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ABSTRACT

Due to the unfavorable curvature of the vertical vacuum magnetic field, elon-
gated plasmas are verticaT]y unstable when the elongation, e, becomes too large.
The TNS (The Next Step) tokamak, as evolved in the Westinghouse-ORNL studies has
an inside-D configurétﬁon (e = 1.6, A =5/1.25 = 4)'characterized by an average
decay index n % -0.75 at the plasma flux surface near the magnetic axis and is

vertically unstable with a growth rate Yo 105 ']. Eddy currents produced
in the vacuum vessel wall will slow th1s instability to growth rates Yo 102

' sec'] provided there are no transverse insulating gaps in the vessel wa11

A matrix equation has been developed for calculating the eddy currents induced
in the EF coils and their stabilizing effect. Growth rates computed numerically
have been fitted to the analytic shell model expression for y over a wide range
of decay indexes ( “ney, 2 varying from 0 to 1.6). Agreement between the numer-
ical and ana]yt1c values is within 5% over the decay index range for three dif-
ferent series- para]]el EF coil conf1gurat1ons The co11s are found to reduce
the vertical growth rate for TNS to less than 1 sec -1

Control theory for feedback systems with and without delay time is presented
and possible plasma position detectors are discussed. For a plasma current of
6.1 MA, the controller peak power requirements using Separate controller cir-
cuits are ~1 MW depending upon EF coil configurations and time delay. This
feedback system is designed.to stabilize a maximum plasma excursion of 10 cm
from the midplane with de]ay-tihes up to 2 sec.
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1.0 INTRODUCTION

It is known that plasmas elongated in the direction of the axis of symmetry may
be unstable with respect to a vertical perturbation when the elongation exceeds

a certain limit. This report serves to examine this apparent problem in general
and to apply the resulting theory to the ORNL-Westinghouse TNS inside-D reference
plasma (Rp =5m,a=1.25m, ¢ = b/a = 1.6)(]). The Oak Ridge/Westinghouse
contribution to TNS (The Next Step) Project is a study of various inside-D
configuralion toukamaks, most of which incorporate superconducting toroidal field
coils in the design.

The benefits of the vertically elongated plasma shape have been identified and
can be summarized as fo]lows(z's): (1) relatively higher g than that of circular
shape can be achieved; (2) elongation with triangular shape will help stabiliza-
tion of the localized modes; and (3) the Kruskal-Shafranov 1imit for the internal
kink mode on the plasma axis q(0) > 1 can be relaxed slightly. Experimentally,

B as hiih as 50% has been achieved for 20 MHD periods or 50 pus in the Belt

Pinch(4,.

Noncircular plasmas may become unstable in axisymmetric modes(3’5). Higher
order modes may he excited, but are ignored here. We are concerned with the
most dangerous mode, the vertical rigid displacement of the plasma. This mode
can be illustrated by Figure 1-1, Figure 1-la shows a vertically stable plasma.
If the plasma is displaced the amount £z above the equatorial plane z = 0, it
encounters a restoring force per unit length Ip X Br (£) tending to restore the
plasma to its original position. Figure 1-1b is not stable. The plasma will
encounter a'Br (£) in the opposite direction due to the opposite curvature of
the field lines so that Ip X Br (g) is directed away from the equatorial plane.

For the large aspect ratio approximation, the degree of the vertical stability
can be characterized by the decay index of the field on axis defined as
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(a) Vertically Stable Circular Plasma
(Right Magnetic Field Curvature)
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(b) Vertically Unstable Elongated Plasma
(Wrong Magnetic Field Curvature)
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Figure 1-1. Illustrations of Vertical Stability In Relation With
the Curvature of the Vertical Magnetic Field.
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(1-1)

The condition to insure vert1ca1 stab111ty is n > 0. The criterion for hori-

zontal stability is n < 3/2(7) This 1nstab111ty has also been evaluated more
generally by taking into account the plasma shape, diffused pressure, and current

profiles for more realistic aspect ratios by using the energy principle and
small perturbation theory. A triangular shape was found to be more stable and a-

3’6). However, a general method for predict-

critical elongation was determined(
ing the growth rate of the vertical displacement when taking into account the
effect of the equilibrium field maintaining coils has not yet been given. That
is the purpose of this report. Since we are interested in the order of magnitude
of the growth rate, and also for simplicity and for the convenience of feedback

control analyses, we keep the approximate approach as has just been described.

The context is conveniently divided into five major sections. In Section 2,
the growth rate for vertical motion is analyzed in the approximation that the
plasma moves as a rigid body unaided by stabilizing eddy currents in external
conductors. The averaged decay index near the magnetic axis, a measure of the
vertical vacuum field curvature, (n~- 0.8 for TNS) is an important parameter in
determining this growth rate. The rising time (inverse growth rate) for TNS at
Ip = 6.1 MA is ~ 3 psec under these conditions,

Induced eddy currents fortunately slow this grthh rate down to more control-
lable values. The effect of a perfect (i.e., without gaps) resistive wall on
the growth rate is examined in Section 3. The analysis is carried out to the
first order in a/R and results in a sine (plus a small quadrupole) eddy cur-
rent distribution in the wall (here 6 defines the poloidal angle). This gives
rise to a stabilizing induced radial field that modifies the previous equation
of motion and increases the rising time in TNS to ~ 30 ms for a 12 mm thick
stainless steel vacuum vessel, continuous in the toroidal direction (¢).
However, the vessel wall may require resistive gaps to allow the external tor-
oidal and poloidal fields to diffuse more rapidly inward to the plasma making
the above assumption less realistic.
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The stabilizing effect of the discfete equilibrium field coils (EF coils) is
-'erSented in Section 4. Here the EF coils above the equatorial plane are
connected in parallel to those below the'plane, In this manner, stabilizing .
- eddy currents are free to flow in the coils and do not cancel one another.
~Three dlfferent series- para11e1 configurations are examined that satisfy the
up- -down parallel requirements. - The resulting circuit equat1ons and the p]asma
equation of motion simplify to an eigenvalue equation for the induced EF coil
currents. . This eigenvalue equation is solved numerically, yielding the EF coil
~current amplitudes and thé'growth_rate of the vertical instability. The EF
coils are found to have a Strdngfstabilizing influence thatVTengthens the
rising time in TNS to several seconds, the exact value depending upon which

of the three configuratibns fs used.. It is also found that the eddy current
distribution in the EF coils fesemb]es the sine distribution found in the
resistive wall. The analogy is so strong that a numerical fit of the growth
rate to the analytic shell growth rate formula can result in less than a 5%
deviation over a wide range of decay indexes (0 thru -1.6).

VSectibn 5 deals with the aétive»feedbébk'control of the vertical instability.
The. analysis is simplified by exp]oiting the already demonstrated shell-like
effect of the EF coils. We consider both instantaneous and delayed feedback
control and specify controller gain requirements, maximum delay time, and con-
troller power-requirements. Possible plasma position detectors are examined
~and a conceptual feedback desigh for TNS is presented. Power requirements

for the feedback system are modest]y low («:1 MW) for a 10 cm maximum plasma
excursion from the midplane. Three control loops separate from the EF coils
are envisioned in this design, and will control the plasma under the above
conditions for a plasma current of 6.1 MA, the 15% g limit imposed on TNS.

1-4.



2.0 GROWTH RATE OF VERTICAL INSTABILITY WITH NO STABILIZING MECHANISM

2.1 GROWTH RATE UTILIZING PLASMA EQUATION OF MOTION

Let us consider a plasma carrying a current Ip and situated in an external vac-
uum field Bv whose curvature is characterized by a decay index n. In equili-
brium at z = 0, all electromagnetic and pressure gradient forces balance and
there is no tendency for(a11 or any part of the plasma toward motion.

Now let this plasma be displaced the amount 52 subject to the constraint that
the currents in the plasma and external conductors remain fixed. Only J,  x Bv
forces act on the plasma since the poloidal fluxes generated by the plasma
current moves with the displaced plasma and gives no net contribution. Expand-

ing Bv in a Taylor series about z = 0 and keeping the first order

28

B,(€) = 8,(0) + 5= g ¢ < (2.1-1)
oB

B.(g) =B (0) + =1, ¢ (2.1-2)

There is no net radial force J, x 6B_(&) for first order since v.B_ =0
3B ' 4 _z - v

Z -
requires 3;-|0 0.

Let us arbitrarily pick J¢ in the -é¢ direction (see Figure 2.1-1) so Bv must
be upward to provide radial equilibrium. Dropping the subscripts and using
Br (0) = 0, we may then express the vertical force on the plasma by

3B
] r )
-, -I% (riz) 53— £dv (2.1-3)

Using ¥ x B = 0, Equation (2.1-3) may be rewritten as

5" 2.1-4
F, = il.d¢ (ryz) = &dv (2.1-4)
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i | V:ER'TICA-L. POSITION AND AXIS OF SYMMETRY

\e| Db
a 7-

X

BY - |

N _/  raDIAL OR
N 5 o - HORIZONTAL POSITION
~ - | - |
~ ~ /‘/.

Figure 2.1-1. The‘T.Oroidall {r, ¢, z) and Poloidal (p,¢) Coordinate
— Systems With:Vertically Elongated Ellipse b > a.
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For the large aspect ratio approximation, Eq. (2.1-4) reduces to the equation
of motion of the plasma

d7e pa : , .
m— = -— 1 ¢ (2.1-5)
dtz Rp p

where m is the mass per unit length of the plasma column and the decay index,
n, is defined as

BBZ

r
- n --§; §T|r=R (2.1-6)

P

For a time dependence ¢ = EoeYt » Eq. (2.1-5) leads to the dispersion relation

Y2 - Y02 = 0 (2.1-7)
where
2 nBZIE
Yo "TmR

For n<0, the dominant mode grows exponentially at a rate y = +yo and for
n>0, the plasma is stable. ’

2.2 APPLICATION TO TNS

A plot of the magnetic flux lines of the external vacuum field is presented in
Figure 2.2-1. The equilibrium field coils (EF coils) giving rise to this field
are indicated by the squares numbered in order of increasing radius.

