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EXECUTIVE SUMMARY

INTRODUCTION

The Workshop on Software Tools for Distributed Intelligent Control Systems was
organized by Lawrence Livermore National Laboratory for the United States Army
Headquarters Training and Doctrine Command and the Defense Advanced Research
Projects Agency. lt was held at the Lighthouse Hotel in Pacifica, California, on July 17
to 19, 1990.

DARPA has recently expressed interest in architectural based software development
methodologies. DARPA is now putting into effect a program for the development of
common architectures and models of computation for particular applications to reduce
the rapdily increasing cost of the life cycle of software. One of the more important areas
of domain specific software architecture is that of vehicle management systems. The
intention is to build a software engineering environment for intelligent control systems
for military vehicles which would improve the productivity of control design engineers
and lower the software costs to DOD.

The goals of the workshop were to (1) identify the current state of the art in tools which
support control systems engineering design and implementation, (2) identify research
issues associated with writing software tools which would provide a design
environment to assist engineers in multidisciplinary control design and implementation,
(3) formulate a potential investment strategy to resolve the research issues and
develop public domain code which can form the core of more powerf.,jl engineering
design tools, and (4) recommend test cases to focus the software development process
and test associated performance metrics.

Recognizing that the development of software tools for distributed intelligent control
systems will require a multidisciplinary effort, experts in systems engineering, control
systems engineering, and computer science were invited to participate in the
workshop. In particular, experts who could address the following topics were selected:
operating systems, engineering data representation and manipulation, emerging
standards for manufacturing data, mathematical foundations, coupling of symbolic and
numerical computation, user interface, system identification, system representation at
different levels of abstraction, system specification, system design, verification and
validation, automatic code generation, and integration of modular, reusable code.

There were 48 attendees from industry, government, and academia. A complete list of
attendees is contained in an appendix.

During the first two days of the Workshop, presentations were made by ali of the
attendees in an attempt to establish the state-of-the-art in distributed intelligent control
systems.
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On the morning of the third day, the attendees were divided into five working groups,
each group having representatives from the three technologies: systems engineering,
control systems, and computer science.

Each of the working groups was given the tasks: (1) develop a short term plan, (2)
recommend a research plan, and (3) identify potential test beds for implementing
software tools for distributed intelligent control systems.

On the afternoon of the third day, the entire group recovened to form a consensus of the
five working groups. A meeting facilitator, Dr. Margaret Barbee, from LLNL coordinated
the da,ily activities of the Workshop. Additional facilitators from LLNL were available to
assist each of the Working Groups on the morning of the third day.

This report contains a summary of the findings of the participants of the Workshop. lt
also contains a collection of papers submitted by the participants.

SUMMARY OF FINDINGS

Short Term

1. Perform a state of the art review of distributed intelligent control systems.

lt was felt that the status of the technologies which are required for distributed
intelligent control were adquately presented at the Workshop; however because
of the diverse nature of the individual technologies, it was not possible to form a
comprehensive review in a three day workshop. In general, there was agreement
that distributed intelligent control, as an emerging discipline, is currently
ill-defined. The usefulness of testbeds to focus issues and demonstrate the
technology was emphasized by each group. The NASA/NBS Standard
Reference Model for Telerobotic Control System Architecture (NASREM) was the
only software architecture model offered as a central system view around which
software tools can be built. At least one group concluded that there is low
technical risk in applying Discrete Event Dynamic System (DEDS) mathematics
to the NASREM model to achieve an initial set of software tools within two years.

2. Develop a taxonomy of currently available tools.

lt was felt that there are numerous tools which are available to perform various
aspects of distributed intelligent control, lt was recommended that a taxonomy of
them be made. Areas where applicable tools were identified as being available
included artificial intelligence (AI), data base (DB) management, computer-aided
control systems design (CACSD), computer-aided software engineering (CASE),
computer-aided design (CAD), and simulation.
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3. Develop a tool which will perform a high level integration of existing tools.

lt was felt that the cost of developing ali new tools would be prohibitively
expensive. Furthermore, it was felt that the taxonomy would identify a large
number of available tools. What is missing is a high level tool which some
preferred tO call Computer Aided Software Systems Engineering (CASSE).

4. Develop a technology transfer plan.

5. Establish a repository for the software developed.

Long Term

The following research areas were identified.

1. Theory of distributed intelligent control systems, lt was felt a theory of distributed
intelligent control systems is not available and should be established on its own.

2. Theory of other than linear control system, e.g knowledge based control systems. ....

3. Stability of knowledge based control systems

4. Theory on multi-agent interactions.

5. Related computer science topics:

real time programming, e.g. languages to specify tasks which incorporate notions
of time, function and events at each level;

software re-use, e.g. the indexing problem to store and index;

automatic programming, e.g. develpment of a design specification language for
distributed intelligent control systems;

real time control, e.g. imprecise computation, time-limited computation,
concurrency, and data communications; and

real time operating systems, e,g. scheduling.



CONF-9007134

Page viii

Recommended Test Beds

Potential test beds which were identified included the Advanced Field Artillery System
(AFAS), unmanned air vehicles (UAV), unmanned underwater vehicles (UUV), and the
Block 3 tank.

lt was recommended that there should be a laboratory test bed as well as a field test
bed; that the problem should be very focused, i.e. select a specific application from the
given test bed, not the entire test bed; and there should be at least two efforts, each
focusing _lna different test bed.

General comments

There was not unanimous agreement among ali of the participants on what the target of
the software should be; however, those representing the control systems community
generally favored the discrete event dynamic system model (DEDS).

There was general agreement that the development of a comprehensive package from
scratch would require hundreds of millions of dollars, lt was strongly recommended
that a more modest effort be undertaken as outlined in the short term goals, lt was felt
that the short term goals could be achieved within five years with a budget of tens Of
millions of dollars. After feasibility is demonstrated, it was felt that larger funding would
become available. Several corporate attendees indicated that matching funds would
be made available by corporations if general agreement could be reached on a
standard architecture. This would leverage government investment in software tools.

lt was recommended that the long term research be carried out simultaneously but
separately from the short term program, with the short term program providing
inspiration and applications.
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Toward a Reference Model Architecture for Real-Time Intelligent
Control Systems (ARTICS) i

by

James S. Albus and Richard Quintero
Robot Systems Division

National Institute of Standards and Technology

INTRODUCTION

This position paper is a condensed version of a paper titled "Concept for a Reference Model
Architecture for Real-Time Intelligent Control systems (ARTICS)", [Al 90], which advocates the
development of a reference model open-system architecture as a means to accelerate the, pace of
technological development in automation and robotics. We believe many of the major bottlenecks in
the development of intelligent machine systems could be alleviated, if not eliminated, by the
development of a set of ARTICS guidelines.

The pace of commercial and military technological advancement in the fields of robotics, intelligent
machine systems and automation is falling short of expectations. Problem complexity is one of the
major contributors to this problem. Intelligent robot systems projects typically require bringing
together teams of technologists with a broad mix of engineering disciplines and a high level of
expertise. Robodcs and automation manufacturers must make large investments in both developing
custom test-beds and in recruiting and training competent engineering teams in order to compete in
this market area. A second problem is the lack of a widely accepted theory, or system architecture
model that ties together the many disciplines involved in intelligent robot systems. This limits the
dissemination of intelligent machine systems technology developed in different parts of the robotics
community. This prevents new projects from buildingupon the foundations laid by previous
efforts.

A set of ARTICS guidelines would reduce the impact of problem complexity and would provide an
efficient meant of transferring technology between projects. Manufacturers will adopt ARTICS
guidelines if they believe that their potential profits would be enhanced by an expanded market.
This must be driven by traditional market forces (user demand). We need a way to create
automation building blocks so that more complex systems can be developed without making the
technologies more difficult to understand and to apply and without "reinve._ting the wheel" each
time a new project begins. We believe that a common hardware/software shell structure would
facilitate the incremental improvement which would produce rapid advancement in automation and
robotics technology.

To summarize the goals advocated by this paper, we suggest that an Architecture for Real-Time
Intelligent Control Systems (ARTICS) is needed to:

* reduce the impact of problem complexity in the development of robotic
applications
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* expand the market for intelligent control system components through open-system
interface guidelines and protocols.

* promote portability, inter-operability and modularity of intelligent control system
software and hardware

* facilitate technology transfer between intelligent control system projects

* reduce the time, cost, risk, and initial investment required in bringing new, world
class, intelligent machine systems and control system products into the market piace

2. ARTICS VISION

ARTICS guidelines would specify a reference model infrastructure of hardware components,
software components, interfaces, communications protocols, and application development tools.
Such a set of guidelines would make it possible for industry to develop and market a diverse line of
control system components which could be interchangeable and realizable on many different
vendors' control systems platforms.

ARTICS would be designed to facilitate technology and component transfer among the various
users and developers, taking advantage of commonalities among otherwise disparate applications
such as manufacturing, construction, environmental restoration, mining, space exploration
telerobotics, medicine, and military applications of air, land, space, sea-surface, and undersea
robotics.

A commercially manufactured ARTICS implementation product would come with libraries of
algorithms for planning, task execution, sensor processing and world modeling. These libraries
would be user expandable and replaceable. An ARTICS implementation would be fully
documented so that users could easily modify or replace any module with a minimum of effort. It
would also be commercially maintained, so that users would be able to get help in fixing bugs and
making system modifications. In addition, vendors would offer training services to help the user
community apply ARTICS products to their applications.

Widely available ARTICS off'the-shelf products would include a target computer system with a
backplane and bus configured as a card cage, a local area network to link distributed applications
and interface workstations for human/computer interface and software development, a real-time
multi-processor/multi-tasking operating system, compilers, debuggers, and CASE tools. ARTICS
compliant products could be integrated into an extendible open-system architecture with complete
documentation of all hardware and software components.

The ultimate goal would be for ARTICS to evolve into a set of standards for real-time intelligent
control systems. Figure 1 illustrates a possible common system configuration for a Version 1
ARTICS system. It would be organized into three levels.

The top level would consist of a number of workstations on an Ethernet for off-line software
development and testing. A number of Computer Aided Software Engineering (CASE) tools, shell
programs, simulatols, debugging and analysis tools, and compilers for at least C, Ada, and
Common LISP would be available.
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These workstations might include one or more SUNs, LISP machines, VAXes, Butterflys,
Connection Machines, graphics engines and display and image processing machines.

One or more of the workstation machines might also be used for on-line real.time control of
processes where response time can exceed 1 second, and in situations where weight, power, and
other environmental requirements permit. A real-time, multi-computer, multi-tasking operating
system such as real-time UNIX, or MACH would be provided to support this type of operation.

The top level would also support an interface to a gaming environment such as the DARPA
SIMNET. This would provide a low cost means for testing and evaluating the performance of
intelligent machines in a war gaming environment against manned systems, or other unmanned
systems. It would also provide an environment for developing tactics and strategy for using large
numbers of intelligent vehicles and weapons systems in large scale battle simulations.

The middle level of the ARTICS system would consist of target hardware, such as single board
computers and memory boards of the 680X0 variety, using VME or Multi-bus communications.
More than one such bus might be connected via bus gateway cards. This middle level would have
a real-time, multi-processor, multi-tasking operating system such as pSOS, VRTX, or MACH
capable of supporting response times of ten milliseconds or greater.

The bottom level would consist of special purpose hardware whichwould interface to the VME or
Multi-bus. This level would support high speed parallel processing for images, as well as servo
controllers with response times between ten microseconds and ten milliseconds.

Figure 2 shows a possible reference model architecture based the Real-time Control System (RCS)
concepts NIST has developed since 1980. These have been implemented in a number of
applications including the Automated Manufacturing Research Facility (AMRF), the NASA/NBS
Standard Reference Model for Telerobot Control System Architecture (NASREM) [Al 89], the Air
Force Next Generation Controller for machine tools and robots, and the control system architecture
research conducted for the NIST/DARPA Multiple Autonomous Undersea Vehicle (MAUV) project
[Al 88].

The version of ARTICS shown here consists of six hierarchical levels: servo, path dynamics,
elemental tasks, individual (vehicle), group (squad), and cell (platoon). The to_ (platoon) level of
this reference model architecture would have interfaces to a higher (company) level in a battle
manage.nent system. The bottom (servo) level would interface to actuators and sensors, and
operator interfaces would be defined for ali levels.

NIST hopes to enlist the cooperation of experts from industry, academia, and government in
developing and modifying these concepts into an agreed upon initial set of guidelines. NIST also
intends to sponsor research and enlist others to sponsor research, into advanced concepts that will
permit the ARTICS guidelines to evolve as technology advances.

