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SUMMARY

Control of waste glass durability is a major concern in the immobilization of radioactive
and mixed wastes. Leaching rate in standardized laboratory tests is being used as a
demonstration of consistency of the response of waste glasses in the final disposal
environment. The leaching of silicate and borosilicate glasses containing alkali or alkaline
earth elements is known to be autocatalytic, in that the initial ion exchange of alkali in the
glass for hydrogen ions in water results in the formation of OH and increases the pH of the
leachate. The increased pH then increases the rate of silicate network attack, accelerating
the leaching effect. In well formulated glasses this effect reaches a thermodynamic
equilibrium when leachate saturation of a critical species, such as silica, or a dynamic
equilibrium is reached when the pH shift caused by incremental leaching has negligible
effect on pH.

The seven day PCT leach test {1] results of a statistically balanced composition set of
thirty samples in the Si-B-Na-Ca-Al-Fe-O system [2] were analyzed using canonical
correlation methods. Glass compositions ranged from very durable to those with relatively
high solubility: Boron release data examined varied by three orders of magnitude, silicon
and sodium releases varied by over two orders of magnitude. Leachate results were
analyzed to determine if the inclusion of pH with the leachate composition in the
dependent variable set is statistically justifiable, and if it improves the overall correlation
when compared to similar analyses excluding the pH term. It was found that the inclusion
of the pH term leads to an extremely high correlation coefficient of R= -0.984. Exclusion



of the pH term lead to an overall correlation coetficient of -0.948 indicating that the pH is
------ . The leachate final pH could be predicted by glass composition with a £ of 0.952.

1. CANONICAL CORRELATION ANALYSIS

Here we will be concerned with finding a vector of weights for each of two sets of
variables such that the correlation between the two linear composites using these weights
is a maximum. This is the problem of canonical correlation, which was described by its
originator Hotelling H. (1935), as a way of determining the most predictable criterion.

Contrary to multiple regression the canonical correlation situation involves at least two
dependent variables on the dependent variable side as well as at least two variables on the
independent variable side. The variables on the dependent side are weighted in such a way
that the linear composite of the dependent variables has a maximum correlation with a
linear composite derived from the independent variables. If these dependent variables (i.e.
Si, B, Na, Ca, Al, Fe, pH) are considered as criteria , then their unique weights yields the
most predictable criterion for linear combination of the dependent variables. Statistically,
the problem is to find a vector @ and a vector b such that the correlation between the
composites a’x and b'y is a maximum where x is a vector of random variables such as Si,
B, Na, Ca, Al, Fe, pH and y is another vector of random variables such as SiOp, AlHO3,

B,03, Fep03, FeO, Ca0, Nay(y . The correlation between a’x and b'y for an arbitrary a
and b can be written as

acC,b
ra'x y = :
* Ja'Ca,b'Ch
where Cyy is the cross-covariance matrix between the variables in x and the variable in y,

Cx is the covariance matrix of variables in x, and Cy, is the covariance matrix of variables
iny.

This canonical correlation model is merely a tool for examining the interrelationship
between two sets of variables. Multivariate normality needs to be assumed for tests of
statistical significance. Canonical correlation is closely related to discriminant analysis
since interest is focused on the relationship between two sets of continuous variables.

The technique is also related to multivariate regression analysis, where, each continuous
dependent is regressed upon a set of continuous independent variables. If we consider one
set of variables as dependent variables, then the canonical weights for the dependent
variables are the regression weights that would predict the linear combination of the
dependent variables ( that is, the canonical variate representing the dependent variables
obtained from the canonical correlation analysis). As in principal components, it is possible
to generate more then one canonical correlation between two variable sets.
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2. FORMULATION OF CANONICAL CORRELATION ANALYSIS

Similar to principal components analysis, the problem can be formulated as a maximization
problem. Algebraically, the problem is to maximize «a 'nyb subject to the constraints that
a'Cya = T and b'C)b = I. These constraints are needed to solve for unique weighting
vectors a and b and simply indicate that each linear composite 1s constrained to have a
variance of one. Thus the problem is to find the vectors a and b that maximize.

z=a'C, b-M(@Ca-1)-L,'Ch-1)
where A, and Ay are Lagrange multipliers.

