Ah) 

Module Capaci ty  a t  cub-off (Ah) 

Module Vol tage a t  c u t - o f f  
. Charge Temperature Range ( i n l e t )  

Charge Temperature Range ( o u t l e t )  

Discharge Temperature Range ( i n l e t )  

Discharge Temperature Range ( o u t l e t )  



. . 

. . 
MODULE. NO. NIPAK #7 TEST DATA 

Ce l l  Voltage a t  End 
, . o f  Discharge 

Avg. Form Cycle No. 
Presslire Bench Cap. 

Ce. i iNo.  ( p s i )  - (3) (Ah) 1 . 2  3 .  

Module Capacity a t  c u t - o f f  (Ah) , . 238 246 247 - - -. 

Mnd~ul e Vol tago a t  cut -~oP4 - - - - - -  
Charge .Temperature Range ( i n1  e t )  OF . , - - -  8 5 8 5 85 

Charge ~ e m ~ e r a t u r e  Range (out1 e t )  OF , ' - - -  8 5 8 5 85 
D i  scharge Temperature Range ( i n l e t )  "F - - -  . 8 5  -125 125"'  

D i  scharge Temperature Range ( o u t l e t  j OF - 85 - 1 2 5 .  - 125 

*Rep1 aced w/ce l l .  no. 486 a f t e r  cyc le  - 2. 



were obtained i n  the  c e l l  s  comprising these modules -- 238-247Ah. Some 

cyc les  data on 2  modules a re  presented i n  Table 3.11 a t  87 and 160 t e s t  

cycles. Both o f  these modules (NIPAK 3  and 5-9, respec t i ve ly )  exh ib i ted  

s t ab le  performance. However, both modules degraded i n  capac i ty  w i t h  fur-  
t h e r  cyc l i ng .  

The bes t  n i c k e l - i  ron module data i s s t i l l  represented by Module 
6-1, which was tes ted  a t  Argonne National Laboratories, National Ba t te ry  
Test  Laboratory. Th is  module was tes ted f o r  327 cyc les  a t  which t ime i t  

had degraded about 26% from i t s  i n i t i a l  capacity. Other modules i n  t e s t  

a t  Westinghouse have de l  i vered 53 Wh/kg and 106-1 13 Wh/l based on a  C/3 

d ra i n  ra te .  . 

3.4 BATTERY TEST RESULTS 

Two 90-cel l  b a t t e r i e s  have been constructed and tested, as p a r t  

of the JPt/DOE near-term e l e c t r i c  veh ic le  t e s t  program. Tables 3.12, 
3.13 and 3.14 summarize t he  data obtained f o r  t he  90-ce l l  ba t t e r i es .  

Bat tery  #1 s t r i n g s  (comprised o f  2-15, 1-18 and 2-21 se r ies  con- 

nected c e l l  s )  i n i t i a l l y  devel.oped from 232 t o  262% a t  a  70A d r a i n  r a t e  

(see Table 3.12). When these s t r i n g s  were assembled i n t o  the ba t t e r y  

conf igura t ion,  complete w i t h  c i r c u l a t i n g  e l e c t r o l y t e  systems ( t o  f i t  i n t o  

a  South Coast Technology converted VW Rabbit  hatchback), Ba t te ry  #1 

de l i ve red  up t o  236Ah a t  t he  f ou r t h  t e s t  c yc l e  (see Table 3.13). Ba t te ry  

#2 de l i ve red  236Ah a t  t he  70A d ra i n  r a t e  and 204Ah when t he  d ra i n  r a t e  
wds increased ( f rom 70A t o  104 t o  135A see Table 3.14). 

Table 3.15 summarizes and compares data obtained on the  JPL " 2 x  

4"  bat tery ,  de l i ve red  by Westinghouse i n  1979, and t he  2  cu r ren t  JPL bat-  

t e r i es .  

To ta l  ba t t e r y  energy of the  two JPL b a t t e r i e s  had fncreased t o  

25.9 Kwh, from 22.7 Kwh f o r  the 2  x 4  bat tery .  Also, energy dens i ty  of 

t he  #1 JPL.bat tery had increased from 46 ( 2  x 4  ba t t e r y )  t o  53 Wh/kg a t  



TABLE 3.. 11 
. . 