The EF coil currents required for Ip = -6.1 MA and g = 15% are I [ = 0.26 MA
(coils 1 through 4), IEF-D = -0.82 MA (coil 5), and IEF-O = 0.57 MA (coils 6
through 10). Induced'and control currents discussed in Sections 4 and 5 are
indicated above the coils. A1l currents are given in total amp-turns and flow

in the positive sense (+é with the exception of the divertor coil (5) and

)
¢
plasma currents which flow in the opposite direction. The vacuum field BV is
therefore directed upward by our convention. The plasma boundary is also in-
dicated in the figure and occupies an area of approximately 8 m2. A majority

of the current, however, occupies an area of ~ 2.5 m2 located in the region to
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v=¢

[ MAX CONTROL CURRENT WHEN APPLICABLE]

0 (INDUCED CURRENT AT € = 0.1 m)
N N [54 kAl O
(14.4 kA) (40 kA]
5L : (12.0 kA)
| 6
/ - [32 kA]
0 (13.3 KA)
(5.77 kA) | 7
(12.7 KA)
8
(8.61 KA)
1,=-6.1 MA (3.12 kA)
0
| / / | ' | 1
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 r(m

Figure 2.2-1. Vacuum Field for TNS Showing Position of Plasma and EF Coils.
Currents in EF Coils Indicated in Amp-Turns for Ip = -6.1 MA,

g = 15%.



the outside of major radius Rp = 5.0 m. The magnetic axis is displaced slightly
beyond this point Rn] ~ 5.3 m. The computations are in accordance with Peng's

poloidal field system design specifications for TNS(]).

The key plasma parameters and equilibrium vacuum field data used in the computa-
tion of the vertical growth rate without stabilizing effects are presented in
Table 2.2-1. The growth rate computed by Eq. (2.1-7) (from the equation of
motion) is y = Yo = 3.58 x 10° s'], corresponding to a rising time of 2.8 us.
For comparison, the growth rate is also estimated from an energy principle.

For a large aspect ratio elliptical plasma with a quasi-constant current profile

and conducting wall Tlocated at infinity, Haas has found that the change of po-

tential energy due to vertical displacement is given by(g)
W ol 1Ryt 31 L (£ )22 (2.2-1)
= - S———————————— + — — L=
(b2-+a2)1/2 2 B¢
where the 1imiting B is defined as
L 36 (2.2-2)
B = ? - . -
© ag” 1+ 39
The growth rate can be estimated from
1/2
SW »
y = -MZ— —2> (2.2-3)
-\, P & -

which yields 3.40 x 105 s'] for TNS. The results for both methods are in

agreement.

A configuration that is unstable in a matter of a few us would be near impossible
as well as impractical to control. Response and reprocessing times less than
1 us would be required, but such technology is still in developmental stages.
Power supply requirements of a controller may be astronomical since amplifier
‘rise times ~ us would be required. '



TABLE 2.2-1

KEY PARAMETERS OF THE EQUILIBRIUM PLASMA USED TO COMPUTE
GROWTH RATE OF VERTICAL INSTABILITY IN TNS
WITH NO STABILIZING INDUCED CURRENTS

=
n

5m

1.25m

2.0 m

= -0.76 (at'Rp)

= 0.57 T (atR))
6.1 MA

= 0.15

1.25 x 10
= 7.85 ml

O
o

o I T o

—
1]

20 m3 (average density)

o 3| ™
n

I ©

= 4.2x10°% kg
(effective particle mass for
50-50 D-T plasma)

mo= Fia=402x 1078 kg/m

M, = 2R = 0.130 x 1073 Kg

VARIATION OF Bz AND -n ALONG MAJOR RADIUS

-n B

r(m) | -n | B(T) | —=% (T/m)

4.5 1.03 0.517 0.118
5.0 0.763 | 0.568 0.0867
5.5 0.478 | 0.603 0.0524
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Fortunateiy, it has been demonstrated that the rise time can be reduced signi-
ficantly by the eddy current induced in the first wall which will be considered
in the next section.
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3.0 STABILIZING EFFECT OF A PERFECT RESISTIVE WALL
ON THE VERTICAL INSTABILITY

The resistive shell has been treated in cylindrical coordinates and the rise
time has been found to be reduced by three orders of magnitude. In the treat-
ment given in the following subsection, the toroidal effect is taken into
account,

3.1 VECTOR POTENTIAL OF THE PERTURBED PLASMA

The vector potential of a Edrrent,1oop of radius Rp carrying a current Ip is

well known(g’]o)

I /R \1/2 _
A, - %_B<_BZ> [(1 - ‘? k2) K (K8) - E (kz)]» (3.1-1)

rk

where K and E are the complete elliptic integrals of the first and second kind,
respectively, with argument
4R r

p

kS =
(Rp + r)2 v 20

Transforming to the poloidal (polar) coordinates

-
1]

R + p cos®
P (3.1-2)

p sins

N
1]

and expanding the e11iptic integrals about Rp, one can derive

. I_R 8 R I 8 R
A = Yo pp n (——2)- 2]+ 2o p n (——R)- pcose  (3.1-3)
¢ . 2wr ' P _ Ay P :

to first order in p/r. In the limit Rp-+w, with Rp/r + 1, the spatial depen-
dence of A¢ reduces tn

po I 4
= _.9 P -
A¢ 5 In p (3.1-4)
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the well known result for the long straight wire. Thus, the p cose term in
Eq. (3.1-3) expresses the toroidal effect to first order in p/Rp.

It can be shown that the vector potential of the plasma is related to the
poloidal flux function of the plasma, wp’ by

y
= P -
A¢ 5er - (3.1-5)
Using a form for v given by Mukhovatov and Shafranov(7) for the large aspect
ratio circular plasma, the vector potential for finite pressure can be written
as

) 2nr
ug 1 8 R\ 52 .
—E?FE n —;—E -1+ ;7 (A + E)p cos @ (3.1-6)
to first order in p/r for p > a. Here, A is the asymmetry factor defined by |
11
A= Byt - 1. (3.1-7)

. where By is the poloidal g and ]i is the inductance per unit length of the

plasma. If the plasma is vertically perturbed the amount £z, the cosine and

sine laws permit us to reference the vector potential in terms of the unper-

turbed position by the substitutions -
p—*p(]-gsine)

cos® »coso (1 + %-sin 6) (3.1-8)

given to first order in &/p. This linearized form shows that p cos @ remains
unchanged to first order.

Using Eq. (3.1-8) in Eq. (3.1-6) and expanding

Jr_ - R‘_ (1. 2C0s8) (3.1-9)
p P
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gives the change in the vector potential for the plasma

o I

5A¢ = -°7"—2[1 - f (p) cos e]-glsine (3.1-10)
where
p |1 az 1
(I = 5 - (1 + )] (3.1-11)

expresses the first order correction due to toroidal effects and finite plasma
size and pressure.

3.2 EDDY CURRENTS AND THE INDUCED MAGNETIC FIELD DUE TO THE FIRST WALL

Consider a first wall with conductivity o located at p = Py with thickness

§ << Pyt The perturbed vector potential Eq. (3.1-10) gives rise to an electric
. A (9) ‘

field in the wall

-a(cA¢)

E¢ = ST (3.2-1)

that determines an eddy current density distribution

i, = 3, - f (p,) cos 6] sine e (3.2-2)

W

¢

It has been assumed that this distribution is uniform over the wall thickness §.
This approximation is valid provided the current diffusion time (or skin time)

L, = 22— (3.2-3)

is small in comparison to the characteristic time associated with the pertur-
bation (i.e., the rising time or the period of other modes). The magnetic
permeability p has been taken to be that of vacuum Ho- In the regions exterior
to the wall (p > p, OF P < pw) the induced field satisfies Vv x b = 0. Thus,
b is derivable from a scalar potential b = - v V. Sinceyv - b =0, V satisfies
LaPlace's Equation V2V = 0. The complete solution for V can then be expressed

in terms of the cylindrical harmonics
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® c
_ n n .
Vo= a + b, 1ne f+2; (anp + ;ﬁIT) sin ne +
(3.2-4)

d

n n
(bnp + ;ﬁ:T) cOS no
where the coefficients remain to be determined by boundary conditions. Due to
‘the uniformity of jw over its thickness, we may treat the shell as a conductor

with a surface current per unit length

|_(- =

N o

EW (3.2-5)
flowing on the inside and outside of the shell and b = O within the wall
internal. The boundary condition then becomes

nox [[Q_]] = n, k[v-f (pw) cos 6] (3.2-6)

where the double brackets ﬁ:]] denote the difference in b at the boundary, and
n is the normal to the wall surface. The toroidal effect appears again in Eq.
(3.2-6) so that wemay define eg X €, = e,. Using Eq. (3.1-4) thru Eq. (3.1-6)
with b = -9V allows us to match the coefficients of the cylindrical harmonic
expansion and determine b uniquely. The solution is a series of multipole fields.
Retaining the lowest two orders, the solution in the region inside the vessel,

for p < Py Can be written as
. Mg g 8 . .
b = .20 s s 2 9 f(pw)[(r-R)er-zz]. (3.2-7)

The second term is a quadrupole field whose contribution is to the order of
pw/Rp.

