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Stable explicit depth extrapolation
of seismic wavefields

Dave Hale

ABSTRACT

Stability has traditionally been one of the most compelling advantages of im-
plicit methods for seismic wavefield extrapolation. The common 45-degree finite-
difference migration algorithm, for example, is based on an implicit wavefield
extrapolation that is guaranteed to be stable. Specifically, wavefield energy will
not grow exponentially with depth as the wavefield is extrapolated backwards
into the subsurface. Explicit methods, in contrast, tend to be unstable. Without
special care, numerical deficiencies in explicit extrapolation methods cause wave-
field energy to grow exponentially with depth, contrary to physical expectations.

The Taylor series method may be used to design finite-length, explicit, extrap-
olation filters. In the usual Taylor series method, N coeflicients of a finite-length
filter are chosen to match NV terms in a truncated Taylor series approximation of
the desired filter’s Fourier transform. This method always yields unstable extrap-
olation filters. However, a simple modification of the Taylor series method yields
extrapolators that are unconditionally stable.

The accuracy of stable explicit extrapolators is determined by their length—
longer extrapolators yield accurate extrapolation for a wider range of propagation
angles than do shorter filters. Because an infinitely long extrapolator is required
to extrapolate waves propagating at angles approaching 90 degrees, stable explicit
extrapolators may be less efficient than implicit extrapolators for high propaga-
tion angles. For more modest propagation angles of 50 degrees or less, stable
explicit extrapolators are more efficient than modern implicit extrapolators. Fur-
thermore, unlike implicit extrapolators, stable explicit extrapolators naturally
attenuate waves propagating at high angles for which the extrapolators are inac-
curate.
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INTRODUCTION

Implicit filtering methods are widely used to extrapolate seismic wavefields in
depth. For example, the well-known 45-degree finite-difference method for depth
migration is based on a recursive application of impli~it filtering (e.g., Claerbout,
1985). Implicit methods are most attractive because they are guaranteed to be stable.
Specifically, implicit methods for depth extrapolation will not permit the amplitude of
the extrapolated wavefield to grow with depth. In contrast, the most straightforward
explicit extrapolation methods are unstable, tending to amplify wavefield amplitudes
exponentially with depth.

Notwithstanding stability, explicit filtering is attractive because it resembles con-
volution, for which each filtered output sample can be computed independently, per-
haps in parallel with other output samples. Implicit filtering, in contrast, is ac-
complished by solving a linear system of coupled equations for the filtered output
samples. Partly because it is simpler, explicit filtering is likely to be more efficiently
implemented on various computers than is implicit filtering.

In addition to simplicity, another advantage shared by explicit methods for depth
extrapolation of seismic wavefields is the ease with which explicit methods can be
extended for use in 3-D depth migration. The solution of linear system of equations
required by implicit methods is particularly awkward in this application. For example,
an accurate extension of the implicit 45-degree finite-difference method to 3-D depth
migration is difficult and may be computationally impractical (Claerbout, 1985, p.
101; Yilmaz, 1987, p. 405). Explicit depth extrapolation methods, in contrast, are
easily extended to 3-D depth migration, as demonstrated by Blacquiere et al (1989).

These advantages of computational simplicity, efficiency, and extendability moti-
vate the development of a method for designing stable explicit depth extrapolation
filters. In addition to discussing these advantages, Holberg (1988) describes a con-
strained least-squares method for designing extrapolation filters that he claims are
“unconditionally stable”. However, amplitude spectra of these filters suggest that
this claim is not strictly valid. Although Holberg’s design method may be useful in
practice, repeated application of Holberg's extrapolation filters results in exponen-
tial growth of amplitudes for certain frequencies (and wavenumbers) in the seismic
wavefield.

In the spirit of Holberg's work, this paper addresses the following filter design
problem:

Find N coefficients h,, of a finite-length filter with a Fourier transform
H(k) that approzimates the desired Fourier transform defined by

ias[(waz)?_j2]'”
D(k)Ee‘“[(") "] : (1)
for |k| < |wAz/v|, subject to the constraint that |H(k)| <1 for |k| < =.

