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Abstract

Tlae high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are

shown to be,driven unstable by the circulating and/or trapped a-particles through the wave-particle

resonances. Satisfying the resonance condition requires that the o_-particle birth speed Vet __.

VA/21m-nql, where VAis the Alfven speed, m is the poloidal mode number, and n is the toroidal

mode number. To destabilize the TAE modes, the inverse Landau damping associated with the _-

particle pressure gradient free energy must overcome the velocity space Landau damping due to

both the c_-particles and the core electrons and ions. The growth rate was studied analytically with a

perturbative formula derived from the quadratic dispersion relation, and numerically with the aidof

the NOVA-K code. Stability criteria in terms of the a-particle beta 13ct,a-particle pressure gradient

parameter (o./oh) (co. is the ox-particle diamagnetic drift frequency), and (va/v_ parameters will be

presented for TFTR, CIT, and ITER tokamaks. The volume averaged u-particle beta threshold for

TAE instability also depends sensitively on the core electron and ion temperature. Typically the

volume averaged o_-particle beta threshold is in the order ofl0 _. Typical growth rates of the n=l

TAE mode canbe in the order of 102_A, where OA= vA/qR. Other types of global Alfven waves

are stable in D-T tokamaks due to toroidal coupling effects.
m
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I. Introduction

Among the major issues in the a-particle physics of tokamaks operating with deteurium-

tritium (D-T) are the a-particle drivenglobal MHD instabilities and the resultant a-particle

transport. If large amplitude global MHD modes are excited, they can cause anomalous a-particle

losses, severely affecting the tokamak reactor operations. The low-n toroidicity-induced Alfven
eigenmode (TAE)1 is considered to be one of the most serious instabilities driven by the a-particles

in D-T tokamaks such as the Tokamak Fusion Test Reactor (TFTR), the Compact Ignition Tokamak

(CIT), and the International ThermonuclearExperimental Reactor (ITER). The destabilization

effects of a-particles on the TAE modes had previously been studied2, 6 by analytical theories as

well as numerical computations using the NOVA-K code. 7 For the TAE modes withfrequency to

-VA/2qR., tot, cob(VAis the Alfven speed, q is the safety factor, R is the tokamak major radius,

is the circulating a-particle transit frequency, and 0_ is the trapped a-particle bounce frequency),

the ideal MHD stable global Alfven modes can be driven unstable by the a-particles ttu'ough bounce

or transit resonances with the background waves. Alpha particles may destabilize the TAE modes

through wave-particle resonances by tapping the free energy associated with the a-particle pressure

nouniformity. Satisfying the resonance condition requires that the a-particle birth speed va > VA/ 2 . r

lm - nql, where m is the poloidal harmonic and n is the toroidal mode number. To destabilize the

' TAE modes, the inverse Landau damping associated with the o_-parficle pressuregradient free

energy must overcome the velocity space Landau damping. Typical growth rates of the n= 1 TAE

mode 2"6 can be on the order of 10-2_A, where _A = vA/qR. Other types of global Alfven waves

had been shown to be stable in D-T tokamaks due to toroidal coupling effects. 3;8

The anomalous a-particle losses due to the TAE modes had been investigated by using a

Hamiltonian guiding center orbit Monte Carlo code. 9 Significant a-panicle losses were found

when the fluctuation level of the global MHD modes is large with (/SBr/B)a 10"4., Whereas the low

frequency internal kink (fishbone) modes are responsible for the anomalous losses of the trapped a-t

particles, the high frequency TAE modes affect the transport of the untrapped a-particles.

Circulating a-particles that resonate with the TAE modes will lose energy and increase their radial

outward excursions. Near the edge, they can become trapped and enter prompt-loss banana orbits.

The a-particle loss rate, computed from the Hamiltonian guiding center orbit code, sc',des roughly

linearly with (_iBr/B). For (_iBr/B) = 5 x 10-4 the a-particle loss time is appreciably shorter than the

a-particle slowing-down time. If the a-panicles excite both the n=l and n=2 TAE modes, their

losses will be enhanced due to stochastic panicle orbit losses.



3

In this paper the stability property of the TAE mode is studied extensively with a

perturbative analysis based on a quadratic dispersion relation and numerically with the aid of the

NOVA-K code. The stabilizing resonance effects due to core electrons and ions are also included.

For D-T tokamaks the volume averaged a-particle beta threshold for TAE instability is small and is

on the order of 10"4. In the following, we briefly describe in Sec. II the formulation of the kinetic-

MHD eigenmode equations which included the kinetic effects due to ali plasma species. A quadratic

form is derived for the kinetic-MHD eigenmode equations in Sec. III. In Sec. IV, we present a

perturbative analysis of the a-particle destabilization of TAE modes via wave-particle resonances.

