CLPAOGEQTEEC

SANVD--F 80743
CoNF-9 K0T )Y —

Exhaustive Geographic Search with Mobile Robots Along
Space-Filling Curves' e
Setph AN A
Shannon V. Spires ‘;}% o &

Steven Y. Goldsmith 3PR O 9 1930

Advanced Information Systems Laboratory O S T \
Sandia National Laboratories
Albuquerque, New Mexico USA
svspire@sandia.gov, sygolds@sandia.gov

Abstract. Swarms of mobile robots can be tasked with searching a geographic region for
targets of interest, such as buried land mines. We assume that the individual robots are
equipped with sensors tuned to the targets of interest, that these sensors have limited range, and
that the robots can communicate with one another to enable cooperation. How can a swarm of
cooperating sensate robots efficiently search a given geographic region for targets in the
absence of a priori information about the targets’ locations? Many of the “obvious” approaches
are inefficient or lack robustness. One efficient approach is to have the robots traverse a space-
filling curve. For many geographic search applications, this method is energy-frugal, highly
robust, and provides guaranteed coverage in a finite time that decreases as the reciprocal of the
number of robots sharing the search task. Furthermore, it minimizes the amount of robot-to-
robot communication needed for the robots to organize their movements. This report presents
some preliminary results from applying the Hilbert space-filling curve to geographic search by

mobile robots.
Introduction

The idea of using swarms of cooperating robots to solve various physical problems
has received much attention recently [CFKM95], and has recently become cost-
effective and practical with the advent of less expensive hardware and with new
analysis techniques from complexity theory, chaos theory, and nonlinear dynamics.
One problem that is particularly applicable to robot swarms is exhaustive geographic
search. Exhaustive geographic search asks that we develop a complete map of all
phenomena of interest within a defined geographic area, subject to the usual
engineering constraints of efficiency, robustness, and accuracy [GR98b].

One example of such a search problem is that of finding buried land mines. It is
possible to build a robot that has the requisite sensors and navigation apparatus to do
this job, thus removing humans from an extremely high-risk activity. But a single
robot is likely to be expensive and subject to damage from the mines, rendering it
useless. If less expensive robots could be built in quantity, it would be better to build
a swarm of such robots that could cooperate to locate all the mines within a given
geographic region. With the right programming, many robots could do the job faster
than one (ideally in 1/m the time, if m robots participate). The search process would
be more robust because if a robot is damaged by a mine, others could take over its
! Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
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work.

This report presents an efficient, robust, cooperative search algorithm that allows
robots to be applied to such a mission. The main idea of the algorithm is to have the
robots traverse a minimum-length space-filling curve, dividing the search area among
m robots.

Problem Constraints

The nature of the problem is such that there is no a priori knowledge of the locations
of the targets (the targets are the land mines in the example above); we merely know
that there may be one or more targets within a given geographic region. Our mission
is to discover definitely their total number, their locations, and optionally to further
characterize them along other dimensions. The requirements and constraints of the
task are as follows:

« Each robot has a sensor apparatus which is adequate for detecting the targets of
interest, but its range is limited to an area much smaller than the overall region of
interest.

« Each robot can reliably communicate with the other robots with some probability
P.. The search mission should be completable even as P¢ approaches 0, although

it may take longer.

« Each robot has a finite energy supply (e.g. batteries or a fuel cell).

« The robots “know” when their job is finished.

* The robots do not collide.

» The robots stay within the bounds of the search region.

« A robot’s individual search area should not overlap® that of another robot, but the
entire search area must be covered (hence the use of the term exhaustive search).

« The search should still be completable even if one or more robots is damaged or
otherwise fails during the mission. As long as at least one robot remains alive,
the search should complete, although it may take longer.

» We must accomplish the search within a finite time.

« The search time should decrease as the number of robots participating increases.

« Control of the robots is completely decentralized; there is no central coordinating
entity. The robots must be able to behave autonomously. Isolated robots must
still be able to perform useful work.