The fields in the region outside the vessel, for p > oy + §, are
w, J_ 68 (p 2 P 2
_ 0 ‘o w 2 2, A . Pw_ ~ -
b =- 5 ; 7 [(x -2°) r+2x22] + 3f bw)(m*-zzﬁ
' e P (3.2-8)

where x = r - Rp. This equation consists of dipole and quadrupole fields.

3-4




The radial components of b inside the vacuum vessel is of opposite sign to Br
and is stabilizing. The vertical force given in.Eq. (2.1-4) can now be mod-
ified as

B u §

J
F, = 5J¢ (r,2) [ 372- £ - -9—29-— (1 - B% f (o) cos e)] dv  (3.2-9)

Since the toroidal effect gives a contribution of order a/Rp and the shift in
the magnetic axis is also of this order, its net contribution to the integral
is negligible. Thus, Eq. (3.2-9) can be re-expressed as

N

THR D
= . .00 -
-y £ 5 Ip (3.2-10)

Q. Ao

+

o
N

To determine the value of jo’ we will need to develop a circuit equation for
the eddy current distribution. The equation will consist of three parts - (1)
an emf induced by the shell (the LI contribution of the eddy currents), (2) an
emf induced by the plasma (the Ipﬁ contribution due to the plasma current
motion), and (3) the resistance drop in the shell (the IR drop). The plasma
current-Ip is assumed constantvso no Lp ip term is present.

Consider the path depicted in Figure 3.2~1. The emf induced by the shell is

-d Py

en?f] = T— (3.2—11)

where ¢, is the net flux enclosed by the path and is given by
bo o © 1 2 o (3.2-12)
@, = . [n-r¢ (pw) cos 6] ( ) sine) N

The emf induced by the plasma motion is:

= 2 . )
emf, = - 2 §5A a1 (3.2-13)
or using Eq. (3.1-10)
po I
= _9_2. - . d_g. _
emf, Z v, (1 - f(p,) cos 08) (20 & sing) g3 (3.2-14)
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" Figure 3.2-1. 'Path of Integration for Eddy Current Circuit
o Equation. The Contours Form a Plane Slicing
_ the Shell at Constant x.
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with the partial becoming the total time derivative. The resistance drop is

simply
2 o Jw — .
or
-3, : .
enfy = — (1-f (pw) cos 8) (2 P, sine) (3.2-16)

Factoring out the common factor (1-f (pw) cos 8) (2 pY sin8) and summihg the
emf's to zero gives

J u 8p dj p I

..2 -0 L) 0 - 0 p ig. = -

s Y T2 It Znp, dt - O (3.2-17)

independent of 6.

Assuming a time dependence for & and jo of the form eZt, Eqs. (3.2-10) and

(3.2-17) can be combined to eliminate jo and £ giving

: 2
2 2 _ wo T 2
z- - Yo = TTfr;rEa (3.2-18)
where | I 2
2 uo
v, = : (3.2-19)
2r m Py
and
u. 8 oop :
T = —-°——2—-—W (3.2-20)

The first two terms in Eq. (3.2-17) are the IR drop and the LI of the shell.
Thus, t is the L/R time of the shell. For the perfectly conducting shell,
T > = and Eq. (3.2-18) reduces to

(3.2-21)
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. as

The dispersion relation, Eq. (3}2-]8). is a cubic equation and can be rewritten

3 z” 2 2 o~ _
¥4 --T— + ((uo‘ - YO ) Z - -T— v- 0 (3.2-22)
We can investigate its sfability:pfoperties by writting the Roth array(]])
3 . 2 2
2z b % " Y O
2 e Ee 0
z w 2 0 0
b e .
R R S (3.2-23)

“The number of sign changes in the first column of the Roth array dictates the.
number of,unétable roots.’ Sih;e“welare concerned with y02'> 0 (i.e., n < 0)
there will be one unstable root:Rez;> 0 and two damped roots.

10 -2

2 ~ 10" s © for MA currents. The so]utiohs

Typically, s_m.lo'z s and moz'& Y,
to the cubic Eq. (3.2-22) or Eq. (3.2-18) can then be well approximated (typi-

cally with less. than 1% error),forli%'<<.|Q02 - Y02| by
ST . .
o .Yoz : .
Z, = —— (3.2-24)
T T Y
- 2 .22 1 1y 3 9.

The solution z, can be found by neglecting z° in 22 - vy % of Eq. (3.2-18).
Provided»w02»> Yoz; thé'growth:rate will be determined by Zys typically of the
order %a The remaining roots will be high frequency oscillations that decay
away with a similar time constant. If, however, y02 > 2, the growth rate will

be predicted by Eq. (3.2-25).. .




3.3 APPLICATION TO TNS

Predicting an accurate value for the growth rate in TNS with first wall included
would be a difficult task due to the complicated geometry of the plasma and first
wall. An estimation using Eqs. (3.2-24) and (3.2-25) is possible, however, pro-
vided an effective wall radius can be chosen that is physically meaningful.

Since the eddy currents have an approximate sine distribution, a value Py ~ b”
can be used, where b” is the wall radius at & = n/2. The growth rate predicted
would then be conservatively high since b~ is the position in the wall further-
most from the origin p = 0. For a scrape-off zone of 0.2 m, the value of »
Py ¥ b- =2.2m. Using a conguctivity of ?%ain;ess steel ¢ = 1.1 x 106 Q-] m'],
a wall thickness of 12 mm, Yo = 1.28 x 10° " s - (from Section 2.2), and thg
remaining parameters needed in Table 2.2-1, the values of the parameters Wy

and t are

moz = 3,73 x 10]] sec'2

'r = 0,018 sec’

¢

Since wbz > Yoz’ z, predicts the growth rate

y = z; = 29 sec']
The high frequency damped oscillations are then
2, . = +1 (5x10°) - 42 sec”!
2,3 -
Since the current diffusion time tS = 0.1 ms and I%- | = 2 ms, the high fre-

quency oscillations may be damped considerably. The’prédicted damping time is
n 24 ms, so they should present no problem irregardless.

It is useful to see the tendency of the growth rate variation with the decay
index even though it is a function of g, Bv’ Ip, etc. Assuming all the other
parameters can be held constant, the growth rate will increase drastically

with -n and appears to diverge at w02 = yoz.
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‘Figure 3.3-1 shows the variation of z, with -n. Approximations (3.2-24) and .I

(3.2-25) break‘down near w = Yoz and cause this'appakent divergence. .

~

As has been mentioned earlier, the toroidal effect is of higher order. and
was not considered. However, it can be discussed qualitatively. At 15% g,

the induced current has the form .

i, = 3, sine (1 + 0.3 cos 8). (3.3f1)
This indicates the distribution of induced current is weighted to the outside
of the torus in the direction of shifting magnetic axis for finite g.

To summarize the highlights of: this section, we have seen that a dispersion
-re1ation of third order develops from the plasma equation of motion and thé'
wall circuit equation. ‘There will be one growth rate and two damped roots.

" If the wall is close enough, the growth rate will be,considerab]y reduced from

the value computed in Section 2 with no stabilizing mechanism. If it is too

- far kembved.»the growth rate will approach this value. '

For TNS, this growth rate_is_29 sec'] corresponding to a'risihg‘time of 34 ms.
The rising time computed with no stabilizing mechanism was found to be 2.8 us.
Thus, the wall will slow the instability by a factor of over 10%,

L is controllable by today's technology. However, the

A growth rate of 30 Sec;
first wall in TNS may require transverse insulating gaps to allow the external

~ fields to diffuse more rapidly into the vacuum vessel. The higher wall resis-
tance wou]d’therEby increase the growth rate proportionally. For this reason,
it is necessary to'investigate the sfabilizing_properties of other externé]l
conductors. Since the EF coils are continuous in thé toroidal direction, they”'

may suppOrt the eddy currents required for slbwing-ddwn the vertical instability.



100,000

| Y T T T T T T T 1 71 T T )
C -
10,000 | —
o -1
F -
—~ 1,000 |
'8 : .:. é
& N -
K - i
w -—
—
= - .
- .
£ 100 —
o e -
S E -
[ -y
‘ l
- TNS VALUE -
10 -
1 1 i 1 | 1 L 1 1 1 | | 1
0 .2 .4 .6 .8 2.8

Figure 3.3-1

1.0.1.2 1.41.6 1.8 2.0 2.2 2.4 2.6
DECAY INDEX -n :

Growth Rate With Stabilizing Effect of
First Wall VS Decay Index

3-1



4.0 STABILIZING EFFECT OF THE EQUILIBRIUM FIELD COILS
ON THE VERTICAL INSTABILITY

In this section we shall consider the effect of the equilibrium field coils on
the growth rate of the vertical instability. This treatment is expected to
describe the actual behavior of the plasma if the first wall is weak or contains -
transverse gaps that impede the flow of stabilizing eddy currents. It is assum-
ed that steady state has been achieved and the OH coils are decoupled from the
plasma.

An induced plasma skin current is found to lessen the growth rate by only a few
percent when stabilized by the first wall, so for simplicity and conservatism,
we shall neglect any induced plasma currents in this treatment. We shall also
approximate the plasma as a current loop for simplicity, since finite plasma
size did not appear in the growth rate equations. The fields due to current
loops can be computed accurately by means of the elliptic integrals, so an
exact solution that includes toroidal effects is possible for this discrete
coil approach. The plasma equation of motion and the EF coil circuit equations
are developed in much the same manner as they were for the resistive wall. It
is shown that the coils above the equatorial plane must, by some method, be
connected in parallel with those below the plane so the stabilizing eddy cur-
rents are free to flow. The directions and magnitudes of the coil currents
thereby resembles the approximate sine distribution found in the wall. Instead
of one circuit equation, however, there will be N circuit equations where N is
the number of EF coil pairs. By connecting coils above the equatorial plane in
series and placing them in parallel with those below, the number of independent
circuit equations can be reduced. Three configurations are studied in which
10, 3, and 1 independent circuit equations result.

