

190
12/1/78

sh. 803

RFP-2808

November 4, 1978

RFP-2808

November 4, 1978

MASTER

**A NUCLEAR INSTRUMENTATION MODULE (NIM)
STANDARD LOGIC PROCESSOR AS A PORTAL SIGNAL ANALYZER**

George P. Minges

Chemistry Research and Development
INSTRUMENTATION AND STATISTICAL SYSTEMS

Rockwell International

Energy Systems Group
Rocky Flats Plant
P.O. Box 464
Golden, Colorado 80401

U. S. DEPARTMENT OF ENERGY
CONTRACT DE-AC04-76DPO3533

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America

Available from the

National Technical Information Service

U. S. Department of Commerce

Springfield, Virginia 22161

Price: Printed Copy \$4.50 Microfiche \$3.00

Price Is Subject to Change Without Notice

Printed
November 4, 1978

RFP-2808
UC-37 INSTRUMENTS
TID-4500-R66

**A NUCLEAR INSTRUMENTATION MODULE (NIM)
STANDARD LOGIC PROCESSOR AS A PORTAL SIGNAL ANALYZER**

George P. Minges

**Chemistry Research and Development
INSTRUMENTATION AND STATISTICAL SYSTEMS**

SUBJECT DESCRIPTORS

Safeguards
Security
Discriminator
Microprocessor

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

**ROCKWELL INTERNATIONAL
ENERGY SYSTEMS GROUP
ROCKY FLATS PLANT
P.O. BOX 464
GOLDEN, COLORADO 80401**

Prepared under Contract DE-AC04-76DPO3533
for the
Albuquerque Operations Office
U.S. Department of Energy

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED *leg*

RFP-2808

CONTENTS

Introduction	1
Description	1
Microprocessor	1
Counter	4
Display and Electronic Support	5
Software	6
Conclusions	6
Appendix A – Complete PROM Listing of Operating System	7
Appendix B – Complete PROM Listing of Operating System Test Routine	19

ACKNOWLEDGMENT

The author wishes to thank J. L. Martinez and G. J. Cunningham for their advice concerning necessary operating requirements of the signal analyzer.

A NUCLEAR INSTRUMENTATION MODULE (NIM) STANDARD LOGIC PROCESSOR AS A PORTAL SIGNAL ANALYZER

George P. Minges

Abstract. A general purpose electronic logic processor has been designed into a 2 wide NIM (Nuclear Instrumentation Module) bin module. The unit utilizes a microprocessor to achieve necessary versatility.

The processor's first use is as a new generation signal analyzer for use in radiometric personnel and vehicle portal monitors. Significant improvements have been obtained in sensitivity and stability over existing analog discriminators. The new analyzer is presently being used to update personnel and vehicle portal monitoring systems.

INTRODUCTION

At Rocky Flats, NIM (Nuclear Instrumentation Module) bin electronic devices are in widespread use. A need was realized for a general purpose, NIM bin, mountable logic processor for radiometric equipment. With this thought in mind, and with high priority for an improved version of the analog portal discriminator, work was started toward developing a fully digital portal signal analyzer.

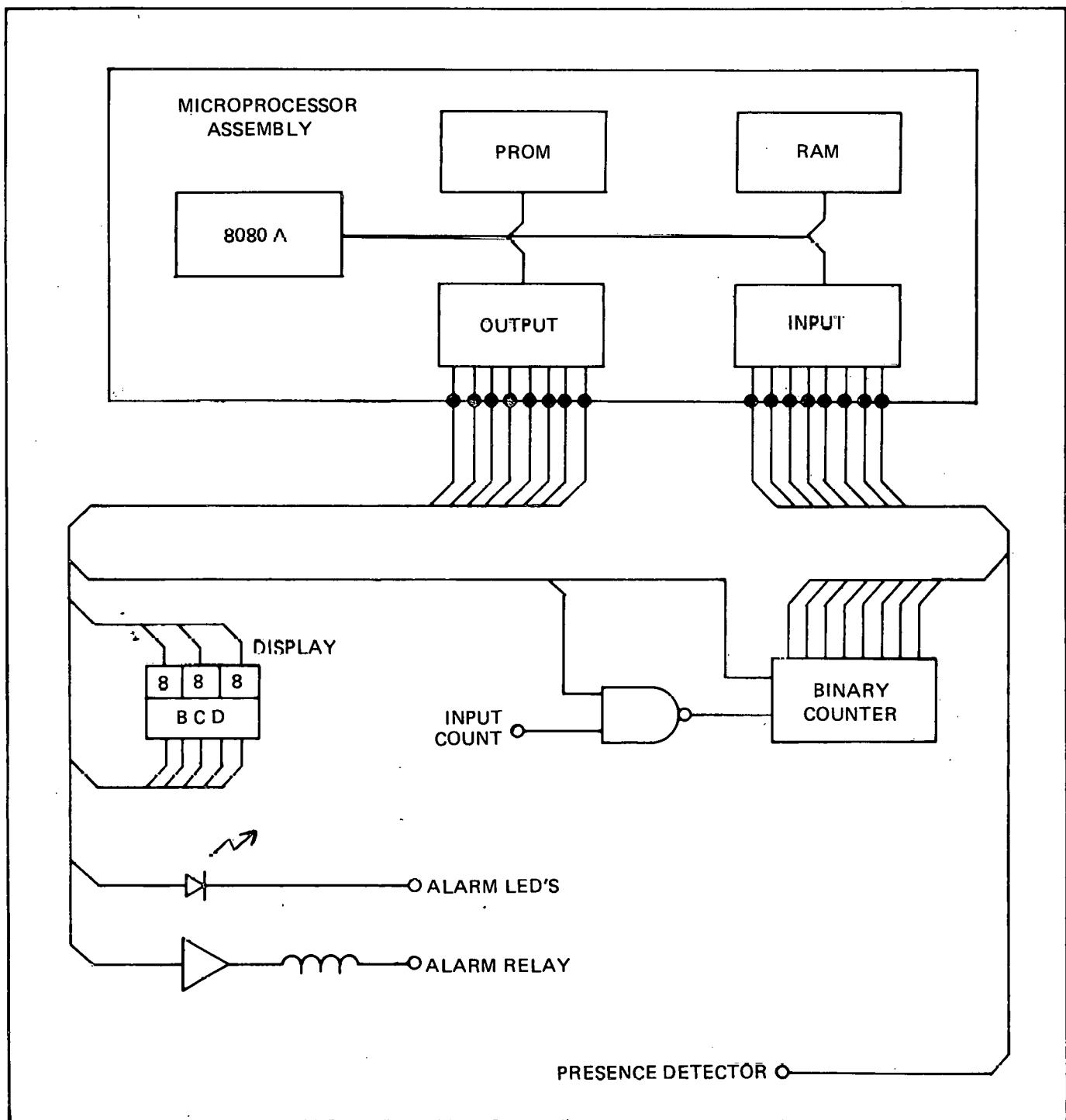
A portal signal analyzer has been fabricated and successfully tested. This report describes the signal analyzer.

