Lt

LA-UR- '

~ 97-49086
““7 = Approved for public release;
v ﬁ distribution is unlimited.

Tie: | HIPPI-6400 -- Designing for speed

e B

CONF- G g0 ST —

Author(s):| Donald E. Tolmie, CIC-5 RECE‘\!EQ
APR O 6 1398

@1. S T |
DTIc QUALITY INSPECTED 3

Submittedto: | 12th Annual International Symposium on
High Performance Computing Systems and
Applications (HPCS'98), May 20-22,
1998, Edmonton, Alberta, Canada. If
accepted, it will be part of a book
published by Kluwer Academic
Publishers. .

DISTRIBUTION OF THIS DOCUMENT {5 UNLIMITED

9980507 0

Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the

U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S.

Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to aliow

others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article

as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports

academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint .

of a publication or guarantee its technical correctness. Form 836 (10/96)

N—— S

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

HIPPI-6400 - Designing for speed
Don E. Tolmie
Los Alamos National Laboratory

ABSTRACT

The emerging High-Performance Parallel Interface — 6400 Mbit/s interface (HIPPI-6400),
is targeted as a local area network (LAN), or system area network (SAN), supporting data rates of
6400 Mbit/s (800 Mbyte/s). This is eight times the speed of Gigabit Ethernet. The feafures used,
and the design choices made, for the data link and physical layers of HIPPI-6400, to achieve this
unprecedented speed are the subject of this papet. HIPPI-6400 borrowed freely from other
successful technologies such as ATM, Ethernet and the original HIPPI — taking the best features
of each and melding them with some new features. HIPPI-6400 is a cost effective reliable

interconnect for distances up to 1 km; it intermixes large and small messages efficiently.

Keywords

HIPPI, gigabit, gigabyte, parallel, LAN, deskew

Contact person

Don E. Tolmie

Los Alamos National Laboratory
MS-B25, Los Alamos, NM 87545, USA
E-mail: det@lanl.gov

Phone: (505) 667-5502

FAX: (505) 665-7793

Background -

The increasing complexity of server and cluster computing and bandwidth-hungry
applications such as scientific computing, imaging, engineering modeling processing are
demanding unprecedented interconnect speeds. Out of all the available gigabit and gigabyte
technologies, Gigabit Ethernet, based on the framing Ethernet, has become the leading choice in
meeting demands at a gigabit by offering greater bandwidth and improved client/server response
times. Now, however, the emerging use of gigabit connections at the departmental server and
desktop is creating a need for even higher-speed network technology at the backbone and in the
~ cluster. The High-Performance Parallel Interface — 6400 Mbit/s Physical Layer (HIPPI-6400-
- PH), and the High-Performance Parallel Interface — 6400 Mbit/s Physical Switch Control (HIPPI-
6400-SC), are an answer to this need.[1,2] They will initially be deployed in a gigabyte system
area network interconnecting high performance shared-memory multiprocessors (SMPs),
clustered to provide an aggregate computing power — even beyond that achievable with the
highest speed SMPs of today or tomorrow.

HIPPI-6400 represents the next generation beyond the current gigabit, and near gigabit,
interconnect standards. Operating at 6400 Mbit/s, full-duplex, HIPPI-6400 ensures maximum
compatibility with the Ethernet, Gigabit Ethernet, ATM, and HIPPI installed base. The original
HIPPI standards, running at 800 and 1600 Mbit/s, developed and first deployed almost 10 years
ago, pioneered higher speed interconnect technology. Along with a proposal from Silicon
Graphics Inc., the original HIPPI provided the starting point for HIPPI-6400. HIPPI-6400 is
based on the best features of several successful interfaces — drawing from ATM, Ethernet and the
original HIPPI specifications. From ATM it borrowed a small 32-byte micropacket (like a 48-

byte ATM cell), and four Virtual Circuits (fewer than ATM, but limited for performance

1

reasons). From Ethernet it borrowed the MAC header to allow easy translation to other popular
protocols, and to use existing Ethernet-based control and management tools. From the original
HIPPI it borrowed the large message size capability, credit-based flow control, encoding scheme
for ac-balance, and a cable using multiple twisted-pairs (or optical fibers), for the data path.
. Features of HIPPI-6400 not found in any of these interfaces include end-to-end as well as link-
level checksums, automatic retransmission at the physical layer to correct flawed data, and a data
rate of 6400 Mbit/s. As in other gigabit technologies, HIPPI-6400 systems will be switched
rather than have multiple devices sharing a common busv or medium.