* There may be cases where, for reasons of higher reliability, we explicitly do want them to
overlap.




Geographic Search

In general, a geographic search will take place in three phases: (1) Initial
configuration; (2) Search; (3) Terminal configuration [GR98a]. First, the robots must
organize themselves into a coherent, communicating group within the region. They
divide the area into subregions and assign each robot one or more subregions. Next,
the search task proper is conducted. Finally, the robots determine through consensus
that the region has been searched. At this point, the robots take some terminal action.

To maximize efficiency, two considerations are immediately obvious:

A) Minimal configuration energy. We don’t want the robots to expend a great
deal of energy in the initial configuration phase because no useful work is
accomplished until the search phase. During initial configuration, the robots must
expend energy communicating with each other and moving into their initial positions.
These energy expenditures must be minimized. :

B) Optimal search coverage. During the search phase, we must ensure that the
entire search area is covered in a finite time, preferably proportional to the reciprocal
of the number of robots involved.

To optimize (A), we could have the robots perform no initial configuration at all,
with each simply searching the area in its immediate vicinity. No initial
communication and no initial movement take place to coordinate with the other
robots. We assume the robots are initially randomly distributed on the search region
(because they were dropped out of an airplane, for example). Each robot could
perform a random walk [W97a], spiral outward, or use some other autonomous
algorithm. This defeats the purpose of multi-robot collaboration. Since there is no
coordination, areas already searched can be retraced. Spiraling outward would
guarantee that the search area was covered in a finite time, but using more than one
robot would not necessarily decrease that time. A random walk is even worse—it
wouldn’t even guarantee coverage in a finite time.

Optimizing (B) means having the robots subdivide the search area equally and
each search its agreed-upon subregion. A good deal of initial collaboration and
movement would generally be needed here, especially if the robots start in random
Jocations and must move to an organized initial configuration. An example of such an
initial configuration is shown in Figure 1, where eight robots (triangles) have lined up
in a column along the left side of the search region and plan to march to the right.
Each search subregion is a horizontal strip.
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Figure 1: Robots (triangles) aligned in preparation to march to the right

This accomplishes 2 maximally-efficient search, but at the cost of a less efficient
initial configuration. In addition, this search assumes all the robots are highly reliable;
it’s not very robust if one or more robots dies during the search. (We'll discuss why
later in the report.) -

The dilemma is thus to find the optimal tradeoff between the initial configuration
phase and the search phase that makes both acceptably efficient, while ensuring the
robustness of the mission.

We believe that searching along a space-filling curve solves the dilemma nicely:
it requires minimal initial configuration while also guaranteeing a maximally-
efficient, robust search. We will digress a bit here to describe space-filling curves in
general.

Space-Filling Curves

A space-filling curve [S94] is a one-dimensional curve which passes through every
point of a given N-dimensional region. Such curves can be constructed to fill regions
of any dimensionality, but in our case we're mainly interested in two-dimensional
regions, corresponding to a geographic area on the surface of the earth. Two-
dimensional regions are also much easier to illustrate, and for those reasons the
remainder of this report will concern only curves that fill 2-d regions. The reader
should bear in mind, however, that the constructions and algorithms described herein
can easily be extended to regions of more dimensions.’

Of course, a true space-filling curve is an ideal mathematical entity and can only
be approximated in the real world. If we divide our region of interest into subregions
of finite size, rather than points, we can easily draw a curve which passes through
each subregion. In Figure 2, for example, a square region is divided into four
subregions. The dark inverted U-shaped curve passes through the center of each
subregion.

* A 3-d region [G97], [SLP83] might be appropriate for search by a swarm of undersea
or flying robots, for example.




Fig. 2. First Order Hilbert curve

Subdividing further, into 16 regions (4 x 4) the curve becomes as in Figure 3.