3. REQUIREMENTS

The following "strawman" list of requirements is intended to encourage the robotics community to
begin the discourse. A discussion of these requirements can be found in [Al 90].
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3.1. Extensibility
3.1.1. Functional Extensibility
3.1.2. Temporal Extensibility
3.2. Human/Computer Interface Flexibility

, 3.3. Level of Automation Flexibility
3.3.1. Teleoperation and Remote Control
3.3.2. Computer Aided Advisory Control
3.3,3. Traded Control
3.3.4 Shared Control
3.3.5. It um,_:n Override
3.3.6. Human Supervised Control
3.3.7. Autonomous Control
3.3.8. Sensory Interactive Coatrol
3,3.9, Mixed Mode Control
3.4, Real.Time and Temporal Reasoning
3.5. Distributed System
3.6. Graceful Degradation
3.7. Application Independence
3.7.1, Software Portability
3.7.2. Compatibility and Inter,Operability
3.8. Ease of Use
3.9. Cost Effectiveness
3. I0. Development Environment
3. I1. 5imulation and Animation

4. APPROACH

To implement the ARTICS concept a consensus must be achieved in several areas of the common
control system architecture. Such a conceptual framework would provide developers with a
common design philosophy to guide the development of new robotic applications and control
system products. A number of control architectures should be considered and evaluated against
some set of agreed upon common control system requirements and finally a common conceptual
architecture must be derived from the results of the process. More than likely such an architecture
would include the ideas of a number of researchers as well as strong input from the user
community. The following is a list of recent research in this area:

• Action Networks [Ni 89]
: • Autonomous Land Vehicle (ALV) [Lo 86]

• Automated Manufacturing Research Facility (AMRF) [Si 83, A181]
• Control in Operational Space of a Manipulator-with-Obstacles System (COSMOS)

[Kh 87]
• COmmunications Database with GEometric Reasoning (CODGER) [Sh 86]
• Field Materiel-Handling Robot (FMR) [Mc 86]
• Generic Vehicle Autonomy (GVA) [Gr 88]
• Hearsay I1 [Le 75]
• Hierarchical Control [Sk 89, Sk 87, Ko 88, Ko 88]
• Hierarchical Real-time Control System (RCS) [Ba 84, A181

4
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@ IntelligentControl[Sa85]
• IntelligentTaskAutomation(ITA)[BI88]'
• ManufacturingAutomationSystem/Controller(MAS/C) [Ho 88]
• MultipleAutonomousUnderseaVehicles(MAUV) [AI88]
• NASA/NBS StandardReferenceModel forTelerobotControlSystemArchitecture

(NASREM) [AI89]
• Pilot'sAssociate[Sm 87]
• RobotControl"C"Library(RCCL) [Ha 86]
• RobotSchemas[Ly89]
• Soar:.ArchitectureforGeneralIntelligence[La86]
• SubsumptionArchitecture[Br86]
• TaskControlArchitecture(TCA) [Si89]
• Tech-basedEnhancementforAutonomousMachines(TEAM) [Sz88]
• UniversityofNew Hampshire(UNH) Time HierarchicalArchitecture[Ja88]

Therearea number ofgovernmenteffortsunderway thatshouldbefactoredintotheprocessof
defininganinitialsetofcommon architecturecomponents.Some oftheseinclude:

• The NIST FederalInformationProcessingStandard(FIPS)
• The NIST GovernmentOpen SystemsInterconnectionProfile(GOSIP)
• The Navy'sNextGenerationComputerResources(NGCR) program
• The AirForce'sNextGenerationController(NGC) program
• The Anny'sStandardArmy VetronicArchitecture(SAVA)program

In addition there is a Department of Energy interest in establishing guidelines for robotic systems
needed in their Environmental Restoration and Waste Management Program, the U.S. Bureau of
Mines Pittsburgh Research Center is conducting research in automation systems for coal mining
and there are a number of DARPA programs (past, present and on-going) which arc producing
relevant technologies.

5. REFERENCE MODEL DEVELOPMENT PLAN

AETICS must be able to evolve as technological progress is made. It will be important to create an
organizational structure that can coordinate the process of evaluating change mid update proposals
and a process for achieving consensus on the release of new versions of the ARTICS guidelines.
Such an organization will need a steering committee made up of leading experts in the field of
robotics, intelligent machines and automation from industry, academia and government.

An ARTICS development effort could take the form of a voluntary organization much like the
Initial Graphics Exchange Specification (IGES)/Product Data Exchange Specification (PDES)
organization Jig 89] chaired by NIST. Alternatively the reference model could be developed by a
major user of the technology such as the Department of Defense in the form of a military
specification (MILSPEC). In either case working groups will be needed to steer the ARTICS
development and to document and distribute the results. Once an initial set of ARTICS guidelines
has been agreed to it can be submitted to one or more national or international standards
organizations as a proposed standard (e.g., ANSI, EIA, IEC, IEEE, ISO, RIA, etc.).

5
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I. Introduction

This workshop addresses an important direction for tool development. Within the current
state of the practice, a great deal of duplicated effort is spent developing similar software
systems within a particular application domain, such as distributed, intelligent vehicle
control. The experience gained during these projects is wasted if it cannot be used to aid the
development of subsequent, similar projects.

We believethat this experience can provide the basis for developing a common ground for ali
the applications in a domain. The development of domain-specific architectures and tools
supporting the essential processes and properties of particular application domains will allow
reuse of the domain knowledge and domain-specific solution techniques that comprise the
most expensive part of the effort to develop new systems.

Expensive tool implementation efforts can be wasted if tool construction is started without a
clear idea of the problems the tools are supposed to solve and without a systematic and
formalized set of solution techniques to be incorporated in the tools. Constructing tools is
both labor intensive and skill intensive, and involves knowledge both of software engineering
principles and of the application domain. Because this combination is hard to find, tools
developed by software engineering researchers are often "demo driven" and lack
applicability, while those developed by application domain experts are often ad hoc and lack
strong foundations.

The best tools are those which are based on strong theoretical principles, and also driven by
a strong, vocal user community. This can be difficult to achieve when developing tools that
push the state of the art, regardless of whether the effort is done by industry or by
universities. The perceived reward structure for researchers in the tool provider and user
communities usually makes such interaction seem undesirable - more work with little direct
payoff. DOD support is essential in building an interaction between the providers and users
of domain-specific software development tools. Appropriate modes of interaction should be
identified and supported.
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This paper presents the result of a study of the potential for interaction between two on-
going research projects at the Naval Postgraduate School. The Computer-Aided Prototyping
System (CAPS) project s is developing models and support tools for rapid prototyping of
embedded real-time software. The Autonomous Underwater Vehicle (AUV) project 2is
developing a computer-controlled submersible vehicle.

The purpose of this study was to examine the goals of the AUV project and its r_sulting
software requirements, and the goals and capabilities of the CAPS project, and to determine
the benefits of pursuing joint research in the application of CAPS to the AUV software.

II. The Computer-Aided Prototyping System Project

The goal of the Computer Aided Prototyping System (CAPS) project [Luqi88] [Luqi88a]
[Luqi88b] [Luqi89] is to enable rapid prototyping of parallel and distributed real-time
software, as a wayof increasing productivity and decreasingsoftware costs. The CAPS
project focuses on automatedmethods for retrieving,adapting, and combining reusable
components based on normalized module specifications; establishing feasibility of real-time
constraintsvia scheduling algorithms; simulating unavailablecomponents via algebraic
specifications; automatically generating translators and real-time schedules for supporting
execution; constructing a prototyping project database using derived mathematical models;
providing automated design completion and error checking facilities in a designer interface;
and establishing a convenient graphical interface for design and debugging.

CAPS is a set of software tools, sharing a common basis consisting of a rapid-prototyping
software development methodology, an enhanced-dataflow computational model and a
prototyping language. The CAPS tool set includes a graphical editor, a syntax directed
editor, a database of existing software components, a database of existing software designs,
a translator which converts the prototyping language into a particular implementation
language (e.g., Ada), static and dynamic task schedulers, a debugger, and others. The tool
set is running on a Sun SPARCstation under UNIX and X-Windows, and is portable to any
system with UNIX and X-Windows. The product produced by the system is Ada code,
which is portable to any system with an adequate Ada compiler. The system can be used to
design distributed and intelligent systems [Luqi89a].

CAPS' support for the rapid-prototyping methodology makes it possible for prototypes to be
designed quickly and to be executed to validate the requirements. CAPS manages the entire
prototyping process, from the development of the software design, through the retrieval or
creation of reusable Ada software components, to the generation, execution, and analysis of
the resulting Ada program. CAPS users may iterate through this process until they are
satisfied with the software's behavior.

1. The CAPS project is directed by Dr. Luqi and is supported by the National Science Foundation under grant
number CCR-8710737.

2. The AUV project is directed by Dr. A.J. Healey and is supported by Naval Postgraduate School funding.
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The CAPS computational model and tools provide the designer of a software system with a
way to draw an augmented dataflow diagram which contains the necessary timing ant
control constraints for specifying embedded software systems. The model maximizeJ
parallelism by enforcing timing and control constraints only where necessary. The graphical
design and the constraints drawn through the CAPS graphical editor for an embedded control
systetn are based on the syntactical structure of the Prototype System Description Language
(PSDL) [Luqi88a].

The specification part of the PSDL program describes the basic attributes of required
software components. (Currently the components are Ada units, but other languages can
also be supported.) This information is used by a tool which searches for appropriate
reusable components stored in the software base. If no suitable component is found in the
existing software base, the designer ma), choose to create a completely new component from
scratch or to create a new component by combining or modifying an existing set of
components. When the design is completed, the PSDL program is translated into Ada code
which has the structures for realizing the timing and control constraints built in. The Ada
program is then compiled.

The designer may then execute the program and evaluate the prototype's behavior against
the behavior that he expected it to have. If the comparison results are not satisfactory, the
designer may modify the prototype and evaluate the prototype again. This process continues
until the prototype meets the requirements.

CAPS was designed to be used for developing prototypes for real-time systems. In CAPS, a
hard real-time constraint is a bound on the response of a process which must be satisfied
under ali operating conditions. CAPS specifications can represent a variety of real-time
constraints, including (1) maximum execution times for modules, (2) minimum calling
periods, (3) synchronization of processes with sporadically-arriving external data or
interrupts, (4) delays required by limitations on input/output devices, (5) maximum response
times, and (6) periodic system actions.

The CAPS model and tool set have been applied to real-time software designs in several
areas, including C3I [Luqi89] and process control [Luqi88a].

III. The Autonomous Underwater Vehicle Project

III.1. Overview of the AUV.II

The AUV-II is the second in a series of autonomous underwater vehicles developed at the
Naval Postgraduate School. It is described in detail in [Cloutierg0] [Healey89] [Kwak90].
Briefly, the AUV-II is a self-contained vehicle, approximately 16 inches wide, 10 inches
deep, and 93 inches long. It displaces approximately 387 pounds and is powered by on-
board batteries.

The AUV-II is a research vehicle designed as a testbed for research in mission planning,
path planning, sonar data analysis and world modeling, navigation through obstacle fields,
and other intelligent behaviors.

Bihari,McGhee,Luqi,Lee Page3
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The ,AUV-II is propelled by two main screws (port and starboard a/t) and four tunnel
thrusters (fore and aft vertical, and fore and aft athwartships). These may be used to control
five degrees of freedom; the AUV-II's roll axis is not controlled. However, when the AUV-
II is moving with sufficient speed, the control surfaces (bow planes, stem planes, and fore
and aft rudders) may be used in conjunction with the screws and thrusters to control ali six
degrees of freedom, including roll.

The AUV-Ir s sensor system consists of four pencil-beam sonar transducers mounted in the
AUV-II's nose, a full suite of inertial sensors (three rate gyros, three accelerometers, a
vertical gyro and a directional gyro), a flux gate compass, a paddle-wheel speed sensor, and
individual motor RPM sensors.

Because the AUV-II is a research vehicle, its computational requirements are subject to
change, lt is important that the on-board computer hardware be modifiable and extensible,
by adding more raw computing power, memory, and I/O devices, and by adding different
types of these components.

The on-board computer is centered around a 12-slot GESPAC G-96 bus. The bus currently
hosts one GESPAC MPU-20HF single-board computer (25 MHz Motorola 68020 and 68882
processors, 2.5 Mb of RAM, and up to 4 Mb of EPROM), and 5 other boards containing
interfaces to a 200 Mb hard disk, parallel and serial communication ports, analog-t0-digital
input channels interfaced to the AUV-II's sensors, and digital-to-analog output channels
interfaced to the AUV-II's effectors. There are currently 6 free bus slots. These are
expected to be used for additional GESPAC MPU-30HF (68030-based) boards, a
Transputer board, and other devices as necessary.

The GESPAC computer uses Microware's OS-9 real-time operating system. OS-9 is a full
operating system, with a file system, native compilers and other development tools. OS-9
uses a time-slicing, prioritized, task scheduler. Intertask communication is via global
memory, pipes, signals, and BSD4.2 sockets for inter-processor communication.

In addition to the AUV-II itself, a laboratory computer identical to that in the AUV-II, and a
graphical simulation of the AUV-II and its environment (running on a Silicon Graphics
workstation), are available for software development.

HI.2. Characteristics of the AUV.II Software

The AUV-II's software is described in detail in [Cloutier90]. Our main interests for this
study were not in the particular guidance and control algorithms, but in the duties performed
by the software, the software's real-time requirements, the overall software design, and the
expected life cycle of the software.

The AUV-II's software is designed as a layered architecture in which higher levels pass
requested vehicle states to lower levels. The lower levels attempt to meet the requests,
possibly modifying them to make them feasible, and may pass information back to the higher
levels, allowing the higher levels to modify future requests. There are currently three levels.
The top level consists of the Mission Planner (which is off-board), and the Mission
Replanner (an on-board planning subsystem which may override the off-board planner).

Bihari, McOhee, Luqi, Lee Page 4
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These subsystems generate sets of paths describing particular missions.

The middle level consists of the Guidance sub-system, which receives paths from the
Mission (Re)Planner and calculates individual "postures" to be achieved bythe AUV-II.
The bottom level consists of the Autopilot subsystem, which servos the AUV-II's effectors
to achieve the requested postures. This is performed on a 100 ms period.