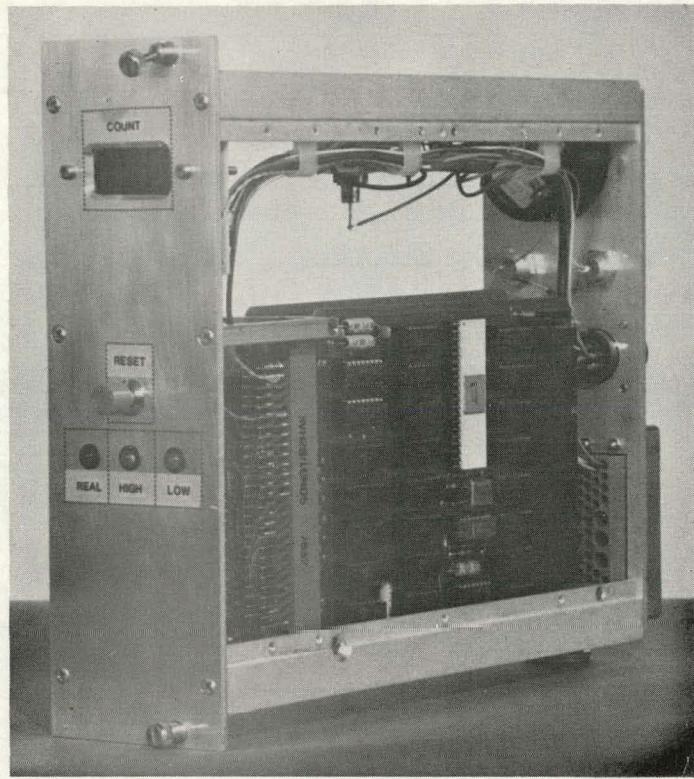
DESCRIPTION

The portal signal analyzer is an instrument designed to accept a pulse count from external detectors and suitable pulse height analyzers. It also is fed a signal indicating the presence of a person or object in the active area of the portal monitor.

The instrument functions by averaging and displaying the background count rate continuously until directed by a presence detector to switch to an

active mode. In the active mode, the latest average background count is stored and a new count begun. This latter or active count average is then compared to the stored background count to determine if the two counts are "statistically different." If there is no significant difference between the active count and the background count, the instrument will return to its background averaging mode. If a significant difference is noted, the analyzer will alarm remotely, visually, and audibly. It also will display the count rate that produced the alarm until this condition is acknowledged. The background count average and the active count average are both accumulated by a sliding scale (first in, first out) technique. Alarm points are calculated using a standard probability theory during the background averaging mode.

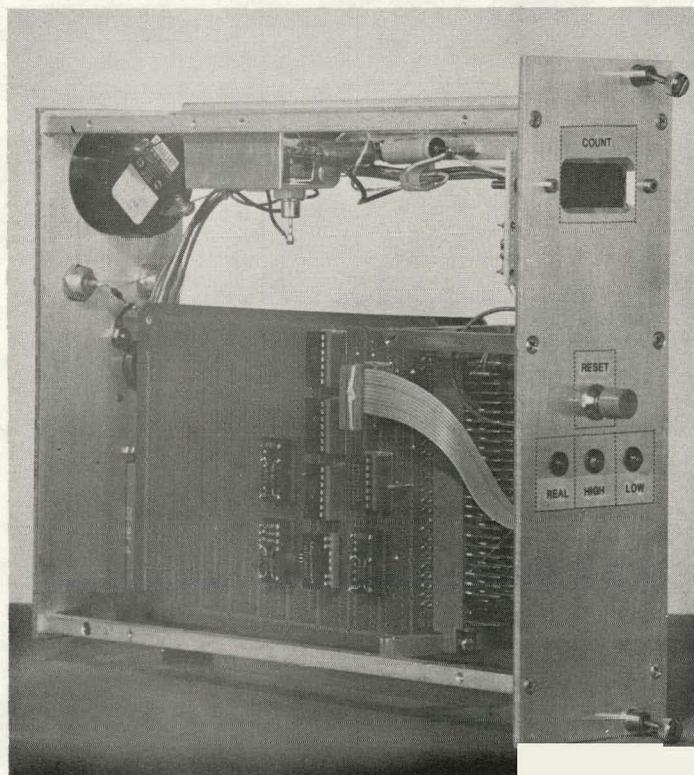

The portal signal analyzer consists of four major parts: microprocessor, counter, display and electronic support, and software. The details of each will be described. Figure 1 shows a block diagram of the instrument; Figures 2 and 3 are photographs of the inside of the unit and of construction details.