The shell effect for each configuration is demonstrated by means of an eigen-
value equation for the induced coil currents. Varying the decay index permits
the extraction of an effective w02 and t by fitting the numerical values of
the growth rate to the shell formula z;, given by Eq. (3.2-24).
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4.1 DEVELOPMENT OF THE EQUATION OF MOTION AND THE EF COIL CIRCUIT EQUATIONS

o

Consider the EF coil pair symmetrically located about the equatorial plane
z = 0. A current I° flows in the top and Bottom coil in equilibrium. An in-
duced current Ii also flows when the plasma is perturbed £z. Since this
motion increases the flux in the top coil and decreases the flux in the bottom,
the direction of the induced current Ii is as shown for the parallel configur-
ation (Figure 4.1-1). Note that Ii is free to flow by bypassing the power
supply and the top and bottom contributions do not cancel as they would in a
series connection. The induced current gives rise to a radial fie]d(g)

w N, I. z. g. (K,E)

o] 1 1 1 A )
be, = - (4.1-1)
i 2r R, [(ri-+Rp)2-+zi2]]/2

at the plasma radius Rp where Ni is the number of turns in the top coil, r
and z, define its position, and 9, (K,E) is a function of the complete elliptic
integrals '

2 riz + R 2 + z1.2 2
g; (KE) = K (k%) + ——Fr—T5 E (k") (4.1-2)
(r. =R )"+ 2z
j p i
with arguments
2 4 ri R
k= 2P 5 (4.1-3)
(ri + Rp) *+z,

Since Ii flows in the opposite sense in .the bottom coil, it will give rise to
the same radial field on axis. Thus, the equation of motion of the plasma can
be expressed

d2£ 2 21 N
ooy, £= -2 2 bry (4.1-4)
. 1=

Assuming a time dependence eZt, and using matrix notation, this is expressible
as

Eo=- A - (4.1-5)
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Figure 4.1-1.

The Parallel EF Coil Pair Connection Showing Equilibrium
Current I, and Induced Current I Due to Vertical Motion
of Plasma., The Plasma Current is Opposite in Direction

to Iy in all EF Coils Except the EF-D Coil. The Direction
of I1 is the same in all Coils for the Positive Perturba-
tion £2. In Practice, Each Top (Bottom) Coil will Consist
of Niy>>1 Turns and may be Connected in Series with Other
Top zBottom) Coils and Co]]ect1ve1y in Parallel with those
Below (Above).
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where Eo is the value of £ at t 0, At is a row vector with components

A

= 27R I bri | 4.1
; "pp_fi— (4.1-6)
I is a column vector with components Ii at t = 0, and u is one-half the plasma
mass

W= omRom o= M2, (4.1-7)

A circuit equation for each coil pair can be developed in a manner that is
analogous to the resistive wall, with the path defined in Figure 3.2-1 extend-
ed around the torus and including each of the Ni turns in the top and bottom
coils. In other words, the path around which Ii flows in Figure 4.1-1 is
taken. The emf's are as follows:

"N . dI,
= - -3 ‘ -
enf, . 22 Mis T% (4.1-8)
i=]
where M{j = Mij - Mi-j is mutual inductance between two top coils i and j

minus the mutual inductance between the top coil i and the bottom coil -j.

. The factor of two arises by symmetry and the minus sign signifies the negative
coupling between the top and bottom coils. The emf induced by the plasma motion
can be expressed in the form

9 .
emf,, - o §i sA,* dl (4.1-9)

or

E]
emf2 -2r r, N"§E s A (4.1-10)

i i ¢i

where 6A¢i is the change in the vector potential of the plasma due to the per-
turbation £z evaluated at the position Fis Z;e The last contribution is the

IR drop

emei = -2 Ri I_i (4.1-11)
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where R, is the resistance of the top (or bottom) coil. The three emf's are
then summed to zero and result in N circuit equations. The value of § A i
however, remains to be found. To find § A¢i’ one uses Eq. (3.1-1) substi;uting

;r > Tr2z-8 to define A¢i at the perturbed position. The value of k= and
k are then changed as

2 £ z, J
Kokl 1+ o (4.1-12)
1 (R +r.)" + 2z,
p i i .
and
£z,
k > k. 1 + = k., + 6 k., (4.1-13)
1 (Rp + ri)? + 212 1 1

to first order in £. The elliptic integrals can be expanded in a Taylor series
to order sk, making use of the properties of their derivatives

oK (k;2) E (k,2) K (k%)
—_— = L - ! 4.1-14)
7K. 7 T (4.
i k. (1 - k.%) i
i i
and
o (k%) E (kiz) K (kiz)
—S-k——— = K - K (4.]—15)
i i i
It can then be shown that § A¢i takes the form:
‘ w I z.¢g v
SA,, = © p 1 g, (K,E) (4.1-16)
$i 2 ri [(Rp + ri)Z + 212]1/2 1

Substituting this expression into Eq. (4.1-10) and defining Ip in the negative
sense,

a

= at -
emf,. 2 A, 3% ‘ (4.1-17)

where Ai is given by Eq. (4.1-6)

4-5



Combining all the emf's and dividihg by two, the circuit equations become

N d I,
| . .= a4
;E% Mij o *t R I A - (4.1-18)

which can be reexpressed in matrix notation assuming a time dependence eZt,

(zM +R)T = Azg . 4 (4.1-19)
where M” and R are NxN matricies with the following components and character-
Cistics: |

M, = M,.-M, .,
ij ij - i-j

which is a positive definite symmetric.hatrix and

R.. = R, §,.
ij . i i
is a positive diagonal matrix.. A is an_N»component column vector whose trans-
pose appears in the equation of motion, Eq. (4.1-5)

(22 -y % e = A"

= _I

Y o . M

It is interesting to note that the "cause ahd effect" vectors (i.e., A and At)
have the same éomponents. Since u = Mp/2 it might-abpear that the effect is.
twice as strong, however, Eq. (4.1-19) applies to either the top or bottom
coil since the factor of two has been cancelled. o
There are two approaches one can use to eliminate I and go from Eqs. (4.1-5)
and (4.1-19) to get a dispersion relation for z. Eliminating I first and then
& gjves

-
R 2
-~

, ¢ |
22 = YOZ - 5%— (zM‘ + R)f1 A. (4.1-20) -

" where (zM- + R)f]-is the inverse of (zM” + R).. For general matricies, the
inverse would be difficult to find since R and M° would not;be.simultaneous1y '
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diagonalizable unless they commute. ~ As they appear here, R and M do not com-
mute either. A way has been devised in another work to deal with this problem
and cast the right hand side of Eq. (4.1-20) into a workable form(12).
R is diagonal, R™1/2 and R1/2
inverse, we may write

Since
can be easily defined. Using properties of the

At (- s )T A = (rTV2pE [z (R71/2 w7172y 4 1]‘1 (R71/2R)  (4.1-21)

where 1 is the N x N identity matrix.

1/2 1/2

M“R™ remains positive, definite, and symmetric.
Therefore, it can be diagonalized by an orthogonal matrix U that yields positive

components

It is easily shown that R™

where
-1 1 1.
Ny T y Si50 Ay > O (4.1-23)
- v =172 :
Redefining A = UR A, Eq. (4.1-21) becomes
o A - - Y
At (M- + )T A = APz e )7 A (4.1-24)
and Eq. (4.1-20) can be rewritten as
N C.z .
2 _ 2 i
v, o= 2+ }; —T (4.1-25)
j=1 i
where
Ai 'K-z -
C. = .50 (4.1-26)
1 u

Equation (5.1-19) bears a striking resemblance to the in-hour equation in reactor
kinetics(]3). The quantities yoz, Ci. and Ai. correspond to reactivity, delayed
neutron fraction of the i-th group, and delayed neutron lifetime in the i-th

group. The reactor.period would be 1/z. The prompt neutron contribution 2z that
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‘appears in the in-hour equation (I;= prompt neutron lifetime) is replaced by

the inertial term 22 in Eq. (4.1-25). Since the A -1 's are related to the
L/R times of the coils, they are (and have been demonstrated to be) positive.

Thus, there are N poles at z; = Ai. Graphing the right-hand side of Eq.

(4.1-25), the z axis is cut at z =0 and.behaVes asymptotically as_z2 for large
2, At large negative z, 22 again dominates. The poles confine the other bran-

: ches as shown in F1gure 4.1-2,

As is. graph1ca11y demonstrated with N = 5 for Yo 2, 0, there will be one unstable.
root z,. "For .moderate values of Yoz’ z, will 1ntersect near the origin and
there will be N-1 negative real roots following. The two remaining roots will
be damped complex conjugate pairs. For large Yo 2, z will be highly unstable,
intersecting near the portion of the graph behav1ng as z2 asymptotically. The
N-1 negative real roots found before almost remain fixed. Another negative
root then appears fo]loW1ng these, and f1na11y the last h1gh1y negative root
appears - wh1ch is almost a mirror image of Zy. In summary, ;here are N +1
damped roots and one highly unstable root. For negative Yo there are N damp-
ed roots and two damped conjugate roots. It is easy to show that these obser-
vat1ons are expected for N 1 by examination of the shell roots given in Egs.
(3.2-24) and (3.2-25). | |

For moderate values of Yo 2, the effect of z2 is not fe]t and the growth rate

1. and N-1 damped roots can be found by neglecting 22 in Eq. (4.1 5). The

~ two damped osc111atory pairs, however, would not be recovered. For large Yo 2,7
- one would find N damped roots by neglecting 22, but the pr1nc1p1e roots of con-

eern,»z not Y, wou]d not be found.

