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ABSTRACT
One-dimensional numerical studies have been made of free-electron laser os-
cillators in which the incident electron energy varies (chirps) as a function of time
over each micropulse. Optical radiation resonant with such micropulses is chirped
in frequency. Highest calculated efficiency (up to 8.1% for wavelengths near 10 um)

has been obtained in cases where the optical pulse at saturation is short compared

to the slippage.
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I. INTRODUCTION

In two recent publications {1,2] we developed a theoretical description of a short-
pulse free-electron laser in which both the electron energy and the laser frequency
vary (chirp) as a function of time over the micropulses. Such a chirped-pulse FEL
would be powered by an RF linac in which the electrons are accelerated on the
high-gradient phase of the RF field. The chirped electron pulses emerging from
the accelerator would pass through and be compressed by the field of achromatic
bending magnets as they are injected into the wiggler.

If the FEL produces coherent radiation near a single time-dependent frequency
w, (1) and its harmonics, where 7 = t — z/c is retarded time, then the trajectory

7(2,7,) of resonant particles {i.e., fictitious particles which move at the speed of the

ponderomotive potential) is given by

/ dr'w, (') =/ dz'k,(2'), (1)
To 0
where 7, is the time of injection into the wiggler and k, is the wave vector of

the (possibly tapered) wiggler. The trajectories 7(2z,7,) are nonintersecting and

monotonically increasing in z. The velocity v, (z,7) of these trajectories is given by

1/v.(2,7) = 1/ = kqo(2) /w, (), (2)

which in the extreme relativistic limit corresponds to the Doppler upshift condition

¥ (2:7) = wi (1) A(2) /2¢k, (2). (3)

Here mc?~,(z,7) is the resonant electron energy, and the mass shift

Al2) = 1+ €242 (2) fm?c* (4)
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accounts for the fact that some of the electron energy is converted to transverse
motion inside the wiggler. A,(z) is the RMS amplitude of the wiggler vector po-
tential. In order for electrons to interact strongly with the laser field, they must
be close to resonance. Except in special cases, the resonant particle trajectories are
accelerated, so that electrons stay close to resonance only by becoming trapped in
the wells of the ponderomotive potential. In order that they become trapped at the
wiggler entrance, their incident energies should be close to mc*~,(0,7), as given by
Eq. (3). This provide a criterion for choosing the carrier frequency w, (7).

Efficiency enhancement by wiggler tapering [3] is accomplished by decreasing A
or increasing k, adiabatically as a function of 2, such that electrons remain trapped
and close in energy to a decreasing v,. Given an intense optical pulse with a de-
creasing frequency w, (7), one could equally well enhance the efficiency, even with a
uniform wiggler, by taking advantage of the fact that electrons slip to larger vaiue
of 7 as they traverse the wiggler. These considerations motivated us to undertake
a one-dimensional numerical study of short-pulse propagation in the chirped-pulse
FEL oscillator. The results so far have been encouraging as regards efficiency en-
hancement, but not in accord with the idea of adiabatic energy extraction from
trapped electrons. Instead, our best results have been obtained when the optical
pulse is short compared tu the slippage between light and electrons, so that indi-
vidual electrons interact strongly with the light only over a short fraction of the
wiggler length.

Our theoretical approach is based on the slowly-varying envelope (SVA) approx-

imation, whereby the laser field E, (2,7) is written (neglecting higher harmonics) as

a product

E,(7) = E,(z,7)e "), (5)

where d¢/dr = w, (). We presume that w, can be appropriately chosen such that

E, varies litile over an optical period. The SVA approximation is almost universally
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used in FEL theory, although w, is usually taken to be constant. The amplitude
E, is calculated self-consistently by numerically solving the coupled Maxwell and
electron equations for many passes through the resonator. The validity of the
SVA approximation becomes questionable, however, when the time derivative of
the phase of the complex amplitude E, becomes comparable to w, at times when
the laser power is high or when the optical pulse becomes only a few periods long.
Since these conditions develop in the situations where we obtain high-efficiency,
our results in this regime are encouraging, but not conclusive. These conditions
occur even without electron energy chirping or wiggler tapering. However, chirp-
ing, particularly when combined witl inverse tapering, substantially increases the
efficiency.

