

Contract No. EY-76-C-03-1175

MASTER

August 17, 1977

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DRAFT FINAL REPORT
EXECUTIVE SUMMARY OF AN ENERGY STUDY OF THE
MARINE TRANSPORTATION INDUSTRY
VOLUME I

for

Division of Transportation Energy Conservation
Non-Highway Transport Systems
Energy Research and Development Administration
20 Massachusetts Avenue
Washington, D.C. 20545

BOOZ · ALLEN & HAMILTON Inc.

Management Consultants

4733 BETHESDA AVENUE
BETHESDA, MARYLAND 20014
656-2200
AREA CODE 301

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MoW

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

BOOZ · ALLEN & HAMILTON Inc.

Transportation Consulting Division

NEW YORK WASHINGTON CLEVELAND
CHICAGO DALLAS LOS ANGELES SAN FRANCISCO
PARIS SAO PAULO TOKYO
LONDON DÜSSELDORF

4733 BETHESDA AVENUE
BETHESDA, MARYLAND 20014
656-2200
AREA CODE 301

August 12, 1977
Contract No. EY-76-C-03-1175

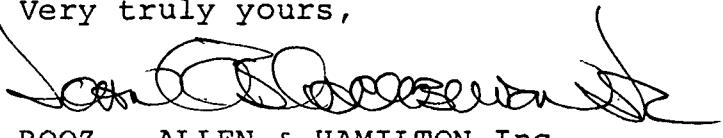
Mr. Richard Alpaugh
Division of Transportation Energy
Conservation
Non-Highway Transport Systems
Energy Research and Development
Administration
20 Massachusetts Avenue, N.W.
Washington, D.C. 20545

Subject: Draft Final Report Executive Summary - Energy Use
in the Marine Transportation Industry

Dear Dick:

We are pleased to submit our draft Final Report, "Energy Use in the Marine Transportation Industry". You will find that there are two points that change in the transition from the task reports to the final report:

- Industry energy consumption for the base year (1974) has been revised downward from 2.95 quads to 2.88 quads, due to a change in the conversion factor for bbl's of gasoline to long tons of gasoline in the pleasure boat sector.
- Recommendations contained in the Task III draft report for the initiation of programs covering:
 - Tunnel Sterns
 - Cut-a-Way Hulls
 - Submerged Air Cushions
 - Propellers in Nozzles


were based on an expected 30% cargo reservation for U.S. flag tankers. The current compromise

Mr. Richard Alpaugh
Energy Research and Development
Administration
August 12, 1977
Page Two

reached between the Administration and Congress sets a 9.5% cargo reservation for U.S. flag tankers. As such, the expected energy savings potentials did not materialize, and these recommendations were dropped.

If you have any questions concerning this report or the conclusions reached as a result of the analysis please do not hesitate to call Mr. Leo Donovan or myself at (301) 656-2200.

Very truly yours,

BOOZ • ALLEN & HAMILTON Inc.

John G. Blackburn
Project Manager

Approved:

Leo J. Donovan
Research Director

Enclosures

cc: E. Romo

EXECUTIVE SUMMARY OF AN ENERGY STUDY OF THE
MARINE TRANSPORTATION INDUSTRY

T A B L E O F C O N T E N T S

	<u>Page Number</u>
1. Our Approach to the Assignment	1
2. Summary of Results and Conclusions	2
3. Three Program Areas Are Recommended for Funding in FY78	20
4. Three High Risk Program Areas Should Be Reevaluated in the Future	22

I N D E X O F T A B L E S

	<u>Page Number</u>
1 Productivity and Energy Consumption of the Marine Transportation Industry	4
2 Energy Consumed for Transportation Services	6
3 Cargo Movements in the Foreign Trade Sector	7
4 Energy Consumption in the Foreign Trade Sector	8
5 Reported U.S. Purchases of Marine Fuel, 1974	8
6 Foreign Trade Sector Fuel Requirements	9
7 Comparison of Fuel Reported Sold for Marine Use Vs. Estimated Requirements	10
8 Agencies and Their Areas of Jurisdiction in the Commercial Marine Transportation Industry	12
9 Energy Impacts Due to Regulatory Actions	13
10 Transportation Energy Requirements for Four Alternative Distribution Schemes for the Projected West Coast Crude Surplus	14
11 Energy Impact of Segregated Ballast Requirements	17
12 Container-Miles in the U.S. Foreign Trade	16
13 The Fifteen Maritime Energy Conservation Program Areas Identified and Evaluated	20
14 Results of Economic and Energy Impact Analysis	19

EXECUTIVE SUMMARY OF AN ENERGY STUDY OF THE
MARINE TRANSPORTATION INDUSTRY

EXECUTIVE SUMMARY OF AN ENERGY STUDY OF THE MARINE TRANSPORTATION INDUSTRY

This report covers the conclusions and recommendations resulting from an examination of energy use in the marine transportation industry. The work was performed for the Transportation Conservation Division of the Energy Research and Development Administration (ERDA) by Booz, Allen & Hamilton. The conclusions and recommendations developed in this report are intended to assist ERDA in formulating research and development programs that will promote energy conservation in the marine transportation industry.