The HIPPI-6400 standards are being developed in ANSI Task Group T11.1 (see the web

page at http://wwwIcic-S.lanl;gOVFdét for meeting notices, meeting minutes, ahd_ draft Sla e

 documents). In relation to the OSI Reference Model, HIPPI-6400-PH (Physical Layer) specifies
the physical and data link layers. HIPPI-6400-SC (Physical Switch Control) specifies a network
- layer for controlling physical layer switches. T11.1 completed their work on these documents in
October 1997, and forwarded them for further review and balloting. The HIPPI-6400-PH and -
SC documents are expected to complete their processing and become approved ANSI standards
in late 1998. In addition, Task Group T11.1 is working on a transport layer standard, initially
part of HIPPI-6400-PH, called the Scheduled Transfer Protocol (ST). Scheduled Transfer takes
advantage of the high-speed reliable HIPPI-6400 lower layers, and provides additional
performance by bypassing parts of the host's operating system. Scheduled Transfer specifies

mappings for use on Ethernet, ATM, and Fibre Channel, as well as HIPPI-6400.

System features

Figure 1 shows a system overview with a HIPPI-6400 switch interconnecting four nodes,
two of which are translators to other media (e.g, to Gigabit Ethernet to talk to Ethernet-based
devices in a local environment, and to ATM to connect to other far-flung sites over the telephone
network). The networking aspects of HIPPI-6400 are detailed in the HIPPI-6400-SC document.

HIPPI-6400-PH defines a symmetric point-to-point physical link for transferring
micropackets. The physical links are bi-directional and capable of the full 6400 Mbit/s
bandwidth in both direction simultaneously. The logical links are simplex, i.e., the data inboﬁnd
and outbound are completely separate. A link's control information is carried on separate wires
in parallel with the user's data (i.e., out-of-band). The control information is not counted in the
. 6400 Mbit/s bandwidth number (i.e., the rate available for the user's data is 99.6% of the 6400

Mbit/s). | | ‘

E HIPP1-6400
Node

S
HIPPI-6400 |:

HIPPI-6400
Switch
[0

Node

=P — HIPPI-6400

— = Other
|E| = Destination Translation Translation
Function Function

E = Final Destination yy
Y

S| = Source '

Gigabit Other Media

= Originating Source \Ethernet Node Node

Figure 1 — System overview

Virtual Channels

Four Viftual Channels, VC0, VC1, VC2, and VC3, are available in each direction on each
link. The VCs are assigned to specific message sizes and transfer methods. All of the
micropackets of a message are transmitted on a single VC, i.e., the VC number does not change
as the micropackets travel from the Originating Source to the Final Destination over one or more
links. Messages to a Final Destination are delivered in order on a single VC.

Worm-hole routing is used in the HIPPI-6400 switches rather than the virtual connections
used in ATM, or the end-to-end connections used in the original HIPPI. Worm-hole routing
means that a message is sent into the network without prior knowledge if a free path is currently
available to the Final Destination. If the message hits a link (e.g., on the output of a switch), that
is using the same Virtual Channel, then the new message must wait for the existing message to
complete (Tail bit = 1), before progressing further. On the plus side, worm-hole routing does not
need time—consuming circuit setup or teardown, or for the links and switches to maintain large
amounts of state information.

The VCs provide a multiplexing mechanism which can be used to prevent a large
message from blocking a small message until the large message has completed; in contrast to the
original HIPPI where a large message blocked any messages queued behind it. The number of
Virtual Channels was deliberately limited to four (as opposed to the almost unlimited number in
ATM), since for performance reasons the buffering needed to be on-chip. Three message sizes
are supported; VCO0 < 2176 bytes, VC1 < 128 Kbytes, VC2 < 128 Kbytes, a.nd‘VC3 < 4 Gbytes.
The intent was to separate the small control messages from the larger messages, i.e., as shown by

the bi-modal packet sizes in most networks.

Micropackets

Micropackets are the basic transfer unit from Source to Destination on a link. As shown
in figure 2, a micropacket is composed of 32 data bytes and 8 bytes of control information. This
small transfer unit (i.e., the micropacket), results in a low latency for short messages and a
component for large transfers. At 6400 Mbit/s, a micropacket is transmitted every 40 ns, with

Null micropackets transmitted when other micropackets are not available. Credit and retransmit

operations are performed on a micropacket basis.