In the definition of D(k), w denotes frequency (in radians per unit time), v denotes
velocity, and Az and Az denote vertical and horizontal spatial sampling intervals,
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respectively. Wavenumbe: k (measured in radians per sample in the z direction)
is normalized such that any distance quantity is measured in terms of the number
of horizontal sampling intervals Az. With this normalization, two dimension-less
constants, Az/Az and wAz/v, uniquely determine the desired transform D(k).

The desired transform D(k) defined by equation (1) is appropriate for waves trav-
eling one way, either down or up. In depth extrap»lation of CMP stacked data, which
corresponds to waves propagating both down and up, we may use the “e. nloding re-
flectors” concept and replace velocity v with half-velocity v/2 (e.g., Claerbout, 1985).
This replacement is implied by references to half-velocity below. The symmetry of
the desired transform D(k) with respect to k implies that the complex extrapolation
filter coefficients h, should be even. Specifically, we expect h_, = h,. Therefore,
the number of coefficients NV should be odd, with the coefficient index » bounded by
—(N-=1)/2<n <(N -1)/2

EXPLICIT EXTRAPOLATORS FOR A SINGLE FREQUENCY

Figure 1 illustrates amplitude spectra |H(k)| for three explicit, 19-coefficient ex-
trapolators, as a function of normalized wavenumber (measured in cycles). In this
example, Az = Az and normalized frequency wAzx /v = 7/2 radians. Therefore, the
right half of this figure corresponds to evanescent waves for which |k| > |wAz /9.

Tue light gray curve corresponds to an extrapolator designed by an unconstrained
least-squares method, which is equivalent to simply inverse Fourier transforming the
desired transform D(k) and truncating to the desired number of coefficients N = 19.
The amplitude spectrum of this extrapolator has a ripply character that is typical of
filters designed by least-squares methods. Note that the amplitude is greater than one
for some wavenumbers; Fourier components of a seismic wavefield corresponding to
these wavenumbers will grow exponentially as this extrapolator is applied repeatedly
in the recursive process of depth extrapolation.

The dark gray curve in Figure 1 corresponds to an extrapolator that was designed
by a conventional Taylor series method, in which the N = 19 coefficients were chosen
to match N = 19 terms in a truncated Taylor series approximation of the desired
D(k). (See Appendix A.) As the amplitude spectrum indicates, this extrapclator is
quite unstable, particularly for the evanescent wavenumbers.

The black curve in Figure 1 corresponds to a 19-coefficient extrapolator that was
designed by a modified Taylor series method described in Appendix A. Because this
extrapolator has no amplitudes greater than one, it is stable for all wavenurabers.
Note that this extrapolator attenuates high wavenumbers, with most of the attenua-
tion occuring in the evanescent region.

Figure 2 is a detailed plot of the amplitude errors for the three extrapolators.
As noted above, *he ripply character of the least-_quares (light gray) extrapolator is
typical. However, Holberg (1988) has demonstrated that the magnitude of these os-
cillations can be significantly reduced (1) by restricting the range of wavenumbers for
which the least-squares fit is attempted and (2) by constraining the filter to be stable

