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Abstract

The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are
shown to be driven unstable by the circulating and/or rapped a-particles through the wave-particle
resonances. Satisfying the resonance condition requires that the a-particle birth speed v >
va/2lm-nql, where v, is the Alfven speed, m is the poloidal mode number, and n is the toroidal
mode number. To destabilize the TAE modes, the inverse Landau damping associated with the o-
particle pressure gradient free energy must overcome the velocity space Landau damping due to
both the o-particles and the core electrons and ions. The growth rate was studied analytically with a
perturbative formula derived from the quadratic dispersion relation, and numerically with the aid of
the NOVA-K code. Stability criteria in terms of the a-particle beta By, 0t-particle pressure gradient
parameter (,/y) (co.“is the a-particle diamagnetic drift frequency), and (vg/vA) parameters will be
presented for TFTR, CIT, and ITER tokamaks. The volume averaged a-particle beta threshold for
TAE instability also depends sensitively on the core electron and ion temperature. Typically the
volume avéragcd a-particle beta threshold is in the order of 10. Typical growth rates of the n=1
TAE mode can be in the order of 10-2w,, where wa = va/qR. Other types of global Alfven waves
are stable in D-T tokamaks due to toroidal coupling effects. '
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. Introduction

Among the major issues in the a-péru'clc physics of tokamaks opcrating with deteurium-
tritium (D-T) are the a-particle driven global MHD instabilities and the resultant o-particle
transport. If large amplitude global MHD modes are excited, they can cause anomalous a-particle
losses, severely affcéting the tokamak reactor operations. The low-n toroidicity-induced Alfven
- eigenmode (T AE)1 is considered to be one of the most serious instabilities driven by the a-particles
in D-T tokamaks such as the Tokamak Fusion Test Reactor (TFTR), the Compact Ignition Tokamak
(CIT), and the International Thermonuclear Experimental Reactor (ITER). The destabilization
effects of a-particles on the TAE modes had previously been studied2-6 by analytical theories as
well as numcﬁcal' computations using the NOVA-K code.” For the TAE modes with frequency ®
~ va/2qR = @, Gy, (v, is the Alfven speed, q is the safety factor, R is the tokamak major radius, w,
is the circulating a-particle transit frequency, and wy, is the trapped o-particle bounce frequency),
the ideal MHD stable global Alfven modes can be driven unstable by the a-particles through bounce
or transit resonances with the background waves. Alpha particies may destabilize the TAE modes
through wave-particle resonances by tapping the free enérgy asscciated with the o-particle pressure
nouniformity. Satisfying the resonance condition requires that the o-particle birth speed vy 2 va /2
m - nql; where m is the poloidal harrhonic and n is the toroidal mode number. To destabilizé the
TAE modes. the inverse Landau damping associated with the a-particle pressure gradient free
energy must overcome the velocity space Landau damping. Typical growth rates of the n=1 TAE
mode2-6 can be on the order of 10~2w,, where wa = va/qR. Other types of global Alfven waves
hiad been shown to be stable in D-T tokamaks due to toroidal coupling effects. 38 |

The anomalous a-particle losses due to the TAE modes had been investigated by using 4
Hamiltonian guiding center orbit Monte Carlo code.? Significant a-particle losses were found
when the fluctuation level of the global MHD modes is large with (5B;/B) 2 104, Whereas the low
frequency internal kink (fishbone) modes are responsible for the anomalous losses of the trapped o-
part.icles, the high frequency TAE modes affect the transport of the untrapped o-particles.
Circulating a-particles that resonate with the TAE modes will lose energy and increase their radial
outward excursions. Near the edge, they can become trapped and enter prompt-loss banana orbits.
The a-particle loss rate, computed from the Hamiltonian guiding center orbit code, scales roughly
linearly with (8B,/B). For (6B,/B) = 5% 10% the a-particle loss time is appreciably shorter than the
a-particle slowing-down time. If the a-particles excite both the n=1 and n=2 TAE modes, their
~ losses will be enhanced due to stochastic particle orbit losses.



| In this paper the stability property of the TAE mode is studicd'cxtcnsivciy with a
perturbative analysis based on a quadratic dispersion relation and numerically with the aid of the
NOVA-K code. The stabilizing resonance effects due to core electrons and ions are also included.
For D-T tokamaks the volume averaged o-particle beta threshold for TAE instability is small and is
on the order of 10, In the following, we briefly describe in Sec. II the formulation of the kinetic-
MHD cigenmodé equations which included the kinetic effects due to all plasma species. A quadratic
form is derived for the kinetic-MHD eigenmode equations in Sec. III. In Sec. IV, we present a
~ perturbative analysis of the a-particle destabilization of TAE modes via wave-particle resonarices.
We describe the Alfven waves in tokamaks and the existence of the TAZ modes in Sec. IV.A. An
analytical local stability critéx'ion for the driven TAE modes that takes into account the stabilizing
core electron and ion Landau dampings is given in Sec. IV.B. Stability diagrams computed from
the global stability analysis are presented in Sec. IV.C in terms of the By and (vo/va) parameters for
the TFTR, CIT, and ITER tokamaks. The principal conclusions of this work are presented and
future improvements over the TAE stability calculations are discussed in Sec. V.