" Control Information (8 bytes)

bits | _“Function

4 i Micropacket Type

Virtual Channe! selector

Transmit sequence number

2

8

8 | Receive sequence number (i.e., ACK)
User data 1 | Tail bit (i.e., End of Message)

1

6

2

(32 bytes) Error (i.e., upstream unrecoverable error)

Credit update value

Virtual Channel number for credit update
16 | End-to-end CRC (x'®+x™ + X + 1)

16 | Linklever CRC (X" +x"? +x® +x + 1)

Figure 2 — Micropacket contents

Micropacket carries :
Micropacket | Transmit Receive Credit
Type Data byte contents sequence # | sequence# | update
24-byte Header and
Header 8 bytes of user data Yes Yes Yes
Data 32 bytes of user data Yes Yes Yes
Admin Admin message Yes Yes Yes
Credit-only O's Yes Yes Yes
Null 0's Invalid Yes Invalid
Reset or Initialize O's Invalid Invalid Invalid

Figure 3 — Capabilities of each Type of micropacket

Messages

A message is an ordered sequence of one or more micropackets which have the same VC,
Originating Source, and Final Destination. ~Messages carry the payload data. The first
micropacket of a message, i.e., the Header micropacket, contains a HIPPI-6400 Header (i.e., 24
bytes of information used to route through a HIPPI-6400 fabric), and 8 bytes of user data. The
last micropacket of the message is marked with the Tail bit (much like an ATM AALS packet).

The contents of a HIPPI-6400 Header are shown in figure 4. The MAC header is the
same as the IEEE 802.3 header except that the length field (M_len) is 32 bits in HIPPI-6400 for
longer messages, while in IEEE 802.3 it is 16 bits. The D_ULA and S_ULA are the 48-bit [EEE
Universal LAN Addresses for the Originating Source and Final Destination. The IEEE 802.2
LLC/SNAP header isb used to carry the EtherType, which selects the upper-layer protocol.
Translating to other common networks, é.g., Gigabit Ethernet, is facilitated by using the comrnoﬂ

1IEEE network formats .

(Isb) 04-07

MAC header S_ULA -
: (Isb) | 08-1 1
M_len 12-15
|EEE 802.2 DSAP | SSAP ; Ci | Omg 16-19
LLC/SNAP header | org |, Org | EtherType 2023

Figure 4 —- HIPPI-6400 Header

Figure 5 shows a Message contained in five micropackets. Bytes N — M are the user
payload bytes. If a Message does notend on a _micropacket boundary, then pad bytes of zeros are

included in the last micropacket.

Micropacket Data Bytes Tail
number contents bit

1 Header, Bytes 0 -7 0]

2 Bytes 8 - 39 0]

3 Bytes 40 - 71 0

4 Bytes 72 - 103 0

5 Bytes 104 - 135 1

Figure 5 — Message contained in five micropackets

Flow Control

Link-level credit-based flow control is used between a Source and Destination to prevent
overrunning a Destination's buffers. Note that the flow control is between a Source and
Destination, not necessarily the Originating Source and Final Destination (see figure 1). As
shown in figure 6, the credits are assigned on a VC basis, i.e., VCO's credits are separate from
VC1's credits (hence congestion on VC3 will not stall traffic on VCO). The Destination end of a

7

link grants credits to match the number of free receive buffers for a particular VC. The Source
end of the link consumes credits as it moves micropackets from the VC Buffers to the Output
Buffer. Note that flow control is on a link basis, i.e., hop-by-hop. If a link has credit
information, but no data, to transmit, then "credit-only" micropackets are transmitted. The
micropackets containing credit information are checked for delivery, and included in the
retransmission if an error occurs. Credit information in the original HIPPI was not as reliable,
and in error cases could be lost — possibly leading to credit starvation; this is not possible in
HIPPI-6400-PH. We feel that credit-based flow is the optimum method in a local area network
‘environment where the distances are short and the buffering limited, but in a wide area network

environment rate-based control is preferred.

Credits are consumed as a Source Destination
micropacket moves from the
VCn Buffer to the Output Buffer.

