LA-7499-M

Manual

DEMOS Primer

University of California

CIOTP.IBUTI6N OF JRIg JJOCUJ'iENT iS UNLIMITED

LOS ALAMOS SCIENTIFIC LABORATORY

Post Office Box 1663 Los Alamos. New Mexico 87545



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.



An Affirmative Action/Equal Opportunity Employer

This report was prepared as an account of work sponsored
by the United States Government. Neither the United States
nor the United States Department of Energy, nor any of their
employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or
assumea any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would
not infringe privately owned rights.

UNITED STATES
DEPARTMENT OF ENERGY
CONTRACT W*740B-ENG. 36



LA-7499-M
Manual

Special Distribution

Issued: January 1979

DEMOS
PRIMER

SOFTWARE DOCUMENTATION

GROUP C-2
(505) 667-2432

LOS ALAMOS SCIENTIFIC LABORATORY

———————————————— NOTICE—=————===== ——
This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal
liability or ibility for the accuracy, cc 1
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

JMITED



PREFACE

Don't plan to read this primer at home some balmy
summer evening and then, the next day or next week or
next month, when you have worked yourself up to it, try
to run a job on DEMOS. Work yourself up first, then
read this sitting at your terminal. This is supposed
to be a do-as-you-read book--convert your Fortran code
while you are reading Chapter 2, compile it while vyou
are reading Chapter 3, etc.--so that you can get simple
jobs running on DEMOS with a minimum of preliminary
time invested. Why read a 180-page reference manual
when all you want to do is compile and execute a
routine program? If you want to know more than the
primer tells you, look in PIM-7; but, for right now, if
you are a new user with a simple job, ignore it. There
is plenty of time for system reference manuals later,
when you have something more complicated to do and feel
comfortable running jobs on DEMOS.

DEMOS PRIMER JANUARY 1879



CONTENTS

Before You Do Anything Else
Preparing Your Fortran Code
Compiling Your Program

Creating a DEMOS Job File
Submitting a Job to DEMOS

Putting Your Job to Bed
Vectorizing Your Fortran Program
Should I Have Told You This Before

How to Avoid Nightmares

DEMOS PRIMER JANUARY 1979



1-1

| BEFORE YOU DO ANYTHING ELSE

The first thing you have to do is get
validated--that is, you must have permission to run
jobs on the CRAY-1 computer. If you were validated to
run Jjobs on the CRAY-1 computer when it was running the

Benchmark Operating System (BOS), you are also
validated for DEMOS. But if you have the usual user
luck (that is, 1little or none), you were not validated

for BOS, in which case you must contact the C-7 group
secretary to get validated on DEMOS. If you are not
validated for LTSS, first call the C-Division Computer
Security Office to get wvalidated for LTSS, then call
C-7 to get wvalidated for DEMOS.

Once you are validated for DEMOS, sign on to LTSS,
since jobs for the CRAY-1 are submitted through LTSS.
If you are not familiar with LTSS, call the C-Division
Program Library (667-6992) and ask for a copy of PIM-6,
which describes the basic use of LTSS. Learn the
rudiments (especially how to use TRIX), then come back
and pick up here.

One thing about LTSS that I must explicitly mention
is the tag

/ tp

that you will see attached to some LTSS execute lines
in this Primer. The t is a symbol for time and the p
for priority; for these symbols you should type some
appropriate numbers. See page 1-10 of PIM-6 for
information on time and priority.

At this point, I assume that you are validated for
LTSS and DEMOS and that you have an LTSS file
containing a Fortran program you want to execute on
DEMOS. If so, start reading Chapter 2.

DEMOS PRIMER JANUARY 1979



2 PREPARING YOUR FORTRAN CODE

Because DEMOS does not currently support a Fortran
compiler, you will compile your program on LTSS using
XFC. XFC accepts an input file of FTN statements and
generates an output file of Cray Assembly Language
(CAL) statements. The CAL file generated by XFC can
then be sent to DEMOS to be assembled, loaded, and
executed. (If your Fortran program was written for
FUN/RUN, convert it to FTN with the SIFT utility run
under SLOPE2 on LTSS.)