Microprocessor

The microprocessor used is a commercially available, Pro-Log single card MPS 880 system* costing approximately three hundred dollars. It was chosen for its size, cost, and use of second-sourced standard electronic components. The microprocessor has a crystal controlled clock, 16 input gates, 24 latched output lines, and measures only 11.4 X 16.5 cm. It has the capability of 4 k bytes of PROM (Programmable Read Only Memory) and 1 k bytes of RAM (Random Access Memory) memory.

*Pro-Log Corporation, 2411 A. Garden Road, Monterey, California 934940.

FIGURE 1. Block Diagram of Portal Signal Analyzer



23039-9

FIGURE 2. Right Front View of Portal Signal Analyzer

FIGURE 3. Left Front View of Portal Signal Analyzer

23039-8

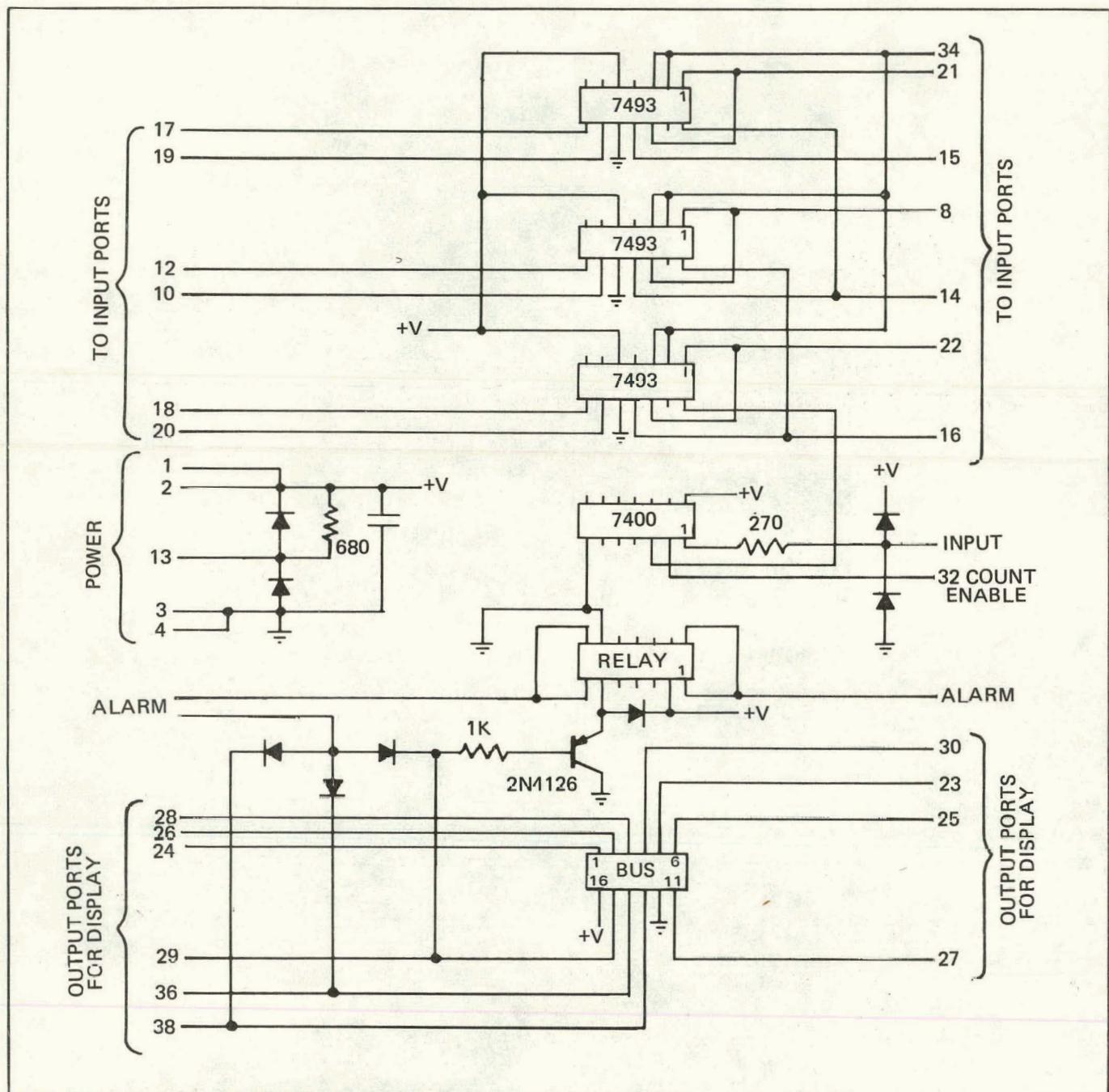


FIGURE 4. Counter Board Schematic of Portal Signal Analyzer

Counter

The counter card contains a 12 bit binary counter, the necessary input and output gating, and is under microprocessor control. A card schematic is shown in Figure 4. The counter card consists of three quad

binary counters in tandem. The input to the counter is through a 2-input NAND Schmitt trigger performing the input and hold function. Output from the counter is fed parallel to the microprocessor. One output line from the microprocessor controls the counter reset.

