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ABSTRACT

We interpret the available data on polarised nucleon-nucleon
elastic scattering. By comparing these with the simplest exchange
model predictions we can identify features of particular interest
such as low-lying Al—like and isoscalar exchanges, and a helicity-
flip Pomeron component. Our maximum-simplicity Regge model is
intended to facilitate interpretation of forthcoming pp amplitude
analysis results.

EXCHANGE STRUCTURE OF pp SCATTERING

The elastic reaction pp-pp appears to be an excellent can-
didate for a study of hadron dynamics at low momentum transfer —
it looks simple, highly symmetric and is particularly well-measured.
In an exchange context, however, it has an embarassingly rich struc-
ture. The 5 amplitudes combinations N, Un (¥, U stand for natural,
unnatural parity exchange respectively and "n 1is total s~channel
helicity f£lip) can have contributions from almost every known Regge
exchange (see Table I). According to symmetry arguments and coup-
ling systematics established from factorisation studies of many pro-
cesses, these exchanges are expected to couple in a distinctive way
as shown in Table I.

Table I Exchanges in pp Elastic Scattering

Anmplitude Dominant Contributions Suppressed Contributions

+ +
N0 P+f+ow _ 0 A2
N2 p+A2 P+Ef+u

+£+
Nl p-fAz/E f+w
+

Uo Al+Z D ZO
U2 T+B n+H

The complex numbers which are the end product of pp amplitude
analyses1 will remain somewhat sterile quantities unless there exist
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model predictions of good theoretical pedigree, with which to compare
them. We have constructed such a model? using the simplest possible
amplitude structure satisfying SU(3), exchange degeneracy (EXD) and
factorisation constraints” together with an f-dominated Pomeron ampli-
tude. Details of this highly simplified, and hence predictive, model
and of the relation between amplitudes and observables may be found
in Ref.2. The basic model amplitudes (at 6 GeV/e and t=-0.3 Gev2 )
are similar to those shown in Fig.l except that Yo (a1 +2 exchange),
in common with other components having no Pomeron contribution, is
purely real. ' In particulaxr, the sign of each component is a theore-
tical prediction since the process is an elastic one.

As an example, the Aj+Z amplitude is predlcced2 by’ identifi-
cation of the Feynman diagram

'82
App _ ~ 1 ’
Uo(Al) = —=3 (uvuvsu) (uy Ysu) )

t-mA

.

with the Regge pole expression. The coupling Gaipp is estimated
using current algebra and axial vector dominance of the weak form

factor. Using Al-z EXD, one obtains a real and negative prediction
for Up- ) 3
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Fig.1l -Argand plot of pp amplitudes. Solid vectors are the model of

Ref.2. Dashed vectors are the tentative amplitude analysis results
(and associated error estimates) of Ref.l.

The only non-real contribution in the basic model is due to
Pomeron exchange whose flip and non-flip couplings are proportional
to those of the © and f£.

COMPARISON WITH SPIN POLARISATION DATA
Of the many interesting features of the polarisation data in

np and pp scattering, the following have particularly direct im-
plications for exchange models.



A. The sizeable value of Ac%ot(a: ImU,) measured at 6 GeV/ch
implies a non~EXD Aj-like exchange. To account for this, we have
put in an ad hoc imaginary contribution with the energy dependence
of the Ay (aAl(O) =—.19),2. The agreemznt of our 12 GeV/c prediction
with preliminary datad for Ac%ot(Fig.Z) shows this to be a reason-
able approximation. Our description of the amplitude Ug is rein-
forced by the measurement C;; but will be most strongly tested by

the triple scattering measurement H cy. 2
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Fig.2. .A comparison of model? and data’ for the longitudinally polavr-
ised total cross-section difference AG%Ot(pp). The preliminary data
point (®) at 12 GeV/c is from Ref.5.

B. The isospin zero contribution to the nucleon-nucleon
polarisation (P(pp) +P(pn)) shows an anomalously rapid energy de-
pendence® which may be interpreted’ as scalar e andfor o' ex—
change (see Fig.3).