(9%
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F1G. 1. Amplitude spectra for 19-coefficient explicit extrapolators designed by an un-
constrained least-squares method (light gray), the conventional Taylor series method
(dark gray), and the modified Taylor series method described in Appendix A (black).
The ripply amplitude spectrum (light gray) is characteristic of least-squares filter de-
signs. Smooth amplitude spectra (dark gray and biack) are characteristic of Taylor
series methods. Only the modified Taylor series method (black) yields an extrapola-
tor stable for all wavenumbers. In this figure, normalized wavenumbers greater than
0.25 correspond to evanescent waves.
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(amplitudes less than one) for wavenumbers outside this range. (Why was Holberg’s
constraint that amplitudes be less than one not enforced for all wavenumbers?) How-
ever, Holberg’s extrapolators also exhibit oscillating amplitude errors, some of which
are positive (amplitudes greater than.one) within the range of wavenumbers over
which the least-squares fit is attempted (Holberg, 1988, p. 108). Holberg’s extrap-
olators have less amplitude error than the unconstrained least-squares extrapolators
shown here, but they are not “unconditionally stable”.
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FI1G. 2. Amplitude errors for 19-coefficient explicit extrapolators designed by an un-
constrained least-squares method (light gray), the conventional Taylor series method
(dark gray), and the modified Taylor series method described in Appendix A (black).
Positive errors imply an unstable extrapolator. Only the modified Taylor series
method (black) yields an extrapolator stalle for all wavenumbers. In this figure,
normalized wavenumbers greater than 0.25 correspond to evanescent waves.

Whereas amplitude errors in Figure 2 indicate stability (or instability), the phase
errors plotted in Figures 3 and 4 indicate how well (or how poorly) explicit extrapola-
tors will position reflectors in depth migration. The phase errors plotted in Figures 3
and 4 correspond to extrapolators with 19 and 39 coefficients, respectively. As ex-
pected, increasing the length of an extrapolator reduces its phase error.

Figures 3 and 4 suggest that a high price has been paid for stability. The stable
extrapolator exhibits significantly greater phase error than either of the two unstable
extrapolators.
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F1G. 3. Phase errors for 19-coefficient explicit extrapolators designed by an un-
constrained least-squares method (light gray g the conventional Taylor series method
gdark gray), and the modified Taylor series method described in Appendix A (black).
table exphc1t extrapolators, such as that designed by the modified Taylor series
method (black), exhibit greater phase error than do unstable extrapolators. In this
figure, normalized wavenumbers greater than 0.25 correspond to evanescent waves.
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FI1G. 4. Phase errors for 39-coefficient explicit extrapolators designed by an un-
constrained least-squares method (light grayg, the conventional Taylor series method
dark gray), and the modified Taylor series method described in Appendix A (black).
omparison with Figure 3 indicates that increasing the length of explicit extrapola-
tors reduces phase error. In this figure, normalized wavenumbers greater than 0.25
correspond to evanescent waves.
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EXPLICIT EXTRAPOLATORS FOR A RANGE OF FREQUENCIES

Figures 1 through 4 illustrate amplitude and phase errors of extrapolators de-
signed for the particular normalized frequency wAz/v = 7 /2 radians. In practice,
extrapolation filters must be designed for a wide range of frequencies. Figures 5 and 6
show contours of amplitude and phase errors, respectively, for stable explicit extrap-
olators with 39 coefficients. Errors are plotted as a function of normalized frequency
and wave propagation angle. As in the preceding examples, I chose Az = Az in
designing these stable extrapolators. ‘
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F1G. 5. Amplitude error for a 39-coefficient explicit extrapolator designed by the
modified Taylor series method described in Appendix A. Error is contoured as a
function of normalized frequency and propagation angle (measured from vertical).
Normalized (dimension-less) frequency is frequency (Hz) times the horizontal sam-
pling interval (km) divided by velocity (km/s). Contour values are —1/1000 (thin),
—1/100 (medium), and —1/10 (zhick).

For convenience in using these figures, the normalized frequency axis has been
labeled in cycles (instead of radians), ranging from 0.0 to 0.5 cycles. For example, a
frequency of 40 Hz, a CMP spacing of 12.5 m, and a velocity (or half-velocity) of 1
km/s correspond to a normalized frequency of 0.5 cycles. Normalized frequency can
easily be computed for other choices of these parameiers, and the computed values
will typically fall inside the range 0.0 to 0.5 cycles.
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FIG. 6. Phase error for a 39-coefficient explicit extrapolator designed by the modi-
fied Taylor series method described in Appendix A. Error is contoured as a function
of normalized frequency and propagation angle (measured from vertical). Normal-
ized (dimension-less) frequency is frequency (Hz) times the horizontal sampling in-
terval (km) divided by velocity (km/s). Contour values are —/1000 (thin), —7/100
(medium), and —x/10 (thick).
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Amplitude error for stable extrapolators is contoured in Figure 5 for errors of
—1/1000, —1/100, and —1/10, corresponding to thin, redium, and thick contours,
respectively. (Thick contours imply large errors.) Figure 5 shows that stable extrapo-
lators will attenuate waves propagating at an angle of 50 degrees for most frequencies
by a factor of 0.999 in one extrapolation step. After 1000 such extrapolation steps,
these waves will have been attenuated by a factor of 0.999 raised to the 1000’th power,
which is approximately 1/e = 0.37.