With th1s word of caution, we drop zz-in Eq. (4.1-5). Eliminating Yo then

_'g1ves'

ant
(M- +R) T = Z2PA7 (4.1-27)
' MY,
divfding by z and rearranging
t _ . :
( - _HAA?> [ = -% I - (4.1-28)
MY, _ . '
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which can be rewr1tten in the form of an e1genva1ue equat1on for the induced
coil current amp11tudes ‘

RN S o (4.1-29)

" where the components of H are gtveh_by;

[ A WY
H. = E;,‘Mf"‘ —4) | (4.1-30)

1) 1J
. WY,

Equation (4.1-29) can beAso1Ved;hUmerica]Jy.for the N eigenvalues -1/z. The

eigenvectors give the relative cdi]'curfent amplitudes. Normalization of the

 coil amplitudes is then poss1b1e u51ng either Eq (4.1-19) or (4.1-5) with_go
specified. R ‘

It is re]atively_simple'to'ihc1ude the effect of connecting two or more coils
above the plane in a'series'and theh'connecting them in-parallel to those below.
The va1ue of I in these coils’ so connected is fixed and one can add their cur-
cuit equatwons together: under: th1s constra1nt to obta1n a fewer number of inde- .
pendent circuit equat1ons ‘The; 11m1t1ng case is the all series- para]]e] connec-
tion. Here, one has the same current. in-all the co11s and all the matricies and
vectors become scalars ~ Then one has .

A -~ N
Moo= ) ML, (4.1-31)
i1 Y
e N :
A =RT =3 A : o (4.1-32)
, ' izl _ . _
. N ' _
R = 20 R (4.1-33)
_ _ . =] '
and Eq. (4.1-29) can then be solved directly giving
1 Yo A
r4 - . - 2 - 2 . (4.]"34)

M/R) AT/ - g
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which leads to the'é?féEEiVe'wbz = AZ/uM’ as used in the shell formula. The
other parameter was perhaps obvious. Effective moz and t for other configur-
ations of gigher order can be fitted to the solution 25 given by Eq. (3.2-25) by
7varying Yo and solving numerically. This will be demonstrated in the TNS
‘application.

4.2 APPLICATION TO TNS

Using the realistic ‘inductance and resistance matricies, the eigenvalue equation
(4.1-29) is solved for the induced coil currents amplitudes I and the growth rate
and damped roots z. Three configurations are examined for .copper EF coils
(resiétivity = 1,72 uQ cm).

Configuration I uses the ten parallel EF coils pairs with each pair having its
own independent power supply. The 10 x 10 inductance matrix M~ is given in
Table 4.2-1. The values of the resistance matrix R and the vector A (for Ip = '
6.1 MA) with the positions (ri,zi) and the coil turns N, are given in Table
4.2-2.

In Configuration I1I, the inside (1 thru 4), divertor like (5) and outside (6
thru 10) coils are placed in the series-parallel connection. By adding the
circuit equations together, the contracted inductance matrix (also given in
Table 4.2-1) results. This matrix can be easily compiled from the previous
one by adding up all the inductances in each of the nine block matricies high-
lighted in the 10 x 10 matrix. The components of R and A, contracted in the
same manner, are given in 4.2-2 below Configuration I's values. Since each
coil within these three groups requires the same equilibrium current as the
others in the group, this configuration is practical as well as economical in
that only three power supplies are required. |

Configuration III was the all series-parallel connection, with M°, A, and R
given by Eqs. (4.1-31) thru (4.1-33). The growth rate is given by Eq. (4.1-34)

and there are no real damped roots until Az/uM‘ <y This configuration is

. o’
not practical in that the I, D, and 0 equilibrium currents are all different



S W N

o {Te] [ee] ~ o)} (3, ]

TABLE 4.2-1

INDUCTANCE MATRIX M"(]O?H) FOR TNS REFERENCE FOR CONFIGURATION I

, I D 0
1 2 3 4 5 6 7 8 9 10
138 |.046 |.022 |.012 |.027 | .o15 | .o11 | .008 | .004 | .001
.046 |.215 |.073 |.038 |.086 | .047 | .036 | .025 | .014 [ 005
.022 .673' .260 | .088 185 |-.096 | .069 | -046 | .028 | .009
.012 |.038 |.088 |.306.-|.405 | .178 | .117 | .075 | .038 | .014
.027 | .086 T 185 .4os~”3;451 1.033 | .605 | .375 | .215 | .071
.015 |.047 |.096 |.178 }..033 |2.028 | .796 | .457 | .231 | .085
011 | .036 |.069  _.117 .605 7796 2.411- | .923 | .551 | .154
.008 |.025 |.046 |.075 f.375 | .457 | .923 [2.394 | .911 | .269
.004 |.014 |.028 |.038 }.215| .231 | .551 | .911 .224 | .504
©.001 | .005 |.009 014 |.071 | .085 | .154 | .269 | .504 1513
CONTRACTED MATRIX FOR CONFIGURATION 11
T (x10%h) '
1.477 | .703 | -.836
.703 3.451 | 2.299
.836 | 2.299 | 20.332 M= 300K

Scalar matrix for
Configuration III




TABLE 4.2-2
DATA FOR EF COIL PAIRS IN CONFIGURATION I

gg%k Ai‘(£%%> ‘N, (TURNS) R, (OHMS) rom) [z (m)

1 20.6 13.4 .00428 3.15 .21
1|2 58.7 13.4 00431 3.17 .65
3 90.9 13.4 .00442 3.25 1.26

4 107. 13.4 00477 3.51 2.02

D 5 396. 44.8 -.0182 4.00 2.59
6 360. 29.8 .0148 4.90 2.55

7 446. 29.8 .0174 5.75 2.10

ol 8 438. 29.8 .0190 6.29 1.51
9 316. 29.8 .0200 6.63 .95

10 7. 29.8 .0206 6.82 .33

CONTRACTED VALUES FOR
CONFIGURATION II

Nt }!.
Ai (———) Ri (OHMS)

Amp
227. .0178
396. .0182 = 2300. Nt /Amp.
R = .128 ohms

1677. .0918

VALUES FOR CONFIGURATION III



prov1de a comparison ba,eqfor I\and II when 1nvest1gat1ng the. effect of the
1nduced currents ' v '

~-_bﬁj:

Us1ng v, 2.=i-n (1.68 x 10" 1 sec 2*and =M /2 6.47 x 107° kg,. the matrix

. (4, T 29) was soTved~numer1caITy There 1s one pos1t1ve eigenvalue. (growth
rate) and K-1 (K = 10, 3 or‘T),negat1ve e1genva1ues for each of the three -con-
f1gurat1ons unt1I the decay 1ndex exceeds some cr1t1ca1 value. For conf1gur-
ation I, this cr1t1ca1 vaTue is., roughTy n -1.66. Due to the constraint on

the currents in II and III, the cht1caI vaTue is Towered in magnitude to

cr
of the decay 1ndex 1n F1gure 4. 2 T where all the other pTasma parameters are
assumed constant The growth rateS*for II and 111 are almost equal when =n, 1s
less than 1. i Below n _;-1 0 they d1ffer onTy in the fourth s1gn1f1cant f1gure,_
with II be1ng the more« stabTe.I In‘Conf1gurat1on I, the induced currents are R

not constra1ned and free to adJust‘to the1r approx1mate sin ed1str1but1on. ~As. -
expected the growth rates are. sT1ght1y 10wer than in IT and I11.

z

_Usingfn = -0.8 for TNS;ﬂthejthreevgrowthﬁrates arée’
3533 sec ]y For 1
4185 sec =1 For Il

| u4188 sec™!  For 1II

wh1ch correspond to r1s1ng t1hes of 2.83, 2.39, and 2.39 sec, respectively.
We note considerable: 1mprovement here over first wall stabilization (34 ms ) v
and no stabilization (3~§ us)ﬂby%two and six orders»of-magn1tude, respective]y.

The eftect'of resistange‘(or res1st1v1ty) can be noted from the form of the:

HTJ components given in’ Eq (4 T 30) the growth rate be1ng proportloned to

- the co11 res1st1v1ty Thus, superconduct1ng co1ls w1TT provide neutral. stab1-
11zat1on for -n < -n ‘

The coils have many features sfntﬁar‘to ‘the resistive wall and it is possible

- to f1t ‘the analytic shell growth rate zy in Eq.. (3.2- 24) to the numerical data

and - thereby deflne an effect1ve wo,.and T for the co1ls Configuration_ILI;f

n.. =-=1.57 and -1, 54, respect1ve1y The growth rates: are plotted as a funct10n u'af‘-'
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Figure 4.2-1. Gréowth Rate of Vertical Instability vs Decay Index for
Different Parallel EF Coil Configurations when Other
Plasma Parameters are Held Constant.
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of course, -already obeys this formula and its values can be fitted exactly.
The result is an effective w02 = 2.59 x 10" sec™® and t = 2.57 sec.