We may standardize the variables and maximize.

z=a'R b-A (a'Ra-1)-A,(b'Rb-1)
where R\, represents the cross-correlaticns between the first set of variables (that is, x)
and the second set of variables (that is, y); Ry represents the intercorrelations among the
first set of variables (x), and Ry represents the intercorrelations among the second set of

variables (y). The standardization is purely a matter of convenience in exposition and the
avoidance of unduly complicated notations, and loses no generality.

Applying multivariate differential calculus to the function z results in two characteristic
equations that can be solved for 4, 4, and b. They are

-1 - \ _
(R'.R,,R.R, -\I).a=0
and

(R.R,, .RR,,-21)b=0

There are two latent roots and associated vectors a and b that satisfy these characteristic
equations. The largest latent root turns out to be the largest canonical correlation squared
and the associated weighting vectors are a and b. The next largest latent root, 1y, is the
next largest canonical correlation squared and has another pair of canonical weight
vectors, ap and by, such that the correlation between a'px and b'yy is maximal given
certain conditions discussed below. The number of possible nonzero latent roots or,
equivalently, canonical correlations is equal to the dimension of the smallest variable set.
For our example, the dimension of the smallest variable set is seven, so that the seven
nonzero canonical correlations are possible. The size of the canonical correlation is, of
course, a function of the intercorrelations within and between the variable sets. As in
principal components and linear discriminant function analysis, some of the canonical
correlations might be to small to be of any practical significance. A test for the statistical
significance of canonical correlation is required.

Other properties of the solution to the six characteristic equations associated with
canonical correlation analysis are discussed below. First of all, note that the dimensions of
a and b will be different unless the number of variables in the two variable sets is equal.
Let a; be the ih set of canonical weight vectors associated with one set (x) and bj be the
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jth set of canonical weight vectors associated with the other set (y). Then the apx of the
first set are uncorrelated with each other, that is, A'R\.4 = I where 4 has as column
vectors the set of canonical weight vectors associated with the set x and Ry is the
correlation matrix for x. Similarly, the bjy of the second set satisfies the property that
B'RyB = [ and, hence, the canonical variates associated with y are uncorrelated with one
another. Most important is the fact that the correlation between agx and by is zero for

i #j and equal to the canonical correlation for 7 = . This can be summarized as

A'Ry,B = D, where Ry, is the cross-correlation matrix between x and y and Dp is a
diagonal matrix of canonical correlation coefficients.

Note that the maximization of multivariate functions associated with both linear
discriminant function analysis and principal component analysis also resulted in
characteristic equations for which characteristic (latent) roots and their associated latent
vectors needed to be solved. As in the other characteristic equations, there may be more
than one nonzero latent root. For principal components, the latent roots turned out to be
the variances of the associated principal components. For linear function analysis, the
latent roots turned out to be the ratio of the between- to the within-group sum of squares
for the associated linear discriminant functions. It is not surprising then, that the latent
roots in the two characteristic equations associated with canonical correlation analysis turn
out to be the squares of the canonical correlations. The latent roots for both the
characteristic equations associated with canonical correlation analysis are identical. Once
these are solved for, their associated vectors, the a;'s, associated with the first set of
variables (that is, x) can be solved for by substituting, in turn, the latent roots into the first
characteristic equation. Similarly, substituting the latent roots, in turn, into the second
characteristic equation yields the associated latent vectors, the )j's, for the second set of
variables (y).

3. SIGNIFICANCE TESTS OF CANONICAL VARIATES

Two kinds of significance tests are of interest in canonical correlation analysis. The first is
an overall test to decide whether there is any significant linear relationship between the
two set of variables. If overall significance is found, we would then want to know how
many of the canonical-variate pairs are significant. The significance tests here are closely
related to those described for discriminant analysis.

To see this relationship we can compare eigen value y; from the basic equation
W'B-A)v=0
for discriminant analysis via the discriminant criterion approach and the corresponding
eigen value A; from the basic equation
(RR.,R™R -A1)b=0

in the canonical correlation approach. Namely, the corresponding eigenvalues resulting
from these two basic equations are related by the equality

H, :’?’i(l—fui)



As a consequence, Wilks' A criterion, can be expressibie as

A= /IL[“-*'[I‘)

may also be expressed in terms of the A, as follows:

A=TTa-4) (1)

The above demonstration, of course, shows only that this alternative expression for A
holds when the A; results from canonical analysis as applied to the problem of
discriminant analysis. However, it is quite plausible that Eq. (1) will continue to hold for

canonical analysis in general. For each A; there is a conditionally maximal value of R?,
the squared correlation between corresponding pairs of canonical variates constructed
from the two sets of variables. Thus, each factor of the product

(1-2)(1=4,)(1-4,) @)
is in fact the coefficient of alienation between a particular pair of canonical variates. This is
consistent with the fact that A is a statistics that is inversely related to the magnitude of

differences or strength of relationship: the smaller the value of A, the greater the
difference or relationship in question.

