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THE SOFT PHOTON THEOREM FOR BREMSSTRAHLUNG

Leon Heller

Theoretical Division, Los Alamos National Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

We review this theorem and discuss the possible importance of the second term in
the expansion of the cross section in powers of the photon momentum, especially for
radiation from particles coming {from the decay of resonances.

INTRODUCTION

The quantum mechanical amplitude for the bremsstrahlung process depicted in Fig. 1
is written ¢, M*, where ¢, is the polarization of the photon and M* is the matrix element
of the electromagnetic current J* between the initial and final interacting states. M*
depends on the momenta and spins of the N incident and emergent particles.

If one has a model for the interaction of the particles as well as a knowledge of their
electromagnetic moments, then M* can be calculated. This has been done for both
nucleon-nucleon and pion-nucleon bremsstrahlung in the energy region below the pion

Fig. 1. Kinematics for the bremsstrahlung process.



production threshold. The goal of the nucleon-nucleon experiments has been to distin-
guish between different potentials that fit the non- radi~tive data equally well; for this
purpose the hardest photons are the most useful. The primary motivation for the pion-
nucleon experiments has been to learn the magnetic moment of the A(1232) resonance.

For soft photons it is possible to relate the radiative process directly to the non-
radiative process, without knowing the details of how the particles interact. This is the
content of the soft photon theorem.

SOFT PHOTON THEOREM

A schematic statement of the theorem originally proven by Low [1] is as follows. If
the matrix element M* is expanded in powers of the photon momentum k,

u
Mu:i‘k_+3~+0(k), | (1)

then both A* and B* can be calculated from knowledge of the physical, i.e., on-shell,

T-matrix for the non-radiative process illustrated in Fig. 2; derivatives of T also appear

in B#. The momenta p! in Fig. 2 differ from the p; in Fig. 1 by O(k). (More on this

later.) Hereafter we shall refer to the non-radiative T-matrix and cross section by calling

them the “hadronic” T-matrix, T", and the hadronic cross-section, o”, respectively.
Here are some important remarks about the theorem.

1. Although it is physically reasonable that for sufficiently scft photons the
bremsstrahlung process does not reveal anything new about the hadronic interaction, the
surprising result is that two leading terms can be determined from on-shell information.
This is quite significant because the second term, even if small compared to the leading
term, does not vanish at k — 0.

2. There is clearly an analogous statement for the bremsstrahlung cross section,
o7, since it is bilinear in M*. For example, the bremsstrahlung cross section summed
over the two states of photon polarization is proportional to

A A

—kM -M" = - k

—2Re A- B*+[-kB - B" 4+ O(k)],

—
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Fig. 2. The non-radiative, or *hadronic”, T-matrix, T*,
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so the first two terms are indeed determined by the physical hadronic T-matrix. Part
of the third erm is also, but there are additional contributions that involve off-shell
information.

The proof of the theorem begins by writing down the part of M* that is singular at
k = 0. This comes only from diagrams in which an external leg radiates, and involves Th
at an off-shell point. This is then expanded about a nearby on-shell point and results in
contributions to both A* and B* in Eq. (1). Gauge invariance is sufficient to completely
determine the contribution of the non-singular part of M* to B¥. ‘

When the singular and non-singular terms are combined (1}, A* is proportional to
(a kinematic factor multiplying) the hadronic T-matrix, T", evaluated at the chosen
on-shell point. B* contains two types of terms: derivatives of T*, dT"/dp;, and also
magnetic moments multiplying T". At this point one has the stated result that the first
two terms in the expansion of the bremsstrahlung matrix element in powers of k are
completely determined by the on-shell hadronic T-matrix and its derivatives, as well as
the charges and magnetic moments of the initial and final particles. Off-shell information
first appears in the term O(k) in Eq. (1). ‘

The matrix element in Eq. (1) involves initial and final particles of definite (but
arbitrary) polarization and the cross-section calculated from it does also. If the spins of
all the particles are summed (averaged) over, giving the unpolarized bremsstrahlung cross
section, do”, then there is a very interesting result first proved by Burnett and Kroll (2]
for spin-0 and spin-1/2 particles, and generalized by Bell and van Royen (3] to arbitrary
spin. It says that the first two terms in the expansion of do” (unpolarized) in powers
of k depend only on the unpolarized hadronic cross section, do™, and its derivatives.
Furthermore, all magnetic moments drop out of the second term.