To provide input to the Ailtopilot's servo control locp, the state of the AUV-II must be
determined from the inertial, depth, and speed sensors, This must be done by the Navigation
sub-system at rates sufficient to provide an accurate cN.rent state. The AI W-II state is
currently updated every 100 ms. Project goals call for data from the sonar sensors to be
integrated with other sensor data, and with pre-loaded obstacle maps, in several phases.
InitiaLly,sonar data will be used to correct inertial sensor drift. Eventually, sonar data will
be used for collision avoidance and for revising the existing world model. Sonar data will be
collected at 100 ms periods, and world modeling will occur at somewhat longer periods.

The relative steering effectiveness of the thrusters vs the control surfaces depends on the
AUV-II's forward velocity, lt is anticipated that the control surfaces' effectiveness will vary
from zero at zero velocity to approximately four times that of the thrusters at maximum
velocity. Therefore, the AUV-Ilmotion control strategy, and the control software, has been
divided into two modes: Hovering Mode and Transit Mode. The software must be able to
cleanly switch between.these modes while in operatior..

7

In addition to these "normal" operationr,, reflex actions like collision avoidance may be
triggered by special circumstances and must produce quick responses, sometimes overriding
existing activities.

The software characteristics of the AUV-II are both similar to and different from those of the
Adaptive Suspension Vehicle (ASV), a three-ton, self-contained, six-legged walking
vehicle 1with which we have been associated in the past [Bihari89]. Both vehicles perform
sensiog, world modeling, motion planning, and servo control in real time.

For the most pan, the AUV-II' s guidance and control software is not required to meet
extremely tight real-time requirements. Sensing and servo control periods are on the order
of 100 ms or greater, with some allowable slippage. This iseasily within the capabilities of
existing computer hardware, real-time operating system, and software technologies. The
ASV has tighter real-time requirements than the AUV-II. For example, the ASV's leg
servo control software executes with periods of 10 ms or less, with serious consequences if
servo cycles are missed. The ASV's real, time requirements are well-defined and generally
situation-independent, however.

The AUV-II is required to be completely autonomous, while the ASV has an on-board
operator performing many of the high-level world modeling and motion planning duties. The
AUV-II must maintain a larger view of time (e.g., for an entire mission). For example,

1. Spons_ed by the Defense Advanced Research Projects Agency under contracts MDA903-82-K-0058,
DAAE07-84-K-R001, and MDA972.88-C-0031.

Bihari, McGhee, Luqi, Lee Page 5
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planning may take a significant amount of time, and the amount of time may be situation-
dependent. The AUV-II must be capable of reasoning about time, and of "planning to plan",
and the enforcement of the resulting timing constraints must be handed by the underlying
operating system and support tools.

Furthermore, much of the information contained in the AUV-II system is time-dependent.
That is, the AUV-II's perception of the state of itself, obstacles, and mission plans is
dependent on the relationship between the current time and the time at which the information
was created (e.g., the age Of the data). Portions of the AUV-II's software may resemble a
temporal database.

The AUV-II is experimental, and the software's duties range from low-level sensor data
processing and servo control to high-!evel planning and world modeling. Ideally, the AUV-II
software development environment would support the integration of a variety of programming
paradigms, including procedural, functional, object-oriented, logic-based, and rule- or frame-
based. Practically, a system supporting Ada and Common Lisp could provide a basis for
most of these paradigms. (This would be a step forward in the state of the practice. Almost
ali existing AUVs, including the AUV-II, are programmed in c.)

In summary, the AUV-II software system has the following characteristics:

From a software architecture standpoint:

1. It is hierarchically structured, and it can best be understood by viewing it at different
levels of abstraction for different purposes.

2. It consists of subsystems, some of which are tightly coupled, others of which are loosely
coupled (and execute at different rates).

3. It operates in at least two separate modes.

4. lt must occasionally perform reflex actions which override normal operations.

5. Most of the computations have real-time constraints.

6. It includes time-dependent representations of the states of the AUV-II and environment.

From a software management standpoint:

1. The specification, design, and implementation of the entire system (mechanical hardware,
electrical and electronic hardware, and software) will evolve as existingresearch questions
are answered and new questions are asked.

2. Small changes to the software can be expected to occur frequently. That is, software
development will follow an experimental, iterative, implement-execute-evaluate cycle. The
software may also need to be specially configured for specific missions.

3. Multiple versions of the software may be "active" at the same time, as different

Bihari, McGhee, Luqi, Lee Page 6
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researchers conduct independent experiments using specialized components integrated with
a common software base. ,

4. The software base can be expected to outlive (in a project sense) most of the software
developers. Software development methodology supI:_rt and enforcement is important.

5. lt must be possible for different people to unders_ad and manipulate the system at
different levels of abstraction (e.g., as "black boxes"), so they not have to learn the entire
system in order to perform useful research. It must not take too long to "come up to speed".

6. Different languages and programming paradigms raaY be most effective for different
components (or different versions of the same component). A uniform framework for
managing these disparate components is needed.

IV. The Potential for Further CAPS.AUV Project Cooperation

In theory, the interaction of a real-time software tool provider (the CAPS project) with a
real-time software tool user (the AUV project) has many advantages. The CAPS project
would benefit from the availability of a realistic application. The AUV project would benefit
from an improved software development methodology and support tools. In practice, the
interaction of two such research projects must be realistic and well-defined if it is tobe
beneficial to both parties.

In our view, CAPS provides an appropriate and extremely useful methodology for developing
real-time control software like that of the AUV project. The concepts supported by CAPS
generally match those we expect for the AUV-II's life cycle. The integrated tool set should
lead to easier software development and strict enforcement of the software development
methodology. PSDL seems to contain the features necessary for the AUV software.

There are practical considerations, however. For example, the current AUV software is
written in C, while CAPS supports only Ada at this time. The CAPS tools currently run
under X Windows on a Sun SPARCstation, whilethe AUV tools are running on an IBM
PC/AT compatible. Resolution of these practical mal:terscould consume valuable "research"
time. Some care is also needed because a complete treatment of the problem requires
solutions to two unsolved research problems: real-time databases and real-time scheduling.
Domain-specific assumptions and approaches must be developed to provide adequate
solutions to these problems. Some progress in these directions has already been made
[Galik88] [Guentenburg89] [Huskins90] [Mostov90] [Sun90] [White89], but these
solutions have not yet been incorporated into the cun'ent implementation of CAPS.

We see the potential for a step by step increase in interaction between the CAPS and AUV
projects. This should begin by establishing a realistic set of goals. Those goals might
include, for example:

1. Formulate the AUV-II software design in PSDL and critique the design.

2. Translate the AUV-H's existing C code to Ada, and move the AUV-H development

Bihari, McGhee, Luqi, Lee Page 7



CONF-9007134
Page18

environment to a platform with appropriate Ada tools and the X-Windows support needed by
CAPS (e.g., Sun or DEC MicroVAX).

3. Form the AUV-II's Ada modules into CAPS reusable components and develop a
complete AUV-II software version under CAPS.

And so on.

lt is important to avoid over-integrating the two projects. In order to avoid delaying the
progress of either project, the projects should maintain independent critical paths. For
example, the AUV programmers should continue to develop C code until the Ada
development envi.,'onrnentis fully operational. A significant benefit might be gained by
interaction at the design level (e.g., Goal 1) regardless of the eventual implementation of
AUV-II software under CAPS.

V. Conclusion

The number and complexity of intelligent, autonomous, real-time systems are expec'ed to
grow, driven by the need to perform missions for which human supervision is unavailable or
not cost-effective. The development and mainter_,anceof software for such systems is an

" important area of research. We believe that progress in this area is achieved best by the
cooperation of the providers of real-time software engineering technology (e.g., CAPS) and

"_ the users of that technology (e.g., AUV). Appropriate modes of interaction must be found.
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Abstract

Factorsaffectingthedevelopmentofconcurrentprocessingenvironmentsforknowledge-basedsys-
temsinreal-timeapplicationsarediscussed.A collectionofcooperatingsmallandsimpleknowledge-
basedsystemsisan attractivealternativetoa largecentralizedone.Thereare,however,significant
questionsconcerningtherelativeperformanceand survivabilityofthesesystems.Thispaperwill
addresssome oftheseissues,includingsuitablecommunicationframeworks,andtherelativemerits
of variousfeaturesofthe knowledgebasedescriptionlanguageand approach.Thereareseveral
advantagestodistributedimplementationsincludingmore efficientevaluationofsmallerknowledge
basesand specializationof knowledgebaseswithinspecificdomainsofexpertise.Potentialdis-
advantagesincludecommunicationdelays,performanceunderdegradedoperatingconditions,and
non-deterministicoperation.Some discussionwillbe providedconcerningan expertsystemshell
designforapplicationsinpowerelectronics.

Introduction

Our researchexploresthedevelopmentofan intelligentcontrollerfora powerelectronics-based
inverterdriveforinductionmotors.The controlleristo be implementedusinga dualprocessor
architectureusingan Intel80386microcomputerand aTexasInstrumentsTMS320C30 digitalsignal
processor(DSP).The softwarere3idingon themicrocomputeristo be controlledby a rule-based
expertsystemwhiletheTMS320C30 DSP carriesouttime-criticalcontrolanddecisionaction.

One projectobjectiveistoexplorealternateexpertcontrolsystemarchitecturesforimplemen-
tationon microcomputers.A modern controlalgorithmcontainssignificantalgorithmiccomplexity;
alongwiththenecessaryprotectivemechanisms,interfaces,and discretestatelogic,itoftenstresses
an implemem'or'sabilitytomeetperformancespecificationsusingtheavailablehardwaretechnology.
Now we envisiontheadditionof"intelligent"controlfunctionswhichmany hopewillaccomplish
thingswhichprevious,more algorithmic,approacheshavefailedtodo. We viewsegmentationof
processknowledge,eitherwithina singleprocessororovera distributednetworkofprocessors,asa
necessarystrategytoprovidesufficientprocessingcapabilityandflexibilitytomeetourlong-range
goals.Thisisaccomplishedintwo ways. By reducingthesizeofeach"intelligent"module,the
efficiencywithwhichitcanbe evaluatedisincreased,and thisincreaseshouldmore thanoffset
theadded overheadof coordinationbetweencooperatingmodules.Second,migrationto a dis-
tributedcomputingarchitectureisnearlytransparent.An addedbenefitisderivedfrom theuseof
an object-orientedmodulestructure;modulesmay be implementedandtestedina somewhatinde-
pendentmanner.An attractiveapproachistointroducea collectionofrelativelysmalldistributed
and cooperatingknowledge-basedsystems,orknowledgesources(KSs}.Thismethod'sconcurrency
tendstofavorreal-timeprocessingsincetheexecutionofone knowledgesourcewillnotblockthe
remainingknowledgesourcesfromreal-timeevents.Our interestison a developmenttoolrather
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than a single expert system. We intend t_ explore the essential requirements of real-time distributed
knowledge-based systems and design an appropriate development tool.

A significant body of literature exists documenting previous research in this area; however, we
believe our work is somewhat unique in the following areas: First, our goal is to develop an expert
system tool capable of supporting very high speed real-time processing; as such, our interest in
segmentation of domain expertise into independent, cooperating knowledge sources is for efficiency
by limiting the size and scope of each knowledge source. Second, rather than focus upon the coor-
dination behaver between knowledge sources, as is done in much of the existing literature, we focus
upon the eventual use of the tool in a complex application; thus, knowledge is decomposed along
easilyrecognizableboundaries,suchasinterprocessorcommunication,human interface,economic
optimization,and measurementdatabasefunctions,and messagesaredesignedbasedupon "engi-
neeringexpertise,"ratherthanupon anyrigorousfoundation.Third,we sacrificesomeflexibilityfor
efficiency;specifically,classesofobjects(frames)and datatypesaresupportedand usedtofurther
segmenteachknowledgesource'sfactbase,inferenceis(atpresent)restrictedtoforwardchaining,
and onlylimitedpatternmatchingissupportedratherthanunification.Fourth,we aim toimple-
ment thistoolon a verylimitedarchitectureand operatingsystemenvironment,usingthe80386
processorand theMS-DOS operatingsystemwithanextenderwhichprovidesprotected-mode(flat
addressspace)operation.Thismakesiteasiertoembed thesysteminreal-timehardware.

Our interestspansmore than80386applications;inthatregard,we aredevelopinganequivalent
Unix-basedtoolusingmultipleprocessesand lightweightprocesses,and intendtoexploretheim-
plementationofa similartoolina multi-processorenvironmentusingan InteliPSC/860hypercube.
Such toolscan be usedforfutureresearchon performanceand reliabilityofobject-orientedex-
pertsystemson distributedarchitectures,and fordevelopmentofembeddedand distributedcontrol
applications.

Background

At the outset, one must ask why we should begin development of yet another expert system tool.
Existing tools abound; why are they unlikely to satisfy our requirements? First, we are interested
in embedded applications using relatively small computing resources. Second, we require real-time
processing in a fairly demanding (with respect to the rate at which information is received and
must be interpreted, at least) application. Many existing tools, such as KEE [1] and CLIPS [2],

: which represent two extremes of the cost scale, are not designed to deal with real-time applications.
Systems such as G2, Muse and Cronos [3], which are intended for real-time applications, are too
costly for our applications, and are probably too complex to successfully embed in the intended
computer architecture. We wish to take advantage of "intelligence" in the control system design;
however, we need a "lightweight" environment in which to implement the required functionality. At
present, this does not exist commercially, or, to our knowledge, within the research community.

