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outlined. Four practical tests of its validity are formulated.
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wiich contains a tensor force but no spin—orbiﬁ force. The
results are consistent with the validity of the holefline expan=—
sion. The Brueckner—Bathe.results are also consistent, within
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I. Introduction

In nuclear matter theory we start with a model of the nucleus.
We consider it to be composed of point nucleons interacting through a
two-body potential that is fitted to scattering data and to the properties
of the deuteron. Then we ask whether this model can account for the
saturation properties of nuclear matter. To answer this question we must
be able to solve the equations of the model., This means, given a two-body
potential, that we must be able to calculate the energy per particle as a
function of density and find the minimum of this curve -~ the saturation
point. At the present time we are still in the process of developing an
adequate method of calculation. The two methods that have received most
attention are the Brueckner-Bethe methodl-ﬁ) and the variational methodﬁmlo).
Ir this paper I give my view of the present state of the Brueckner-Bethe
method. First the method is briefly outlined. Then numerical results are
presented that have a bearing on whether the method is valid, on what

numerical accuracy is attainable, and on the comparison of the method with
the variational method.

II. Outline of the Brueckner-Bethe method

The presently most powerful and flexible formulation of the
Brueckner-Bethe method is that of the coupled--cluster equations, alterna-
tively called the exp(S) equations, of Coesterll) and Kﬁmmellz). The
calculations to be described here correspond to a particular approximation
scheme for the solution to these equations. This scheme is called the
hole-line expansion and is conveniently described in terms of Goldstone

1,13)

diagrams . This is the procedure followed here. However, for the

purpose of formulating other approximation schemes, and for theoretical



investigation of convergence, it is probably best to use the coupled-cluster

equations rather than the Goldstone diagrams.

The Hamiltonian H is given by the sum of the kinetic energies of

the nucleons and the two-body interactions among them:

A A
H=) T, +) v,. . (1)
=1 1oy H ~

We write this in the form

H=Hj+H ' (2)
where
A
H, =1£1 (T, + U,) (3
A A
Hl =i§j vij —izl Ui @

Here, U is a single-particle potential that is at our disposal. It should
be chosen so that whatever expansion we use for the energy converges well.
We assume translational invariance so that U is diagonal in momentum space.
Then the single-particle energy of a plane-wave state of momentum E is given

by
E(k) = 'ﬁszIZM + U(k) . (5)

The Fermi-gas state ¢ satisfies
Hy ¢ = &0 (6)

where

o= I EW . o



The exact ground-state wavefunction ¥ satisfies

Hy=Ev (8)

and the exact ground-state energy é; is given formally by the sum of all

13)

linked Goldstone diagrams ",

The contribution of any diagram contains energy denominators,
and the energy denominators depend on the single—pafticle spectrum E(k),
which is plotted in fig. 1. For k less than the Fermi momentum kF’ U(k) is
defined as in Hartree-Fock theory, and the single~particle energy is negative.
For k>kF the conventionél choice is U(k) = 0. This gives the solid curve‘
in fig. 1, which has a gap of order 50 MeV at the Fermi surface. Spectra
that are more nearly continuous at the Fermi surface, such as the dashed

curve, have also been used14’15). The choice of U will be discussed more

fully later.

Since we want to be able to treat potentials with a strong short-
range repulsion, we must eliminate the potential v in favor of the two-body

reaction matrix G, which satisfies the equation

G = v - v(Q/e)G . 9)
Here, e is defined by |

elpa> = (E(p) + E(@)-w) |pg> , (10)

where |pq> is a product of two single-particle plane waves, and the starting

energy o depends on the details of the diagram in which the interaction

19

occurs .,

The relative wavefunction for two noninteracting particles is a

plane wave ¢, and the correlated wavefunction is then defined by

b= ¢ -(Q/e)Go . ' 1)



Egs. (9) and (11) give

vy=G¢ . | (12)

From this.equation, we see that if v becomes very large at small r, then

P becomes small so that G remains well behaved.
The behavior of § is crucial for the Brueckner-Bethe method.