Before your code can be compiled, however, there are
some things you must do to it so that it will be
accepted by XFC.

* Remove or modify machine-dependent or word-size-
dependent code. Note that character constants
(A, H, L, and R formats) are stored 8 characters
per word on the CRAY-1 computer. Note also that
the intrinsic SHIFT function is left circular and
right end-off with no sign extension.

* Remove references to LCM and ECS.

* Remove double-precision references.

* Remove calls to library routines not in MATHLIB,
DEMLIB, or CGSFTN, The contents of MATHLIB and
DEMLIB are listed in Appendix A of PIM-7. See
PIM-2 for information on CGSFTN.

* Remove OVERLAY and CALL OVERLAY statements.

* Remove calls to the following FTN utility

subprograms
CHECKPTX DISPLA ERRSET
IOCHEC LABREL LEGVAR
RANF RANGET RANSET
SLITE SLITET STRACE
SYSTEM SYSTEMC

ECS/LCM subprograms
terminal interface subprograms

* Remove all calls to the Cyber Record Manager
interface and the Sort/Merge interface.

DEMOS PRIMER JANUARY 1979



3 COMPILING YOUR PROGRAM

You should now be ready to compile your program.
First, switch the name of the file containing the
Fortran source code to PGM with the statement

SWITCH program PGM

where for program you type the name of your file.

(After the compilation is completed, switch the name of
the file from PGM back to its original name so that you
don't lose track of it.)

Now get the procedure file named XFCCOMP from Hydra
by typing

XPORT CAUSER GET XFCCOMP

XFCCOMP consists of commands to compile a program named
PGM with XFC

To execute XFCCOMP, enter
SLOPE2 I=XFCCOMP / t p

As a result of executing this line, your program will
be compiled by XFC, and the output, in the form of Cray
Assembly Language (CAL) statements, will be written to
a file named CINPUT. CINPUT is ready to be sent to
DEMOS for assembly and execution. The source listing
and dayfile from executing SLOPE2 will be written to a
file called PSLOPEx, where x is the LTSS suffix you are
executing SLOPE2 under.

Because you will undoubtedly be compiling another
program sometime, it would be wise to switch the name
of the XFCCOMP output file from the default name CINPUT
to some unique name so that the next compilation does
not destroy your output from this one.

DEMOS PRIMER JANUARY 1979



4 CREATING A DEMOS JOB FILE

Now it 1is time to write your DEMOS job file (the
file of DEMOS job control statements required to run
your Jjob). You will create it on LTSS using TRIX and
then submit it, along with your program and data files,
to DEMOS.

You could, of course, read Chapter 4 of PIM-7 to
learn the job control language, but that would take a
lot of time. The simplest thing to do is find a job
file that does the same thing that you want to do and
copy 1it. To that end, this chapter provides a basic
set of sample files.

To simplify explanations of the examples, I will not
mention all the possible arguments for each of the job
control statements. Refer to Chapter 8 of PIM-7 for
detailed information if the examples won't quite do.

After you look at the examples, you will realize
that basic DEMOS job control is pretty conventional, so
at the end of this section I have added a list of the
most commonly used utilities, with their arguments and
a brief description of how they work. If you want to
do something a little different from what the examples
illustrate, you should be able to patch it together and
make it work.

Before you plunge into writing your Jjob file, you
should know that there are two kinds of DEMOS files,
temporary files (on some systems called "local files")
and resident files (on some systems called "permanent
files"). The examples in this Primer assume that you
have no pressing need to save files on DEMOS disk
(resident files), so that all files needed by and
created by your job can be temporary files. The
purpose of this is to simplify your use of the system:
there is no need to say anything about the DEMOS
directory file structure if you only work with
temporary files. So, 1if you want to save some files on
resident file space, or if you are just curious, look
at Chapter 2 of the DEMOS User's Guide (PIM-7) for a
description of the file system. But for now, I will
assume the simplest case, in which all are your files
are temporary files.