Numerous real-time expert systems for specific applications have been developed in the past ten
years. While the term real time doesn't say in general how "fast" the system should be, people
have generally agreed that a real-time system should be fast enough for use by the process being
served and should guarantee a response in a strict time limit. Some guidelines are important for the
development of real-time systems and tools. Real-time systems must deal with nonmonotonicity of
incoming data, asynchronous events, an interface to external environments (sensors, actuators, and
possible a human supervisor), and uncertain or missing data. Other requirements include the ability
to maintain continuous operation (not interrupted by garbage collections), guaranteed response time,
controlled focus of attention, and temporal reasoning [4].

Blackboard systems have proved to be successful in dealing with complex problems with large
solution spaces [5]. Under the blackboard framework, knowledge is divided into multiple knowledge
sources that perform the subtask of finding partial solutions. Partial solutions are posted on the
blackboard so they are globally accessible. Controlled by a scheduler, knowledge sources take turns
generating new partial solutions. It's easy to segment a task into modules and use multiple reasoning
methods; however, knowledge sources in blackboard systems are tightly coupled. Each of them is
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only part of a intelligent system just like a piece of the human brain. They must be well-organized
and tightly connected. In this way, modularity of each knowledge source is limited. System response
time to events is not guaranteed since the activation of a knowledge source will normally not end
until it terminates. Thus, a traditional blackboard system is essentially a centralized system with
the additional features controlling focus of attention and partitioning knowledge. Researchers hav_
extended this to build distributed blackboard systems for real-time applications , such as distributed
sensor networks (DSN) [6]. These systems use several blackboard systems which communicate via
message passing. Although they were distributed intelligence systems which renin real-time, they
were structurally tailored for a specific application. This approach is suitable for some problems,
but it is not a general framework.

A type of loosely coupled, distributed cooperative problem-solving system [7] hu gained some
interest; in addition, it fits the technology of distributed systems weil. Each element in the problem-
solving network works rather autonomously as a member in a cooperative team with little centralized
control. Better modularity is introduced. Unlike blackboard systems, which have been developed

for real-time applications, this class of systems has ,as yet no large application, although it seems
promising for real-time control. :

Blackboard system and CDPS are so far the two most influential approaches to distributed
knowledge based system design. Blackboard systems have Undergone more then 15 years of evolution.
The technology is mature due to the numerous large applications which have been implemented,
but they are generally expensive to run and develop. CDPS systems research, on the other hand,
started with an interest in the cooperative behaver of seperate intelligent systems. Researchers have
worked on how to maintain coherent cooperation under limited communication, including the means
to communicate more intelligently. These results are so far primarily of theoretical value. Most of
the work on CDPS is based on prototype implementations and simulation, for the probable reason
of the overwhelming acceptence of blackboard systems in complex reM-world applications. To date,
CDPS suffer from the lack of application and development tools. The only way to heal this situation
is to test CDPS in applications of a realistic size.

Researchers in artificial intelligence (AI) seem to be overlooking the possible wide use of their
complex frameworks in low-end control systems, such as embedded controllers. In this area tradi-
tional control argorithms and simple AI approaches still dominate. Currently complex systems at
most work at a very high level of control systems where real-time features and restrictions are lost.
A significant dependence upon the support services of the operating system has been assumed during
development of most of these systems; such support is unlikely to be present in low--end applica-
tions. These factors make it hard to migrate the framework to a low-end processor for real-time
processing; on the other hand, this migration may alleviate the current complexity of the control
algorithm once more capable AI frameworks reside on low,hd processors. This gap can be filled by
the development of suitable expert system tools that meet the following: First, they should support
the development of expert system under a new and effective real-time AI framework. Second, they
should provide guaranteed response to external events. Third, these systems should be simple to
learn and easy to use by control system engineers.

" Framework

We are interested in exploring the use of cooperative distributed knowledge-based systems for real-
time control and in developing an environment for testing. Our framework differs from most existing
expert system shell's in that we introduce fully concurrent inference on distributed knowledge bases.
Many of the ideas are from CDPS systems; however, since it's a development tool, it leaves the upper
layer coordination protocol to the expert system's developer, while supporting only the concurrent
inference and communication framework.

Each knowledge source is an independent system. Knowledge sources residing on a single pro-
cessor are scheduled by a preemptive scheduler. In our system the scheduler knows nothing about
what's going on within each knowledge source; it only guarantees the execution time allocated to a
knowledge source will not exceed a pre-determined time slice, and that knowledge sources will be
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scheduled according to the assigned priorities. The scheduler knows nothing about the reasoning,
and is unable to organize the execution of each knowledge source on the basis of the state of the
reasoning process. Alternate methods are the design of non-preemptive or self-scheduling processes.
Inn self_eheduling system, the active process decides when to suspend itself and which other pro-
tess to activate. Blackboard systems use non-preemtive scheduling, as do some CDFSs such as the
AF system [8]. This approach introduces less overhead on task switching and synchronization; also
it appears more favored in producing a trackable process. We favor our approach because of the
following reasons:

• It enhances structural simplicity and modularity. Unlike non-preemptive scheduling,
which needs a centralized scheduler, and self--scheduling processes, which assume each KS
performs proper scheduing, scheduling is transparent to the KS implementer. Each KS is
responsible only for itself. Structural simplicity is obvious compare with blackboard systems.
Also, self_cheduling increases the connectivity of KSs and deereasen modularity.

• Reliability is improved. Dangerous situations like system deadlock due to errors in one KS
are prevented. Fatal error in a single KS can be detected and, by reseting that particular KB,
the rest of the system will still work. This leads to better error recovery and system diagnosis.
In a non-preemptive system, this situation normally leads the entire system into an unwanted
state forcing a system-wide reset.

• Quicker response to external stimuli is obtained. The maximum delay for response
to an asynchronous event is the length of the time slice. The scheduler can also be designed

to immediately start re-scheduling upon receipt of an urgent event. For a non-preemptive
system, the KS writer must either take meticulous care to guarantee each KS's maximum time
consumption, or must let activation of a KS be interruptable by an event. The later solution
violates non-preemptive scheduling, so the action that deals with events can not be considered
a standard KS. This leads to increased structual complexity.

• Implementations and behavior on single and networked computers are similar.
KSs can run concurrently on networked computers. The behavior of the system is essentially
the same as the case of a single computer (up to non-deterministic solutions which depend
upon the relative timing of KS execution). The overhead of multitasking vanishes, although it
is replaced by communication delays and overhead.

• Embedded system implementations are easier to support. For an morden embedded
system, most state of the art microprocessors have hardware support of multitasking with little
overhead. They do not, however, have support for specialized language features which may
have been assumed in current implementations.

Communication between knowledge sources is limited to message passing, which allows maxi-
mum flexibility in the implementation; instead of considering each knowledge source as a large rule
as in blackboard systems, here it can be considered as a large object capable of reasoning. We
believe introducing this kind of powerful object can greatly increace the power and integrity of our
framework. From one KS's point of view, all other's internal implementations are hidden. Not only
can different knowledge sources use different inference schemes; they can also be implemented with
different languages. A knowledge engineer or control system engineer can choose his own way of
adding a piece to the whole system.

We consider each knowledge base identically in spite of the fact some of them are not intelligent
systems at all. These members only do routine jobs and are considered part of the problem solving
team. They may have lower priority and be subordinate to more intelligent knowledge sources.
This approach puts a heavier burden on the central scheduler, but appears to be a good trade--
off between efficiency and structural simplicity for our control problems. For larger applications
distributed across multiple processors, this approach becomes natural and introduces no overhead
in addition to that already present due to communication delays. In this way symbolic and numeric
processing are easily coupled and become a powerful problem solver.
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Approach and Discussion

Language

The distributed cooperating framework doesn't require the definition of a specific knowledge base de-
scription language. The KS designer can choose any conventional programming language (C,Fortran),
AI language (Lisp, Prolog), or expert system development tool (CLIPS), In this case, the operating
system or distributed operating system serves as scheduler and deals with messages; however, we
design a new language because of the following reasons: First, our goal is to develop a tool which
should provide a convenient knowledge representation, an efficient inference mechanism, and good
support for debugging and maintenance. The language is an essential part of the tool to support
these, lt also provides a standard programming environment. Second, we want n language that
can best fit our _ramework and real-time applications. Third, our current application is to run on a
Intel 80386 undt:r MS-DOS, We have no operating system support for multitasking. Thus we have to
write a small multitasking kernel ourself. Last, in implementations on a single processor, we wish to
share code segments between KS processes; it would be difficult to adapt an existing expert system
shell to fit these conditions. This last consideration becomes extremely important for embedded
systems, where memory space may be restricted.

The basic element of this language is the frame or object. Currently, a frame consists of only
slot-value pairs. Inheritance between frames is supported. Frames have proved to be an effective
way of knowledge representation. We find them also quite suitable for describing real-time control
systems. Each frame belongs to a class. Classes define the structure of frames and serve as type
information. This reduces the flexibility of knowledge representation but gains efficiency for the
inference engine.

The language is currently a forward chaining system. Frames are treated as facts to express the
current status of inference. If... then rules with condition and action parts describe the inference.
Rules can be assigned a priority. Pattern matching and function evaluation are closely coupled in
the condition part of the rule. We deem this necessary for control system applications. Variables
serve as wild cards in pattern matching. Normally the inference engine searchs through ali instances
of variables to test a pattern match. The user can also provide his own control of the pattern match
process. The rule with the highest priority which has its condition satisfied fires by executing its
action. Typical actions of a rule include assertion, retraction, or modification of frames. Other
actions include sending messages to other knowledge sources. If no rule can be fired, the knowledge
source will sleep, waiting for an external events (the arrival of a message) to wake it up.

The type of a frames's slot must be defined as either symbolic or numeric in its class definition.
Symbolic values serve as atoms for pattern matching in inference. Floating point numeric values
represent real-time data. This approach sacrifices some flexibility, but allows the language to be
efficiently compiled for both symbolic and numerical processing.

The language is implemented entirely in C. Some ideas are from the CLIPS system, which allows
the user to add functions written in C. The knowledge base and inference engine can be embedded
in a user-written C main program. A small C--style embedded language is designed to allow the
definition of functions as part of the knowledge source. These functions are compiled to an internal
form, and interpreted by the inference engine; however, unlike functional programming languages,
functions are statically defined and can't be mixed with data.

The language introduce a special type of when ... then rule to deal with asynchronous events and
messages. When rules are fired not by conditions, but by events. The priority of a when-rule defines
the priority of the corresponding event. The difference between a condition and an event is that a
condition can change while an event is saved. Even if the condition of an if... then rule has once been
satisfied, it m_y never fire if another rule with a higher priority fires first and changes the condition.
On the other ',_,._:_3, every event that oceures will be stored in a queue and kept in the queue until
it is either acted upon by a when ... then rule or is removed from the queue by a clear queue
action. Events can arrive at any time. The arrival of message is an event; the result of a function
evaluation can also be an ....ent. This support has direct application in dangerous situations or error
detection and alarm processing. Each when-rule has a corresponding event queue. The system will
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update the corrsponding queue each time a message arrives or a sensitive variable (on.e whose value
contributes to a function evaluation used by the condition of a when-rule) is changed. Also note
repeated satisfaction of _*amecondition can send multiple events to the corresponding when-rule
even if they are not immediately processed. This simple but effective approach gives the system its
ability to deal with real-time events such as hardware interrupts.

Several special features are designed as part of the language's support for real-time applications.
Issues like dealing with asynchronous events and guaranteed response time have already been dis-
cussed. This language keeps track of the time information. The following time information is kept
internally:

• the time a frame was last created, used, or modified,

• the time a slot was last used or modified,

• the time a rule was last fired, and

• the time of arrival of each message.

This information can be retrieved by calling built-in functions. This gives direct support to temporal
reasoning. This luxury can be disabled for efficiency. In addition, the frame design of the language
is implemented in a manner which is garbage-free, eliminating the need for garbage collections and
their impact upon system performance. Ali freed memory is incrementally collected, consuming very
little overhead.

Messages
Message passing is the only means by which knowledge sources are able to communicate. In our
language, messages have the same syntax as frames, although their internal data structures are
different. This provides a consistent message format. However, unlike transmitting simple ASCII
string as messages, as many other systems do, knowledge sources don't have to do translations. This
approach requires consistency of class definitions in different knowledge sources.

Message passing between knowledge sources is done by the scheduler. Messages can be assigned
with priority. When a knowledge source is going to send a message, it calls a built-in send function.
The system translates the call into a request to the scheduler. The scheduler picks messages in
order of their priority and sends them to their targets, perhaps via a network. The scheduler is also
responsible for putting messages into receivers' event queues and waking them up. Based on the
urgency of the message, the scheduler also decides whether to immediately start a knowledge source
or wait until the current time slice is over. This way message management and the sleep/wake
mechanism is completely transparent to knowledge sources. Knowledge sources implemented by
different languages, on different machines can be treated as identical in terms of message passing.

