
U
ni

ve
rs

ity
 of

 C
al

ifo
rn

ia
LA-7499-M
Manual V

DEMOS Primer

CIOTP.IBUTI6N OF JRIg JJOCUJ'iENT iS UNLIMITED

LOS ALAMOS SCIENTIFIC LABORATORY
Post Office Box 1663 Los Alamos. New Mexico 87545



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



An Affirmative Action/Equal Opportunity Employer

This report was prepared as an account of work sponsored 
by the United States Government. Neither the United States 
nor the United States Department of Energy, nor any of their 
employees, nor any of their contractors, subcontractors, or 
their employees, makes any warranty, express or implied, or 
assume a any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would 
not infringe privately owned rights.

UNITED STATES 
DEPARTMENT OF ENERGY 
CONTRACT W*740B-ENG. 36



Illllllll

LA-7499-M
Manual

Special Distribution 
Issued: January 1979

DEMOS
PRIMER

---------------- NOTICE —---------- -—
This report was prepared as an account of work 
sponsored by the United States Government. Neither the 
United States nor the United States Department of 
Energy, nor any of their employees, nor any of their 
contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or 
process disclosed, or represents that its use would not 
infringe privately owned rights.

SOFTWARE DOCUMENTATION 
GROUP C-2 
(505) 667-2432

LOS ALAMOS SCIENTIFIC LABORATORY

JMITED

^929



PREFACE

Don't plan to read this primer at home some balmy 
summer evening and then, the next day or next week or 
next month, when you have worked yourself up to it, try 
to run a job on DEMOS. Work yourself up first, then 
read this sitting at your terminal. This is supposed 
to be a do-as-you-read book--convert your Fortran code 
while you are reading Chapter 2, compile it while you 
are reading Chapter 3, etc.--so that you can get simple 
jobs running on DEMOS with a minimum of preliminary 
time invested. Why read a 180-page reference manual 
when all you want to do is compile and execute a 
routine program? If you want to know more than the 
primer tells you, look in PIM-7; but, for right now, if 
you are a new user with a simple job, ignore it. There 
is plenty of time for system reference manuals later, 
when you have something more complicated to do and feel 
comfortable running jobs on DEMOS.

DEMOS PRIMER JANUARY 1979



CONTENTS

1 Before You Do Anything Else
2 Preparing Your Fortran Code
3 Compiling Your Program
4 Creating a DEMOS Job File
5 Submitting a Job to DEMOS
6 Putting Your Job to Bed
7 Vectorizing Your Fortran Program
8 Should I Have Told You This Before
9 How to Avoid Nightmares

DEMOS PRIMER JANUARY 1979



1-1

1 BEFORE YOU DO ANYTHING ELSE

The first thing you have to do is get 
validated--that is, you must have permission to run 
jobs on the CRAY-1 computer. If you were validated to 
run jobs on the CRAY-1 computer when it was running the 
Benchmark Operating System (BOS), you are also 
validated for DEMOS. But if you have the usual user 
luck (that is, little or none), you were not validated 
for BOS, in which case you must contact the C-7 group 
secretary to get validated on DEMOS. If you are not 
validated for LTSS, first call the C-Division Computer 
Security Office to get validated for LTSS, then call 
C-7 to get validated for DEMOS.

Once you are validated for DEMOS, sign on to LTSS, 
since jobs for the CRAY-1 are submitted through LTSS.
If you are not familiar with LTSS, call the C-Division 
Program Library (667-6992) and ask for a copy of PIM-6, 
which describes the basic use of LTSS. Learn the 
rudiments (especially how to use TRIX), then come back 
and pick up here.

One thing about LTSS that I must explicitly mention 
is the tag

/ t p
that you will see attached to some LTSS execute lines 
in this Primer. The t is a symbol for time and the p 
for priority; for these symbols you should type some 
appropriate numbers. See page 1-10 of PIM-6 for 
information on time and priority.

At this point, I assume that you are validated for 
LTSS and DEMOS and that you have an LTSS file 
containing a Fortran program you want to execute on 
DEMOS. If so, start reading Chapter 2.