DEMOS PRIMER JANUARY 1979



Example 1

Assemble a program and execute it.

job z=12345 Jjn=samplel ch”S00Sx00S cl=u t=19 m"~1S0000
cal i=calin e

load map=ldmap arg=[amphib=frog fowl=duck]

dispose map

stop

The first statement in any job file is the JOB
statement, in which you must list your Z-number (leading
zeros are optional), the name of the job (samplel in this
example), the cost center and project codes, and the
classification (u is unclassified). In addition, this
JOB statement specifies a time limit of 19 seconds
(default is 10) and a memory size of 180,000 decimal
words (default is 98304).

The next statement calls the CAL assembler, with CALIN
as the source code. (Assume that you changed the name of
the file CINPUT to CALIN after compiling your program by
means of the XFCCOMP procedure file.) By specifying E,
any error listing goes to a file called OUT. The
relocatable binary code is placed in the default output
file BLD, which is also the default input file to the
loader.

LOAD loads BLD and executes it (load-and-go is the
default mode of the loader), with the load map sent to
LDMAP. If you want to specify some relocatable binary
file other than BLD as the file to be loaded, wuse the
REL=file argument in the LOAD statement (see Example 6).
The ARC argument specifies files to be used in place of
files named in the program: the file FROG will be used
wherever AMPHIB is specified; the file DUCK will be used
wherever FOWL is specified.

The DISPOSE statement sends the load map (LDMAP) back
to the LTSS machine.

STOP terminates your job. The dayfile LOG and the
output file OUT are both automatically returned to LTSS.

DEMOS PRIMER JANUARY 1979



4-3

But what happens to the output resulting from
execution? If your Fortran program wrote its output to
the file OUTPUT, it will appear on the file OUT. If the
output was written to some other file, you must DISPOSE
that file; otherwise, it will be destroyed when the job
terminates

Example 2

Assemble a program, load it, and return the executable
file (but do not execute it).

job z=087524 jn=sample?2 ch=8005x003 cl=u
cal i=calj e

load ex=exec map=ldmap g=off

dispose Idmap exec

stop

This JOB statement is quite standard, making use of
the default time limit (10 seconds) and memory size
(98304 decimal words).

The CAL statement assembles the temporary file CALJ
(you shipped it to DEMOS after changing its name from
CINPUT to CALJ) and writes the error file to OUT, as in
Example 1. The assembled code is written to the default
file BLD.

The LOAD statement loads the default relocatable
binary output file from CAL (BLD). The executable code
is written to the file EXEC. A load map 1is written to
LDMAP. The argument G=0OFF suppresses execution.

The DISPOSE statement sends the load map and the
executable file to the LTSS machine. Presumably the
executable file EXEC will be saved on Hydra.

STOP terminates the job. The dayfile LOG and the

default output file OUT are both automatically returned
to LTSS.

DEMOS PRIMER JANUARY 1979



Example 3

Execute an executable file. This example will execute
the file EXEC that was created in Example 2.

job z=087524 jn=sample3 ch=8005x003 cl=u t=12
exec kiwi=fig coca=nut
stop

As always, JOB must be the first statement in the job
file.

The second statement executes the file EXEC, which was
assembled, loaded, and saved on Hydra in the preceding
example. The arguments following EXEC specify the files
to be used instead of files named on the program card
(FIG in place of KIWI, NUT in place of COCA). If EXEC
alone is specified, the files named in the program will
be used.

This job assumes that output from the executing
program is written to the file OUTPUT and thus will be on
the file OUT, which is automatically returned to LTSS at
job termination. If output was written to any other
file, that file must be DISPOSEd.

Example 4

Create a library of executable files.

job z=087524 jn=sampled4 ch=8005x003 cl=u
cal i=cinput e

maklib newlib=mylib add=bld map=out
dispose mylib

stop

DEMOS PRIMER JANUARY 1879



4-5

The JOB, CAL, and STOP statements are as in the
preceding examples. The important new utility here is
MAKLIB, which creates and edits libraries.