—»| VCo Buffer |\ : | VCO Buffer [
\ Output Input
—>] VC1 Buffer |\ Buffer Buffer VC1 Buffer
- IR
VC2 Buffer / 4 1 TSEQ VC2 Buffer P
ACK(seq) 'ﬁ':'
—»{ VC3 Buffer | L o= - RSEQ VC3 Buffer [

ACKs are generated independent of the VC

A number, and sent to the Source in the reverse |

] direction micropacket control information. :
|

Credits are generated, on a VC basis when data
exits from the VC buffer, and sent to the Source in
the reverse direction micropacket control information.

Figure 6 — Reverse direction control information

It was the permissible buffer size that limited the link to 1 km without speed degradation.
For performance reasons the Destination buffers had to be on-chip, and about 10 KBytes was
available for each of the four VCs. At 6400 Mbit/s (800 Mbyte/s), 5 ns/m propagation delay, and |
10 KBytes in flight (assuming the worst case with all of the in-flight data directed to a single
receive buffer), the distance can be calculated as 2.5 km. The 2.5 km is a round trip distance
(giving time for acknowledgements to get back to the Source), and does not include any
‘processing overhead. Hence, the link distance was specified as 1 km maximum; the speed may
decrease at greater distances. Note that the distance limit, before speed degradation, is dependant
on fully loading a single VC with data; spreading the load over multiple VCs,:or not trying to

send at full rate, gives longer distances. R — RO S SIS

Retransmission

Retransmission is performed to correct flawed micropackets; providing in-order, reliable
~data delivery. Go-back-N retransmission is used, i.e., if an error is detected then the flawed
micropacket, and all micropackets transmitted after it, are retransmitted. The CRCs in each
micropacket are checked at the Destination side of a link; at the Input Buffer in figure 6. Correct
micropackets are acknowledged, flawed micropackets are discarded. Note that retransmission is
independent of the VC used, and also independent of the credit information, i.e., retransmission
occurs between the Output and Input Buffers in figure 6 while VC and credit information
pertains only to the VC Buffers. Retransmission is on a link basis, i.e., hop-by-hop.

Sequence numbers, in a micropacket's control information, are transmitted with all
micropackets that contain data or credit information (other micropackets, e.g., Type = Null, use

sequence number = x'FF'). The receiver acknowledges micropackets by returning the highest

9

sequence number of contiguously good micropackets. Hence, if a micropacket is received in
error, the receive sequence number sticks on the value of the last Conect micropacket. A timeout
mechanism at the sender detects that a transmitted micropacket was not acknowledged, and
retransmits all micropackets starting with the one in error. Note that only micropackets with
transmit sequence numbers (see figure 3) are retransmitted. The timeout mechanism was chosen
because it was more robust than sending an ACK, i.e., if an ACK is dropped the protocol will
just wait for the next ACK. A timeout mechanism may not be appropriate for a link with a long
delay, but is preferred when the link delay is low (on the order of 10 ps for HIPPI-6400), and
. 'adequate buffering is available. The 8-bit sequence numbers allow up to 256 unacknowledged

micropackets, i.e., 10 KBytes or the size of the receive buffer.

Check functions

Two 16-bit cyclic redundancy checks (CRCs), with different polynomials, are used. The
LCRC is the link-level checksum; the ECRC is the end-to-end checksum. Figure 7 shows a 5-
‘micropacket Message, and the coverage for each CRC. Bytes N — M are the user payload, c00—

c47 are the first 48 control bits, and c48—c63 contain the ECRC and LCRC (see figure 2).

10

Micropacket Data Bytes LCRC checksum ECRC checksum
number contents coverage coverage
1 Header, Bytes 0~7 | Header, Bytes 07, c00-c47 | Header, Bytes 0-7
2 Bytes 8-39 Bytes 8-39, c00—c47 . Header, Bytes 0-39
3 Bytes 40-71 Bytes 4071, c00-c47 Header, Bytes 0-71
4 Bytes 72-103 Bytes 72—103, c00—c47 Header, Bytes 0-103
5 Bytes 104-135 Bytes 104—135, c00—c47 Header, Bytes 0-135