NIPAK #3 

' C e l l .  # , 3 9 0 ~ ~  

Charge 83.3A/3.9h 
D i  sc harge 83:3A/l.OV./cel, 1 

Ce l l  # 243CE 

2 7 2 C ~  

Cycle 60 
Ah . - 

207 

, Cycle 153 
Ah 
- .  

Cycle 1.60 
Ah - .  

197 

188 



TABLE 3.12 , 

DOE/JPL BATTERY NO. 1 , STRING TEST RESULTS 

3ATTERY CELL STRING DATA 

CHARGE DISCHARGE 
. . STRING CYCLE AMPS AH' TS( "F )  TF("F)  AMPS - -. - - AH - TS('F) TF( OF) 

21 -2 1 70 350 

21 -2 2 70 350 

WEIGHT SUMMARY 

STRING # 
CELL WTS. 

(KG 

78.6 

77.5 

95.7 

TOTAL STRING WTS. 
(KG) 

81.5 



DOE/JPL BATTERY NO; 1 ,  TEST CYCLE SUMMA7Y 

CHARGE 
DATE -!E CYCLE S !!!! 3.N- -!?AH AM 

D I  SCHARGE 
_TS( u cow 

- ENTS 

8 5 1 2 5  . BENCH TEST 

8 5  1 2 5  BENCH TEST 

N A NA . BENCH TEST 

80 ' 1 2 5  BENCH TEST 



TABLE 3.14 

DOE/JPL BATTE~RY NO. 2, TEST CYCLE SUMMARY 

CHARGE DISCHARGE 
DATE - CYCLE . - ,m ' AMPS . 

- &I TS ( I- 1 T F I T  COMMENTS ' . ,. 

. .. , . . .. . 8 , L .. > . . 

S/16/80 1 70 . .:350: :... 80 , .85 70 .., 186 ~ . . 8 0  125 BENCH TEST - 
'9/17/80 2 70 .:.. 350 ; 85 .: . .. ,; 85 70 .. . 236 85 1.30 -_ .BENCH TEST 

9/19/80 3 70 350 80 80 65-270 224 80 130 BENCH POWER TEST 

9/23/80 ' 4 70 350 80 .80 1043  35 204 . . 8 0  . 135.. BENCH TEST . . 

.- . . . 

. . - .  f 



. . 

TABLE 3.15 

WEST1NGHOUS.E NICKEL-IRON BATTERY CHARACTERIZTICS 

[DATA OBTAINED AT. C/3 RATE)' 
, 

%1 #2 
2x4 - JPL - JPL 

' - 
CELLS 

WEIGHT, KG 

C I PCULATING SYSTEM 

DISCHARGE V 

CAPACITY, AH 

KWH - 

PO' . 

492 

YES 

113 

199. 

22.7 

.. 46.1 , 

1 04 

90 

490 

YES . 

110 

21 3-336 

25.9 

53.0 

106 

M.A. 

YES 

110 

204-236 

25.9. 

N.A. , . 

1 06 

VOLTAGE EFFICIENCY, % 78 75 75 

COULOMBIC EFFICIENCY, % 6 9 68 6Q 

ENERGY EFFICIENCY, WH 55 5 1 52 





the C/3 rate. No attempt was made t o  increase overa l l  energy e f f i c iency  

o f  these batter ies,  which were -52% f o r  the 2-JPL batter ies,  for a 

50% overcharge regime. Fig. 3.10 shows the # I  JPL battery. 

The #1 JPL bat tery  was delivered t o  JPL i n  June 1980, and i s 

undergoing tes t ing  there a t  the present time. 



4.0 FUTURE WORK 

The development program f o r  FY '81 w i l l  be concentrated i n  three 

key are.as: 

1 . Continue n icke l  e lectrode development t o  assess a1 te rna t i ve  

g r i d  s t ruc tures and demonstrate paste load ing process tech- 
n i  ques . 