Let's assume you have compiled (with XFC) a Fortran

program with which you want to start a library. This
sample job file will assemble the program and then put
the output in a library. The assembled program, in the

default file BLD, 1is used as an "addfile" to MAKLIB,
which means it is added to the library (since no
OLDLIB=file argument 1is specified in this statement, the
library is initially empty). Output (the library) is
written to the file MYLIB, which 1is DISPOSEd to LTSS so
that it can be saved on Hydra. The MAP argument assigns
to OUT the record of MAKLIB's activities in creating this
library

Example 5

Edit a library of executable files that was shipped
from LTSS to DEMOS.

job z=087524 jn=sampleb ch=8005x003 cl”u

cal i=cinput e

maklib newlib”goodlib oldlib=mylib add=bld map=out
dispose goodlib

stop

The MAKLIB statement in this example will add the
relocatable binary file BLD (the default output from CAL)
to the library MYLIB, which was created in the previous
example. The resulting new library is placed in the file
GOODLIB, which 1is DISPOSEd to LTSS so that it can be
saved on Hydra.

Note that this sample job is not substantially
different from the preceding one, where a library was
created. The only difference is that this MAKLIB
statement specifies an OLDLIB argument, meaning that an
existing library is being modified.

DEMOS PRIMER JANUARY 1979



Example 6

Assemble, load, and execute a program using the
library GOODLIB (produced in Example 5), which you
shipped over with the Jjob file from LTSS.

job z=087524 jn=sample6 ch=8005x003 cl=u

cal i=caldem b=calcode e

load rel=calcode lib=goodlib lib=/lib/demlib #
lib=/1ib/mathlib map”map arg=[output=result

dispose map calcode result

stop

There are three new things in this example. First,
*instead of using the default output file from CAL (BLD),
the job writes the relocatable binary code to the file
CALCODE. CALCODE 1is the file that 1is executed (load-
and-go 1is default for the loader).

The second new thing is the specification of libraries
for LOAD. DEMLIB and MATHLIB are default libraries; note
that the complete names /LIB/DEMLIB and /LIB/MATHLIB must
be used to identify them. If you specify another- library
to be used (as in LIB=GOODLIB), you must specify all
libraries, including DEMLIB and MATHLIB. The routines
available in DEMLIB and MATHLIB are listed in Appendix A
of PIM-7.

The third new thing is the line continuation in the

LOAD statement. To continue a line, Jjust type a #
between arguments.

DEMOS PRIMER JANUARY 1879



4-17

A Miscellany of DEMOS Utilities

Before describing some of the more commonly used
utilities, I should tell you the two syntax rules you
need to know to use these utilities:

* Arguments must be separated from each other and from
the name of the utility by at least one space.

* To continue a line, type a # followed by a carriage
return at a point where a space could occur (between
arguments).

In each case below, where I give the general form of
the statement, upper-case letters represent literally
what you must type; lower-case letters indicate a symbol
for which you supply the exact text (a file name, for
example) . As a matter of normal practice, use lower-case
letters to enter your job control statements.

CAL

See Chapter 8 of PIM-7 for details.

DISPOSE filelist

Sends the files in filelist from DEMOS to the
source machine. Separate the file names in
filelist by at least one space. Note that any
file that is DISPOSEd is no longer available on
DEMOS

Example: dispose this that thother

JOB
This must be the first statement of any DEMOS

job file. See Chapter 8 of PIM-7 for all the
arguments and defaults.

DEMOS PRIMER JANUARY 1979



LOAD

MAKLIB

4-8

See Chapter 8 of PIM-7 for all the arguments
and defaults of the LOAD loader.

See Chapter 8 of PIM-7 for all the arguments
and defaults for MAKLIB.

NOTE charstring

STOP

Appends the string charstring to the LOG file.
Restrict the characters you use to letters,
numbers, spaces, and normal punctuation marks.
Charstring can be only one line.

Example: note I sure hope this works.

Terminates execution of your Jjob.

DEMOS PRIMER JANUARY 1979



5 SUBMITTING A JOB TO DEMOS

Now, at last, you should be ready to submit your job
to DEMOS. To do so, you need to use two utilities on
LTSS--one to convert your LTSS files to DEMOS format,
and one to actually submit your job.