DEMOS PRIMER JANUARY 1979



2-1

2 PREPARING YOUR FORTRAN CODE

Because DEMOS does not currently support a Fortran 
compiler, you will compile your program on LTSS using 
XFC. XFC accepts an input file of FTN statements and 
generates an output file of Cray Assembly Language 
(CAL) statements. The CAL file generated by XFC can 
then be sent to DEMOS to be assembled, loaded, and 
executed. (If your Fortran program was written for 
FUN/RUN, convert it to FTN with the SIFT utility run 
under SL0PE2 on LTSS.)

Before your code can be compiled, however, there are 
some things you must do to it so that it will be 
accepted by XFC.

• Remove or modify machine-dependent or word-size- 
dependent code. Note that character constants 
(A, H, L, and R formats) are stored 8 characters 
per word on the CRAY-1 computer. Note also that 
the intrinsic SHIFT function is left circular and 
right end-off with no sign extension.

• Remove references to LCM and ECS.
• Remove double-precision references.
• Remove calls to library routines not in MATHLIB, 

DEMLIB, or CGSFTN. The contents of MATHLIB and 
DEMLIB are listed in Appendix A of PIM-7. See 
PIM-2 for information on CGSFTN.

• Remove OVERLAY and CALL OVERLAY statements.
• Remove calls to the following FTN utility 

subprograms:
CHECKPTX
IOCHEC
RANF
SLITE
SYSTEM
ECS/LCM

DISPLA
LABEL
RANGET
SLITET
SYSTEMC

subprograms

ERRSET
LEGVAR
RANSET
STRACE

terminal interface subprograms
• Remove all calls to the Cyber Record Manager 

interface and the Sort/Merge interface.

DEMOS PRIMER JANUARY 1979



3-1

3 COMPILING YOUR PROGRAM

You should now be ready to compile your program. 
First, switch the name of the file containing the 
Fortran source code to PGM with the statement

SWITCH program PGM
where for program you type the name of your file.
(After the compilation is completed, switch the name of 
the file from PGM back to its original name so that you 
don't lose track of it.)

Now get the procedure file named XFCCOMP from Hydra 
by typing

XPORT CAUSER GET XFCCOMP
XFCCOMP consists of commands to compile a program named 
PGM with XFC.

To execute XFCCOMP, enter
SL0PE2 I=XFCCOMP / t p

As a result of executing this line, your program will 
be compiled by XFC, and the output, in the form of Cray 
Assembly Language (CAL) statements, will be written to 
a file named CINPUT. CINPUT is ready to be sent to 
DEMOS for assembly and execution. The source listing 
and dayfile from executing SL0PE2 will be written to a 
file called PSLOPEx, where x is the LTSS suffix you are 
executing SL0PE2 under.

Because you will undoubtedly be compiling another 
program sometime, it would be wise to switch the name 
of the XFCCOMP output file from the default name CINPUT 
to some unique name so that the next compilation does 
not destroy your output from this one.

DEMOS PRIMER JANUARY 1979



4-1

4 CREATING A DEMOS JOB FILE

Now it is time to write your DEMOS job file (the 
file of DEMOS job control statements required to run 
your job). You will create it on LTSS using TRIX and 
then submit it, along with your program and data files, 
to DEMOS.

You could, of course, read Chapter 4 of PIM-7 to 
learn the job control language, but that would take a 
lot of time. The simplest thing to do is find a job 
file that does the same thing that you want to do and 
copy it. To that end, this chapter provides a basic 
set of sample files.

To simplify explanations of the examples, I will not 
mention all the possible arguments for each of the job 
control statements. Refer to Chapter 8 of PIM-7 for 
detailed information if the examples won't quite do.

After you look at the examples, you will realize 
that basic DEMOS job control is pretty conventional, so 
at the end of this section I have added a list of the 
most commonly used utilities, with their arguments and 
a brief description of how they work. If you want to 
do something a little different from what the examples 
illustrate, you should be able to patch it together and 
make it work.

Before you plunge into writing your job file, you 
should know that there are two kinds of DEMOS files, 
temporary files (on some systems called "local files") 
and resident files (on some systems called "permanent 
files"). The examples in this Primer assume that you 
have no pressing need to save files on DEMOS disk 
(resident files), so that all files needed by and 
created by your job can be temporary files. The 
purpose of this is to simplify your use of the system: 
there is no need to say anything about the DEMOS 
directory file structure if you only work with 
temporary files. So, if you want to save some files on 
resident file space, or if you are just curious, look 
at Chapter 2 of the DEMOS User's Guide (PIM-7) for a 
description of the file system. But for now, I will 
assume the simplest case, in which all are your files 
are temporary files.