Although this result can be written for an arbitrary photon polarization, we show it
for the case that the two states of photon polarization are also summed over, first giving
the square of the matrix element,

. +Qipi <~ [£Q;p; - ‘
Mo a3 —;69?”21[&@;’1 +Q,D,] S THE 1 O(k). 3)
1= v = spins

D; in Eq. (3) is a gauge invariant combination of derivatives,

(1)

and the * sign goes with a final (initial) particle, whose charge is @; in units of the
proton charge; « is the fine structure constant. The bremsstrahlung cross section is
given by

do? = =M - M"dp, (5)

where dp contains the differential number of final states for both the particles and the
photon, as well as the flux factor, and leads to

). n: 13k
do? = -« E _:.tzg")_‘[{.).‘. . E [_:i:_(gf_pl +Q, D)} do™ 1‘
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ke p; driw

+ O(k). (G)



D; in Eq. (6) acts only on the square of the hadronic T-matrix, not on the density of
states or flux factors.

Equation (6) can be rewritten in terms of the velocities of the particles as

d*k

4723

Gﬂ_aZiQ.nxv. 3 :{:anxv.j

kQ; D;
l-n-v; l1-n- v tkQn x D;) do*

+O(k), (7)

with m = k/k. As a function of the angle  between n and v, the factor (n x v)/(1-
n - v) is maximized at cos § = v. For non-relativistic motion, soft photons are emitted
primarily at right angles to the velocity of an initial or final particle, whereas for hxgl ly
relativistic motion they are emitted primarily along the velocity.

It is necessary to say a word about the choice of on-shell pomt at which T" or o" is
evaluated. This is the questlon of how to relate the momenta p} in the hadronic process
(Fig. 2) to the momenta p; in the bremsstrahlung process (Fig. 1). If the second term
in the brackets (the one containing the derivatives D;) in Eq. (6) or (7) is neglected,
then it is irrelevant what choice is made because the ‘diﬂ'erence between o” evaluated at
two points with momenta differing by O(k) is itself O(k), and therefore contributes in
the same order as the D; terms. If, on the other hand, the terms in D; are l\ept then it
could make a difference.

The key to establishing the connection follows from the fact that the unpolarized
cross section, o, does not depend on all N momenta of the incoming and outgoing
particles, but only on 3N — 10 independent scalars that can be constructed from them.
The first, step is to choose a particular set of scalars, uq. For two particles in and two
~particles out (N = 4), for example, there are just two independent scalars, which could
be taken to be u; = p} - p; and up = p} - ps. Equations (3), (6), and (7) follow from the
prescription that u* is evaluated at the same values of these scalars that they have in
the bremsstrahlung process, i.e., for

“a(P’u-waP?V)=“a(P1a'--aPN)a (8)

which is a set of 3N — 10 equations. The meaning of the derivatives that appear in these
equations is

J _ Oua 0
Op; ~ % Op; Oua
Comparing Egs. (3), (6), or (7) with Eq. (2) shows that the terms |A|*/k and 2Re A- B"
are present, but k|B|? is not. It is not possible to obtain the latter just froma knowledge

of the unpolarized hadronic cross section; it is necessary to also know the phase of 1’1
as well as magnetic moments.

(9)

VALIDITY OF THE EXPANSION

It is well known that the leading term in the expansion of 67, O(1/k), is just the same
as that in classical radiation theory, once radiated intensity is converted to number of



photons [4]. It is seen above that the second term, O(1), does not contain any additional
- factors of A and therefore is also classical. : |

The classical criterion for just keeping the leading term is
kb
WT = —v- <K 1, (10)
where 7 is the duration of the collision, b is the range of the force, and v is the particle

velocity. From Eqs. (3), (6), or (7) it is seen that the ratio, R, of the second term in the
expansion to the first goes like

R ~ _k_ . .(.?_F‘_h’
Fh (?Pj
where
Fh= 3 |THA (1)
' spins

If this ratio is not small one must wonder about the validity of the expansion. Indeed,
since ReA . B* can have either sign the absence of the terms k|B|? could even lead to a
negative cross section. . ‘ |

On the other hand, R being small does not mean that the second term is negligible.
Although the percentage that the second term contributes vanishes as & — 0, its absolute
value is non-zero there and may be comparable with the size of the possible discrepancy
between theory and experiment that is being discussed at this workshop.