Figure 7 — Checksum coverage for a 5-micropacket Message

The end-to-end CRC (ECRC) covers the data bytes of all of the micropackets in a
_ Message, i.e., the Header micropacket and all of the Data micropackets (if any) up to this point in
.a Message. VTh‘e ECRC does not cover the control bits. :The ECRC is!unchqnged frpm ‘;he
‘Originating Source to the Final Destination, e.g., through switches and bridges. The ECRC is
accumulated over an entire Message, i.e., it is not re-initialized for intenncdiate Data
micropackets. Note that in figure 7, the second micropacket's ECRC covers the information in
the first and second micropacket; the third micropacket's ECRC covers the information in the
first, second, and third micropacket, etc. The ECRC generator polynomial is:
x16 +x12 4 x3 4 x+1
The link CRC (LCRC) covers all of the data and control bits of a micropacket, with the
exception of itself. The LCRC is initialized for each micropacket, and must be calculated fresh
for each link since some values change hop-to-hop, eg Received sequence number and credit
information. The LCRC polynomial is:
x16 +x12 4 x5+ 1
Both CRCs are checked at each HIPPI-6400 node, be it a switch or end device. The

combination of two 16-bit CRCs provides a stronger check than a single 16-bit CRC for link-

11

level checking of individual micropackets. Analysis has shown that there aré no undetected
errors unless at least 6 bits are in a micropacket are in error (i.e., 1 in 1.86 billion bits).[3] Not
only inust there be at least 6 bits in error, but the bits must be strategically located and not
contiguous.

In addition, the two separate CRCs are easier to calculate than a single 32-bit CRC.
While many CRC implementations are done in a serial bit-by-bit fashion, at the speeds of HIPPI-
6400 this may not be feasible. As an aid to the designer, example circuits and equations for
parallel CRC implementations are included in an informative annex in HIPPI-6400-PH.[1]

The Error bit in Data micropacket; is used to inform downstream HIPPI-6400 nodes that
~an uncorrectable error occurred upstream, for example from a translator to another media that
does not provide retransmissions. Received Data micropackets with the Error bit set are passed
on and not reported. This helps pinpoint where the error occurred; it would be next to impossible
if everyone downstream also reported the error.

A Source also has the capability to abort a micropacket by forcing a specific LCRC value
(called a "stomp code"). Downstream HIPPI-6400 nodes receiving a stomped micropacket will
discard it as if were a Null micropacket. Other checks are made for out-of-order or missing
micropackets (e.g., two Header micropackets without an intermediate Tail bit), lack of credit for
a timeout period, etc. All error events are logged. There are no know error cases that would
cause a link to lock up. An upper-layer protocol only needs to retransmit those messages that had

unrecoverable errors, and these should be few and far between on a properly installed and

maintained HIPPI-6400 system.

12

Media interfaces

The data is transmitted in parallel over the cable, and strobed with the clock signal.
Figure 8 shows the signal lines between two end devices. Figure 9 shows the signal waveforms

during a micropacket time (all of the time except the 40 ns when retraining the deskew circuitry).

2nsticks|¢‘| L R T R R B

Figure 8

Local end

Remote end

Source
DATA

FRAME
CLOCK
CLOCK_2

CONTROL

ALCEN
———P

4(2)
11)
1(1)

————p
0)

Destination
DATA
CONTROL
FRAME
CLOCK

CLOCK 2

Destination
DATA
CONTROL
FRAME
CLOCK

CLOCK_2

€ (16(8)
i

4(2)
1)
< 1)

< 1(0)

Source
DATA
CONTROL
FRAME
CLOCK

CLOCK_2

(Numbers in parenthesis are for an 8-bit system.’
CLOCK_2 is only used in 16-bit systems.)

40 ns

— HIPPI-6400-PH link showing signal lines

CLOCK J

FRAME J

Data or
Control line

First Second Third Fourth
5-bit code 5-bit code 5-bit code 5-bit code

Figure 9 — 16-bit system micropacket waveforms

13

The parallel architecture allowed the use of CMOS circuits and available drivers and
receivers, a real cost and time-to-market saving. A serial implementation of HIPPI-6400 would
have required a serial rate of about 10 Gbit/s, costly with optics, and impossible with copper
cable.

A copper cable interface is defined for the 16-bit system, using a total of 23 signals in
each direction. Each signal operates at 500 MBaud. The cable assembly (i.e., cable and
connectors) provides differential paths for 46 signals, 23 in each direction. Characteristic
impedance is 150 Q and the maximum distance supported is 40 m. The cable to support this
speed and distance is not cheap, but is available from several vendors. Some testing has shown
that passive equalizers aid signal quality for cables greater than 10 m. Active equalizers would-
have given longer distances, but required power, took considerable room, and added cost.

