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ABSTRACT 

Due to the unfavorable curvature of the vertical vacuum magnetic field, elon­
gated pl~smas are vertically unstable when the elongation, £, becomes too large. 
The TNS {The Next Step) tokamak, as evolved in the Westinghouse-ORNL studies has 
an inside-D configuration {£ = 1 .6, A = 5/1 .25 = 4) characterized by an average 
decay index n ~ -0.75 at the plasma flux surface near the magnetic axis and is 
vertically unstable with a growth rate y ~ 105 sec-l Eddy currents produced 

0 
in the vacuum vessel wall will slow this instability to growth rates 

-1 . 
y ~ 102 

0 
sec provided there are no transverse insulating gaps in the vessel wall. 

A matrix equation has been developed for calculating the eddy currents induced 
in the EF coils and their stabilizing effect. Growth rates computed numerically 
have been fitted to the analytic shell model expression for y over a wide range 
of decay indexes {-n a:. y 

2 varying from 0 to 1. 6). Agreement between the numer-o .. .. ' 
ical and analytic values is within 5% over the decay index range for three dif-

. ~ 

ferent series-parallel EF coil configurations. The coils are found to reduce 
-1 the·vertical growth rat~ for TNS to less than 1 sec 

Control ·theory for feedback systems with and without delay time is presented 
and possible plasma position detectors are discussed. For a plasma current of 
6.1 MA, the controller peak power requirements using separate controller cir­
cuits are ~i MW depending upon EF coil configurations and. time delay. This 
feedback system is designed.to stabilize a maximum plasma excursion of 10 cm 
from the midplane with delay· times up to 2 sec . 

... 
,., ~· . 

i 
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1 .0 INTRODUCTION 

It is known that plasmas elongated in the direction of the axis of symmetry may 

be unstable with respect to a vertical perturbation when the elongation exceeds 
a certain limit. This report serves to examine this apparent problem in general 

and to apply the resulting theory to the ORNL-Westinghouse TNS inside-0 reference 

plasma (RP= 5 m, a= 1 .25 m, E = b/a = 1 .6)(l). The Oak Ridge/Westinghouse 

contribution to TNS (The Next Step) Project is a study of various inside-D 

configur~Lior1 tukijmijks 1 most of ~h1ch 1ncotporate superconducting toroidal field 
coils in the design. 

The benefits of the vertically elongated plasma shape have been identified and 

can be summarized as follows( 2- 6): (1) relatively higher B than that of circular 

shape can be achieved; (2) elongation with triangular shape will help stabiliza­
tion of the localized modes; and (3) the Kruskal-Shafranov limit for the internal 
kink mode on the plasma axis q(O)..::, l can be relaxed slightly. Experimentally, 

B as hi1h as 50% has been achieved for 20 MHD periods or 50 µs in the Belt 
Pinch( 4 • 

Noncircular plasmas may become unstable in axisymmetric modes( 3, 5>, Higher 

order modes may he excited, but are ignored here. We are concerned with the 
most dangerous mode, the vertical rigid displacement of the plasma. This mode 

can be illustrated by Figure 1-1. Figure 1-la shows a vertically stable plasma. 

If the plasma is displaced the amount sz above the equatorial plane z = 0, it 

encounters a restoring force per unit length I x B (s) tending to restore the p r 
plasma to its original position. Figure 1-lb is not stable. The plasma will 
encounter a·B (s) in the opposite direction due to the opposite curvature of 

r 
the field lines so that Ip x Br (s) is directed away from the equatorial plane. 

For the large aspect ratio approximation, the degree of the vertical stability 

can be characterized by the decay index of the field on axis defined as 

1-1 



z 

(a) Vertically Stable Circular Plasma 
(Right Magnetic Field Curvature) 

z 

-+-

(b) Vertically Unstable Elongated Plasma 
(Wrong Magnetic Field Curvature) 

r 

r 

Figure 1-1. Illustrations of Vertical Stability In Relation With 
the Curvature of the Vertical Magnetic Field. 
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(1-1) 

The condition to insure vertical stability is n > 0. The criterion for hori­
zontal stability is n < 3/2( 7). This instability has also been evaluated more 
generally by taking into account the plasma shape, diffused pressure, and current 

profiles for more realistic aspect ratios by using the energy principle and 

small perturbation theory. A triangular shape was found to be more stable and a. 
critical elongation was determined{ 3,G). However, a general method for predict­

ing the growth rate of the vertical displacement when taking into account the 

effect of the equilibrium field maintaining coils has not yet been given. That 
is the purpose of this report. Since we are interested in the order of magnitude 

of the growth rate, and also for simplicity and for the convenience of feedback 
control analyses, we keep the approximate approach as has just been described. 

The context is conveniently divided into five major sections. In Section 2, 
the growth rate for vertical motion is analyzed in the approximation that the 
plasma moves as a rigid body unaided by stabilizing eddy currents in external 
conductors. The averaged decay index near the magnetic axis, a measure of the 

vertical vac.uum field curvature, (n""- 0.8 for TNS) is an important parameter in 
determining this growth rate. The rising time (inverse growth rate) for TNS at 

IP..., 6.1 MA is"" 3 µ$et under these conditions. 

Induced eddy currents fortunately slow this growth rate down to more control­

lable values. The effect of a perfect (i.e., without gaps) resistive wall on 

the growth rate is examined in Section 3. The analysis is carried out to the 
first order in a/Rand results in a sine (plus a small quadrupole) eddy cur­
rent distribution in the wall (here e defines the poloidal angle). This gives 

rise to a stabilizing induced radial field that modifies the previous equation 

of motion and increases the rising time in TNS to ""30 ms for a 12 mm thick 

stainless steel vacuum vessel, continuous in the toroidal direction($). 
However, the vessel wall may require resistive gaps to allow the external tor­

oidal and poloidal fields to diffuse more rapidly inward to the plasma making 

the above assumption less realistic. 

1-3 



~he stabilizing effect of the d~screte equilibrium field coils (EF coils) is 
·pr~~ented in Section 4. Here the EF coils above the equatorial pla~e are 
connected in parallel to those below the plane. In this manner, stabilizing 
eddy currents are free to flo~ in the coils and do not c~nc~l one another. 
Three different series-parallel configurations are examined that satisfy the 
up-down parallel requirements. · The resulting circuit equations and the plasma 
equatfon of motion simplify to an ·eigenvalue equation for the induced EF coil 
currents .. This eigerivalue equation is solved numerically, yielding the EF coil 
current amplitudes and the grow.th rate of the vertical instability. The EF 
coils are found to have a strong stabilizing influence that lengthens the 
rising time in TNS to several sec6nds, the exact value depending upon ~hich 
of the thtee configuration~ is used. It is also found that the eddy current 
distribution in the EF coils resembles the sine distribution found in the 
resistive wall. The analogy is so strong that a numerical fit of the growth 
rate to the analytic: shell growth rate formula can result in less than a 5% 
deviation over a wide range of decay indexes (0 thru -1.6). 

. . . . 

Section 5 deals with the active feedback control of the vertical instability. 
The analysis is simplified by exploiting the already demonstrated shell-like 
effect of the EF coils. We consider both instantaneous and delayed feedback 
control and specify controller gain requirements, maximum delay time, and con­
troller power requirements. Possible plasma position detectors are examined 
and a conceptual feedback design for TNS is pr~sented. Power requirements 
for the feedback system are modestly 1 ow { "'1 MW) for a 10 cm maximum plasma 
excursion from the midplane. Three control loops separate from the EF coils 
are envisi6ned in this design, and will control the plasma under the above 
condittons for a plasma current of 6.1 MA, the 15% a limit imposed on TNS. 



2.0 GROWTH RATE OF VERTICAL INSTABILITY WITH NO STABILIZING MECHANISM 

2.1 GROWTH RATE UTILIZING PLASMA EQUATION OF MOTION 

Let us consider a plasma carrying a current Ip and situated in an external vac­
uum field B whose curvature is characterized by a decay index n. In equili-v 
brium at z = 0 1 all electromagnetic and pressure gradient forces balance and 
there is no tendency for all or any part of the plasma toward motion. 

~ 

Now let this plasma be displaced the amount sz subject to the constraint that 

the currents in the plasma and external conductors remain fixed. Only~ x ~ 
forces act on the plasma since the poloidal fluxes generated by the plasma 
current moves with the displaced plasma and gives no net contribution. Expand­
ing Bv in a Taylor series about z = O and keeping the first order 

aBZ 
= Bz(O) + az- 10 s 

aB 
B (s) = B (o) + _r 1

0 
s 

r r az 

There is ~~net radial force~ x oBz(s) for first order since !·Bv = 0 

requires azz 10 = O. 

(2.1-1) 

(2.1-2) 

Let us arbitrarily pick J in the-~ direction (see Figure 2.1-1) so B must q, q, . 2.. 
be upward to provide radial equilibrium .. Dropping the subscripts and using 

Br (0) = 0 1 we may then express the vertical force on the pla~ma by 

f a Br 
Fz = J$ (r,z) az- sdV (2.l-3) 

Using v x B = 0 1 Equation (2.1-3) may be rewritten as - v 

f 
Bzn 

F = - J ( r I z) - sdV z $ r (2.1-4) 
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Figure 2.1-1. 

z VERTICAL P.OSITION AND AXIS OF SYMMETRY 

---- .......... 

- - ·- - - -----
/ 

/ 
_/ 
/ 

RADIAL OR 
HORIZONTAL POSITION 

The Toroidal .(r, cp, z) and Poloidal (p,e) Coordinate 
Systems With·Vertically Elongated Ellipse b >a·. 
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.. For the large aspect ratio approximatiori, Eq. (2.1-4} reduces to the equation 
of motion of the plasma 

c2 .1-5} 

where m is the mass per unit length of the plasma column and the decay index, 
n, is defined as 

(2.1-6) 

For a time dependence ~ Eq. (2.1-5) leads to the dispersion relation 

2 2 0 (2.1-7) y - y = 
0 

where 
nBzlp 2 

Yo - - mR p 

For n < 0, the dominant mode grows exponentially at a rate y = + y
0 

and for 

n>O, the plasma is stable. 

2.2 APPLICATION TO TNS 

A plot of the magnetic flux lines of the external vacuum field is presented in 
Figure ·2.2-1. The equilibrium field coils (EF coils) giving rise to this field 
are indicated by the squares numbered in order of increasing radius. 

