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Abstract: The ideas of the Brueckner-Bethe hole-line expansion are briefly

outlined. Four practical tests of its validity are formulated.

These tests are applied to recent numerical results for the

central potential v? and the semirealistic potential v^(Reid)>

which contains a tensor force but no spin-orbit force. The

results are consistent with the validity of the hole-line expan-

sion. The Brueckner-Bethe results are also consistent, within

uncertainties of order 3 MeVs- with variational results.
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I. Introduction

In nuclear matter theory we start with a model of the nucleus.

We consider it to be composed of point nucleons interacting through a

two-body potential that is fitted to scattering data and to the properties

of the deuteron. Then we ask whether this model can account for the

saturation properties of nuclear matter. To answer this question we must

be able to solve the equations of the model. This means, given a two-body

potential, that we must be able to calculate the energy per particle as a

function of density and find the minimum of this curve - the saturation

point. At the present time we are still in the process of developing an

adequate method of calculation. The two methods that have received most

attention are the Brueckner-Bethe method and the variational method

In this paper I give my view of the present state of the Brueckner-Bethe

method. First the method is briefly outlined. Then numerical results are

presented that have a bearing on whether the method is valid, on what

numerical accuracy is attainable, and on the comparison of the method with

the variational method.

II. Outline of the Brueckner-Bethe method

The presently most powerful and flexible formulation of the

Brueckner-Bethe method is that of the coupled-cluster equations, alterna-

tively called the exp(S) equations, of Coester and Kummel . The

calculations to be described here correspond to a particular approximation

scheme for the solution to these equations. This scheme is called the

hole-line expansion and is conveniently described in terms of Goldstone

1 13)
diagrams ' . This is the procedure followed here. However, for the

purpose of formulating other approximation schemes, and for theoretical



investigation of convergence, it is probably best to use the coupled-cluster

equations rather than the Goldstone diagrams.

The Hamiltonian H is given by the sum of the kinetic energies of

the nucleons and the two-body interactions among them:

We write this in the form

H = HQ + Hx (2)

where
A

H - I (T + U ) (3)
U i l x

A A
*X - I v - I U
1 i<j 1J i=l

(4)

Here, U is a single-particle potential that is at our disposal. It should

be chosen so that whatever expansion we use for the energy converges well.

We assume translational invariance so that IT is diagonal in momentum space.

Then the single-particle energy of a plane-wave state of momentum k is given

by

E(k) = tf2k2/2M + U(k) . (5)

The Fermi-gas state $ satisfies

where

£Q = I E(k) . (7)
k < kF



The exact ground-state wavefunction ¥ satisfies

H ? = £ ? (8)

and the exact ground-state energy o is given formally by the sum of all

13)linked Goldstone diagrams .

The contribution of any diagram contains energy denominators,

and the energy denominators depend on the single-particle spectrum E(k),

which is plotted in fig. 1. For k less than the Fermi momentum k̂ ,, U(k) is

defined as in Hartree-Fock theory, and the single-particle energy is negative.

For ^k^, the conventional choice is U(k) = 0. This gives the solid curve

in fig. 1, which has a gap of order 50 MeV at the Fermi surface. Spectra

that are more nearly continuous at the Fermi surface, such as the dashed

curve, have also been used ' . The choice of U will be discussed more

fully later.

Since we want to be able to treat potentials with a strong short-

range repulsion, we must eliminate the potential v in favor of the two-body

reaction matrix G, which satisfies the equation

G = v - v(Q/e)G . (9)

Here, e is defined by

e|pq> = (E(p) + E(q)-co)|pq> , (10)

where |pq> is a product of two single-particle plane waves, and the starting

energy a> depends on the details of the diagram in which the interaction

occurs .

The relative wavefunction for two noninteracting particles is a

plane wave <j>, and the correlated wavefunction is then defined by

• = * -(Q/e)G<f> . (11)



Eg*. (9) and (11) give

v * = G 4» . (12)

From this equation, we see that if v becomes very large at small r, then

if) becomes small so that G remains well behaved.

The behavior of i{» is crucial for the Brueckner-Bethe method.