A local electrical interface is also defined, with the intent to drive parallel optical
transceivers on the same circuit board. The optical interface is defined for an 8-bit syétem, with a
total of 12 signals in each direction (see figure 8). Each signal operates at 1 GBaud. A 12-fiber
ribbon cable is used in each direction. The optical interface is not as far along in design and
standardization, and has been split out into a separate standards document called High-
Performance Parallel Interface — 6400 Mbit/s Optical Specification (HIPPI-6400-OPT). [4]
Several optical va_riants are being explored. One uses 850 nm laser arrays, 62.5/125 pm
multimode fiber, and an open-fiber-control system to detect an open fiber and power down the
lasers (to avoid potential eye damage). Another variant uses the same lasers and fiber, but
decreases the power to avoid eye safety problems. The third variant uses 1300 nm lasers and
either single-mode or multimode fiber. The human eye is much less susceptible to the 1300 nm

wavelength, and that system will probably not need an open fiber control safety system. The 850

14

nm variants will probably be limited to 200-300 m, while the 1300 nm variant with single-mode
fiber may operate up to 10 km. The HIPPI-6400-OPT specification is being written with the

intent that it can also be used for other systems needing high-speed parallel fiber paths.

AC coupling

When driving long cables it is usually desirable to AC couple the signals and to keep
them DC balanced. The AC coupling separates the ground paths between the end devices and
avoids ground loops. DC balance means that a signal is above the switching threshold as much
of the time as it is below the threshold; this considerably ?improves jitter and signal quality.
" 4B/5B encoders / decoders are specified in HIPPI-6400-PH, one encoder / decoder on each signal
line. The 4B/5B encoding is adapted from the HIPPI-Serial standard. [4, 5, 6] The 4B/5B
encoding scheme transmits four data bits as a 5-bit code group. The 4B/5B encoding was chosen
for its implementation simplicity since 20 copies are required on the chip. Figure 10 is a

- simplified schematic of an encoder on the left, and a decoder on the right.

Source ' Destination

Previous M , 4-bit code
disparity d ¢ _ c

True or J J \ \ ' ‘ f f \ k
complement ‘ RIR R

decision _¢ ‘ l i l ' T T T T
5-bit code

z Serial signal line g EARANER WA

& = True/complement gate,
1 = true, 0 = complement

Figure 10 — 4B/5B Encoder / Decoder

15

For each signal line, a running count, called the Disparity Count, is kept of all the ones
and zeros transmitted on that line since the link was reset. The Disparity Count is incremented
for each "1" transmitted, and decremented for each "0" transmitted. The 5-bit code (w,x,T.,y, and
z in figure 10) transmitted is based on the current value of the Disparity Count and the input data
4-bit code (a, b, ¢, and d in figure 10). For example, if the Disparity Count is negative (more 0's
than 1's transmitted), and the incoming 4-bit data has more 0's than 1's, then the incoming 4-bit
code is complemented (generating more 1's), and the "T" bit set to 0. At the receive end the
incoming bits are passed straight through (if T = 1), or complemented (if T =.O). This algorithm
gives a maximum run length of 11 bits, and a maximum disparity of +6 and -7. While the run
length and maximum disparity are not as good as the 8B/10B code used in Fibre Channel [7,8],
the 4B/5B algorithm is much simpler to implement, and simplicity is mandatory when you
remember that a single link requires 20 copies of the circuit (one for each data and control bit
line).

A design goal for the 4B/B encoding was to minimize the average run length for real data.
As a test case, the operating system of a Silicon Graphics workstation was used as the random
data input for a 4B/5B simulator. Rather than in the middle of a 5-bit data pattern, the "T" bit
had started out on the end. It turned out that the operating system had many 4-bit zero patterns
(i.e., binary 0000), and these would give long run lengths when the zeros were back-to-back. |
Moving the "T" bit to the center of the 5-bit code shortened the average run length considerably,
moving the worst case 4-bit code combination from "0000" to "1111". Since real user data is
more likely to contain 0000 rather than 1111 patterns, this move was considered useful for the

general case.

