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The First Infrared Beamline at the ALS: Design, Construction, and Initial
Commissioning

Wayne R. McKinney, Carol J. Hirschmugl, Howard A. Padmore
Accelerator and Fusion Research Division, Lawrence Berkeley National Laboratory
MS 2-400, One Cyclotron Road, Berkeley, California 94720-0001 USA

Ted Lauritzen, Nord Andresen, Greg Andronaco, Rob Patton, Martin Fong
Engineering Division, Lawrence Berkeley National Laboratory
MS 46-161, One Cyclotron Road, Berkeley, California 94720-0001 USA

ABSTRACT

The first Infrared (IR) Beamline at the Advanced Light Source (ALS), Beamline 1.4, is
described. The design of the optical and mechanical systems are discussed, including
choices and tradeoffs. The initial commissioning of the beamline is reported. The beamline,
while designed primarily for IR microscopy and only initially instrumented for microscopy
(with a Nicolet interferometer and microscope), will have the potential for surface science
experiments at grazing incidence, and time-resolved visible spectroscopy.

Keywords: infrared, beamline, synchrotron

1. INTRODUCTION

The bright continuous spectrum of radiation from all storage rings extends into the infrared
(IR) region of the spectrum. In fact, within about two orders of magnitude, all synchrotron
radiation sources provide an essentially similar source of IR light. While synchrotrons do
not provide as much flux as a typical laboratory source, the highly collimated nature of the
light allows more light to be routed through a smaller pinhole than when using any other
continuum source. The cross-over point when the use of synchrotron radiation (SR) for
microscopy becomes advantageous is at pinhole sizes of approximately 50 to 75 microns
depending on the storage ring.

Figure 1 shows the brightness in watts/mm/str/2cm-1/ampere at the ALS with respect to a
1200 degree K blackbody. 2cm-1 is a typical bandwidth of a Fourier transform IR
spectrometer (FTIR). It is quoted per ampere to allow for comparison with other rings. The
maximum current at the ALS is 400 ma. Clearly, for microscopy, the SR source is on the
order of two to three orders of magnitude brighter than the blackbody source.
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Figure 1: Brightness comparison of ALS bending magnet to blackbody




This paper will provide a description of the source, the overall layout of the beamline, the
optical design considerations (including power handling), and a description of the
commissioning of the beamline.

2. DESCRIPTION OF THE SOURCE

The beamline uses the x.4 port in sector one of the ALS. The beta functions of this port are
larger than those of the x.3 and x.2 ports, making it an ideal port for IR radiation, since the
beam sizes are larger than those of the other ports, but do not contribute significantly to the
size of the IR source. The one-sigma sizes of the electron beam are 75 W in the horizontal
and 138 W in the vertical. The spot size of the source can be approximated quite well by
adding in quadrature three different effects--the electron beam size, the diffraction size, and
the projected size of the emitting region.!

The beamline collects 40 mr in the horizontal direction, and 10 mr in the vertical. The
geometrical projected size in the horizontal is:

p(Or2)/8

where p is the radius of the bending magnet, and 6h is the full horizontal angle. The
projected size in the vertical can be found by:

vaGhIS

where Oy is the full vertical angle. The size from diffraction broadening is approximated by
using A/d. Combining all of these factors gives the following effective source sizes for the
wavelength region of interest for microscopy:

Horizontal Intrinsic Projected Diffraction Total

Ainp size in l size in | size in 1 size in |

2 75 962 50 966

10 75 962 250 997
125 75 962 625 1150

Vertical ,

2 138 241 200 341

10 138 241 1000 1040

25 138 241 2500 2520




3. OVERALL LAYOUT

Figure 2 shows the layout of the beamline. The physical aperture in the storage ring is
approximately 10 mr vertical by 80 mr horizontal. Only half of the horizontal aperture can
be used, due to interference with a magnet downstream of the bending magnet. A water-
cooled Glidcop™ aperture plate absorbs half of the radiation and passes the 10 mr vertical
by 40 mr horizontal beam. The aperture plate is followed by a bellows and an all-metal
valve which can shut only when the storage ring is not running. (It would quickly overheat
if closed during operation.) The first mirror (M1) is a water-cooled mirror of brazed
Glidcop™ with an electroless nickel polished layer. The mirror is located three meters from
the tangent point in the bending magnet. The mirror was fabricated at LBNL, and ground
and polished by SESO of France. It is novel in that most of it is located outside the UHV
chamber, and the mirror body itself forms the seal with the chamber, with an Helico-flex
seal. Space considerations drove these choices, and there is considerable advantage to
being able to change the mirror for coating and inspection. With proper tenting and dry
nitrogen purge, the mirror can be removed during shutdown periods without the need to
bake the system after re-installation. The incidence angle on the mirror (M1), 45 degrees,
directs the radiation vertically upward onto an ellipsoidal mirror (M2). This is a Zerodur
mirror made by conventional techniques, also by SESO. It is placed in the same UHV
chamber as M1, and directs the light 90 degrees tangentially to the storage ring and outside
of the shielding wall. The 0.5 meter rise will allow future x-ray lines from the previous two
bending magnets to pass under the IR beam. A five-inch hole in the shielding wall permits
the beam pipe to pass without any lead shielding because of the 0.5 meter vertical
difference between the hole and the ring. Measurements show essentially no radiation
outside the hole during operation of the ring, and only minimal radiation during injection.
The beam passes through a large ion pump just inside the shield wall.

Immediately outside the wall is a large, low vacuum box: the "switchyard." It can be
positioned by a six-strut system. Only one rotation is motorized. The UHV extends a short
distance into the switchyard. A small, flat mirror turns the radiation towards the
microscopy hutch and a diamond window. The diamond window, manufactured by Druker
and sold by Harris corporation, is rated to withstand three atmospheres, and is the last
UHV component. For additional protection, a small fused-silica-windowed valve with a
Viton o-ring seal just before the switchyard shuts automatically if the vacuum fails in the .
switchyard. The diamond window is 12 mm in diameter and is placed at the focus of the
ellipsoidal mirror. It is sealed in indium foil on both sides, and is polished with a one-
degree wedge to remove possible extraneous interference fringes in the FTIR spectra

caused by multiple reflections.

The M1/M2 chamber has two motions which can be controlled remotely using DC servo-
motors. The chamber can be rotated about a vertical axis through the centers of the two
mirrors, and the chamber can be moved up and down vertically to center M1 on the height
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of the radiated beam. M2 has pitch, roll, and yaw which can be adjusted only from inside
the chamber.

Of particular interest is that the beamline has only a minimal equipment protection system
(EPS). The M1 mirror, which is the closest mirror to any bending magnet at the ALS, must
always be illuminated when the storage ring is running. This minimizes the interaction that
the IR user must have with the storage ring, which is of considerable advantage. The
components in the UHV area must be robust in order to gain the confidence of the storage
ring personnel and other users, since any problems with the IR front end shut down the
entire storage ring until the beamline is disconnected and a replacement water-cooled blank-
off plate, which absorbs all 80 mr of the radiation, is installed.

Within the switchyard the radiation is allowed to expand four times as far in the 10 mr
direction than in the 40 mr direction to allow the beam to be collimated by two separate
cylindrical mirrors. This "squares up" the beam to a size which optimally fills one of two
microscope objectives of 32x and 15x. There are two separate collimating/squaring sets of
optics which can be moved in and out by motorized control under vacuum. Paralle] beams
approximately 6 mm square and 12 mm square leave the switchyard in the vacuum pipe
which leads to the hutch. The cylindrical mirrors are ophthalmic lenses obtained from a
local optometrist.

