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The a n g u l a r  d i s t r i b u t i o n  of  t h e  avalanche around 
t h e  anode w i r e  i n  t h e  gas  p r o p o r t i o n a l  coun te r  i s  
determined by measuring t h e  d i s t r i b u t i o n  of p o s i t i v e  
ions  a r r i v i n g  on cathode s t r i p s  surrounding t h e  anode 
w i r e  f o r  each s i n g l e  event .  The shape and width  of t h e  
d i s t r i b u t i o n  depend on such f a c t o r s  a s  t h e  gas  g a i n ,  

' t h e  anode d iame te r ,  t h e  coun t ing  gas  and t h e  primary 
i o n i z a t i o n  d e n s i t y .  E f f e c t s  of t h e s e  f a c t o r s  a r e  
s t u d i e d  s y s t e m a t i c a l l y ,  and t h e i r  importance f o r  prac-  
t i c a l  coun te r  a p p l i c a t i o n s  is  d i scussed .  

I n t r o d u c t i o n  

It has  been shown1 r e c e n t l y  t h a t  t h e  avalanche i n  
a  p r o p o r t i o n a l  coun te r  i s  w e l l  l o c a l i z e d  on one s i d e  of 
t he  anode w i r e  and t h a t  -&is l o c a l i z e d  avalanche induces  
asymmetric charges  on e l e c t r o d e s  surrounding t h e  anode 
  ire.^,^ Sfany a p p l i c a t i o n s  of t h i s  e f f e c t  have been 
po in ted  o u t  and t e s t e d  w i t h  mul t iw i re  p r o p o r t i o n a l  
chambers ( W C )  and mul t iw i re  d r i f t  chambers ( W C )  i n  
o r d e r  t o  improve t h e  p o s i t i o n  r eadou t  of such d e t e c t o r s .  
The hal f -gap d i s c r i m i n a t i o n  i n  >1WPC f o r  x-ray imaging 
reduced t h e  p a r a l l a x  problem,4 t h e  r i g h t l l e f t  ambigui ty  
i n  ?WDC was solved by mea u r i n g  induced s i g n a l s  on po- 
t e n t i a l  w i r e s  o r  cathodes's5 and, more g e n e r a l l y ,  t h e  
az imutha l  a n g l e  of t h e  e l e c t r o n  d r i f t  around t h e  anode 
w i r e  was determined by induced s i g n a l s  on a  s e t  of 
e l e c t r o d e s  surrounding t h e  anode wire687, which made i t  
p o s s i b l e  t o  i n t e r p o l a t e  t h e  p o s i t i o n  of  low energy x- 
rays  between two anode ~ f r e s . ~ , ~ , ~  

S ince  t h e  asymmetry of induced charges  depends on 
t h e  az imutha l  spread of t h e  avalanche,  d e t a i l e d  in -  
format ion abou t  t h e  phenomena is h igh ly  d e s i r a b l e  f o r  
t he  e f f e c t i v e  u s e  of  i t .  

p a r t i c l e  r a t e  e f f e c t s  i n  r e c e n t  and f u t u r e  ap- 
p l i c a t i o n s  of  ?IWPC1s and d r i f t  chambers, p a r t i c u l a r l y  
w-ith long d r i f t  spaces ,  become a  problem due t o  t h e  ac- 
cumulat ion of p o s i t i v e  i o a s  i n  t h e  chamber. Th i s  d i s -  
torts t h e  e l e c t r i c  f i e l d  and a f f e c t s  t h e  e l e c t r o n  d r i f t  
p r o p e r t i e s  and t h e  gas  m u l t i p b t i o n  p r o p e r t i e s .  Re- 
d u c t i o n  of  these  e f f e c t s  i s  p o s s i b l e  i n  some cases  and 
f u r  t h i s  t h e  avalanche spreading mechanism w i l l  be 
h e l p f u l .  

I n  t h i s  pape r ,  we p r e s e n t  t h e  measurements of t h e  
angu la r  spread of  the  avalanche.  The exper imenta l  
r e s u l t s  a r e  then expla ined by t ak ing  i n t o  account  t h e  
e l e c t r o n  d i f f u s i o n  i n  t h e  d r i f t  and avalanche p rocess ,  
the  space  charge  e f f e c t  and t h e  uv -pho ton ' e f f ec t .  