The EF coil currents required for Ip= -6.l MA and e = 15% are IEF-I = 0.26 MA 

(coits 1 through 4), IEF-D = -0.82 MA (coil 5), and IEF-O = 0.57 MA (coils .6 

through 10). Induced and control currents discussed in Sections 4 and 5 are 
indicated above the coils. All currents are given in total amp-turns and flow 
in the positive sense (+ e<I>) with the exception of the divertor coil_ (5) and 

plasma currents which flow in the opposite direct.ion. The vacuum field Bv is 
therefore· directed upward by our convention. The plasma boundary is alsO-in­
dicated in the figure and occupies an area of approximately 8 m2 A majority 

of the current, however, occupies an area of~ 2.5 m2 located in the region to 
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z(m) 
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GJ 
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(12.0 kA) 

GJ 

[MAX CONTROL CURRENT WHEN A~PLICABLE] 
(INDUCED CURRENT AT~ = 0.1 m) 

D 

[32 kA] 
(13.3 kA) 

( 5. 77 kA) 0 [!] 
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~ 
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cu 

( l . 51 

UJ 
( 3. 12 kA) . 

@] 

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 r (m) 

Figure 2.2-1. Vacuum Field for TNS Showing Position of Plasma and EF Coils. 
Currents in EF Coils Indicated in Amp-Turns for I = -6.l MA, 
e = 15%. P 



the outside of major radius R = 5.0 m. The magnetic axis is displaced slightly 
p 

beyond this point Rm "'5.3 m. The computations are in accordance with Peng's 
poloid~l field system design specifications for TNS{l )_ 

The key plasma parameters and equilibrium vacuum field data used in the computa­

tion of the vertical growth rate without stabilizing effects are presented in 

Table 2.2-1. The growth rate computed by Eq. {2.1-7) {from the equation of 

motion) is y = y
0 

= 3.58 x 105 s-1 , corresponding to a rising time of 2.8 µs. 

For comparison, the growth rate is also estimated from an energy principle. 
For a large aspect ratio elliptical plasma with a quasi-constant current profile 

and conducting wall located at infinity, Haas has found that the change of po­
tential energy due to vertical displacement is given by{B) 

u r, 2 I2R ab 
oW = - o o 

(b2+a2)1/2 

where the limiting B is defined as 

The growth rate can be estimated from 

y = 
(

-. 1_ oW )1/2 
Mp r,2 

(2.2-1) 

(2.2-2) 

(2.2-3) 

5 -1 . which yields 3.40 x 10 s for TNS. The results for both methods are in 

agreement. 

A configuration that is unstable in a matter of a few µs would be near impossible 

as well as impractical to control. Response and reprocessing times less than 

1 µs would be required, but such technology is st.ill in developmental stages. 

Power supply requirements of a controller may be astronomical since amplifier 

rise times "'µs would be required. 
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TABLE 2.2-1 

KEY PARAMETERS OF THE rQUILIBRIUM PLASMA USED TO COMPUTE 
GROWTH RATE OF VERTICAL INSTABILITY IN TNS 

WITH NO STABILIZING INDUCED CURRENTS 

R=R =Sm 
p 0 

a = l . 25 m 

b 

-n 

-
lJ 

= 2.0 m 
= -0.76 (at R ) p 

= 
= 

= 

0.57 T (at R ) 
p 

6.1 MA 
0. 15 

1.25 x 1020 m- 3 (average density) 

7.85 m2 

4.2 x 10- 27 kg 

(effective particle mass for 
50-50 D-T plasma) 

- - -6 m = n µa = 4.12 x 10 kg/m 
p -3 

2~Rpm = 0.130 x 10 kg 

VARIATION OF Bz AND -n ALONG MAJOR RADIUS 
-n B 

r ( m) - n B z ( T) r z ( T /m) 

4.5 

5.0 

5.5 

l. 03 0. 517 

0.763 0.568 

0.478 0.603 

2-6 

0.118 

0.0867 

0.0524 



Fortunately, it has been demonstrated that the rise time can be reduced signi­
ficantly by the eddy current induced in the first wall which will be considered 
in the next section. 
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3.0 STABILIZING EFFECT OF A PERFECT RESISTIVE WALL 
ON THE VERTICAL INSTABILITY 

The resistive shell has been treated in cylindrical coordinates and the rise 
time has been found to be reduced by three orders of magnitude. In the treat­
ment given in the following subsection, the toroidal effect is taken into 
account . 

. 3.1 VECTOR POTENTIAL OF THE PERTURBED PLASMA 

The vector potential of a c·urrent loop of radius R carrying a current Ip is 
well known( 9 ,lo) p 

(3.1-1) 

where K and E are the complete elliptic integrals of the first and second kind, 
respectively, with argument 

4 R r 
k2 = p 

(R + r) 2 + z2 
p 

Transforming to the poloidal (polar) coordinates 

r = R + p cos e p ' 

z = p sine 

and expanding the elliptic integrals about R , one p can derive 

µo Il2 R [1n (~) - 2] + µ:.:p [1n (~)- 2] p cos e A<J> = p 
2 'IT r 

to first order in p/r. In the limit R + ""• with R /r + l, the spatial p p 
dence of A reduces tn 

<J> I 
A q, 

µo 
12 l n p :: - 2'1T 

3-1 

( 3 .1-2) 

(3.1-3) 

de pen-

(3.1-4) 



the well known result for the long straight wire. Thus, the p cos e term in 
Eq. (3.1-3) expresses the toroidal effect to first order in p/R . p 

It can be shown that the vector potential of the plasma is related to the 
poloidal flux function of the plasma, ~p' by 

=~ 
2'11'r (3.1-5) 

Using a form for ~p given by Mukhovatov and Shafranov(l) for the large aspect 
ratio circular plasma, the vector potential for finite pressure can be written 
as 

(3.1-6) 

to first order in p/r for p >a. Here, A is the asymmetry factor defined by 

1. 
- 1 1 A - Ba + 2 - . (3.1-7) 

, where s
8 

is the poloidal s and li is the inductance per unit length of the 
plasma. If the plasma is vertically perturbed the amount ~z, the cosine and 
sine laws permit us to reference the vector potential in terms of the unper-
turbed position by the substitutions , 

p ~ p (1 - I sin e) 
p 

cos e ~ cos e ( 1 + I sin e) 
p 

'( 3. 1-8) 

given to first order in ~/p. This linearized form shows that p c.os e remains 
unchanged to first order. 

Using Eq. (3.1-8) in Eq. (3.1-6) and expanding 

l = l (1 
r RP 

3-2 

e cos e ) 
RP 

(3.1-9) 



.. gives the change in the vector potent i a 1 for .the p 1 asma 

lJ I 
OA<P = 0

2TT P [ 1 - f ( p) cos e J ~ sin e (3.1-10) 

where 

f(p) p [l a
2 1 J = ~ 2 - 7 (A+ 2) (3.1-11) 

expresses the first order correction due to toroidal effects and finite plasma 
size and pressure. 

3.2 EDDY CURRENTS AND THE INDUCED MAGNETIC FIELD DUE TO THE FIRST WALL 

Consider a first wall with conductivity a located at p = pw with thickness 
o << Pw· The perturbed vector potential Eq. (3.l-10) gives rise to an electric 
field in the wall( 9) 

(3.2-1) 

that determines an eddy current density distribution 

j = j [l - f ( p ) cos e J sin e e A. 

_w o w "' 
(3.2-2) 

It has been assumed that this distribution is uniform over the wall thickness o. 
This approximation is valid provided the current diffusion time (or skin time) 

2 (3.2-3) 

is small in comparison to the characteristic time associated with the pertur­
bation (i.e., the rising time or the period of other modes). The magnetic 
permeability lJ has been taken to be that of vacuum lJ

0
. In the regions exterior 

to the wall (p > p or p < p ) the induced field satisfies v x b = o. Thus, w w - -
bis derivable from a scalar potential b = - v V. Since v • b = 0, V satisfies 
LaPlace•s Equation v2v = O. The comple;e sol~tion for V ~an ;hen be express~d 
in terms of the cylindrical harmonics 
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v 
Co c 

= a
0 

+ b lnp + L: (anpn + n~l) sin ne + 
0 n=l p 

(3.2-4) 

where the coefficients remain to be determined by boundary conditions. Due to 

the uniformity of jw over its thickness, we may treat the shell as a conductor 
with a surface current per unit length. 

(3.2-5) 

flowing on the inside and outside of the shell and b = O within the wall 

internal. The boundary condition then becomes 

~ µ k [l - f (p ) cos e] 
0 - w (3.2-6) 

where the double brackets ~ D denote the difference in£ at the boundary, and 
n is the normal to the wall surface. The toroidal effect appears again in Eq. 

(3.2-6) so that we may define e
6 

x eP = e<P. Using Eq. (3.1-4) thru Eq. (3.l-6) 

with!?..= -VV allows us to match the coefficients of the cylindrical harmonic 
expansion and determine£ uniquely. The solution is a series of multipole fields. 
Retaining the lowest two orders, the solution in the region inside the vessel, 

for p < Pw• can be written as 

b (3.2-7) 

The second term is a quadrupole field whose contribution is to the order of 

Pw/Rp. 

The fields in the region outside the vessel , for p > p + o, are w 

jo 0 
2 2 

µo 
{PW 4 2 2 p 

(pw) (xr -zz)} A 

+ 2 x z zJ +Lf b - - 2 [(x - z ) r 3 p p (3.2-8) 

where x = r - RP. This equation consists of dipole and quadrupole fields. 
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.. The radial components of £ inside the vacuum vessel is of opposi~e sign to Br 

and is stabilizing. The vertical force given in-Eq. (2.1-4) can now be mod­

ified as 

F2 = JJ~ (r,z) [- "~z < µo ; 0 
0 

(1 - .£.... f (p ) cos e)] dV 
PW W 

(3.2-9) 

Since the toroidal effect gives a contribution of order a/RP and the shift in 

the magnetic axis is also of this order, its net contribution to the integral 
is negligible. Thus, Eq. (3.2-9) can be re-expressed as 

q 
dt 

I p (3.2-10) 

To determine the value of j
0

, we will need to develop a circuit equation for 

the eddy current distribution. The equation will consist of three parts - (1) 
an emf induced by the shell (the Lf contribution of the eddy currents), (2) an 

emf induced by the plasma (the IPM contribution due to the plasma current 

motion), and (3) the resistance drop in the shell (the IR drop). The plasma 

current I is assumed constant so no L i term is present. p p p 

Consider the path depicted in Figure 3.2ftl. The emf induced by the shell is 

-d <l>sh 
= dt (3.2-11) 

where <f>sh is the net flux enclosed by the path and is given by 

[l - f (pw) cos e] (2 pw9. sine) {3.2-12) 

The emf induced by the plasma motion is: 

emf = - .1.. I. oA • dl 
2 at J .:...1. (3.2-13) 

or using Eq. (3.1-10) 
µo Ip ( dt" · 

emf= - (1-f(p)cose) 2pw9.sine).:::.::... 
2 2 irpw w dt 

(3.2-14) 
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I with the partial becoming the total time derivative. The resistance drop is 
.simply 

= - .!_ I. j . dl 
a J w (3.2-15) 

or 
-j . 

emf3 = .....Q. ( 1 - f ( p ·) cos e) ( 2 p i sin e) 
a w w (3.2-16) 

Factoring out the common factor (1 - f (pw) cos e) (2 pwi sine) and summing the 
emf's to zero gives 

(3.2-17) 

independent of e. 