We describe the Alfven waves in tokamaks and the existence of the TAE modes in Sec. IV.A. An

analytical local stability criterion for the driven TAE modes that takes into account the stabilizing

core electron and ion Landau dampings is given in Sex:. Iv.B. Stability diagramscomputed from

the global stability analysis are presented in Sec. IV.C in terms of the_ and (va/vA) parameters for

the TFTR, CIT, and ITER tokamaks. The principal conclusions of this work are presented and

future improvements over the TAE stability calculations are discussed in Sec. V.

II. Formulation of Kinetic-MHD Stability Equations

In terms of the flux coordinate system (_,0,_), the equilibrium magnetic field with nested

flux surfaces can be written as

-,,o

B = V_ x V_ + q(V) VV x V0, (1)

" where 2x_ is the poloidal flux within a magnetic surface, q(_') is the safety factor, 0 is the

generalized poloidal angle varying between 0 and 2x, and _ is the generalized toroidal angle

varying between 0 and 2x, Since

B" V= d +q ,,

,o

where ,/ = (V_ x V0 • V¢ )-1 is the Jacobian. the magnetic field lines are straight in this

coordinate system. For axisymmetric equilibria, B can also be expressed as

--li'

B = V¢ x V_F + g V¢, (3)
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where g = X B#, B, is the ,oroidal magnetic field, @is the toroidal angle in cylindrical (X,_,Z)

coordinates. Then, _ is related to _ by
i

' _ = $ - q 8(e,v) , (4)

Where 8(O,_g)is periodic in Oand is determined by

q(l+o_5/aO)=gd /X2. (5)

We consider stationary isotropic ideal MHD equilibria satisfying

J x B = V P, (6)

V x B= J, (7)

V • B = 0 ,, (8)

where J, B and P are the equilibrium current, magnetic field, and pressure, respectively.

We will consider an axisymmetric toroidal plasma consisting of the core and alpha

components with na << ne and Ta >> Tc so that [3a< _c. Summing the collisionless equations

of motion for each species, we obra.inthe linear momentum equation

a,'2p _ = V.SP+ b'x (VxB) + _,x(Vx b) , (9)

where _ is the usual fluid displacement vector, b is the perturbedmagnetic field, 8P is the total

perturbed particle pressu:m tensor due to ali species, and p is the total plasma mass density. The

following ideal MHD relations hold
B

b = V x (_.LX B) , (10) '

and



5E _-- ico_ × B , , (11)

• where 8E is the perturbed electric field. The gyroldnetic description neglecting the Finite-Larmor-

radius con_ction is employ_ for all particle species. N:_can be expressed as '

5p = 5p.LI +( 5p II- 5P.L)b b , (12)
,

where 5p IIand _oz are obtained from the permrt_ particle distribution function gf by

( )("°,,I¸ Mf
, I.tB, (13)

where the summation in j is over ali particle species, M is the particle mass, E = v2/ 2 is the particle

energy, _t = v±2/2 is the magnetic moment, and 5I is the perturbed particle distribution function.
In Eq. (13) the ;integral over velocity space can be expressed in terms of the new velocity space
coordinates (_3,A,o)

'2f h(v,e)

o ," o (14)

where the summation in o is over the direction of particle parallel velocity, A = t.tBo/eis the pitch

angle, Bois the vacuum magnetic field at X = R, and h = Bo/B(_g,O).On a flux surface, circulating

particles correspond to 0 < A < hmin(_t), and trapped particles to hmin(Xg) _< A _<h at a given 0,

where hmin0g)= Min [h0g,O)]on the _gsurface. If we write 5f as

6f =-_.L, VF- la.b, ohF ..-T-- + g,
a_ (15)

" where F is the unperturbed particle distribution, the nonadiabatic perturbed particle distribution is

given by
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^ , "-" T Vd * 8Ej. MI.LbII
g= (Jt i co co, + ,

e

(16)

where the time integration is along the unperturbed particle characteristics, e is the particle charge,

b, is the parallel perturbed magnetic field, co= -(T_/M)_InF/_I3, ¢o,T =-i (T/Moot) (b x V

InF ,, V ) only operates on the perturbed quantities, Md = (b/foe) X [ V(p.B) + K vii 2 ] is the

magnetic drift velocity, b = B/B, T is the average temperature, _ is the cyclotron frequency.