Fig., 2 shows this behavior for two particles in the 331-3D1 channel inter-

16)

acting through the Reid potential. The uncorrelated wavefunction ¢

has been chosen to have only an S-wave component given by

¢ = Jolen) | 13

where k is the relative momentum. Since the tensor force couples the
381 state to the 3D1 state, Y has both S~ and D- wave components, denoted
by ws and wD’ respectively.
' At small r, ws becomes small because of the strong short-range
repulsion. So in this region we have strong correlations in the sense that
¢-¢¥ is comparable to ¢. But fo- r 2 0.5 fm, the correlations are weak in
the sense that |¢-¢|<< ¢. Since the D-wave part of ¢ is zero, the D-state
correlations are entirely given by wD. Again, these correlations are weak
in the sense that ]¢D|<< ¢. The essential point is that the strong correla-
tions have a very short range (comparable to the range of the short-range
repulsion), and the longer-range correlations are very weak.

A useful measure of the strength of the correlations is the

correlation volume defined by
corr. vol. = [ !¢-w|2dr . (14)

Dividing this by the volume per particle, which is equivalent to multiplying

by the density p, defines the dimensionless parameter Kol



corr. vol. - 2. _
vol. per particle = [ lo-v|%ar = K2 . (15)

For the Reid potential, K, ranges from 0.15 to 0.25 for Py 2P 5_2p°, where
P, is the empirical saturation density of nuclear matter. These values
are calculated using the conventional single-particle spectrum with a large

gap at the Fermi surface. With a more nearly continuous spectrum one may

find values of Ky that are 207 larger.

In any case, the ratio K, of the correlation volume to the volume
per particle is much less than 1, and this fact has the following interpre-
tation. If two particles are correlated, the probability that a third
particle will be correlated with the first two is of the order of this
ratio and is therefore small compared to 1. This suggests grouping the
energy diagrams according to the number of interacting particles — first

two-body correlations, then three-body correlations, etc. The number of

interacting particles is equivalent to the number of hole lines, so this

leads to the hole-line exparnsion:

£/A=T+D2+D3+... (16)

The leading term T is the kinetic energy of the Fefmi—gas state, and Dn

is the contribution from diagrams with n hole lines.

Each additional hole line involves an integration over momenta
-
in the Fermi sea and gives a factor of the density. On dimensional grounds

this must be multiplied by some correlation volume to give a factor of

order k,. One can give more detalled arguments like thisl), but the real

2
test of the hole-line expansion is to try it out and see if it works. So

let us look at this expansion in more detail.

For the kinetic energy of the Fermi-gas state one finds

T = 25 to 40 MeV for P, <P <20 » (17)
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The two-hole-~-line term D2 is represented by the di;gram of fig. 3. 1t
represents the interaction between each pair of particles in the Fermi
sea and is given by
p,= J <mlelm) ~-40xev . (18)
m<n<kF
The value of D2 depends on both the two-body potential and the density,
and -40 MeV is a typical value.
The three-hole-line diagrams are shown in :igs. 4 and 5. The
wiggly lines tepreseht the two-body reaction matrix (¢ and the dashed
line with a cross represents the single—particlé potential U. Upward
directed lines represent occupied states above the Fermi sea, and downgoing
lines represent empty states (holes) in the Fermi sea. The rules for '

associating an energy contribution to a diagram are discussed in ref. 1.

As an example, the contribution from fig. 4(a) is

© L Golelat) 2m 1) Conlelon)
(19)

a,b >k <ab|Gl2.m>.

The contribution of fig. 4(a) is large, typically +10 to +15 MeV,

™ A v -

Fig. 4(b) is identical with fig. 4(a) except for the niddle interaction.

These two diagrams can be made to exactly cancel by choosing U(m) for

m<kF to be

U(m) = Z mnIGImn , m< . (20)
n<kF.<: ;> ¥

Eq. (20) is our.choice of U(m) for m<kF.

- Fig. 4(c) is called the hole~hole diagram Dzhh. It has four
hole lines, but momentum conservation in the middle irteraction means that
only three of these momenta are independent. So we have only three independent

integrations over the Fermi sea, and this diagram is therefore considered



to be a three-hole-line diagram. It contributes less than 1 MeV and is
therefore not very important.
In fig. 4(d) a particle above the Fermi sea interacts with the

single-particle potential. With the conventional spectrum, we have U(b) = 0

-

for b > & gco that fig, 4(d) is zerec., But if a non-zerc U is used above the

b .
Fermi sea, then fig. 4(d) should be evaluated as a three-~hole-line diagram,
just as fig. 4(b) was used to cancel a three-hole-line diagram.

c

The last term in D3 is the three-body cluster term D3 It contains

an infinite number of diagrams, some of which are shown in fig. 5. There
are 2 diagrams of third order in G, 4 of the fourth order, etc. A typical
example is shown in fig. 5(g). In the first two interactions at the bottom,
three particles are excited above the Fermi sea. Then many interactions
are drawn between the upgoing particle lines, and finally at the top the
three excited particles fall back into the sea. Although there are many
interactions in this diagram, there aré only three hole lines.