II. Formulation of Kinetic-MHD Stability Equatio'ns

In terms of the flux coordinate system (y,8,0), the equilibrium magnetic field with nested -
flux surfaces can be written as | ‘ |

B = V{ x Vy + q(v) Vy x V6, (1)
‘where 2ny is the poloidal flux within a magnetic surface, q(w)‘ is the safety factor, 0 is the

generalized poloidal angle varying between 0 and 2=, and { is the generalized toroidal angle
varying between 0 and 2. Since ‘
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where J = (Vy x VB e Vo)1 isthe Jacobian, the magnetic field lines are straight in this

coordinate system. For axisymmetric equilibria, B can also be expressed as

B = Vo x Vy + gVo, | (3)



where g = X By, B¢ is the toroidal magneue field, ¢ is the toroidal angle in cyhndncal X,0,2)
coordinates. Then, ¢ is related to ¢ by

o C=¢"q5(9,\|f), | | ’ @)
where 8(6,V) is periodic in 6 and is determined by
q(1+3808)=gdJ /X2 - (5)

We consider stationary isotropic ideal MHD equilibria satisfying

JxB=vp, | | (6)
vxB=7, - | uB
veB =0, | (8)

where J, —B', and P are the equilibrium current, magnetic field, and pressure, respectively.

We will consider an axisymmetric toroidal plasma consisting of the core and alpha
components with Ng << Ng and T >> T¢ so that By < Be. Summing the collisionless equations

of motion for each species, we obtain the linear momentum equation

e d

m2p§= V-85+ 3x(Vx§)+§x(Vx E) , 9

where € is the usual fluid displacement vector, b is the perturbed magnetic field, 86 is the total
perturbed particle pressure tensor due to all species, and p is the total plasma mass density. The
following ideal MHD relations hold

b=Vx (&, xB), | (10)

and



E = in & xB , - | 11

where 5E is the perturbed clcctnc field. The gyrokmetlc description neglectmg the Flmtc Larmor-
 radius correction is employed for all pamcle species. SP can be exprcsscd as -

5 = 8p,1 + (8p,~8p,)bb,

(12)
where 8p; and 3p, are obtained from the perturbed particle distribution function &f by
8 | 2(e - uB)
Pi Z M j a’v & :
op . ; uB

(13)

where the summation in j is over all particle species, M is the particle mass, € = v2/ 2 is the particle
energy, 1 = v, 2/ 2 is the magnetic moment, and &f is the perturbed particle distribution function.
In Eq. (13) the integral over velocity space can be expressed in terms of the new velocity space
coordinates (€,A,0) | |
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where the summation in ¢ is over the direction of particle parallel velocity, A = uBy/€ is the pitch
angle, B, is the vacuum magnctic field at X =R, and h = B/B(y,8). On a flux surface, circulating
parncles correspond to 0 € A < hpin(V), and trapped particles to hpin(y) £ A < hat a given 9
where hpin(y) = Min [h(y,8)] on the v surface. If we write of as

(14)
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where F is the unperturbed particle distribution, the nonadlabanc perturbed particle distribution is
given by




g9 = dt'_i_"l_F.)((:)—mT)ivd.SEJ‘+Mub" |
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o | | | (16)

where the nme integration is along the unpcrturbed particle characteristics, e is the pamcle charge,
b, is the parallel perturbed magnetic field, o = -—(Tm/M)alnF/as, ®,T =~ (T/Mcoc) (b x V

InF e V) only operates on the perturbed quantities, Vd: (b/mc) x [ V(uB) + K V| 1is the
magnetic drift velocity, b = B/B, Tis the average temperature, (g is the cyclotron frequency.

In terms of the depcndém variables, £y = EeVy, b, = beB, ts=Ee(Bx Vy/ | V| 2),

and Vog, Egs. (9) - (16) can be cast into a set of non-Hermitian integro-differential eigenmode
| equations which are solved by a nonvariational kinetic-MHD stability code (NOVA-K).7 The
NOVA-K code employs Fourier expansion in the poloidal angle 6 direction, and cubic B-spline
finite elements in the radial y direction. An arbitrary nonuniform y-mesh can be set up to provide
the option of zoning the mesh to allow more finite elements near rational surfaces, the plasma edge,
and the magnetic axis. The boundary condition at the magnetic axis is &, = 0. For fixed boundary
modes the boundary condition is &, = 0 at the plasma-wall interface. In general, the boundary
condition at the plasma-vacuufﬁ interface is given by Bv o Vy = B e V&, where Bv is the
“perturbed vacuum magnetic field which must be solved ﬁom the divergénce-free equation V o Bv =
0 with proper wall boundary condition. In this paper, instead of presenting the full numerical
solutions of the TAE instabilities from the NOVA-K code, we will consider a semi- -analytical

approach by cstabhshmg a quadratic dispersion relation and performing a perturbative analysxs to
obtam the stability criteria of the at-particle driven TAE modes.