Phase error for stable cxtrapolators is contoured in Figure 6 for errors of —m /1000,
—x/100, and —7/10, corresponding to thin, medium, and thick contours, respectively.
(Again, thick contours imply large errors.) Since phase errors accumulate, Figure 6
shows, for example, that these stable explicit extrapolators yield one-half cycle (7 ra-
dians) of phase error after 1000 extrapolation steps for waves propagating at an angle
of about 50 degrees. Comparison of Figures 5 and 6 suggests that waves propagating
at very high angles will be attenuated, sc that only those propagation angles for which
the stable extrapolators are accurate will be preserved during depth extrapolation.
In other words, a depth migration process based on these extrapolators will attenuate
steeply dipping reflectors that would otherwise be mis-positioned due to large phase
errors. ‘ ‘

As suggested by Figures 3 and 4, the errors in stable explicit extrapolators may be
reduced by using longer extiapolators. Likewise, shorter extrapolators yield greater
errors. Although not shown here, a stable explicit extrapolator with 19 (instead of
39) coeflicients yields one-half cycle of phase error after 1000 extrapolation steps for
waves propagating at an angle of 35 degrees. Therefore, about 15 degrees of propa-
gation angle may be gained by doubling (approximately) the number of extrapolator
coefficients from 19 to 39. ‘

Note that the phase error in Figure 6 is more or less independent of frequency.
In contrast, the phase error for implicit depth extrapolation is highly frequency-
dependent. For comparison, phase error for a so-called “65-degree” implicit extrap-
olation filter (Lee and Suh, 1985) is contoured in Figure 7. The term “65-degree”
refers to the accuracy in approximating the square-root in equation 1. Specifically,
the 65-degree approximation is obtained by a slight adjustment of the coefficients of
the more traditional 45-degree approximation to the square-root. These terms fail to
account for errors in approximating spatial derivatives with finite differences; these
are the errors that account for the increase in phase error with increasing normalized
frequency evident in Figure 7. :

Recalling the definition above of normalized frequency, the only parameter that
may be adjusted in practice to reduce this phase error is the horizontal spatial sam-
pling interval Az. For the previous example of a frequency of 40 Hz and a half-velocity
of 1 km/s, Figure 7 implies that Az = 1.25 m would be required to obtain less than
one-half cycle of phase error after 1000 extrapolation steps for a wave propagating
at 65 degrees. This spatial sampling interval is a factor of 10 smaller than the 12.5
m necessary to avoid spatial aliasing. Recalling that Az = Az for the extrapolators
shown here, the size of each vertical depth step must be reduced accordingly, which

10
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FIG. 7. Phase error for a so-called “65-degree” implicit extrapolator. Compare with
Figure 6. Error is contoured as a function of normalized frequency and propagation
angle (measured from vertical). Normalized (dimension-less) frequency is frequency
(Hz) times the horizontal sampling interval (km) divided by velocity (km/s). Contour
values are —7/1000 (thin), —7/100 (medium), and —7/10 (thick).
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implies that more steps are necessary to extrapolate to a particular depth. In prac-
tice, the high computational cost associated with such fine spatial sampling intervals
suggests that 65-degree accuracy is rarely achieved with 65-degree implicit methods
for depth migration.