If dot is known at only one kinematic point then only the leading term of do™ can
be calculated. But if do” is known at enough points to be able to compute the required
derivatives in Eq. (6) or (7), the second term of do” can also be calculated. A theoretical
model of do™ can, of course, also be used.

If the only scale in the problem is the overall size of the system then the ratio in
Eq. (11) just gives back Eq. (10). But R can be larger either if o is suppressed or
dch/dp; is enhanced. The former situation can be the result of a symmetry [3], or else
an accidental cancellation of amplitudes. The latter can arise from a resonance, which
we now consider.

A. Radiation from Resonance Decay

We are interested in a resonance that decays into one or more charged particles, which
then radiate. If none of the products of a particular decay branch is strongly interacting,
asin p — ptp” orp — ete v, then the momenta of the particles in the final state carry
the information about the resonance and do”/dp; will be large (when j refers to one of
the charged particles {from the decay). For an hadronic decay, such as pt — 7wtz this
will be true only if final state interactions do not significantly smear out the momenta,
i.e.. move the particles off resonance.

As an example suppose a resonance created in the collision decavs into two par-
ticles with momenta p, and p,.  Choosing s = (p, + ps)? to be one of the scalar



variables for descubmg the hadronic T-matrix, I™* in Eq. (11) will contain a factor
[(s = m?)? + (mI)?)”!, where m and T are the mass and width of the resonance (it
m > I'). Assuming that this factor represents the dominant dependence of F'* on p,
and py, S |

th__a_F_’iN_o( ) 2(s — m?)
Bpa  Op P TPV T (mD)E]

From Egs. (9) and (12) it is seen that on the wings of the resonance the second term in
the square bracket in Eq. (6) is approximately given by .

F*, | (12)

(QuDa + QuD)F" ~ £ — {Qa ( Lok (pu ) (put ) + (o oiF ()

where the +(—) sign refers to the low (high) side of the resonance. Evaluating this
expression in the a — b center of mass system and going over to the velocity notation of
Eq. (7), the second term in that square bracket becomes

ale X Vg
£(Qun X Do+ Qo x Dy) F* e £2 (Q ne X Vs, QM X ”") F (1)
r'\l=-n., v, 1—-—m, v/
where n. = k./ k. is the direction of the photon in the a — b center of mass system.
Equation (14) should be compared with the leading term in the square bracket in
Eq. (7), which is

(15)

On average, one would expect Eq. (14) to be smaller than Eq. (15) by approximately the
factor 2k, /T, but for some kinematics there could be significant departures up or down.

For a resonance with a very small width, such as the n-meson, the factor 2&./T
is very large for any photon energy of experimental interest, and hence just using the
leading term of the soft photon theorem would be completely unreliable. But even for a
resonance with a large width, such as the p-meson, the second term in the expansion can
he very signficant. In the experiment of Chliapnikov et al.[6], for example, the photons
were required to have a laboratory momentum greater than mye »/2, which is comparable
with T,/2. It should be expected, therefore, that if radiation from p decay products
is important then the bremstrahlung cross section will not be accurately given by the
O(1/k) term of the soft photon theorem. Conditions are better in the experiment of
Cioshow et al.[7) where the photon momenta are restricted to smaller values, but the
O(1) term in the bremsstrahlung cross section is still not negligible.

\We note that there are formulas for o7 that differ from Egs. (6) or (7) by O(k), which

may be better suited to a system with resonances [5], but they require knowledge of the
phase of T",



B. Higher Order Terms

It is app. rent that there is no universal rule for deciding whether or not a photon is

“soft”. Part of the answer is contained in the second term in the expansion of do™ in

powers of k, and we have just seen that a resonance can make this term large even for
values of k such that kb < 1. But this is still not the whole story because the term O(k)
in the cross section contains brand new information, not just higher derivations of the
hadronic cross section.

Recall that the term B* in the bremsstrahlung amplitude, Eq. (1), gets a contribution
from 9T*/0p; and also from the magnetic moments of the particles, but that the latter
information disappears from ReA-B* in the unpolarized bremsstrahlung cross section.
It does show up, however, in B-B*, which is just one part of the term O(k) as shown
in Eq. (2). It was mentioned above that to be able to compute B-B*, even for spml( $s
particles, requires a knowledge of the phase of the hadronic T-matrix, not just |T].
For the nucleon-nucleon system below the pion production threshold this information is
known from a complete set of elastic scattering experiments, and the B- B~ contribution
to bremsstrahlung has been calculated as well as the two leading terms. We show the
results of some calculations that were kindly provxded by H. Fearing (8] on very short
notice in time for this workshop. .