In terms of the dependent variables, _v= _,,Vv, b,,= b q,B, _s = _ ° (B x Vr/[ V_g I2),

and Vo_, Eqs. (9) - (16) can be cast into a set of non-Hermitian integro-differential eigenmode

equations which are solved by a nonvariational kinetic-MHD stability code (NOVA-K). 7 The

NOVA-K code employs F0urier expansion in the poloidal angle 0 direction, and cubic B-spline

finite elements in the radial _ direction. An arbitrary nonuniform Wmesh can be set up toprovide

the option of zoning the mesh to allow more finite elements near rational surfaces, theplasma edge,

and the magnetic axis. The boundary condition at the magnetic axis is {_ = 0. For fixed boundary

modes the boundary condition is {_ = 0 at the plasma-wall interface, In general, the boundary

condition at the plasma-vacuum interface is given by by q' V_ = B • V{v, where by is the

perturbed vacuum magnetic field which must be solved from the divergence-free equation V • by =

0with proper wall boundary condition. In this paper, instead of presenting the full numerical

solutions of the TAE instabilities from the NOVA-K code, we will consider a semi-analytical

approach by establishing a quadratic disPersion relation and performing a perturbative analysis to
obtain the stability criteria of the o_-particledriven TAE modes.

III. Quadratic Form

By taking an inner product of Eq. (9) with _ and integrating over ali the plasma volume

with the assumption of a fixed conducting boundary, we obtain from a quadratic form

D((o) = aW l -4- _W k - ,SK =0, (17)



where the inertial energy is given by _

t r$K= co d_× p ,

(18)

the fluid potential energy due to both the core and hot components is

,

f _..... 12,.

+IB_)(_×_)'_._;_._(_×_)._}, (19)

and the kinetic potential energy due to ali species is
J

_ (. 5Wk= _'_xV.___+ _p_-_ _ •_"i- g ,

(20)

where the nonadiabatic perturbed pressures are defined by

. The quadratic form is useful in providing the stability properties of the system in certain

limits. A perturbative analysis can be performed over Eq. (17) to obtain the stability criteria of the

TAE modes and is presented in Sec. IV. In terms of the Fourier components, the nonadiabatic

trapped particle contribution to the potential energy neglecting the finite particle banana width effects
can be written as



's Y0""'Lh-= - 2 Mr_ d_ dl_ _;, cia K b
mifi

m',m,p (22)

. .-. 2( i)] &m(A,_.,O) iswhere Gm,p Gin,p[ cos2( prd2 ) cos( pmb i) -isin p_2 )sin( pm b ,

defined by [(1"- 3A/2h)_:* _x" (aJ2h) V*{A= _ Gm(A,V,e)exp[i(me-n_)l,Kb = _ _b, _b
m

..(m)

is the trapped particle bounce period and is a function of E and, A, m° = (mM/eq)(01nF/0g0, and
Sm = m-nq, and <A> denotes the bounce or transit average of' A and is given by

'l;b't (23)

For trapped particles t(0) is defined by

At(e,(_=+l) = ,,/ BdO'--- ,, !Iv,,1
(24)

where 0 T > 0 >--0T corresponds to (1:d4) > i > --(1:b,/4),and-+0T are the trapped particle turning

p ?ints defined as the roots of the vl_(0) = [1 -A/h(0)] = 0.

Similarly, the nonadiabatic contributions of circulating particles on the potential energy is

given by
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'. m,m',p=

< I}- < /, ,(s "
..........._ ,. =&me m ,/ ,,

" Gin: (co (co_)2 (__nq)2cot , (25)

where Kt: _ "Ct,"Ctis the circulating particle transit period and is a function of E and A. For

circulating particles the time-like variable i(0) is defined by Eq. (24) but with x > 0 > -r_which

corresponds to ('l;t/2)> }> -(I:t/2).

V. Alpha-Particle Destabilization of the Toroidicity-Induced Alfven

Eigenmodes ,

In this section, we will focus on the destabilization of shear Alfven waves by a-particles.

For typical D-T parameters the (z-particle birth velocity Voc= (2EcO_oc)1/2= 1.295 × 109cre/see

for an energy Ea of 3.5 MeV is comparable to the Alfven speed VA = B/(NiMi) 1/2. Thus, the

transiting Oc-particlescould destabilize shear Alfven waves by the expansion fi_e energy associated

with thespatial gradient of the (z-particle pressure via inverse Landau damping through the co= kll

v IIwave-particle resonance. Here, kll = (m,nq)/qR is the parallel wavenumber for linearized

waves that are Fourier decomposed as exp[i(m0-n_-cot)]. To satisfy the resonance condition, it

requires that Va > VA/2 Im-nql. To overcome the Landau damping by the inverse Landau
damping associated with CO,ct,it requires roughly that co,ct > (OA= VA/qR.

The stability of a global Alfven wave due to wave-palticle resonances can be obtained

perturbatively from the quadratic form, Eq. (17). We write the mode frequency as co = (Or+ i'y

and assume that the growth rate is small (['_ << Io_l), Then we have

2 -.

* tor -- { _SWt + Prin [SWk] } / 8K , (26)
and

" y = Res [cSWk]/ 2ico r,SK, (27)

J' '1_



where Prin [15Wk]and Res [_iWk]are the principal part and resonance contribution, respectively.