DEMOS PRIMER JANUARY 1979



4-2

Example 1

Assemble a program and execute it.

job z=12345 jn=samplel ch^SOOSxOOS cl=u t=19 m^lSOOOO 
cal i=calin e
load map=ldmap arg=[amphib=frog fowl=duck]
dispose map
stop

The first statement in any job file is the JOB 
statement, in which you must list your Z-number (leading 
zeros are optional), the name of the job (samplel in this 
example), the cost center and project codes, and the 
classification (u is unclassified). In addition, this 
JOB statement specifies a time limit of 19 seconds 
(default is 10) and a memory size of 180,000 decimal 
words (default is 98304).

The next statement calls the CAL assembler, with CALIN 
as the source code. (Assume that you changed the name of 
the file CINPUT to CALIN after compiling your program by 
means of the XFCCOMP procedure file.) By specifying E, 
any error listing goes to a file called OUT. The 
relocatable binary code is placed in the default output 
file BLD, which is also the default input file to the 
loader.

LOAD loads BLD and executes it (load-and-go is the 
default mode of the loader), with the load map sent to 
LDMAP. If you want to specify some relocatable binary 
file other than BLD as the file to be loaded, use the 
REL=file argument in the LOAD statement (see Example 6). 
The ARC argument specifies files to be used in place of 
files named in the program: the file FROG will be used 
wherever AMPHIB is specified; the file DUCK will be used 
wherever FOWL is specified.

The DISPOSE statement sends the load map (LDMAP) back 
to the LTSS machine.

STOP terminates your job. The dayfile LOG and the 
output file OUT are both automatically returned to LTSS.

DEMOS PRIMER JANUARY 1979



4-3

But what happens to the output resulting from 
execution? If your Fortran program wrote its output to 
the file OUTPUT, it will appear on the file OUT. If the 
output was written to some other file, you must DISPOSE 
that file; otherwise, it will be destroyed when the job 
terminates.

Example 2

Assemble a program, load it, and return the executable 
file (but do not execute it).

job z=087524 jn=sample2 ch=8005x003 cl=u 
cal i=calj e
load ex=exec map=ldmap g=off
dispose Idmap exec
stop

This JOB statement is quite standard, making use of 
the default time limit (10 seconds) and memory size 
(98304 decimal words).

The CAL statement assembles the temporary file CALJ 
(you shipped it to DEMOS after changing its name from 
CINPUT to CALJ) and writes the error file to OUT, as in 
Example 1. The assembled code is written to the default 
file BLD.

The LOAD statement loads the default relocatable 
binary output file from CAL (BLD). The executable code 
is written to the file EXEC. A load map is written to 
LDMAP. The argument G=OFF suppresses execution.

The DISPOSE statement sends the load map and the 
executable file to the LTSS machine. Presumably the 
executable file EXEC will be saved on Hydra.

STOP terminates the job. The dayfile LOG and the 
default output file OUT are both automatically returned 
to LTSS.

DEMOS PRIMER JANUARY 1979



4-4

Example 3

Execute an executable file. This example will execute 
the file EXEC that was created in Example 2.

job z=087524 jn=sample3 ch=8005x003 cl=u t=12
exec kiwi=fig coca=nut
stop

As always, JOB must be the first statement in the job 
file.

The second statement executes the file EXEC, which was 
assembled, loaded, and saved on Hydra in the preceding 
example. The arguments following EXEC specify the files 
to be used instead of files named on the program card 
(FIG in place of KIWI, NUT in place of COCA). If EXEC 
alone is specified, the files named in the program will 
be used.

This job assumes that output from the executing 
program is written to the file OUTPUT and thus will be on 
the file OUT, which is automatically returned to LTSS at 
job termination. If output was written to any other 
file, that file must be DISPOSEd.

Example 4

Create a library of executable files.

job z=087524 jn=sample4 ch=8005x003 cl=u 
cal i=cinput e
maklib newlib=mylib add=bld map=out
dispose mylib
stop

DEMOS PRIMER JANUARY 1979



4-5

The JOB, CAL, and STOP statements are as in the 
preceding examples. The important new utility here is 
MAKLIB, which creates and edits libraries.