Conversion 1is necessary because the CDC 7600s that
run LTSS have 60-bit words (ten 6-bit characters per
word) and the CRAY-1 has 64-bit words (eight 8-bit
characters per word). You must convert all files you
are shipping to DEMOS except the output from the
XFCCOMP procedure file (which, you will remember, is
your program translated into CAL); the output from
XFCCOMP is already converted into DEMOS format. The
job file and all data files must be converted.

Conversion entails no great effort. In the simplest
form, for each file you need only write

CRACON oldfile newfile

and you are done. The file oldfile will be converted
to DEMOS format and written to file newfile. There are
a number of options that can be used with CRACON, but
for straightforward data conversion they can be
ignored. If you want to look at them, they are
described in the section on CRACON in Chapter 7 of
PIM-T7.

Now the actual submittal, for which you use the LTSS
utility called CRALINK. First, enter the execute 1line

CRALINK
LTSS will respond with the prompt
ok:

Now you can tell CRALINK what you want to submit with
the line

SUBMIT L=jobfile DATA"filelist
where for jobfile you type the name of the job file
(see the preceding chapter) and for filelist you

specify any programs and data files you want shipped to
DEMOS. All of the files will be interpreted as

DEMOS PRIMER JANUARY 1979



5-2

temporary files when they arrive at DEMOS.

For example, if your Jjob file is called JOBIN, your
program is in HOPE, and the data files are CURSE and
SWEAR, then you would type

submit 1l=jobin data=hope curse swear

Note that the file names in filelist are separated by
at least one space. You can have as many names in
filelist as will fit on the line.

After you complete the SUBMIT command, CRALINK will
inform you of a three-digit number that has been
assigned to your Jjob. This number should be used to
communicate with CRALINK about the job (see below).
The number will also be appended to the names of any
files returned to LTSS by the Jjob.

There are three other CRALINK commands you may have
occasion to use: STATUS, TERMINATE, and END. They can
be typed in response to the ok: prompt.

The STATUS command allows you to get information
about the status of the CRAY-1 computer and about your
jobs. For example, if you are planning to submit a job
and are wondering how many jobs are already waiting,
just type

STATUS

In return, you will be told the number of jobs in the
DEMOS queue and the total time for the queue. If you
have already submitted a job and want to know how far
along it 1is, type

STATUS jobno

where jobno is the number of the job returned after the
SUBMIT command. You can specify more than one job
number by leaving a blank between them. The
information you get consists of the job number, the
CRAY 1ID, submit time, job type, and state (waiting or
executing) . If you can't remember the job number
assigned to your Jjob, you can get the same information
about all the jobs you have running by typing

STATUS ALL

DEMOS PRIMER JANUARY 1979



5-3

The TERMINATE command allows you to stop execution
of a job you have submitted. Just type

TERMINATE jobno

where jobno is the DEMOS job number of the job you want
to stop. The job will terminate and the &LOG and &OUT
files will be converted and returned to LTSS.

And, finally, to get yourself out of the CRALINK
session, Jjust type

END
and you are done. This will not affect your job
execution on the CRAY-1. For example, you can SUBMIT a

job, END the session, and an hour later execute CRALINK
again and check on the status of your Jjob.

DEMOS PRIMER JANUARY 1979



6-1

6 PUTTING YOUR JOB TO BED

When your job completes execution under DEMOS, the
dayfile (LOG) and the default output file (OUT) are
automatically returned to the source machine of the
job, where you can find them under the names LOGnnn and
OUTnnn (nnn 1is the DEMOS job number). All files you
have DISPOSEd will also have the three-digit Jjob number
appended to the file name when they arrive at LTSS

Because any files returned will still be in DEMOS
format, you must again use the CRACON routine to
convert them, this time back to LTSS format, if you
want to output them. Fortunately, CRACON is designed
so that you can use it exactly the same way, whichever
direction you are converting: 1if the input file is not
in DEMOS format, it 1is converted to DEMOS format; if it
is in DEMOS format, it 1is converted to LTSS packed-
ASCIT

Now, check a little bit of each file created by your
job to make sure that they are not Jjust garbage. If
all is in order, you can use ALLOUT to print a copy of
the complete file, or you can save it on Hydra.