Although knowledge sources .are logically unlayered, they can be organized as a complex physical
structure. Just as in the case of distributed operating system, efforts are made to hide this physical
complexity so every knowledge source is accessed by name. However, the designer of the expert
system should be aware of this physical arrangement. Each knowledge source is responsible for it's
own work, but local ones may form a group with frequent message exchange between members while
exchanging information with remote KSs ata a more leisurely rate. Close coupling with a distributed
operating system and direct utilization of much of it's facilities is a characteristic of our system.

Detailed coordination protocols are left to KS designer. They can be implemented using message
- passing primitives. At some special occasion, knowledge sources that share memory space on the
- same machine (such as lightweight processes) can pass addresses as message instead of large data

segments, so shared memory can also be supported.
i

Surnmary

A design for an expert sytem environment for real--time control applications has been discussed.
This environment is intended to support multiple knowledge sources cooperating via message passing

6
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and residing either on a single processor or a network of processors. A language for expert system
applications has been defined which integrates message passing and a class/object structure designed
for control applications. The end result can be viewed as providing support for a cooperating network
of intelligent objects on small platforms suitable for embedded control system implementations,
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Abstract

The goalofformalmethodsresearchinthe SystemsValidation
MethodsBranch(SVMB) atNASA LangleyResearchCenter(LaR,C)

! is the development of design and verification methodologies to sup-
port the development of provably correct system designs for life-critical
control applications, Specifically, our efforts are directed at formal
specification and verification of the most critical hardware and soft-
ware components of fault-tolerant fly-by-wire control systems, These
systems typically have reliability requirements mandating probability
of failure < 10.9 for 10-hour mission times, To achieve these ultra-

reliability requirements implies provably correct fault-tolerant designs
based on replicated hardware and software resources,

1 Introduction

The application of theorem provers to verification of critical properties of

real-time fault-tolerant digital systems is being explored at NASA Langley.

Specifically, we are interested in fly-by-wire digital avionics systems. Typi-

cally these systems continuously read sensor values, perform computations

implementing the desired control laws, and output the resulting values to

, actuators. Sensor values might include airspeed or input on the attitude of

the aircraft. The actuators control engines, flaps, and/or rudders.
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The reliability requirements for commercial aircraft are very high

probability of failure less than 10-9 over 10-hour mission times. This level

of reliability is often referred to as ultra-reliability. If quantification of system

reliability to this level seems a questionable endeavor, consider the problem

of latent design errors. Design errors affect system reliability in unpre-

dictable ways and measuring their effects in the lab is infeasible. In systems

containing latent design errors, failures of individual replicated processors
are not independent and render the reasoning behind replicated str, tegies

for fault-tolerance impotent.

A current approach to solving the problem of latent design errors is based

on notions of design diversity. This approach is typically implemented by

independent design groups working from common specifications. However,

in an often cited paper [2], Knight and Leveson have shown_ at least in the

software domain, that design diversity does not necessarily ensure indepen-

dence of design errors. Moreover, quantification of software reliability in

the ultra-reliability range is not feasible in the presence of design errors [5].

] Historically, quantification of hardware unreliability due to physical failure
has not been viewed as a problem and, reliability analysts assume hardware

components are immune from design errors. However, as we move into the

nineties, hardware description languages, silicon compilation, ASIC's, and

microcoded architectures are blurring the boundaries between hardware and

software development methodologies. Based on this observation, we believe

caveats regarding quantification of unreliability attributable to design errors

now apply to hardware as well.

Hence, we argue for verification through mathematical proof, rather than

design diversity, as a partial solution to the serious problem of design errors

in digital systems. Our approach is to formally specify and verify the correct-

ness of mechanisms that implement the required fault tolerance. Manage-

" ment of the distributed resources that implement the required fault tolerance

is a complex systems problem. Considering the obvious requirement that

the voted results produced by the replicated processors must be voted in a
fault-tolerant fashion seems to lead to a vicious circle. A second difficulty

: arises from the fact that voted results mask errors only if each replicate re-

ceives the same inputs; thus sensor values must also be distributed to each

. processor in a fault-tolerant manner. Ingenious algorithms have been devel-
oped to perform these tasks [4]. Verifying that these algorithms have been
correctly incorporated into the fabric of a distributed operating system is at

the heart of reliable fault-tolerant system design.
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2 A Science of Reliable Design

Mathematical reliability models provide the foundation for a scientific ap-

proach to fault-tolerant system design. Using these models, the impact of

architectural design decisions on system reliability can be analytically evalu-
ated. KelJability analysis is based on stochastic models of fault arrival rates

and system fault recovery behavior. Fau],_ arrival rates for physical hard-

ware devices are available from field data or empirical models [7]. The fault
recovery behavior of a system is a characteristic of the fault-tolerant system
architecture.

The justification for building ultra-reliable systems from replicated re-

sources rests on an assumption of the failure independence between redun-

dant units. The alternative approach of modeling and experimentally mea-

suring the, degree of dependence is infeasible, see [5]. The unreliability !of

a system of replicated components with independent probabilities of failure

can easily be calculated by multiplying the individual probabilities. Thus,
the assumption of independence allows fault-tolerant system designers to

obtain ultra-reliable designs using moderately reliable parts. Often complex

systems are constructed from several ultra-reliable subsystems. The subsys-

tem interdependences (e.g. due to shared memories, shared power supplies,

etc.), can still be modeled (assuming perfect knowledge about the failure

dependencies) and the system reliability can be computed. Of course, the

reliability model can become very complex.

The validity of the reliability model depends critically upon the cor-

rectness of the software and hardware that implements the fault tolerance

of the system. If there are errors in the logical design or irnplementatlion

of the fault-recovery strategy or in the desigrt of individual system com-

ponents, failures between redundant units may no longer be independent.

The quantification of system unreliability due to physical failure would be

meaningless.

Based on this analysis, the validation of the rellabilJty of life-crit!icd

systems can be decomposed into two major tasks:

• Establishing that design errors are not present.

• Quantifying the probability of system failure due to physical failure.

The first task is addressed by formal specification and mathematical proof

of correctness. The second task is addressed by the use of reliability analysis

models and tools to analytically evaluate the effects of individual component

failure rates on the overall system reliability.

3
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3 Formal Methods

The major difference between the approach advocated here and approaches
used for design of more traditional fault-tolerant operating systems is in the
application of formal methods. This approach is borne from the belief that
the successful engineering of complex computing systems requires the appli-
cation of mathematically based analysis analogous to the structural analysis
performed before a bridge or airplane wing is built. The mathematics for
the design of a software system is logic, just as calculus and differential
equations are the mathematical tools used in other engineering fields.

The application of formal methods to a development effort are charac-
terized by the following steps.

1. Formalization of the set of assumptions characterizing the intended
environment in which the system is to operate. This is typically a
conjunction of clauses A = {A1,A2,...,Ar_} where each Ai captures
some constraint on the intended environment. Typically A has many
models although the author of a specification generally has a particular
model in mind.

2. The second step is the formal characterization of the system specifi-
cation in the formal theory. This is a statement S characterizing the
properties which any implementation must satisfy.

3. The third step is formalization in the theory of an implementation Z,
Typically, an implementation is a decomposition of the specification to
a more detailed level of specificatidn. In a hierarchical design process
there may be a number of implementations, each more detailed than
its specification.

4. The final stage is a proof that the implementation Z satisfies the spec-
ification S under the assumptions A. Formally, this is a proof of the
statement A D (Z 3 S), where 3 denotes logical implication. That is,
under any model of .,4, Z is an implementation of the specification S.

Some comments are in order, if the set of assumptions proves to be
inconsistent, i.e. there is no model of A, then any implementation satisfies
all specifications and the entire effort is in vain. This suggests a strategy
of minimizing both the nurnber and complexity of the assumptions. The
assumptions can be seen as constraints on the operating environment in
which the specified component is to be placed.

4
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The authorof the formalizationstypicallyhas some specificmodel in

mind which he istryingtocharacterizein theformalstatementsA, S, and

2".From the perspectiveof methodology,itisa good idea to prove some

putativetheoremsaboutthesestatementstoensurethattheintendedmodel
has been faithfullycaptured.For example,in a formalcharacterizationof

a memory, say .M, itisimportantto ensurethatthe specificationcorrectly

capturesnotionsof readingand writing.One propertyof interestmight
be that readingthe contentsofaddressa at timestl and t2willyieldthe

same value,v,as longas thereisno writeto a ofa valueu,u _4v,during ....

theinterval(tl,t2).This propertyshouldsurelyhold in any model of .h4.

Provingsuch a theorem buildsconfidencethat .M correctlycharacterizes
theintendedmodels.

ltshouldbe notedthat,strictlyspeaking,thispropertycouldonlybe

shown by reasoningabout the specification',no amount of testingcan es-

tablishthatthispropertyholds.In fact,many ofthe propertiesofinterest

infault-tolerantdesignarewithinthe domain offormalmethods and their

verificationdepends on reasoningas opposed to testing-basedapproaches.

The existenceof formalcharacterizationsof a system providesa basisfor

such reasoning.

3.1 Hierarchical Proof

The methodology outlinedhere isinherentlyhierarchical.Under the as-

sumptions .A, if implementation Z1 is shown to be an implementation of a

specification S and 2"2is shown to be an implementation of 2"1 we conclude
that 2"2is also an implementation of S. The sentence above can be formaUy
restated as an inference rule:

A D(z2 Dzl), A (zl s)

Logically, this is a simple consequence of the transitivity of implication.

Its significance for a hierarchical verification strategy is obvious; it provides

formal justification for linking together a chain of formal proofs of correctness

to show the lowest level decomposition of a series of decompositions is an

implementation of the original specification.

3.2 Levels of Application

Formal methods are the applied mathematics of computer systems engi-

neering. In other engineering fields, applied mathematics are utilized to the
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extent that they are required to achieve acceptable levels of assurance for

safety, performance, or reliability. It is often assumed that the application

of formal methods is an "all or nothing" affair. This is not, the case. There
is a useful taxonomy of levels of application identified here.

O. No application of formal methods.
: i. Formal Specificationof allor partof thesystem.

2. Pap_.'and pencilproofofcorrectness.

3. Formal proofcheckedby mechanicaltheorem prover.

Significantgainsinassurancearepossibleinexistingdesignmethodolo-

giesby formalizingthe assumptionsand constraints,the specification,and

the implementation.Experienceshows that applicationof leveli aloneof.

tenrevealsinconsistenciesand subtleerrorsthatmight not be caughtuntil

much laterinthedevelopmentprocess,ifat all.ltisgenerallyacceptedthat

the latera designerrorisidentifiedthe more costlyisitsrepair,therefore

thislevelof applicationcan providesignificantbenefits.

The use of paper and pencilproofin the designprocessadds another

levelof assuranceindesigncorrectness.Level2 applicationforcesexplicit

considerationoftherelationshipsbetween theimplementationand thespec-

ificationand oftenrevealsforgottenassumptionsor incorrectformalizations.

A proofof correctnessis only as good as the prover. Even stronger

evidenceforcorrectnesscan be establishedby forcingproofsthrougha me-
chanicaltheorem prover.This islevel3 applicationof formalmethods, lt

must be noted that thereisno guaranteethat the implementationof the
mechanicalproveriscorrector thatthehardware on which themechanical

verificationwas performedwas not faulty.Thus, thereisno absoluteguar-

anteeofthecorrectnessofan implementationeven aftera mechanicalproof

haz been performed.What isgainedby the additionaleffortisa detailedi

argument forthe correctnessofthe implementation.The processof "con-

vincing"a mechanicalproverisreallya processofdevelopingan argument

foran ultimateskepticwho must be shown everydetail.

Partialapplicationofany of the levelsispossiblefordifferentpartsof

the system. We advocatethe applicationof level3 formalmethods only

forthe most critical(and hopefullyreusable)system components. What is

classifiedhereas levelI and level2 formalmethods arebeingwidelyapplied
inthe U.K.
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4 Architectural Approach

In our research at Langley on provably correct fault-tolerant control systems

we consider architectures consisting of four or more electrically isolated pro-
cessors that can communicate with one another. Typically these systems

run with a static multi-rate schedule with tasks scheduled periodically. Each

processor synchronously executes the same schedule, and the system votes

all actuator outputs to mask individual processor faults. The fault models
used are worst case models in which faulty processors can maliciously co-

operate in attempts to defeat the fault tolerance of the system. Under this

worst case model, 3m + 1 processors must be working in order to tolerate

m faults [1]. If we assume the existence of a fault-tolerant basis providing
clock synchronization and interactive consistency, then a simple majority of

working processors suffices to out vote any minority of faulty processors.

Empirical evidence indicates that transient faults are significantly more

common than permanent faults. If designed correctly, these systems are able

to recover gracefully from transient faults. Each computation generally only

depends on a short part of the input history and typically has a minimal

amount of global state information. If the global state is voted periodically
and internal state is recoverable from sensors, it is clear that after some

finite time errors can be flushed from the system.

The approach adopted here for the design of the distributed aspect of

the system is motivated by Lamport's pape, [3]. At the base of the system

is a distributed clock synchronization algorithm, allowing the system to

be viewed as a synchronous system. Under contract to NASA, l_ushby

and von Henke [6] formalJy verified Lamport and Melliar-Smith's [4] clock

synchronization algorithm x providing a key system building block. In a

system relying on exact match voting it must also be ensured that each

processor receives the same inputs from the sensors. This is accomplished

by a Byzantine resilient interactive consistency algorithm running on the

distributed system. With these algorithms as a base, the voter ensures that

as long as a majority of the processors are working then the replicated system

produces the same results as an ideal non-faulty processor would.