Let's assume you have compiled (with XFC) a Fortran 
program with which you want to start a library. This 
sample job file will assemble the program and then put 
the output in a library. The assembled program, in the 
default file BLD, is used as an "addfile" to MAKLIB, 
which means it is added to the library (since no 
OLDLIB=file argument is specified in this statement, the 
library is initially empty). Output (the library) is 
written to the file MYLIB, which is DISPOSEd to LTSS so 
that it can be saved on Hydra. The MAP argument assigns 
to OUT the record of MAKLIB's activities in creating this 
library.

Example 5

Edit a library of executable files that was shipped 
from LTSS to DEMOS.

job z=087524 jn=sample5 ch=8005x003 cl^u 
cal i=cinput e
maklib newlib^goodlib oldlib=mylib add=bld map=out
dispose goodlib
stop

The MAKLIB statement in this example will add the 
relocatable binary file BLD (the default output from CAL) 
to the library MYLIB, which was created in the previous 
example. The resulting new library is placed in the file 
GOODLIB, which is DISPOSEd to LTSS so that it can be 
saved on Hydra.

Note that this sample job is not substantially 
different from the preceding one, where a library was 
created. The only difference is that this MAKLIB 
statement specifies an OLDLIB argument, meaning that an 
existing library is being modified.

DEMOS PRIMER JANUARY 1979



4-6

Example 6

Assemble, load, and execute a program using the 
library GOODLIB (produced in Example 5), which you 
shipped over with the job file from LTSS.

job z=087524 jn=sample6 ch=8005x003 cl=u 
cal i=caldem b=calcode e
load rel=calcode lib=goodlib lib=/lib/demlib #

lib=/lib/mathlib map^map arg=[output=result] 
dispose map calcode result 
stop

There are three new things in this example. First, 
•instead of using the default output file from CAL (BLD), 
the job writes the relocatable binary code to the file 
CALCODE. CALCODE is the file that is executed (load- 
and-go is default for the loader).

The second new thing is the specification of libraries 
for LOAD. DEMLIB and MATHLIB are default libraries; note 
that the complete names /LIB/DEMLIB and /LIB/MATHLIB must 
be used to identify them. If you specify another- library 
to be used (as in LIB=GOODLIB), you must specify all 
libraries, including DEMLIB and MATHLIB. The routines 
available in DEMLIB and MATHLIB are listed in Appendix A 
of PIM-7.

The third new thing is the line continuation in the 
LOAD statement. To continue a line, just type a # 
between arguments.

DEMOS PRIMER JANUARY 1979



4-7

A Miscellany of DEMOS Utilities

Before describing some of the more commonly used 
utilities, I should tell you the two syntax rules you 
need to know to use these utilities:

• Arguments must be separated from each other and from 
the name of the utility by at least one space.

• To continue a line, type a # followed by a carriage 
return at a point where a space could occur (between 
arguments).

In each case below, where I give the general form of 
the statement, upper-case letters represent literally 
what you must type; lower-case letters indicate a symbol 
for which you supply the exact text (a file name, for 
example). As a matter of normal practice, use lower-case 
letters to enter your job control statements.

CAL
See Chapter 8 of PIM-7 for details.

DISPOSE filelist
Sends the files in filelist from DEMOS to the 
source machine. Separate the file names in 
filelist by at least one space. Note that any 
file that is DISPOSEd is no longer available on 
DEMOS.

Example: dispose this that thother

JOB
This must be the first statement of any DEMOS 
job file. See Chapter 8 of PIM-7 for all the 
arguments and defaults.

DEMOS PRIMER JANUARY 1979



4-8

LOAD
See Chapter 8 of PIM-7 for all the arguments 
and defaults of the LOAD loader.

MAKLIB
See Chapter 8 of PIM-7 for all the arguments 
and defaults for MAKLIB.

NOTE charstring
Appends the string charstring to the LOG file. 
Restrict the characters you use to letters, 
numbers, spaces, and normal punctuation marks. 
Charstring can be only one line.

Example: note I sure hope this works.

STOP
Terminates execution of your job.