The wave particle resonances due to all particle species are retained in Res [_iWk]. The core
electron and ion distributions are taken as Maxwellians. The o_..particleequilibrium distribution

function, Fa, was taken to be isotropic in pitch angle variable A and slowing-down in energy for I_

< ga and zero for 13> ,e.a.The tokamak reactor type equilibria are modeled with noncircular plasma .

surfaces defined by

X ,=R + acos[e + _5sin(e)], (28)

and

Z = K:a sin (O) , (29)

where K:is the elliticity, 8 is the triangularity, a is the horizontal minor radius, and R is the major

mdiusl The equilibrium pressure and safety profiles are chosen as

P(Y)= Po 1-y , (30) "

q(y) r q (0 _ + y q(1),- q(0) + [q'(1)-q(1) + q(0)](1 Ys)(Y-1)
()- Ys) ' (31)

where Ys = [q'(1) - q(1) + q(0)]/{q'(0) + q'(1) - 2[q(1) - q(0)]}, y = (r/a)2 = (xg Vo)/Axg, Axg=

Vilm- xgo, xglim is evaluated at the limiter, and _o is evaluated at the magnetic axis.

The lowest order solutions, determined by Eq. (25), must be obtained from the solutions of

the appropriate eigenmode equations, Eqs. (9) - (15), by neglecting the resonance contributions to

the perturbed particle pressures. If the nonadiabatic perturbed pressures defined in Eq. (21) can

also be neglected, i.e., the lh'in [_SWk]contribution is neglected, the eigenmode equations, Eqs. (9)

- (15), correspond to the ideal MHD equation_ in the limit of vanishing ratio of specific heat, and

can be readily solved by the NOVA code. l0 m the following we will adopt this approximation in ,

calculating the lowest order solutions of the TAE modes and greatly reduce the amount of numerical

computations. Physically this approximation eliminates the ion sound waves. The more completei
" lowest order solutions will be carded out in the future works.!
r.
|



A. Existence of the Toroidicity-Induced Eigenmode

Briefly, let us describe the various types of shear Alfven waves in a tokamak plasma. The

ideal MHD equation of motion shows that the coefficient of the highest-order radial derivative term,

dZ_r/dr2, where _r is the radial fluid displacement, vanishes at radial locations where ¢02-_.

" (k IIVA)2. This corresponds to the shear Alfven resonance condition, and frequencies _ that satisfy

min[(kllVA) 2] < _ < max[(kllVA) 2] lie in the shear Alfven continuum. This resonance leads to a
• ,,

singular mode structure; however, if electron parallel dynamics and ion finite Larmor radius effects

are included, one obtains a nonsingular solution known as the kinetic Alfven wave (KAW). Its

mode structure is fairly localized, and hence it is stable to a-particle drive due to strong electron

Landau damping. 11

There are two global types Of Shear Alfven wavesthat have radially extended mode

structure. Both types have low mode numbers n and m. The first type of glob_ shear Alfven wave

is a regular, spatially nonresonant wave whose frequency lies just below the minimum of the

continuum, i.e., co < kIIVA and kll g: 0. This wave is called the Global Alfven Eigenmode

(GAE). 12 Previous theoretical analysis of thi_ mode was limited to cylindrical geometry, where it

was found that transit wave-particle resonant i_-teraction with super-Alfvenic a-particles could

destabilize it, although with weak growth rates. 11 When finite toroidicity is included, GAE modes

with different poloidal mode numbers will become coupled. Such toroidal mode coupling tends to

stabilize the GAE modes completely, 3,8

Another type of global shear Alfven wave, one that exists only in toroidal geometry. The

. existence of this so-called Toroidicity-Induced Alfven Eigenmode (TAE) was shown in the ideal

MHD limit without a-particles. 1,13,14 Finite toroidicity introduces the TAE mode, which can be

strongly _stabili_e, xl by a,particles. The TAE mode exists inside gaps, due to toroidal coupling, in

the shear Alfven continuum spectrum. For example, modes (n,m) and (n,m+l) couple at radial

location ro, where q(ro) = (m + 1/2)/n, to form a gap which is bounded by

_± = o_o :t: 2 coo + ,4'(ro) ,
(32)

. where the center of the continuum gap is _o 2 = (VA/2qR)2 at r = ro, A(r) is the Shafranov shift of

the nonconcentric flux surfaces and A' > 0. For a given toroidal mode number n, the gaps due to

the poloidal harmonic couplings can exist across the minor radius and form a frequency gap in the

Alfven continuous spectrum. In this case the discrete global TAE modes had been shown to exist
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with frequency inside the continuum gap. 1 The existence of the high-n TAE modes has also been

shown previously. 13,14 Figure 1 shows the continuous spectrum in the absence of dissipations

for the n=l mode as a function of the radius for a circular TFTR extuilibrium (ETFTR1). The

parameters for the pressure and q-profiles of the "ETFTR 1'! equilibrium are Po= 0.6, X = 1.05, _ =