_For Configuration I, effective woz = 2,77'x 10" sec™® and © = 2.70 sec provide
"agreement between the analytic expression and the numerical data to less than
'5% deviation over the decay index range 0 < -n < 1.6. For Configuration I,
the effective w02.= 2.64 x 10]1 sec-2 and T = 2.50 sec gives agreement to 5%
over the range 0 < -n < 1.4,

Having defined the effective wa and T for the three configurations, it is

possible to estimafe the high frequency damped roots for TNS that have been'

negiected in this'treatment. Using n ~ -0.8, z, ~ 0.4 sec'], moz =2.6 x 10

1

sec™?, and t = 2.6 sec, Eq. (3.2-25) gives

-1 .

z noti (3.5 x 10%) -0.4 sec

2,3
~ Since these roots are damped and may be artifacts, they shou]d present no
prob]em

The eigenvectors of the matrix equation give the relative current amplitudes
in the: EF coils. When normalized to g = 0.1 m, the induced currents contri-
bute an 1nward stab111z1ng radial f1e1d of 91 gauss at r = Rp, z = 0. The
‘currents of the positive growth rate are all of the same sign (i.e., in the
direction + é¢ in the top coiis) but of mixed signs for the K-1 damped roots

z < 0. The induced EF coil currents for 2y, NS Configuration I (n = -0.8)

are given'ﬁn Figure 2.3-1. The currents appear somewhat as the sine distri-
bution that'gave rise to the uniform radial field for first wall stabilization.
_Thé induéed field at r = Rp, z:= 0.5 m was examined to obtain some idea of the
field uniformity. It was found that an inward radial field of 89 gauss and a
vertical field of 15 géuss exists at this point. This radial field is only 2%
lower than the induced field on axis and the vertical field is less than 0.3%
"of the equilibrium vertica]-field. Thus, it appears that the radial field is
“rather uniform or at least smoothly vafying over the plasma cross section and
the induced vertical field ‘component does not s1gn1f1cant1y disturb the ver-
tical field required for horizontal- equ111br1um




As has been discussed previously, the effective conducting shell approximation
is considered to be reasonable and we rely on it to simplify the calculations
for the feedback control system discussed in the next section.



5.0 FEEDBACK CONTROL OF THE VERTICAL INSTABILITY

The discrete EF coils.were found to slow the vertical instability in TNS to
rising times on the order of 3 seconds. Since the discharge time in TNS will
be about 30 seconds, some type of feedback control will be required to assure
plasma stab111ty for -the pulse duration.

Having demonstrated an equivalence between the EF coils and a resistive shell,
we she11 rely on this property to simplify the control theory when a more exact
solution is not possible. This shell-1ike approximation is applicable to

Emmert's approach(]4)

where instantaneous and pure time-delayed feedback is
considered. - Hugill and Gibson(]s), on the other hand, use a controller volt-
age determined by both the plasma position and the detection and amplifier
time constant. Their analysis is by circuit theory in which both passive and
active agents have their own (collective) resistances and inductances. A sim-
ilarity between the two approaches is demonstrated by comparing the gain re-

quirements and the delay and controller time constants.

A brief summary of different optical and magnetic probe detectors is given.
X-ray detectors appear to be fast responding and capable of sufficient spatial
resolution provided a system of several detectors is used. Present state-of-
the-art magnetic probes may be adequate to detect Eo < 0.1 m, however, sensi-
tivity could be reduced if these are placed outside the vacuum vessel.

A conceptual design for vertical feedback control in TNS is then presented.
This system uses three separate control windings located near the D-5, 0-6,.
and 0-7 EF coils. These control coils may be wound in the same casings as the
EF coils but separately connected, however. The peak power requiremehts to
vertically control the plasma within + 0.1 m (assuming adequate detection is
possible) is less than 1 MW for a 6.1 MA plasma current and a delay time of

1 sec. A peak power approximately 10 times this value would be needed if EF
co11 currents prov1ded the act1ve control 1nstead of the separate windings.

) o e R R wtete Ry A ©etewansan e,
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5.1 CONTROL THEORY FOR FEEDBACK CONTROL OF THE VERTICAL INSTABILITY

Since the EF coils behaved collectively like a shell, we shall assume that
they can be treated as if_R, M-, and A = At are scalars and avoid the matrix
nature of these quantities. Let us assume that
f.b. _ : _
Br = -Gk (t.- td) (Sf]'])
where td is the time.qelay for the control system and G is the c6ntro11er.géin
(T/m). The equation of motion for the plasma (see Eq. (4.1-4) and (4.1-5)) is

then modiffed to include tHe,EE-x B:'b' feedback force as
2 ' AT 16 | '
. 2 ~
d_£t) v,oe(t) = —= - e (t-t) (5.1-2)
dt™ . u m .

where IC is the effective EF coil current and y = 7 Rp m is half the plasma

"mass. ThecircuitEqs. (4.1-18) or-(4.1-19) will contain an emf due to the

coupling between the feedback field and the induced coil current Ic. The emf

“due to the féedback control coils can be written as-

f.b. _ d 5
emf. = 4« Rp Pe Tt B

f.b.

r (5.153)

where Pe is the effective radius of the shell for the EF coils. Dividing by
two and recalling Eqs. (5.1-1) and (4.1-18), the modified circuit equation

beconies
dI_(t) o
« . cC _ de (t) . d e e
RIL(E) + M —— = A Tt (2 m Ry ) 6 3¢ 2 (t-ty)  (5.1-4)

Defining ?(t) as the LaP]éte-transform'of f(t), Eqs. (5.1-2) and (5.1-4) can

-be rewritten as

2 2w

“L ~ 16
- s“g - g(0) - sg(0) - Y, £ I

n, - .
cEEe )

= |>

and

V(R+M‘s) ?C-- M1 (0) = A{[sg-;(o)l»- 2mR o Ge'ftd [s£-£(0)].  (5.1-6)
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'Neglectinéffnitiai“bond{tionévg(és = £(0) = 1.(0) = 0, the dispersion relation
becomes :

: 2
P I G '
S oty s (et 1
- (mo Yo ) StT ( —Je - = 0 (5.1-7)

‘In the Timit ty > 0, it is easy to see from the Roth array and Eq. (3.2-22)
that the?§tabi1ity condition for Eq. (5.1-7) becomes

Dorhoie s o

-""‘-h an Ui . 2 .
G > o .. z 510

ERSTONE

' , I1G
and tpe roots are given by Eqs. (3.2-24) and (3,2-25) with -ﬁ%— - YOZ replacing

- YOZ in ‘the numerator of Eq. (3.2-24). Thus,

I 2

(]F G - Y )
S - (5.]'9)

‘ (0, = vy0)

0 Yo
'and
. L 2 5 1 1

S50 = 21 (g 42 - (s D) (5.1-10)

describe the long term plasma behavior geSt in the 1imit of instantaneous
feedback t; - 0. ‘

Since we are interested in the low frequency behavior (i.e., Sy 3 should be
stabilized by the wall) we shall neglect the first two terms of Eq. (5.1-7)
obtaining '

S = ]._ g e-Std : (5.]-]])
Z
1
where z, .is the growth rate of Eq. (3.2-24) or the growth rate with EF coil

stabilization obtained-numerically and

g = _£257 : (5.1-12)
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(14) has shown,
using Nyquist diagrams, that the cond1t1ons of stab111ty (R s < 0) for Eq.
(5.1- 11) are

is the relative gain of the feédback.cdntrol system. Emmert

g1 : (5.1413)
and o |
R 1 -1 {1 "
t, < >— ~———e— (oS - . (5.1-14)
d . z] | /EE_:_T . (g) ,

The resu1t g > 1 is expected sincé 1t is.a restatement of Eq. (5. 1- 8) whén

d 0. The de1ay time must a]ways "be less than the rising time 1/21, .and can
approach. this value as g - 1. This is ‘rather unexpected since a higher gain”
requires a smaller de]ay t1me

A more restrictive cond1t1on on t app11es if the transient response is con-
sidered. If given an initial d1sp1acement £o the stab111zed plasma w111 be.
reversed at t =t if the restor1ng force: exceeds the dr1v1ng force on the
plasma. This cond1t1on is sat1sf1ed if

or SRS N | (5.1-15) .

This pure growth and decay.-howevgr. does not occur at large gains and the con-
dition of Eq. (5.1-14) should be met first in order to insuke:stabi1ity.

An attempt to_optimize the'power Fequirements for the feedback system has also
been outlined by Emmert. Since a jump in'Bi‘b‘ would imply infinite power, a
linear rise is assumed between t =-0 and t = ty. By matching the (magnetic) -

power required at td and 2 td' an,qptiMum condition

- 2 z.t :
- 1°d _
or :_~ (5.1-16)
' . 426
.td- ' z4



is found:. The gain requirement for transient stability is then

g > 1.537 (5.1-17)
by Eq. (8.1-15). Since g = 1,537 gives t < Zi by Eq. (5.1-14), a stable
solution 'is then assured for long term response also.

"The maximum excurs1on of the plasma with. t given by Eq. (5.1-16) . will be
1.54 Eqs and the power requ1red to supply the change in the magnet1c f1e1d
will be

P = = 6 °U (5.1-18)

where-U is the stored magnetic energy per (Bf -b. )2. The 12R loss in the con-

troller must also be accounted for to determ1ne the total power requirement.
Hugill and Gibson(15) appfoach this control prob]em in much the same manner ‘as
Emmert but express their circuit equations and equationofmotion in terms of
the shell and control windings 1nductances and resistances entirely. The con-
troller voltage is given by

-u'nRRKIE
dv +y = 0

L 2p r34 (5.1-19)

23

where V is the applied controller voltage, R3 is the controller output resisf
tance, K is a nondimensional gain of the servo-loop, M23 is the mutual induc-
tance between the wall (or in our case the EF coils) and the controller, and

tc is the time constant of the detection and amplifier circuits.