100 T T T T

0 . — [Pln)Ole)]
o —=[ptrp1-pip]
§*-0.3Gav?

i3 }"“H

T T T T

Sl L

POLARIZATION

PESTRUETIT I U

1 I 2 2t viagl I [

10
Py {Gevic)

Fig.3. The isoscalar (®) and isovector (O) components of the NN
elastic polarisation.® The model curves are from Ref.2.
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In fact, a pole extrapolation estimate using knowledge of the on-
shell coupling constant gives a good account of the magnitude of this
low-energy eflect as well as the correct sign (Fig.3). This exchange
component also appears to play an important role in producing the
highly energy dependent effects seen in Cyn-

C. The negative polarisation measured in pp scattering for
|t} 20.4 and p;Ap=250 GeV/c (and similar results in np scattering
at lower energies) suggests a diffractive(i.e.mildly energy dependent)
helicity f£flip amplitude components. This has the sigan predicted by
eikonal models of the Pomeron with f-dominated couplings. The
implications for our simple model are that the real part of our heli-
city-flip Pomeron compomnent must be reduced to reproduce this behav-
ior. Fig.4 shows recent P(pp) data at 100 GeV/cl: which illustrate
this effect. Regge models with no helicity-flip pomeron predict very
small but positive polarisation at 100 GeV/c.
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Fig.4. The pp elastic polarisation at 100 GeV/e (@ Snyder et al,X

Corcoran et al).ll The curves marked I and BIS are predictions of

Refs. 8 and 2 respectively and include electromagnetic corrections.

AMPLITUDE AWALYSIS

Fig.1l gives an example of our basic pp amplitude predictions
modified as described in A, B and C above. The dashed argand vectors
are the preliminary amplitude analysis results of Ref.l rotated to
have our model phase for N, (not experimentally measurable for t#0)
and scaled to have the same magnitude for Ny (trivially given by

409y, Since our model gives a good overall description of all
aegilable spin polarisation measurements (single, double and triple
correlation) some degree of agreement is to be expected. The dis-
crepancy in Up and Ny is easily traced to the approximations
made in the preliminary data analysesl :

G ™ u(')' - (22)
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Cay ™ Ng_ (2b)
Hyss ~ N; (2¢)

where # and ! refer to the direction of Ny in the Argand plot.
In our model, these appear to be bad approximatlons due to the large -
contributions from Re(NZUZ), ]Nllz and Im(NoNl) to 2a, 2b’ 2¢
respectively, in this t-range (near -0.3). :

In any case, model zmplitudes are vital in motlvatlng, testing
and interpreting pp amplitude analyses.

NON-ASYMPTOTIC CONIRIBUTIONS

The s-channel helicity components N, Nj, Ny, Up and U
are well-known to correspond to definite t-channel parity at leading
order ip 1/s only. Since many of the interesting exchange contribu-
tions in pp appear at low s only (e.g. "¢ and "A;" exchange)
it is essential to know what the exact parity content is. A detailed
kinematical analysis12 gives the results? shown in Table II.

Table II t~Channel Parity in s—Channel Helicity Amplitudes

Amplitude - Leading Contributions 1/s Contributions
Ny = (0, +8,) N %0 x 0(2/)
Nl = ¢5 N U 0(1/s)
N, = -;"(4)4 =%y N o $2U » 0(1/s)
Uy = 26, =) s“U(a,) N (-t/28)"
u, =-%(¢4‘f¢2) qu(ﬂ) none

*

The factor ~t/s comes from assuming factorising contributions to
Ng. The factor of 1/2 results if one neglects thelr contribution
to Nj.

We can safely neglect the saU ! contributions to "natural parity"
combinations, but the natural parity (Pomeron) contamination is
potentially important for t#0(i.e. in Cjj )2 and even at t=0 (i.e.
in 4og,e) if conspiratorial solutions are admltted. Staceyl3 has
studied the latter p0351b11;Ly in detail.

It has been pointed out 12,13 that the Ay or Z contribution
to Uy at t=0 must vanish unless daughter contributions are
pPresent to satisfy an analyticity requirement on their 1/s "wrong



naturality" contribittions. Since there are many other theoretical
reasons for the existence™s{ daughter Reggeon contributions one
need not be unduly worried by € curiosity.

OUTLOOK

Considerable light could be shed on the isospin & mpositlon ’
of the pp amplitudes (Table I) by a selection of np ela
scattexring spin measurements. 10 Our model suggest that Aol
Cgg and Hygy would be particularly valuable, as would C x=
L,S,N) and Dyy measurements of np charge exchange in whlch spin
correlation effects should be especially large. - : ‘\\\\\

In the early seventies, amplitude analysis of N -+>4N dealt -
an almost fatal blow to Regge exchange models. From the chaotic re-
mains of these models some battered ideas on hadronic ampliiade
structure have struggled back into the daylight. Will the NN am-
plitude results be the coup de grace or will some totally new insight
emerge? Tor my part, I expect these Regge ideas will still be around
long after elephants have learned to f£ly and the A1 bas achieved
respectability.
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