Fig. 3. Order 2 Hilbert curve

Subdividing still further, into an 8 x 8 grid, Figure 4 shows a curve which passes
through each of the 64 subregions:




Fig. 4. Order 3 Hilbert curve -

The family of curves illustrated in Figs 2-4 is called the Hilbert [W97b] curve after
David Hilbert, their discoverer. There are many families of space-filling curves, but
the Hilbert has some especially nice properties [MJFS96].

Notice how every deeper subdivision of the curve contains four copies of the
entire previous curve, suitably rotated and reflected, with some straight segments
added to ensure continuity. The curve is thus geometrically self-similar, as space
filling curves frequently are. The order of the curve D determines the number of
subregions it passes through and consequently, the total length of the curve:

# subregions = (2D)2 = 22D = Lengthcurve + 1

Thus Figure 2 is a first order curve, or D=1, because it occupies 4 subregions and is 3
units long. Figure 3 has D=2, and Figure 4 has D=3. To fill every point in a region, a
curve would have to be D=ce.

The fact that the curve is a geometrically self-similar fractal implies that there is a
recursive algorithm for its computation. This is indeed the case [McW97], [PLF91].
However, there is also a non-recursive algorithm for computing a given Hilbert curve
which is more useful in our robotic swarm application.

If we wanted to identify a particular subregion of a Hilbert-traversed space—for
example, the shaded subregion in Figure 4—we could do it in two different ways. We
could specify its [x,y] location as [3,5] (where {0,0] specifies the lower left corner
subregion marked with the letter B in the figure), or we could specify its position
along the Hilbert curve as the scalar value 28, which indicates that it is the 28th
subregion encountered along the curve measuring from the beginning of the curve at
subregion B. Subregion B is location 0 in this frame of reference.

There is a straightforward algorithm to convert the 2-space coordinates of real
space into a 1-space Hilbert coordinate and an equally simple algorithm to convert




from 1-space back into 2-space [B69]. Even though the dimensionality changes
during this conversion, no information is lost because the total number of possible
bits in x or y is D, while the total number of bits needed to specify the 1-space Hilbert
coordinate is 2D. The conversion algorithms merely interpret the coordinate bits in
different ways.

Search Along a Space-Filling Curve

By using 1-space to 2-space conversion algorithms, it is easy to program a robot to
follow a space-filling curve. Assuming the robot is able to deduce its current x,y
location (via Global Positioning Satellite, dead reckoning, etc.), the algorithm is
shown in Table 1:

X0,yo < current location

H « Convert-xy-to-Hilbert(xo,yo0)
H«<H+1

x1,y1 < Convert-Hilbert-to-xy(H)

Table 1: Hilbert traversal algorithm. x1,y1 represents the robot’s new location.

In practice, we perform the operation H < H + 1 modulo 2, which causes the robot
to return to the beginning point of the curve after it reaches the end; this closes the
curve and makes it a topological circle instead of a line segment.

If we now give the robot a sensing mechanism whose sensory range is at least as
large as a single subregion, by traversing the curve it can now search the overall
region in time proportional to the number of subregions, 2.

Notice that this algorithm works regardliess of where on the curve the robot starts;
it need not start at the H=0 point of the curve. This is one reason why the recursive
algorithm is not used in the robotic application; it would be difficult to initialize the
recursive control stack properly to allow traversal to begin at an arbitrary point.
Another reason is that by repeatedly converting back and forth between real space
and 1-space, correcting for real space navigation errors along the way is easy.

Starting at an arbitrary point becomes valuable when more than one robot is
involved. If we have two robots, we could start one at the beginning of the curve
(point B in Figure 4) and the other at the halfway point of the curve (point H in Figure
4); the resulting traversal of the curve takes place in half the time it would take with
one robot. In general, if we start with m robots, we can search the space in time
proportional to 2*°/m, provided we initially space the robots equally along the curve.

Efficiency
We’ll now examine how search along a space-filling curve meets efficiency criterion

(A). If we assume an initial random configuration of the robots within the region, we
can actually get away with almost no initial configuration movement whatsoever. We




also assume that the search region is square* and that its bounds and the robots’
individual sensor ranges are known by each robot a priori.