III. Quadratic Form

By taking an inner product of Eq. (9) with & and integrating over all the plasma volume
with the assumption of a fixed conducting boundary, we obtain from a quadratic form

D(w) = 8Wj + 8Wy ~ 8K =0 , (17



- where the inertial energy is given by

o[, -2
K = o fde p‘lf;l ,’

(18)
the fluid potcritial energy due to both the core and hot components is
3 - 2 - . - 2 2
W= | @’ {[o,] +|Vet +2xe5 | B
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and the kinetic potential energy due to all species is
: ' x * = *
K - ~ -~ ~ ind "“ B V
Wy = - d’x \V°§ 8m+(5m—8m) K-él———'—gi'—' ,

(20)

where the nonadiabatic perturbed pressures are defined by

@

The quadratic form is useful in providing the stability pr(‘)penies‘of the system in certain
limits. A perturbative analysis can be performed over Eq. (17) to obtain the stability criteria of the
‘TAE modes and is presented in Sec. IV. In terms of the Fourier components, the nonadiabatic
trapped particle contribution to the potential energy neglecting the finite particle banana width effects
- can be written as | |
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where ma,p-—*- ém_p[cosa(‘pn/z) cos(payt) - | sin’( pr/2 ) sin( pw, t) ] Gr(AW,0) is
defined by [(1 - 3A/2h) K » & - (A/2h) VeE ] = 2 G (Aw0) expli(mé-nL)], Kp= V2 T, Ty

' o ~(m)
is the trapped particle bounce period and is a function of € and A, 0, = (mM/eq)(dInF/dy), and
Sm =m-ng, and <A> denotes the bounce or transit average of A and is given by

@y = 1 Al

.

T Vi :
b.t (23)
For trapped particles t(6) is defined by
)
E(G,GH’—' +1) = J Bdé )
' Vi
0 (24)

" where GT‘> 6 > ~Br corresponds to (Ty/4) > t > —(Tp/4), and 0T are the trapped particle turning
prints defined as the roots of the v|#(8) e« [1 — A/h(8)] = 0.

Similarly, the nonadiabatic contributions of circulating particles on the potential energy is
given by
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where K;=+v2€ 1, T, is the circuléting p:midlc transit period and is a function of € and A. For
circulating_parﬁcles the time-like variable %(6) is defined by Eq. (24) but with ® > 8 > -n which
corresponds to (Ty/2) >t> -(T/2).

V. Alpha-Particle Destabilization of the Torondiclty-lnduced Alfven
Eigenmodes '

In this section, we will focus on the destabilization of shear Alfven waves by o-particles.
For typical D-T parameters the a-particle birth velocity Vo = (2€/Mq) 172 = 1,295 x 109 cm/sec
for an energy €q of 3.5 MeV is comparable to the Alfven speed V4 = B/(NjM{)!/2. Thus, the
transiting o-particles could destabilize shear Alfven waves by the expansion free energy associated
with the spatial gradient of the a-particle pressuﬁ: via inverse Landau damping through the w =k
- vy wave-particle resonance. Here, k|| = '(m~nq)/QR is the parallel wavenumber for linearized
waves that are Fourier decomposed as expl[i(m6-n{-ot)]. To satisfy the resonante condition, it

requires that Vo > Va/2Im-nql. To overcome the Landau damping by the inverse Landau
damping associated with W,q, it requires roughly that W4q > WA = VA/QR,

The stability of a global Alfven wave due to wave-particle resonances can be obtained
pgrmrbatively from the quadratic form, Eq. (17). We write the mode frequency as @ = o + iy
and assume that the growth rate is small ( [{| << |ox| ). Then we have |

~ {8W, +Prin[sW, } /8K , ) (26)

“and

¥y = Res [BW,] /21 0, 8K, 27



10

where Prin [8W ] and Res [ka] are the principal part and resonance contribution, respectively.

The wave particle resonances due to all particle species are retained in Res [SWi]. The core
electron and ion distributions are taken as Maxwellians. The a-particle equilibrium distribution’

~ function, Fy, was taken to be isotropic in pitch angle variable A and slowing-down in energy for €

< €g and zero for € > €g. The tokamak reactor type cquilibria are modeled with noncircular plasma
surfaces defined by

X

R+ acos[0 + §sin(®)] , | (28)

and
Z

X a'sin (9) , | (29) .

where «x is the elliticity, d is the triaﬁgularity, a is the horizontal minor radius, and R is the major

‘radius. The equilibrium pressure and safety profiles are chosen as

' |
P(Y)=Po(1'yl) . | 30)
(1-ys)ly-1)

b-vd [

aly) = q(0)+y { q(1)~ q(0) +|q'(1) - q(1) + G(O)
| e

where ys = [q'(1) - q(1) + qO))/{q'(0) + q'(1) - 2[q(1) - qO)]}, y = (/a2 = (v - yo)/Ay, Ay =
VYim ™ Yo Yiim is evaluated at the limiter, and vy, is evaluated at the magnetic axis.