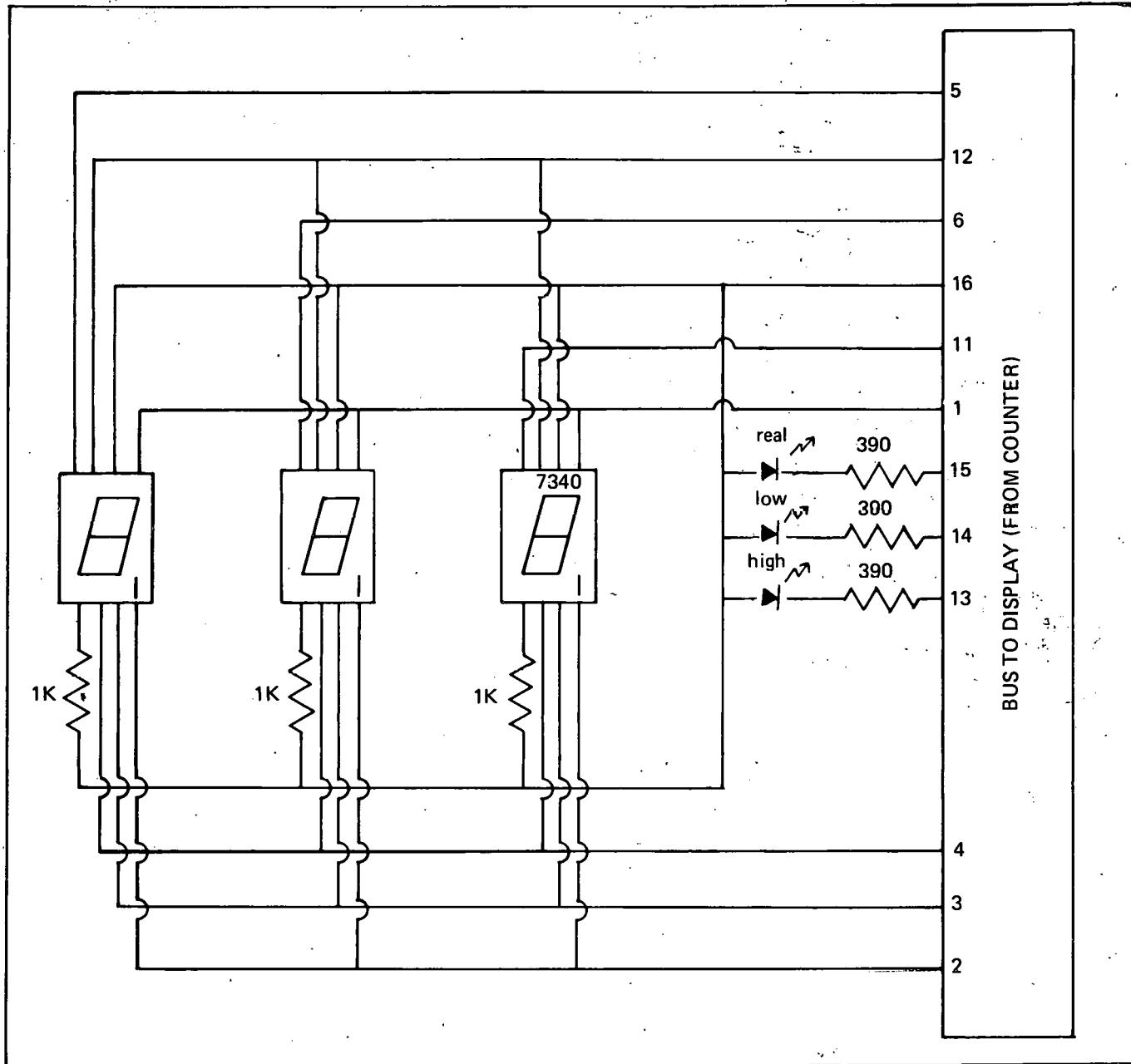


FIGURE 5. Display Board of Portal Signal Analyzer

The counter card also contains miscellaneous components necessary for pulse shaping, current limiting, and the alarm relay for interface to the Plant supervised alarm system.

Display and Electronic Support

The display and support provide operator interface such as decimal numeric count displays and alarm

status indicators. This section also covers the power supplies and cabinet. See Figure 5 for display details. For simplicity, the count rate display consists of three individual BCD input numeric indicators. Each digit has its own decoder driver and latches with an enable input. The three digits share a common four-bit data line from the microprocessor output with each digit having its own strobe line.

Alarm indications are given by three light-emitting diodes and an audible device. The green light indicates an abnormally low count being received by the counters. This condition would normally be indicative of external equipment failure. The yellow light indicates that the probability of detection of a source in the active area of the radiometric monitor has fallen to below 50%. This condition would be indicative of abnormally high background radiation. One such cause of this condition could be a shipment of radioactive material.

The red light and audible signal indicate true alarm conditions, i.e., radioactive material within the active zone of the portal monitor. For this condition, a normally closed relay contact has been provided. To fully utilize existing equipment, the analyzer is fabricated in a standard 2 wide NIM bin module. The +12 and the ± 5 volt power required for this instrument is derived from the standard NIM bin. The NIM bin provides ± 12 and ± 6 volts as a standard; therefore, dropping resistors and Zener diodes are used to convert the ± 6 volt supplies to the necessary ± 5 volts.

Software

The heart of any microprocessor system is in the program. In this instrument, the main program resides in a 1 k byte PROM. A 1 k byte RAM is used as scratch pad memory and temporary data storage location. PROM memory is located at hexadecimal locations 0000 through 03FF with RAM at 1000 through 13FF. For a complete PROM listing, see Appendix A, "Complete PROM listing of Operating System."

Various test and diagnostic programs have been written. These programs reside on PROM and are utilized by inserting them in place of the normal

operating PROM. One such routine for false-alarm testing automatically cycles between the background accumulation mode and the active mode. This routine keeps track of the false alarm rate and displays this rate in decimal upon demand. For a complete PROM loading including this test routine, see Appendix B, "Complete PROM Listing of Operating System Plus Test Routine."

To minimize operator tampering and cost, the unit has no operator selectable controls other than the alarm acknowledge push button. The sensitivity and the upper and lower operating limits of the unit resides in PROM. To change the operating parameters of this instrument, the operating PROM must be replaced in a socket in the microprocessor. The new PROM would contain new numerical constants to alter operating characteristics of the instrument. This becomes the outstanding feature of this instrument as its versatility of operation is limited only by the imagination of the person programming the analyzer. With no hardware or wiring changes, this unit can become an entirely different instrument through reprogramming.