DEMOS PRIMER JANUARY 1979



7 VECTORIZING YOUR FORTRAN PROGRAM

Now that you can run jobs on DEMOS, it would be
worth your while to consider vectorizing your Fortran
program if it is to be used repeatedly. After all, one
of the reasons for having the CRAY-1 computer is its
vector processing capability. Furthermore, because the
vectorization is done by a procedure file (VECEZ), very
little programmer effort is required.

To vectorize your program, execute the procedure
file VECEZ (available under SLOPE2) using your program
as the input file. VECEZ will access a vectorizing
program (the vectorizer) that will, wherever possible,
substitute vector instructions for your conventional
Fortran statements. You will then compile this
vectorized code with XFC.

As a result of executing VECEZ, you will be provided
with the following:

* vectorized code 1in a form suitable for
compilation by XFC;

* a listing of the source code;
* a cross-reference listing;

* information on ways to revise the Fortran source
code so that more advantage can be taken of the
vector processing capabilities.

Although this last information is useful if you want to
see how much of the code was vectorized, it can be
ignored. However, in the best of all possible worlds
you would use this information to revise your source
code and then resubmit it to the wvectorizer (never
resubmit the vectorized code-- the vectorizer doesn't
know what to do with its own output).

But before you get your terminal fired up to send
off for VECEZ, consider two things:

* Make sure your Fortran source code already zruns on
the CRAY-1. Debugging a program that is peppered
with vector instructions inserted by the
vectorizer is a task reserved for wizards (or at
least for people who speak in tongues).

DEMOS PRIMER JANUARY 1979



-2

* Check the size of your Fortran source code. The
vectorizer gobbles up CPU time (translation: Dbank
account points), so don't feed a large program to
it in one big chunk and expect to have any friends
left. Instead, vectorize large programs a routine
at a time, first doing the the most heavily used
routine, then another, then another, etc. XFC
doesn't care whether or not the entire program has
been through the wvectorizer.

Once you are ready to use VECEZ, enter the following
command sequence. The XPORT, LIX, and DESTROY routines
will print ALL DONE as they complete. Wait for this
response before you type the next line.

XPORT CAUSER GET VCLOVL
LIX VCLOVL!GR. ALL.

END

DESTROY VCLOVL

SLOPE2 I=VECEZ

The system will provide the following response:

S5LDPEC I=1'ECEZ

¢ CDFYCF <1],P>

ENI' DF INFORMATION ENCOUNTERED.

¢ VECTORIZER PROCEDURE

¢ CALL'h-'R< IF=INFILE> DF=OUTFILE) >

IF - INPUT SOURCE FILE IN ASCII.

OF - ASCII OUTPUT +“ECTORIZED SOURCE FILE.
OPTIONS ARE CJF

* & 6 o o
* o o

After the system output is completed, in response to
the slash prompt from SLOPE2 enter the call line

CALL (VR (IF=infile,OF=outfile)]

where infile is the name of the packed-ASCII file
containing your Fortran code and outfile is the name of
the file to which the vectorized code (which will also
be in packed-ASCII) should be written. This is the
file you will send to the XFC compiler. For example,
if your source file is named SOL, type

call (vr(if=sol,of=pgm))

and your vectorized code is ready for XFC since the
output file 1is already named PGM.

DEMOS PRIMER JANUARY 1979



7-3

The following example illustrates a complete session
with VECEZ; it includes all system responses.

SLOPE? X=i'ECEZ
¢ CDPYCF <« 1/p>
ENI' DF INFDPMMTIDN ENCnUNTEFFn.

¢ ¢ 1/ECTDRIZEF FFQCEnUPE
¢ ¢ CPLLKI'F<IF=INFILE'i DF=OUTFILE> >
L R 2 IF - INPUT SOURCE FILE IN ftSCII.
¢ ¢ DF - FtSCII OUTPUT UECTOPIZEI' SOURCE FILE.
* ¢ OPTIONS RRE CJF
¢ IMS.