DEMOS PRIMER JANUARY 1979



5-1

5 SUBMITTING A JOB TO DEMOS

Now, at last, you should be ready to submit your job 
to DEMOS. To do so, you need to use two utilities on 
LTSS--one to convert your LTSS files to DEMOS format, 
and one to actually submit your job.

Conversion is necessary because the CDC 7600s that 
run LTSS have 60-bit words (ten 6-bit characters per 
word) and the CRAY-1 has 64-bit words (eight 8-bit 
characters per word). You must convert all files you 
are shipping to DEMOS except the output from the 
XFCCOMP procedure file (which, you will remember, is 
your program translated into CAL); the output from 
XFCCOMP is already converted into DEMOS format. The 
job file and all data files must be converted.

Conversion entails no great effort. In the simplest 
form, for each file you need only write

CRACON oldfile newfile
and you are done. The file oldfile will be converted 
to DEMOS format and written to file newfile. There are 
a number of options that can be used with CRACON, but 
for straightforward data conversion they can be 
ignored. If you want to look at them, they are 
described in the section on CRACON in Chapter 7 of 
PIM-7.

Now the actual submittal, for which you use the LTSS 
utility called CRALINK. First, enter the execute line

CRALINK
LTSS will respond with the prompt

ok:
Now you can tell CRALINK what you want to submit with 
the line

SUBMIT L=jobfile DATA^filelist
where for jobfile you type the name of the job file 
(see the preceding chapter) and for filelist you 
specify any programs and data files you want shipped to 
DEMOS. All of the files will be interpreted as

DEMOS PRIMER JANUARY 1979



5-2

temporary files when they arrive at DEMOS.
For example, if your job file is called JOBIN, your 

program is in HOPE, and the data files are CURSE and 
SWEAR, then you would type

submit l=jobin data=hope curse swear
Note that the file names in filelist are separated by 
at least one space. You can have as many names in 
filelist as will fit on the line.

After you complete the SUBMIT command, CRALINK will 
inform you of a three-digit number that has been 
assigned to your job. This number should be used to 
communicate with CRALINK about the job (see below).
The number will also be appended to the names of any 
files returned to LTSS by the job.

There are three other CRALINK commands you may have 
occasion to use: STATUS, TERMINATE, and END. They can 
be typed in response to the ok: prompt.

The STATUS command allows you to get information 
about the status of the CRAY-1 computer and about your 
jobs. For example, if you are planning to submit a job 
and are wondering how many jobs are already waiting, 
just type

STATUS
In return, you will be told the number of jobs in the 
DEMOS queue and the total time for the queue. If you 
have already submitted a job and want to know how far 
along it is, type

STATUS jobno
where jobno is the number of the job returned after the 
SUBMIT command. You can specify more than one job 
number by leaving a blank between them. The 
information you get consists of the job number, the 
CRAY ID, submit time, job type, and state (waiting or 
executing). If you can't remember the job number 
assigned to your job, you can get the same information 
about all the jobs you have running by typing

STATUS ALL

DEMOS PRIMER JANUARY 1979



5-3

The TERMINATE command allows you to stop execution 
of a job you have submitted. Just type

TERMINATE jobno
where jobno is the DEMOS job number of the job you want 
to stop. The job will terminate and the &LOG and &OUT 
files will be converted and returned to LTSS.

And, finally, to get yourself out of the CRALINK 
session, just type

END
and you are done. This will not affect your job 
execution on the CRAY-1. For example, you can SUBMIT a 
job, END the session, and an hour later execute CRALINK 
again and check on the status of your job.

DEMOS PRIMER JANUARY 1979



6-1

6 PUTTING YOUR JOB TO BED

When your job completes execution under DEMOS, the 
dayfile (LOG) and the default output file (OUT) are 
automatically returned to the source machine of the 
job, where you can find them under the names LOGnnn and 
OUTnnn (nnn is the DEMOS job number). All files you 
have DISPOSEd will also have the three-digit job number 
appended to the file name when they arrive at LTSS.

Because any files returned will still be in DEMOS 
format, you must again use the CRACON routine to 
convert them, this time back to LTSS format, if you 
want to output them. Fortunately, CRACON is designed 
so that you can use it exactly the same way, whichever 
direction you are converting: if the input file is not 
in DEMOS format, it is converted to DEMOS format; if it 
is in DEMOS format, it is converted to LTSS packed- 
ASCII.