CONCLUSIONS

The portal signal analyzer version of the 2 wide NIM bin logic processor has been installed in several portal monitoring systems. Increased sensitivity and reliability have been obtained. There have been no failures in 36 unit-months exposure to field conditions. At present, it appears that all future portal monitoring systems will use this or a similar version of the portal signal analyzer.

Based on successful operation of this unit, several other 2 wide NIM bin logic processors have been prototyped for use. One is a multiple channel portal analyzer for individual zone identification; another is a coincidence unit for an effluent monitor.

APPENDIX A
Complete PROM Listing of Operating System

ASSM 0000

0000 F3	0000 DI
0001 21 30 10	0010 LXI H,1030H
0004 7C	0020 MOV A,H
0005 32 00 10	0030 STA 1000H
0008 7D	0040 MOV A,L
0009 32 01 10	0050 STA 1001H
000C 32 02 10	0060 STA 1002H
000F 21 38 10	0070 LXI H,1038H
0012 7C	0080 MOV A,H
0013 32 03 10	0090 STA 1003H
0016 7D	0100 MOV A,L
0017 32 04 10	0110 STA 1004H
001A 32 05 10	0120 STA 1005H
001D 2A 44 10	0130 ST1 LHLD 1044H
0020 7C	0140 MOV A,H
0021 2F	0150 CMA
0022 47	0160 MOV B,A
0023 7D	0170 MOV A,L
0024 2F	0180 CMA
0025 4F	0190 MOV C,A
0026 2A FC 03	0200 LHLD 03FCH
0029 AF	0210 XRA A
002A 09	0220 DAD B
002B DA BD 01	0230 JC ALARMLOW
002E 3E 01	0240 MVI A,01
0030 D3 01	0250 OUT 01
0032 C3 C8 01	0260 JMP UPPERLIMIT
0035 3E 01	0270 ST2 MVI A,01
0037 D3 01	0280 OUT 01
0039 3E 02	0290 MVI A,02
003B D3 01	0300 OUT 01
003D 2A 10 10	0310 ST3 LHLD 1010H
0040 EB	0320 XCHG
0041 2A 12 10	0330 LHLD 1012H
0044 19	0340 DAD D
0045 EB	0350 XCHG
0046 2A 14 10	0360 LHLD 1014H
0049 19	0370 DAD D
004A EB	0380 XCHG
004B 2A 16 10	0390 LHLD 1016H
004E 19	0400 DAD D
004F EB	0410 XCHG
0050 2A 18 10	0420 LHLD 1018H
0053 19	0430 DAD D
0054 EB	0440 XCHG
0055 2A 1A 10	0450 LHLD 101AH
0058 19	0460 DAD D
0059 EB	0470 XCHG
005A 2A 1C 10	0480 LHLD 101CH

005D	19	0490	DAD D
005E	EB	0500	XCHG
005F	2A 1E 10	0510	LHLD 101EH
0062	19	0520	DAD D
0063	EB	0530	XCHG
0064	2A 20 10	0540	LHLD 1020H
0067	19	0550	DAD D
0068	EB	0560	XCHG
0069	2A 22 10	0570	LHLD 1022H
006C	19	0580	DAD D
006D	EB	0590	XCHG
006E	2A 24 10	0600	LHLD 1024H
0071	19	0610	DAD D
0072	EB	0620	XCHG
0073	2A 26 10	0630	LHLD 1026H
0076	19	0640	DAD D
0077	EB	0650	XCHG
0078	2A 28 10	0660	LHLD 1028H
007B	19	0670	DAD D
007C	EB	0680	XCHG
007D	2A 2A 10	0690	LHLD 102AH
0080	19	0700	DAD D
0081	EB	0710	XCHG
0082	2A 2C 10	0720	LHLD 102CH
0085	19	0730	DAD D
0086	EB	0740	XCHG
0087	2A 2E 10	0750	LHLD 102EH
008A	19	0760	DAD D
008B	22 40 10	0770	SHLD 1040H
008E	37	0780	STC
008F	3F	0790	CMC
0090	3A 40 10	0800	LDA 1040H
0093	0F	0810	RRC
0094	0F	0820	RRC
0095	0F	0830	RRC
0096	0F	0840	RRC
0097	E6 0F	0850	ANI 0FH
0099	32 43 10	0860	STA 1043H
009C	37	0870	STC
009D	3F	0880	CMC
009E	3A 41 10	0890	LDA 1041H
00A1	0F	0900	RRC
00A2	0F	0910	RRC
00A3	0F	0920	RRC
00A4	0F	0930	RRC
00A5	E6 0F	0940	ANI 0FH
00A7	32 45 10	0950	STA 1045H
00AA	3A 41 10	0960	LDA 1041H
00AD	07	0970	RLC
00AE	07	0980	RLC
00AF	07	0990	RLC
00B0	07	1000	RLC