The lowest order solutions, determined by Eq. (25), must be obtained from the solutions of
the appropriate eigenmode equations, Egs. (9) - (15), by neglecting the resonance contributions to
the perturbed particle pressures. If the nonadiabatic perturbed pressures defined in Eq. (21) can

also be neglected, i.e., the Prin [3W\] contribution is neglected, the eigenmode equations, Eqgs. (9)
- (15), correspond to the ideal MHD equations in the limit of vanishing ratio of specific heat, and
can be readily solved by the NOV A code. 10 )5 the following we will adopt this approximation in
calculating the lowest order solutions of the TAE modes and greatly reduce the amount of numerical
computations. Physically this approximation eliminates the ion sound waves.. The more complete
lowest order solutions will be carried out in the future works. |



A. E#istence of the Torbidi(:ity-lnvduced Eigenmode

Briefly, let us describe the various types of shear Alfven waves in a tokamak plasma. The
ideal MHD equation of motion shows that the coefficient of the highest- order radial derivative term,
d2€/dr2, where & is the radial fluid displacement, vanishes at radial locations where ©2 =

(k|\Va)2. This corresponds to the shear Alfven resonance condition, and frequencies w that satisfy
min{(k|Va)?] < @2 < max[(k|\Va)?] lie in the shear Alfven continuum. This resonance leads to a
singular mode structure; however, if electron parallel dynamics and ion finite Larmor radius effects

are included, one obtains a nonsingular solution known as the kinetic Alfven wave (KAW). Its

mode structure is fairly localized, and hence it is stable to o-particle dnve due to srrong electron
Landau damping. 11

. There are two global types of shear Alfven waves that have radially extended mode
structure. Both types have low mode numbers n and m. The first type of global shear Alfven wave

is a regular, spatially nonresonant wave whose frequency lies just below the minirmnum of the-

continuum, i.e, ® < k Vo and kyy# 0. This wave is called the Global Alfven Eigenmode
(GAE).12 Previous theoretical analysis of this mode was limited to cylindrical geometry, where it
was found that transit wave-particle resonant interaction with super-Alfvenic a-particles could
destabilize it, although with weak growth rates.]]  When finite tdroidicity is included, GAE modes
with different poloidal mode numbers will become coupled. Such toroidal mode coupling tends to
stabilize the GAE modes c:omplt:tely.:"'-’8

‘Another type of globa.l shear Alfven wave, one that exists only in toroidal geometry. The
existence of this so-called Toroidicity-Induced Alfven Eigenmode (TAE) was shown in the ideal
* MHD limit without a-particles.1»13:14 Finite toroidicity introduces the TAE mode, which can be
strongly destabilized by -particles. The TAE mode exists inside gaps, due to toroidal coupling, in

the shear Alfven continuum spectrum. For example, modes (n,m) and (n,m+1) couple at radial
 location r,, where q(ro) = (m + 1/2)/n, to form a gap which is bounded by |

2 2 2 (ry '
W, = 0, £ 2 0, —FT+A'(ru) \

(32)
where the center of the continuum gap is W2 = (VA/2qR)? at r =1, A(r) is the Shafranov shift of
the nonconcentric flux surfaces and A' > 0. For a given toroidal mode number n, the gaps due to

the poioidal harmonic couplings can exist across the minor radius and form a frequency gap in the
Alfven continuous spectrum. In this case the discrete global TAE modes had been shown to exist

11



with frequency inside the continuum g'ap.1 The existence of the high-n TAE modes has also been
shown previously.13"14, Figure 1 shows the continuous spectrum in the absence of dissipations
for the n=1 mode as a function of the radius for a circular TFTR equilibrium (ETFTR1). The
parameters for the pressure and g-profiles of the "ETFTR1" equilibrium are P,= 0.6, A = 1.05, i =
2,'q(0)-= 1.01, q(1) = 3.1, q'(0) = 0.84375, and q'(1) = 6.8571, B = 2<P>/<B%> = 1,2223%,
Bpol = 0.8924. Since TFTR will be operated in the super shot regime with peak density profiles,
the density profiles is taken to be p(y)=p0)(1-0.8 y). The minor radius is a= 0.8, and the
major radius is R = 2.5, The frgquency of the n=1 ‘ﬁxed boundary TAE mode is given by (t/wa)?
= (0.7656, which lies within the continuum gap, 0.7 2 (w/wa)* 2 3.2, formed by the toroidal
‘coupling of the m=1, 2, and 3 poloidal harmonirs at q=1.5 and 2.5 surfaces. The normalized
Alfven frequency is defined as wa = va(0) / q(1)R. The eigenfunction &y of the n=1 fixed
boundary TAE mode versus r/a is shown in terms of poloidal harmonics in Fig. 2, which clearly
shows the dominant m=1 and 2 components peaking near the q=1.5 surface.