2, q(0) = 1.01, q(1) = 3.1, q'(0) = 0.84375, and q'(1) = 6.8571, 13= 2<P>/<B2> = 1,2223%,

[3pol= 0,8924. Since _ will be operated in the super shot regime with peak density profiles,

the density profiles is taken to be p(y)= p(0)( 1 - 0.8 y). The minor radius is a= 0.8, and the

major radius is R = 2.5, The frequency of the n=l fixed boundary TAE mode is given by (_C0A)2

= 0.7656, which lies within the continuum gap, 0.7 > (_/_A) 2 > 3.2, formed by the toroidal

coupling of the ro=l, 2, and 3 poloidal harmonies at q=l.5 and 2.5 _surfaces. The normalized

Alfven frequency is defined as c0A=vA(0) / q(1)R. The eigenfunction _W of the n=l fixed

boundary TAE mode versus r/a is shown in terms of poloidal harmonics in Fig. 2, which clearly

shows the dominant m=l and 2 components peaking near the q=l.5 surface,
'

Since COo2 is roughly proportional to (1/q2p), for certain q and density profiles it can vary

radially so that the continuum frequency gap does not exist for all minor radius, For higher n

modes (n > 2), it is less possible for a frequency gap to exist. Typicallythe higher poloidal

harmonic of the TAE mode Will resonate with the Alfven continuum near the plasma edge and suffer

damping (electron Landau damping) as in the case of kinetic Alfven Waves. The total electron

damping rate of the TAE mode, can be roughly estimated as6,15

' To / C0A= [30 (vA/ve) / 2(kllR) 2 + n 1/2(k±ps)2 (vA/vo) Am2 Win, (33)

where Ps is the ion gyroradius with the electron temperature, vo is the electron thermal velocity, Arn

is the relative amplitud e of the resonant higher-m harmonic to that of the nonresonant lower-m

poloidal harmonics and is estimated to be (a/R), Wm is theratio of the resonant poloidal mode

localization width to the nonresonant poloidal mode localization width and is estimated to be 1/kLa.

The first term in Eq. (33) is due to the electron Landau damping associated with the magnetic drift

for the global m--1 and 2 harmonics contributed mainly from near q--1.5 surface. The second term

is related to the electron parallel dynamics and ion finite Larmor radius effects associated with the

localized kinetic Alfven wave of higher poloidal harmonics near its resonance surface. The

continuum resonant damping rate is roughly a factor of kaaps2/R213e smaller compared with the

nortresonant electron damping rate. More accurate numerical investigation of the resonant damping

effect on the TAE mode is underway and will be presented in the future works.

I

B. Local Stability Analysis
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If the particle trapping effects and the magnetic drift term in the resonance are ignored, the

. local instability criterion of the TAE mode for a low-13, large aspect ratio tokamak equilibrium can

be obtained analytically by integrating over the velocity space in Res [SWk]. At a radial position

. with the resonance condition v Ii= co / k II= Vpand for a poloidal harmonic, Res [SW k] = g(_g,m)

I(_g,m)for each species, where g0g,m) represents the mode amplitude weighting and is independent,,

of particle species, and I(_g,m) represents the velocity integration and is given by

", ' aF "(m) 2 2 2
IW.m)= ( co.F)(v +2v,,) 2- z)

' ag ' (34)

For a-particle we have

3Paco { [ 4...vp 3-4Vp (v +v ]Ia(_,m ) = co + 3/2 + 4 ,
2rc Vpv a va ,. ...2 v a

' v a (1 + Vp)

" (2CO(*m)I[3Vot li ,..2 ,.4 ] }

1 + 8rp + 4 Vp ...3
- """_"3" 1/2 - 4 Vp ,

/ ...2

(] +vp) (35)

..2 ,..2 (m)
where v a = va 2 / [va 2 - Vp2], Vp = Vp2 / [va 2- Vp2], va is the alpha birth velocity, c0,a =

mpava/2r_, Pa is the alp[_a particle gyroradius at birth velocity, r is the minor radius, and La is

" the alpha particle pressure sc_delength. For the core electrons and ions we get

2 3/2

I¢(_l/,m)--- _ (4 co Pj /n VpVj)[1 +2 z_+2 z_]exp (- z2),

J (36)

• where the summation index j is over the electron and core ion species, vj = (2Tj/mj) 1/2, zj = Vp/

vi. Evaluated at the q=l.5 surface with Vp= vA and co= vA/2qR, the instability condition is given

by
-
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t" i

.,3 (3--4VA) va(va+v A)
4to.tx (I+8VA+4V A) --4V - 4VA+ +
• 22 ..2 ..2 3/2 4V

3 toava : (l+VA) (l+va) tx
-

^ I12
>_ [8vavtx/3_ va] _jzj[l+2z_+2z_]exp(-zy).