There is a problem, however, in that the definition of A as the ratio |WV/|T] (used in
connection with discriminant analysis) does not make sense in context of canonical
analysis. The sample in this situation is not composed of several subgroups, and hence
there is no such thing as a within-group SSCP matrix W. The resolution of this difficulty
lies in introducing a more general concept of which the W matrix is a special instance
applicable to multigroup significance tests and discriminant analysis. The general concept
is the error SSCP matrix, which we will denote S,. Thus, a more general definition of A is
given as follows:

|S.|
|7
In the application of A encountered up to now, the within-group SSCP matrix was the
appropriate error SSCP matrix. In the context of canonical analysis, error SSCP matrix is
the residual SSCP matrix after the effect of the correlations between the canonical-variate
pairs have been removed. Of course, this matrix need not actually be computed in order to

determine the value of A, since A may be obtained from Eq. (2) once the required
eigenvalues are found.

A=

After A has been computed, the overall significance test may be carried out by either the
chi-square approximation or the F-ratio approximation, with g+1. This is consistent with
the fact that, in using the canonical correlation approach to discriminant analysis, K-1
"dummy criterion variables" were employed; that is, the number of groups is one more



than the number of variables in the second set. Thus, Barlett's chi-square approximation
becomes

V=-[N-3/2-(p+q)/2]InA

= —[N-3/2-(p+q)/2]2In(1-1,) 3)
J=1
with pg degrees of freedom. Similarly, Rao's F-ratio approximation is now written as

1-A" ms-pql2+1
RRao = /s ’
A rq

2 2 _
m=N-3/2-(p+q)/2 ands = /—é’—‘i,—“
p +q -3

and R, is to be referred to as F-distribution with pg degrees of freedom in the
numerator, and [ms - pg/2 + 1] in the denominator. In the case of at least one set consists
of single variable in the sense that canonical correlation then reduces to, at most, a
multiple correlation.

Qo)

where

Beyond the overall significance test described above there are the tests for deciding how
many of the canonical correlations should be regarded as significant. The procedure here
depends again on the fact that each term of the sum in Eq. (3) for V is itself an
approximate chi-square variate. That is for each j,

V,=-[N-3/2-(p+q)/2]ln(1-4,) (5)
is distributed approximately as chi-square with p + g - (2j - 1) degrees of freedom.
Consequently, the cumulative differences between /' and V1, V2 and so on, are also
approximate chi-square variates, and they permit our testing whether a significant {linear)

relationship exists between the two sets of variables after the effects of the first, second,
and so forth, canonical-variate pairs have cumulatively been removed.

Residual After Removing  Approximate 2 statistics d.f
First canonical pair V- -g-1
First two canonical pairs V-V1-Va (r-2)q-2)

First three canonical pairs V-Vy-Va-13 P-3)g-3)

As soon as the residual after removing the effects of the first s canonical variate pairs
becomes smaller than the prescribed centile point of the appropriate chi-square
distribution, we may conclude that only the first s canonical correlations are significant.



4. EXAMPLE WITH AND WITHOUT pH

The data set given in tables 1 and 2 were provided by Savannah River Technology Center,
Westinghouse Savannah River Co. We will analyze this data set with and without pH
term.