The assignment was structured around the following four tasks:

- Task I - Industry Summary - to define the current marine transportation industry in terms of population, activities and energy use
- Task II - Regulations and Tariffs - to define the regulatory structure surrounding the marine transportation sector and evaluate the energy use impact
- Task III - Efficiency Improvements - to identify conservation-related research and development programs and evaluate their impacts in terms of costs, energy savings potential and technological risk.
- Task IV - Industry Future - to project a future industry scenario, evaluate the energy use implications and recommend specific courses of action to be pursued by ERDA.

The methodology used in this assignment is discussed in the following section. The final report has been organized into five volumes. This first volume contains the executive summary. Volumes II, III, IV and V cover Tasks I, II, III and IV, respectively.

1. OUR APPROACH TO THE ASSIGNMENT

The methodology used in this assignment closely followed the four major tasks. The industry was first divided into seven major sectors and current levels of activity and energy

use and operating parameters were identified. Second, the regulatory structure was defined and the energy consumption impact of specific regulatory actions were estimated. Third, specific research and development programs were identified and evaluated with respect to their potential for energy conservation, given the existing energy use patterns identified in Task I. Fourth, levels of activity and operating patterns for each of the seven industry sectors were postulated for the year 2000. The research and development programs, identified in Task III were again evaluated with respect to their potential for energy conservation during that future period.

Conclusions were then drawn and specific recommendations for ERDA action in funding research and development programs were made. These conclusions and the recommendations are summarized in the following sections.

2. SUMMARY OF RESULTS AND CONCLUSIONS

The marine transportation industry can be broadly defined as being composed of seven individual industry sectors:

- The Foreign Trade Sector or those U.S. and foreign flag general cargo ships, dry bulk carriers and tankers that participate in the foreign commerce of the United States
- The Great Lakes sector or those U.S. and Canadian vessels that participate in the U.S. and Canadian Great Lakes trade
- The coastal shipping sector or those U.S. flag vessels that participate in our coastwise and intercoastal trade
- The offshore sector consisting of drill rigs and ships, pipe laying barges and workboats that are employed in the discovery and production of offshore oil
- The inland waterway sector consisting of towing vessels and barges engaged primarily in the transportation of bulk products on our inland river systems
- The fishing and miscellaneous sector include those special purpose service craft operating predominantly in local harbor areas

- The pleasure boat sector consisting of small non-commercial craft used exclusively for recreational purposes.

Each of these seven industry sectors was examined in detail and defined in terms of:

- Population and vessel types
- Productivity in terms of tons moved or hours operated
- Operating profiles
- Regulatory impacts
- Potential for energy conservation

for the baseline case (1974) and a projected future scenario (2000). The results of this analysis and the conclusions that were drawn are presented below. Following this presentation, specific recommendations have been made concerning research and development actions that appear to offer the greatest conservation potential.

(1) In 1974 the Maritime Industry Consumed 2.9 QUADS and is Expected to Require 6.7 QUADS by the Year 2000.

Utilizing the latest annual trade statistics available (1974), it is estimated that the marine transportation industry currently consumes 2.9 quads annually. Table 1 provides a summary of the industry's productive activity and energy consumption by industry sector. This energy consumption figure reflects the fuel or energy estimated by Booz, Allen to be required, (regardless of purchase point), by all vessels (regardless of flag) when engaged in the foreign and domestic commerce of the United States.

The energy consumption figures for the year 2000 were based on two trade forecasts developed by the U.S. Maritime Administration and an analysis of future energy requirements completed by the Massachusetts Institute of Technology.*

* See Volume V for detailed references and discussion of methodology.

TABLE 1
Productivity and Energy Consumption of the
Marine Transportation Industry

Industry Sector	1974			2000		
	Long Tons of Cargo Moved (millions)	Energy Consumed (quads)	%	Long Tons of Cargo Moved (millions)	Energy Consumed (quads)	%
Foreign trade	654.9	2.360	82.1	1,573.6	5.600	84.3
Great Lakes	175.3	0.052	1.8	325.0	0.100	1.5
Inland waterways	535.8	0.089	3.1	789.0	0.100	2.2
Coastal	213.0	0.112	3.9	403.0	0.300	3.8
Offshore	-	0.006	0.2	-	0.200	2.9
Pleasure craft	-	0.225	7.8	-	0.300	3.8
Fishing and miscellaneous	-	0.032	1.1	-	0.100	1.5
Total	1,579.0	2.876	100.0	3,090.6	6.700	100.0

Source: Booz, Allen & Hamilton.