Assuming 
(3.2-17) 

zt a time dependence for ~and j
0 

of the form e , Eqs. (3.2-10) and 
can be combined to eliminate j

0 
and ~ giving 

2 
W T Z 

z2 - Y 2 = o (3.2-18) 
0 (l+TZ) 

where 

and 

w 
0 

2 
= 

T = 

I 2 
µo p 

2 2ir m p w 

(3.2-19) 

(3.2-20) 

. 
The first two terms in Eq. (3.2-17) are the IR drop and the LI of the shell. 
Thus, T is the L/R time of the shell. For the perfectly conducting shell, 
T +~and Eq. (3.2-18) reduces to 

(3 .2-21) 
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The dispersion relation, ·Eq. (3'.2..,18), is a cubic equation and can be rewritten 

as 

z2 .. ,·; . '.' yo2 
{w 2 2 - + - Yo ) z -

T 0 T 
0 {3.2-22) 

We can investigate its stability properties by writting the Roth array{ll) 

3 ,. 2 2 0 z w - Yo 0 
2 lh 

.. 2 
0 z -y /T 

' 
. 0 

2 0 0 .Z w 
0 .. 

l 
. ·. 2 

0 0 {3.2-23) . ;;,y /T 
·. ,o 

·The number of sign changes in the first column of the Roth ar~ay dictates the 
number of unstable roots. Since we are concerned with Yo 

2. 
> 0 {i.e.• 0) n < 

there will be one unstable root Rez > 0 and two damped roots. 

2 2. . 2 . 10 -2 . 
Typically, a~ 10- s and w

0 
~. y

0 
~JO s for MA currents. The solutions 

to the cubic Eq. {3.2-22) or Eq. {3.~-18) can then be we11 approximated {typi-

cally with less. than 1% error). for-~« lw 2 - y 21 by 
T 0 0 

Yo 
2 

zl = 
{w 2 2 

T - Yo ) . 0 

{3.2-24) 

l 

z2 3 ± i {w 2 .. :2)2 1 
{zl + l) ,;,. 

Y(» . - 2 . . .·· 0 T 
{3.2-25) 

The solution z1 can be found by neglecting z2 in z2 - y
0

2 -0f Eq. {3.2-18). 

Provided w
0 

2· > y
0 

2• the growth rate w.i 11 be determined by z1, typically of t~e 
order l, The remaining roots wHl·.be high frequency oscillations that decay 

T · 2 2 
away with a similar tim• ~onstant; If, however, y > w , the growth rate will 

0 0 ' 
be predicted by Eq, .{3.2-25). 
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.. 3.3 APPLICATION TO TNS 

Predicting an accurate value for the growth rate in TNS with first wall included 
would be a difficult task due to the complicated geometry of the plasma and first 
wall. An estimation using Eqs. (3.2-24) and (3.2-25) is possible, however, pro­
vided an effective wall radius can be chosen that is physically meaningful. 
Since the eddy currents have an approximate sine distribution, a value p ~ b"' w 
can be used, where b"' is the wall radius at e = ~12. The growth rate ·predicted 
would then be conservatively high since b"' is the position in the wall further­
most from the origin p = 0. For a scrape-off zone of 0.2 m, the value of 
pw ~ b"' = 2.2 m. Using a conductivity of stainless steel a= 1 .1 x 106 n-1 m- 1, 
a wall thickness of 12 mm, y 2 = 1 .28 x 1011 s- 2 (from Section 2.2), and the 

0 2 
remaining parameters needed in Table 2.2-1, the values of the parameters w

0 
and -r are 

w 2 = 3.73 x 1011 
0 

-2 sec 

-r = 0.018 sec 

2 2 Since w
0 

> y
0 

, z1 predicts the growth rate 

The high frequency damped oscillations are then 

-1 42 sec 

Since the current diffusion time ts = 0.1 ms and 1l I ~ 2 ms, the high fre­
quency oscillations may be damped considerably. T~~'~redicted damping time is 
~ 24 ms, so they should present no problem irregardless. 

It is useful to see the tendency of the growth rate variation with the decay 
index even though it is a function of s, B , I , etc. Assuming all the other v p 
parameters can be held constant, the growth rate will increase drastically 

2 2 with -n and appears to diverge at w
0 

= y
0 

. 
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·Figure 3.3-1 shows the variation of z1 with -n. Approximations (3~2-24) and 

(3.2-25) brea~ do~n nea~ w
0 

= y
0
2 and cause this apparent divergenc~ .. 

As has. been mentioned earlier, the toroidal effect is of higher order, and 
was not considered. However, it can be discussed qualitatively. At 15% e1 

the induced current has the form 

jw = j
0 

sine (1 + 0.3 case). ( 3. 3-1) 

This indicate's the distribution of induced current is weighted to the outside 
of the torus in the direction of shifting magnetic axis for finite e. 

To summarize the highlights o~ this section, we have seen that a dispersion 
relation of third order develops from the plasma equation of motion and the· 
wall circuit equa~ion. There will be one growth rate and two damped roots. 
If the· wall is cl6se enough, the growth rate will be considerably reduced from 
the value computed in Section 2 with no stabilizing mechanism. If it is too 
far ~emoved 1 the growth rate will approach this value. 

For TNS, this growth rate is 29 sec-l corresponding to a rising time of 34 ms. 
The rising time computed with no stabilizing mechanism was found to be 2.8 µs. 

. 4 
Thus, the wall will slow the instability by a factor of over 10 . 

A growth rate of 30 set~ 1 is controllable by today's technology. However, the 
first wall in TNS may require ttansverse insulating gaps to allow the external 
fields ·to diffuse more rapidly into the vacuum vessel. The higher wall resis­
tance would ther~by increase the growth rate proportionally. For this reason, 
i~ is necessary to investigate the stabilizing properties of other extern~l. 
conductors. Since the EF coils are continuous in the toroidal direction, they 
may support the eddy currents required for slowing down the vertical instability. 
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.. 
4.0 STABILIZING EFFECT OF THE EQUILIBRIUM FIELD COILS 

ON THE VERTICAL IN~TABILITY 

In this section we shall consider the effect of the equilibrium field coils on 
the growth rate of the vertical instability. This treatment is expected to 
describe the actual behavior of the plasma if the first wall is weak or contains · 
transverse gaps that impede the flow of stabilizing eddy currents. It is assum­
ed that steady state has been achieved and the OH coils are decoupled from the 
plasma. 

An induced plasma skin current is found to lessen the growth rate by only a few 
percent when stabilized by the first wall, so for simplicity and cons.ervatism, 
we shall neglect any induced plasma currents in this treatment. We shall also 
approximate the plasma as a current loop for simplicity, since finite plasma 
size did not appear in the growth rate equations. The fields due to current 
loops can be computed accurately by means of the elliptic integrals, so an 
exact solution that includes toroidal effects is possible for this discrete 
coil approach. The plasma equation of motion and the EF coil circuit equations 
are developed in much the same manner as they were for the resistive wall. It 
is shown that the coils above the equatorial plane must, by some method, be 
connected in parallel with those below the plane so the stabilizing eddy cur­
rents are free to flow. The directions and magnitudes of the coil currents 
thereby resembles the ~pproximate sina distribution found in the wall. Instead 
of one circuit equation, however, there will be N circuit equations where N is 
the number of EF coil pairs~ By connecting cotls above the equatorial plane in 
series and placing them in parallel with those below, the number of independent 
circuit equations can be reduced. Three configurations are studied in which 
10, 3, and 1 independent circuit equations result. 

The shell effect for each configuration is demonstrated by means of an eigen­
value equation for the induced coil currents. Varying the decay index permits 

the extraction of an effective w 2 and T by fitting the numerical values of . 0 

the growth rate to the shell formula z1, given by Eq. (3.2-24}. 
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4.1 DEVELOPMENT OF THE EQUATION OF MOTION AND THE EF COIL CIRCUIT EQUATIONS ~ 
Consider the EF coil pair symmetrically located about the equatorial plane 

z = 0. A current 1
0 

flows in the top and bottom coil in equilibrium. An in­
duced current Ii also flows when the plasma is perturbed ~z. Since this 
motion increases the flux in the top coil and decreases the flux in the bottom, 
the direction of the induced current I. is as shown for the parallel configur-1 < 

ation (Figure 4.1-1). Note that Ii is free to flow by bypassing the power 
supply and the top and bottom contributions do not cancel as they would in a 
series connection. The induced current gives rise to a radial field(g) 

µ N. I. z. g. (K,E) 
0 1 1 , 1 = -~----------......-,...,... 

2tr R [(r.+R ) 2 +z. 2J1/ 2 
p 1 p 1 

(4.1-1) 

at the plasma radius RP where Ni is the number of turns in the top coil, ri 
and zi define its position, and gi (K,E) is a function of the complete elliptic 
integrals 

gi (K,E) 

with arguments 

r.2 + R 2 + z.2 
( 2) , p 1 = -K k. + ----2----2 

1 (r. - R ) + z. 

k.2 = 
1 

1 p 1 

4 r. R 
1 p 

R ) 2 2 (r. + + z. 
1 p , 

(4.1-2) 

(4.1-3) 

Since I. flows in the opposite sense in the bottom coil, it will give rise to 
1 

the same radial· field on axis. Thus, the equation of motion of the plasma can 
be expressed 

2 I N 
= - ___J!. L: br· 

m • l 1 1= 

(4.1-4) 

Assuming a time dependence ezt and using matrix notation, this is expressible 

as 

2 2 At 
( z - yo ) ~o = - 7 I (4.1-5) 
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I 

Figure 4.1-1. The Parallel EF Coil Pair Connection Showing Equilibrium 
Current I0 and Induced Current Ii Due to Vertical Motion 
of Plasma. The Plasma Current is Opposite in Direction 
to I0 in all EF Coils Except the EF-D Coil. The Direction 
of Ii is the same in all Coils for the Positive Perturba­
tion ~z. In Practice, Each Top (Bottom) Coil will Consist 
of Nj>>l Turns and may be Connected in Series with. Other 
Top lBottom) Coils and Collectively in Parallel with those 
Below (Above). 
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where E;
0 

is the value of E; at t = O, At is a row vector with components 

er·~ A. = 21TRPIP ~ l 
{4.1-6) 

I is a column vector with components Ii at t = 0, and µ is one-half the plasma 
mass 

µ = 

A circuit equation for each coil 
analogous to the resistive wall, 

1T R m p 

pair can 
with the 

be developed 
path defined 

ed around the torus and including each of the Ni turns 
coils. 
taken. 