. Apparatus and Yeasurements 

The measurements were c a r r i e d  o u t  w i th  a  c y l i n -  
d r i c a l  coun te r  w i t h  a  segmented cathode and g r i d  wi re s  
shown i n  Fig .  1. The cathode i s  d i v i d e d  i n t o  36 
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segments and the  width  of each segment i s  2.54 mm 
cover ing an  azimuthal  a n g l e  of lo1. Grid wi re s  a r e  
p l aced  between t h e  ca thode s t r i p s  1.6 sun a p a r t  from 
t h e  ca thode su r face .  Col l imated 5 5 ~ e  x-rays (5.9 keV) 
and 2 4 1 ~  b r a y s  (5.5 MeV) a r e  i n j e c t e d  p a r a l l e l  t o  the  
anode wi re  a t  a  r a d i a l  d i s t a n c e  of 10 mm from the  anode 
wi re .  

E l e c t r o n s  from the  pr imary i o n i z a t i o n  d r i f t  toward 
t h e  anode wi re  a n d . a r e  m u l t i p l i e d  i n  t h e  s t r o n g  f i e l d  
n e a r  t h e  anode wire .  P o s i t i v e  ions  produced i n  the  
avalanche p rocess  d r i f t  from t h e  anode wi re  toward t h e  
ca thode s t r i p s  through t h e  g r i d  wires .  S ince  t h e  d i f -  
f u s i o n  c o e f f i c i e n t  of p o s i t i v e  i o n s  i s  much sma l l e r  than 
t h a t  of  e l e c t r o n s ,  t h e  angu la r  d i s t r i b u t i o n  of p o s i t i v e  
i o n s  is considered t o  be a  magnified image of t h e  angu la r  
d i s t r i b u t i o n  of t h e  avalanche around the  anode wire .  

For  the  e f f i c i e n t  d e t e c t i o n  of p o s i t i v e  i o n s ,  t he  
g r i d  wi re s  p l a y  t h e  fo l lowing  r o l e s :  (1 )  t o  a c c e l e r a t e  
p o s i t i v e  ions  i n  t h e  r e l a t i v e l y  s t r o n g  f i e l d  between . 
t h e  g r i d  wi re s  and cathode s t r i p s ,  which r e s u l t s  i n  the  
f a s t  r i s i n g  induced s i g n a l  on t h e  c a t h o d e , s t r i p s ;  ( 2 )  t o  
reduce t h e  e a r l y  p a r t  of  t h e  induced s i g n a l s  which i s  
due t o  the  p o s i t i v e  ion  motion n e a r  the  anode w i r e ;  and 
(3) t o  reduce the  c r o s s  t a l k  of induced s i g n a l s  between 
a d j a c e n t  ca thode s t r i p s .  . 

For c o a r s e  measurements of angu la r  d i s t r i b u t i o n ,  
ca thode s t r i p s  were connzcted i n  groups of t h r e e  t o  
g i v e  12 channels  f o r  360 . For measurements of narrow 
d i s t r i b u t i o n s ,  t h e  12 channels  were connected t o  one 
cathode s t r i p  each. The angu la r  r e s o ~ u t i o n  i s  somewhat 
l a r g e r  than one s t r i p  width  ( abou t  20 FWHM). Each 
channel  is  connected t o  a  charge  s e n s i t i v e  preampl i f ier10 
wi th  a  decay t ime c o n s t a n t  7 = 200 Ysec. The t y p i c a l  
o p e r a t i n g  c o n d i t i o n s  f o r  5 5 ~ e  x - rays ,  wi th  Ar (90%) + 
CHq ( lo%) ,  a r e  an  anode v o l t a g e  VA = 2 kV, g r i d  v o l t a g e  
VG 0.5 kV, and a  grounded cathode. P o s i t i v e  ions  
a r r r v e  a t  t h e  g r i d  w i r e  1.5 m s  a f t e r  t h e  avalanche and 
t h e  expected r i s e  t ime of t h e  ca thode s i g n a l  i s  200 u s .  
Examples of t h e  ca thode s i g n a l s  a r e  shown i n  Fig .  2, 
where 7 = 200 u s  and p o l a r i t i e s  of t h e  s i g n a l s  a r e  in-  
v e r t e d  by the  p r e a m p l i f i e r .  I n  Fig.  2 ,  ( a )  shows t h e  
s i g n a l  on t h e  ca thode s t r i p  where t h e  primary i o n i z a t i o n  
has  s t a r t e d  and (b )  the  s i g n a l  on t h e  oppos i t e  ca thode 
s t r i p .  I m e d i a t e  s i g n a l s  which appear  on both cathode 
s t r i p s  correspond t o  t h e  p o s i t i v e  ion motion i n  the  
v i c i n i t y  of t he  anode wi re  and t h e  l a t e r  s i g n a l  i s  due 
t o  t h e  p o s i t i v e  ion  motion betsleen t h e  g r i d .  and the  
ca thode.  