j (37)

The first term on the left hand side is due to the ox-particle destabilizing inverse Landau damping

associated with its pressure gradient and the second term is associated with the o_-particle velocity
Landau damping. The right-hand side contribution is due to the stabilizing electron and core ion

Landau dampings. Note that _jzj are not free parameters and are proportional to (va/vA). Equation
(37) shows that to destabilize the TAE mode the a-particle free energy drive associated with t0,a

,

must be large enough to overcome the usual Landau damping (typically when t0.a/t0a > 1) and

that above this threshold the growth rate T will scale linearly with to,tx.

The critical _a vs. (va/vA) stability curves computed from Eq. (37) are shown in Fig. 3

with m=2 for the TFTR, CIT, and ITER D-T operation parameters with very small critical _a. The

minimum critical _ct occurs at va/vA _2, where the instability condition is roughly given by

_tx(to,tx/toA " 2) _>0.4 (Move/Miva). For va/va > 4 the ion Landau damping becomes important.

For TFTR the D-T operation parameters are chosen as R = 250 cm, a = 80 cm, B = 5 T, Te = 10

kev, Wi = 10 kev, La = 15 cm, r= 25 cm, the alpha charge state Za = 2, Mtx / Mp = 4, M i/Mp =

2.5, where Mp, Mi, and Mtx are the proton, core ion' and alpha masses, respectively. For ni =

1014 cm "3, wehave va/vA = 1.88 and the critical 13a= 2.5 x 10"4. . For CIT the parametersare

chosen as R = 210 cm, a = 65 cm, B = 11 T, Te= 10 kev, Ti = 10 kev, La = 20 cm, r = 16 cm,

and the critical _ct = 7.5 x 10"4for va/vA = 1.5. For ITER the parameters are chosen as R = 600

cm, a - 215 cm, B - 4.85 T, Te = 10 kev, Ti = 10 kev, La = 50 cm, r = 50 cm, and the critical _3a

= 1.2 x 10-3 for va/vA = 1.5. Note that we have chosen a steeper a-particle pressure gradient for

TFTR to simulate the su_r shot operations so that its critical _t is smaller.

C. Global Stability Analysis ,

A more complete nonlocal perturbative stability calculation can be performed for realistic

equilibria by _firstobtaining the zeroth order solutions (eigenfuntions and mode frequency) from the

NOVA code. Then the proper weightings due to the equilibrium prof'zles and the poloidal and radial
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structures of the eigenfunctions in Res[SW k]required to compute the growth rate from Eq. (27) can

be integrated. Typically <okj> is much smaller than _and COband can be neglected except at the

boundary between circulating and trapped particles, where <cod> has a logarithmic singularity and

both cotand CObvanish. For larger minor radius, tot decreases and mbincreases, but mt is about a

factor of 2 to 4 larger than Ob. Thus, for typical reactor parameters the oc-particle transit

resonances can more effectively destabilize the TAE mode than the bounces resonances. In the

numerical computation of Res[_iW k] we have summed up many transit and bounce resonance terms

to ensure its convergence. We also assume the a-particle density to be na = na(0) exp [- (r / La)2],

and the volume averaged a-particle beta <[3_> is related to the central ct-particle beta _(0) by <[3ct>

= (a / La) 2 _(0). The ct-particle density scale length is La2 / 2r.
I
!

For TFTR we will study the circular tokamak equilibrium described in Fig. 1. The real

frequency of the n=l fixed boundary TAE mode is mr/ma = - 0.875. The corresponding

eigenfunction _gt of the n=l fixed boundary TAE mode versus r/a is shown in terms of poloidal

harmonics in Fig. 2. The critical volume averaged <13ct>vs. (va/va) stability curves obtained from

Eq. (27) are shown in Fig. 4 for the TFTR D-T parameters Teo = 10 keV, Tio = 30 keV, R = 250

' cm, a = 80 cm, Bo = 5 T, but with several Lcda values. The electrons and the ions are assumed to

. have the same temperature profiles. The very small critical volume averaged ct-particle beta<13a>

- is consistent with the local stability calculations when the volume average of the alpha density is

: taken into account. For vc_/va = 1 and I._/a = 0.3, the critical <[3a> = 1.5 x 104.

Similar calculations are performed for the CIT and ITER parameters. For CIT we will

study a noncircular tokamak equilibrium (ECIT2) with the following fixed parameters: R = 2.1, a =

0.65, 1¢= 2, _5= 0.2, Po = 0.6, _. = 1.05, kt = 2, q(0) = 1.01, q(1) = 3.1, q'(0) = 0.9, q'(1) = 13.