In other words, the path around which I. 
l 

flows 
The emf's are as follows: 

. N ~ dI . 
= -2~ Mij -at­

i =1 

{4.1-7) 

in a manner that is 
in Figure 3.2-1 extend ... 
in the top and bottom 
in Figure 4.1-1 is 

{4.1-8) 

where M:j = M .• - M •• is mutual inductance between two top coils i and j 
l lJ 1-J 

minus the mutual inductance between the top coil i and the bottom coil -j. 

The factor of two arises by symmetry and the minus sign signifies the negative 
coupling between the top and bottom coils. The emf induced by the plasma motion 
can be expressed in the form 

a = - at 

or 

f.. o A ·• dl Ji , - {4.l-9) 

{4.1-10) 

where oA~i ~s the change in the vector potential of the plasma due to the per­
turbation E;Z evaluated at the position ri' zi. The last contribution is the 
IR drop 

{4.1-11) 
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where R1 .is the resistance of the top (or bottom) coil. The three emf's are 
then summed to zero and result in N circuit equations. The value of o A~;' 
however, remains to be found. To find o A~., one uses Eq. (3.1-1) substituting 
r-+ r., Z.-+ z. - ~to define A~ at the pertu~bed position. The value of k2 and 

.· l l 'l'i 
k are then changed as 

and 

k -+ k. 
l 

2 ~ Zi ) 

(R + r.) 2 + z. 2 
p l l 

(4.1-12) 

~ + ---~ -z~~...-----2~ = k. + o ki 
(R + r.) + z. 1 

p l l 

(4.1-13) 

to first order in ~. The elliptic integrals can be expanded in a Taylor series 
to order ~k. making use of the properties of their derivatives 

l . 

and 

aE ( k/) 
a k. 

l 

= 

= 

2 k. (1 - k. ) 
l l 

It can then be shown that o A~i takes the form: 

µ I z. E; 

oA~i = 2 r. [(Ro +Pr.;2 + z.2]1/2 gi (K,E) 
l p l l 

Substituting this expression into Eq. ( 4. 1-1 0) and defining Ip 
sense, 

emf2i = d~ 
2 Ai dt 

where Ai is given by Eq. (4.1-6) 

4-5 

(4.1-14) 

(4.1-15) 
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in the negative 
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. ; 

't··· 

Co~bining all the emf's and dividing by two, the circuit equations become 

N ... d I. 
~ M· 1 + R I 
LJ ij ~· i i 
j=l 

(4.1-18) 

which can be re~xpressed in ~atrix notation assuming a time dependence ezt, 

.. 
(zM +R)I = A z ~ 

0 
(4.1-19) 

where M" and R are NxN matricies with the following components and character­
. istics: 

M:. = M .. -M .. , 
lJ lJ 1-J . 

which is a positive definite symmetric matrix and 

is a positive diagonal matrix. A is an N component column vector whose trans­
pose appea~s in the equatio~ of motiori, Eq. {4.1-5) 

It is interesting to note that the "cause and effect" vectors (i.e., A and At) 
have the same components~ Since u = M /2 it might appear that the effect is . p . . 
twice as strong, ho~ever, Eq. (4.1-19) applies to either the top or bottom 
~oil since t~e factor of two has been cancelled . 

. ' ~, 

\ .:l 

There are two approaches one can use to eliminate I arid ~o from Eqs. (4.1-5) 
and (4.1-19) to get a dispersion relation for z. Eliminating I first and then 
~· gives 

. 0 . .I. ., 

2 2 . zAt l 
z = y - -. - ( zW + R) - A 

. 0 µ . (4.1-20) 

where (zM" + R)-l is the inverse of (zM" + R). For general matricies, the 
inverse would be dif~ic~lt to find since R and M" would not _be simultaneously 
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diagonalizable unless they commute. ·As they appear here, R and M' do not com­
mute either. A way has been devised in another work to deal with this problem 
and cast the right hand side of Eq. {4.1-20} into a workable form{l 2}. Since 
R is diagonal, R-l/2 and R112 can be easily defined. Using properties of the 
inverse, we may write 

where 1 is the N x N identity matrix. 

It is easily shown that R-112 M'R- 112 remains positive 1 definite, and symmetric. 

Therefore, it can be diagonalized by an orthogonal matrix U that yields positive 
components 

where 

-1 1 
:>. . . = ·:>. . o .. , :>. . > 0 . 
lJ 1 lJ 1 

Redefining A= UR-l/ 2 A, Eq. (4.1-21} becomes 

and Eq. (4.1-20} can be rewritten as 

where 

N 
z

2 
+ L: 

j=l 

C.z 
1. 

z + ;>.. 
1 

{4.1-22} 

(4.l-23} 

(4.1-24} 

(4.1-25} 

(4.1-26} 

Equation (5.1-19} bears a striking resemblance to the in-hour equation in reactor 
kinetics(l 3}, The quantities y 2

1 c .• and :>..,correspond to reactivity, delayed 
0 1 1 

neutron fraction of the i-th group. and delayed neutron lifetime in the i-th 
group. The reactor.period would be l/z. The prompt neutron contribution 2z that 
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appears in the in-hour equati6n (i = prom~t neutron lifetime) is replaced by 
the inertial -term z2 in Eq. (4.1-25). Since the ).i-1 •s are related to the e 
L/R times of the coils, they are (and have been demonstrated to be) positive. 
Thus, there are N poles at zi = ).i. Graphing the right-hand side of Eq. 
(4.1-25), the z axis is cut at z = 0 and behaves asymptotically as z2 for large 

z.. At lar9e negative z, z2 again dominates. The poles confine the other bran-
- ches as shown in Figure 4.1-2. 

As is graphically demonstrated with N = 5 for y 
2 

> O, there will be one unstable_ 
root z1. -For moderate values of y

0

2, z1 will i~tersect near the origin and 
there will be N-1 negative real roots following. The two remaining roots will 
be ~damped complex conjugate pairs. For large y

0 

2, z will be highly unstable, 
intersecting near the portion of the graph behaving as z2 asymptotically. The 
N-1 negati~e real roots found before almost remain fixed. Another ne~ative 
root then appears following these, and finally the last highly negative root 
appears which is almost a mi~ror image of z1. In summary, there are N + l 
d~mped roots and one highly un~table root. For negative y

0
2, there are N damp-

ed roots arid two damped conjugate toots. It is easy to ihow that these obser­
vations are expected for N = l by examination of the shell roots given in Eqs. 
(3.2-24) and (3.2-25). 

2 For moderate values of y
0 

, 

z1 ~nd N-1 damped roots can 
the effect of z2 is not felt and the growth rate 
be found by neglecting z2 in Eq. (4.1-5). The 

_two da~ped oscillatory pairs, however, would not be 

one would find N damped roots by neglecting z2, but 
cern, z ~ ± y would not be fdund. 
- - 0 

- 2 recovered. For large y
0 

, 

the principle roots of con-

- 2 
With this word of caution, we drop z in Eq. (4.1-5). Eliminating y

0 
then 

gives 

( zw· + R) I = 

dividing by z and rearranging 

4-8. 

zAAtl 
2 

µYe 

= -B, I 
z 

(4.1-27)-

(4.1-28) 
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Figure 4;1-2. !'Graphical Analysis of Growth Rate for EF Coil 
Configurations. Sketch of 4.1-25 for N = 5. 
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which can be rewritten in the form of an eigenvalue equati·on for the induced 
coil current amplitudes. 

. HI. l I z (4.1-29) 

· where the components of H are given by: 

H •• ;:; l·(~:. -AiA~) (4.1-30) 
1 J · Ri.. 1 J µyo . 

Equation (4.1~29) can be solved n~meric~lly for the N eigenvalue~ -1/z. The 
eig~nvectors give the rel~tive c6{1 cu~rent amplitudes. Normalization of the 
coil amplitud~s is then possible~using either E~. (4.1-19) or (4.1-5) with ~o 

specifi l:!d. 

It is rel~tively simple to include the effect of connecting two or more coils 
above the plane in a series and then connecting them in parallel to those below~ 
The value of r. in these coils so co~nected is fixed and one can add their cur-

. . 1 . . . - ; _. ·. - . 

cu it equations together under this. constrain:t to obtain a fewer number of inde-
pendent circuit equations.: The. limiting case is the all series-parallel connec­
tion: Here,. one has the. same c~rrent. fn all the coils and all the ~atri.cies and 
vectors become scalars. Then one has 

N 
M .. = E 

i .j=l 

. . N 

M:. 
1J 

A 
t 

=A = E A,. 
. ;:1 

N 
R = E Ri 

i =l 

and Eq. (4.T~29) can then be solved directly giving 

yo2 
z l = 

· (M '/R) 
2 - 2 

·(A /µM') - y
0 
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• '"' . ···- .,.,,. ' . 2 · .. 2 ... 
which leads to the effective w

0 
=A /µM' as used in the shell formula. The 

other parameter was perhaps obvious. Effective w 2 and T for other configur-o 
ations of higher order can be fitted to the solution z1, given by Eq. (3.2-25) by 
yarying y

0
2 and solving numerica1ly. This will be demonstrated in the TNS 

'application. 

4.2 APPllCATION TO TNS 

Using the!·r~al.i,s(ic.:.'·inductance and resistance matricies, the eigenvalue equation 
(4.1-29) is solved for the induced coil currents amplitudes I and the growth rate 

and damped roots z. Three configurations are examined for copper EF coils 
(resistivity = 1 .72 µD cm). 

Configuration I uses the ten parallel EF coils pairs with each pair having its 
own independent power supply. The 10 x 10 inductance matrix M' is given in 
Table 4.2-1. The values of the resistance matrix Rand the vector A (for I = p 
6.1 MA) with the positions (ri,zi) and the coil turns Ni are given in Table 
4.2-2. 

In Configuration II, the inside (1 thru 4), divertor like (5) and outside (6 
thru 10) coils are placed in the series-parallel connection. By adding the 
circuit equations together, the contracted inductance matrix (also given in 
Table 4.2-1) results. This matrix can be easily compiled from the previous 
one by adding up all the inductances in each of the nine block matricies high­
lighted in the 10 x 10 matrix. The components of Rand A, contracted in the 
same manner, are given in 4.2-2 below Configuration I's values. Since each 
coil within these three groups requires the same equilibrium current as the 
others in the group, this configuration is practical as well as economical in 
that only three power supplies are required. 