3 3

Fig. 2 shows this behavior for two particles in the Sj- V. channel inter-

acting through the Reid potential. The uncorrelated wavefunction <)>

has been chosen to have only an S-wave component given by

* = J0(kr) , (13)

where k is the relative momentum. Since the tensor force couples the

3 3
S, state to the D. state, ip has both S- and D- wave components, denoted

by i|»_ and i|» , respectively.

At small r, i|/o becomes small because of the strong short-range

repulsion. So in this region we have strong correlations in the sense that

<f>-̂> is comparable to 4>. But for r i 0.5 fm, the correlations are weak in

the sense that |4>-t[»|« $• Since the B-wave part of $ is zero, the D-state

correlations are entirely given by i|> - Again, these correlations are weak

in the sense that 1<1'T)|
<< <$>• The essential point is that the strong correla-

tions have a very short range (comparable to the range of the short-range

repulsion), and the longer-range correlations are very weak.

A useful measure of the strength of the correlations is the

correlation volume defined by

corr. vo l . = / !<HJ>|2dx . (14)

Dividing this by the volume per particle, which is equivalent to multiplying

by the density p, defines the dimensionless parameter K_:



corr . v o l . r i . . 12 . • -.,-%
vol. per particle = P / !•"•! dT = K 2 - <15)

For the Reid potential, <9 ranges from 0.15 to 0.25 for p <_ p <̂  2p , where

p is the empirical saturation density of nuclear matter. These values

are calculated using the conventional single-particle spectrum with a large

gap at the Fermi surface. With a more nearly continuous spectrum one may

find values of K , that are 20% larger.

In any case, the ratio K_ of the correlation volume to the volume

per particle is much less than 1, and this fact has the following interpre-

tation. If two particles are correlated, the probability that a third

particle will be correlated with the first two is of the order of this

ratio and is therefore small compared to 1. This suggests grouping the

energy diagrams according to the number of interacting particles — first

two-body correlations, then three-body correlations, etc. The number of

interacting particles is equivalent to the number of hole lines, so this

leads to the hole-line expansion:

= T + D2 + D3 + ... (16)

The leading term T is the kinetic energy of the Fermi-gas state, and D

is the contribution from diagrams with n hole lines.

Each additional hole line involves an integration over momenta

in the Fermi sea and gives a factor of the density. On dimensional grounds

this must be multiplied by some correlation volume to give a factor of

order K_. One can give more detailed arguments like this , but the real

test of the hole-line expansion is to try it out and see if it works. So

let us look at this expansion in more detail.

For the kinetic energy of the Fermi-gas state one finds

¥ = 25 to 40 MeV for p < p < 2p ., (17)
o — — o



The two-hole-line term D_ is represented by the diagram of fig. 3. It

represents the interaction between each pair of par tides in the Fermi

sea and is given by

^ <x- -40 HsV . (18)

The value of D» depends on both the two-body potential and the density,

and -40 MeV is a typical value.

The three-hole-line diagrams are shown in a'igs. 4 and 5. The

wiggly lines represent the two-body reaction matrix 0 and the dashed

line with a cross represents the single-particle potential U. Upward

directed lines represent occupied states above the Fermi sea, and downgoing

lines represent empty states (holes) in the Fermi sea. The rules for

associating an energy contribution to a diagram are dLscussed in ref. 1.

As an example, the contribution from fig. 4(a) is <

V
(Ea+Efe-E£-Em)"

2

a.b >kp

The contribution of fig. 4(a) is large, typically +10 to +15 MeV.

Fig. 4(b) is identical with fig. 4(a) except for the niddle interaction.

These two diagrams can be made to exactly cancel by choosing U(m) for

m<kp to be

0(m) = I /mn|G|mn)> , m<k^ . (20)
" < kF /

Eq. (20) is our choice of U(m) for nKk^.

Fig. 4(c) is called the hole-hole diagram D, . It has four

hole lines, but momentum conservation in the middle interaction means that

only three of these momenta are independent. So we have only three independent

integrations over the Fermi sea, and this diagram is therefore considered
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to be a three-hole-line diagram. It contributes less than 1 MeV and is

therefore not very important.

In fig. 4(d) a particle above the Fermi sea interacts with the

single-particle potential. With the conventional spectrum, we have U(b) = 0

for b > ̂  so that fig. 4(d) is zero. But if a non-zero TJ is used above the

Fermi sea, then fig. 4(d) should be evaluated as a three-hole-line diagram,

just as fig. 4(b) was used to cancel a three-hole-line diagram.