Prior to the Arab oil embargo in 1974, which led to large increases in world fuel prices the question of fuel consumption rates and their reduction were either not addressed by operators or given a relatively low priority due to the minor impact that changes in the rate of fuel consumption had on total transportation costs. Consequently, a shortage of data exists concerning energy consumption in the industry, and until recently, few comprehensive studies have been initiated to determine the industry's energy intensiveness. As a result, our estimates of the energy consumption of the industry carry a degree of uncertainty. The methodology developed to calculate energy consumption for both 1974 and the year 2000 required a number of assumptions. The major assumptions are:

- In the foreign trade shipping sector a generic vessel was defined and chosen to

represent all vessels of that type operating on a given trade route, as defined by the Maritime Administration. In reality vessels frequently deviate from these assumptions

In all sectors a generic vessel was applied to historical and projected trade flows. The degree to which these generic vessels accurately represent a cross section of each trade and sector is unknown.

In the Maritime industry, vessel capacity is generally measured in deadweight* tons or cubic feet and trade flows are measured in tons. A deadweight utilization factor, based on historical averages was applied to each generic vessel type in order to compensate for variations in both cargo densities and vessel utilization. In reality the amount of a vessel's weight carrying capability actually used varies significantly based on factors such as:

- Vessel operator
- Type of cargo carried
- Industry sector
- Season of the year
- Direction of the trade flow
- Shipping technology used
- Depth of water at pier side.

In almost all bulk trades and to a lesser degree liner trades the trade flows are not balanced as far as tonnages moving in both directions. In the bulk trades, vessels typically spend half their life in ballast. The extent to which the search for back haul cargos effect operating profiles and energy consumption is unknown.

The analysis of the recreational boating sector relied on 1973 U.S. Coast Guard data describing populations, sizes and operating

* Deadweight—A term describing the weight carrying capacity of a cargo ship, it includes the weight of cargo, crew, stores, and fuel and is measured in long tons of 2240 pounds.

patterns. These 1973 operating patterns were applied to 1975 recreational boating population statistics. The extent to which operating profiles identified in 1973 accurately represent those occurring in 1975 is unknown.

The fishing and miscellaneous, and offshore sectors are so diverse that meaningful operating profiles could not be developed. As a result, the analysis used for these sectors differs from that developed for the other sectors.

These factors effect the calculated marine transportation energy consumption figure of 2.9 quads for 1974. It is estimated that the uncertainty associated with our estimate of total industry energy consumption could reach plus or minus 25 percent. The projected energy of consumption figure of 6.7 quads is also subject to the same qualifications and in addition is only as accurate as the cargo forecasts and the future operating and technological scenarios upon which it is based. These scenarios are described in detail in Volume V.

(2) Energy Consumption in the Marine Transportation Sector Currently Represents 15 Percent of the Energy Consumed for Transportation Services

The Energy Research and Development Administration estimates that the nonmaritime transportation services consume 16.55 quads as shown in Table 2. Adding the 2.88 quads calculated for the marine sector yields 19.43 quads used by all transportation modes. The Marine Transportation Industry represents approximately 15 percent of this total.

TABLE 2
Energy Consumed for Transportation Services

Trade	Energy Consumed (quads)	Percent of Total Energy Consumed
Highway	12.91	66
Air	1.92	10
Pipeline	1.15	6
Rail	0.57	3
Marine	2.88	15
Total	19.43	100

Source: Marine consumption represents estimates provided by Booz, Allen & Hamilton. All other estimates are provided by the Energy Research and Development Administration, Program Plan.

(3) The Foreign Trade Sector is Expected to Continue to Be the Major Energy User

As indicated by Table 1, the foreign trade sector is expected to continue to account for the majority of the energy consumed by the marine transportation industry. Its overall share is expected to rise from 82 to 84 percent of the total between 1974 and 2000.

(4) U.S. Flag Share of the Foreign Trade Sector's Energy Consumption Is Expected to Increase Between Now and the Year 2000

In 1975 U.S. flag vessels carried seven percent of the cargo carried in the U.S. foreign trade and consumed nine percent of the energy. By the year 2000 it is projected that U.S. flag vessels will carry 12 percent of the cargo and consume 14 percent of the energy requirements as shown in Tables 3 and 4.