Configuration III was the all series-parallel connection, with M', A, and R 
given by Eqs. (4.1-31) thru (4.1-33). The growth rate is given by Eq. (4.1-34) 

and there are no real damped ~oats until A2/µM· < y 
2. This configuration is 

.. 0 
not ·practical in that the I, D, and 0 equilibrium currents are all different 
and are brought to their steady state values at different rates, but it does 
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I 2 

3 

4 

D 5 

6 

7 
0 

8 

9 

10 

TABLE 4.2-1 

INDUCTANCE MATRIX M' {102Hj FOR TNS REFERENCE FOR CONFIGURATION I 

l 2 

.138 .046 

.046 .215 

.022 .073 

. 0.12 .038 

.027 .086 

.015 .047 

.01 l .036 

.. 008 .025 

.004 . 014 

. 001 .005 

I 

3 4 

.022 . 012 

.073 .038 

.260 .088' 

.088 .306 ... 

.185 .405· 

.096 .178 

.069 .117 

.·046 .075 

.Q28 .038 

.009 . .014 

D 

5 

.027 . 

.086 

.185 

.405 

3. 451 

l.033 

.605 

.375 

.2'1-5 

. 071 

6 

.• 015 

.. 047 

.. 096 

. 178 

l. 033 

2.028 

. 796 

.457 

. 231 

.085 . 

0 

7 8 9 10 

.011 .008 .004 .001 

.036 .025 .014 .005 

.069 .046 .028 .009 

.117 .075 .038 .014 

.605 .375 .215 .071 

.796 .457 . 231 .085 

2 .411 .923 . 551 .154 

.923 2.394 . 911 .269 

. 551 . 911 2.224 .504 

.154 .269 .504 l. 513 

CONTRACTED MATRIX FOR CONFIGURATION II 
. . .. {x l02H) . 

1.477 .703 .836 . 

.703 3.451 2.299 

.836 2.299 20.332 
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M' = . 329H 

Scalar matrix for 
Configuration III 
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COIL 
PAIR 

l 

I 2 

3 
4 

D 5 
6 
7 

0 8 
9 

10 

TABLE 4.2-2 

DATA FOR EF COIL PAIRS IN CONFIGURATION I 

( Nt) A; Amp 

20.6 
58.7 
90.9 

l 07. 

396. 
360. 
446. 
438. 
316. 
117. 

N. (TURNS) (OHMS) R. , , 
13.4 .00428 

13.4 .. 00431 

13.4 .00442 

13.4 ·.00477 

44.8 .. 0182 

29.8 .0148 

29.8 .0174 
29.8 .0190 

29.8 .0200 
29.8 .0206 

CONTRACTED VALUES FOR 
CONFIGURATION I I 

A. (_fil_)I. 
i Amp R. (OHMS) , 
227. .0178 
396. .0182 

1677. .0918 

4-13 

r i (m) z. (m) , 
3. 15 . 21 
3.17 .65 
3.25 1.26 

3.51 2.02 
4.00 2.59 
4.90 2.55 
5.75 2 .10 
6.29 1. 51 
6.63 .95 
6.82 .33 

A= 2300. Nt/Amp. 

R = .128 ohms 

VALUES FOR CONFIGURATION III 



induced· ~urrents. " ... \ ; .;4 .. ' .. 
. · .. 

Using y 0 
2 .= -_n ( 1.68 x ,.) o lt) .·s'~·~-~ 2._.1a:~d. µ: = MP/2 · = 6_.47 x 1 o- 5 kg, the matri.x 

Eq. (4.1~2~).was solved<·numer,ically;' There is one positive eigenvalue. (grow'th · 

rate·Land K-1 (K = 10, 3, or~-.1)·inegative eigenvalue~ for, each of the three con­

figurations until ttie d~~c~y -fn·d~~ .. :exce~d~ some criti~al ·value. For configur-
···., . . ·. . . ..... > .,·.~;, ~ .. . ~ ' . . . . 

ation:r, .. this critical ·value fs .. ,,r.o~ghly'. ·n = -1,66. Due to the constraint on 
· ,. ·i ... "'-!" •.•. ~ er 

the currerit.s il'l II and IIJ, 'the:;:·~rfticat:value .is lowered in magnitude to 
. · . . . .~.t- j ... •, ; ~' .•. 

ncr =-~·1.57 and .-1.54,.respe~ti'v'~l.~>F~ The growth rates are plotted qS a function 

of the decay··index in F.igure 4.2~J~wh.er..e all the other pl.asma parameters .are 

' . ;~ . 

~ ; • • ~ . ' ,I ~,. f . ' ' • . . . ~ • ' 

assumed constant. The growth r.~tes•Jor:.:.JI and III are almost equal.when '."'n .. is < 

less than 1;. Below ·n· :==1}f~·o ·t~:~y-.. ~d~i.ffer"".only in the fourth significant fig~ie, 
with II being the more~·s'.table. :rYn Configuration r',the induced currents are ·~ .: ._. 

\'.• ·- . . . '.h·. ·.;' .'·.· ..t,. . . ' .. 

not constrained and free to adj:us·t.'Jo ·ftiefr approximate sine distribution •. As. 
. . . '~. . ' . ' 

expe~ted~ the growth raies are:s1~~htty.1~wer than in II and III. 

Usih.g.:n = -0,8 for TNS~_:the. :thr·e·e :growth•· rates are 
·1. ' ' • !' • ... • .;' :':·:. -~ .. ' 

·}'j . " , . . . - 1 
y =<'. .)5.3.3._ sec . 

'.. "".' 1 
y = .: .,.~ 4 i 85 sec · 

" . . . 4188 . - l ".., y.. ··=·· .; . sec 

~· ·, 

For I. 

For II 

For 'I II 

which correspond to rising'.tJrries of· 2.83, 2.39, and 2.39 sec, respectively. 
. . .. ,, . ·. .. . 

We ~ote considerable 'i.!!1P.r~v·e·me~t .. :here over first wall stabilization (34 ms) 

and no stabilization :(g:i.~ ts).'.'by;;.two ~nd six orde~s of magnitude, respectively. 
. ' ~ ; . .... . ,,..·~ ; . . . 

J ~. . "', .. , 

The effect of res i stan·~;e; .( ~r ·.r~s-fsUvi ty) can be noted from the form of the; 

Hij compo.nents_ ·Qiven in~~q .. (4·~-f--·:-fo), the growth rate being proportioned to 

. the coil resistivity. ThU!h. superconducting cons will provide neutral stabi-
., : . 

1 iza.tiori for -:n < -ncr' : .'. · 

. iL, . .. '.'. 

The coils have many featu'res simi'lar·to .the resistive wall and it is possible . . ·~" 

to fH:.the· analytic shell g·r~:~~h·r~te z·1 in Eq.: (3.2':"24) to the numerical data 

and t,~_ereby .define aneffec:t1ve~w0 ..,.and .. • for ~he coils. Configuration IIJ,,. 

l . . .. ~ ' '\ ;: 

·, ·. ·" ::· 
.. :-

., . ·:~ \ t I· • • ' , ,· .. ~. 
~ ~- . 

-~~·~\>· .. 

- I ~' 

:,"•.-: 

". .'. 1,. . . '. 

" 
. ' : -~· .. ' 

'1 ,, 

' ' •; 

. ' 

, . 
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4.0 
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3.6 

3.4 

3.2 
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2.8 

2.6 

2.4 

2.2 

2.0 

1.8 

1. 6 

1.4 

1. 2 

1. 0 

.8 

.6 

.4 

.2 

0 

III 

I - 10 DISCRETE UNCONSTRAINED COIL PAIRS 
II - 3 GROUP I, ·D, AND 0 SERIES-PARALLEL 

III - ALL SERIES ~ PARALLEL CONNECTION 

-.2 -.4 -.6 -.8 - , . 0 - , . 2 - 1 .. 4 

DECAY INDEX n 

y
0
2 = (-n) (1 .68 x 1011 sec- 2) 

I 

-1.6 

Figure 4.2-1. G.rowth Rate of Vertical Instability vs Decay Index for 
Different P~rallel EF Coil Configurations when Other 
Plasma Parameters are Held Constant. 
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'· .. - r . 

... . . . , ·,. 
' r: 

~- . . : 

of course, -already obeys this formula and its values can be fitted exactly. 

The result is an effective w 2 = 2.59 x 1011 sec- 2 and T = 2.57 sec. . 0 

.For Configuration I, effective w 2 = 2.77 x 1011 sec- 2 and T = 2.10 sec provide . 0 ' 
:agreement between the analytic expression and the numerical data to less than 

·53 devia~ion over the decay index range O < -n < 1 .6. For Configuration II, 

the effective w 2 = 2.64 x 1011 sec- 2 and T = 2.50 sec gives agreement to 5% 
0 

over th~ range O < -n < 1 .4 . 
. ' .. : 

Having defined the effective w·
2 and~ for the three configurations, it is 

. 0 
possible to estimate the high frequency damped roots for TNS that have been 

neglected in this treatment. Using n ~ -0.8, 
sec- 2, and T = 2.6 sec, Eq. (3.2-25} gives 

0 4 -l 2 = 2.6 x lo11 z1 ~ . sec , w
0 

z 2 3 ~ ± i ( 3 . 5 x 1 O 5} -0 . 4 sec -1 . . . 

Since these roots are damped and may be artifacts, they should present no 

problem. 

The eigenvectors of the matrix equation give the relative current amplitudes 

in the EF coils. When normalized to s
0 

= 0.1 m, the induced currents contri­
b~te an inward stabilizing radial field of 91 gauss at r = R , z = 0. The . . p . 
currents of the positive growth rate are all of the same sign (i.e., in the 

diiection + i~ in the top coils} but of mixed signs for the K-1 damped roots 

z .< O. The induced EF coil currents for z1, TNS Con~iguration I (n = -0.8} 
are given in Figure 2.3-1. The currents appear somewhat as the sine distri­
bution that gave ri~e to the uniform radial field for first wall stabilization. 
The induced field at r = R , z = 0.5 m was examined to obtain some idea of the . p . . 
field uniformity. It was found that an inward radial field of 89 gauss and a 
vertical field of 15 gauss exists at this point. This radial field is only~% 

lower than the induced field on axis and the vertical field is less than 0.3% 

·of the equilibrium vertical field. Thus, it appears that the radial field is 

rather uniform or at least smoothly varying over the plasma cross section and 

the induced vertical field com~on~nt does not significantly disturb the ver­
tical .. field required for horizontalequ.tlibrium. 
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As has been discussed previously, the effective conducting shell approximation 
is considered to be reasonable and we rely on it to simplify the calculations 
for the feedback control system discussed in the next section. 
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5.0 FEEDBACK CONTROL -OF THE VERTICAL INSTABILITY 

The discrete EF coils were found to slow the vertical instability in TNS to 
rising times on the order of 3 seconds. Since the discharge time in TNS will 
be about :30 seconds, some type of feedback control will be required to assure 

·:·-... • ' ~(: • ' ~j 

plasma staMlity ·for .the pulse duration. 