The additional circuit equation for the controller and the presence of V plus
jts derivative in Eq. (5.1-19) results in a fifth order dispersion relation for

z for £ n eZt

Neglecting the high frequency roots (|22| << IYOZI). a third
order equation develops

Cz3 + 022 +Ez+F =0 (5.1-20)



where

B 2 2
C tc t2 w,
- 2
D = A(t t] + tz ) Wy
- 2 2
E = tyug -ty ,
F= Kal- v, (5.1-21)
and t] and t2 are defined by
2., 2 2 2 2 2
SO A A S LR A
(5.1-22)
2 2. 2 2 2
t2- wo—rtf(]-k)_(wo'Yo)

tf being the L/R time of the contro] w1nd1ng and k2 is. the mutual inductance
coupling coefficient between the "she]]" and the control w1nd1ng

The stab111ty criteria obtained from the Routh array require D, E, F, and
DE-CF to be pos1t1ve This gives the following conditions

K > Yo /wo | | | (571-23)
. t] Y02 tiz tc t12 : o :
K < — - ' + - : (5.1-24)
tc 2 t'2 ¢ t 2 .
Y% 2 v 2
and :
tC < — T ‘ (5.1j25)
, Y,

'A«direct_correspondence between this system and Emmert's is difficult to find
however, -we- do note some similar features that. allow us to compare the two.

The gain réquirement in Eq. (5.1-23) is similar to the requfrement of Eq.
(5.1-8) in that the minimum gain_must be proportional to yoz..'The.factor're—'
lating the two can then be used for the upper gain boundary Eq. (5.1-24) in
'Emmertfs‘énalysfs that accounts for.destabilizaiion'due to the controller
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causing reversed flow of eddyJCUrrents in the "shell."

Recalling t) w°2 in Eq. (5.1-22), we see that Eq. (5.1-25) can be reexpressed
.as :

1
c V4

0 (5.1-26)

—
<
[«

i

This cons%ifutéslan improvement over pure time de1ay'where the maximum delay
time for g > 1 became 1/;].

A distinguishihg feature between the two systems is the polynomial dispersion
relation of Eq. (5.1-20). Since V is always acting for the slightest pertur-
bation £ (see Eq. (5.1-19)) it is possible to (theoretically) control a change
as soon as it occurs. Thus, the plasma is always damped provided conditions
of Eq. (5.1-23) thru (5.1;25) are met. Since a practical system requires a
finitely detectable disturbance before feedback control can be initiated, it
is worthwhile to consider some possible plasma position detectors before pre-

senting 'a conceptual design.

5.2  PLASMA POSITION DETECTORS

The intensity of the Bremsstrahlung radiation varies as ne2 Te]/z

and Te are the electron density and temperature. Because of this weaker de-

n
where e

pendence on Te’ an X-ray detector could essentially determing the position of
the magnetic axis Rm if the currents and density have similar profiles. An
X-ray detector placed to view constant z, however, will see all three peaks if
the core of the plasma passes its view. Thus, for vertical control, one could,
in principle, determine £Z accurately with a series of x-ray detectors. Com-
plications could occur for radial control and the plasma density and current
profile would need to be determined beforehand - either by computation or ex-
perimentation - possibly using both X-ray and interferometry using a C02

1aser(]6);

Alcator has used a series of three collimated X-ray detectors spaced 4 cm
apart to measure the plasma radial position. By adjusting the vertical field
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after each discharge based on’osci1lograms from the detector, the burn -time
wasAincreased from 0.25 to 0.65 sec. To improve spatial resolutioh, more de-
tectors can be used. The sampling time, however, increases to roughly 2N us
Whéré N is the number of elements in the array(17). Alcator C is planning to
use a series of ten or more detectors with the limiter radius being about
10,cm(18)
a 20 us. (These are my estimations and are based on the limiter radius and the
sampling time given previously.)

Presumably spatial resolution will be ~1 cm with sampling times

X-ray detection is still in its infahcy and requires a considerable amount of
study and exberiméntation before becoming app1iéab1e to plasma control. Amer-.
~ican Science and Engineering, Inc. is one of the major companies with research
and development in this area. They are presently tryfng to devise a self-
scanning array of x-ray detectors with position monitoring and analog and/or
digital readout(]s). |

Magnetic. probes placed at different poloidal angles can be used to detect ép
the time rate of change of the poloidal magnetic field due to plasma pos1t1on
or current change. ORMAK(]9 20) has used the offset signal from probes at
6=0and 180° to measure A, the shift of the center of the outer flux surfacé
from the center of the-conducting shell. "After integration this fosét signal
is: '
u

=B (0°) - B_ (180°) |
. b
R N O BE (T80°) (5.2-1)

u

- which can be used to find the shift

u” ' Bv + a B a .
. = —— ___Q_R -
A ‘C1 + Cz'd+ +_C3 Bp (5.2-2)

where C1, Cé, C3,'and o are expé?imenté]ly determined constants and Bgap is-
gap field that leaks through the conducting wall. Using Thompson scattering
data to determine the position of the magnetic axis, the magnetic axis offset,
relative to the plasma centér. wéé_determined and found to agree well with
that predicfed by theory. The feedback control positioned the plasma radially
within a few m1111meters dur1ng the bulk of the d1scharge by determining A

on-line with analog circuitry and adJust1ng the vertical field accord1ng]y

5-8



For vertical motion, a signal similar to Eq. (5.2-1) could be used with probes
positioned at 6 =90°., Toroidal effects would then be . absent and the offset
signal would be

ﬁi' - 5 (5.2-3)

where z = +d are the positions of the two probes.

The probes used:in ORMAK were placed inside the conducting shell but. outside
the liner, so their sensitivity was weakened only by the liner and stray fields
produced by the vertical field coils. Future tokamaks having a resistive first
wall but no liner or conducting shell present problems with either sensitivity
(if placed outside the wall) or radiation and thermal damage (if placed inside
the wall). Logical compromises might be to place them in the position of a
resistive gap outside the wall or replace them periodically when damaged. Re-
sponse time appears to be no problem for growth rates larger than the wall time
constant if p]acéd outside the wall., If placed at gaps inside the wall, the
response would essentially be determined by the amplifier response alone.

Rogowski coils and other magnetic loop detectors can also be used to indicate

(15) used both cosine and

plasma position and/or plasma current. Cleo-Tokamak
sine Rogowsk! and saddle coils to determine plasma position and current. lhe
cosine Rogowski coil resembles a toroid that wraps around the minor radius of
the vessel with turns varying as cos 6, i.e., weighted at 6 =0° and 180°, and
is used for horizontal positioning. The sine coil is merely rotated 90° and
is used to determine vertical position. The saddle coil is formed from a rec-
tangular loop that is wrapped around a torus segment as if it were riding it.
For horizontal control, the ends of the "saddle" are at 6 =-90° with the amp-
lifier connection made at 6 =+90°, Radial motion of the plasma increases the
flux in the segment where cos 6 > 1 and decreases the flux where cos 6 < 1.
For vertical control, the saddle is merely rotated by 90°. Calling x the
position variable (i.e., either z or r—Rp) the integrated response of either

saddle or Rogowski cofl?ié;of the form

-
n

AT (x - x°) + CB, (5.2-4)
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where A, C, and x~ are constants deterMihed by cg]ibration and BZ is the known
vertical field (for vertical motion C=0). The signals from the two coils are
combined to determine x and Ipf The position and p]asma.cukrent then determine
the stabilizing field required. The detection time is set by the wall diffusion
time (~1wus) in the Cleo-Tokamak. A transistor amplifier network changes the
current in four control Toops that produces the stabilizing field.

Radial control for.a. vertically Stab1e plasma increased the discharge time from
0.11 sec to 0.2 sec and the plasma remained centered to + 1 cm for 0.14 sec. A
vertica11y'unstab1e plasma was also stabilized and centered for up to 0.1 sec.
The experimentally determined gain boundaries for this ve%tica] control, how- .
.ever, were about a factor of four below those giveninEgs. (5.1-23) and (5.1-24).

X-ray détectors, magnetic probes, Rogowski coils, and saddle coils are the
‘major plasma position (and current) detectors considered for feedback systems
‘today. The latter three are state-of-the-art devices but subject to sensiti-
Cvity pfpb]ems.and stray magnetic fields. The x-ray detector is relatively new
and requires more comp]icated'cirCuitry and still much development. It is the
~only device, however, that is capab1e of determining the plasma position, in
principle, absolutely. For this reason and for its fast response, if is likely
_ to be the candidate detector for future tokamaks. However, the other\devices,
despite their drawbacks, have proven themselves in the systems mentioned as
well as others and should not be ruled out altogether for future tokamaks.

~ 5.3 DESIGN FOR FEEDBACK CONTROL OF VERTICAL INSTABILITY IN TNS

In this final section, we present the necessary features of the control coils

to feedback stabilize the vertical instability. Amplifier and detector speci- - -

fications are not given, but the power requirements for the overall system

with and without feedback delay are calculated. We assume that the detectors ,
are capable of detecting a vertical shift ~5cm so the maximum plasma excur- - ' ]
sion is controlled to +0.1m. ' |

The control coils are located near or in the same casings as the EF coils D-5,
0-6, and 0-7. Control by varying EF ¢oils currents will require much larger

F T I o N
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power supplies than these separate coils would. This will be demonstrated in
the analysis.

.The EF coil Configuration II will be used for design purposes since this con-
“tracted I-D-0 grouping is the more practical and economical configuration.

The design will work also for Configurétion I, however, since it is more stable
than II. '

Using a decay index of -0.8 and B, = 0.6 T, the minimum gain is (by Eq. (5.1-8))

G .
min

H

0.096 T/m (5.3-1)

Since we wish to stabilize the transient response when delay time is included,

we choose
G = 0.15 T/m . (5.3-2)
or ‘
. G - '
g = 3. =1.56 (5.3-3)
min
. . 2 _ 1N -2 _ 2 _
For effective coil parameters-wo =2.64 x 100" sec ", Tt = 2.5 sec, and Yo =

1.35 x 101] sec'z, the damped rates for "instantaneous" feedback are (by Egs.