For those wishing to reproduce the errors contoured in Figure 7, horizontal spa-
tial derivatives were approximated here using the so-called “1/6 trick”described by
Claerbout (1985, p. 262). A value of 1/12 was used here because it yields less phase
error than the value 1/6 for the 65-degree approximation. :

Implicit extrapolators, in principle, are capable of high accuracy for very high
propagation angles. Figure 8 shows contours of phase error for a “90-degree” implicit
extrapolator. This extrapolator is obtained through a partial fraction expansion of
the square-root in equation (1), as suggested by Ma (1981) and developed by Lee
and Suh (1985). The computational cost of this extrapolator is approximately five
times that of the 65-degree extrapolator. Again, note the frequency dependence of the
phase error contours in Figure 8, which implies that small spatial sampling intervals
are required to obtain 90-degree accuracy.

MIGRATION IMPULSE RESPONSES

To further test the stable explicit extrapolators derived in Appendix A, a migration
program was developed based on those extrapolators. Figure 9 exhibits migration
impulse responses for a 19-coeflicient stable explicit extrapolator. The input to the
migration was a section containing just three non-zero samples. In this example,
spatial sampling intervals Az = Az = 10 m, time sampling interval At = 10 ms,
and half-velocity = 1 km/s. The maximum (Nyquist) frequency is 50 Hz = 1/(2At).
Therefore, these data contain normalized frequencies ranging from 0.0 to 0.5, tle
same range represented in Figures 6 through 8. These parameters are representative
of those one might encounter in processing recorded seismic data.

Note that steep dips (high propagation angles) are attenuated in Figure 9. Those
dips that are present are correctly positioned along concentric semicircles with cen-
ters at the origin. No visible dispersion of low and high frequencies is exhibited by
these impulse responses. Figure 10 illustrates the benefit of increasing the number
of coefficients in stable explicit extrapolators from 19 to 39. Increasing the number
of coefficients by roughly a factor of 2 has increased the dip limit of stable explicit
extrapolators by about 15 degrees. Again, note that no visible dispersion of low and
high frequencies is exhibited by these impulse responses. As indicated in Figure 6,
and confirmed in Figure 10, the phase accuracy of stable explicit extrapolators is
more or less independent of frequency.

For comparison, a “65-degree” implicit migration yields the impulse responses
shown in Figure 11. Note that the accuracy of this implicit method is frequency
dependent. High frequencies are mis-positioned at steep dips, as suggested by the
phase errors contoured in Figure 7. Also, note the heart-shaped character of the im-

1 ™ Vi ... 4 .. o -4 s Y SR SRSy o T S DUty S 1 |
PUlse responses. 1le palviculally SLLULE CUSP al LU CELILEL U1 Calil dllgal L id UIDPeLIdeil
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F1G. 8. Phase error for a so-called 90-degree implicit extrapolator. Compare with
Figures 6 and 7. Error is contoured as a function of normalized frequency and propa-
gation angle (measured from vertical). Normalized (dimension-less) frequency is fre-

quency (Hz) times the horizontal sampling interval (km) divided by velocity (km/s).
Contour values are ~7/1000 (thin), —7/100 (medium), and —= /10 (thick).
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F1G. 9. Impulse responses of migration via 19-coefficient stable explicit extrapola-
tors. Steep dips are attenuated, but dips remaining are correctly positioned along
concentric semicircles with centers at the origin, with no visible dispersion of low and
high frequencies. ‘

Distance (km)
0

F1G. 10. Impulse responses of migration via 39-coefficient stable explicit extrapo-
lators. Comparision with Figure 9 indicates that longer extrapolators yield stecper
dips. As for Figure 9, note that the impulse responses are correctly positioned along
concentric semicircles with centers at the origin, with no visible dispersion of low and
high frequencies.