The ampl i tude of each p o s i c i v e  ion  s i g n a l  was mea- 
su red  and d i sp layed  on a  s t o r a g e  o s c i l l o s c o p e  us ing  a 
s e q u e n t i a l  readuut  c l r c u i t  shown i n  F ig .  3. The d e s i r e d  
in fo rma t ion  i s  t he  ampl i tude of t h e  second s i g n a l  i n  
Fig .  2 ( a ) ,  which i s  t he  d i f f e r e n c e  between :he maximum 
and t h e  base  l i n e .  Th i s  f u n c t i o n  is  r e a l i z e d  a f t e r  in- 
t e g r a t i o n  i n  t h e  p r e a m p l i f i e r ,  by a  switched base l i n e  
r e s t o r e r  comprised of c a p a c i t o r  CI) and the  FET switch 
and by sampling. The width  of  t he  ve igh t ing  f u n c t i o n  
is c o n t r o l l e d  simply by the  time i n t e r n a l  bemeen  opening 
t h e  r e s t o r e r  swi tch  ( c u t t i n g  o f f  t he  FET) and a c t i v a t i n g  
t h e  sample-and-hold c i r c u i t .  This o p e r a t i o n  i s  e q u i v a l e n t  
t o  s i n g l e  c l i p p i n g  by a  de lay  l i n e .  I t  i s  obviously  more 



1 .  p r a c t i c a l  f o r  the long time i n t e r r a l s  needed here of up 
t o  severa l  hundred microseconds, and more convenient 
due t o  simple v a r i a t i o n  of the measurement time i n t e r -  
v a l ,  when required. The c o n t r o l  log ic  i s  s t a r t e d  by 
the anode s ignal .  The measurement time on the s i g n a l s  
from the cathode s t r i p s  i s  s t a r t e d  by turning off  the 
FET r e s t o r e r  switch a t  the time j u s t  before the second 
pulse i n  Fig. 2 ( a ) ,  and the s i g n a l  i s  sampled a t  o r  
near i t s  maximum. Sy r e s t r i c t i n g  the measurement time 
only to  the r i s e  time of t h i s  s igna l ,  the s e n s i t i v i t y  
to  low frequency noise and microphonism i s  reduced. 

Angular d i s t r i b u t i o n s  of p o s i t i v e  ions were mea- 
sured by varying the  anode vol tage f o r  var ious kinds of 
gas  mixtures and anode wire diameters. Typical d i s -  
t r i b u t i o n s  a r e  shown i n  Fig. 4 ,  where each ho$izont'al 

h s tep  corresponds t o  the azimuthal angle of 30 . The 
"avalanche s ize"  Q i s  defined a s  a  charge co l lec ted  on 
the anode wire i n  1 g s  ( t h e  t r u e  avalanche charge is 
about 2 times la rger ) .  Figures ( a ) ,  ( b ) ,  and (c)  show 

, the  r e s u l t s  f o r  5 ~ ~ e  x-rays i n  A r  (90%) + CHq (10%) f o r  
anode diameter of 25.4.ym. These r e s u l t s  show t h a t  i n  
t h i s  case the avalanche spread does not f l u c t u a t e  
event-by-event even a t  very high gas gain. In  the 
proport ional  region (Q r 2 x 106e), the shape of the  
d i s t r i b u t i o n  is  well  approximated by a  gaussian d i s -  
t r i b u t i o n  and the  F[W i s  l e s s  than 100'. Raising the  
vol tage,  the avalanche s t a r t s  t o  surround the anode 
wire. 