The dynamical equations for the chirped-pulse FEL have been presented else-
where [1,2]. For present purposes we restrict these equations by assuming that
higher harmonics can be neglected, that the electrons are ultrarelativistic, that
there is no electron energy spread uncorrelated with time, and that the amplitude
of the wiggler vector potential is untapered. We assume, furthermore, that the

optical resonator is dispersionless. The dynamical equations become:

a'(z,T)%[U(Z’T)E'(Z’T)] - 2rizc :’((;)) Vr (f‘l‘:’ )

1 [* )
X I(TO)‘Z_n—/ db, exp[—1i0(z,79,0,)], (6)
0

20 10.%) — by ()21, 80) . (27) — 1), -

O(2;70,00) _ 1 e?
dz T 2¢,(z,7) m3c?

x exp|—i8(z,7,0,)] + c.c.}. (8)

{4, E; (2,7)
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Here 6 is the electron phase angle in the ponderomotive potential, with iriti.l value
8,, A, is the RMS wiggler vector potential (multiplied, except in Eq. (4), by a
well-known difference of Bessel functions [4] if the wiggler is linearly polarized); and
I(7,) is the incident electron current. The variables z, 75, and 7 are related by Eq.
(1). the complex function o(z,) is obtained [5] by projecting the three-dimensional
laser field onto the fundamental Gaussian mode of the resonator, so as to account
for diffractive beam spreading and phase shift. Since the Gaussian beam waist
depends on frequency, and the frequency w, depends on 7, o becomes a function of

7 for the chirped-pulse FEL. It is given by

where Z; is the Rayleigh range and 2z, is the coordinate of the beam waist. The
laser power is |0 E, |?.

Equations (6)-(8) were obtained by multiple-scaling arguments along the lines
of Ref. [4] and [5]. These arguments lead to the phase average over 6, in Eq. (6).
The SVA approximation emerges naturally from the multiple-scaling analysis, and
a breakdown of the SVA approximation may indicate a breakdown of the entire
multiple-scaling perturbation procedure.

We assume that electron motion on the time scale of the pulse envelopes is
determined by Eq. (1). When the resonant-particle trajectories are accelerated, only
trapped electrons actually remain close to these trajectories. However, untrapped
electrons move out of resonance and then do not radiate significantly at the laser
frequency. Therefore, it should not be important to track them accurately. However,
the large and essentially random phases of such electrons do contribute noise to our
numerical simulations.

Equation (1) can be written as ¢ — ¢y = 1), where 1 is the wiggler phase, ¢ is

the optical phase, and ¢, is the initial value of the optical phase. Our numerical
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integration procedure uses independent variables proportional to these phase angles,
rather than z, 7, and 7. The latter, however, are used for output. The independent
variables are defined on uniform grids, though the step size in ¢ can differ from the
step size in ¢ and ¢,. When different step sizes are used, three-point interpolation is
used to relate values on the two grids. The fundamental dependent variables of the
numerical computations are 6, v, and the modulus and phase of the dimensionless

complex amplitude

E, (.9) = [mcw, (4)]"/20(v, $)E, (. 9). (10)

Since the phase of o is independent of ¢, there is no important distinction between
the phase of F, and the phase of E’, .

Although using the phase angles ¢, ¢, ¢; as independent variables greatly
simplifies the integration of the dynamical equations across the wiggler, one pays a
price in accounting for cavity-length detuning. As has been understood since the
first FEL pulse calculations [6], laser lethargy effectively slows down the optical
pulses in the FEL. If the cavity round-trip time at the vacuum speed of light is
synchronized with the injection period of the the electron micropulses, one finds
that the light lags behind the electrons after a number of passes, and the gain
eventually goes below threshold. The usual way to compensate for lethargy is to
shorten the optical cavity slightly. Typically the shortening ¢ is a few microns.
The optical pulse is pushed forward in 7 by an amount é7 = 2¢/c. For simulations
of the chirped-pulse FEL this procedure must be combined with an interpolation
to redefine the field on a uniform grid in ¢. We do this by means of cubic splines.
Before carrying out the spline fit, we make sure that the modulus of E’, is positive at
each point (by adding 7 to the phase if necessary) and then require that increments
in the phase of E‘ . between successive points be as small as possible (by adding or

subtracting multiples of 27). Usually the modulus and phase of E’, are smoother
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and less oscillatory than the real and imaginary parts of E‘ ., and so are better suited
for interpolation.