The last term in D, is the three-body cluster term D, . It contains

an infinite number of diagrams, some of which are shown in fig. 5. There

are 2 diagrams of third order in G, 4 of the fourth order, etc. A typical

example is shown in fig. 5(g). In the first two interactions at the bottom,

three particles are excited above the Fermi sea. Then many interactions

are drawn between the upgoing particle lines, and finally at the top the

three excited particles fall back into the sea. Although there are many

interactions in this diagram, there are only three hole lines.

For two-body potentials with a strong short-range repulsion, it

is known that the series of three-body cluster diagrams does not converge ' '

but must be summed by solving the three-body Bethe-Faddeev equations. This

gives one reason for the conventional choice U(k) = 0 for k>k_. If we
r

wanted to define U so that fig. 4(d) cancels fig. 5(a), this could be

conveniently done. But fig. 5(a) is no more important than any other three-

body cluster diagram, all of which must be grouped together in a single

term D.,C» And there is no natural and convenient way to make fig. 4(d)

cancel the more complicated three-body cluster diagrams. Therefore, we do

not attempt such a cancellation but simply put U(k) = 0 for k>k_, and then

evaluate D, explicitly.



So with the conventional single-particle spectrum, figs. 4(a)

and 4(b) cancel, fig. 4{d) is zero, and we are left with the very small

hole-hole term D_ of fig. 4(c) and the three-body cluster term D,C of

fig. 5.

We come next to four-hole-line diagrams. These have been

19 20) 19)

enumerated ' , and many have been calculated . I will discuss them

further in connection with the numerical results.

The question of how to choose U allows us to formulate a test
21)

of the hole-line expansion. The idea is due to Mahaux . Suppose we

change U by adding a constant A to the single-particle potential of every

state above the Fermi sea. Then the calculated energy will change. For

example, we have

IT = K2 -u °'2 • (21)

However, the exact energy cannot depend on our choice of U and is therefore

independent of A. This suggests that as we include more terms in the hole-

line expansion, the sensitivity of the calculated energy to A should become

smaller and smaller. In particular, we require that

3A
(22)

If we calculate D_ and D3, we can check whether the condition (22) is

satisfied . Thus we have a practical test of the hole-line expansion.

Another important test is to look for the possible buildup of

long-range correlations. One usually expects these to come from the ring

22) 23)

diagrams, as in the electron gas and in low-density Bose systems .

In nuclear matter, however, the situation is more complicated. This can

be seen by looking again at the three-body cluster diagrams in fig. 5.



10

Only one of these, namely fig. 5(b), is a ring diagram, let we know

that all these diagrams have to be grouped together in a single term. By

removing the first and last interactions from fig. 5(b) we obtain the ring

vertex of fig. 6(c). It must be kept together with fig. 6(b) and with all

the diagram structures obtained by removing the first and last interactions

from more complicated three-body cluster diagrams.

We define M to be the sum of all these diagram structures, as

shown in fig. 6. Then instead of iterating the ring vertex 6(c), which

would generate ring diagrams, we iterate M and generate a series of generalized

ring diagrams. The first term in the generalized ring series is fig. 7(a),

which is just the three-body cluster term D, . The term of second order in

M (shown in fig. 7(b)) is the four-hole-line diagram of class Bl in the

notation of ref. 19, and each succeeding term is represented by diagrams

with one additional hole line. Thus, according to the ideas of the hole-

line expansion, this series should converge rapidly. But if long-range

correlations are important, it may converge badly. Then the entire series

would have to be summed at once into a single term. The calculation has

24)
been done for light nuclei by Zabolitzky , who finds that the generalized

ring series converges rather slowly. It is important to carry out the same

test for nuclear matter.

This completes our outline of the ideas of the hole-line expansion.

We have four practical tests to apply to this method:

1) Do the first three terms of the expansion converge well?

2) Is condition (22) satisfied?

3) Does the generalized ring series converge well?

4) For simple central potentials, reliable Monte-Carlo variational

25)
calculations exist , and we can check whether the results of the

hole-line expansion are consistent with these.
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III. Numerical results

The numerical results to be presented require solving the three-

body Bethe-Faddeev equations . This has been done using a method developed

previously , and further details will be given elsewhere . Here I make

only two remarks about the calculational method.