14



Hale Stable Explicit Extrapolators

Distance (km)

(wx) yidaQ
G0

FiG. 11. Impulse responses of migration via 65-degree implicit extrapolators. Note
the dispersion of low and high frequencies at steep dips. The heart-like shape of
these impulse responses is dispersed evanescent energy not attenuated by implicit
extrapolation. Compare with Figures 9 and 10.

evanescent energy contained in the impulses input to the migration. (See Claerbout,
p. 247.) Unlike the stable explicit extrapolation filters described here, implicit ex-
trapolation filters do not naturally attenuate this evanescent energy. In other words,
implicit extrapolation filters do not know when to quit.

A DEPTH MIGRATION EXAMPLE

Explicit wavefield extrapolation is easy to incorporate in depth migration, which
must handle lateral velocity variations. As suggested by Holberg (1988), one first
computes a table of extrapolators for a typical range of normalized frequencies. Lat-
eral velocity variations in extrapolating from one depth to the next are then handled
by choosing the extrapolator most appropriate for each extrapolated sample. In other
words, lateral velocity variations are handled by a lateral varying filter.

To illustrate this application of stable explicit extrapolators, I used finite-difference
modeling of an exploding reflector for the velocity model shown in Figure 12 to
compute the synthetic zero-offset section shown in Figure 13. Migrated images of
the subsurface, computed using both 39-coefficient explicit and 65-degree implicit
depth migrations are shown in Figures 14 and 15, respectively. Both the explicit
and implicit depth migrations successfully image the horizontal (exploding) reflector
located beneath the low-velocity lens at a depth of 3 km, between 2 and 4 km. Due to
the lack of high frequencies in the synthetic data, the implicit method exhibits little
frequency dispersion in this example.

15
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F1G. 12. Velocity model used to compute a synthetic zero-offset section via finite-
difference modeling. Black shading corresponds to a velocity of 2 km/s. White

shading (at the center of the lens) corresponds to a velocity of 1 km/s.
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F1G. 14. Depth migration via 39-coefficient stable explicit extrapolation of the syn-
thetic zero-offset section displayed in Figure 13. The exploding reflector has been
properly imaged at a depth of 3 km, centered laterally betwee ' 2 and 4 km. Compare

with Figure 15.



‘ Hale Stable Ezxplicit Extrapolators

Distance (km) ‘

(wy) yidaq

F1c. 15. Depth migration via so-called “65-degree” implicit extrapolation of tl..
synthetic zero-offset section displayed in Figure 13. The exploding reflector has been
properly imaged at a depth of 3 km, centered laterally between 2 and 4 km. Compare

with Figure 14.
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CONCLUSIONS

Stable explicit filters for depth extrapolation of seismic wavefields may be derived
through a modificat .on of the conventional Taylor series method. The modified Taylor
series method describe here yields extrapolators with maximally-flat amplitude spec-
tra in their passband, while ensuring that no spectral components in the wavefield

-are amplified by an factor greater than one.

The price for stability is increased phase error. The stable explicit extrapolators
described here exhibit more phase error than do unstable extrapolators. Phase error in
stable explicit extrapolators may be reduced by increasing the number of coefficients
in the extrapolation filter.

For low normalized frequencies, implicit extrapolators (Figures 7 and 8) are more
accurate than the 39-coefficient stable explicit extrapolator (Figure 6) described here.
However, the small spatial sampling intervals required to obtain high phase accuracy
in implicit extrapolation imply that this accuracy is rarely achieved in practice. Over
the wide range of normalized frequencies likely to be encountered in practice, stable
explicit extrapolators outperform implicit ones.

- The method presented here for deriving stable explicit extrapolators is in no formal
sense optimal. It is only guaranteed to yield stable extrapolators. In my limited
experience with alternative methods for designing stable extrapolators, the method
presented here produced the least phase error while ensuring stability. Nevertheless,
a simple method for designing optimal (in some sense) stable explicit extrapolators
would be preferred over the method presented here.
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APPENDIX A: DERIVATION OF STABLE EXTRAPOLATORS

The desired Fourier transform of the extrapolation filter is defined by

, 2 1/2

D(k) = e'%[(%l) —kz] , : (A-1)
where w denotes frequency (in radians per unit time), v denotes velocity, and Az and
Az denote vertical and horizontal spatial sampling intervals, respectively. Wavenum-
ber k (measured in radians per sample in the = direction) is normalized such that any
distance quantity is measured in terms of the number of horizontal sampling intervals
Az. With this normalization, two dimension-less constants, Az/Az and wAz /v, will
uniquely determine an extrapolation filter with a Fourier transform H (k) approxi-
mating the desired transform D(k).