For two-body potentials with a strong short-range repulsion, it
is known that the series of three-body cluster diagrams does not converge1’17’18)
but must be summed by solving the three~body Bethe-Faddeev equations. This
gives one reason for the conventional choice U(k) ; 0 for k>kF. If we
wanted to define U so that fig. 4(d) cancels fig. 5(a), this could be
conveniently done. But fig. 5(a) is no more important than any other three-
body cluster diagram, all of which must be grouped together in a single
term D3c. And there is no natural and convenient way to make fig. 4(d)

cancel the more complicated three-body cluster diagrams. Therefore, we do

not attempt such a cancellation but simply put U(k) = 0 for k>kf and then

evaluate D3c explicitly.



So with the conventional single-particle spectrum, figs. 4(a)
and 4(b) cancel, fig. 4{d) is zero, and we are left with the very small
hole-hole term D3hh of fig. 4(c) and the three-body cluster term D3c of
fig. 5.

We come next to four-hole-line diagrams. These have been
19,20) 9)

enumerated , and many have been calculated1 .. I will discuss them

further in cconnection with the numerical results.

The question of how to choose U allows us to formulate a test
of the hole-line expansion. The idea is due to Mahaule). Suppose we
change U by adding a constant A to the single-particle potential of every

state above the Fermi sea. Then the calculated energy will change. For
example, we have

A S Ky v 0.2 . (21
However, the exact energy cannot depend on our choice of U and is therefore
independent of A. This suggests that as we include more terms in the hole-
line expansion, the sensitivity of the calculated energy to A should become

smaller and smaller. In particular, we require that

3(D,+D,) aD
Ay ! < < 2

If we calculate D2 and D3, we can check whether the condition (22) is

satisfied6). Thus we have a practical test of the hole-line expansion.
Another important test is to look for the possible buildup of

long~range correlations. One usually expects these to come from the ring

22) 23)

diagrams, as in the electron gas and in low~density Bose systems ',
In nuclear matter, however, the situation is more complicated. This can

be seen by looking again at the three-body cluster diagrams in fig. 5.
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Only one of these, namely fig. 5(b), is a ring diagram. Yet we know
that all these diagrams have to be grouped together in a single term. By
removing the first and last interactions from fig. 5(b) we obtain the ring
vertex of fig. 6(c). It must be kept together with fig. 6(b) and with all
the diagram structures obtained by removing the first and last interactions
from wore complicated three-body cluster diagrams.

We define M to be the sum of all these diégram structures, as
shown in fig. 6. Then instead of iterating the ring vertex 6(c), which
would generate ring diagrams, we iterate M and generate a series of generalized
ring diagrams. The first term in the generalized ring series is fig. 7(a),
which is just the three-body cluster term D3c. The term of second order in
M (shown in fig. 7(b)) is the four-hole-line diagram of class Bl in the
notation of ref. 19, and each succeeding term is represented by diagrams
with one additional hole line. Thus, according to the ideas of the hole-
line expansion, this series should conQerge rapidly. But if long-range
correlations are impertant, it may converge badly. Then the entire series
would have to be summed at once into a single term. The calculation has
24)

been done for light nuclei by Zabolitzky » who finds that the generalized

ring series converges rather slowly. It is import;nt to carry out the same
test for nuclear matter.

This completes our outline of the ideas of the hole-line expansion.
We have four practical tests to apply to,this method:

1) Do the first ithree terms of the expansion converge well?

2) Is condition (22) satisfied?

3) Does the generalized ring series converge well?

4) For simple central potentials, reliable Monte-Carlo variational
25)

calculations exist , and we can check whether the results of the

hole-line expansion are consistent with these.
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ITI. Numerical results

The numerical results to be presented require solving the three-

18)

body Bethe-Faddeev equations . This has been done using a method developed

~

previously26), and further details will be given elsewhere27). Here I make

only two remarks about the calculational metchod.