• The plasma beta _ = 2<P>/<B2> = 2.206%, and _9ol = 0.639. The plasma density is assumedto

be constant. The real frequency of the n=l fixed boundary TAE mode is mr/ma=- 0.82. The

corresponding eigenfunction _ of the n=l fixed boundary TAE mode versus r/a is shown in terms

"- of poloidal harmonics in Fig. 5, which clearly shows the dominant m=l ai_d 2 components. "/'he

critical volume averaged ct-particle beta <_a> vs. (va/va) stability curves are shown in Fig. 6 for

the CIT physical parameters Teo = Tio = 10 keV, R = 210 cm, a = 65 cm, B o = 11 T, but with

, several Lda values. The electrons and the ions are assumedto have the same temperature profiles.

The very small critical <_a> is consistent with the local stability calculations when the volume

average of the alpha density is taken into account. For Va/Va = 1.3, and LJa = 0.2, the critical

- <l_ct>= 8 × 10-6. Higher ion temperature provides higher ion Landau damping, and the critical

<_lt_>vs. (Va/VA) stability curves for Yeo = Tio = 20 keV are about a factor of three higher than
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those for Teo = Tio = 10 keV. As the a-particle pressure sacle length increases, the TAE modewi!l

be stable. For Teo = Tio = 10 keV case, the TAE mode is stable for l.Ja > 0.4.

For ITER we will study a noncircular tokamak equilibrium (EITER1) with the following

fixed parameters: R = 6, a = 2.15, _:= 2,8 =0.4, PO = 1, _, = 1.05, _t = 2, q(0) = 1;0!, q(1) =

3.2, q'(0) = 0.9, q'(1) = 13. This ec_Luilibriumis simil,'u"to the "ECIT2" equilibrium cmployed for

CIT but with its triangularity being twice as large. The total plasma beta 13= 2<P>/<B2> = 2o17%,

and 13pol= 0.474. The plasma density is assumed to be constant. The real frequency of the n=l

fixed boundary TAE mode is t0r/OA =- 0.857. The corresponding eigenfunction _ of the n=l

fixed boundary TAE mode versus r/a is shown in terms of poloidal harmonics in Fig. 7, which are

quite similar to those of the "ECIT2" equilibriumshown in Fig. 5. The critical <13ot>vs, (Vet/VA)

stability curves are shown in Fig, 8 for the ITER physical parameters Teo = Tio = 10 keV, R = 600

cre, a - 215 cm, Bo = 4.85 T, but with several I.Ja values. The electrons and the ions have the

same temperature profiles. The critical <[3a> is roughly a factor of three higher than that of CIT

case shown in Fig. 6, which is due to the larger ion Landau damping. For va/vA = 1.3, and La/a =

0.2, the critical <_a> = 2.2 × 10"5. Calculations are also performed for higher electron and ion

temperatures, and the results shown in Fig. 8 for Teo = Tio = 20 keV are similar to those obtained

for CIT case.

From these results we find that for typical D-T tokamak parameters, the volume averaged a-

particle beta threshold for TAE instability is very small andis in the order of 10-4. The TAE modes

will be robustly unstable in these proposed D-T tokamaks with typical growth rates in the order of

102toa as shown previously. 2,3
,,

V. Summary and Conclusion

In the paper we have studied the stability property of the a-particle driven toroidicity-

induced shear Alfven eigenmodes (TAE) via inverse Landau damping associated with the spatial

gradient of the a-particle pressure. In determining the volume averaged a-particle beta threshold

for TAE instability, we have included the core ion and electron kinetic effects. A quadratic

dispersion relation is derived and a perturbative analysis is performed to obtai'a the a-particle beta

threshold with the aid of the NOVA-K code. For D-T tokamaks the TAE modes can be strongly

unstable with the growth rate being approximately linearly proportional to to,a and typically of the
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i

orderof 10̀ 2tOA: Othertypesof globalAlfvenwaveshad been shown tobe stableinD-T

tokamaksduetotoroidalcouplingeffects.Therefore,primaryattention-especiallyexperimental-

shouldbcfocusedontheTAE modes,whichcanbestronglydestabilizedbya-particles.,#

The nonlinearbehaviorofthea-particledrivenTAE modes isrecentlyinvestigated16witha

modelinwhichthefiniteamplitudeorthoTAE mode altersthea-particleinteractionwiththemode.