Since wo?is roughly proportional to (1/2p), for certain q and density profiles it can vary
radially so that the continuum frequency gap does not exist for all minor radius. For higher n
modes (n > 2), it is less possiblc for a frequency gap to exist. Typically the higher poloidal
harmonic of the TAE mode will resonate with the Alfven continuum near the plasma edge and suffer
damping (electron Landau damping) as in the case of kinetic Alfven waves. The total electron
damping rate of the TAE mode can be roughly estimated ash13

Yo / ®A = Pe (VA/Ve) /2(kR)? + TFI/Z (klps)z (VA/Ve) Am2Wm, (33)

where ps is the ion gyroradius with the electron temperature, v is the electron thermal velocity, Am
is the relative amplitude of 't_he resonant higher-m harmonic to that of the nonresonant lower-m
poloidal harmonics and is estimated to be (a/R), W is the ratio of the resonant poloidal mode
localization width to the nonresonant poloidal mode localization width and is estimated to be 1/k,a.
The first term in Eq. (33) is due to the electron Landau damping associated with the magnetic drift
for the global m=1 and 2 harmonics contributed mainly from near q=1.5 surface. The second term

is related to the electron parallel dynamics and ion finite Larmor radius effects associated with the

localized kinetic Alfven wave of higher poloidal harmonics near its resonance surface. The
continuum resonant damping rate is roughly a factor of k,ap;2/R2Be smaller compared with the

nonresonant electron damping rate. More accurate numerical investigation of the resonant damping
effect on the TAE mode is underway and will be presented in the future works.

B. Local Stability Analysis‘



If the particle trapping effects and the magnetic drift term in the resonance are ignored, the
local instability criterion of the TAE mode for a low-P, large aspect ratio tokamak equilibrium can

be obtained analytically by integrating over the velocity space in Res [SW]. At a radial position

with the resonance condition v|j= @/ k| = vp and for a poloidal harrhonic, Res [W(] = g(w,m) :

I(y,m) for each species, where g(y,m) represents the mode amplitude weighting and is independent
of particle species, and I(y,m) represents the velocity integration and is given by ‘

. . | ~lm) 2
I(y,m) = jdv”dvf (Mmm?f-+ w, F)(VL2+2V"2) 8(v|,2-vp2) : o
| - O€ : - (34)
For a-particle we have
3P 4v g o +V§’2 '
() ‘ -
Ion(va) = _..—.E-__ {m [ AVP + qu + o 7 ] .
‘ C2r Vv Vg 32 vy, .

Ve (1 +vp

? o™ 2 4
Wy [1+8vp+4vp _4;3]} ,

~3 21/2 P
3VQ. (l+$p) ) (35)

2
)

~ ‘ 2
where vy = vg2 / [vg2 - vp?], Vp= vpZ / [Va? - vp2], vo is the alpha birth velocity, Oea™ =

mpgve/2rly, Pais the alpha particle gyroradius at birth velocity, r is the minor radius, and L is
the alpha particle pressure scale length. For the core electrons and ions we get

2 312 '
Ic(w,m)=2(4(o Pj/n‘ vpvj)[1+2 zj2+2 z;]cxp(—zf), |
’ (36)
where the summation index j is over the electron and core ion species, v;=(2T;/m;)"2, z;=vp/

v Evaluated at the g=1.5 surface with vp=vp and = va/2qR, the instability condition is given

by

13
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= CACTE i % j j 1. exP i) (37)

j
The first term on the left hand side is due to the a-particle destabilizing inverse Landau damping

- associated with its pressure gradient and the second term is associated with the o-particle velocity
Landau damping. The right-hand side contribution is due to the stabilizing electron and core ion

Landau dampings. Note that sz are not free parameters and are proportional to (vo/va). Equation
(37) shows that to destabilize the TAE mode the a-particle free energy drive associated with Wyq

must be large enough to overcome the usual Landau damping (typically when (o,.,a/(oA > 1) and