Table 1. Leachate Composition and pH Data of One Week PCT Average of three replicate samples

[G‘“' Si Ave B Ave Na Ave CaAve Al Ave Fe Ave  Ave
ppm ppm ppm ppm ppm ppm pH

1 52.573 48.466 53.089 0 17.533 0 9.05
2 24.807 2.318 42.459 4.127 7.095 0 10.92
4 105.257 9.837 249.357 0 38.482 0 11.76
5 98.434 30.634 77.591 18.516 0 0 10.00
6 88.960 66.617 106.893 0 0 6.814 9.53
7 8343.100 - 2679.600 9494.067 0 0 0 11.39
8 58.534 7.541 126.130 0.562 0 1.395 11.45
9 8924.700 1180.567 10499.333 1.133 0 0 12.63
10 383.510 43.230 572.957 0 0 54.190 11.95
11 20.983 24,327 64.396 3.445 8.091 0 10.18
13 39.754 183.253 405.597 0 18.745 0 10.26
15 59.070 4.896 272.367 5272 24.712 0 12.00
16 102.617 13.486 214.450 0 42.116 41.627 11.69
17 33.395 15.328 95.899 0.807 14.621 0 11.18
18 3501.000 2766.067 8780.533 2.600 0 0 12.01
19 159.351 410.934 1061.800 0 0 17.382 10.97
20 164.523 23.710 638.113 0.100 0 1.153 12.32
21 67.103 14.711 104.683 0.884 17.441 6.390 11.06
22 36.865 9.990 65.900 0.435 23.049 2.236 10.75
23 40.831 7.296 54.823 0.519 27.380 4213 10.47
24 63.451 25.088 150.317 1.036 0 6.582 11.16
25 50.296 35.125 90.120 0.587 17.751 6.720 10.05
26 63.941 6.808 137.417 0.894 23.359 4.405 11.46
27 27.797 6.769 71.170 1.141 17.094 1132 11.04
28 67.661 17.911 89.273 0 25.124 21.198 10.65
29 60.108 13.116 93.032 0.280 16.300 3.211 10.95
30 71.352 59.421 245.347 1.248 10.972 0 11.47
31 70.137 14.925 160.140 0.973 37.169 7.290 11.49
32 24.751 7.202 42.069 0.557 15.925 1.568 10.42
33 41,955 9.152 63.038 0.624 21.693 3.957 10.72
Min 20.983 2.318 42.069 0 0 0 9.05
Max 8924.7 2766.067 10499.333 18.516 42.116 54.19 12.63
n 761.561 258.044 1137412 1.525 14.155 6.382 11.033



Table 2. Glass Composition Molar Fractions

GlassID Si0y A0y  By03  Fe03 1O CuO NayO

1 06049 01046  0.1407 00000  0.0000 00000  0.1499
2 05903  0.1038  0.0495 00000  0.0000  0.1035 01529
4 0.6000  0.1107 00430 00000 00000 00000 02454
5 0.5887 00349  0.1365 00000 00000 00961  0.1438
6 0.5857 00296  0.1312 00871 00256 00000  0.1407
7 0.5938 00062  0.1446 00000  0.0000 00000  0.2555
8 0.5800 00252 00473 00828 00290 00934  0.1424
9 0.5953 00012 00491 00000 00000  0.1002 02543
10 05777 00165 00409 00794 00294 00000 02561

11 0.4817 0.1084 0.1543 0.0000  0.0000 0.1040  0.1516
13 0.5000 0.1198  0.1390 0.0000  0.0000 0.0000  0.2412
15 0.5036 0.1121 0.0453 0.0000  0.0000 0.0980  0.2410
16 0.5046 0.1084 0.0440 0.0874 0.0225 0.0000  0.2331
17 0.4551 0.0810  0.1344 0.0715 0.0340 0.0896 0.1344
18 0.4912 0.0057  0.1429 0.0000  0.0000 0.1026  0.2576
19 0.4643 0.0260  0.1319 0.0901 0.0146 0.0000  0.2730
20 0.4876 0.0067  0.0496 0.0975 0.0133 0.0992  0.2461
21 0.5684 0.0751 0.0861 0.0374 0.0080 0.0384  0.1865
22 0.4694 0.1295 0.0974 0.0489  0.0166 0.0532  0.1850
23 0.5047 0.1568  0.0774 0.0295 0.0162 0.0352  0.1802
24 0.5302 0.0500 0.1036 0.0527  0.0166 0.0560  0.1909
25 0.5212 0.0876 0.1357 0.0355 0.0111 0.0370  0.1720
26 0.5553 0.0755 0.0432 0.0493 0.0244 0.0563  0.1960
27 0.5112 0.0972 0.0795 0.0333  0.0122 0.0936  0.1731
28 0.5412 0.1016 0.0938 0.0496  0.0212 0.0000  0.1926
29 0.5348 0.0817  0.0765 0.0784 0.0301 0.0345  0.1640
30 0.5542 0.0673 0.1130 0.0000  0.0000 0.0631  0.2025
31 0.5099 0.1002 0.0776 0.0346  0.0109 0.0368  0.2300
32 0.5264 0.1130 0.0943 0.0442 0.0282 0.0541  0.1400
i3 0.5116 0.1234 0.0877 0.0372  0.0181 0.0430 0.1790
Min 0.4550 0.0010 0.0410 0.0000  0.0000 0.0000 0.1340
Max 0.6050 0.1570 0.1540 0.0980  0.0340 0.1040 0.2730
n 0.5350 0.0750 0.0930 0.0380 0.0130 0.0500  0.1970