00B1 E6 F0	1010 ANI 0F0H
00B3 47	1020 MOV B,A
00B4 3A 43 10	1030 LDA 1043H
00B7 B0	1040 ORA B
00B8 32 44 10	1050 STA 1044H
00BB 31 00 13	1060 LXI SP, 1300H
00BE 2A 44 10	1070 LHLD 1044H
00C1 4D	1080 MOV C,L
00C2 44	1090 MOV B,H
00C3 CD 00 00	1100 CALL BINARYBCD
00C6 78	1110 MOV A,B
00C7 32 50 10	1120 STA 1050H
00CA 79	1130 MOV A,C
00CB 32 51 10	1140 STA 1051H
00CE 3A 50 10	1150 LDA 1050H
00D1 E6 0F	1160 ANI 0FH
00D3 32 53 10	1170 STA 1053H
00D6 3A 51 10	1180 LDA 1051H
00D9 0F	1190 RRC
00DA 0F	1200 RRC
00DB 0F	1210 RRC
00DC 0F	1220 RRC
00DD E6 0F	1230 ANI 0FH
00DF 32 54 10	1240 STA 1054H
00E2 3A 51 10	1250 LDA 1051H
00E5 E6 0F	1260 ANI 0FH
00E7 32 55 10	1270 STA 1055H
00EA 2F	1280 CMA
00EB E6 1F	1290 ANI 1FH
00ED D3 00	1300 OUT 00
00EF E6 0F	1310 ANI 0FH
00F1 D3 00	1320 OUT 00
00F3 3A 54 10	1330 LDA 1054H
00F6 2F	1340 CMA
00F7 E6 2F	1350 ANI 2FH
00F9 D3 00	1360 OUT 00
00FB E6 0F	1370 ANI 0FH
00FD D3 00	1380 OUT 00
00FF 3A 53 10	1390 LDA 1053H
0102 2F	1400 CMA
0103 E6 4F	1410 ANI 4FH
0105 D3 00	1420 OUT 00
0107 E6 0F	1430 ANI 0FH
0109 D3 00	1440 OUT 00
010B 2A 44 10	1450 LHLD 1044H
010E 4D	1460 MOV C,L
010F 44	1470 MOV B,H
0110 CD 00 00	1480 CALL SQRT
0113 AF	1490 XRA A
0114 67	1500 MOV H,A

0	
0115 22 60 10	1510 SHLD 1060H
0118 E8	1520 XCHG
0119 2A 60 10	1530 LHLD 1060H
011C 3A FF 03	1540 LDA 03FFH
011F 3D	1550 DCR A
0120 CA 27 01	1560 JZ \$+4
0123 19	1570 DAD D
0124 C3 22 01	1580 JMP \$-5
0127 7C	1590 MOV A,H
0128 0F	1600 RRC
0129 0F	1610 RRC
012A E6 C0	1620 ANI 0C0H
012C 47	1630 MOV B,A
012D 7D	1640 MOV A,L
012E 0F	1650 RRC
012F 0F	1660 RRC
0130 E6 3F	1670 ANI 3FH
0132 B0	1680 ORA B
0133 32 62 10	1690 STA 1062H
0136 3A 44 10	1700 LDA 1044H
0139 0F	1710 RRC
013A 0F	1720 RRC
013B E6 3F	1730 ANI 3FH
013D 47	1740 MOV B,A
013E 3A 45 10	1750 LDA 1045H
0141 07	1760 RLC
0142 07	1770 RLC
0143 07	1780 RLC
0144 07	1790 RLC
0145 07	1800 RLC
0146 07	1810 RLC
0147 E6 C0	1820 ANI 0C0H
0149 B0	1830 ORA B
014A 32 47 10	1840 STA 1047H
014D 3A 45 10	1850 LDA 1045H
0150 0F	1860 RRC
0151 0F	1870 RRC
0152 E6 3F	1880 ANI 3FH
0154 32 48 10	1890 STA 1048H
0157 2A 47 10	1900 LHLD 1047H
015A 22 30 10	1910 SHLD 1030H
015D 2A 47 10	1920 LHLD 1047H
0160 22 32 10	1930 SHLD 1032H
0163 2A 47 10	1940 LHLD 1047H
0166 22 34 10	1950 SHLD 1034H
0169 2A 47 10	1960 LHLD 1047H
016C 22 36 10	1970 SHLD 1036H
016F 1E FF	1980 WAIT MVI E,0FFH
0171 16 B0	1990 MVI D,0B0H
0173 15	2000 DCR D

0174 00	2010	NOP
0175 00	2030	NOP
0176 00	2040	NOP
0177 00	2050	NOP
0178 00	2060	NOP
0179 00	2070	NOP
017A C2 73 01	2080	JNZ WAIT+4
017D AF	2090	XRA A
017E DB 01	2100	IN 01
0180 E6 80	2110	ANI 80H
0182 C2 00 00	2120	JNZ SWMAT
0185 1D	2130	DCR E
0186 C2 71 01	2140	JNZ WAIT+2
0189 3E 03	2150	MVI A,03H
018B D3 01	2160	OUT 01
018D 3A 00 10	2170	LDA 1000H
0190 47	2180	GO MOV B,A
0191 3A 01 10	2190	LDA 1001H
0194 3D	2200	DCR A
0195 32 01 10	2210	STA 1001H
0198 1E 10	2220	MVI E,10H
019A BB	2230	CMP E
019B DA B4 01	2240	JCINI
019E 4F	2250	MOV C,A
019F DB 01	2260	IN 01
01A1 2F	2270	CMA
01A2 E6 0F	2280	ANI 0FH
01A4 02	2290	STAX B
01A5 3A 01 10	2300	LDA 1001H
01A8 3D	2310	DCR A
01A9 32 01 10	2320	STA 1001H
01AC 4F	2330	MOV C,A
01AD DB 00	2340	IN 00H
01AF 2F	2350	CMA
01B0 02	2360	STAX B
01B1 C3 1D 00	2370	JMP ST1
01B4 3A 02 10	2380	INI LDA 1002H
01B7 32 01 10	2390	STA 1001H
01BA C3 90 01	2400	JMP GO
01BD 3E 05	2410	ALARMLOW MVI A,05
01BF D3 01	2420	OUT 01
01C1 3E 06	2430	MVI A,06
01C3 D3 01	2440	OUT 01
01C5 C3 3D 00	2450	JMP ST3
01C8 2A FA 03	2460	UPPER LHLD 03FAH
01CB 7C	2470	MOV A,H
01CC 2F	2480	CMA
01CD 47	2490	MOV B,A
01CE 7D	2500	MOV A,L