Configuration proceeds as follows:

1) Each robot senses its own initial location via some external mechanism (e.g.
Global Positioning Satellite)

2) Each robot independently computes the subregion size based on its sensor
range. (We assume for now that all the robots have the same sensor range, and thus
compute the same subregion size.) Since each also knows the bounds of the search
region, each also computes its own location relative to the search region and
computes the order of the Hilbert curve based on the size of the subregions relative to
the overall search region. Again, each robot will compute the same value for the order
of the curve.

3) Each robot decides which subregion it is currently within by quantizing its x,y
Jocation relative to the overall region. It then moves to the center of that subregion.
This is the only time its wheels need to turn during the initial configuration phase, and
the maximum distance any robot will have to move is

s
V2
where s is the size of a subregion square measured along a side.

4) The robots broadcast their individual initial locations to each other so that each
knows the starting locations of all the others. (How the robots reliably communicate
this information is itself an interesting question but is beyond the scope of this report
[G93])

Configuration is now complete and the actual search begins. Each robot proceeds
to each subregion in turn along the Hilbert curve, using the algorithm in Table 1. At
each subregion, the robot senses any targets of interest and checks to see if its next
subregion is the starting subregion of any other robot. If so, it stops and broadcasts
“I’m Done!” along with information about any targets it may have found along the
way. When all the robots have reported in, the collective can by consensus decide to
report back to a higher authority, perform other tasks, or move on as a group to search
another region. If after some reasonable time one or more robots have not reported in,
the robot immediately behind the nonreporting robot can autonomously decide to
proceed into the nonreporting robot’s search area, search it, and report “I'm Done!”.
Note that each robot can precompute its own expected time to complete its portion of
the search, since it knows at the outset how much of the curve it must traverse. These
timeout values can be communicated to allow the collective to detect such fail-stop
[K95] conditions.®

This leads us into an analysis of the expected search time. Certainly the time
required to achieve guaranteed exhaustive coverage of the search region is bounded.

* Non-square regions and even general polygonal regions can be handled by extensions of the
techniques presented here.

s The issue of Byzantine failures [K95}, {LSP82), in which a robot pretends to cooperate but
actually is a saboteur, must also be addressed in environments where malevolent robots may
be present.




At worst, the search will take time proportional to the number of subregions in the
search region (or equivalently, the length of the space-filling curve). The precise
upper bound time, Tus. can be calculated by multiplying the expected movement
speed of a robot by s (the size of a subregion) by the total number of subregions. At
best, the lower bound time will be Trp = Tus/m, with m the number of robots. The
expected exhaustive coverage time T will equal Trg when the robots are initially
configured to be spaced equidistant from each other along the space-filling curve. But
we’re not doing that; we’re just moving each to the center of the subregion it initially
occupies.® In this kind of initial configuration, Tg > Trs but is still nowhere near Tyg.
Empirical results based on Monte Carlo simulation are shown in Figure 5. The graph
clearly shows a reciprocal relationship between T and number of robots. It shows
that with 20 robots, the expected time to exhaust the space is less than 20% of the
time required with 1 robot. This is obviously not as good as the theoretical best case
of TLs = 5%, but it’s not bad for almost no initial configuration movement. We
believe that with slightly more initial configuration movement, Tg can come much
closer to Tig. The nature of the particular space-filling curve being used becomes
very important here. This is an open issue we are investigating.

0.00 - - T - —
0 20 40 60 80 100
m = # Robots

Fig. 5. T (upper curve) as a percent of Tyg vs. m. (TLB is shown for comparison purposes.)
Random initial positions and minimal initial configuration movement. Empirical results.