Thea-particledistributionisflattenedlocallyinphasespacebytheperturbedmagneticfieldwhich

' reduces the ct-particle-to-wave energy transfer rate below the ambient dissipation rate. Rough
estimates yield a saturation level given by _iBr/B= 5 × 10.5 (_al_a_it) z/3. From our calculations

presented in the paper we have _Ja/_aerit'_ 102 - 103 for typical D'Ttokamaks, and the saturation

level of the TAE mode will be 8Br/B = 10"3. At this level of the magnetic fluctuation the a-particle

loss time will be appreciably shorter than the u-particle slowing-down time. 9 A more complete

calculation of the TAE mode saturation level with serf-consistent eigenfunctions will be addressed in

the future works. ,

Experimental efforts in TFTR are now underway to excite the TAE mode by neutral beam

injection. Since the TAE modes is predicted to be weakly damped and therefore high-Q, a less

expensive way to excite the TAE modes is by low power antennas whose impedance will have

sharp spikes of the TAE eigenfrcquencies. 17 The eigenmode structure can be measured by poloidal

and toroidal magnetic probes and compared with the theory.

Finally, we believe that the theoretical studies of the linear TAE mode stability presented in

the work can still be improved. Some important a-particle particle physics that should be addressed

in the future are finite banana width, finite Larmor radius, and more realistic a-particle distribution

functions generated from Fokker-Planck code. Core ion kinetic effects such as finite larmor radius

and pressure anisotropy can be also important. The stabilizing electron Landau damping effects

associated with the parallel electric field must be addressed if the TAE mode frequency runs into the

continuous spectrum of the higher poloidal harmonics.
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Figure Captions

m

d

Fig 1 The Alfven continuous spectrum of a circular TFTR equilibrium "ETFTRI" with the

minor radius a = 0.8, and the major radius R = 2.5. The total pressure and q-profiles are given by

Eqs. (30) and (31) with Po = 0.6, X = 1.05, l.t = 2, q(0) - 1.01, q(1) = 3.1, q'(0) = 0.84375, q'(1)

= 6.8571, [3= 1.2223%, and _:ml = 0.8924..
t

Fig.2 The poloidal harmonics of eigenfunction _ of the n=l fixed boundary toroidicity-induced

Alfven eigenmode (TAE) versus r/a for the "ETFTRI" equilibrium. The real frequency of the n=l

fixed boundary TAE mode is tor/mA =- 0.875.
i

Fig. 3 The critical 13avs. (va/vA) stability curves for the toroidicity-induced Alfven eigenmode,

(TAE) computed from Eq. (37) with m=2 for the Tr'TR, CIT, and ITER D-T operation parameters.

Fig. 4 The critical volume averaged <[5_> vs. (v_/v A) stability curves for the "ETFTRI"

equilibrium with theD-T parameters Teo = 10 keV, Tio = 30 keV, R = 250 cm, a = 80 cre, and Bo

= 5 T, but with several Ida w,dues.
o,

L_

Fig.5 The poloidal harmonics of eigenfunction _ of the n=l fixed boundary toroidicity-induced

Alfven eigenmode (TAE) versus r/a for the "ECIT2" equilibrium, The equilibrium is defined by the

parameters: R = 2,1, a = 0.65, _¢= 2, _i= 0.2, Po = 0.6, L = 1.05, p. = 2, q(0) = 1.01, q(1) = 3.1,

q'(0) =0.9, q'(1) = 13. The plasma beta 13= 2<P>/<B2> = 2.206%, and _pol = 0,639. The

plasma density is assumed to be constant, The real frequency of the n=l fixed boundary TAE

mode is e0r/C0n 0.82.

Fig. 6 The critical volume averaged a-particle beta <[3a> vs. (va/vA) stability curves for the

"ECIT2" equilibrium with the physical parameters Teo = Tio = 10 keV, R = 210 cm, a = 65 cre, Bo

= 11 T, but with several Lcda values. The electrons and the ions are assumed to have the same

.,temperature profiles. Higher iontemperature provides higher ion Landau damping, and the critical

8 <[3a> vs. (va/vA) stability curves for Teo = Tio = 20 keV are about a factor of three higher than

those for Teo = Tio = 10 keV.
,11

Fig. 7 The poloidal harmonics of eigenfunction {gr of the n=l fixed boundary toroidJcity-induced

Alfven eigenmode (TAE) versus r/a for the "EITER 1" equilibrium. The equilibrium is defined by
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the parameters: R =6, a'= 2,15, r= 2, 8 = 0.4, Po = 1, _= 1.05, kt = 2, q(0) = 1.01, q(1) = 3.2,

q'(0) = 0.9, q'(1) = 13,. The plasma beta 13 2<P>/<B 2> = 2.17%, and [Spol = 0.474. The

plasma density is assumed to be constant. The real frequency of the n= 1 fixed boundary TAE mode

is ¢0r'/C0A= 0.857,

Fig. 8 The critical <_> vs. (va/vA) Stability curves for the ITER physical parameters Teo = Tio

= 10 keV, R = 600 cre, a = 215 cm, Bo = 4.85 T, but with several I._a values, The cases with Teo

= Tio = 20 keV are also shown,
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