Having demonstrated an equivalence between the EF coils and a resistive shell, 
we shall rely on this property to simplify the control theory when a more exact 
solution is not possible. This shell-like approximation is applicable to 
Emmert's approach(l 4) where instantaneous and pure time-delayed ·feedback is 
considered. Hugill and Gibson(lS), on the other hand, use a controller volt­
age determined by both the plasma position and the detection and amplifier 
time constant. Their analysis is by circuit theory in which both passive and 
active agents have their own (collective) resistances and inductances. A sim-

.. 

ilarity between the'two approaches is demonstrated by comparing the gain re-
quirements and the delay and controller time constants. 

A brief summary of different optical and magnetic probe detectors is given. 
X-ray detectors appear to be fast responding and capable of sufficient spatial 
resolution provided a system of several detectors is used. Present state-of­
the-art magnetic probes may be adequate to detect ~o < 0.1 m, however, sensi­
tivity could be reduced if these are placed outside the vacuum vessel. 

A conceptual design for vertical feedback control in TNS is then presented. 
This system uses three separate control windings located near the D-5, 0-6,. 
and 0-7 EF coils. These control coils may be wound in the same casings as the 
EF coils but separately connected, however. The peak power requirements to 

vertically control the plasma within± 0.1 m (assuming adequate detection is 
possible) is less: tha~ l MW for a 6.1 MA plasma current and a delay time of 
l sec •. A peak power approximately 10 times this value would be needed if EF 
coil currents provided the active control instead of the separate windings. 

•' .... J,,. . ., ............................ ,, ......... ,, ....... ,o;.,H.,,~,.,,··i.,:.C<t•"i' ,.· ....... -••. , ................... ~. "··· 

, " 
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5.1 CONTROL THEORY FOR FEEDBACK CONTROL OF THE VERTICAL INSTABILITY 

Since the EF coils behaved c6llectively like a she11, we shall 'assume that 

they can be treated as ff R, M', and A = At are scalars and avoid the matrix 

nature of these qua~tities. Let us assume that 

(5.1-1) 

where td is the time delay for the control system and G is the controller gain 
(T/m). The equation of motion for the plasma (see Eq. {4.1-4) and (4.1-5)) is 

.then modified to include the.~ x B;.b. feedback force as 

d
2 

E(t) _ y 2 E(t) 
dt2. 0 

= 
-A I c 

µ 
(5.1-2) 

where I is the effective EF coil current and µ = ~ R m is half the plasma c p 
mass. ThecircuitEqs. (4.1-18) or.(4.1-19) will contain an emf due to the 

c6upling between the feedback field and the induced coil current Ic. The emf 
.·due to the feedback control coils can be written as· 

= 4 ~ R j_ Bf .b. 
p Pc dt r (5.1-3) 

wher~ p is the eff~ctive radius 6f the shell for the EF coils. Dividing by c . . . . 
two and r~calling Eqs. (5.1-1) and (4:1-~fr), the modified circuit equation 

.F: ·· becomes 

: .. ~- . . . 

'\J 
Defining f(t) as the LaPlace transform of f(t), Eqs. (5.1-2) and (5.1-4) can 

be rewritten as 

(5.1-5) 

(5.1-6) 
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ll 

.. ! 

Neglecting.-init.ial .. ,condi'tions do) ,; 'Uo) = I (O) = o, the dispersion relation 
c 

becomes 

. S 
3 + _l s 2 + 2 2 · . . l ( In G) -std (w - y ) s + - .....r..... e 

T o o T , m 

2 
Yo . 

- - = 0 
T 

(5.1-7) 

!In the limit td + O, it is easy to see from the Roth array and Eq. (3.2-22) 

that the istability condition for Eq. (~.l-7) becomes 
i~~ ~ .. ,: :._.:; ~/· .~i, .. !' c." 

2 
m y nBz 

G> o =---
Ip RP 

(5.1-8) 

I G 2 and the roots are given by Eqs. (3.2-24) and (3,2-25) with ....Lm - y
0 

replacing 
t. - y

0 
in ·the numerator of Eq. (3.2-24). Thus, 

and 

·,..; .· , .... : 

sl - -

I 2 
(.....£. G - y ) m o 

2 2 
( w - y ) 

0 0 

1 

s2,3 = ± i (wo 2 + -yo2)Z 

(5.1-9) 

(5.1-10) 

describe the long term plasma behavior ~est in the limit of instantaneous 

feedback td + 0. 

Since we are interested in the low frequency behavior (i.e., s2,3 should b_e 

stabilized by the wall) we shall neglect the first two terms of Eq. (5.1-7) 

obtaining 

(5.1-11) 

where z1 :is the growth rate of Eq. (3.2-24) or the growth rate with EF coil 

stabilization obtained~numerically and 

I G 
g =,~ (5.1-12) 

. . m Y 
'l .; , '•, o C,•:>.J.\ i,,, ........ , + j ~"'"" 0' • o •' lof~,·~.~·'.> ,,,,~·-'...-~'H.~··~•\,ot;O.'' ' •4f ••"'••o"0_,~,··~ ..... ;.\o..f",• •O·· ~..;..·~,_ ... , 

I• I ~ ... : , • I I I 

. :~ . ~,. • ... 
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is the relative gain of the feedback c6ntrol system. Emmert(l 4) has shown, 

using Nyquist diagrams, that the conditions of stability (Res < 0) for Eq. 

(5.1-11) are 

and 
' 1 

td < -· 
zl 

g > 1 (5.1~13) 

1 (5.1-14) 
/g2 -

The result g > 1 is expected since it fs. a restatement of Eq. (5.1-8) when 

· td + t~ The delay ti~e must al~ay~ b~ less than the riiing time l/z1 , and can 

approa·ch this value as g .+ 1-. Thi.s is ra,ther unexpected since a higher gain 

requires a s~alle~ delay time. 

A m6re restrictive coridi·tfon on td applies if the transient r~sponse is con­
sidered. If given an initial displacement ~0 • ~he stabilized plasma will be 

reversed at t = td if th~ r~storiing force ex~eeds the driving force on the 
plasma. This condition is sati~fied if 

or (5.1-15) 

l 
td < Z,- 1 n ( g) 

This pure growth and decay, howev~r. does not occur at large gains and the con­
d.ition of Eq. (5.1-14) shou·ld be met first in order to insure stability. 

An attempt to optimize the power requirements for the feedback system has also 
been -0utlined by Emmert .. Since a jump in B~.b. would imply infinite power, a 

liriear rise is assumed.between t ~ O and t ~ td. By matching the (magnetic)· 

power required at td and 2 td, an opti~um condition 

or 

2 zl td 
zr td e 

t ·. 
' d 

.426 
zl 
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'" 

is found·~. The gain requirement.for transient stability is then 

·g ~ l. 537 (5.1-17) 

. b E ( 9 1 15) S. g = 1 537 . t . 7 4 b E ( 5 1 14) bl ; y q. . - . ince • give~ d < Zl y q. . - , a sta e 
solution 'is then assured for long term response also. 

i 

The maximum excursion of the plasma with.td given by Eq. (5.1-16).will be 
1.54 ~ , and the power required to supply the change in the magnedc field 

0 
will be 

p = 2 62 E; 2 U 
mag td o (5.1-18) 

where·U is the stored magnetic energy per (Bf.b.) 2. The I2R loss in the con­
:·r 

troller must also be accounted for to determine the total power requirement. 

Hugill and Gibson(l 5) app~oach this control problem in much the same manner'as 
Emmert but express their circuit equations and equationofmotion in terms of 
the shell and control windings inductances and resistances entirely. The con­
troller voltage is given by 

(5.1-19) 

where V is the applied controller voltage, R3 is the controller output resis­
tance, K is a nondimensional gain of the servo-loop, M23 is the mutual induc­
tance between the wall (or in our case the EF coils) and the controller, and 
tc is the time constant of the detection and amplifier circuits. 

The additional 
its derivative 

zt 
z for ~ "' e . 

circuit equation for the controller and the presence of V plus 
in Eq. (5.1-19) results in a fifth order dispersion relation for 
Neglecting the high frequency roots (lz21 << lr

0
21·), a third 

order equation develops 

Cz3 + Dz2 + Ez + F = 0 (5,1-20) 

,,. 
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... 

where 

c t t 2 2 
w c 2 0 

D ( tc t 1 
t 2) 2 = + w· 2 0 

E _, t 1 w0 
2 

tc 
2 

Yo 

F K 
2 2 (5.1-21) = w - Yo 0 

and t 1 and t 2 are defined by 

(5.1-22) 

tf being th~ L/R time of the control winding and ~ 2 is the mutual inductance 
coupling coefficient between the "shell" and the control winding. 

The stability criteria obtained from the Routh array require D, E, F, and 

DE~CF to be positive. This gives the following conditions 

K. > 
2 2 

Yo /wo (5.1-23) 

tl 
2 t 2 t t 2 

K 
Yo 1 c 1 

< 
tc 

- 2 t ·2 t. 
+ -.-2 

w t2 0 2 1 

(5.1-24) 

and 2 t 1 w
0 t < c 2 (5.1-25) 

Yo 

A direct correspondence between this system and Emmert's is difficult to find 
however,:we do note some similar feattires tha~ allow us to co~pare the two. 

The gain requirement in Eq. ·(5.1-23) is similar to the require~ent of Eq. 

{5.1-8) in that th~ minimum ~ain must be proportional to y 
2• The factor re~ . . 0 

. lating ~he two ca~ then b~ used for the upper gain boundary Eq .. (5.1-24) in 
Emmert's analysis that accounts for .destabili.zation due to the controller 
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causing reversed flow of eddy currents in the "shell." 

Recalling t 1 w
0
2 in Eq. {5.1-22), we see that Eq. {5.1-25) can be reexpressed 

.as 

. . . .. 

< _l_ + 
zl 

t {k2 w 2 - 2) 
f o Ya 

2 (5.1-26) 
Yo 

This constitutes an improvement over pure time delay where the maximum delay 
time for g + l became l/z1. 

A distinguishing feature between the two systems is the polynomial dispersion 
relation of Eq. (5.l-20). Since Vis always acting for the slightest pertur­
bation ~ (see Eq. (5.1-19)) it is possible to {theoretically) control a change 
as soon as it occurs. Thus, the plasma is always damped provided conditions 
of Eq. {5.1-23) thru (5.1~25) are met. Since a practical system requires a 
finitely detectable disturbance before feedback control can be initiated, it 
is worthwhile to consider some possible plasma position detectors before pre­
senting a conceptual design. 