Robustness

In the initial configuration shown in Figure 1, where a space-filling curve is not being

used, what happens if one of the robots is defective, or dies during the march? Its strip

¢ We assume for the sake of simplicity that no two robots initially occupy the same subregion.
For a real implementation, a resolution protocol would be needed to deal with this possibility.




of territory will not be searched. The other robots will have to reliably detect this and
reorganize themselves to search the defective robot’s area. But if the robots are
searching along a space-filling curve, all the robots are topologically searching along
a single circle (Figure 6).

Fig. 6. Topological interpretation of search along a space-filling curve. Robots (triangles)
traverse the curve clockwise.

Here, each robot eventually would search the entire space, because they are all
searching along the same path. Ideally, each robot would stop when it encounters the
starting point of the next robot along the path, with the result being that the space is
searched in 1/m the time it would normally take with 1 robot. But if one robot breaks
down, the next robot behind can simply continue along its path without stopping, and
the overall space still gets searched, albeit in slightly longer time. No reconfiguration
of the robots is necessary to accomplish this. Indeed, if as many as m-1 of the robots
all break, the search is still guaranteed to complete (assuming the surviving robot has
enough energy reserves to search the entire space).

The search is also robust with respect to communication breakdowns. If all the
robots can communicate with each other, the only groupwide communications needed
are for initial configuration, and when a robot encounters the starting point of the next
robot along the path’, it must announce to the collective “I’m Done!”. When all robots
have reported in, the collective knows the region has been completely searched. If
one or more robots have not reported in by some time limit, the collective can deduce
that they are dead and the next robot behind each dead robot can unilaterally decide
(with no need for further communication with the group) to search the dead robot’s
area. If all communications fail (because of RF jamming, for example) the worst case
is that the search will take as long as it would with only a single robot. Each robot
will end up searching the entire space, and each will know to stop when it reaches its
own starting point. The search will take a long time, but it’s still guaranteed to
complete.

Thus communications failures can cause the search mission to take longer, but
they cannot prevent it from being accomplished.

71t can know where the next robot’s starting point is either by memorizing the location during
the initial configuration communication, or by having each robot drop a marker object on the
ground at its own starting point. In the latter case, initial communication may be unnecessary.




Collision Avoidance

In any collaborative robotics system, collision detection and avoidance will be
needed. Space-filling curves may make collision avoidance easier. When several
robots follow a single space-filling curve, there is theoretically no chance of two
robots’ paths crossing, and therefore no need for dynamic collision avoidance.
Realistically, two robots could collide if navigation errors are allowed to accumulate,
if two adjacent robots along the curve travel at different speeds, or if the one in front
dies. But it’s possible that collision detection could be simplified because of the
automatic separation inherent in the algorithm.

Further Research

Much work still needs to be done exploring the general problem of robot traversal of
space-filling curves. Some avenues of exploration include formal expected exhaustion
time analysis, handling robots with differing sensor ranges, non-square and non-
rectangular search regions, automatic determination of the search region based on
energy stores and initial positions of the extrema robots in a cluster, obstacle
avoidance, and path planning. Space-filling curves other than the Hilbert need to be
investigated as well. One disadvantage of the Hilbert curve is the long straight path
that connects its endpoints when it is closed. Other curves have the property that their
beginning and end points are adjacent. Also, in cases where there is a penalty for
turns, other space-filling curves may do the job with fewer turns than the traditional
Hilbert. The Hilbert I curve [W97b] might be a candidate here.

And of course, the tradeoff between minimal initial configuration energy vs.
minimal search energy must be further explored in light of particular applications.

Conclusions

We have begun to explore how space-filling curves can enhance the efficiency and
robustness of geographic search by robot collectives. Initial results have been quite
promising, especially in applications such as mine-clearing where exhaustive search
is necessary. Much work still needs to be done, but it appears that combining this
kind of search with more information-exploitive search algorithms [GR98b] may be
extremely useful in general real-world search situations.

We hope to have movies of the robot simulations, as well as an expanded version
of this report, online soon at http://www.sandia.gov/aisl/robotics/.
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