The shape i n  the semi-proportional region depends 
s t rongly on the  gas gain,  the  gas mixture, and the  . 
primary ion iza t ion  dens i ty .  For gas mixtures of A r  
and molecular quenchers (CHq, C02), an avalanche sur-  

. rounds the anode almost uniformly a t  very high gas 
gain. However, i n  CH4 and C3H8, the shape of the d i s -  
t r i b u t i o n  looks l i k e  a  parabola and does not surround 
the anode. For the e lec t ronega t ive  gas mixture, A r  
(69.3%) + Isobutane (30%) + Freon 13Bl (0.7%), the  
shape of the d i s t r i b u t i o n  i s  completely d i f f e r e n t  
depending on the type of t h e  sa tura ted  s igna l .  I n  the  
f i r s t  amplitude sa tura t ing  region, ( s i g n a l  type 11 i n  
Ref. 1) the shape looks l i k e  a  t r i a n g l e  and the  ava- 
lanche i s  confined on one s i d e  of the  anode wire. 
Bowever, i n  the second amplitude sa tura t ing  region, 
( s i g n a l  type 111) the d i s t r i b u t i o n  i s  unstable  and 
almost uniform with small f luc tua t ions .  

Neasurements have been erformed with two d i f f e r -  
en t  sourpes: 1 - rays  from a 2elAm source and x-rays 
from a >>Fe source. The a p a r t i c l e s  s top within the 
s e n s i t i v e  volume of the counter leaving a . 2 . l  cm long 
ion iza t ion  t rack p a r a l l e l  t o  the  anode wire f o r  P-10. 
The t o t a l  ion iza t ion  i n  the s e n s i t i v e  volume corresponds 
fo  an energy l o s s  of A& = 3 NeV. The x-ray from the 
3 5 ~ e  source leaves only one ion iza t ion  c l u s t e r  corre- 
sponding t o  an energy loss  of 5.9 keV. 

The two sources allow the observat ion of the 
avalanche under d i f f e r e n t  conditions. In  order  t o  
ob ta in  the same t o t a l  avalanche s i z e  Q f o r  the 55Fe, 
as  f o r  the  2 4 1 ~ ,  a  much higher  gas gain is  needed, 
while the r e s u l t i n g  avalanche occupies only a  small 
p a r t  iL of the anode wire,  r e s u l t i n g  i n  a  much higher 
space charge per  wire length. &I. is mainly determined 
by the d i f f u s i o n  of the ionizacion d r i f t i n g  from the  
locat ion of conversion t o  the anode. For typ ica l  
conditions using Ar (90%) + CH4 (LO%), one obtains  
L' =Z 0.9 am FWtM. For the same Q,  the space charge 
per  anode length w i l l  be about a  f a c t o r  of 15 higher 
f o r  the j 5 ~ e  s igna l  than f o r  the 241Am s igna l .  For 
the same gas ampl i f ica t ion  f a c t o r ,  however, the 241Am 
gives a  higher  space charge than the >'Fe due t o  the 
higher number of ion p a i r s  i n  the pr inary ion iza t ion  

per  wire  length. One obtains  Qprim/AC = 4.8 lo4 
f o r  241Am compared t o  Qprim/AC s 2.2 . 102 mm'l f o r  5 5 ~ e  
using AC = 0.9 mm, which i s  the s i z e  of the ion iza t ion  
c l u s t e r  when i t  a r r i v e s  a t  the gas amplif icat ion zone. 