16

Deskewing the parallel signals

The clock signal, used to strobe the other signals, is carried on a separate line, negating

the need for clock recovery circuits on each data line. Up to 10 ns of differential skew is allowed

between the signals lines at the receiver, and the deskew circuits are dynamically adjusted every

10 microseconds. The deskew adjustment eats up one micropacket time (i.e., 40 ns), every 10

us, accounting for the missing 0.04% of the 6400 Mbit/s total bandwidth. Figure 11 is a block

diagram of the deskew circuit on one signal line, there are a total of 20 such circuits on an

interface chip. The input signal drives a tapped delay line (implemented as a series of inverters),

and the output is derived from one of the taps. A special signal pattern is used to train the

deskew logic.

Input

Strobe —p|

Signal 1
Signal 2
Signal 3
Signal 4

CLOCK

Tapped delay line

Train = Detect edge and latch
Normal = Select delay line tap for output

Figure 11 — Tapped delay line deskew circuit

—

Cable

L

Output

Delay Ckt 1

| Delay ckt 2

Delay Ckt 3

Delay Ckt 4

v v v v

Figure 12 — Dynamic deskew in operation

18

v

Figure 12 shows four signals being deskewed. They are transmitted in synchronism on
the left, but coming out of the cable they are skewed due to differences in wire lengths,
propagation delay, etc. Delay Ckt 1 is adjusted by Al, Delay Ckt 2 by A2, etc., so that all of the

signals are again synchronous as they leave the delay circuits providing the deskew function.

Summary

HIPPI-6400 is an emerging standard for moving digital data.at speeds of up to 6400
Mbit/s (800 Mbyte/s) between devices in a LAN-like environment. Many innovative design
_techniques are employed, resulting in a robust full-duplex link with efficient, reliable, in-order,
* data delivery. The links use parallel copper or fiber paths so that today's CMOS technology can

be used to implement the links. -

Acknowledgements

The Los Alamos National Laboratory is operated by the University of California for the
United States Department of Energy under contract W-7405-ENG-36. The author's work was
performed under auspices of the U.S. Department of Energy. Silicon Graphics Inc., with Dr.
Greg Chesson leading their efforts, has contributed the majority of the HIPPI-6400 technical
innovations. The HIPPI standards committee, with participation from many people throughout

the industry, has worked tirelessly to document HIPPI-6400 and Scheduled Transfer as ANSI

standards.

19

References

[1] ANSI X3.xxx-199x, High-Performance Parallel Interface — 6400 Mbit/s Physical Layer
(HIPPI-6400-PH).

[2] ANSI X3.xxx-199x, High-Performance Parallel Interface — 6400 Mbit/s Physical Switch
Control (HIPPI-6400-SC).

[3] HIPPI—6400: Analysis of a High-Throughput Network Interface, James Hoffman, Master's
Thesis, University of Arizona, 1996.

[4] ANSI X3.300-1997, High-Performance Parallel Interface — Serial Specification (HIPPI-

Serial).

[5] “DC-Free Code for Arbitrary Data Transmission”, Doug Crandall, Steve Hessel, Tom - & . o

Hornak, Rasmus Nordby, Kent Springer and Richard C. Walker, U.S. - Patent 5438621
(August 1995).

[6] “DC-Free Line Code and Bit and Frame Synchronization for Arbitrary Data Transmission”,
Tom Hornak, Benny Lai, Pat Petruno, Cheryl Stout, Rick Walker, Jieh-Tsorng Wu, Chu
Yen, U.S. Patent 5022051 (June 1991).

[71 "A DC-Balanced, Partioned-Block, 8B/10B Transmission Code", A.X. Widmer and P.A.
Franaszek, IBM Journal of Research and Development, 27, No.5: 440-451 (September,
1983).

[8] "Byte-Oriented DC Balanced (0,4) 8B/10B Partitioned Block Transmission Code", P. A.

Franaszek and A.W. Widmer, U.S. Patent 4486739 (September 1983).

20

Biography

Don Tolmie joined the Los Alamos National Laboratory in 1959, and has been involved
with networking of supercomputers since 1972. He has led the HIPPI standards efforts since
HIPPI's conception in 1987, and is presently the Chairman of T11.1. He holds a BSEE from

New Mexico State University (1959), and an MSEE from University of California - Berkeley

(1961).

21

M9806438é” -
LT

‘Report Number (14) LA UR -~ 47— 4906
| CoNT - 80544 --

Publ. Date (11) 199803
'Sponsor Code (18) LD&E/Z)\O X F ;
UC Category (19) (/LCL/ '705 H)E / 5R

DOE