A new feature of the chirped-pulse FEL in that shortening the optical cavity
tends to push the optical field off resonance. The entire field, and not just the SVA,
is pushed forward. In terms of the variables z and 7, the cavity detuning has the

effect

T+or
Ro(L,7 + 67)E,(L,7 + 67) exp [—i/ dr'w, (r')]

W o(0,7)E,(0,7), (11)

where L is the wiggler length and R is the amplitude reflection coefficient for the
resonator. The frequency pushing effect is cumulative over many passes, and tends
to make F, less and less slowly varying. This is counteracted by the gain process,
which produces new radiation near resonance as cavity losses attenuate the old
radiation. However, we find that the chirped-pulse FEL usually does not work well

with large £ (~ 10um). Instead, efficient operation is obtained with cavity detunings

on the order of 0.5um.
II. NUMERICAL SIMULATIONS

Many of the simulation parameters we have used were chosen to approximate

the Los Alamos FEL. The following parameters are invariant in the calculations

presented here.

The wiggler is linearly polarized and has N = 37 periods. The wiggler vector
potential is held constant, and the RMS wiggler field at the wiggler entrance is

0.21213T. The wiggler is tapered according to

ky(z) = ko (1 + aykoz/2mN) ™, (12)

where 27 /k, = 2.73cm.



We take the laser field to be chirped either according to the power-law relation

W, (1) = wo (1l + aywor /20 N) ™ (13)

or the error-function relation

ws () = wo (1 ¥ a,erlf[—(ra: r,,)/Tc])e. ’ (14

where 2w¢/w, = 10um. The Rayleigh range is Zr = 0.63m and the beam waist
is located at 2z, = 0.50505m from the wiggler entrance. The amplitude reflection

coefficient of the cavity is R = 0.98 (i.e., 4% losses per pass). The electron current

is assumed to be a Gaussian,

I(ro) = Ip exp{—{[(r0 — 7)/T.*}, (15)

with I, = 100A. Two cases will be considered, a long pulse (1. = 19psec, T. =
6.171psec) and a short pulse (7. = 2psec, T, = 0.62psec). The length of the short
pulse is comparable to the slippage. In general the slippage 7(L,7,) — 7, varies
somewhat over the pulse. For the unchirped case it is 27 N/w, = 1.23psec. The
electrons at each 7, poirt are represented by 15 electrons on a uniform grid in 4,.
A small random jitter of 8, about the uniform grid points can be used to simulate
noise. We define é to be the full-width of the jitter as a fraction of the grid spacing
2m/15.

The injected field on pass one is taken to be a Gaussian,

0(0,7)E, (0,7) = Ao[mc®w, (0)]7 exp{—[(r = 7.)/T,*}. (16)

If we let the energy of the incident electrons define resonance, the computer program

allows the input field to be detuned from resonance to the frequency
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w(r) = w,(r)(1 — p/27N). (17)

In practice this detuning is simulated by an oscillation of the wiggler amplitude. In
the cw limit without chirping or tapering, and for Zp >> L, one expects maximum
small-signal gain at 4 = 2.6. In general, however, the detuning giving maximum
gain depends on the circumstances, and may even be negative (see Fig. 1). Although
for numerical reasons A, cannot be set equal to zero, it can, if desired, be made so
small that emission on the first pass is dominated by noise in the values of ;.

As a general rule, small-signal gain is highest when untrapped electrons remain
near resonance, which occurs when the resonant particles are unaccelerated. This
is the case if and only if we choose ¢, = ¢, = 1 and o, = o, in Egs. (12) and (23).