First, the three-body equations are not solved exactly. Several

approximations are made, the main one being the use of an angle-average

Pauli operator. I expect a numerical uncertainty of order 2 MeV at

kp = 1.8 fm (corresponding to p = 2p ) and of order 0.5 MeV at

kp = 1.4 fm"1 (p % p Q).

Second, the complexity of the nuclear force presents no problem

in the three-body calculations. Tensor forces, spin-orbit forces, quadratic

spin-orbit forces, etc., can all be properly treated.

All the numerical results given below have been obtained using

the conventional single-particle spectrum with U(k) = 0 for k>kp.

28}
Let us first consider the potential v« . It is a central

potential with no spin or isospin dependence and has a Yukawa-shaped

repulsive core followed by a weak attractive force.

In order to apply the tests listed at the end of Sec. II, we look

at the results for L, = 1.8 fm . Since this corresponds to a density of

twice the empirical saturation density of nuclear matter, and since we

find Kj = 0.27, which is rather large, this case should provide a stringent

test of the hole-line expansion. The results are shown in table 1 (the

calculation of D. and of the numerical uncertainty in the total are described

later). The three-hole-line contribution D3 is the sum of D3
C = -9.6 MeV and

D 3
h h = -0.6 MeV.
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Table 1 shows good convergence of the hole-line expansion. Note

also that D, = -10.2 MeV is comparable to K B = -8.2 MeV. Thus the rate

of convergence is roughly governed by the size of ic,, which is in accord

with the ideas of the hole-line expansion.

Condition (22) is tested in table 2. We see that including the

three-hole-line contribution greatly reduces the sensitivity of the calculated

energy to a shift A of the intermediate-state spectrum. This is consistent

with the validity of the hole-line expansion.

The individual contributions to the three-body cluster term D_

are shown in table 3. The columns labeled "bubble" and "ring" refer to the

third-order diagrams of figs. 5(a) and 5(b), respectively. The column

labeled "higher" gives the sum of all higher-order three-body cluster diagrams.

It is clear that omitting these higher-order diagrams, which can only be

evaluated by solving the three-body equations, would give completely wrong results.

To search for long-range correlations, we look at the convergence

of the generalized ring series, which is shown in table 4. The contribution

of first order in M is D3°, and the second-order term is the four-hole-line

diagram of class Bl shown in fig. 7(b), which we denote by D, (Bl). Each term

in the generalized ring series has one more hole line than its predecessor.

The convergence is seen to be rapid: adding a hole line greatly reduces the

contribution of the diagram. Also, the sum to infinite order of the generalized

ring series is found to be -11.6 MeV, which is just equal to the partial sun of

the first 4 terms. Thus there is no indication herp that we need to depart from

the grouping of diagrams strictly according to the number of hole lines.

The four-hole-line diagram D^(B1) is just one of a number of four-

hole-line diagrams. Approximate formulas for most of these have been obtained

19)
in an earlier paper . Using the results in that paper, I have estimated

all of the four-hole-line diagrams and their numerical errors. Then I
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have estimated the total numerical error by summing the squares of the

individual errors and taking the square root. This gives the value for D,

in table 1. The numerical uncertainty quoted for the total in table 1

comes from both D_ and D, .

The most questionable part of this procedure involves the four-

body cluster term, which is the only four-hole-line term that requires

solving a four-body equation. For this term I have assumed a value of zero

2
with an uncertainty of ± K_ D?. This is consistent with available numerical

19 29)
estimates * , but the accuracy of these estimates is not well-established.

I feel that the total numerical uncertainty of ± 2.5 MeV quoted in table 1

is reasonable, but more work is needed to pin it down better.

The results for v, are plotted as a function of density in fig. 8.

The curve labeled BB(2) includes only T + D_. Adding D, gives the curve

BB(3), and adding D, to this gives the curve BB(4). The dashed lines give

my estimate of the numerical uncertainty in the BB(4) result. The solid

circles with error bars give the variational upper bounds obtained by

25)
Ceperley, Chester, and Kalos using the Monte-Carlo method. We see that

the Brueckner-Bethe results lie somewhat below the variational upper bounds,

which is consistent with the validity of the hole-line expansion.