TABLE 3
Cargo Movements in the Foreign Trade Sector

Service Type	Cargo Movements (thousands of long tons)			
	1974		2000	
Liner	51,500	7.7%	148,900	9.5%
Tramp	169,000	25.3%	219,000	13.9%
Dry bulk	147,900	22.3%	502,400	31.9%
Tanker	297,500	44.7%	703,300	44.7%
Total	665,900	100.0%	1,573,600	100.0%
U.S. flag share	45,000	6.8%	188,890	12.0%

Source: The Long-Term Forecast of U.S. Foreign Waterborne Trade," Division of Economic and Operational Analysis, Office of Policy and Plans, U.S. Maritime Administration, April 14, 1977.

"Energy: Global Prospects 1985-2000," by the Massachusetts Institute of Technology, May 1977.

TABLE 4
Energy Consumption in the Foreign Trade Sector
1974 - 2000

Service Type	Energy Requirements (quads)			
	1974		2000	
Liner	0.530	22%	1.245	22.3%
Tramp	1.080	46%	2.469	44.2%
Dry bulk	0.330	14%	0.932	16.6%
Tanker	0.330	14%	0.812	14.5%
Passenger	0.080	4%	0.134	2.4%
Total	2.360	100%	5.592	100.0%
U.S. flag consumption	0.215	9%	0.771	13.8%

Source: Booz, Allen & Hamilton.

U.S. flag share of the foreign trade sector by service type is given in Volume V of this report.

(5) A Maximum of 28 Percent of the Energy Required by the Marine Transportation Industry Is Purchased in the U.S.

Table 5 presents a summary of all the marine fuels purchased in the United States. This total of .81 quads represents 28 percent of the total energy requirements, of 2.88 quads presented earlier in Table 1.

TABLE 5
Reported U.S. Purchases of Marine Fuel, 1974
(quads)

Trade	Residual	Distillate	Gasoline	Total
Domestic	0.19	0.09	0.09	0.37
Foreign trade	0.39	0.05	-	0.44
Total	0.58	0.14	0.09	0.81

Sources: "Bunker Fuel," U.S. Department of Commerce, Bureau of the Census.

"Mineral Industry Survey," U.S. Department of Interior, Bureau of Mines.

"Private and Commercial Nonhighway Use of Gasoline—1974," U.S. Department of Transportation, FHA.

1. Approximately 20 Percent of the Energy Consumed by the Ocean Shipping Sector is Purchased in the United States

Further inspection of Table 5 shows that 0.37 quads were reported purchased by the domestic sectors and 0.44 quads were reported purchased in the U.S. by the ocean shipping sector. This 0.44 quads represents approximately 20 percent of the ocean shipping sector's estimated energy requirements. Table 6 displays the percentage of fuel required by the ocean shipping sector by flag of registry and purchase point.

TABLE 6
Foreign Trade Sector Fuel Requirements*

Vessels	Point of Purchase			
	United States		Overseas	
	Quads	Percentage	Quads	Percentage
U.S.	.090	43%	.125	57%
Foreign flag	.350	16%	1.795	84%
All vessels	.440	20%	1.920	80%

* Based on "Bunker Fuels," published by U.S. Department of Commerce, Bureau of Census.

2. The Present Energy Reporting Systems Account for Approximately 70 Percent of the Estimated Domestic Requirements

The "Mineral Industry Survey" published by the U.S. Department of Interior, Bureau of Mines, and the "Private and Commercial Non-highway Use of Gasoline - 1974," published by the Federal Highway Administration, report fuel representing 0.37 quads as purchased for domestic marine use in 1974. This represents approximately 70 percent of the 0.52 quads estimated for the six domestic shipping sectors, as shown in Table 1. Table 7 provides a comparison of the fuel reported sold versus estimated requirements.

TABLE 7
 Comparison of Fuel Reported Sold for Marine
 Use Vs. Estimated Requirements
 (quads)

Trade	Reported Sold (quads) ¹	Estimated Requirements (quads) ²	Percent to Which Reported Sales Represent Estimated Requirement
Foreign	0.44	2.36	20%
Domestic	0.37	0.52	71%
Total	0.81	2.88	28%

1 From Table 5

2 From Table 1

The low percentage that is shown for our foreign trade has been previously explained as being caused by foreign purchases. The rationale for the relatively low percentage that domestic purchases represent of domestic requirements is difficult to explain. A partial explanation for the differential may be due to

The purchase of fuel by commercial and pleasure craft at nearby foreign locations

The nonreporting of consumption by vessels under charter to the major petroleum production and refining companies in support of offshore drilling and production activities or petroleum product distribution efforts.