2. . Continue performance t e s t s  t o  demonstrate cyc le  1 i fe .  

. 3 .  Conduct post  operational ana lys is  o f  f a i l e d  c e l i  s and provide 

feed-back f o r  electrode/component modi f icat ions.  

The proposed task milestones are shown i n  Fig. 4.1. 

4.1 NICKEL ELECTRODE DEVELOPMENT 

The basic . task ob ject ives are  the continued development and evalu- 

a t i o n  of n i cke l  e lectrode designs and manufacturing processes conducive 

t o  meeting the cos t  ob jec t ives f o r  1 arge scale manufacturing. 

Development and evaluat ion o f  a l t e r n a t i v e  g r i d  s t ruc tures f o r  EPP 

processes w i l l  be conducted w i t h  primary emphasis on' minimizat ion o f  

e lectrode cyc l  i c  swell i ng. Optimi-zation o f  ac t i ve  mater ia l  t o  g r i d  
r a t i o s  w i l l  continue, t o  enable achievement o f  .0. i5 Ah/g t o t a l  e lectrode 

and stab1 e capaci ty fo r .  1,000 cycles. 

Evaluat ion of low temperature chemical processes t o  manufacture 

ac t i ve  mater ia l  f o r  use i n  pasted electrodes w i t h  a goal o f  producing 

mate r ia l s  a t  costs  1 ower than commercially. ava i lab le  compounds w i l l  con- 

t inue.  An.eval ua t ion  o f  add i t i ves  t o  enhance ac t i ve  mater ia l  u t i l i z a t i o n  

and c y c l i c  s t a b i l i t y  w i l l  be campleted. 

Paste load ing process development by impregnating s in te red  s tee l  

. f i b e r  metal g r i ds  wi th su i  tab1 e comnerci a1 l y  avai 1 abl c ac t i ve  mater ia l  s 

.. r . 



NickeP Electrode Development 

Assess A1 ternate  Grids 

a Demonstrate A l te rna te  Low C0s.t Gr ids 7-30-81 

Select  Optimal Gr id/Act ive M t l  . Rat io  6-30-81 

Pasted Act ive Mater ia l  Dev. 

Demonstrate Low Temperature Process 3-31 -81 

e Tes tMa te r i a l  i n F u l l  Size Ce l l s  4-30-81 

Paste Load' Process Devel opment 

o . , Scaled process and'. Cost Anal ys l  s 6-30-81 
Test  and Analysis 

Performance Eva1 ua t ion  

e Define Optimum Charge o f  ~ f f i c i e ' n c ~ : ~ o n d i t i o n s  7-31 -81 

. . a Def ine Control parameters ' f o r  Charger 7-31 -81 
P i  1 o t  P l  an t  Operations 

Program Support 

Fabr icate  Four 5 Ce l l  Modules 

Revise QA Plan 

Quarter ly , 

12-30-80 

Update Process Specs 2-1 -80 

Program Management 

e Dr,af t  FY '81 Report .  8-30-81 

Updated Commercial i z a t i o n  P.1 an . . 5-30-81 

a . Updated Program Management Plan 2-1 5-81 

. . 

F igure 4.1. FY '81 Proposed ~ask 'M i l es tones  



w i l l  continue. A scale-up o f  the process f o r  . p i l o t  production and iden- 

t i  f i ca t i on  o f  equipment and ' f a c i l i t i e s  requirements w i l l  be provided. 

A n icke l  e lectrode manufacturing cos t  analysis f o r  a pasted p i l o t  

process and comparison t o  the EPP process w i l l  be conducted. 

4.2 TEST AND ANALYSIS 

L i  fe-cycle t e s t i n g  of electrodes, c e l l s  and modules t o  assess per- 

formance and demonstrate c a p a b i l i t y  o f  c e l l  designs t o  meet energy den- 

s i t y ,  power 1 i f e ,  and cos t  ob jec t ives w i l l  continue. 