Thus we see that for v« the four tests mentioned at the end of

Sec. II give no indication of trouble with the hole-line expansion. The

first three terms converge well, condition (22) is well satisfied, the

generalized ring series converges well, and the results are consistent with

variational upper bounds.

These results are sufficiently encouraging that it makes sense to

apply the method to a more realistic potential. I have selected the potential

Vg(Reid) for this purpose. It has been used in variational calculations

by the Illinois group and is defined as follows. In all singlet-even
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states the radial shape is that of the So Reid soft-core potential.

In all singlet-odd states, the Reid P. potential is used. In triplet-even

states the form V (r)+VT(r)S12 is used, where S12 is the tensor operator. The

3 3
radial shapes of V and V are those of the Reid S,- D, potential. In

triplet-odd states the definition is similar, with Vc(r) and V (r) taken

3 3
from the Reid P«- F? potential. The spin-orbit force has been omitted

because it gives trouble for the variational calculations at their present

state of development. The spin-orbit force would not be troublesome in

the Brueckner-Bethe method, however.

Let us first look at the results for L = 1.8 fm , corresponding

to a density more than twice the empirical saturation density. The cal-

culated value of <„ is 0.25, and the various contributions to the energy

are shown in table 5. The convergence of the first three terms of the

hole-line expansion is seen to be good. The three-hole-line term D_ is the

sum of D3° = -13.5 MeV and D3
hh = -0.9 MeV. The value of D- is comparable

to K_ D_ = -11.2 MeV, in accord with the ideas of the hole-line expansion.

Table 6 shows that condition (22) is well satisfied, which also supports the

validity of the hole-line expansion.

The individual contributions to the three-body cluster term D,

are shown in table 7. Again it is essential to include the higher-order

diagrams, which requires solving the three-body Bethe-Faddeev equations.

The convergence of the generalized ring series is shown in table 8.

The convergence is.rapid, and the sum to infinite order is found to be

-15.9 MeV, which is equal to the partial sum of the first four terms.

This is somewhat surprising because the two-body potential has a strong

tensor force that might be expected to build up appreciable long-range

correlations. However, this possibility does not seem to materialize.
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The results in table 8 give no indication that we should modify the hole-

line expansion.

The results for v-(Reid) are plotted as a function of density

in fig. 9. The curves labeled BB(2), BB(3), BB(4), and also the dashed

curves, have the same meaning as in fig. 8. The curve labeled PW is the

variational calculation of Pandharipande and Wiringa . The crosses show

the minima of the curves as determined by eye. The difference between the

Brueckner-Bethe result and the variational result of the Illinois group

is about 3 MeV and can certainly be accounted for by the combined

uncertainties in the two calculations.

Let us now summarize the main results for the two-body potential

v,(Reid). The first three terms of the hole-line expansion show good

convergence. The sensitivity of the calculated energy to a shift in the

intermediate-state spectrum is satisfactorily reduced when the three-hole-

line term is added to the two-hole-line term. The generalized ring series

converges rapidly, suggesting that long-range correlations do not spoil the

hole-line expansion. Finally, although no Monte-Carlo variational upper

bounds are available for Vg(Reid), the Brueckner-Bethe results are consistent

with the variational calculation of the Illinois group.

IV. Summary and discussion

Using the ideas developed at the end of Sec. II, we have made

several tests of the Brueckner-Bethe hole-line expansion. This has been

done for two different two-body potentials: the simple central potential

v9 and the semireallstic potential v,(Reid) , which has a tensor force.

No indication of trouble with the hole-line expansion is found. This

suggests, but does not prove, that the hole-line expansion is a valid method.
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A reasonable, but not firmly established, estimate of the error

in the present calculations is 3 MeV at twice the empirical saturation

density (k^ = 1.8 fm~ ) , and the error decreases at lower densities. We

are thus getting close to the point where the method can tell us what we

really want to know, i.e., which two-body potential, if any, can account

for the saturation properties of nuclear matter.

However, there is much room for improvement. On the technical

side, a calculation of the four-body cluster term would be extremely useful.

This may be very difficult because it requires solving a four-body equation.

But even a reliable estimate or bound for this term would be valuable.