(5.1-9) and (5.1-10))

1

s, = -0.27 sec’ -(5,3-4)

S, 5 = +1(3.6x 10°) -0.065 sec™’ (5.3-5)
]

The growth rate without feedback is zy = 0.418 sec'] (or rising time = 2.4 sec)
SO as an indication of "instantaneous" we choose a feedback system rise time of

tr = T%TET'= 0.25 sec. Thus, the plasma will deviate no more than eo‘] =1.1

times the initial detected plasma deviation 5o Choosing £ © 0.1 m for in-
stantaneous feedback, the maximum radial stabilizing field will be

f.b.

Br max

= G & = 0.015 T ' (5.3-6)

«inward1ywdireéted for -the positﬁve*perturbation*withmiﬁ'in~the negative sense.



Since sin 6, > 0.9 for coils 5, 6, and 7, let us choose, for simplicity, a
maximum field contribution By, = 0.005 T from each of the three coil pairs.

Denoting n; as the number of turns in either top or bottom control coil and ii
"as the maximum current in the control coil, the ns ii (amp turns) required can
be balanced according to

A, n. i, I
1 1 1 _
w— = £ B (5.3-7)

o N i

where Ai and Ni are the values given in Table 4.2-2. This balance gives the
following amp-turns in the coils:

ng 15 = 54,2 kA
Ne 16 = 39,6 kA . (5.3-8)
n, 17 = 32.0 kA

which also appear in Figure 2.2-1.

To determine the controller voltage, we need to know the single turn inductances

m;. =m,. - m, . for the control coils. The single turn mutual inductances can

b;Jfounépr d}vgding the elements in Table 4.2-1 by Ni Nj. The single turn
self-inductances i =j, however, are less well defined since the self-inductance
depends on the coil cross section dimensions. But this dependence is only
logarithmic so to a reasonable approximation m{j = M{J./NiNj for all cases.

We shall assume that the currents in the coils rise linearly in a time tr and
that induced currents in the EF coils can be neglected. The latter approxima-
tion is a poor one when the currents ij are beginning their ramp. As they
approach their maximum value, however, the induced EF coil currents will stop
and reverse direction. Their effect, in a sense, avérages out and we may
approximate for the maximum controller voltage at 5 (see circuit schematic in
Figure 5.3-1).

o 2'R5 . 2 n52 meg 15 . 2 NgNe m§6i6 . 2 ngn, mg7i7

55 N5 tr tr - tr

Vs (5.3-9)



Figure 5.3-1. Typica'l Control Circuit for Feedback Control System
: ITlustrating Series Connection for Controller.



assuming the only resistance in the circuit is the resistance of the coil
itself. The circuit equations for 6 and 7 are similar to the one for 5.

Denoting the maximum power in the circuit 5 as P5 = v51'5 (etc for 6 and 7) the
following expressions result for the three controller groups

p . 0.150MJ . 2.39 MW

5 tr Ng
P6 - 0.128 M, 1.56 MW
r. "6
_ 0.094 MJ 1.19 MW ’
P, = T + - (5.3-10)

r 7

Thus, we see that the magnetic power is independent of coil turns but the ohmic
power is inversly proportional. '

To keep the size of the control coils as small as possible without adding
appreciable joule heat, let us take ng = ne =n, = 10. Taking tr = 0.25 sec,
Eq. (5.3-10) gives

©
n

mag 1.49 MW (5.3-11)

pJH

0.51 MW (5.3-12)

as the magnetic and joule-heat powers, respectively. The total controller
power is then

P = P + P = 2.0 MW : (5.3-13)
for the "instantaneous" feedback.

To offer a more optimum system with feedback delay we shall design with Eqgs.
(5.1-15) thru (5.1-18) in mind.



The time delay is given by Eq. ké;i;is)

0.426
td = 048 =' 1.02 sec (5‘.3-]4)

‘and g = 1.56 satisfies Eq. (5.1-17). For Tong term stability, Eq. (5.1-14)
must be satisfied. This gives td < 1.75 sec which is acceptable.

We wouldllf&gitgrde§ign to gy T 0.1 m so £y = 0.1/1.54 = 0.065.m makes a

constraint on- thé detectors that hopefd11y can be met.

The parameter U in Eq. (5.1-18) can be found using

g _
Erag = V2 ‘[: meyongng iy (5.3-15)
i,j=-5
which is already available from the power value Pmag by
Pmag tr
Emag_ = 5 = 0.186 MJ . (5.3-16)
Thus,
Ema MJ
U = -89 - g26 (5.3-17)
_ f.b. 2
: Br T
mag

giving a magnetic power optimum by Eq. (5.1-18)

Pmag = 0.154 MW (5.3-18)

The total power with joule heat included 1s then

P = Pmag + PJH = 0.67 MW (5.3-19)

about a third of the previous value.

It is important to note that the analysis offered in this section is based on
many approximations. Where possible, however, the worst case was-assumed, SO
the power requirements should be no greater than indicated.



If the EF currents weré adjusted to provide feedback, the controller voltages
given by Eq. (5.3-9) would be roughly the same, but the controller power supply
would have to carry the equilibrium current (-0.82 MA-turns for D-5) in

‘addition. The magnetic power P5 would then be a ratio about %ég = 15 times
, n :
as great. The.ohmic increase would be 15 N§-3_3.4 times as great. These -
g :

increases result in controller pbwer’specifications of roughly 25 MW for
"instantaneous" control and 4 MW with delayed control. Thus, the required
power would increase by roughly a factor of ten without separate controllers.

- Since‘Ip = 6.1 MA can be regarded aé the upper limit in TNS, it is beneficial -
to_know the power required by the controller at other currents. This power
varies as'(B:'b')2 which varies as Bf " Is. So the 5% g at 4.3 MA will draw
half as much peak power as at 6.1 MA provided the decay index remains relative-

ly constant.

Induced currents due to the coupling between fhe OH controller and EF control-
ler during the start of the dfscharge might be expected. However, the top con-
~troller loops are positively coupled to the top OH and EF coils and the bottom
Toops are negatively coupled to the bottom OH and EF coils so the effect of
induced currents cancels. The exception is the EF-D coils which are coupled

in the opposite sense. Induced currents here, of course, also cancel. Thus,
unwanted induced currents due to EF controller or the OH controller coupling
can be neglected irrégardTess of whether the EF and OH are hooked in a series
'br-para]]el.connection. '

Induced currents due to plasma motion and EF contro]1er‘coupling.is expected
during a vertical perturbation if the EF coils are placed in parallel. This
effect, however, is desired since the induced EF coil currents were found to A
reduce the vertical instability significantly.

It is desirable to compareithe gain and delay time requirements found by
Emmert's method to those of Hugill and Gibson. The condition in Eq. (5.1-23)




gives a minimum gain of 0.51 which is a factor of two lower than the value of
the minimum relative gain g > 1.

‘To compare these two methods,. the coupling coefficient for mutual inductances,
k, must be found. For two concentric shells, this coupling coefficient varies

as the ratio of their wall radii. Since, however, w

varies inversly as pw2,
2

0
can be obtained by finding the ratios of woz. Since the

an estimate of k
effective 1 and&ubz,were easy to define for the EF coil Configuration III and

did not differ more "than 10% with those values for I and II, effective ubz and
v for the control coils can be estimated in a similar manner using Eqs. (4.1-31)

thru (4.1-33). These give k% NO% and t_. in Eq. (5.,1-22) as

f'
k2 moz = 1.8 x 10]] sec'2
| (5.3-20)
t., = 0.74 sec

f

The values of t, and t, from Eq. (5.1-22) are then t, = 1.35 sec and t, = 0.54
sec. These require a controller -time constant t_ < 2.6 sec by Eq. (5.1-25).

As tC > tc max® the 1imit on the gain Kmax in Eq. (5.1-24) approaches Kmin'

As tC - 0, however, Kmax + o and there is no limit on the gain. To compare
the two methods, let us take tc = td = 1 sec. Then, the following limit is
imposed upon K:

0.51 < K < 5.3 : (5.3-21)
and if g scales proportionally

1<g<10 A 4 (5.3-22)

This seems to indicate that our system is stable against the possibility of
reversed eddy currents driving the plasma unstable in the opposite direction.

The roots to Eq. (5.1-20) for tc =1 sec and K = 0.8 (i.e., 1.56 Kmin) are



-5.1 sec'l

N
-—d
1]

1

+i (0.37) -0.26 sec” (5.3-23)

Zy 3 -t
Note that the damping rates are greater than or of the same order of magnitude
as those predicted by Eq. (5.3-4) and (5.3-5) for "instantaneous" feedback.
The high frequency oscillations in Eq. (5.3-5) are absent here since the
‘assumption |22]<< YOZ was used to reduce Eq. (5.1-20) to its third order (in-
stead of fifth order) form.



6.0 CONCLUSIONS

To summarize the control of the vertical instability in TNS, we have seen how
a plasma with a rising time of 3 us (without eddy currents considered) could
be slowed down to ~30ms by the first wall provided it is continuous in the
toroidal direction. Different parallel EF coil configurations were found to
slow the instability down to rising times ~2 to 3 sec.

The "shell-1ike" behavior of the discrete EF coils allowed considerable simpli-
fication of the control theory needed to design a feedback system to fully
stabilize the vertical instability.

The power requirements for a system using three separaté control circuits to

drive the feedback currents are very modest - about 2 MW for "instantaneous"
control and less than 1 MW for a 1 sec delay-time.
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