that above this threshold the growth rate Y will scale linearly with Wq-

‘The critical By vs. (vg/va) stability curves computed from Eq. (37) are shown in Fig. 3
with m=2 for the TFTR, CIT, and ITER D-T bpcration parameters with very small critical B, The
minimum critical By occurs at vg/va = V2, where the instability condition is roughly givcn by
Ba(®xa/®A - 2) 2 0.4 (Meve/ Mjvq). For vg/va > 4 the ion Landau damping becomes important.
For TFTR the D-T operation parameters are chosen as R = 250 cm,a =80 cm,B=5T, T, = 10
kev, T; = 10 kev, tu =15 cm, r = 25 cm, the alpha charge state Zog=2,M,/ Mp =4, M;/ M.p =
2.5, where Mp, M;, and M, are the proton, core ion, and alpha masses, respectively. For n; =
| 1014 cm™3, we have vg/va = 1.88 and the critical By = 2.5 x 10" For CIT the parameters are
chosen as R =210 cm,a =65 cm, B=11T, T, = 10 kev, T, = 10 kev, 'I:u =20cm.r =16 cm,
and the critical By = 7.5 x 104 for va/va = 1.5. For ITER the parameters are chosen as R = 600
cm,a=215cm,B=4.85T,T,=10kev, T; = 10 kev, Le = 50 cm, r = 50 cm, and the critical Bu
= 1.2 x 1073 for va/va = 1.5. Note that we have chosen a steeper o-particle pressure gradient for
TFTR to simulate the super shot operations so that its critical B is smaller. |

C. Global Stability Analysis
A more complete nonlocal perturbative stability calculation can be performed for realistic

equilibria by first obtaining the zeroth order solutions (eigenfuntions and mode frequency) from the
NOVA code. Then the proper weightings due to the equilibrium profiles and the poloidal and radial

14
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structures of the eigenfunctions in Res[3W ] required to compute the growth rate from Eq. (27) can
be integrated. Typically <wg> is much smaller than y and wy, and can be neglected except at the
bdundai'y between circulating and trapped particles, where <og> has a logarithmic singularity and
both w, and wy, vanish. For larger minor radius, @ decreases and wy increases, but @, is about a
factor of 2 to 4 larger than wy. Thus, for typical reactor parameters the a-particle transit
resonances can morc‘c‘ffecti‘vely destabilize the TAE mode than the bounces resonances. In the
numerical computation of Res[8W\] we have summed up many transit and boqnce resonance terms
to ensure its convergence. We also assume the a-particle density to be ny = ng(0) exp [- (r/ Lo)?l,
and the volume aw)eraged a-particle beta <Bo> is related to the central o-particle beta B4(0) by <Bg>

= (a/ Lg)? Bu(0). The a-particle density scale length is Lo2 / 2r.

For TFTR we will study the circular tokamak equilibrium described in Fig. 1. The real
frequency of the n=1 fixed boundary TAE mode is wr/wa = - 0.875. The corresponding
eigenfunction §y of the n=1 fixed boundary TAE mode versus t/a is shown in terms of poloidal

harmonics in Fig. 2. The critical volume averaged <fq> vs. (vo/va) stability curves obtained from

-Eq. (27) are shown in Fig. 4 for the TFTR D-T paramcters Teo = 10 keV, Tjo =30keV,R =250

cm, a=80cm, B, =5T, but with several Lo/a values. The electrons and the ions are assumed to
have the same temperature profiles. The very small critical volume averaged a-particle beta <By>

is consistent with the local stability calculations when the volume average of the alpha density is
taken into account. For vg/va=1and Lg/a = 0.3, the critical <Bg>= 1.5 x 104,

Similar calculations are performed for the CIT and ITER parameters. For CIT we will
study a noncircular tokamak equilibrium (ECIT2) with the following fixed parameters: R =2.1,a =
0.65,x=2,8=02,Po=0.6,A=1.05, =2, q0) =1.01, g(1) = 3.1, g'(0) = 0.9, q'(1) = 13.
The plasma beta B = 2<P>/<B2> = 2.206%, and Bpol = 0.639. The plasma density is assumed to
be constant. The real frequency of the n=1 fixed boundary TAE mode is wr/wa = - 0.82. The
corresponding eigenfunction &y of the n=1 fixed boundary TAE mode versus r/a is shown in terms

it

of poloidal harmonics in Fig. 5, which clearly shows the dominant m=1 and 2 components. The
critical volume averaged a-particle beta <By> vs. (vo/va) stability curves are shown in Fig. 6 for
the CIT physical parameters Teo = Tjp = 10 keV, R = 210 cm, a = 65 cm, B, = 11 T, but with
several Lo/a values. The electrons and the ions are assumed to have the same temperature profiles.
The very small critical <Pg> is consistent with the local stability calculations when the volume
average of the alpha density is taken into account. For vg/va = 1.3, and Ly/a = 0.2, the critical
<Bo> =8 x 106, Higher ion temperature provides higher ion Landau damping, and the critical
<Bo> vs. (vo/va) stability curves for Teq = Tip = 20 keV are about a factor of three higher than
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those for Teo = Tio = 10keV. As the a-pafticle pressure sacle length increases, the TAE niode will
be stable. For Teo = Tjo = 10 keV case, the TAE mode is stable for Ly/a > 0.4.