First,‘the three~body equations are not solved exactly. Several
approximations are made, the main one'being the use of an angle-average
Pauli operator. 1 expect a numerical uncertainty of order 2 MeV at
kF = 1.8 fm_1 (corresponding to p = 2p°) and of order 0.5 MeV at
I, = 1.4 ! (o % o)

Second, the complexity of the nuclear force presents no problem
in the three-body calculations. Tensor forces, spin~orbit forces, quadratic
spin~-orbit forces, etc., can all be properly treated.

All the numerical results given below have been obtained using
the.conventional single-particle spectrum with U(k) = 0 for k>kF.

Let us first consider the potential v228). It is a central
potential with no spin or isospin dependence and has a Yukawa-shaped
repulsive core followed by a weak attractive force.

In order to apply the tests listed at the end of Sec. II, we look
at the results for kF = 1.8 fmfl. Since this corresponds to a density of
twice the empirical saturation density of nuclear matter, and since we
find Ky = 0.27, which is rather large, this case should provide a stringent
test of the hole-line expansion. The results are shown in table 1 (the
calculation of D4 and of the numerical uncertainty in the total are described
latef). The three-hole-line contribution D; is the sum of D3c = -9.6 MeV and

hh

D3 = ~0.6 MeV.




12

Table 1 shows good convergence of the hole-line expansion. Note
also that D3 = ~10.2 MeV is comparable to K, D2 = -8.2 MeV. Thus the rate
of convergence is roughly governed by the size of Kos which is in accord
with the ideas of the hole-line expansion.

Condition (22) is tested in table 2. We see that including the
three-hole-line contribution greatly reduces the sensitivity of the calculated
energy to a shift A of the intermediate-state spectrum. This is consistent
with the validity of the hole-line erpansion.

The individual contributioms to the three-body cluster term D3c
are shown in table 3. The columns labeled "bubble" and "ring" refer to the
third-order diagrams of figs. 5(a) and 5(b), respectively. The column
labeled "higher" gives the sum of all higher—order three-body cluster diagrams.
It is clear that omitting these higher-order diagrams, which can only be
evaluated by solving the three-body equations, would give completely wrong results.

To search for long-range correlations, we look at the convergence

of the generalized ring series, which is shown in table 4 The contribution

of first order in M is D3 s, and the second-order term is the four—hole—line

diagram of class Bl shown in fig. 7(b), which we denote by D, (Bl) Each term

in the generalized ring series has one more hole line than its predecessor.

The convergence is seen to be rapid: adding a hole line greatly reduces the

contribution of the diagram. Also, the sum to infinite order of the generalized

ring series is found to be 11 6 HeV which is just equal to the partial sun of

the first 4 terms. Thus there is no 1ndication here that we need to depart from

the grouping of diagrams strictly according to the number of hole lines.

The four-hole-~line diagram D4(Bl) is just one of a number of four-
hole-line diagrams. Approximate formulas for most of these have been obtained
in an earlier paperlg). Using the results in that paper, I have estimated

all of the four-hole-line diagrams and their numerical errors. Then I
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have estimated the total numerical error by summing the squares of the
individual errors and taking the square root. This gives the value for D4
in table 1. The numerical uncertainty quoted for the total in table 1
comes from both D3 and D4.

The most questionable part of this procedure involves the fourj
body cluster term, which is the only four-hole-line term that requires
solving a four-bédy equation. For this term I have assumed a value of zero

with an uncertainty of #+ k 2 D2. This is consistent with available numerical

2
estimateslg’zg), but thke accuracy of these estimates is not well-established.

I feel that the total numerical uncertainty of * 2.5 MeV quoted in table 1
is reasonable, but more work is needed to pin it down better.

The results for v, are plotted as a function of density in fig. 8.
The curve labeled BB(2) includes only T + Dz. Adding D3 gives the curve
BB(3), and adding D4 to this gives the curve BB(4). The dashed lines give
my estimate of the numerical uncer;ainty in the BB(4) result. The solid
circles with error bars give the variational upper bounds obtained by
Ceperley, Chester, and Kaloszs) using the Monte~Carlo method. We see that
the Brueckner-Bethe results lie somewhat below the variational upper bounds,
which is consistent with the validity of the hole-line expansion.