CRLL <l 'P <IF=PGM» OF=|'ECPGM> >
¢ DFILE»UEC'CM.
¢ DFILE» FGM~PPi.
¢ CFILE» UECPGM -'PR.
¢ PFL <150000, £50CiOCO
¢ VEC <I=PGM, L=OUTPUT, C=UECPGM, S=CJIT>

MRIN

CJRC

STOP
738 CP SECONDS EXECUTION TIME

¢ EXTIT.
/ END
$*:CPU TIME 0.983 SEC
S'*ISYS TIME 0.236 sEC

I 'D TIME 25.916 sEC
S1’1iTOTRL = 0.451 MINUTES

RLI. DONE

DEMOS PRIMER JANUARY 1979



8 SHOULD | HAVE TOLD YOU THIS BEFORE?

It turns out that submitting a job to DEMOS can be
done using a BOON controller named DEMON, which will
take a simple Fortran source program and associated
files as input and do the appropriate things to execute
the program on DEMOS. Specifically, DEMON will perform
the following tasks:

* compile a Fortran program with XFC;

* convert specified BCD data files to DEMOS text
file format;

* create a simple job file that will assemble, load,
and execute the program;

* submit the job file and associated files to DEMOS;

* return output files to LTSS and convert them, if
required

Clearly, what DEMON can do for you is limited, but if
this is all you need, it is very handy.

Get DEMON from Hydra with the line
XPORT CAUSER GET DEMON

After LTSS has responded with ALL DONE, enter a line
with the form

BCON DEMON filename type costcode box memory comp char
where the arguments have the following meaning:

filename name of the file containing the program
to be executed.

type S if filename specifies a Fortran source
code on LTSS, or L if filename specifies
a library file stored in DEMOS resident
file space.

costcode four-digit cost center code.

DEMOS PRIMER JANUARY 1879



box box number for output as specified for
ALLOUT. If box is specified and the Jjob
does not terminate until after 4 P.M.,
DEMON will ALLOUT your files to that box.

memory required field length. Default: 150000
decimal words.

comp Possible wvalues are ONLYXFC and GO. If
ONLYXFC 1is specified, DEMOS will compile
the program but will not submit the Jjob
for execution. If GO is specified
instead, DEMON will call XFC to compile
the program and then will submit it to
DEMOS for execution.

char character ¢ used with the EXCL. option in
CRACON (used only with CAL code
intermixed with Fortran).

The last four arguments are optional. However, 1if you
specify one of them, you may not omit any arguments that
precede it. For example, if you want to specify ONLYXFC,
you must also specify box and memory. On the other hand,
you can specify box without specifying the others.

If the second argument is S and the ONLYXFC argument
is not used, when the Jjob terminates a file named
EXEfilename will remain in your DEMOS resident file
space. This file contains the executable code for the
program you submitted. For example, 1if filename 1is
BIGPIG, after your job terminates the file EXEBIGPIG on
DEMOS resident file space will contain the executable
code. As a result, any subsequent time you want to use
DEMON to execute that same program, you should enter
EXEBIGPIG as filename and then specify L as the second
argument. That way, your program will not be re-
compiled, re-assembled, and re-loaded every time you want
to execute it.

After you have called DEMON with the BOON DEMON line,
you will be queried about such things as Jjob time limit,
input files, and output files. DEMON will then proceed
to do your work for vyou.

DEMOS PRIMER JANUARY 1979



9 HOW TO AVOID NIGHTMARES

If your job fails, keep a copy of the job file,
the LOG file, and any other files related to the
job. This will increase the probability that the
consultants will be able to help you.

Make a habit of getting a load map (use the MAP
argument in the LOAD statement). That way, 1f you
get into trouble with your program and seek the
advice of the consultants, they will not have to
tell you to rerun your Jjob in order to get a load
map.

Don't forget to revise your FTN code to be
acceptable to XFC.

Get your Fortran code running on the CRAY-1 before
you vectorize it.

Make sure your files are in DEMOS format before
you submit them. After they come back, convert
them back to LTSS format if you want to examine
them

DEMOS PRIMER JANUARY 1979