(6) Thirty-Three Federal, State, International and Private Organizations Were Identified That Either Impact or Have Regulatory Jurisdiction Over the Commercial Marine Transportation Industry

Thirty-three organizations, falling into four institutional categories:

- Federal
- State
- International
- Private, non-profit

were identified that impact the operations of the commercial marine transportation industry. These organizations and their areas of impacts are shown in Table 8.

The area of impacts can affect either the design and construction or operational aspects of commercial marine transportation. These two major areas of impact were subdivided into 16 areas as follows:

- Construction - 6 subcategories
 - Propulsion machinery
 - Hull
 - Habitability
 - Environment and safety
 - Manning and licensing
 - Financial assistance
- Operational - 10 subcategories
 - Itinerary
 - Entry restrictions
 - Tariff review and filing
 - Monopoly control
 - Financial assistance
 - Cargo allocation
 - Fuel price and availability
 - Traffic control
 - Maintenance and repair standards
 - Environment and safety.

The 33 institutions impact the commercial marine transportation industry either directly through regulatory jurisdiction and approval authority or indirectly by generating a requirement for U.S. flag shipping services through U.S. Government impelled cargoes. Twelve of the 33 organizations were judged to have direct and 21 were judged to have indirect impacts on the commercial marine transportation industry.

TABLE 8
Agencies and Their Areas of Jurisdiction in the
Commercial Marine Transportation Industry

	CONSTRUCTION ASPECTS								OPERATIONAL ASPECTS							
	PROPELLION MACHINERY	HULL	HABITABILITY	ENVIRONMENTAL AND SAFETY	MANNING & LICENSING	FINANCIAL ASSISTANCE	ITINERARY	ENTRY RESTRICTIONS	TARIFF REVIEW AND FILING	MONOPOLY CONTROL	FINANCIAL ASSISTANCE	CARGO ALLOCATION	FUEL PRICE AND AVAILABILITY	TRAFFIC CONTROL	MAINTENANCE & REPAIR STANDARDS	ENVIRONMENTAL AND SAFETY
1. UNITED STATES COAST GUARD	●	●	●	●	●								●	●	●	
2. FEDERAL ENERGY ADMINISTRATION																
3. MARITIME ADMINISTRATION	●	●	●	●		●	●			●	●			●		
4. FEDERAL MARITIME COMMISSION							●	●	●	●						
5. CLASSIFICATION SOCIETIES	●	●	●	●	●									●		
6. ENVIRONMENTAL PROTECTION AGENCY					●										●	
7. INTERGOVERNMENTAL MARITIME CONSULTATIVE ORGANIZATION	●	●	●	●	●											●
8. INTERSTATE COMMERCE COMMISSION							●	●	●	●						
9. ST. LAWRENCE SEAWAY DEVELOPMENT CORP.					●											
10. PANAMA CANAL COMPANY		●		●									●			
11. STATE GOVERNMENTS	●	●											●			●
12. ARMY CORPS OF ENGINEERS													●			
13. ACTION											●					
14. AGENCY FOR INTERNATIONAL DEVELOPMENT											●					
15. BONNEVILLE POWER ADMINISTRATION											●					
16. DEPARTMENT OF AGRICULTURE											●					
17. DEPARTMENT OF COMMERCE											●					
18. DEPARTMENT OF DEFENSE											●					
19. DEPARTMENT OF HEALTH, EDUCATION, & WELFARE											●					
20. DEPARTMENT OF STATE											●					
21. DRUG ENFORCEMENT ADMINISTRATION											●					
22. ECOLOGICAL SURVEY											●					
23. ENVIRONMENTAL PROTECTION AGENCY											●					
24. FEDERAL AVIATION AGENCY											●					
25. FEDERAL HIGHWAY ADMINISTRATION											●					
26. INTER-AMERICAN DEVELOPMENT BANK											●					
27. INTERNATIONAL EXCHANGE SERVICE											●					
28. NATIONAL AERONAUTICS & SPACE ADMINISTRATION											●					
29. SMITHSONIAN INSTITUTION											●					
30. TENNESSEE VALLEY ADMINISTRATION											●					
31. UNITED STATES INFORMATION AGENCY											●					
32. UNITED STATES TRAVEL SERVICE											●					
33. EXPORT-IMPORT BANK											●					

Source: Booz, Allen & Hamilton.

(7) Seven Existing or Proposed Regulations Were Found to Have a Quantifiable Impact on Energy Consumption in the Marine Transportation Industry

The analysis of these organizations identified above resulted in the identification of seven specific regulations that impact or could impact commercial marine transportation energy consumption.