4.1 Analysis with Inclusion of pH Term

We have two subsets of variables, x and y, where x has seven durability measures [X1, ...
,x7] , namely (Si, B, Na, Ca, Al, Fe, pH) that had the correlation matrix Ry, where, Ry
indicates that sodium, boron, and silicon release are highly correlated, i.e. leaching occurs
by network dissolution. Low correlation with Fe, Ca, and Al is because of large fraction of
samples containing zero for these elements in the balanced design, and possible
precipitation of these elements. On the other hand y has a measure of seven oxide mole
fraction measures [y, ... ,y7], namely (8iOy, Aly03, B203, Fe>03, FeO, Ca0, Nay0)
that had the correlation matrix Ry, where R,, shows that the sample space is balanced, with
the exception of the FepO3 and FeO which is caused by the natural equilibrium with air at
melt temperature of these species. Further more the cross-correlation matrix Ry, for these
sets of variables provides cross-correlation information between dependent variable set x
and independent variable set y.



Si

Si 1 0.806 0.956 -0.057

B| 0.806

Na| 0956 0914 1 -0.044

B Na

1 0.914 -0.034 -0

R, =Ca| -0.057 -0.034 -0.044
Al| -0.361 -0.384 -0.396 -0.22

Fe| -0.14 -0.148 -0.145 -0.204
pH\ 0397 0.311 0438 -0.154

Si0,

Si0, 1
Al,O, | -0.288
B,0, | -0.208
R, = Fe,0,| -0.284
FeO | -0.216
CaO | -0.187
Na,O | -0.107
SiO,
Si( 0.303
B| 0.087
Na} 0.192
R = Ca| 0.162

ALLO, B,0,
~0.288 -0.208
1 -0.07
-0.07 1
~0.219 -0.257
0.007 -0.25
-0.153 ~0.117
~0.335 -0.222
ALLO, B0,
-0.529 0.075
~0.532 0.321
~0.576 0.136
~0.108 0.164

Ca Al Fe pH
-0.361 -0.14 0.397
384 -0.148 0.311
-0.396 -0.145 0.438
1 -0.22 -0.204 -0.154

Al| -0.193 0.791 -0.312 -0.076
Fe| -0.004 -0.108 -0.299 0.502
pH\ -0.072 -0.399 -0.618 0.098

1 0.115 -0.032

0.115 1 0.182
-0.032 0.182 1
Fe,0, FeO Ca0 Na,0
-0.284 -0.216 -0.187 -0.107
-0.219 0.007 -0.153 -0.335
-0.257 -0.25 -0.117 -0.222
1 0.85 -0.221 -0.064
0.85 \ -0.186 -0.322
-0.221 -0.186 I -0.246
-0.064 -0.322 -0.246 1)
Fe,0, FeO CaO Na,0O
-0.335 -0.343 0.075 0.435)
-0.329 -0.36 0.048 0.47
-0.342 -0.372 0.135 0.501
-0.37 -0.352 0.451 -0.234
0.058 -0.33 0.025
0.425 -0.49 0.32
-0.014 0.306 0.664



A NI

‘I\‘\

il

inl

If a is a nonnull vector, then the determinant of Rx'leyRy']R’xy -Al must vanish since
the columns of the matrix must be linearly dependent to meet the conditions of the
characteristic equation. Substituting the appropriate matrix from our example into
IRy~ leyR -IR"y,, -AL |, we find the characteristic roots 4; = [0.969, 0.847, 0.659, 0.504,
0.263, 0.085,0 ? The square root of these characteristic roots yields the canonical

correlations, namely /A, .