The avalanche spread has been measured a s  a  funct ion 
of avalanche s i z e  f o r  d i f f e r e n t  concentrat ions of quencher 
(CHq) i n  A r  (Fig. 5) and f o r  magic gas (Fig. 6 ) .  Since 
an inf luence of the anode wire diameter i s  expected, the 
avalanche spread has been measured f o r  two standard gases,  
A r  (90%) + CHq (10%) and 100% CHq, and f o r  wire  diameters  
ranging from 12.7 wn t o  127 gm (Fig. 7). 

Avalanche Spreadinq Hechanism 

A number of poss ib le  e f f e c t s  leading t o  the ava- 
lanche spread a r e  considered: 

1) d i f f u s i o n  of e lec t rons  

2) repulsion from space charge i n  the avalanche 

3) uv-propagation 

4) o ther  processes r e l a t e d  to  the avalanche 
(d i f fus ion  of metastables ,  e tc . ) .  

The complexity of the avalanche development and the  
number of d i f f e r e n t  processes con t r ibu t ing  t o  i t s  spread 
around the wire  makes i t  d i f f i c u l t  t o  ob ta in  a  complete 
mathematical descr ip t ion .  Here we a r e  mainly i n t e r e s t e d  
i n  a  q u a l i t a t i v e  ana lys i s  which allows us t o  separa te  
the e f f e c t s  1)...4) t o  a  c e r t a i n  extent .  It is  posskble 
t o  determine t h e i r  order  of. magnitude and t o  explain 
t h e i r  dependence on counter parameters a s  wel l  a s  on '. 
operat ing condit ions.  

A f i r s t  c l a s s i f i c a t i o n  of the e f f e c t s  can be obtain- 
ed analyzing the spread a s  a  funct ion of the  anode v o l t -  
age f o r  the  two sources 5 5 ~ e  and 2 4 ~ A a  (Fig. 8). 

The cont r ibu t ion  from d i f f u s i o n  of the  e lec t rons  
d r i f t i n g  t o  the anode i s  expected t o  depend only on the  
r e l a t i v e  vol tage change which i s  small i n  the region 
where s u f f i c i e n t  gas amplif icat ion can be obtained. 
A l l  o ther  e f f e c t s  depend on the avalanche s i z e  o r  gas  
ampl i f ica t ion  fac tor .  Therefore, the  almost constant  
value f o r  the spread i n  the low vol tage region i s  i n t e r -  
p re ted  t o  be mostly d i f fus ion .  The avalanche-related 
e f f e c t s  w i l l  be c l a s s i f i e d  a s  e i t h e r  depending on the 
t o t a l  charge of the avalanche (space charge e f f e c t )  o r  
on t h e  gas ampl i f ica t ion  f a c t o r ,  which can be understood 
t o  be r e l a t e d  t o  the mean e lec t ron  temperature i n  the 
avalanche and, there fore ,  to  various e x c i t a t i o n  and 
ion iza t ion  phenomena (e.g.,  emission and absorpt ion of 
uv-quanta) . 

The e f f e c t s  of space charge and uv-propagation w i l l  
be d i f f e r e n t  f o r  the two sources. 55Fe shows e f f e c t s  of 
w-'propagation and o ther  e f f e c t s  from exci ted atoms and 
molecules because of the  r e l a t i v e  high gas gain necessary. 
2 4 1 ~ m  shows strong space charge e f f e c t s ,  even a t  a  low 
gas ga in ,  due t o  i t s  high ion iza t ion  densi ty.  . 

Diffusion 

The d i f fus ion  considered here is the t ransversa l  
d i f f u s i o n  of e lec t rons  d r i f t i n g  from t h e i r  loca t ion  of 
production (primary ion iza t ion)  to  the avalanche region,  
and a l s o  the d i f f u s i o n  of e lec t rons  produced i n  the 
avalanche on t h e i r  way towards the anode. The whole 
process can be described i n  one s tep  when t h e  energy 
dependence of the e l a s t i c  and the various i n e l a s t i c  c ross  
sec t ions  a r e  taken i n t o  account determining the mean 



e lec t ron  energy E and consequently Dh. The d i f f u s i o n  

. .  of the  p o s i t i v e  ions can be neglected s ince  even a t  the  
high f i e l d  i n  the avalanche region D/v is  small and 
c l o s e  t o  the low f i e l d  value given by the ambient 
temperature. 