The energy implications of each of these regulations is examined in a separate case study contained in Volume III of this report. A summary of the results of each of those analyses is given in Table 9. As shown in this table, three of the regulations identified have impacts greater than 1 percent of total industry consumption in 1974. Each of these three is discussed in greater detail below.

TABLE 9
Energy Impacts Due to Regulatory Actions

Case Study	Energy Impact Increase (Decrease) in Quads	Percent of Industry Consumption in 1974	
		Low	High
Puget Sound Tanker Regulations	0.0003 to 0.001	0.01 - 0.35	
Foreign Sale or Alaskan Crude	0.066 to 0.103	2.29 - 3.58	
Segregated Ballast	0.0 to 0.066	0.00 - 2.29	
Inland Waterway User Charges	0.003 to 0.005	0.10 - 0.17	
Cargo Pooling or Service Rationalization	(0.0) to (0.073)	(0.00) - (2.54)	
Minibridge	(5 x 10 ⁶ BTU's)	0.00 - 0.00	
Lock and Dam 26	0.0 to 0.0007	0.00 - 0.02	

Source: Booz, Allen & Hamilton.

1. Allowing Surplus West Coast Crude Oil Production to Be Sold to Japan Could Increase Transportation Energy Requirements by .066 to .103 Quads

The recent proposals to allow surplus west coast crude oil production to be sold to Japan in exchange for Middle Eastern crude was evaluated by comparing the energy that would be consumed in the event the proposals were adapted with each of the following domestic transportation options:

- Ship surplus to Long Beach, California, and then by pipeline to the U.S. gulf coast
- Ship surplus to Puget Sound and then by pipeline to the northern tier states
- Ship surplus to U.S. gulf coast by way of the Panama Canal.

Of the four transportation alternatives evaluated, the two options that involved a combination marine and a pipeline system required the least amount of energy for transportation. A summary of the energy requirements associated with each option is presented in Table 10; details are provided in Volume III.

TABLE 10
Transportation Energy Requirements for Four Alternative Distribution Schemes for the Projected West Coast Crude Surplus

Option	Transportation Energy Requirements
Option 1: Ship surplus crude to Japan in exchange for Arabian Gulf crude delivered to U.S. gulf coast	0.136 quads
Option 2: Ship surplus to Long Beach, then by pipeline to U.S. gulf coast	0.057 quads
Option 3: Ship surplus to Puget Sound, then by pipeline to northern tier states	0.033 quads
Option 4: Ship surplus to gulf coast by way of Panama Canal	0.070 quads

* Destination different than other options.

Source: Booz, Allen & Hamilton.

2. Imposition of Segregated Ballast Requirements Could Result in an Increase in Petroleum Transportation Energy Requirements by As Much As 0.066 Quads

Due to a series of 15 major incidents involving oil tankers off the U.S. coast or in U.S. harbors between December 15, 1976 and March 27, 1977, the United States Congress and the U.S. Coast Guard have under consideration a regulation that would require all tankers entering U.S. waters to be fitted with segregated ballast. A requirement to dedicate a certain percentage of the available cargo tank space of a tanker to ballast service only, impacts the energy efficiency (BTU's/ton-mile) in three ways:

- Dedication of cargo tanks to ballast service reduces the amount of space available to carry cargo
- Reduction of the amount of cargo carried while operating the main propulsion plant at design conditions will result in higher speeds
- Reduction of the level at which the main propulsion plant is operated will reduce speed and total energy consumption, but increase specific fuel consumption.

In addition to these considerations, the speed/power relationship under which marine vehicles operate is nonlinear such that power requirements increase faster than speed. Conversely, as speed is reduced, power requirements drop such that a 2 percent decrease in speed could result in as much as an 8 percent reduction in power requirements. Seven cases of various combinations of speed and horsepower levels were evaluated to determine the point where the additional energy required, due to segregated ballast requirements, was matched by energy saved due to speed reduction.

The results of this case study indicate that the impact of segregated ballast requirements could increase the petroleum transportation energy requirements by as much as 0.066 quads. This

increase could be avoided through a reduction in speed, as shown in Table 11. The details of this case study are presented in Volume III.

3. Energy Savings Due to Pooling or Service Rationalization in the Foreign Trade Container Service Could Reach .073 Quads

Cargo pooling or service rationalization refer to actions on the part of shipping lines to maximize space utilization through the elimination of duplications and redundancies in the services offered to shippers, while maintaining the level of service offered at the level of demand. Over capacity or service redundancies result in those situations where a number of shipping lines offer all services to all shippers.

Table 12 gives the number of containers and container-miles carried in the U.S. foreign trade in 1974.