Thus we see that for v, the four tests mentioned at the end of
Sec. II give no indication of trouble with the hole-line expansion. The
first three terms converge well, condition (22) is well satisfied, the
generalized ring series converges well, and the results are consistent with
variational upper bounds.

These results are sufficiently encouraging that it makes sense to
appl& the method to a more realistic potential. I have selected the potential
VG(Réid) for this purpose. It has been used in variational calculations

30)

by the Illinois group and 1s defined as follows. In all singlet-even
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states the radial shape is that of the 180 Reid16) soft-core potential.

In all singlet—-odd states, the Reid 1P1 potential is used. 1In triplet-even
states the form Vc(r)+VT(r)S12 is used, where S12 is the tensor operator. The
radial shapes of Vc and VT are those of the Reid 351—3D1 potential. 1In
triplet-odd states the definition is similar, with Vc(r) and VT(r) taken

from the Reid 3P2-3F2 potential. The spin-orbit force has been omitted
because it gives trouble for the variational calculations at their present
state of development. The spin-orbii force would not be troublesome in

the Brueckner-Bethe method, however.

Let us first look at the results for kF = 1.8 fm-l, corresponding
to a density more than twice the empirical saturation density. The cal-
culated value of K, is 0.25, and the various contributioans to the energy
are shown in table 5. The convergence of the first three terms of the
hole~line expansion is seen to be good. The three-hole-line term D3 is the

sum of D.© = -13.5 MeV and D3hh = -0.9 MeV. The value of D3 is comparable

3
to Ky D2 = ~11.2 MeV, in accord with the ideas of the hole-line expansion.

Table 6 shows that condition (22) is well satisfied, which also supports the

validity of the hole~line expansion.

The individual contributions to the three-body cluster term D3c

are shown in table 7. Again it is essential to include the higher-order
diagrams, which requires solving the three-body Bethe-Faddeev equations.

The convergence of the generalized ring series is shown in table 8.
The convergence is.rapid, and the sum to infinite order is found to be
-15.9 MeV, which is equal to the partial sum of the first four terms.
This is somewhat surprising because the two-body potential has a strong
tensor force that might be expected to build up appreciable long-range

correlations. However, this possibility does not seem to materialize.
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The results in table 8 give no indication that we should modify the hole-
line expansion.

The results for v6(Reid) are plotted as a function of density
in fig. 9. The curves labeled BB(2), BB(3), BB(4), and also the dashed
curves, have the same meaning as in fig. 8. The curve labeled PW is the
variational calculation of Pandharipande and WiringaBO). The crosses show
the minima of the curves as determined by eye. The difference between the
Brueckner~-Bethe result and the variaﬁional result of the Illinois group
is about 3 MeV and can certainly be accounted for by the combined
uncertainties in the two calculatiomns.

Let us now summarize the main results for the two-bedy potential
v6(Reid). The first three terms of the hole~line expansion show good
convergence. The sensitivity of the calculated energy to a shift in fhe
intermediate-state spectrum is satisfactorily reduced when the three-hole-
line term is added to the two-hole-line term. The generalized ring series
converges rapidly, suggesting that long-range correlations do not spoil the
hole-line expansion. Finally, although no Monte-Carlo variational upper
bounds are available for v6(Reid), the Brueckner-Bethe results are consistent

with the variational calculation of the Illirois gfoup.

IV. Summary and discussion
Using the ideas developed at the end of Sec. 1I, we have made
several tests of the Brueckner-Bethe hole-line expansion. This has been

done for two different two-body potentials: the simple central potential

28) )
V2
No indication of trouble with the hole-line expansion is found. This

and the semirealistic potential v6(Reid)30 s which has a tensor force.

suggests, but does not prove, that the hole-line expansion is a valid method.
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A reasonable, but not firmly established, astimate of the error
in the present calculations is 3 MeV at twice the empirical saturation
density (kF = 1.8 fmfl), and the error decreases at lower densities. We
are thus getting close to the point where the method can tell us what we
reélly want to know, i.e., which two-body potential, if any, can account
for the saturation properties of nuclear matter.

However, there is much room for improvement. On the technical
side, a calculation of the four—body'cluster term would be extremely useful.
This may be very difficult because it requires solving a four-bbdy equation.
But even a reliable estimate or bound for this term would be valuable.
Improving the calculation of the other four-hole-line terms and of the
three~hole-line terms would also be valuable technical improvements.