The t ransversa l  d i f f u s i o n  i n  a  c y l i n d r i c a l  f i e l d  
f o r  a  charge d r i f t i n g  i n  r a d i a l  d i r e c t i o n  approaching 
the anode is expected t o  be d i f f e r e n t  from the  d i f fus ion  
i n  a  homogeneous f i e l d  due t o  an increasing res to r ing  
force. 

For the ca lcu la t ion  we use a  s implif ied p ic ture .  
The observer s i t s  i n  the c e n t e r  of the  e l e c t r o n  cloud 
and no t ices ,  while  the whole system d r i f t s  t o  the anode, 
a  time dependent heat ing of the e lec t rons  and an in- 
creasing res to r ing  force  perpendicular  t o  the  d i r e c t i o n  
of motion. 'in t h i s  p i c t u r e  the f i e l d  E a t  a  d i s tance  x 
from the  cen te r  of the e lec t ron  cloud is s p l i t  i n t o  two, 
components, EL. and E responsible  f o r  the  d r i f t  of 
the  whole cloud and !Ar the  res to r ing  force, respect-  . .  
ive ly ,  (Fig. 9 ) .  Under the  assumption t h a t  t h e  re-  
s t o r i n g  f i e l d  does not  inf luence the mean e lec t ron  .' 

' 

energy 6 ,  which is only determined by Er ( r ) ,  .the cur ren t  - 
j can be separated i n t o  independent components jr, jX 
and j,. 

For the cur ren t  i n  )(-direction, one obtains  

with D the  d i f f u s i o n  c o e f f i c i e n t  and p the mobil i ty ,  
which a f t e r  the  aforementioned approximation does no t  
depend on % but on El. 

With 

one obtains  

With 

one obtains  the  d i f f u s i o n  equation 

hlls !Jith 2,, = - , one ob ta ins  the f i n a l  r e s u l t  

which g ives  the rms angular  spread of an e lec t ron  . 
. s t a r t i n g  a t  ro and a r r i v i n g  a t  t h e  anode of radius ra. 

Unfortunately, S k  = e D/P is  not know over the 
whole range'of E occuring i n  a  proport ional  counter.  
For C'dq, a measurement i n  Ref. 11 gives sk(E) up t o  
s k  = 2 eV. For the d i f f e r e n t  s i x t u r e s  of A r  with CH4, 
a  "mean electron" model12 has been used t o  c a l c u l a t e  

sk(E), Fig. 10. For f u r t h e r  ca lcu la t ion ,  Eq. (4)  has 
been s p l i t  in to ,  two p a r t s  

2  1 0 E k  
d r + 2 ;  - 1 

rms (5) 

a  

where rc is  determined t o  be the  radius where under the 
given condit ions ek = 2 eV. The dependence sk(E) 
up t o  2 eV can be very well  approximated by 

A s i m i l a r  dependence, but  with d i f f e r e n t  exponent 
, 

m, is  aqsumed f o r  sk > 2 eV. Clear ly ,  the  r e a l  curve 
sk(E) may continue above 2 eV with the  same exponent, 
a s  for .  the , smal le r  E ,  u n t i l  the  increase  of i n e l a s t i c  
c ross  secti'ons reduces the s lope  gradually. Therefore, 

' the  exponent obtained f o r  ck > 2 eV represents  a  mean 
value. 

The measurement of the ipread f o r  241Am a t  low 
gas gain,  which i s  considered t o  be oyly due t o  d i f -  
fusion,  ( a f t e r  cor rec t ing  f o r  a0 =Z 20 FWHM of inherent  
width of the  measurement) i s  used to determine m as 
defined i n  Eq. (6) .  Figure 10 shows the expected r e s u l t ,  
t h a t  the  s lope for .  sk > 2 eV m 0.5 i s  smaller ,  than f o r  
ek < 2 eV (m =a 1) due t o  the  onse t  of the  i n e l a s t i c  c ross  
sec t ions .  I n  the h ighes t  f i e l d  region ( r  4 100 V) mean 
e lec t ron  energies. of the  order  of q = 1.5 k 10 eV 
a r e  reached i n  agreement with the  f a c t  t h a t  i n  t h i s  region 
ion iza t ion  t a k e s ' p l a c e  ( threshold f o r  ion iza t ion  i n  Ar, 
eAr = .15.7 eV and i n  CH4, E = 13.0 eV). 