TABLE 12
Container-Miles in the U.S. Foreign Trade
(1974)

Trade Routes	Number of Containers on the Trade Route in 1974	One Way Distance (nautical miles)	Container-Miles (millions)
5, 7, 8, 9	463,000	4,000	1,852
29	457,000	6,750	3,085
12	164,000	11,750	1,927
10	144,000	5,000	720
16	65,000	12,000	780
21	61,000	5,000	305
26	67,000	8,000	536
11	47,000	4,500	212
4	43,000	2,500	108
6	24,000	4,000	96
All others	115,000	5,000	575
	1,650,000		10,196

Source: "Containerized Cargo Statistics, Calendar Year 1974," U.S. Department of Commerce, Maritime Administration.

TABLE 11
Energy Impact of
Segregated Ballast Requirements

Case	Operating DWT as % of Normal	Horsepower as % of Normal	Speed as % of Normal	Specific Fuel Consumption as % of Normal	Combined Impact on Energy Intensity (BTU's/ton-mile)	Potential for Increased Energy Use (QUADS)
1	80	100%	104%	100.0%	+20.2%	0.066
2	80	88%	100%	101.0%	+11.1%	0.037
3	80	95%	102%	100.3%	+16.8%	0.055
4	80	85%	98%	101.5%	+10.0%	0.033
5	80	80%	97%	102.5%	+ 5.7%	0.019
6	80	75%	95%	103.6%	+ 2.2%	0.007
7	80	70%	92%	105.1%	0.0%	0.000

*Based on 1974 tanker energy consumption of 0.33 quads, Booz, Allen & Hamilton "Energy Use in the Marine Transportation Industry - Volume II Industry Summary."

The potential for significant energy savings exists on those highly developed trade routes where competition has forced operators to offer all services to all shippers. A report* recently completed for the U.S. Maritime Administration indicated that a potential for energy savings on the order of 40 percent exists in the container trade on the North Atlantic (TR 5-7-8-9).

If it is assumed that a similar potential for energy reduction also exists on two other highly developed containerized trades, trade routes 29 and 12, and a potential for a 10 percent reduction exists on all other trade routes, then the energy savings existing under a service rationalization scenario could approach 0.73 quads. The details of this case study are given in Volume III.

(8) Five Generic Technologies and Fifteen Specific Energy Conservation Research and Development Program Areas Were Identified

The technology base of the commercial marine transportation industry relating to energy usage, is made up of five generic technologies:

- Main propulsion plants
- Propulsors
- Hydrodynamics
- Vessel operations
- Fuels.

This study identified 15 specific program areas in four of these generic technologies, as shown in Table 13. Programs in the area of marine fuels are being evaluated under separate contracts.

An economic and energy impact analysis and technological risk assessment was performed on the specific program areas and the results are summarized in Table 14. Two general conclusions were drawn:

* "The Possible Effect of Rationalization on Maritime Fuel Consumption," John Binkley, National Maritime Research Center Report No. NMRC-KP-147, dated October 1975.

TABLE 13
The Fifteen Maritime Energy Conservation
Program Areas Identified and Evaluated

Generic Technology	Program Area
Main Propulsion Plants	High Pressure/Temperature Reheat Steam (HPTRS) Slow Speed Diesels (SSD) Diesel Bottoming Cycles (DBC) Adiabatic Diesels (AD) Naval Academy Heat Balance Engine (NAHBE) Heavy Duty Gas Turbines & Combined Cycles (GTCC)
Propulsors	Closed Cycle Gas Turbines (CCGT) Contra-rotating Propellers (CR) Propellers in Nozzles (PIN)
Hydrodynamics	Submerged Air Cushions (SAC) Cutaway Hulls (CH) Tunnel Sterns (TS)
Vessel Operations	Hull Maintenance & Smoothing (HMS) Vessel Routing (VR) Plant Tuning (PT)

- All programs identified show a net economic benefit when applied to the current U.S. merchant fleet
- Five program areas have energy reduction potentials greater than 5 percent in either 1974 or 2000.

Based on these conclusions and the results summarized in Table 14, two recommendations are made.

3. THREE PROGRAM AREAS ARE RECOMMENDED FOR FUNDING IN FY78

Based on the energy savings potentials calculated, the programs relating to:

- Slow speed diesels
- Diesel bottoming cycles
- Hull maintenance and smoothing

are recommended for funding in FY78. The specific program elements of each recommended program area are discussed below.