Equation (1) then has the solution

T=15+ (1/wo + aro /27 N)ko 2. (18)

As we shall see, the case o = .1 has given the highest efficiency so far calculated for
the chirped-pulse FEL.

Lethargy is mainly a problem during the start-up of the chirped-pulse FEL.
There is little lethargy after saturation, since the electrons become bunched very
quickly. If one starts with a small-signal optical pulse near resonance and with
good overlap to the electron pulses, the gain on the first few passes can be very
high, but soon the optical pulse falls to the rear of the electron pulses and the gain
decreases. Usually it is not possible to shorten the cavity (increase £) sufficiently to
keep the light from falling to the back of the electron pulses withoui pushing the
optical pulse off resonance. One exception is when one or both ends of the pulse are
unchirped, as in Eq. (14). Then, with a 10 or 15 um detuning, one can get lasing

at two different frequencies at the ends of the electron pulses. However, there is no
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lasing in the chirped region, even if the current peaks there. If one lengthens the
cavity after saturation to £ = 0, the chirped region begins to lase.

The results shown in Fig. 2 are for a short pulse with an error-function chirp
(e, =2,a, =0.02,7. = 2.4psec, T, = 0.3psec, a, = 0). The cavity was shortened by
15um for the first 40 passes, then set back to £ = 0. The small-signal gain on pass
8 reached 74%. The efficiency on pass 280 is 5.0%. This is pretty good, although
we have done as well without any chirping. The dip in efficiency prior to pass 40
can be attributed to decreased lethargy at saturation. The cavity detuning is then
pushing the optical pulse forward too fast.

In the strong-signal regime the optical pulse tends to break up into a series of
sharp spikes. This behavior in the unchirpéd FEL is called the sideband instability
[7,8], because it is manifested has a low-frequency sideband in the optical spectrum.
This name seems inappropriate for the chirped FEL, which has a wide bandwidth
whether or not this instability develops. Unfortunately this wide bandwidth pre-
cludes the use of spectral filtering to get rid of the spiking. Spiking tends to cause
electron detrapping, and is the principal reason why we have not so far succeeded
in (numerically) operating the chirped-pulse FEL in the trapped-particle regime.

As an example of spiking, Fig. 3 shows the pulse from Fig. 2 at the end of
pass 280. The optical pulse has developed into an 11 GW spike with several smaller
trailing spikes. The optical pulse energy (2.85x10~3J) exceeds the incident electron
pulse energy (2.28 x 10~3J). The efficiency per bin peaks at about 9%. Note that
efficiency per bin does not weight the amount of current actually injected at time
7o. The resonant wave number w,(7)/c and the actual wave number are shown in
solid and dashed lines, respectively. The latter, which incorporates the numerically
calculated time derivative of the phase of E,, shows a very jagged structure, which is
characteristic of the strongly saturated regime. The trailing features in the optical

pulse, especially the frequency in regions where the power is very small, are believed
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to be numerical “noise,” but the main peaks in the power appear to be “real.” Note
that the main spike is narrow compared to the current pulses.

We have carried out a series of computer experiments for linear wavelength
chirp and taper (¢, = ¢, = 1) for the short electron pulse. In most of the experiments
¢ is of the order of 0.5um. A common feature of these experiments is that the optical
pulse builds up on the rear of the electron pulse. When it reaches a sufficient power
level, it begins moving forward because of the positive value of £. As it approaches
maximal overlap with the electrons, the eificiency peaks. .1¢ wnis point the opiical
pulse consists of a very short high-power spike, followed by several small trailing
spikes. Thereafter the pulse ceases to move forward, and there is often a decrease
in the efficiency. The spikes are much shorter than the slippage, so that electrons
do not stay trapped throughout the wiggler. W