Let h, denote the N complex coefficients of a finite-length extrapolation filter.
Because the extrapolation filter is symmetric (both the real and imaginary parts
are even), N should be an odd number. The coefficient index n is bounded by
—~(N =1)/2 < n < (N —1)/2, and the filter is completely specified by only (N + 1)/2
complex coefficients. Define the Fourier transform of the extrapolation filter by

N=1
Hk) = 5 hpe™¥n
Nt
= Y (2 = bno)hy cos(kn),
n=0 ‘

where 6, is the Kronecker delta function defined by

b = { 1, ifn=0;
"= 10, otherwise.

In the conventional Taylor series method of designing the extrapolation filter hy,
the (N 4 1)/2 distinct complex coefficients would be determined by equating deriva-
tives of H(k), the actual transform, with those of D(k), the desired transform. In
particular, because the extrapolation filter is symmetric and we want the filter to
be exact for waves propagating vertically, we would match the first (N + 1)/2 even
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derivatives at k = 0. quortundtely, this most straightforward application of the Tay-
lor series method yields an unstable extrapolation ﬁlter, a filter for which |H (k)| > 1
for some wavenumbers k.

To obtain a stable filter, we must attempt to match fewer than (N +1)/2 deriva-
tives and let the remaining degrees of freedom in the filter be exploited to guarantee
|H(k)| < 1. In this modified Taylor series method, let the coefﬁ(:lents of the filter be
represented as a sum of M weighted basis functlons

M-l ,
hn = Z Cmbmm , (A’z)

m=0

where, for reasons given below, a good choice for the basis functions is

27rmn) . (A-3)

bun = (2 - 6,,,0)008( N

Instead of determining (N + 1)/2 complex filter coefficients h,,, we will determine M
complex weights ¢,,. For stability, the number, M, of weights must be less than the
number, (N + 1)/2, of filter coefficients. Therefore, we will match only ilie first M
even derivatives of the desired and actual Fourier transforms, using the remaining
(N 4+1)/2 — M degrees of freedom to guarantee stability.

In terms of the weights ¢, to be determined, the Fourier transform of the extrap-
olation filter is

Ml = 2rmn
HE) = 3 en(2—6mo) 2(2 §.0) cos ( ) cos(kn)  (A-4)
m=0 n=0
M-
= 3 cmBm( | | (A-5)
m=0
where
& 2
Bu(k) = (2~ 6mo) 3 (2 = 620) cos ( ”1:]"”) cos(kn) (A-6)
n=0

are the Fourier transformed basis functions. Matching the I’th even derivative at
k = 0, we obtain the linear equation

M-1

Z C,,, m - D(zl)(o)a (A-?)

wlere

NgR

B (0) = (2 = 6m0)(=1)

2mmn
"20(2 — b,0) COS ( N ) n?,

By matching M such even derivatives, for l =0,1,..., M — 1, we obtain a system of
M linear equations for the unknown weights c,,,. After solving this linear system for
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the weights c,,, we may use equations (A-2‘) and (A-3) to compute the extrapolation
filter coefficients h,,.

In practice, the derivatives D#(0) in the Taylor series expansion of the desired
transform D(k) [equation (A-1)] are best obtained with the help of a computer. For
large I, expressions for these derivatives become unwieldy, but they can be expressed
in terms of the constants Az/Az and wAz/v, and a table of numerical coefficients.
In computing the extrapolation filters illustrated in this paper, I used Mathematica
(Wolfram, 1988), a widely available computer program, to generate and store in a
file the table of coefficients representing the first 40 terms of the Taylor series of
the desired transform D(k). This file, in turn, was then directly included during
compilation of the computer program (wutten in the C prog,rammmg language) that -
computed the extrapolation filter coefficients.