Tests w i l l  be conducted t o  optimize charge e f f i c iency .  These w i l l  

inc lude evaluations o f  constant po ten t ia l ,  modi f ied constant po ten t i a l  

and o ther  techniques amenable t o  minimlzing charge energy input .  Control 

parameters f o r  charger design w i  11 be determi ned. 

Post-operational analysis o f  cycled c e l l  s w i  11 be conducted t o  
prov ide feedback f o r  e l  ectrode/component design modi f icat ions.  

4.3 PILOT PLANT OPERATIONS 

Four 5 -ce l l  modules w i  11 be fabr icated per  quarter, incorporat ing 

the most recent development i tems. Up t o  two o f  these modules w i l l  be 

submitted t o  ANL/NBTL f o r  t e s t  and evaluation. - 

Electrodes, c e l l  s and hardware components required t o  support 

development and t e s t  tasks w i l l  be fabr icated.  

4.4 PROGRAM MANAGEMENT 

Program management w i  11 continue coordinat ion o f  the  development 

program and provide necessary program d i r e c t i o n  and con t ro l  t o  enable 
' 

, 

achievement of overa l l  performance objectives.. Program, management, 

qua1 i t y  assurance, and conmercial i zat ion  plans w i l l  be updated. 



5.0 CONCLUSIONS 

1 . F ibe r  layups prepared by the needle-punching process', t o  reduce pro- 

cess costs by decreasing lay-up thickness and subsequently improving 

s i n t e r i n g  furnace throughput, are now standard.. 

2.  he E lec t roprec ip i  ta t ion '  process (EPP) n icke l  e lectrodes areh de l i ve r -  

i n g  2b Ah a t  t a rge t  thickness (2.4 mm) and have demonstrated c y c l i c  

s t a b i l i t y  a t  ZOO+ t e s t  cycles. 

3. Pasted n i cke l  electrodes o f  2.0 mm thickness have been fabr i ca ted  

which have demonstrated 23 Ah i n  f u l l - s i z e  electrode t e s t s  and c y c l i c  

s t a b i l i t y  a t  400+ t e s t  cycles t6  date. 
' 

4. Composite-type, f u l l  s i ze  i r o n  electrodes have demonstrated 29 Ah a t  

t a r g e t  thickness (1.0 mm). Cycl i c  s t a b i l  i t y  has been demonstrated 

w i t h  electrodes a t  1000+ cycles t o  date. 

5. The separator system present ly  being used i n  the p i l o t  l i n e  i s  

Celanese K5Ol/laminate, which enables c e l l  resistance t o  be i n  t h e  
0.70 t o  0.80 m 52 range, an acceptable l e v e l  t o  achieve the power 

dens i ty  goal o f  >I10 \/Kg. 

6. Fu l l - s i ze  n i cke l - i r on  c e l l s  have been constructed and tes ted t h a t  

continue t o  demonstrate 57-61 Wh/Kg a t  the C/3 d ra in  rate.  Degrada- 

t i o n  i n  some o f  these c e l l s  seems t o  be re l a ted  t o  n icke l  e lectrode 

swel l ing and subsequent stack e l e c t r o l y t e  s ta rva t ion  dur ing cyc l ing.  

7. A f u l l - s i z e  c e l l  has demonstrated c y c l i c  s t a b i l i t y  w i t h  le'ss than 20% 

degradation i n  capaci ty over 500 t e s t  cycles, w i t h  t e s t i n g  continuing. 



8. A s i x  c e l l  module has demonstrated 327 cycles a t  NBTL . The capaci ty 

1 oss over t h i s  1 i f e t i m e  was approximately 26%. 

9. TWO ba t t e r i es  have been constructed i n  the p i l o t  l i n e  f a c i l i t y  f o r .  

,.the DOEIJPL near- tern e l e c t r i c  veh ic le  program. .These b a t t e r i e s  are 

25 Kwh a t '  the C/3 ra te .  The f i r s t  bat tery,  w i t h  i t s  a u x i l i a r y  elec- 

t r o l y t d g a s  management system, i s  present ly undergoing t e s t  and 

eva luat ion a t  JPL. . . 
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