For ITER we will study a noncircular tokamak equilibrium (EITER1) with the following
- fixed parameters: R = 6, a = 2.15,k=2,8=04,Po = 1,2 =1.05, 0 = 2, q(0) = 1.01, g(1) =
3.2,q'(0) =09, q'(1) = 13. This eq_luilibrium‘ is similar to the "ECIT2" equilibrium cmployed for
CIT but with its triangularity being twice as large. The total plasma beta p = 2<P>/<B2> = 2.17%,
and Bpol = 0.474. The plasma density is assumed to be constant. - The real frequency of the n=1

fixed boundary TAE mode is or/0s = - 0.857. The corresponding eigenfunction &y of the n=1 -

fixed boundary TAE mode versus 1/a is shown in terms of poloidal harmonics in Fig. 7, which are
quite similar to those of the "ECIT2" equilibrium shown in Fig. 5. The critical <Po> Vs, (Vo/VA)
stability curves are shown in Fig. 8 for the ITER physical parameters Teg = Tjp = 10 keV, R = 600
cm, a = 215 cm, B, = 4.85 T, but with several Ly/a values. The electrons and the ions have the
- same temperature profiles. The critical <PBy> is roughly a factor of three higher than that of CIT
case shown in Fig. 6, which is due to the larger ion Landau damping. For vg/va=1.3,and Ly/a =
0.2, the critical <Bg>=2.2 x 10-3. Calculations are also performed for higher electron and ion
temperatures, and the results shown in Fig. 8 for Teo = Tjp = 20 keV are similar to those obtained
for CIT case. ‘

From these results we find thaf for typical D-T tokamak parameters, the volume averaged a-
particle beta threshold for TAE instability is very small and is in the order of 104, The TAE modes

will be robustly unstable in these proposed D-T tokamaks with typical growth rates in the order of
10204 as shown previously.2+3 :

V. Summary and Conclusion

In the paper we have studied the stability property of the a-particle driven toroidicity- -

induced shear Alfven eigenmodes (TAE) via inverse Landau damping associated with the spatial
gradient of the a-particle pressure. In determining the volume averaged o-particle beta threshold
for TAE instability, we have included the core ion and electron kinetic effects. A quadratic
dispersion relation is derived and a perturbative analysis is performed to obtaia the a-particle beta
threshold with the aid of the NOVA-K code. For D-T tokamaks the TAE modes can be strongly
unstable with the growth rate being approximately linearly proportional to W, and typically of the
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order of 102 w,. Other types of global Alfven waves had been shown to be stavle in D-T

‘tokamaks due to toroidal coupling effects. Therefore, primary attcmion - especially experimental -
should be focused on the TAE modes, which can be strongly destabilized by a-particies.

The nonlinear behavior of the a-particle driven TAE modes is recently investigatcdl 6 with a

model in which the finite amplitude of the TAE mode alters the o-particle interaction with the mode.

The o-particle distribution is flattened locally in phase space by the perturbed magnetic field which

reduces the a-particle-to-wave energy transfer rate below the ambient dissipation rate. Rough
- estimates yield a saturation level giVen by 8ByB = 5 x 105 (Bo/Bacri)®>. From bm calculations
presented in the paper we have Bo/Bocri = 102 - 103 for typical D-T tokamaks, and the saturation
~ level of the TAE mode will be 6B,/B = 10-3. At this level of the magnetic fluctuation the a-particle
loss time will be appreciably shorter than the o-particle slowing-down time.? A more complete
calculation of the TAE mode saturation level with self-consistent eigenfunctions will be addressed in
the future works. o

Experimental efforts in TFTR are now underway to excite the TAE mode by neutral beam
injection. Since the TAE modes is predicted to be weakly damped and therefore high-Q, a less

expensive way to excite the TAE modes is by low power antennas whose impedance will have

sharp spikes of the TAE eigenfrequencies. 17 The eigenmode structure can be mcasured by poloidal
and toroidal magnetic probes and compared with the theory.

Finally, we believe that the theoretical studies of the linear TAE mode stability presented in

“the work can still be irriproved. ‘Some important a-particle particle physics that should be addressed

in the future are finite banana width, finite Larmor radius, and more realistic a-particle distribution

functions generated from Fokker-Planck code. Core ion kinetic effects such as finite Larmor radius

and pressure anisotropy can be also important. The stabilizing electron Landau damping effects

“associated with the parallel electric field must be addressed if the TAE mode frequenby runs into the
continuous spectrum of the higher poloidal harmonics.
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Figure Captions

Fig. 1 The Alfven continuous spectrum of a circular TFTR cquilibriu‘m "ETFTR1" with the
minor radius a = 0.8, and the major radius R = 2.5. The total pressure and g-profiles are given by
Egs. (30) and (31) with P, = 0.6, A = 1.05, u 2,q(0) = 1.01, q(l) = 3 1, q'(0) = 0.84375, g'(1)
=6.8571,f=1 2223%, and Bpol = 0.8924.. |

Fig.2 The, poloidal harmoniés of ei gcnfun‘ctibn &y of the n=1 fixed boundary toroidicity-induced

Alfven eigehmodc (TAE) versus r/a for the "ETFTR1" equilibrium. The real frequency of the n=1 |

fixed boundary TAE mode is wr/wa = - 0.875.