In the hutch, plane mirrors inside the vacuum pipe lead to another wedged diamond
window of 20 mm diameter. The low vacuum stops here and the radiation enters a dry air
purged Nicolet 760 FTIR bench. The use of low vacuum all the way to the bench prevents
noise from moving purge gas in the long run from the switchyard to the hutch. The bench
is followed by a Nic-Plan all-reflective IR microscope with LN; cooled detector. The hutch
has a small positive pressure from a HEPA filtered air source to keep some degree of
cleanliness near the microscope and to provide a secure and isolated environment. Both
instruments are supported by an optical table mounted on an interoferometrically stable "six
strut" kinematic support system which is successfully in use in throughout the ALS. A
hand crank provides rotation of the entire table about the center of the first steering mirror
in the transfer pipe at the corner of the table nearest the entrance of the beam, without
sacrificing interferometric stability.

For pump-probe timing and IR surface science experiments we have ordered a vacuum
FTIR bench from Bruker which will be placed on another table outside the hutch, identical
to the one in the hutch which supports the microscope and FTIR -bench. The vacuum
plumbing will be extended through the hutch wall, onto this table, and into the vacuum
instrument. Additional optical components will transfer the beam into an IR surface science

experiment.




4. OPTICAL DESIGN

An ALS bending magnet emits about 15 w of radiation per horizontal mr of accepted beam.
M1 would normally see 618 w of radiation and would distort too much to be used. To
avoid this, a "finger mask" was placed just upstream of M1. The finger mask is an oval
copper pipe of approximately 0.140" height which has approximately one gallon per minute
of water running continuously through it. M1 is designed to withstand the entire load, if the
beam is mis-steered. In normal operation only 18 watts passes the small finger mask to
strike M1. A minimal vertical emitting angle is sacrificed to permit low distortion of the M1
mirror. About 5 watts strikes the M2 mirror.

The ellipsoidal mirror M2 focuses the SR source at one-to-one magnification at the
diamond window in the switchyard. Both of the conjugate distances are specified at 3.5
meters. SESO achieved this specification within a few mm. During alignment the ellipsoid
showed excellent imaging performance. All reflecting surfaces are of evaporated aluminum
which has been exposed to air. This aluminum oxide top surface layer provides a
reflectivity which effectively absorbs radiation in the 10 to 20 volt region which would be
passed by gold or silver coatings. Starting after the first diamond window all surfaces in
the evacuated transfer pipe are 1-inch diameter flats or cylinders. Figure 3 shows the
transmittance of the large diamond window at several locations across the wedged
thickness. This transmittance is excellent, and shows only the expected absorption features
near 2000 cmL.

5. INITIAL COMMISSIONING

The M1/M2 chamber was connected to the ring during a two-day shutdown. Despite its
close location to the ring, the chamber scrubbed in one shift, and the pressure remained
within acceptable limits during the entire process. This was aided substantially by the
titanium sublimation pump (TSP) at the bottom of the chamber, and by assembly technique
(cleanliness). The chamber was centered on the beam by observing the photo-current from
the finger mask vary as the chamber was moved vertically while beam was in the ring as
shown in Figure 4. The chamber required only 0.007 inch adjustment in the vertical
direction to optimize the current from the finger mask. Sophisticated electronics are not
needed to read the current. A 100-ohm resistor to ground provided about 0.3 volt which
could be read remotely. Figure 4 shows the variation in beam current with height
adjustment of the chamber. It is imperative that this adjustment be done correctly so that
significant heat is not allowed to pass onto M1. For additional safety, the cooling water to
the finger mask is monitored by thermocouple readouts in both the in-going and outgoing
water. This temperature differential did not rise above 2 degrees F, which confirmed the
finite element calculations for the finger mask. These calculation indicate that the front edge
of the finger mask rises 80 degrees C. Careful consideration of stresses and change in
properties under thermal cycling is required.
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Figure 4: Centering Finger Mask on Beam, July 24, 1997
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6. SUMMARY

A state-of-the-art beamline for the extraction of IR radiation from a bending magnet at the
ALS has been constructed, and is being commissioned. FTIR microscopy at higher spatial
resolution than is available in the normal laboratory environment will be available to users.
In addition, timing experiments and IR surface science experiments will be able to share the
beamline after minimal further construction. ‘
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