5.2 PLASMA POSITION DETECTORS 

The intensity of the Bremsstrahlung radiation varies as ne2 T 112 where n e e 
and Te are the electron density and temperature. Because of this weaker de-
pendence on T , an X-ray detector could essentially determine the position of e . . 
the magnetic axis Rm if the currents and density have similar profiles. An 
X-ray detector placed to view constant z, however, will see all three peaks if 
the core of the plasma passes· its view. Thus, for vertical control, one could, 
in principle, determine ~z accurately with a series of x-ray detectors. Com­
plications could occur for radial control and the plasma density and current 
profile would need to be determined beforehand - either by computation or ex­
perimentation - possibly using both X-ray and interferometry using a co2 
laser{l 6). 

Alcator has used a series of three collimated X-ray detectors spaced 4 cm 
apart t6·~~isure the plas~a radial· ~ositi6n. l; ~dj~sting the vertical field 
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after each discharge based on-oscillograms from the detector, the burn time 

was increased from 0.25 to 0,65 sec. To improve spatial resolution, more de­

tectors can be used. The sampling time, however, increases to roughly 2N µs 
wher~ N is th~ number of elements in the array(ll). Alcator C is planning to 

use a series of ten or more detectors with the limiter radius being about 
( 18) 10 cm · .. Presumably spatial resolution will be "'l cm with sampling times 

"'20 µs. (These are my estimations and are based on the limiter radius and the 
sampling time given previously.) 

X-ray detection is still in its infancy and requires a considerable amount of 
study and experimentation before becoming applicable to plasma control. Amer­
ican Science and Engineering, Inc. is one of the major companies with research 
and development in this ar~a. They are presently trying to devise a self­
scanning array.of x~ray detectors with position monitoring and analog and/or 
digital readout(l 6). 

Magnetic probes placed at different poloidal angles can- be used to detect ~p' 
the time rate of change of the poloidal magnetic field due to pl~sma position 

(19 20) . . 
or current change. ORMAK . ' has used the offset signal from probes at 
e = O and 180° to measure ~. the shift of the center of the outer flux surface 
from the center of the conducting shell. ·After integration this offset signal 

is: 
B (oo) - B (180°) u e e - = (Oo} (180°} + B + B u p p 

(5.2-1) 

which can be used to find the shift 

- B + a B 
~ = cl + c ~ + C3 

v gae 
2 + B u p 

(5.2-2) 

where c1, c2, c3, and a are experimentally determined constants and Bgap is· 
gap fi~ld that leaks through the conducting wall. Using Thompson scattering 

. data to determine the position of the magnetic axis, the magnetic axis offset, 
relative to the plasma center, was_ determined and found to agree well with 
that predicted by theory. The feedback control positioned the plasma radially 

. .. 

within a few millim~ters during the bulk of the discharge by determining~ 
. . . . . . 

on-line.with analog circuitry and adjusting the verti~al field accordingly. 
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.. For vertical motion, a signal similar· to Eq. (5.2-1) could be used with probes 
positioned at e =goo. Toroidal effects would then be absent and the offset 
signal would be 

u = I 
+ d (5.2-3) 

u 

where z = ± d are the positions of the two probes. 

The probes used in ORMAK were placed inside the conducting shell but outside 
the liner, so their sensitivity was weakened only by the liner and stray fields 
produced by the vertical field coils. Future tokamaks having a resistive first 
wall but no liner or conducting shell present problems with either sensitivity 
(if placed outside the wall) or radiation and thermal damage (if placed inside 
the wall). Logical compromises might be to place them in the position of a 
resistive gap outside the wall or replace them periodically when damaged. Re­
sponse time appears to be no problem for growth rates larger than the wall time 
constant if placed outside the wall. If placeo at gaps inside the wall. the 
response would essentially be determined by the amplifier response alone. 

Rogowski coils and other magnetic loop detectors can also be used to indicate 
plasma po~ition and/or plasma current. Cleo-Tokamak(l 5) used both cosine and 
s1ne Rogowsk1 and saddle coils to determine plasma position and current. lhe 
cosine Rogowski coil resembles a toroid that wraps around the minor radius of 
the vessel with turns varying as cos e. i.e .• weighted ate= 0° and 180°, and 
is used for horizontal positioning. The sine coil is merely rotated goo and 
is used to determine vertical position. The saddle coil is formed from a rec­
tangular loop that is wrapped around a torus segment as if it were riding it. 
For horizontal control, the ends of the "saddle" are at e =_goo with the amp-
1 ifier connection made at s = +go 0

• Radial motion of the plasma increases the 
flux in the segment where cos e > 1 and decreases the flux where cos e < 1. 
For vertical control. the saddle is merely rotated by go 0

• Calling x the 
position variable (i.e .• either z or r-Rp) the integrated response of either 
saddle or Rogowski coi't is _,o.f the form 

v = A I (x 
.. p 

5_g 

x .. ) + CB z (5.2-4)' 



where A, C, and x ... are constants determfoed by calibration and Bz is the known 

vertical field (for vertical motion C = 0). ·The signals from the two coils are 
combined to determine x and I . The position and plasma current then determine 

p 
the stabilizing field r~quired. The detection time is set by the wall diffusion 
time {rvl ~s) in the Cleo-Tokamak. A transistor amplifier network changes the 
current in four control loops that produces the stabilizing field. 

Radial control for.a. vertically stable plasma increased the discharge time from 
0.11 sec to O.t sec arid the plasma remained centered to± l cm for 0.14· sec~ A 
vertically unstable plasma was also stabilized and center~d for up to 0.1 sec. 
The ex~erimentally determined gain boundaries for this vertical control, how­
ever, were about a factor of four below those giveninEqs. (5.1-23) and (5.1-24). 

X-ray detectors, magnetic probes, Rogowski coils, and saddle coils are the 
·major plasma position (and current) detectors considered for feedback systems 
today. The latter three are state-of-the-art devices but subject to sensiti-

. vity problems and stray magnetic fields. Th~ x-ray detector is relatively new 
a~d requires more complicated circuitry and still much development. It is the 

·only device, however, that is capable of d·etermining the plasma position, in 
principle, absolutely. For this reason and for its fast response, it is likely 

' 

to be the candidate detector for future tokamaks. However, the other devices, 
despite their drawbacks, have proven themselves in the systems mentioned as 
well as others and should not be ruled out al.together for future tokamaks. 

5.3 DESIGN FOR FEEDBACK CONTROL OF VERTICA~ INSTABILITY IN TNS 

In this fi.nal section, we present the necessary features 6f the control coils 
to feedback stabilize the vertical instability. Amplifier and detector speci~ 
fications are not given, but the power requirements for the overall system 
with and without feedback delay are calculated. We assume that the detectors 
are capable of detecting a vertical shift "'5 cm so the maximum plasma excur­
sion is controlled to ±0.l m. 

The control coils ~re located neat or in the ~ame casings as the EF coils D-5, 
0-6, and 0-7. Control by varying Ef toils currents will require much larger . 

r.;:. . • . - .,. ' -,., ... .. ·: . . • . ..... < •• :.·~-- , ..... " _,,. • 
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.. power supplies than these sepafa~~ coils would. This will be demonstrated in 
the analysis. 

The EF coil Configuration II will be used for design purposes since this con­
. tracted I-D-0 gr~uping is the more prattical and economical configuration. 

The design will work also for Configuration I, however, since it is more stable 
than I I. 

Using a decay index·,~f -0.8 and Bz = 0.6 T, the minimum gain is (by Eq. {5.1-8)) 

Gmin = 0.096 T/m { 5. 3-1) 

Since we wish to stabilize the transient response when delay· time is included, 
we choose 

G = 0.15 T/m (5.3-2) 
or 

G g = = 1. 56 
. Gmin 

(5.3-3) 

2 11 -2 2 For effective coil parameters ·w
0 

= 2.64 x 10 sec • T = 2.5 sec, and y
0 

= 
11 -2 ' 

1 .35 x 10 sec • the damped rates for "instantaneous" feedback are (by Eqs. 
(5.1-9) and (5.1-10)) 

-1 = -0.27 sec 

s2. 3 = ± i (3.6 x 105) -0.065 sec-1 

, ( 5. 3-4) 

(5.3-5) 

-, { The growth rate without feedback is z
1 

= 0.418 sec or r1s1ng time = 2.4 sec) 
so as an indication of "instantaneous"·we choose a feedback system rise time of 
tr = - 1 ~ zi = 0.25 sec. Thus, the plasma will deviate n~ more than e0

·
1

=1 .1 

times the initial detected plasma deviation ,
0

. Choosing ~o = 0.1 m for in­
stantaneous feedback, the maximum radial stabilizing field will be 

Bf .b. = G ~o = 0.015 T r max (5.3-6) 

,inwardly,·d·irected for "·the postti ve ··perturbation· with""! - i-n the negative sense. p 

~-11 



Since sine. > 0.9 for coils 5, 6, and 7, let us choose, for simplicity, a 
l 

maximum field contribution Br; = 0.005 T from each of the three coil pairs. 

Denoting ni as the number of turns in either top or bottom control coil and ii 
as the maximum current in the control coil, the n. i. (amp turns) required can 

l l 

be balanced according to 

ni ii 
-N-.- =~ 

m (5.3-7) 
1 

where Ai and Ni are the values given in Table 4.2-2. This balance gives the 
following amp-turns in the coils: 

n5 i5 = 54.2 kA 

n6 i6 = 39.6 kA . ( 5. 3-8) 

n7 i7 = 32.0 kA 

which also appear in Figure 2.2-1. 

To determine the controller voltage, we need to know the single turn inductances 

m:. = m .. - m .. for the control coils. The single turn mutual inductances can 
lJ lJ 1-J 

be found by dividing the elements in Table 4.2-1 by N. N .. The single turn 
. l J 

self-inductances i = j, however, are less well defined since the self-inductance 
depends on the coil cross section dimensions. But this dependence is only 
logarithmic so to a reasonable approximation m:. = M:./N.N. for all cases. 

lJ lJ l J 

We shall assume that the currents in the coils rise linearly in a time tr and 
that induced currents in the EF coils can be neglected. The latter approxima­
tion is a poor one when the currents i. are beginning their ramp. As they 

.J 
approach their maximum value, however, the induced EF coil currents will stop 
and reverse direction. Their effect, in a sense, averages out and we may 
approximate for the maximum controller voltage at 5 (see circuit schematic in 

Figure 5.3-1). 

(5.3-9) 
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i 5 

· n = 10 turns 5 

Figure 5.3-1. Typical Control Circuit for Feedback Control System 
Illustrating Series Connection for Controller. 
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assuming the only resistance in the circuit is the resistance of the coil 
itself. The circuit equations for 6 and 7 are similar to the one for 5. 

Denoting the maximum power in the circuit 5 as P5 = v5i 5 (etc for 6 and 7) the 
following expressions result for the three controller groups 

P5 = 0 .150 MJ + 2.39 MW 
t n5 r 

p6 = 0 .128 MJ + 1. 56 MW 
t n6 r 

P7 = 0.094 MJ + 1 .19 MW (5.3-10) t n7 r 

Thus, we see that the magnetic power is independent of coil turns but the ohmic 
power is inversly proportional. 

