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An important toughening mechanism in fiber-reinforced
ceramic composites is pullout of fibers from the matrix
during matrix cracking. This relies on mode II (i.e., shear)
debonding at the fiber/matrix interface which can be analyzed
using either the strength-based or the energy-based criterion.
In the strength-based approach, debonding occurs when the
maximum interfacial shear stress induced by the applied load
reaches the interfacial shear strength, 5. In the energy-based
approach, a mode II crack propagating along the interface is
considered, and debonding occurs when the energy release rate
due to crack propagation reaches the interface debond energy,
I. Based on the above two criteria, the applied stress on the
fiber to initiate debonding (i.e., the initial debond stress), oy,
can be derived. The first issue considered in the present study
is the relation between 7g and I'. Also, for a monolithic
ceramic, the tensile strength can be related to its defect size
based on the Griffith theory [1]. A question is hence raised as
to whether the initial debond stress for fiber pullout in a
fiber-reinforced ceramic composite can be related to any defect
at the interface.

Considering two semi-infinite elastic materials bonded at
the interface, the crack propagation problem has been
analyzed by He and Hutchinson [2]. When a crack reaches the
interface, the crack either deflects along the interface or
penetrates into the next layer depending upon the ratio of the
energy release rate due to debonding to that due to crack
penetration. This criterion [2] has been used extensively to
predict interfacial debonding versus fiber fracture for a crack
propagating in a fiber-reinforced ceramic composite.
However, the crack propagation problem in fiber-reinforced
composites is three-dimensional. For an embedded fiber of a

finite radius, there are three options when a matrix crack
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reaches the interface: interface debonding, fiber fracture, or
crack circumventing the fiber. The analysis by He and
Hutchinson focuses on the case that the crack does not
circumvent the fiber. However, when the crack circumvents
the fiber, the crack is bridged by intact fibers, and the fiber-
pullout geometry can be used to analyze this problem.
Hence, the second issue considered in the present study is how
the condition of interfacial debonding versus fiber fracture is
modified for a bridging-fiber case.
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Fig. 1. Schematic drawings showing (a) the fiber-pullout
geometry, and (b) the effective circumferential defect
introduced at the interface to account for the presence
of the fiber in the matrix and the fiber-pullout

geometry.

An idealized fiber-pullout geometry is shown in Fig. 1a, in <1

which a fiber with a radius, a, is embedded in a coaxial
_ ' o

cylindrical shell of matrix with a radius, b, and is subjected to

a tensile stress at one end in its axial direction. The concept D

of Griffith theory is adopted to derive the relation between g Od

and I3 for the fiber-pullout geometry. In the Griffith theory, e
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a monolithic ceramic subjected to a uniform tension is
considered. Crack propagation occurs at the existing crack
tip, and the tensile strength of the material can be related to
the fracture energy and the crack size. In the fiber-pullout
case, the fiber has different material properties from the
matrix and is subjected to a tensile load. Debonding initiates

at the circumference where the fiber enters the matrix . The
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stress intensity at this circumference is related to the fiber-
pullout geometry. To account for this stress intensity, it is
assumed that the presence of the fiber in the pullout case is
equivalent to the introduction of an effective circumferential
defect at the interface which extends from the surface to a
depth k (Fig. 1b). Also, similar to the Griffith theory, it is
assumed that the effective defect is subjected to a uniform
shear stress, 7 (Fig. 1b). When 7reaches tg, crack
propagation occurs. Hence, T can be related to I and k.

. The effective defect length, A, can be determined by
equating 0 derived from the two debonding criteria, and the
result is shown in Fig. 2. When the fiber and the matrix
have similar Young's modulus (e.g., for ceramic composites),
h is in the order of the fiber radius. The normalized effective
defect length, h/a, increases with an increase in éither the
Young's modulus ratio of fiber to matrix, Ef/Ep, or the
radius ratio of matrix to fiber, b/a. For the material design,
knowing the effective defect length in a fiber-reinforced
ceramic composite is as useful as knowing the defect size in a

monolithic ceramic.
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Fig. 2. The normalized effective defect length, h/a, as a
function of Ef/Ep, for vf=vipn=0.25.

Using the energy-based criterion, the relation between od
and I} has been defined. When 0y is greater than the fiber
strength, O, fiber fracture occurs prior to interfacial

debonding. However, construction of the diagram of
interfacial debonding versus fiber fracture needs not only I

but also the fiber fracture energy, I't. To achieve this, the
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relation between O and It is required. Combining the og-I;
and the o5-IF relations, a critical ratio for I'}/I'f can be
defined, such that interfacial debonding or fiber fracture occurs

when I'}/It is smaller or greater than the critical ratio (Fig.

' 3). Here, c/a is the relative defect size in the fiber, Ais the

defect-geometry factor, and o is the Dundurs' parameter [3]

defined by

o={ B (1-ven2 | Em (1-v£2 )|/[Ee(1-ven? ) E1-ve2 )

where v is Poisson's ratio, and the subscripts, f and m, denote
the fiber and the matrix, respectively. The critical ratio
decreases with the increase in the Dundurs' parameter, o.
Also, the curve in Fig. 3 becomes flatter when the radius

ratio of matrix to fiber, b/a, increases.

0.10 L L L | l LB} 1 |

. F

'S 0.08 F

= L

S 006

[=]

g C Interfacial debonding

£ 004 ___I

> e

%0 =

& 002
0.00-IIlIlI."IlIIlllllllll

-1 -0.5 0 0.5 1

Dundurs' parameter, &
Fig. 3. The diagram of interfacial debonding versus fiber

fracture for the bridging-fiber geometry.
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