The next step is to find the characteristic vectors a; and b; associated with the largest

canonical correlation namely /A, . The vectors a; and b; of interest are found by solving
the homogeneous equations

RI'R RI'R a -Aa =0 and R;'R_R;'R_b —Ab, respectively.

The eigen vectors of x and y corresponding to characteristic roots mentioned above are
summarized by 4 and B matrix belov,. The columns of A4 and B matrix are the eigen
vectors a;, b; corresponding to the characteristic root A; For interpretive convenience, we
can rescale the vectors by multiplying all the elements by the unique scalar that will set the
element with the largest absolute value to one. For this example, the eigen vectors of x
and y obtained has been rescaled based on the following largest absolute values (0.663,
0.672, -0.616, 0.772, 0.801, 0.727, -0.818) and (0.445, 0.443, 0.445, -0.444, -0.445, -
0.444, -0.444) respectively, and summarized in A and B. The other elements or weights in

the vector may then be easily ~~mpared relative to the most important variability in the
canonical variate.

(-0.601 0.149 -0.735 0.035 1 -0.074 -0.499
—0.284 -0.395 -0.791 0.471 -0.203 0.02 -0.476
1 -0305 1 0.578 -0.719 0.208 I
CA=| 0229 -0461 0322 0244 0.04 1 -0.031
-0.414 0.704 0.203 1 -0.012 0.261 0.014
-0.072 0.485 -0.513 —0.158 -0.004 0.866 0.039
\ 0.778 1 0.25 -0.186 -0.003 -0.162 -0.121
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1 1 1 1 1 1 1
0.986 0.987 0.971 0.981 0.973 0.975 0.977
0.858 0.843 0.857 0.859 0.852 0.856 0.854
E=|0.767 0.765 0.758 0.734 0.758 0.761 0.778
0.248 0.262 0.259 0.269 0.254 0.255 0.232
0.878 0.889 0.885 0.889 0.888 0.89 0.887
LO.963 0.987 0.976 0.988 0.971 0.974 0.972

Based on rescaled vector the first canonical variate for the first set of dependent
variables, x, from A4 is :

a'yx =-0.601 Si -0.284 B +Na + 0.229Ca - 0.414 Al - 0.072 Fe +0.778 pH

Similarly based on rescaled vectors the first canonical variate for the first set of
independent variables, y, from B is:

b'yy = SiOy + 0.986 AlyO3 + 0.858 ByO3 +0.767 FeyO3 + 0.248 FeO + 0.878 CaO + 0.963 Nay0

We have found a set of weights for both sets of variables resulting in two composites that
have the maximum correlation among all possible pairs of composites. The first canonical
variable, which is a composite of the durability variables is primarily defined by pH, Na,
Ca and with a relatively large negative weight for Si and relatively small negative weights
for Al, B and Fe. The second canonical variable primarily defined by all. These first linear
composites a'yx and b'yy are plotted in Figure 1.

The overall significance test based on Wilks' A=0.001, see (1), indicates strong
relationship between dependent and independent sets with 8 degrees of freedom as chi-
square approximation or F-ratio approximation. Also based on Barlett's chi-square
approximation or Rao's F-ratio approximation we have observed significant (linear)
relationship between the two sets of variables after the effects of the first, second, third,
fourth, canonical-variate pairs have cumulatively been removed. Therefore we may
conclude the first four canonical correlations are significant.
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Figure 1. Dependent variable set x versus independent variable set y at canonical
correlation -0.984, and (a'yx, b'1y) regressed (including pH)

4.2 Analysis with Exclusion of pH Term

We have two subsets of variables, x and y, where x has six durability measures [xi, ...
,Xg] , namely (Si, B, Na, Ca, Al, Fe) that had the correlation matrix R,, where, Ry
indicates that sodium, boron, and silicon release are highly correlated, i.e. leaching occurs
by network dissolution. Low correlation with Fe, Ca, and Al is because of large fraction of
samples containing zero for these elements in the balanced design, and possible
precipitation of these elements. On the other hand y has a measure of seven oxide mole
fraction measures [y1, ... ,y7], namely (SiO7, Al»O3, B203, Fe7O3, FeO, CaO, Nay0O)
that had the correlation matrix R,, where Ry, shows that the sample space is balanced, with
the exception of the Fe»O3 and ¥eO whlch is caused by the natural equilibrium with air at
melt temperature of these species. Further more the cross-correlation matrix Ry, for these
sets of variables provides cross-correlation information between dependent variable set x
and independent variable set y.