Either chirping or tapering alone tend to reduce the small-signal gain. However,
in the special case @, = @,, where the resonant particles are unaccelerated, the gain
is not reduced substantially. Note that positive a, corresponds to inverse tapering
of the wiggler. Combining positive a, with negative a, adversely affects the gain
and efficiency, though it increases the tolerance of the FEL to cavity shortening.
We attribute this increase to the radiation of higher frequencies at the back end of
the optical pulse by untrapped electrons near the wiggler exit. Table 1 summarizes
calculations for various combinations of «,, a,, £, Ay, and 8. In all cases A, is
sufficiently small that one starts in the small-signal regime. We take 7, = 2.3psec,
T, = 0.85psec, and p = 2 Figure 4 shows the evolution of the efficiency as a
function of pass number for some of the computer experiments in Table 1.

Our calculations so far certainly do not represent a thorough exploration of
the parameter space, and one can never be sure what would have happens=d in any
experiment if more passes had been calculated. However, the following conclusions

seem to be jusiified. First, lethargy rapidly erodes the small-signal gain if one
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starts with an optical pulse near resonance. A 0.5um cavity detuning has little
effect on this erosion. The optical pulse moves forward after saturation, but the
gain continues to decrease even though the overlap between optical and electron
pulses is improving. The largest small-signal gain is obtained when a, = o,. We
obtained the highest efficiency (8.13%) when o, = a, = 0.1.

The results obtained at satur:tion can depend on the optical pulse {(or noise
level) used to initiate the build-up of lasing. This is a bit surprising in view of the
large amplification. For the “best case” just mentioned the pulse energy increases
by a factor of 2.6 x 10® in 279 passes. Since the optical pulse gets shorter, the peak
power is amplified even more. However, the optical pulse does not reach a steady-
state prior to saturation. When we repeated this calculation stariing from noise, the
efficiency reached 5.85% or 6.56%, depending on the noise level. Frequency jitter
associated with the noise is then always present at the front of the optical pulse.
While experimental devices presumably will start from the shot noise associated
with incoherent emission, it is unclear how well our simulations represent this noise.
Details of the pulse evolution for our “best case” are shown in Figs. 5-7.

III. DISCUSSION

We have shown that combining frequency chirping with inverse wiggler taper-
ing according to ¢, = a, > 0 enhances the efficiency of the FEL. However, even
the case a, = a, = 0 can yield an efficiency above 5%, assuming an electron pulse
length comparable to the slippage. In either case the resonant particles are unac-
celerated. Electron trapping is not maintained throughout the wiggler. Saturation
under these conditions is expected to occur when electons undergo about half an
oscillation in the ponderomotive potential. For a cw FEL this corresponds to a
maximum efficiency of 1/2N = 1.35%. However, when the electrons interact with
an optical spike short compared to the slippage and consisting of N, optical peri-

ods, they undergo half an oscillation while traversing N, wiggler periods, so that
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the maximum efficiency is n = 1/2N,. To get a crude estimate of N,, suppose
that the dimensionless amplitude a, = eA, /mc of the laser pulse vector potential is
independent of 7 over the N, optical periods and is real and positive. The spatial
frequency of synchrotron oscillations is 2k,(a,a,/A)'/?, where a, = eA,/mc. In
order that the electrons undergo half a synchrotron oscillation while propagating

through the interaction distance 27N, /k,, we would like

4N, (a,a,/A)Y? = 1. (19)

In general one cannot satisfy Eq. (19) for all of the electrons because of the z
dependence of a, associated with the optical beam focusing. For simplicity let us

suppose that the Rayuleigh range Z5 is long compared to the wiggler, so that this

is not a problem.