For pp — ppv the final state is completely specified by five variables, which are here
taken to be the laboratory polar and azimuthal angles of the two final protons, (03, ;)
and (A4, ¢4), and the polar angle of the photon, 6. In the experiment of Kitching ¢/
al. [9] all particles are coplanar with the two protons emerging on opposite sides of the
beam, i.e., 3 = 0° and ¢4 = 180°. For the non-radiative process there is a unique value
for 95 + 64 of approximately 87° at a laboratory kinetic energy Tp, = 280 MeV — the
sum is 90° in the non-relativistic limit — so the extent to which f3 + 8, departs from
87° is a measure of how hard the bremsstrahlung photons are.

Figures 3 and 4 show the leading contributions to do” for two cases. The first has
3 =, = 40°, for which the maximum photon energy (in the center of mass system) is
k. = 42 MeV. Based upon Eq. (10) one would expect that these photons are moderately
soft since kb/v < 0.4, No data were taken here because soft photons are not considcred
interesting for learning about the nucleon-nucleon interaction. The second case has
0y = 12° and 8, = 14°, for which the maximum value of k. is 134 MeV. Since this is
almost the entire available energy in the center of mass system, this radiation strongly
perturbs the hadronic kinematics, and hence these photons are “hard”.

Examination of Fig. 3 (the “soft” case) reveals some interesting things. The lowest
curve, which is just the |A*/k term of o [10], vanishes at f; = 0° and 180° becanse of
the svmmetric geometry. [This can be seen directly from Eq. (7).] The near vanishing
~ 70° seems to be an accidental cancellation.

Adding on the term 2ReA - B to do” makes only a small change at any value o (..
but the k| B|? portion of the O(k) term is quite substantial, presumably due to radiation
from the large magnetic moments of the protons. A dynamlcal calculation of o7, using a
potential energy (in the Schrodinger equation) that fits ot well over a wide energy rangec.
is within 10% of the soft photon calculation that includes the k|B|* term (8],

For the hard photon case shown in Fig. 1, not surprisingly the O(1/k) term and the

o
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O(1) term in the expansion of 07 do not come anywhere near the experimental data [9).
(Note that the cross section scale in Fig. 4 is down from that in Fig. 3 by a factor of
10; this is a reflection of the larger magnitude of k.) Addition of the substantial kB . B*
term begins to resemble the data, but does not agree with it as well as a dynamical
calculation using a potential [8].

SUMMARY

In trying to decide whether or not a given photon energy is low enough to use an
approximation to the bremmstrahlung cross section that is based on the soft photon
theorem, several issues have been discussed. The first is the size of the parameter £b/v,
which arises already in classical radiation theory, where b is the range of the interaction.
Even with a small value of this parameter it is clear that if the hadronic cross section
varies significantly when the momentum of one of the particles changes by O(k), then this
variation must be taken into account. This is just what the O(1) term in the expansion of
o” in powers of k does, maintaining gauge invariance in the process. This term becomes
especially important if the O(1/k) term is suppressed, or if a resonance is an important
part of the hadronic cross section. To evaluate it one only needs to calculate derivatives
of o* with respect to a chosen set of scalar variables, and this should certainly be done.
" The prescription for doing this is spelled out in Egs. (6) - (9).

Insofar as higher order terms in the expansion of o” are concerned, the k|B|? portion
of the O(k) term can only be calculated if one knows the phase of T" as well as its
magnitude. Magnetic moments also contribute here, whereas they cancel out of the

term 2ReA-B* in the unpolarized cross section. For the proton-proton bremsstrahlung

calculations shown in Figs. 3 and 4, k|B|* is larger than 2ReA- B*. This is presumably
due to the facts that (i) electric dipole radiation is suppressed, and (ii) the magnetic
moments are large. We would not expect this to happen in most systems.

Going from the hard photon case shown in Fig. 4 to the moderately soft case in I'ig.
3 there is a considerable improvement in the accuracy of the leading term (|A[*/k) in the

expansion of o7 in powers of k. But even with kb/v < 0.4, there are kinematic points [sce
Fig. 3] where |A|?/k is suppressed and consequently provides a very poor approximation
to the cross section. Near the peak in do” at 8, ~ 30°, corrections to the leading term
are approximately 30%.
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