01CF 2F	2510 CMA
01D0 4F	2520 MOV C,A
01D1 03	2530 INX B
01D2 2A 44 10	2540 LHLD 1044H
01D5 AF	2550 XRA A
01D6 09	2560 DAD B
01D7 DA E1 01	2570 JC HIGH
01DA 3E 01	2580 MVI A,01
01DC D3 01	2590 OUT 01
01DE C0 35 00	2600 JMP ST2
01E1 3E 09	2610 HIGH MVI A,09H
01E3 D3 01	2620 OUT 01
01E5 3E 0A	2630 MVI A,0AH
01E7 D3 01	2640 OUT 01
01E9 C3 3D 00	2650 JMP ST3
01EC	2660 SP EQU 6

0200 16 64	0000 BINARYBCD MVI D,64H
0202 CD 20 02	0010 CALL UDIV
0205 61	0020 MOV H,C
0206 48	0030 MOV C,B
0207 CD 12 02	0040 CALL BCD1
020A 6F	0050 MOV L,A
020B 4C	0060 MOV C,H
020C CD 12 02	0070 CALL BCD1
020F 47	0080 MOV B,A
0210 4D	0090 MOV C,L
0211 C9	0100 RET
0212 06 00	0110 BCD1 MVI B,00
0214 16 0A	0120 MVI D,0AH
0216 CD 20 02	0130 CALL UDIV
0219 79	0140 MOV A,C
021A 07	0150 RLC
021B 07	0160 RLC
021C 07	0170 RLC
021D 07	0180 RLC
021E B0	0190 ORA B
021F C9	0200 RET
0220 1E 09	0210 UDIV MVI E,09H
0222 78	0220 MOV A,B
0223 47	0230 UDV1 MOV B,A
0224 79	0240 MOV A,C
0225 17	0250 RAL
0226 4F	0260 MOV C,A
0227 1D	0270 DCR E
0228 CA 3D 02	0280 JZ UDV2
022B 78	0290 MOV A,B
022C 17	0300 RAL
022D D2 35 02	0310 JNC UDV0
0230 92	0320 SUB D
0231 B7	0330 ORA A
0232 C3 23 02	0340 JMP UDV1
0235 92	0350 UDV0 SUB D
0236 D2 23 02	0360 JNC UDV1
0239 82	0370 ADD D
023A C3 23 02	0380 JMP UDV1
023D 79	0390 UDV2 MOV A,C
023E 2F	0400 CMA
023F 4F	0410 MOV C,A
0240 C9	0420 RET

0241 AF	0430 SQRT XRA A
0242 6F	0440 MOV L,A
0243 16 01	0450 MVI D,01
0245 1E 09	0460 MVI E,09H
0247 CD 61 02	0470 SQR1 CALL SHIFT
024A CD 61 02	0480 CALL SHIFT
024D 1D	0490 DCR E
024E C8	0500 RZ
024F 92	0510 SUB D
0250 D2 54 02	0520 JNC SQR3
0253 82	0530 ADD D
0254 F5	0540 SQR3 PUSH PSW
0255 7D	0550 MOV A,L
0256 3F	0560 CMC
0257 17	0570 RAL
0258 6F	0580 MOV L,A
0259 07	0590 RLC
025A 07	0600 RLC
025B 57	0610 MOV D,A
025C 14	0620 INR D
025D F1	0630 POP PSW
025E C3 47 02	0640 JMP SQR1
0261 67	0650 SHIFT MOV H,A
0262 79	0660 MOV A,C
0263 17	0661 RAL
0264 4F	0670 MOV C,A
0265 78	0680 MOV A,B
0266 17	0690 RAL
0267 47	0700 MOV B,A
0268 7C	0701 MOV A,H
0269 17	0710 RAL
026A C9	0720 RET
026B	0730 PSW EQU 6

ASSM 0300

0300 3E 01	0000 SWMAT MVI A,01
0302 D3 01	0010 OUT 01
0304 3E 02	0020 MVI A,02
0306 D3 01	0030 OUT 01
0308 2A 30 10	0040 LHLD 1030H
030B EB	0050 XCHG
030C 2A 32 10	0060 LHLD 1032H
030F 19	0070 DAD D
0310 EB	0080 XCHG
0311 2A 34 10	0090 LHLD 1034H
0314 19	0100 DAD D
0315 EB	0110 XCHG
0316 2A 36 10	0120 LHLD 1036H
0319 19	0130 DAD D
031A 22 39 10	0140 SHLD 1039H
031D 31 00 13	0150 LXI SP,1300H
0320 2A 39 10	0160 LHLD 1039H
0323 4D	0170 MOV C,L
0324 44	0180 MOV B,H
0325 CD 00 00	0190 CALL BINARYBCD
0328 78	0200 MOV A,B
0329 32 3C 10	0210 STA 103CH
032C 79	0220 MOV A,C
032D 32 3D 10	0230 STA 103DH
0330 3A 3C 10	0240 LDA 103CH
0333 E6 0F	0250 ANI 0FH
0335 32 5C 10	0260 STA 105CH
0338 3A 3D 10	0270 LDA 103DH
033B E6 0F	0280 ANI 0FH
033D 32 5E 10	0290 STA 105EH
0340 3A 3D 10	0300 LDA 103DH
0343 0F	0310 RRC
0344 0F	0320 RRC
0345 0F	0330 RRC
0346 0F	0340 RRC
0347 E6 0F	0350 ANI 0FH
0349 32 5D 10	0360 STA 105DH
034C 2F	0370 CMA
034D E6 2F	0380 ANI 2FH
034F D3 00	0390 OUT 00
0351 E6 0F	0400 ANI 0FH
0353 D3 00	0410 OUT 00
0355 3A 5E 10	0420 LDA 105EH
0358 2F	0430 CMA
0359 E6 1F	0440 ANI 1FH
035B D3 00	0450 OUT 00
035D E6 0F	0460 ANI 0FH
035F D3 00	0470 OUT 00
0361 3A 5C 10	0480 LDA 105CH
0364 2F	0490 CMA
0365 E6 4F	0500 ANI 4FH