1Interestingly, they found at least one error in the published proof that had remained
undiscovered through the social review process.
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5 Conclusion

It has been argued that quantification of system reliability irt the ultra-
reliable range depends on the provably correct implementation of fault tol-

erance. Absolute correctness is unattainable. However, formal methods pro-

vide added assurance of correctness by forcing detailed consideration of the

assumptions, the specification, and the implementation in a formal setting.

Hierarchical design proofs provide a formal framework to allow considera-
tion of these details at the appropriate level of abstraction. These methods

are being applied in research efforts underway at NASA LaRC. A NASA

technical report outlining the first phase of design specification and proof of

a fault-tolerant operating system for control applications will be available
in the near future.
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An _ulation/Simulation Environment For

Intelligent Controls

Dr. N. Coleman

U.S. Army Armament Research, Development and Engineering Center

Picatinny Arsenal, NJ 07806-5000

ABSTRACT: This paper describes a rapid prototyping tool for intelligent control

system software development which supports both knowledge based simulation and

real time emulation capability. The tool was developed to _help bridge the gap

between the disciplines of artificial intelligence and control system theory by

providing a system architecture and software development environment _tible

with both low level, high bandwidth control applications and higher level low

band:¢idth cognitive processes involving perceptual reasoning and planning. A

simple example illustrating an application of the tool in support of on-going

weapon platform automation research within the Armament Research and Development

Center is presented.

Introduction: There has been a growing interest within the Army and the DOD

community c_'er the past several years in the areas of artificial intelligence a[id

robotics and the application of these technologies to enhance the performance and

effectiveness of future _t systems while reducing development and

operational cost. One means of achieving this goal is through "intelligent" task

automat/on of on-board crew functions thereby permitting reduction and eventual

elimination of crew r_ts for certain high risk, limited duration missions.

The levels of automation required dictate the need for highly sophisticated on-

board real time expea_ systems which are tightly coupled and fully integrated (in

a closed loop sense) with on-board sensors (i.e., trackers, radar, flit, etc.) and

actuation devices (i.e., weapon/sensor controls, vehicle controls, loading

devices, etc. ). The purpose of this paper is to discuss progress on two aspects

of this "intelligent" autc_ation issue, namely (I) the definition of a platform
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control architecture and 12) software development tools required to support

prototyping experimentation and evaluation of advanced automation software.

Hierarchical Control Architecture: The system architecture selected to providel

the basic fr_k for intelligent control/automation, is based on concepts

originally developed by Albus. The Control structure, as originally described,

consists of a hierarchy of finite-state machir.% modules, each of which implements

a local hybrid-state feedback controller correspond_ to the performance of a

particular subtask. The inputs to each local controller consist of a command

input from the module above and ackncw!edgements from the modules below it in the

hierarchy; the outputs consist Of an ackzK_ledgem_nt/error message to the module

above and commands to the modules below. The lowest level modules are interfaced

to the physical environment through sensors and actuators as shown in Figure 1.

The nominal actions of the controller are to (a) decode the command input, (b)

properly command and synchronize the concurrent actions of _the modules belcyw it,

and (c) generate an acknowledgement when the subtask is completed. II off-nominal

conditions occur, the module must determine whether it can control the resources
!

to take corrective actions; if so, the actions are taken; if not, an error signal

to the next highest module is generated. An analysis of the finite-state case of

this architecture has been given in 2, 6, and 8.

Generalizations of the original modular hierarchical control concept are

necessary in order tc support the requirements dictated by intelligent/autonomous

military systems.

o Ability of the module hierarchy to reconfigure itself

o Incorporation of task planning/repianning and perceptual reasoning in some

(higher level) modules; enhansed error analysis capabilities

o Direct interfaces between some higher level modules and the physical

environment (e.g. intelligent tracker or senasor based robotic loader)

o Provision of knowledge bases
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o Multiple communication channels between modules (e.g., message passing as

well as common memory)

All of these features have been incorporated into the extended architecture

and fully supported by the software devel_t tool described below.

Laying out the control hierarchy for a particular task is to a large extent,

ad hoc due to the lack of a comprehensive theory of intelligent control. Some of

the parameters which must be defined by the designer are:

o Number of levels

o Number of independent concurrent processes at each level

o Connectivity, maximum branching factor

o Information rates between modules (messages/channel/time unit)

o Processing capacity (computation/node/time unit)

o Closed-loop response time (time-scale for each level)

These parameters should be selected so as to balance the response time scales

and computation loads at each level of the hierarchy.

Simulation/Emulation Envjlo_t: The inherent high cost and complexity of

_ded software for future battlefield robotic systems and automated weapon

platforms makes the need for powerfu/ development, evaluation, validation and

rapid prototyping tools absolutely essential. The modular hierarchical control

approach is well suited to rapid software development in a multi-programmer

enviro_t, to interface standardization and to multi processor implementation.

Some of the important features associated with this first generation prototyping

tool for intelligent controls are:

o Task/subtask layout capability
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o Interactive graphics tool for design and implementation of Finite State

Machine Modules (FSM). This tool is hosted on Symbolics 3675 and generates

FSM files which are communicated over ethernet to a VAX 750 which executes

thestateMachineHierarchy

o Assignment of modules to processors or emulated processors. Ability to

examine alternate network configurations

o Emulation of a hierarchical control system

o Simulation of the environment and controlled subsystems (terrain, sensors,

tact/cs,weapon platforms, visibility, etc.)

o Emulation of hierarchical control systems and multiple cooperating systems

o _ledge based simulation of hostile forces

o Graphics display capability (map, system status displays)

o Interface with digital terrain data base

o On-line monitoring and modification of control system status for debugging

purposes

o Off-line performance analysis and evaluation

o Provision for emulation to drive physical subsystems

o Incorporation of prerecorded field test data

z

o Knowledge base interface for control system emulation and simulation (e.g.,

interface with tactical knowledge bases and k/K_ledge based threat scea%a/io

simu/ationr etc. )
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o Incorporation of procedure libraries with different source languages (LISP,

Flavors, C, PASCAL, etc.)

The structure of the emulation is shown in figure 2. Its use involves three

stages: (a) laying out modules and specifying control systems and simulation

logic; (b) r_ the emulation, monitoring control system status and debugging;

(c) port processing for performance analysis and evaluation. The next section

describes a prototype applica_on developed with the emulation tool.

_: Figure 3 illustrates the major elements of a platoc_ level control

emulation consisting of a world model terrain data base, blue tank platoon, red

tank platoon and two expert system ,Ddules for mission planning and

threat/situation assessment° The world model coordinates all elements of the

tactical simulation including tank dynamic models, sensor models, terrain models,

turret stabilization models, knowledge bases and tactic for red platoon, etc.

The blue tank platoon commandp_r module emulates the commar_ and control functions

of the blue tank platoon leader including mission planning, engagement planning,

route planning, command and control functions and threat assessment. This module

interfaces directly with the route/mission planning expert system and the

situation assessment expert system running on a Symbolics 3675 with Ic_ resolution

color display. A simplified state transition diagram for the platoon leader

module is shown in fig 4. Each tank commander module communicates, coordinates

and controls the functions of a guruler, loader and driver module as shown in fig.

5. The driver module controls a simulated tank (speed and direction), the gtu_ner

module controls a simulated tank turret and interfaces also with a laboratory

automatic target recognition (ATR) and tracker subsystem. The loader FSM module

interfaces with and controls a Puma 560 robot which is configured as shown in fig.

6. The Puma 560 recieves a load command from t2_ loader FSM and uses its own

vision sensor to determine locating and orientation of projectiles and breech. It

uses a Lord force/torque sensor for active compliance control during loading and a

polaroid range sensor for obstacle avoidance. The loader hardware configuration

is shown in fig. 7.

Although detailed discussions of the expe_ system modules within the

emulation is beyond the scope of this paper_ a few comments will be made for
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purpose of clarification. The route planning module is somewhat unique in its

hierarchical structure which uses object oriented programming (Flavors) to

generate a family of feasible routes from the current tank location to the

objective location. A rule based expert system is used to reasun about and

evaluate the feasible paths based on tactical c_nsiderations, mission requirememts

and resource constraints. Fig. 8 gives a view of the commanders display sh_ring

the planned route for the commanded blue tank and a projected route for a hostile

red tank based on expert knuwledge Qf terrain and tactics.

Conclusion: Future weapon platforms will be required to uperate in increasingly

hostile environments with fewer crew members and ultimately must be capable of

operation with minimal operator interaction or intervention. Powerful and general

purpose software prototyping and development tools will be required to design such

systems. The Intelligent Hierarchical Control System Emulation described in this

paper is a first generation tool of this type. Hierarchical Intelligent Weapon

Platform Control Concepts have been demonstrated in a prototype system which is

capable of autonomous operation.
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Abstract

The costs associated with software development and maintenance seem to increase
without bound on some programs. This has led to comparing software to entropy, lt
has been proposed that a way to control software costs is to provide an appropriate
Software engineering environment (SEE) and make sure that it is used throughout the
program life cycle. This approach has been successful in some cases and in others
disastrous. Three major issues are 1) ali software development programs do not fit
neatly into a single space, 2) what is worse, we do not seem to have as yet a method-
ology for matching program requirements to software environment attributes, and 3)
programmers like to use what they like to use. We feel that any attempt to develop a
standardized software engineering environment must address ali three of these issues
if it is to be accepted and successful. Based on these issues, the problem can be parti-
tioned into three tasks 1) developing a taxonomy of problem domain characteristics
that can be used to partition the problem space, 2) developing a taxonomy of SEE at-
tributes and appropriate benchmarks and tests that can be used to define an environ-
ment given a particular problem, and 3) defining a generic framework based on ac-
cepted software standards (e.g., X-windows, Ada, Etc.) within which system develop-
ers can, and will, want to work. This position paper will discuss how some of these is-
sues are being addressed for a specific military vehicle domain, the autonomous con-
trol of underwater vehicles.
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Introduction Since the emphasis at this work-
shop is intelligentcontrolsystems for mill-

The main emphasis at this workshop is tary vehicles we have selected a specific
the development of a software engineer- instanceof this general domain -- the au-
ing environment (SEE)for building mill- tonomous control of underwater vehicles.
tary vehicle intelligent control systems. In the next sectionwe will briefly re-
The goal is to improve the productivityof view some of the software life cycle and
control design engineers and lower the general SEE issues. Then we shall dis-
total life cycle costs to DoD. The issues cuss some of the special issues that are
go beyond a suitable set of tools for build- associated with the engineering of intelli-
ing distributed intelligentcontrol systems, gent control systems. This will be fol-
The total software life cycle, appropriate lowed by a discussionof the Schemer ar-
methodologies, standards, and computer- chitecture, a distributed control executive
aided software engineering (CASE) tools for real-time control. We will then discuss
need to be considered, how we are using Schemer to prototype a

Given that an appropriate life cycle control system for an autonomous under-
model and SEE have been defined, what water vehicle and then make some con-
specializations --if any -- are required for cluding remarks.
specific application domains of interest?
In particular, are there characteristics of Software Engineering and Life-
problem domains that can be used to par- Cycle Issues
tition the space of ali problem domains?
We believe the answer is yes. Moreover, The software life cycle can be broken
there will be sets of overlapping charac- down into three phases"definition, devel-
teristics common to sets of domains, as opment, and maintenance. A complete
well as characteristics unique to specific software engineering environment (SEE)
domains. Given such a partitioning, the should support the development cycle
question becomes, can a mapping from through ali three phases. Moreover, there
domain characteristics to SEE attributes are several different procedural ap-
be found? If so, a set of specializationre- preaches that may be taken to software
quirements for a particular SEE can then engineering. The classic life cycle ap-
be defined, preach -- or "waterfall model" --is shown

How can the problem domain parti- in Figure 1. This approach is character-
tioning and the requirements to attributes ized by little or no formal feedback from
mapping be found? An attempt to take a step to step. lt also requires, in its purest
top down approach by defining character- implementations, the freezing of require-
istics of ali problems and breaking that ments and design specifications at an
into subsets, etc., seems to be a very diffi- early stage of the life cycle. This ap-
cult task. We propose therefore, a bet- preach is appropriate when the require-
toms up approach in which a specific ments are completely specified and the
problem is chosen to constrain the solu- problem is well defined° lt has been suc-
tion. Once this domain is thoroughly un- cessfully used for some very complex
derstood and an appropriate SEE and and iii defined system developments; but,
set of tools is defined, that solution could only under carefully managed conditions.
then be generalized. A poorly managed software development

2
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I Conc,,pt'i--n little traffic. In general, this paradigm-
Definltlonl_ works best when heavy human-computer

, (p _r_- _ output is to be produced, or when new or
r_/m 1 interactions are required, when complex

i Detalled_-=l

_' L _,=gn I t untested algorithms are to be supplied, lt
lD. n_,nt'_-'_ is less beneficial for large, batch-oriented_ v._op., ' processing or embedded process control

'1 _'_ _"_ applications. As the case with the classic

"_1 model, this approach provides substantial
I _1_.-. benefit when properly applied and man-
I aged. lt should be viewed as comple-

.... I I I mentary rto the classic life cycle model.