a 4  
The comparison of the  measured values f o r  var ious 

anode diameters, with the pred ic t ion  of Eq. (5) using 
e (E) a s  determined above f o r  CH4 and f o r  A r  (90%) + CB 0%). shows s a t i s f a c t o r y  agreement ( F i  11) with 
t h t  '"Am data .  For the  d a t a  obtained f o r  ? jFe,  one 
ob ta ins  ca lcu la ted  values about 10'. . .20 smaller than 
the  measured ones. A small con t r ibu t ion  by avalanche- 
dependent e f f e c t s  such a s  space charge or  uv-effects  
is  t o  be expected s ince  even t h e  lowest gas gain permit- 
t i n g  a  measurement is f a r  above the  gas gain f o r  the 
241~m measurement . 
Processes Related t o  the  Avalanche 

The spread of the  avalanche from the 2 4 1 ~ m  increases 
considerably above the value f o r  d i f f u s i o n  a t  a  gas ga in ,  
where t h e  spread f o r  the  . 5 5 ~ e  i s  s t f  11 c l o s e  to  the d i f  - 
fusion value (Fig. 8) .  Therefore, t h i s  e f f e c t  i s  con- 
t r ibu ted  t o  space charge ef f e c t s .  

The space charge e f f e c t  becomes a l s o  apparent i n  
Fig. 12 where the spread i s  shown a s  a  funct ion of the 
avalanche s i z e  Q ( t o t a l  charge). Here the values f o r  
the 2 4 ~ A a  da ta  increases a t  much higher  Q i n  agreement 
with t h e  f a c t  t h a t  the  ion iza t ion  of the ,%-par t ic le  along 
the wira r e s u l t s  f o r  a given Q i n  a  smaller space charge 
per  wire  length. 

The spread due t o  w-emission and absorpt ion o r  
due t o  o ther  e f f e c t s  re ly ing  on highly exci tsd atoms and 
molecules there fore  w i l l  be observed only a t  highest  
vo l tage  i n  t h e  5 5 ~ e  measuramencs. Figure 13 shows the 
spread f o r  5 5 ~ e  and 241Am a t  constant  avalanche s i z e  a s  
a  funct ion of the  inverse CHq concentrat ion ~ / [ C H ~ ] .  
The values a r e  corrected f o r  d i f f u s i o n  by sub t rac t ing  
quadra t ica l lv  the low vol tage value. The measured 
po in t s  f o r  5 5 ~ e  suggest a  spread proport ional  to  1/[CH.&1 



i n  agreement with the hypothesis of uv-spread where the  
mean f r e e  path of uv-abso t ion  w i l l  be proport ional  t o  
l/{CHk]. The valties f o r  a r e  c l o s e  to  zero and a r e  
constant  within the e r r o r  bars. 

Extrapolat ing the dependence f o r  the 5 5 ~ e  values 
t o  an i n f i n i t e  CHq concentrat ion,  one f inds  a value f o r  
the spread wel l  above the value f o r  241.Un showing evi- 
dence t h a t  another e f f e c t ,  dependent on the gas ampli- 
f i c a t i o n  f a c t o r ,  con t r ibu tes  to  the spread. I t  may be 
poss ib le  t h a t  impuri t ies  i n  the counting gas having a 
lower ion iza t ion  p o t e n t i a l  than CHq cont r ibu te  a uv- 
e f f e c t  independent of the CH4 concentrat ion.  Since 
our measurement includes the spread of the avalanche 
over a time period of the o rder  of 100 us, long-living. 
exci ted s t a t e s  a l s o  may produce a delayed uv-effect  o r  
may even d i f f u s e  around the wire  and ion ize  by encounters 
of the second kind. 