If a is a nonnull vector, then the determinant of Rx'leyRy'lR' -AI must vanish since
the columns of the matrix must be linearly dependent to meet the conditions of the
characteristic equation. Substituting the appropriate matrix from our example into
IRy 1R '1R -AlL |, we find the characteristic roots 4; = [0.9, 0.691, 0.519, 0.306,
0.263, 0081 Ox]y The square root of these characteristic roots yields the canonical

correlations, namely ,/ D
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The next step is to find the characteristic vectors a; and b; associated with the largest

canonical correlation namely /A, . The vectors a; and b; of interest are found by solving
the homogeneous equations

RI'R.R;'R a, ~Aa =0 and R;'R RI'Rb -Ab respectively.

The eigen vectors of x and y corresponding to characteristic roots mentioned above are
summarized by A and B matrix below. The columns of A and B matrix are the eigen
vectors a;, b; corresponding to the characteristic root A; For interpretive convenience, we
can r=scale the vectors by multiplying all the elements by the unique scalar that will set the
element with the largest absolute value to one. For this example, the eigen vectors of x
and y obtained has been rescaled based on the following largest absolute values (-0.763,
0.625, 0.806, -0.795, 0.779, -0.642) and (0.445, 0.445, -0.485, -0.445, 0.445, 0.444, -
0.444) respectively, as summarized in 4 and B. The other elements or weights in the
vector may then be easily compared relative to the most important variability in the
canonical variate.

-0.528 0.646 -0.365 -0.513 1 -0.528
-0.072 0.742 -0.138 -0.561 -0.127 -0.567
1 -0.504 1 1 -0.794 1

. A=
0313 -0565 0.173 0.013 0.035 -0.708
-0.552 -0.135 0.588 -0.012 -0.011 -0.165
-0.181 1 -0.111 0.051 -0.010 -0.544)
(1 I 089 1 1 1 1)

0.989 0.971 0931 0.975 0.973 0.975 0.977
0.850 0.855 0.754 0.860 0.852 0.856 0.854
B={0768 0757 0.484 0.757 0.758 0.761 0.777
0.253 0.261 0.333 0.256 0.254 0.255 0.233
0.883 0.886 0.826 0.886 0.888 0.891 0.887
\0.974 0.979 1 0.972 0971 0974 0.972

Based on rescaled vector the first canonical variate for the first set of dependent
varniables, x, from A4 is :
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a'yx=-0.528 Si-0.072 B +Na + 0.313Ca - 0.552 Al - 0.181 Fe

Similarly based on rescaled vectors the first canonical variate for the first set of
independent variables, y, from B is:

b'1y = SiOy + 0.989 Al,03 + 0.85 ByO3 + 0.768 Fep03 + 0.253 FeO + 0.883 CaO + 0.974 NayO

We have found a set of weights for both sets of variables resulting in two composites that
have the maximum correlation among all possible pairs of composites. The first canonical
variable, which is a composite of the durability variables is primarily defined by Na, Ca
and with a relatively large negative weight for Si and relatively small negative weights for
Al, B and Fe. The second canonical variable primarily defined by all. These first linear
composites a'1x and b‘yy are plotted in Figure 2.

The overall significance test based on Wilks' A=0.007, see (1), indicates strong
relationship between dependent and independent sets with 7 degrees of freedom as chi-
square approximation or F-ratio approximation. Also based on Barlett's chi-square
approximation or Rao's F-ratio approximation we have observed significant (linear)
relationship between the two sets of variables after the effects of the first, second
canonical-variate pairs have cumulatively been removed. Therefore we may conclude the
first two canonical correlations are significant.

05 o

-05

-001 0.01
b'x

Figure 2. Dependent variable set x versus independent variable set y at canonical

correlation -0.948, and (a'yx, b'yy) regressed (excluding pH)

14



4.3 Multivariate regression of pH against Glass Composition

We also studied the relation of pH to glass composition mole fractions and obtained the
following relation for the estimate of pH, correlation of correlation of R = 0.952:

pH = -144.585+153.0545i0, +150.18841,0, +145.5188,0, +146.907Fe,0, +185.031Fe0 +162.315Ca0+167.477Na,0

This relation of pH against the estimate of pH is plotted in Figure 3.
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Figure 3. pH regressed against pH
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