Figure 1. Standard S/W Development Life Cycle Regardless of the life cycle model
used, one should select a software engi-

team can produce disastrous results neering environment (SEE) that supports
using this model, not only the creation and manipulation of

A life cycle paradigm that circum- source code, but methodology as weil.
vents some of the problems of the classic That is the environment should provide
apprcach is the evolutionary or rapid pro-
totyping model. There are several varia- assistance for software requirements
tions of this model one of which is shown analysis, design, and test, as well as aids

' for project planning, tracking, and control.
in Figure 2. The two key aspects are the In addition, a desktop publishing capabili-
tightly coupled iteration between the con- ty should be provided for efficient produc-
cept definition and rapid prototyping
phases; and the multiple feedback paths tion of high quality documentation. Such

' a computer-aided software engineering
that occur in each step of the process. (CASE) system is a software engineer's
The former ensures a "quick" conver- assistant, taking the drudgery out of soft-
gence to a demonstrated agreed upon set ware engineering that leads to low pro-
of requirements that can then be passed ductivity and quality. The selected SEE
on to the_detailed design phase. The latter needs to be built on top of, and be com-

Concept
[_ patible with, existing standards to insureDefinition

• R_p_d, portability, maintainability, and interoper-

, ' ability.
/ ;_' '!{ ues'gn_[-'J--"-_

_"_Oevel°prne_iL. Engineering Intelligent Contro:
- qk_m.t, mm _-

_' ) ! T.=un_ Systems

i - MaintenanceTo summarize, our view of the software
engineering issues entails three principal

Figure 2. Evolutionary Model areas of concern -- (1) defining a compu-
ensures that potential "gotchas"are identi- tational architecture that supports an ep-
fled and fed back into the process at the propriate generic approach to the perfor-
appropriate level as soon as possible, mance and other requirements of the ep-
Ideally, the long feedback paths will have plicationdomain, (2) providinga SEE that

3
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encourages, and even enforces, use of an ing capabilities that must be realized
appropriate engineering methodology under real-time performance constraints.
both in general, and tailored to the special To deliver real-time performance, the con-
needs of the application domain, and (3) trol software must support the vehicle's
supporting general and domain-specific ability to (a) react to critical events by
aspects of life-cycle maintenance, promptly changing the focus problem-
Although limitations of space preclude a solving or other actions to bear upon
detailed discussion, let us briefly review tasks that embody appropriate responses
some of the more salient issues in each of to those critical events, and (b) gracefully
these three areas for the focus of this "trade,off" extent, precision, or quality of
workshop, software for the intelligent con- the vehicle's responses against the
trol of complex, military vehicles, amount of time available to complete

those responses. To provide these abili-
Functional Requirements: ties, the intelligent control system must be

able to guarantee, or at least reliably esti-
We believe that the research and devel- mate, the.time required by candidate re-
opment community can avail itself of a sponses.
reasonably mature view of the functional • Uncertainty management--Military re-
requirements of intelligent vehicular-cen -_ hicles must successfully accomplish mis-
trol systems. These functional require- sions under uncertain conditions: The in-
ments derive from the need of these con- telligent vehicular-control system must be
trol systems to interact effectively and effi- able to reason about how and when to
ciently with conditions in the complex, dy- perform tasks in the face of this uncertain-
namic environments in which the vehicle ty. As Fehling and his colleagues have
must perform. These dynamic conditions pointed out, this requires that the vehicle's
constrain (and sometimes serendipidous- problem solving system and intelligent-
ly enhance) system performance, includ- control methods (a) are robust in the face
ing operations of the control software it- of this uncertainty, (b) can be adapted to
self. In other papers, one of us (Fehling) provide the highest quality response poe-
has examined and analyzed a number of sible in the face of the limitations imposed
important functional requirements that are by the uncertain information on which
imposed on "intelligent control" software they are based, and (c) allow the intelli-
intended to manage complex systems that gent controller to opportunistically man-
are embedded in, and interact with, real- date actions that may reduce the level of
world domains. The following are among uncertainty upon which future actions are
the most important of these requirements: based.

• Autonomy/Flexibifity---Intelligent control
• Real-time performance--Intelligent ve- requires that the vehicle be capable of
hicular-control systems must enable the maintaining its operational integrity in the
vehicle's prompt reaction to, and interac- face of conditions and events in its envi-
tion with, its environment. Fehling and his ronment that have the potential to impair
colleagues (e.g., Fehling et al., 1986; the vehicle and its ability to survive.
Fehling & D'Ambrosio, 1990) have dis- Autonomy requirements must be traded
cussed the demands imposed upon soft- against the criticality of the vehicle's mis-
ware embodying intelligent problem-solv- sion and the extent to which undertaking

4
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actions to achieve the mission might lm- opers' lack of information about the do-
pact the vehicle's eutonomy or survivabili- main includes uncertainty about the prop-
ty. As we are coming to see these issues, er way to model that domain as well as
we believe that an intelligent control sys- uncertainty about the details of events
tem must include a principled basis for (a) (e.g., how and when these events will be
evaluating the relative priorities or "utli- realized) that are expressible within some
ties" of predicted, alternative outcomes of particular model. (Cf., the presence of
its actions under anticipated conditions, "modeling uncertainty" is a situation that is
and (b) managing the vehicle's commit- well known to control theorists.) Due to
ment to a course ofaction so as to maxi- our belief in the importance of dealing
mize the expected utility of its activities (in with such modeling uncertainty, we feel
the full decision-theoretic sense). Thus, that SEEs for intelligent vehicular control
for example, the costs of damage to the must especially support engineering ac-
vehicle must be weighed against the ben- tivities such as the following:
efits of full completion of the vehicle's op-
erational mission. • Performance estimation -- Engineers

The preceding views about these building intelligent control systems re-
categories of functional requirement result quire tools that aid them in estimating the
from our own experience in building intel- performance of various candidate control
ligent control software for applications to methods under a conditions that are most
advanced avionics systems, command- likely to occur in the application domain.
and-control (C2) systems, and industrial in our own work, for example, we have
process control systems, as well as vehic- found it useful to provide engineers with a
ular control Systems. Our efforts in devel- tool that calculates upper bounds on per-
oping and applying intelligent-control ar- formance times that will result from apply-
chitectures such as Schemer (discussed ing a problem-solving method such as a
below) have helped to evolve these rule-set in a rule-based system.
views. • Empirical testing--- Engineers must be

able to construct and carry out experi-
SEE and Engineering Methodology: ments with their partially completed con-

trol systems and sub-systems. To obtain
While we agree that the issues and ap- realistic information, the tools that support
proaches of software engineering for con- empirical testing must allow engineers to
ventional systems can shed valuable light simulate the operation of vehicles and ve-
on intelligent-control engineering, we feel, hicular subsystems being managed as
nevertheless, that the application domain well as simulating the dynamic flow of crit-
of vehicular control imposes important, id- ical events and conditions in the opera-
iosyncratic requirements on software en- tional environment.
gineering. For example, the preceding ° "Impact assessment"-- This is really a
functional requirements discussed im- special case of the two previous require-
pose special software engineering re- ments. In discussing the functional re-
quirements that challenge conventional quirements of intelligent control we noted
software engineering concepts and the the importance of managing tradeoffs
assumptions that underlie conventional among alternative courses of action in
CASE tools. In particular, system (:level- terms of their impact on such things as

5
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successful mission completion and vehic, life-cycle support of these systems.
ular autonomy. Engineers must examine For this reason, we believe that a
these tradeoffs in the most concrete way "bottom-up" approach is called for. In car-
possible when faced with the requirement rying out such an approach we urge the
to design tradeoff policies into an intelU- development of computational architec-
gent controller. Thus, engineers need tures and development-support tools that
support in analyzing the potential impact are especially tailored for use in building
of a control strategy under expected oper- intelligent-control software. Initially, the
ational conditions so that they can evalu- methods and tools should probably be
ate and implement policies with the high- further restricted to apply to specialized
est expected positive impact on system subdomains rather than attempting from
performance, the outset to construct an SEE for the full

range of intelligent control applications.
Life-cycle Maintenance: As SEEs become mature for various do-

mains, their common feature's can be ab-
If we are successful in building and de- stracted and SEEs can be developed that
ploying intelligently controlled vehicles support a broader range of applications.
that survive to carry out their assigned This approach promises quick payoff for
missions, then we will face issues of life- certain domains of intelligent control with-
cycle maintenance similar to those faced out compromising our overall interest in
by developers of conventional systems, producing a general-purpose SEE for the
Unfortunately, the scientific and engineer- full range of intelligent control applica-
ing community has so little experience tions.
with fully deployed intelligent-control sys-
tems, that little can be said at this time. Schemer
However, this is not meant to deempha-
sizethe importance of this topic. Rather, As our previous remarks imply, the ap-
we caution that the engineering communi- preach to a practical software engineering
ty not prematurely apply to intelligent-con- methodology and SEEs for intelligent
trol systems approaches to life-cycle control begin with the definition and lm-
maintenance merely because they ap- plementation of a suitable computational
pear to work well for other types of soft- architecture tailored for such applications.
ware. As earlier preceding remarks indi- Fehling (Fehling et al., 1989) describes
cate, intelligent control entails unique such a computational architecture. This
functional and engineering-methodology architecture, called Schemer, has been
requirements. Thus, the issues of life- developed especially for intelligent con-
cycle support are also likely include some trol applications. Schemer has been suc-
unique approaches, cessfully used to build over two dozen in-

We have a great deal to learn be- telligent-control applications in domains
fore we can confidently determine the re- such as advanced aerospace avionics,
quired features of SEEs and software en- resource-deployment, industrial process
gineering methodology across the full management and process control, and
spectrum of intelligent control applica- autonomous vehicle control. At this time
tions. This is particularly true for the is- at least four Schemer applications have
sues of engineering methodology and been fully deployed and put into regular
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use as part of commercial and fielded mll, part of the implementation of the intelli,
itary systems, gent control system, and (c) performance

Here again space precludes a de- metering packages that can measure
tailed discussion of Schemer. However, (again at the level of Schemer constructs)
we summarize the following properties of the speed and complexity of computation
this architecture: of specified implementation elements.

• Simulation Testbed Support---In recent
• Real-time performance--- At this time we projects using Schemer, we have begun
believe that Schemer is the only problem- to explore tools and techniques that allow
solving architecture that has been de- implementers to rapidly construct simula-
signed and implemented .specifically to tions of the application domain and other
address the issues of distributed, real- aspects of application environment.
time applications. Schemer provides lm- Unlike our work on the basic Schemer ar-
portant basic features to support real-time chitecture and the types of tools just
performance. These include (a) an ap- sketched, our understanding of simulation
proach to problem-solving control that testbed facilities remains far more primi-
supports the simultaneous management tive. We are hopeful, however, that our
of rnu!t!pleproblem-solvingtasks,(b) pre- early successes in developing such
emptive, prioritizing control of these con- testbed capabilities for Schemer applica-
current tasks, (c) full encapsulation facili- tions will soon lead us to a more mature
ties for modularization and "transaction view of these issues.
protection" under preemptive, prioritizing ° Iterative, "Bottom-up" Development---
control, (d) formal models of control and In keeping with our earlier remarks, we
data-flow, (e) a "high-level" language for are evolving our Schemer-based ap-
specifying computational control among proach to an SEE for intelligent control by
combinations of Schemer problem-solv- working in a "bottom-up" manner on cir-
ing elements, and (f) full support for event, cumscribed domains and then integrating
driven and data-driven control to achieve across these domains as commonalities
reactive and interactive styles of computa- and higher-level abstractions reveal
tion. themselves and allow us to generalize
• Development-support Tools _ To sup- Schemer's design and the construction of
port application development, we have the software engineering tools within this
augmented the basic Schemer architec- architecture.
ture with tools and other facilities that sup-
port the builder of distributed, real-time AUV Control System Development
applications. These facilities (a)include
stepping, tracing, checkpointing, and As an example of our bottom-up ap-
checkpoint editing at the level of interac- proach, we are using Schemer to proto-
tion among Schemer constructs as well type an intelligent control system for an
as in the underlying implementation Ian- autonomous underwater vehicle (AUV).
guage (usually LISP), (b) provision of a This AUV controller monitors the condi-
"library" of module templates that provide tions during a mission, including the con-
basic problem-solving sub-systems (e.g., dition of the AUV itself, determines the
a forward- or backward-chaining rule- presence of conditions and events that
based system) that might be included as potentially compromise the mission, and
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specifies actions to cope with such unan- for AUV applications, we are finding that
ticlpated events, Schemer's open architecture ts crucial.

Schemer is being used as the As noted earlier, we have used
basis for an integration framework for Schemer in a similar manner to support
building AUV control applications such as development and deployment of lntelli-
this one. This includes the use of gent control applications for other do-
Schemer as a run-time framework within mains. As our use of this approach ma-
which to manage the activities of the AUV tures we are exploiting opportunities to
and its subsystems: In particular, merge concepts and methods across
Schemer provides the preemptive, priori- these areas. In fact, the generality we
tizing, multi-tasking management of the have already achieved with Schemer is
controller's actions as well as the actions due to this evolutionary, bottom-up ap-
of the other AUV subsystems, proach.