X a ~ i c  Gas Mixture 

Figure 6 shows the,angular  spread i n  the e lec t ro-  
negative gas mixture, A r  (69.3%), Isobutane (30%), and 
Freon 1351 (0.7%).. For the anode with a diameter of 
d = 25.4 um, the spread is almost constant  between an 
avalanche s i z e  of lo7  to  lo8 and shows ari inc rease  f o r  
Q > lo8,. Similar  behavior is found .for o ther  wire  
diameters. In  the region of small angular spread, the  
s i g t a l s  a r e  amplitude-saturated. I t  has been found 
(Ref. I )  t h a t  the c e n t e r  of g r a v i t y  of the avalanche 
i n  t h i s  .operat ing mode ( s i g n a l  type 11) moves away from 
the .wi re  i f  the high vol tage is  increased,  which may 
explain why the  angular spread remains constant  o r  even 
seems t o  decrease with increasing vol tage.  

Increasing the high vo l tage  f u r t h e r ,  the  angular  
spread increases eventual ly f o r  a l l  th ree  wi re  diameters 
invest igated.  This operat ing mode g ives  s i g n a l s  of type 
111 (Ref. 1 ) .  Here one observes, a l s o  a p a r t  from the 
increasing spread, a d i f f e r e n t  shape of the angular  
d i s t r i b u t i o n  a s  mentioned e a r l i e r .  For the small wire  
diameter,  the spread is  l a r g e  enough t o  surround t h e  
wire  completely, while f o r  the th ick  wire  only a f r a c t i o n  
of the wire periphery is  covered by the  avalanche. An 
absorpt ion length = 10 um f o r  the photons could ex- 
p l a i n  t h i s  behavior, but i t  i s  a l s o  poss ib le  t h a t  a 
c r i t i c a l  f i e l d  s t reng th  has t o  be reached before an 
e lec t ron  from a uv-ionization i n  the neighborhood of 
the avalanche can i n i t i a t e  a new avalanche s trong enough 
t o  produce enough uv-quanta f o r  f u r t h e r  ionizat ion.  The 
l a t t e r  p o s s i b i l i t y ,  i n  p r i n c i p l e ,  represents  a discharge 
s imi la r  t o  the Geiger mode which a l s o  has a wel l  defined 
threshold. 

Conclusions 

Three main concributions t o  the angular spread of 
the avalanche around the wire  could be separated. Xn 
the l i n e a r  mode of operat ion,  where the  t o t a l  charge 
produced i n  the avalanche i s  p ropor t iona l  t o  the t o t a l  
charge of the primary ion iza t ion ,  the spread around the 
wire  i s  mostly due t o  d i f fus ion ,  In  t h e  semiproportional 
mode o t  operat ion,  d i f f e r e n t  e f f e c t s  a r e  found to con- 
t r i b u t e  t o  the avalanche spread depending on the type of 
primary ionizat ion.  For dense primary ion iza t ion  (a- 
p a r t i c l e s )  a t  higher  gas gain,  space charge e f f e c t s  
spread the  avalanche fur ther .  Only a t  high gas gain i n  
the  semiproportronal region f o r  primary ion iza t ion  with 
low dens i ty ,  (x-rays i n  the keV range, minimum ionizing 
p a r t i c l e s )  spread due t o  uv-emission and absorpt ion 
becomes the  nain source of avalanche spread. 

the anode wire diameter. To achieve a small spread w i l l  
be usefu l  i n  app l ica t ions  where the  cen te r  of g r a v i t y  of 
angular d i s t r i b u t i o n  i s  t o  be measured with high accuracy. 
A wide spread may be pre fe r red  i n  a d r i f t  chamber . in  order  
t o  c o l l e c t  the p o s i t i v e  ions from the avalanche on s p e c i a l  
g r id  wires  t o  reduce the space charge i n  the d r i f t  region. 
This i s  an important aspect  f o r  high r a t e  app l ica t ions .  ' 
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The amounr of spread of the avalanche around the 
anode wire can be control led by the choice of gas and 
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Fig. 13.  FiJtM of the angular d i s tr ibut ion  corrected 
for d i f fus ion  a s  a function of the inverse 
of the CHq-conceritration ~ / [ C H ~ ; .  Q = 2 x 107e, 
ra = 12.7 urn. 