Since the laser field E, is relatd to a, according to

E, = (mew,/e)a, (20)

in the SVA approximation, we can use Eq. (9) to write the laser power as

P, = |oE,|* = (Zg [4r.)mc*w, (T)a?, (21)

wherer, = ¢* /4me,mc? is the clasical radius of the electron and w, is to be evaluated

at the time of the optical pulse. The optical pulse energy is

£, = (vZgr [2r.)mc® N, a2. (22)

The energy extractel from the electrons is &, /2N,, where €, is the energy in the

electron pulse slipped over by the optical pulse. The strong-signal gain G, which at

saturation is equal to the losses, is given by
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G = €. /2N,6,. (23)

Combining Egs. (19), (22), and (23), we obtain the efficiency

—1/2N —g.a'_q _ELr_el v (24)
= T A \me2nZ, G )

As Zp decreases past the point where it is comparable to the propagation distance
needed for the electron and optical pulses to slip by each other (which we have
taken to be comparable to the wiggler length L), we expect Eq. (24) to no longer
be valid, and n should peak and then decrease. The electron pulse energy €, is
of the order of the number of electrons per second (I/e) times the electron energy

(mc?4) times the electron pulse duration (AL/2+%¢). Setting Zp = L, we get

n = 8a,(I/2n1,1GA)/?, (25)

where I, = ec/r. ~ 17,0004 is the Alfven current. Note that this result is indepen-
dent of L. This means that the short-pulse regime should be particularly attractive
for small-scale FEL’s. Of course, L must be sufficiently large to give enough small-
signal gain to initiate lasing. Equation (25) must break down for large values of
n(N, < 1), and is invalid when N, > N. Equation (25) scales as v~ !/2 or w; */*,
which seems favorable for short-wavelergth operation. However, low small-signal
gain, large losses, and large dispersion are serious problems at short wavelengths.
Equation (25) is too crude to provide any information on the effects of chirping.
However, it is easily shown that, aside from small differences in the diffractive factor
1+ (2 — 2)/Zg, the FEL dynamical Egs. (6)-(8) for a > 0 are mathematically
nearly equivalent to the equations for @ = 0. This equivalence is easily seen when

Egs. (6)-(8) are written in terms of the variables 3, ¢, $,, and E,. The only

difference is that the current I(¢,) is replaced by I(¢,) exp(ag, /47 N). For a = 0.1
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the effective current increase is about 8%, which, according to Eq. (25), should
increase 7 by a factor of 1.04. This is much less than the increase in n which is
found in the computer simulations. Apparantly the explanation for the beneficial
effects of chirping is not to be found solely by consideration of FEL dynamics within
the wiggler.

The remaining effect of chirping is that cavity detuning tends to push the
optical pulse below resonance as it is pushed forward. It is plausible that this
would increase the efficiency, since electrons well above resonance have further to
fall in the ponderomotive buckets. This sugges s that efficiency enhancement might
also be obtained with a uniform wiggler, unchirped electron micropulses, but a
gradual increase in electron energy over the macropulse.

The wide spectral bandwidth of short optical pulses means that they can inter-
act resonantly with a wide distribution of electron energies. Thus, the short-pulse

regime of the FEL may be relatively insensitive to energy spread, at least in the

saturated regime.
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Table 1. Synopsis of results of computer experiments with linear wavelength chirp
and taper. Numbers in parentheses signify multiplication by powers of
ten. Maximal gain is ill-defined for cases where the initial start-up is
dominated by noise, since large fluctuations occur in the first few
passes.