To keep the size of the control coils as small as possible without adding 
appreciable joule heat, let us take n5 = n6 = n7 = 10. Taking tr = 0.25 sec, 
Eq. (5.3-10) gives 

P = 1 .49 MW mag ( 5. 3-11) 

PJH = 0.51 MW ( 5. 3-12) 

as the magnetic and joule-heat powers, respectively. The total controller 
power is then 

p = = 2 .0 MW (5.3-13) 

for the "instantaneous" feedback. 

To offer a more optimum system with feedback delay we shall design with Eqs. 

(5.1-15) thru (5.1-18) in mind. 
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.. The time delay· is given by Eq. (5.1-16) 

t - 0.426 l 02 
d - 0.418 = · sec (5.3-14) 

and g = 1 .. 56 satisfies Eq. (5.1-17). For long term sta_bility, Eq. (5.1-14) 
must be satisfied. This gives td < l .75 sec which is acceptable. 

We would liK~~.t~,de~ign to ~max = 0.1 m so ~o = 0.1/l .54 = .0.065.m._makes a 
constraint off th1e 'd1etectors that hopef~lly can be met. 

The parameter U in Eq. ( 5. 1-18) can be found using 

'" 7 

Emag = l /2 L: m:. n.n.i.i. 
i ,j = -5 lJ l J l J 

which is already available from the power value Pmag by 

p t 

Thus, 

E - mag r = 0.186 MJ mag - 2 

U = Emag 
8f .b. 

rmag 

= 826 MJ 
?9 

. giving a magnetic power optimum by Eq. (5.1-18) 

P = 0.154 MW mag 

The total power with joule heat included is then 

p = p + p 
mag JH = 0.67 MW 

about a third of the previous value. 

( 5. 3-15) 

( 5. 3-16) 

( 5. 3- 17.) 

(5.3-18) 

(5.3-19) 

It is. important to note that the analysis offered in this section is based on 
m~ny approximations. Where possible, however, the worst case was-assu~ed, so 

t.~e. powei:- requi_re,1)1~~ts --~~_?U.l_ g, J>..~.~.n-~ .. 9,t',e5i.~~~ .JD.~.1'1 .. JD.<;f f ~a t.ed. 

,, ' ·, 

.. 
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If the EF currents were adjusted to provide feedback, the controller voltages 
given by Eq. (5.3-9) would be roughly the same, but the controller power supply 

would have to carry th~ equilibri~m current (-0.82 MA-turns for D-5) in 

addition. The magnetic power P5 would then be a ratio about ~~O = 15 times 
n5 

as great. The ohmic increase would be 15 ~N ~ 3.4 times as great. These 
5 . 

increases result in controller power specifications of roughly.25 MW for 
"instantaneous" control and 4 MW with delayed control. Thus, the required 

power would increase by roughly a factor of ten without separate controllers. 

·Since I = 6.1 MA can be regarded as the upper limit in TNS, it is beneficial p 
to know the power required by the controller at other currents. This power 
varies as (Bf.b.) 2 which varies as Bz2 ~ 12. So the 5% eat 4.3 MA will draw 

. r . p 
half as much peak power as at 6.l MA provided the decay index remains relative-

ly constant. 

Induced currents due to the coupling between the OH controller and EF contr61-
ler durin~ the start of the discharge might be expected. However, the top con­
troller loops are positively coupled to the top OH and EF coils a~d the bottom 

loops are negatively c6upled to the bottom OH an~ EF coils so the effect of 
induced currents cancels. The ~xception is the EF-D coils which are coupled 
in- the opposite sense. Induced currents here, of course, also cancel. Thus, 
unwanted induced c~rrents due to EF controller or the OH controller coupling 

can be neglected irregardless of whether the EF and OH are hooked in a series 

or parallel connection. 

Induced currents due to plasma motion and EF controller coupling is expected 
during a vertical perturbation if the EF coils are placed in parallel. This 
effect, however, is desired since the induced EF coil currents were found to 
reduce the verti~al instability significantly. 

It is desirable to compare the gain and delay time requirements found by 

Emmert's method to those. of Hugill ~nd Gibson~ T_he condition in Eq. (5.1-23) 

5,. 16 



.. gives a minimum gain of 0.51 which is a factor of two lower than the value of 
the minimum relative gain g > 1. 

To compare these two methods,. the coupling coefficient for mutual inductances. 
k, must ~e found. For two concentric shells, this coupling coefficient varies 
as the r~tio of their wall. radii. Since, however, w

0
2 varies inversly as pw2• 

an estimate of k2 can be obtained by finding the ratios of w
0
2. Since the 

effective -r and, .. w
0 

2 ,were easy to define for the EF coil Configuration II I and 
did not differ more' .. than l 0% with those values for I and II. effective w 2 and 

0 
-r for the control coils can be ~stimated i~ a similar manner using Eqs. (4.1-31) 

2 2 thru (4.1-33). These give k, w
0

, and tf in Eq. (5.1-22) as 

= 1.8 x 1011 

tf = 0.74 sec 

-2 sec 

(5.3-20) 

The values of t 1 and t 2 from Eq. (5.1-22) are then t 1 = 1 .35 sec and t 2 = 0.54 

sec. These require a controller time constant tc < 2~6 sec by Eq. (5.1-25). 

As tc + tc max• the limit on the gain Kmax in Eq. (5.1-24) approaches Kmin' 
As tc + O, however, Kmax +~and there is no limit on the gain. ~o compare 
the two methods, let us take tc = td = 1 sec. Then, the following limit is 
imposed upon K: 

0.51 < K < 5.3 (5.3-21) 

and if g scales proportionally 

l < g < 10 (5.3-22) 

This seems to indicate that our system is stable against the possibility of 
reversed eddy currents driving the plasma unstable in the opposite direction. 

The roots to Eq. (5·. l-20) for tc = l sec and K = 0.8 (i.e., l .56 Kmin) are 

f 
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-1 = -5. 1 sec · 

= ± i (0.37) -0.26 sec-1 (5.3-23) 

Note that the damping rates are greater than or of the same order of magnitude 
as those predicted by Eq. (5.3-4) and (5.3-5) for 11 instantaneousu feedback. 
The high frequency oscillations in Eq. (5.3-5) are absent here since the 
-assumption lz21<< y

0
2 was used to reduce Eq. (5.1-20) to its third order (in­

stead of fifth order) form. 
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.. 
6.0 CONCLUSIONS 

To summarize the control of the vertical instability in TNS, we have seen how 
a plasma with a rising time of 3 us (without eddy currents considered) could 
be slowed down to "'30ms by the first wall provided it is continuous in the 
toroidal direction.. Different parallel EF coil configurations were found to 
slow the instability down to rising times "'2to3sec. 

The "shell-like" behavior of the discrete EF coils allowed considerable simpli­
fication of the control theory needed to design a feedback system to fully 
stabilize the vertical instability. 

The power requirements for a system using three separate control circuits to 
drive the feedback currents are very modest - about 2 MW for "instantaneous" 
control and less than l MW. for al sec delay.time. 

6-1 



.. 
7.0 REFERENCES 

1. Y-K M. Peng and D. J. Strickler, 1
•
1 Poloidal Field System Design for TNS, 11 

ANS ~Transactions Q (1977) 29. · 

2. H. P; Furth, Tokamak Research (Review Paper), Nucl. Fusion .!i (1975) 487. 

3. J. A. Wesson, Hydromagnetic Stability of Tokamaks (Review Paper), Nucl. 
· Fus ion J.!!.. (l 978) 87. . . 

4 •. 0. Grube~ ~~d ~ .. Wilhelm, The Belt: Pinch - A High a Tokam~k With N~n­
Circ~lar Cross Section, Nucl. Fusion l&, (1976) 243. 

5. G. Laval, R. Pellat, and J. S. Soule, Hydromagnetic Stability of a Current­
Carrying Pinch With Non-Circular Cross Section, Phys. Fluids .!Z. (1974) 835. 

6. E. Rebhan, Stability Boundaries of Tokamaks With Respect to Rigid Displace­
ments, Nucl. Fusion J2. (1975) 277. 

7. V. S. Mukhov~tov and V. D. Shafranov, Plasma Equilibrium in a Tokamak 
(Review Paper) Nucl. Fusion l!. (1971) 605. 

8. F. A. Haas, Stability of a High a Tokamak to Uniform Vertical Displacements, 
Nucl. Fusion .!i (1975) 407. 

9. W. R. Smythe, Static and Dynamic Electricity, 3rd Edition, McGraw-Hill 
( 1968) 290-291 • • 

10. J. D. Jackson, Classical Electrodynamics, 2nd Edition, John Wiley & Sons, 
Inc. ( 197 5) 177-180. 

11. J. J. DiStefano, A. R. Stubberud, and I. J. Williams, Feedback and Control 
Systems, Schaum 1 s Outline Series, McGraw-Hill (1967). 8 . 

12. Y-A. Chao, E. R. Frantz, and T-F Yang, 11 A Practical Method of.:Analyzing the 
the Effects of Induced Eddy Currents on an Unstable Plasma Displacement 
of a. Rigid Plasma, 11 to be published in the Proc. of the 3rd Topical 
Meeting on Tech. of Conf. Nucl. Fusion, Santa Fe (May 1978). 

13. J. R. LaMarsh, Introduction to Nuclear Reactor Theory, Addison Wesley 
(1966) 422-425. . .. 

14. G. L. Kulcinski, et al., 11 TETR-A Tokamak Engineering Test Reactor for 
Quality Materials and Blanket Components for Early DT Fusion Power 
Reactors, 11 Proceedings of the Second Topical Meeting on the Technology 
of Controlled Nuclear Fusion, Vol I, p 73 (Richland, Washington) 1976. 

,7-1 



15. J. Hugill and A. Gibson, Servo-Control of Plasma Position in Cleo-Tokamak, 
Nucl. Fusion .!i {1974) 611. 

16. T. N. Edelbaum, P. A. Madden, R. E. Vov, R-1046-Rev l, Fusion Reactor 
Control Study, First Annual Report, EPRI Program RP546-2 {July 1977). 

17. P.A. Madden, Investigation of Plasma Position Control and Sensors 
Requirements for Tokamak EPR 1 s {1977). 

18. W. W. Saylor, Plasma Position Control in a Tokamak Experimental Power 
Reactor, MIT Master's Thesis {January 1977). 

19. J. L. Anderson, et al., Feedback Control for Plasma Equilibrium in ORMAK, 
Nucl. Fusion 1§. {1976) 629. 

20. R. V. Miskell, A Control Strategy for Plasma Equilibrium in a Tokamak, 
Report Y-1988 Oak ·Ridge Y-12 {August 1975). 

7-2 