TABLE 14
Results of Economic and Energy Impact Analysis

LEVEL OF TECHNOLOGICAL RISK	PROGRAM AREA	RANGE OF REDUCTION IN REQUIRED FREIGHT RATE (%) (1974)		ENERGY CONSERVATION POTENTIAL 1974 (% OF U.S. FLAG CONSUMPTION)	ENERGY CONSERVATION POTENTIAL 2000 (% U.S. FLAG CONSUMPTION)	POTENTIAL PROGRAM START	PROGRAM DURATION (YEARS)	ESTIMATED FUNDING REQUIREMENTS TO LOWER RISK CATEGORY (MILLIONS OF \$)		
		MINIMUM	MAXIMUM					LOW TO COMMERCIALIZATION	MEDIUM TO LOW	HIGH TO MEDIUM
LOW	SSD	1.7	8.6	5.5	12.7	FY-78	2	0.500	—	—
LOW	PT	0.3	2.1	1.4	0.0	FY-78	—	0.000	—	—
LOW	VR	0.0	0.0	0.0	0.0	FY-78	—	0.000	—	—
MEDIUM	DBC	6.7	10.2	3.6	11.2	FY-78	2	UNKNOWN	3.000	—
MEDIUM	HMS	0.4	5.5	3.1	6.2	FY-78	1		0.250	—
MEDIUM	GTCC	0.3	9.7	1.2	2.9	FY-78	2-3	“	4.000	—
MEDIUM	TS	0.2	2.3	0.6	0.9	FY-78	1	“	0.300	—
MEDIUM	CR	1.8	3.4	0.5	3.1	FY-78	2-3	“	4.000	—
MEDIUM	HPTRS	4.5	9.3	0.4	2.8	FY-78	10	“	3.000	—
MEDIUM	PIN	0.9	0.9	0.0	0.3	FY-78	2-3	“	1.000	—
MEDIUM	CH	0.1	0.1	0.0	1.4	FY-78	1	“	0.300	—
HIGH	AD	7.5	18.3	10.2	6.7	FY-80	5	“	UNKNOWN	2.000
HIGH	NAHBE	5.6	6.7	5.4	2.9	FY-79	3	“		1.000
HIGH	CCGT	6.4	11.4	1.4	2.7	FY-80	6-7	“	“	50.000
HIGH	SAC	1.9	1.9	0.0	0.7	FY-78	1	“	“	0.400

Source: Booz, Allen & Hamilton.

(1) Recommended Program Elements in the Slow Speed Diesel Program Area

Two topics in the slow speed diesel program area require further investigation.

The first is an investigation into the interrelationship of fuel quality, engine reliability, maintenance programs and fuel additives. The second is an evaluation of the potential for and methods to prevent cold end corrosion in the exhaust waste heat recovery units due to operation of slow speed diesels on heavy residual fuels. Costs associated with studies of this type should not exceed \$250,000 each.

(2) Recommended Program Elements in the Diesel Bottoming Cycle Program Area

Diesel bottoming cycles have advanced to the point where serious consideration should be given to funding a demonstration project. We recommended that a program containing the following elements be initiated:

- Develop specifications and the design of a prototype exhaust heat recovery unit for installation on an inland river towboat be started. Such a program is estimated to cost \$40 to \$50 thousand.
- Construct, test and install the prototype. This program is estimated to require funding of \$2 to \$2.5 million.
- Operate the system for a year as a demonstration project to prove the savings potential. Costs associated with this element is estimated at \$450 to \$500 thousand.

It is expected that this demonstration project would span approximately two years and cost approximately \$2.5 to \$3.1 million.

(3) Recommended Program Elements in the Hull Maintenance and Smoothing Program Area

The Society of Naval Architects and Marine Engineers has recommended that additional research be undertaken to:

- Develop standard measurement techniques and equipment to describe hull surface profiles. These should be able to be used underwater.
- Correlate in-service speed losses with surface roughness, time and operating and dry dock costs.
- Develop advanced hull and propeller maintenance procedures to reduce drag more effectively than currently available surface preparation, maintenance and cleaning methods.

Based on the recommendations of the Society of Naval Architects and Marine Engineers, an initial assessment of current maintenance procedures, their costs and effectiveness is needed prior to funding additional work in this area. A study to:

- Correlate in-service speed losses, increased fuel consumption, lost time and operating, dry dock and cleaning costs
- Identify and evaluate currently available hull maintenance programs and equipment
- Identify, evaluate and develop recommendations for areas of further work

is estimated at \$250,000 with one year's duration.

4. THREE HIGH RISK PROGRAM AREAS SHOULD BE REEVALUATED IN THE FUTURE

The results of the energy impact analysis identified three high risk technologies:

- Adiabatic diesels
- Naval Academy heat balance engine
- Closed cycle gas turbines

that are presently being supported by ERDA, the U.S. Navy, and the U.S. Army. Should the projected potentials of these research projects be realized, they should be evaluated for marine applications. Specific dates for reevaluation are given in Table 14.