Fig. 3 The critical By vs. (vo/va) stability curves for the toroidicity-induced Alfven eigenmode
(TAE) computed from Eq. (37) with m=2 for the TFTR, CIT, and ITER D-T operation parameters.

Fig.4 The critical volume averaged <Bq> vs. (vo/va) stability curves for the "ETFTR1"
equilibrium with the D-T parameters Teo = 10 keV, Tjo =30 keV,R =250cm, a =80 cm, and B
=5 T, but with several Ly/a values.

Fig.5  The poloidal harmonics of eigenfunction éw of the n=1 fixed boundary toroidicity-induced
Alfven eigenmode (TAE) versus r/a for the "ECIT2" equilibrium, The equilibrium is defined by the
parameters: R=2.1,a=0.65x=2,8=0.2, Po=0.6,A = 1.05, u=2, q0) = 1.01, q(1) = 3.1,
q'(0) = 0.9, q'(1) = 13. The plasma beta B = 2<P>/<B2> = 2.206%, and Bpol = 0.639. The

plasma density is assumed to be constant. The real fmquency of the n=1 fixed boundary TAE
mode is wr/wa = - 0.82.

Fig. 6 The critical volume averaged a-particle beta <By> vs. (vo/va) stability curves for the
"ECIT2" equilibrium with the physical parameters Teo = Tip = 10 keV, R =210cm, a = 65 cm, B,
= 11 T, but with several Ly/a values, The electrons and the ions are assumed to have the same

temperature profiles. Higher ion temperature provides higher ion Landau damping, and the critical
<Bo> vs. (vo/va) stability curves for Teg = Tig = 20 keV are about a factor of three higher than
those for Tep = Tjp = 10 ke V.

Fig. 7 The poloidal harmonics of eigenfunction &y of the n=1 fixed boundary toroidicity-induced
Alfven eigenmode (TAE) versus r/a for the "EITER1" equilibrium. The equilibrium is defined by
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the parameters: R = 6, a=2.15, k=2, 8= 04, Po =1, A = 1.05, 4 = 2, q(0) = 1.01, q(1) = 3.2,
q'0) = 0.9, ¢'(1) = 13.. The plasma beta p = 2<P>/<B?> = 2.17%, and Bpo| = 0.474. The

plasma density is assumed to be constant. The real frequency of the n=1 fixed boundary TAE mode
is wr/wa = - 0.857. | |

Fig. 8 The critical <By> vs. (Vo/VA) ‘Stability curves for the ITER physical parameters Teg = Tig
=10keV,R=600cm, a=215cm, B, = 4.85 T, but with several Lo/a values. The cases with Teg

= Tjo = 20 keV are also shown.

20




21

1 2an314

41414

p——

N T L Y O

PLOOVO6#Tddd

Z(Vm/m)



‘ PPPL#90TOO75
[ | T 1T 1 | | I
| . ﬂ
ETFTR1 b
n=1 ' '_
)
]
' pa—
’
¢

g-profile

22



| 1091

10™

PPPL#90T0070

$d—T1 1 11

~ Local Calculation

4
Vo, / Va

Flgure 3

23



107®

<Bg.>

| " PPPL#90T0071
- | I -
I "l'_éq"= 0.4 TFTR |
N 0.2 |
L | | |
0 0.5 1.0 1.5 2.0 2.5
‘ Va / VA

Figure 4

24



PPPL#90T0076

- g-profile

I

ECIT2
n=1

fenedens

]

| | 1 |

0.4 0.6
r/a

Figure 5

25



.2 PPPL#90T0072
10 T l — i ]
- CIT N
- —d
10'3: ]
<{Ba> ~ "*ag""' = 0_3 .
- Teo=Tio=20kev -
104 0.3 ]
- 10 keV _
i 0.2 _
20 keV
-5 -
107 0.2 =
_ 10 keV -
10"6 d 1 1 1 ‘
, 0 0.5 1.5 2.0 2.5 3.0
Vo, / Va

Figure 6

26



. PPPL#90T0077

3.0
| EITER?
25F n=1
2.0
151 q-p;oﬂle
(o ==m===7
v 05

05
1.0H-

-1.5

rla

Figure 7

27



1072

<P>

“ PPPL#90T0073
[~ T T W ‘ /
- ITER |
B Y
& _0.257 /
Teo=Tio=20keV | |
I | Hl |
02 /\ 10keV |
i 20 keV
i i
i 10 keV _
l | | l | ‘
0 0.5 1.0 1.5 2.0 2.5 3.0
) \Gx /\AA ‘

Figure 8

28



~-*~.~—-~"~~\
N TRy -

[ —

SO N

L