0367 D3 00	0510 OUT 00
0369 E6 0F	0520 ANI 0FH
036B D3 00	0530 OUT 00
036D 3A 62 10	0540 LDA 1062H
0370 4F	0550 MOV C,A
0371 AF	0560 XRA A
0372 47	0570 MOV B,A
0373 2A 44 10	0580 LHLD 1044H
0376 09	0590 DAD B
0377 7C	0600 MOV A,H
0378 2F	0610 CMA
0379 47	0620 MOV B,A
037A 7D	0630 MOV A,L
037B 2F	0640 CMA
037C 4F	0650 MOV C,A
037D 03	0660 INX B
037E 2A 39 10	0670 LHLD 1039H
0381 37	0680 STC
0382 3F	0690 CMC
0383 09	0700 DAD B
0384 DA D2 03	0710 JC REAL
0387 22 68 10	0720 SHLD 1068H
038A 1E F0	0730 DELAY MVI E,0F0H
038C 16 80	0740 MVI D,80H
038E 15	0750 DCR D
038F CA 8E 03	0760 JZ DELAY+4
0392 1D	0770 DCR E
0393 CA 8C 03	0780 JZ DELAY+2
0396 3E 03	0790 MVI A,03H
0398 D3 01	0800 OUT 01
039A 3A 03 10	0810 LDA 1003H
039D 47	0820 MOV B,A
039E 3A 04 10	0830 RET LDA 1004H
03A1 3D	0840 DCR A
03A2 32 04 10	0850 STA 1004H
03A5 1E 30	0860 MVI E,30H
03A7 BB	0870 CMP E
03A8 DA,C9 03	0880 JC RESTORE
03AB 4F	0890 MOV C,A
03AC DB 01	0900 IN 01
03AE 2F	0910 CMA
03AF E6 0F	0920 ANI 0FH
03B1 02	0930 STAX B
03B2 3A 04 10	0940 LDA 1004H
03B5 3D	0950 DCR A
03B6 32 04 10	0960 STA 1004H
03B9 4F	0970 MOV C,A
03BA DB 00	0980 IN 00
03BC 2F	0990 CMA
03BD 02	1000 STAX B

03BE AF	1010 XRA A
03BF DB 01	1020 IN 01
03C1 E6 80	1030 ANI 80H
03C3 C2 00 03	1040 JNZ SWMAT
03C6 C3 00 00	1050 JMP ST1
03C9 3A 05 10	1060 RESTORE LDA 1005H
03CC 32 04 10	1070 STA 1004H
03CF C3 9E 03	1080 JMP RET
03D2 3E 80	1090 REAL MVI A,80H
03D4 D3 00	1100 OUT 00
03D6 C3 D2 03	1110 JMP REAL
03D9	1120 SP EQU 6

RFP-2808

APPENDIX B
Complete PROM Listing of Operating System Test Routine

03D6 C3 00 04	1110	JMP TEST*
0400 3E 09	0000	MVI A,09H
0402 32 80 1C	0010	STA 1C80H
0405 32 81 1C	0020	STA 1C81H
0408 3E 04	0030	MVI A,04H
040A 32 82 1C	0040	STA 1C82H
040D 32 83 1C	0050	STA 1C83H
0410 AF	0060	XRA A
0411 32 01 1F	0070	STA 1F01H
0414 32 02 1F	0080	STA 1F02H
0417 32 03 1F	0090	STA 1F03H
041A 32 04 1F	0100	STA 1F04H
041D 31 00 1F	0110	LXI SP,1F00H
0420 21 81 1C	0120	GO LXI H,1C81H
0423 35	0130	DCR M
0424 C2 00 00	0140	JNZ ST1
0427 3A 80 1C	0150	LDA 1C80H
042A 32 81 1C	0160	STA 1C81H
042D 21 83 1C	0170	LXI H,1C83H
0430 35	0180	DCR M
0431 C2 00 00	0190	JNZ SWMAT
0434 3A 82 1C	0200	LDA 1C82H
0437 32 83 1C	0210	STA 1C83H
043A C3 20 04	0220	JMP GO
043D 3E 8F	0230	MVI A,8FH
043F D3 00	0240	OUT 00
0441 3E FF	0250	MVI A,0FFH
0443 D3 00	0260	OUT 00
0445 1E FF	0270	MVI E,0FFH
0447 16 FF	0280	RELOAD MVI D,0FFH
0449 15	0290	WAIT DCR D
044A C2 49 04	0300	JNZ WAIT
044D 1D	0310	DCR E
044E C2 47 04	0320	JNZ RELOAD
0451 F1	0330	POP PSW
0452 F1	0340	POP PSW
0453 3C	0350	INR A
0454 27	0360	DAA
0455 F5	0370	PUSH PSW
0456 F5	0380	PUSH PSW
0457 3A 03 1F	0390	LDA 1F03H
045A E6 0F	0400	ANI 0FH
045C F6 E0	0410	ORI 0E0H
045E D3 00	0420	OUT 00
0460 F6 F0	0430	ORI 0F0H
0462 D3 00	0440	OUT 00
0464 3A 1F 03	0450	LDA 031FH
0467 0F	0460	RRC

TO UTILIZE TEST, THIS CHANGE MUST BE MADE TO THE MAIN PROGRAM

0468 0F	0470 RRC
0469 0F	0480 RRC
046A 0F	0490 RRC
046B E6 0F	0500 ANI 0FH
046D F6 D0	0510 ORI 0D0H
046F D3 00	0520 OUT 00
0471 F6 F0	0530 ORI 0F0H
0473 D3 00	0540 OUT 00
0475 1E FF	0550 MVI E,0FFH
0477 16 FF	0560 DONE MVI D,0FFH
0479 15	0570 DELAY DCR D
047A C2 79 04	0580 JNZ DELAY
047D 1D	0590 DCR E
047E C2 77 04	0600 JNZ DONE
0481 C3 20 04	0610 JMP GO
0484	0620 SP EQU 6
0484	0630 PSW EQU 6