a a A 2(um)/ Maximal Gain (%) on Maximal

q s 0 Pass Nos. Gain (%)/ Pass 40780  Efficiency
Pass No. (%)/Pass No.
-0.02 0.02 1. 001 10./1-80 94.1/5 13.2/3.3 1.74/38
u " v " 2./41-80 " 13.2/5.1 2.13/80
" w u " 0.5/41-120 " 13.2/5.6 3.53/119
-0.05 0.05 " " 10./1-40 2.9/2 3.9(-3) 2.2(-7)/2
n " w " 0.5/1-340 26.1/27 23.7/16.6 4.91/337
u " u " 0/341-380 " " 5.21/378
-0.1 0.1 " " 0.5/1-40 4.4/30 4.4 2.2{-7)/40
-0.08 0.08 " " 0.5/1-120 11.8/78 9.5/11.8 2.8(-5)/120
" " " " 0.25/1-40 10.8/40 10.8 1.95(-7)/40
-0.06 0.1 " " 0.5/1-40 9.8/40 9.8 1.5(-7)/40
-0.02 " " " 0.5/1-400 18.9/34 18.7/14 .8 4.13/395
" 0.1l v " 0.5/1-40 10.3/40 10.3 1.8(-7)/40
0 0 " " 0.5/1-160 144 /2 21.1/7.8 4.14/159
" " " " 0/161-200 " " 5.02/199
-0.05 0.05 " 5./1-240 29.8/44 29.6/26.4 1.53/112
" " " " 10./1-200 29.0/58 22.8/28.9 1.18/121
-0.02 0.02 u " 10./1-120 210/14 9.5/7.9 2.29/100
" " " " 40./1-40 42.5/32 11.7 4.6(-6)/40
" " " " 30./1-40 69.9/12 6.8 3.2(-5)/27
0 0 " " " 27477 6.6 0.57/40
0 0.05 ¢ " 0.5/1-280 75.6/6 23.9/10.2 6.40/269
" " " " 0,/241/280 " " 6.82/278
" 0.1 " " 0.5/1-200 26.9/22 22.6/15.3 1.68/200
0.05 0.05 ¢ b 0.5/1-240 145/2 21.7/8.4 6.99/235
" " " " 0/201-320 " " 7.82/315
0.1 0.1 " " 0.5/1-200 145/2 21.5/8.9 7.03/200
" " " " 0/201-240 o " 7.85/240
" " " " 0.05/241-320 " " 8.13/279
" " " " 0.5/201-240 " " 7.66/239
" " " " 0/241-320 " " 7.93/268
" " " . 0.05/1-40 144 /2 20.1 6.6(-2)/40
" " " " 0.5/1-40 145/2 21.5 0.105/40
" " 1.(-6) .001 0.5/1-600 . 24.8/17.3 5.85/561
" " " . 0.5/1-40 143/2 22.8 1.15(-13) /40
v " 10. 001 0.5/1-200 145/2 12.2/6.5 7.48/189
" " " " 0/121-160 " n 7.10/160
0.2 0.2 1. " 0.5/1-200 142/2 19.7/9.9 4.23/192
0.1 0.1 " " 1.0/1-160 146/2 22.0/9.1 6.99/158
" " " " 0.25/1-160 l44/2 20.8/8.7 3.84/160
0.05 0.05 1.(-6) .01 0.5/1-120 _ 26.1/17.1 0.73/120
0.1 0.1 " " 0.5/1-480 _ 25.8/17.3 6.56/329
0 0 1. 001 10./1-40 146/2 6.9 1.47/32
n " n " 0.5/41_80 " 69/5.6 2'32/77



FIGURE CAPTIONS

Fig. 1. Single-pass small-signal gain for long electron pulse with error-function chirp
and uniform wiggler (¢, = 2, «, = 0.25, 7, = 19.0 psec, 7, = 19.7 psec,
T. =T, = 6.171 psec).

Fig. 2. Efficiency growth for a short pulse with an error-function chirp and an
untapered wiggler.

Fig. 3. Pulse characteristics on pass 280 for the example of Fig. 2. Upper left: electron
energy (solid line) and current (dashed line, peak = 100 A). Lower left:
Efficiency /bin is the fractional part of the electron energy extracted, and
does not weight the electron current. Lower right: Resonant wave number
w, /¢ (solid line) and time derivative of the total optical phase divided by
¢ (dashed line).

Fig. 4. Efficiency growth for several examples combining linear wavelength chirp
and taper for the short electron pulse. The cavity length detuning is
£ = 0.5um (solid lines) or £ = O (dashed lines), except where otherwise
indicated.

Fig. 5. Pulse evolution for &, = «, = 0.1, the “best case” of Fig. 4. £, denotes
the incident electron pulse kinetic energy. £, denotes the optical pulse
energy (upper left, incident energy at z = 0; elsewhere, energy at z = L).
n denotes the efficiency. Curves have the same meaning as in Fig. 3.

Fig. 6. Continued evolution of the optical power for the case shown in Fig. 5.

Fig. 7. Further evolution of the optical and electron pulses for the case shown in

Figs. 5 and 6.
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