The stability of the extrapolation filters derived viu this modified Taylor series
method lies in the definition of the basis functions b, in equation (A-3). Each of
these basis functions, corresponding to m = 0,1,..., M — 1, represents a particular
range of wavenumbers k, with m = 0 representing the wavenumbers centered at k = 0.
To see this, we analytically compute the Fourier transform of each basis function,
according to equation (A-6). The Fourier transform of the m’th basis function is

v  [N(p L 2rm [N __gm
B, (k) = (1_331()_){8111 5 (k4 =X ]+sm S(k )]} (A-8)

2 sin [%(k + 2—’!(7"1)] sin [5 ; — 2 )]

These Fourier transformed basis functions are plotted in Figure A-1, for M = 6 and
N = 19. For large N, each of the transforms in equation (A-8) is approximately equal
to the sum of two sinc functions.

In the example illustrated in Figure A-1, four of the (N + 1)/2 = 10 degrees of
freedom in the extrapolation filter are used to place four zeros in its Fourier trans-
form for high wavenumbers k. Recall equation (A-4), which states that the Fourier
transform of the extrapolation filter H(k) is just a weighted sum of the Fourier trans-
forms of the basis functions By, (k). Therefore, regardless of the weights c,, computed
by matching derivatives in the modified Taylor series method, the Fourier transform
of the extrapolation filter will be forced to zero at four high wavenumbers k. It is
at these higher wavenumbers that extrapolation filters derived via the conventional
Taylor series method are most unstable. In the modified Taylor series method, forc-
ing zeros in the transform at these high wavenumbers makes the extrapolation filter
stable for all wavenumbers.

Unfortunately, I do not know how to determine the number of zeros necessary
to ensure stability for a given filter length N and constants Az/Az and wAz/v,
without simply testing different M, starting with M = (N — 1)/2 and decreasing
M until a stable extrapolation filter is found. Furthermore, I cannot prove thay
such a stable filter even ezists; all I have shown is that the extrapolation filter will
have (N + 1)/2 — M uniformly spaced zeros at the high wavenumbers in its Fourier
transform. I merely make the conjecture that such a stable filter always exists, that
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F1G. A-1. Fourier transforms of basis functions for M = 6 and N = 19. Note that,
in this example, there are (N + 1)/2 — M = 4 uniformly spaced zeros at the high
wavenumbers. These zeros attenuate evanescent waves and ensure stability of the
corresponding extrapolation filter. The Fourier transform of the extrapolation filter
is just a weighted sum of these sinc-like functions.

a suitable M can always be found, based on my experience in deriving filters via this
modified Taylor series method.

[ have also found, again cmpirically, that stable filters derived using this modi-
fied Taylor series method tend to have their zeros at wavenumbers corresponding to
evanescent waves, inhomogeneous waves for which |[k| > |wAz/v|. This feature is
illustrated in Figure 1 of the text. The zeros tend to attenuate evanescent waves and -
waves propagating at angles for which the extrapolation filter has significant error in
phase, as illustrated by Figures 5 and 6.

The modification described above to the conventional Taylor series method is just
one among many possible modifications. One likely alternative method that I have
tested is to solve (N +1)/2 equations directly for the unknown filter coefficients h,,
(without basis functions), with M of the equations used to match the first M even
derivatives of D(k) at k = 0 and the remaining (N + 1)/2 — M equations used to
zero the first (N +1)/2 — M even derivatives of the actual transform H(k) at k = .
This method is analogous to the design of maximally-flat, zero-phase, finite-length,
low-pass filters described by Kaiser (1979). Like the basis function method described
above, this “maximally-flat” method is also guaranteed to yield a stable extrapolation
filter for some choice of M. However, the phase errors obtained with the maximally-
~flat method exceed those obtained with the basis function method, particularly for
low normalized frequencies.
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