Improving the calculation of the other four-hole-line terms and of the

three-hole-line terms would also be valuable technical improvements.

On the theoretical side, we need to understand the energy expansion

better. For example, with the v,(Reid) two-body potential, at k_ = 1.8 fm ,

there are several four-hole-line diagrams that are 2-3 MeV in magnitude.

But because of cancellations among these terms, the total four-hole-line

contribution is only about 2 MeV. How does this come about, and will it

also happen for higher-order terms? I don't have a good answer to this

question, but one is clearly needed. Probably the coupled-cluster equations '

will be useful in attacking this problem.

Let us close by briefly comparing the Brueckner-Bethe and variational

methods. For simple central potentials, the variational approach is more

efficient . With powerful partial-summation methods such as the Fermi

31-33)
hypernetted-chain method , one can calculate reliably at higher densities

than with the Brueckner-Bethe method. However, as the two-body potential gets

more complicated, it becomes harder and harder to carry out these partial

summations in the variational method. At the present time, for example,

30)
the spin-orbit force is very troublesome in variational calculations .
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In the Brueckner-Bethe method, on the other hand, the most general two-body

potential can be treated without difficulty.

Thus, at the present time, each of the two methods has its strengths

and weaknesses. The method that eventually emerges may be one of these,

34)
or it may be something like the recent approach of the Clark-Ristig group ,

which combines a variational calculation with perturbation theory. For the

present it is highly desirable that a variety of methods be developed and

compared with each other.
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Table Captions

1. Calculated energy contributions in MeV for the two-body potential

v2 at kp = 1.8 fm .

2. Sensitivity of calculated energy to a shift in the spectrum for v«

at kj, = 1.8 fnf .

3. Various contributions to D3° in MeV for v_ (kp = 1.8 fm ), as

discussed in the text.

4. Contributions in MeV of various terms in the generalized ring series

for v_ (k_ = 1.8 fm ) , as discussed in the text.

5. Calculated energy contributions in MeV for the two-body potential

^d) at L = 1.8 fm" .L

6. Sensitivity of calculated energy to a shift in the spectrum for

Vg(Reid) at k_ = 1.8 fm" .

c -1
7. Various contributions in MeV to Dg for v&(Reid) at k_ - 1.8 fm .

8. Convergence of generalized ring series for v,(Reid) at k_, = 1.8 fm .
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T

40.3

D2

-30.5

D3

-10

Table

.2

1

D4

+1.4

total

+1.0 ± 2.5

0.27

Table 2

0.02 ± 0.03

bubble

+6.9

ring

+17.2

Table 3

higher

-33.7

total = D

-9.6

order in M

energy

remarks

1

-9.6

Table 4

2

-2.1

3 4

+0.4 -0.3

5 hole lines 6 hole lines

T

40.3

"2

-45.7

Table 5

D3

-14.4

"4

+2.0

total

-17.8 ± 3.3
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3D2/3A

0.25

Table 6

0.01 ± 0.03

bubble

+22.2

ring

-18.6

Table 7

higher

-17.1

total = D,

-13.5

order in M

energy

remarks

-13.5

_ c

Table 8

2

-2.0

3 4

-0.3 -0.07

5 hole lines 6 hole lines
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Figure Captions

1. Single-particle energy spectrum in nuclear matter.

2. Two-body relative wavefunctions in nuclear matter, as discussed in

the text.

3. Two-hole-line diagram for the energy.

4. Some three-hole-line diagrams.

5. Three-body cluster diagrams.

6. Diagrammatic definition of the generalized ring vertex M.

7. The first two contributions to the energy from the generalized ring

series. An additional diagram, obtained from (b) by omitting the

interaction indicated by the arrow, is also included in the second-

order term.

8. Calculated energy per particle plotted against Fermi momentum for v_.

9. Calculated energy per particle plotted against Fermi momentum for

v6(Reid).
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Abstract: The ideas of the Brueckner-Bethe hole-line expansion are briefly

outlined. Four practical tests of its validity are formulated.

These tests are applied to recent numerical results for the

central potential v« and the semirealistic potential v,(Reid),

which contains a tensor force but no spin-orbit force. The

results are consistent with the validity of the hole-line expan-

sion. The Brueckner-Bethe results are also consistent, within

uncertainties of order 3 MeV, with variational results.
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