Now, check a little bit of each file created by your 
job to make sure that they are not just garbage. If 
all is in order, you can use ALLOUT to print a copy of 
the complete file, or you can save it on Hydra.

DEMOS PRIMER JANUARY 1979



7-1

7 VECTORIZING YOUR FORTRAN PROGRAM

Now that you can run jobs on DEMOS, it would be 
worth your while to consider vectorizing your Fortran 
program if it is to be used repeatedly. After all, one 
of the reasons for having the CRAY-1 computer is its 
vector processing capability. Furthermore, because the 
vectorization is done by a procedure file (VECEZ), very 
little programmer effort is required.

To vectorize your program, execute the procedure 
file VECEZ (available under SL0PE2) using your program 
as the input file. VECEZ will access a vectorizing 
program (the vectorizer) that will, wherever possible, 
substitute vector instructions for your conventional 
Fortran statements. You will then compile this 
vectorized code with XFC.

As a result of executing VECEZ, you will be provided 
with the following:

• vectorized code in a form suitable for 
compilation by XFC;

• a listing of the source code;
• a cross-reference listing;
• information on ways to revise the Fortran source 

code so that more advantage can be taken of the 
vector processing capabilities.

Although this last information is useful if you want to 
see how much of the code was vectorized, it can be 
ignored. However, in the best of all possible worlds 
you would use this information to revise your source 
code and then resubmit it to the vectorizer (never 
resubmit the vectorized code-- the vectorizer doesn't 
know what to do with its own output).

But before you get your terminal fired up to send 
off for VECEZ, consider two things:

• Make sure your Fortran source code already runs on 
the CRAY-1. Debugging a program that is peppered 
with vector instructions inserted by the 
vectorizer is a task reserved for wizards (or at 
least for people who speak in tongues).

DEMOS PRIMER JANUARY 1979



7-2

• Check the size of your Fortran source code. The 
vectorizer gobbles up CPU time (translation: bank 
account points), so don't feed a large program to 
it in one big chunk and expect to have any friends 
left. Instead, vectorize large programs a routine 
at a time, first doing the the most heavily used 
routine, then another, then another, etc. XFC 
doesn't care whether or not the entire program has 
been through the vectorizer.

Once you are ready to use VECEZ, enter the following 
command sequence. The XPORT, LIX, and DESTROY routines 
will print ALL DONE as they complete. Wait for this 
response before you type the next line.

XPORT CAUSER GET VCLOVL 
LIX VCLOVL!GR. ALL.
END
DESTROY VCLOVL 
SL0PE2 I=VECEZ

The system will provide the following response:

5LDPEC I=l'ECEZ
♦ CDF YCF < 1 l,,P>

ENI' DF INFORMATION ENCOUNTERED.
♦ ♦ VECTORIZER PROCEDURE
♦ ♦ CALL'h-'R < IF=INFILE> DF = OUTFILE) >

IF - INPUT SOURCE FILE IN ASCII.
OF - ASCII OUTPUT ••’ECTOR I ZED SOURCE FILE.

OPTIONS ARE CJF

♦ ♦ 
♦ ♦ 
♦ ♦

After the system output is completed, in response to 
the slash prompt from SL0PE2 enter the call line

CALL(VR(IF=infile,OF=outfile))
where infile is the name of the packed-ASCII file 
containing your Fortran code and outfile is the name of 
the file to which the vectorized code (which will also 
be in packed-ASCII) should be written. This is the 
file you will send to the XFC compiler. For example, 
if your source file is named SOL, type

call(vr(if=sol,of=pgm))
and your vectorized code is ready for XFC since the 
output file is already named PGM.

DEMOS PRIMER JANUARY 1979



7-3

The following example illustrates a complete session 
with VECEZ; it includes all system responses.