On the theoretical side, we need to understand the energy expansion

better. TFor example, with the v6(Reid) two-body potential, at kF = 1.8 fmfl,

there are several four-hole-line diagrams that are 2-3 MeV in magnitude.
But because of cancellations among these terms, the total four-hole-line
contribution is only about 2 MeV. How does this come about, and will it
also happen for higher-order terms? I don't have a good answer to this

question, but one is clearly needed. Probably the.coupled-cluster equationsll’lz)

will be useful in attacking this problem.

Let us close by briefly comparing the Brueckner-Bethe and variational
methods. TFor simple central potentiais, the variational approach is more
efficientG). With powerful partial-summation methods such as the Fermi
hypernetted-chain method31-33), one can calculate reliably at higher densities
than with the Brueckner-Bethe method. However, as the two-body potential gets
more complicated, it becomes harder and harder to carry out these partial
summations in the variational method. At the present time, for example,

the spin-orbit force is very troublesome in variational calculations30).
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In the Brueckner-Bethe method, on the other hand, the most general two-body

potential can be treated without difficulty.

Thus, at the present time, each of the two methods has its strengths

and weaknesses. The method that eventually emerges may be one of these,

or it may be something like the recent approach of the Clark-Ristig group34),

which combines a variational calculation with perturbation theory. For the
present it is highly desirable that a variety of methods be developed and

compared with each other.
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Table Captions

Calculated energy contributions in MeV for the two-body potential

vy at ky = 1.8 fm L,

Senéitivity of calculated energy to a shift in the spectrum for v,

at k= 1.8 fu .

Various contributions to D3c in MeV for v2 (kF =1.,8 fm-l), as

discussed in the text.

Contributions in MeV of various terms in the generalized ring series
for v, (kF =1.8 fmhl), as discussed in the text.

Calculated energy contributions in MeV for the two-body potential

A _ -1
v6(Re¢d) at kF = 1.8 fm .

Sensitivity of calculated energy to a shift in the spectrum for

-1

Various contributions in MeV to D3c for v6(Reid) at kF = 1.8 fm_l.

Convergence of generalized ring series for v6(Reid) at kF = 1.8 fm-l.



T D2
40.3 -30.5
3D2/8A
0.27
bubble ring
+6.9 +17.2
order in M 1
energy -9.6
remarks D3c
T D2
4003 -45'7
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Table 1
D3 D4 total _
-10.2 +1.4 +1.0 £ 2.5
Table 2
8(D2+D3)/8A
0.02 + 0.03
Table 3
higher total = D3c
-33.7 "906
Table 4
2 3 4
-201 +004 "0.3
D, (B1) 5 hole lines 6 hol
Table 5
D3 94 total
+2.0 -17.8 + 3

~14.4

e lines

.3



8D2/8A

0.25

bubble

+22.2

order in M
energy

remarks

ring

-18.6
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Table 6

Table 7
higher

-17.1

Table 8
2
~2.0

DA(BI)

a(D2+D3)/3A
0.01 £ 0.03
total = D3c
-13.5
3 4
-0.3 -0.07

5 hole lines 6 hole lines
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Figure Captions
Single-particle energy spectrum in nuclear matter.
Two-body relative wavefunctions in nuclear matter, as discussed in
the text,
Two-hole-line;diagram for the energy.
Some three-hole~line diagrams.
Three-body cluster diagrams.
Diagrammatic definition of the generalized ring vertex M.
The first two contributions to the energy from the generalized ring
series., An additional diagram, obtained from (b) by omitting the
interaction indicated by the arrow, is also included in the second-
order term.
Calculated energy per particle plotted against Fermi momentum for Voo

Calculated energy per particle plotted against Fermi momentum for

v6(Reid).
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Abstract: The ideas of the Brueckner-Bethe hole-line ‘expansion are briefly
‘outlined. Four.practical tests of its validity are formulated.
These tests are applied to recent numefical results for the
central ﬁotential vy and the semirealistic potential v6(Reid?,
which contains a tensor force but no spin-orbiﬁ force. The
results are consistent with the validity of the holefliné expan-—
sion. The Brueckner-Bethe results are als§ consistent, within

uncertainties of order 3 MeV, with variational results.
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