SLOPE? X =i'ECEZ
♦ CDPYCF < « l/p>

ENI' DF INFDPMmTIDN ENCnUNTEFFn.
♦ ♦ l/ECTDRIZEF FFQCEnUPE
♦ ♦ CPLL <l'F <IF=INFILE!i DF=OUTFILE> >
♦ ♦ IF - INPUT SOURCE FILE IN ftSCII.
♦ ♦ DF - FtSCII OUTPUT UECTOPIZEI' SOURCE FILE.
♦ ♦ OPTIONS RRE CJF
♦ IMS.
✓ CRLL <1 ’P <IF=PGM» OF = l,-’ECPGM> >
♦ DFILE»UEC'CM.
♦ DFILE» FGM^PPi.
♦ CFILE» UECPGM -'PR.
♦ PFL <150000, £5OCiOCO
♦ VEC <I=PGM, L = OUTPUT, C=UECPGM, S = CJIT,>

MR I N
CJRC

STOP
738 CP SECONDS EXECUTION TIME

♦ EXIT.
/ END
$*:CPU TIME 
S'*! SYS TIME 

I 'D TIME 
Sl’liTOTRL =

0.983 SEC 
0.236 sec 

25.916 sec
0.451 MINUTES

rll done

DEMOS PRIMER JANUARY 1979



8-1

8 SHOULD I HAVE TOLD YOU THIS BEFORE?

It turns out that submitting a job to DEMOS can be 
done using a BOON controller named DEMON, which will 
take a simple Fortran source program and associated 
files as input and do the appropriate things to execute 
the program on DEMOS. Specifically, DEMON will perform 
the following tasks:

• compile a Fortran program with XFC;
• convert specified BCD data files to DEMOS text 

file format;
• create a simple job file that will assemble, load, 

and execute the program;
• submit the job file and associated files to DEMOS;
• return output files to LTSS and convert them, if 
required.

Clearly, what DEMON can do for you is limited, but if 
this is all you need, it is very handy.

Get DEMON from Hydra with the line 
XPORT CAUSER GET DEMON

After LTSS has responded with ALL DONE, enter a line 
with the form

BCON DEMON filename type costcode box memory comp char
where the arguments have the following meaning:

filename name of the file containing the program 
to be executed.

type S if filename specifies a Fortran source
code on LTSS, or L if filename specifies 
a library file stored in DEMOS resident 
file space.

costcode four-digit cost center code.

DEMOS PRIMER JANUARY 1979



8-2

box box number for output as specified for
ALLOUT. If box is specified and the job 
does not terminate until after 4 P.M., 
DEMON will ALLOUT your files to that box.

memory required field length. Default: 150000
decimal words.

comp Possible values are ONLYXFC and GO. If
ONLYXFC is specified, DEMOS will compile 
the program but will not submit the job 
for execution. If GO is specified 
instead, DEMON will call XFC to compile 
the program and then will submit it to 
DEMOS for execution.

char character c used with the EXCL. option in
CRACON (used only with CAL code 
intermixed with Fortran).

The last four arguments are optional. However, if you 
specify one of them, you may not omit any arguments that 
precede it. For example, if you want to specify ONLYXFC, 
you must also specify box and memory. On the other hand, 
you can specify box without specifying the others.

If the second argument is S and the ONLYXFC argument 
is not used, when the job terminates a file named 
EXEfilename will remain in your DEMOS resident file 
space. This file contains the executable code for the 
program you submitted. For example, if filename is 
BIGPIG, after your job terminates the file EXEBIGPIG on 
DEMOS resident file space will contain the executable 
code. As a result, any subsequent time you want to use 
DEMON to execute that same program, you should enter 
EXEBIGPIG as filename and then specify L as the second 
argument. That way, your program will not be re­
compiled, re-assembled, and re-loaded every time you want 
to execute it.

After you have called DEMON with the BOON DEMON line, 
you will be queried about such things as job time limit, 
input files, and output files. DEMON will then proceed 
to do your work for you.

DEMOS PRIMER JANUARY 1979



9-1

9 HOW TO AVOID NIGHTMARES

(1) If your job fails, keep a copy of the job file, 
the LOG file, and any other files related to the 
job. This will increase the probability that the 
consultants will be able to help you.

(2) Make a habit of getting a load map (use the MAP 
argument in the LOAD statement). That way, if you 
get into trouble with your program and seek the 
advice of the consultants, they will not have to 
tell you to rerun your job in order to get a load 
map.

(3) Don't forget to revise your FTN code to be 
acceptable to XFC.

(4) Get your Fortran code running on the CRAY-1 before 
you vectorize it.

(5) Make sure your files are in DEMOS format before 
you submit them. After they come back, convert 
them back to LTSS format if you want to examine 
them.

DEMOS PRIMER JANUARY 1979