Schemer also provides the archi-
tectural basis and set of tools for this ap- Conclusions
plicatlon. In fact, in developing this AUV
applicationwe are finding it useful to aug- We have outlined some of our concerns
ment the basic tools and templates (as about the tools and methods needed to
noted earlier) with special purpose tools support theengineering of software to in-
and methods that are tailored to, and em- telligently control complex military vehi-
body detailed knowledge of, the applica- cles. We believe that the research and
tion domain, development cornmunity should attend

Finally, we note that we are finding closely to the full range of software engi-
Schemer to be especially useful as an neering issues in developing tools and
open architecture,suitable for encapsulat- approaches for such applications. This
ing and managing the interactions among includes attention to the issues of main-
diverse problem-solving elements. This tainability and life-cycle support.
Schemer capability is an aspect Of SEE However, we also caution that, at this
architectures that we have ignored so far time, the issues of intelligent control are
in this paper.. We are using Schemer to rather poorly understood. For this reason,
encapsulate and manage problem-solv- we urge an evolutionary approach to de-
ing elements that are based on a very di- termine the proper solution to this impor-
verse range of programming and prob- tant problem in software engineering. We
lem-solving approaches. This includes have adopted such an evolutionary ap-
the integration of AI programming moth- proach in our our work. This has helped
ods with conventional mathematical con- us to deploy a number of important intelli-
trol and optimization methods, for exam- gent-control applications and to keep an
pie. In _ditlon, many of these elements evolving focus on crucial research issues
were origincdly developed independently that must be addressed. This evolution-
of Schemer. Schemer strong support for ary strategy is serving us well in making
encapsulation and its data communica- progress toward our eventual goal of pro-
tion constructs are serving well to provide ducing truly general-purpose computa-
an "open architecture" within which to tional architectures and development-
easily integrate diverse styles and ap-support tools for building intelligent con-
proaches to system development. At least trol systems.

8
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ABSTRACT

The CACE-III expert system [1] for designing series lead-lag compensators for single-
input/single-output plants to satisfy three frequency-response specifications has been
implemented using the GoldWorks inference engine and expert-system development tools..The
implementation makes use of the frames and user-interface features of GoldWorks to provide an
environment from which further extensions of the design approach or other design methods can
be created in an orderly fashion. The coni_'ol-analys!s program Matrixx has been used to perform
the required control-system modeling and analysis calculations at "ihe request of the expert
system.

A number of ways in which the present design system can be improved and expanded are
discussed. Among these are a hybrid organization of the rules that combines the known
procedural knowledge of the design process with an ability to constantly look for off-nominal or
unexpected trends in the design process and to react to them. Another way is to make greater use
of object-oriented programming techniques in conjunction with the frames and their slot values.
The tools that have been developed for handling the varied interactions between the expert
system and the numerical applications program are described, with specific attention paid to their
robustness. Details of the work done to date may be found in [2].

I/,TT'RODUCTION

The project described in this paper relates to the development of an expert-system environment
for the computer-aided design of feedback control systems and to the creation of a rule base
specifically tailored to the design of lead-lag compensators for single-input/single-output (SISO)
systems, lt is an extension of earlier work by James, Frederick, and Taylor [1] that had led to a
package called CACE-III. That version ran on a VAX computer and used a proprietary
inference engine called Delphi from General Electric, and the Cambridge Linear Analysis and
Design Program (CLADP) from Cambridge University in England for the control-system model-
building and analysis calculations. The block diagram in Fig. 1 shows the components of the
feedback system under consideration. The plant is linear and time-invariant and the controller is
a ser:es lead-lag compensator, entirely in the forward path.

]
(galn,leads, lags)

Figure I. Feedback systems being considered.
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The objective of the present study has been to build a knowledge-based system for control
design that uses a state-of-the-art inference engine and can be run on an IBM-PC/AT compatible
computer. The current phase of the project has been to establish the initial hardware and
software of the system.

Work has been directed at establishing sufficient expertise with the GoldWorks expert-system
development environment to enable the effective use of its many and varied capabilities, The
knowledge-representation techniques available in the GoldWorks environment have been used to
implement a knowledge-based system for aiding engineers in the design of lead-lag
compensators for SISO systems. The work has been performed on two personal computers that
are operated in parallel. The expert system runs on a Zenith-248 that has an eight-megabyte
memory board in order to accomodate the extensive GoldWorks code. The numerical control-
related calculations arc done on an IBM PC/XT using the commercial package Matdxx_C.

Additional tasks that have been pursued during this phase of the project include:
(1) writing ru;es without embedded Lisp code so as to maintain a clear separation between

the knowledge and the procedural portions of the system,
(2) making use of the frames allowed by the GoldWorks inference engine to organize the

knowledge about the control system design,
(3) several improvements in the design algorithm,

• (4) expansion of the lead-lag design capabilities to handle plants with lightly-damped modes,
(5) enhancing the robustness of the design process so the user can recover from a variety of

problems, should they arise during a run,
(6) improving the user interface so as to provide up-to-date status information and pop-up

forms, data-entry menus, and acknowledgement messages,
(7) providing a mechanism whereby the User can interrupt the run and modify the

specifications or the parameters of the controller, and
(8) allowing the user to continue a completed design with altered specifications.

Figure 2 shows the elements of the expert system and the means by which they interact.

plan_.
model

?lie
i

user engine esults_ Matrlxx(8oldWorks) _

[
RULE5 FACT5

7
assertlons frameslot

values

Figure 2. Principal elements of the design system.
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The knowledge base is made up of the rules and the facts (assertions and slot values). Matrix.. is
used for all of the control-related calculations such as deterrrdning the closed-loop bandw_th
and implementing the models of the plant and the compensator (controller). A set of plant
models has been written in Matrix x and this can easily be augmented by the user to include
additional plants. When a session begins the user selects the plant to be considered and is
prompted to enter the specifications.

The development thus far has not resulted in the exploitation of the object-oriented nature of the
GoldWorks environment to provide better justifications to the user. However, the restructuring
of the lead-lag design heuristic into the frames and rules of GoldWolks has provided the
underlying knowledge representation which can now be used to provide that kind of information.
Perhaps more importantly, that same representation method has resulted in a knowledge base
which is easier for the developer to create and maintain.

FRAME ORGANIZATION

The first major design decision was the definition and organization of the frames so as to
properly fit the tasks to be accomplished, namely the design of control systems. Figure 3 shows
the organization that has been used.

TOP'FRAME is part of GoldWorks and is always the starting point for the user-defined
frames. Below that we show the frames that have been created for the control-design
problem, namely:

DESIGN-FLOW CONTROL contains information relating to the design process itself, rather
than the control system,

PLANT contains information pertaining to the plant or process that is to be controlled,
OL-SYS contains information that relates to the open-loop system comprising the plant and

the controller,
CONTROLLER contains controller information and has child frames for each of the

components (gain, leads, lags, and possibly a notch filter) that make up the controller
(compensator),

CL-SYS stores information relating to the closed-loop behavior of the plant and controller,
INIT stores information relating to the particular design run being made, and
SPECS contains the specifications, their tolerances, and whether or not the specifications are

met by the current controller.

i ,,,

top-rame J

L 1 I
.... Icontrol

Io, o,Ii.. i ,.,,i

Figure 3. The control-system-related frames.
_
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DESIGN ALGORITHM

The design method used for the original version of CACE-III [1] has been retained, with several
modifications. As suggested by Fig. 4, there are three main parts to the algorithm. First, the
initial version of the compensator is created to contain a gain, lead, and lag. Then an iteration is
begun during which the gain and the alpha, i.e., the pole-to-zero ratio, of the lead arc adjusted
until the gain margin and the closed-loop bandwidth specifications are met (hopefully). Then the
lag is given a final adjustment and ali three of the specifications are tested. In the following, we
will discuss the algorithm in more detail and conclude with some suggestions for further
improvements.

Ir_ser't
leac1(s)

Insert. galn
& lag(s)

--I ......I
a_just gain a_Just leaa

(If' necessary) allol_a

N J '

aaJust Jlag(s)

N

Figure 4. Flow chart of the design algorithm

The basic idea for starting the compensator is to insert one or more leads based on the phase
angle of the frequency response of the plant alone, measured at the specified closed-loop
bandwidth frequency. The center frequncy of the the lead is set equal to the closed-loop
bandwidth specification and the value of alpha is determined so as to make the phase angle at
that frequency of the combined plant and lead to be -175 degrees if the plant is type 0 and -140

- 4
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degrees if the plant is type 1. The objective of this heuristic is to start the design process from a
point that is in the "ballpark" as far as being able to attain the desire closed-loop bandwidth.

Once the initial lead(s) have been set, a calculation is done in Matrixx to determine the gain
margin and the frequency at which the gain margin is calculated. Theft" the gain is adjusted to
meet the gaAn-margin specification and one or more lags arc inserted to meet the specified low-
frequency gait_J(type-0 plant) or velocity constant (type-1 plant). At this point we know that two
of the three specifications have been met, so we next have Matrix x evaluate the closed-loop
bandwidth. In the unlikely event that the value falls within the tolerance of the specification, the
design has been completed because a controller has been found that satisfies ali three of the
specifications, within the tolerances.

The more likely situation is that we have not satisfied the closed-loop bandwidth specification.
In this event, an adjustment will be made in the alpha parameter of the lead(s)so as to increase
the amount of phase lead if the actual closed-loop bandwidth is low and to decrease the phase
lead if the closed-loop bandwidth is above the specified value. A relatively simple heuristic rule
is used to select the change in the value of alpha (the pole-zero ratio) of the lead(s) and _no

change is made in the center frequency at present.

Assuming that the adjustments of the lead and the gain finally result in the closed-loop
bandwidth specification having been met, there is a final adjustment made to the lags to ensur_
that the low-frequency-gain or velocity constant specification has been met. Then the other two
specifications are retested, because we must expect to retest the specifications after any change
has been made to the compensator.

Another sigmficant change from the original version of CACE-III is the step taken to recognize
and compensate for lightly-damped modes of the plant. It has been known that the presence of
such modes (say complex poles with a damping ratio less than 0.2) will cause the original
CACE-III algerithm to yield unsatisfactory results. If such a mode is discovered during the
diagnosis phase the expert system inserts a notch filter in series with the plant.

INTERFACE CODE AND FILES

Because of the necessity of developing and modifying the mathematical model of the control
system and of carrying out a multitude of control-related calculations, it is not practical to
implement the enti.re expert system for the design of lead-lag controllers in GoldWorks. Because
Matrix,, has been used for the control calculations, it has been necessary to develop a mechanism
for having GoldWorks write the necessary Matrix x commands and to interpret the results.

For example, when the compensator must be modified, the alpha of the leads must be increased.
The rule that decides this task must be performed will call a specialized Lisp procedure. This
procedure will extract any required numerical values, such as the new values of the compensator
parameters (gain, lead center frequency and alpha, and lag center frequency and alpha) from the
slots of the appropriate frames. Then it will use them to write the required commands to a file
that is read by Matrix x. After any required modification of the compensator and calculations are
completed, Matrix., Will write the results and an error code to a file GoldWorks will read theA "

file, test the error code, and digest the results. In Fig. 5, we show the result of a design where the
final compensator is composed of a gain, two leads, and two lags.
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gain lag I ' lag 2 leatf I lea_ 2 Dlant
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Figure5. Blockdiagramofthe finalfeedbacksystem.

RESULTS

During the course of this project a number of significant changes have been made that have
resulted in a vastly-improved implementation of the Original design methodology and made
modest improvements in the design algorithm. With these changes, the opportunity now exists
for further growth. In the remainder of this section we will list and give brief descriptions of
these changes.

A. Changes from the original CACE-[[[

Expert-system shell: The current work has been done with the original version of GoldWorks
that was produced by Gold Hiil Computers, Inc. of Cambridge, MA in 1987.

Rules: The rule base has been greatly simplified from that of the original version. Part of this
reduction came from a decision not to implement the model-development feature of the original
version, but for the most part it came from having had the benefit of the earlier work and being
able to use a second-generation expert-system shell.

GoldWorks.Matrix x interface code: A considerable amount of effort went into the
development of the c0de for the interface between GoldWorks and Matrix x. Because Matrix..
handles its models in a very different fashion from CLADP (its counterpart in the origina_
version of CACE-III), it was necessary to completely redefine the manner in which the expert
system and the application program keep track of and modify the compensator and open- and
closed-loop models. For example, GoldWorks thinks of the compensator in terms of poles,
zeros, and center frequencies, whereas Matrix x thinks of it as a packed matrix consisting of the
A, B, C, and D matrices of the state-space representation. When a pole or zero is modified, the
corresponding slot value is changed in GoldWorks, but in Matrix x the entire compensator is
discarded and a new one is built. Also, error flags, that had not been used in the original
implementation, were introduced in the Matrix., code. The net result is that the present system is
far more robust and extendable than lt_ predecessor. For the most part, the Matrix x side of the
interface does the state-space model manipulations caused by the adjustments in the compensator
and the control calculations required for the design algorithm and the evaluation of the
specifications. The GoldWorks side of the interface, written in Lisp, does the compensator
manipulations in terms of the alphas and the center frequencies, the writing of the Matrix x
command files, and the interpretation of the results received from Matrix x.

User interface with GoidWorks: The user-interface development tools of GoldWorks have
made it possible for the user to enter information such as the plant name and the specifications
with a minimum of typing and with reduced chance for error. The specifications are entered by
editing the default values that appear on a form, with their tolerances, and the names of any
predefined plant models can be entered by clicking on a menu. Additional displays have been

6
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created to keep the user informed as to the status of the design process, in terms of the open- and
closed-loop system characteristics and the controller parameters.

Post-run review and restart: Ali of the files of Matrix x commands and results that are passed
back to GoldWorks during a run are saved. Also the f'tring of everY rule is recorded in a
GoldWorks log file running on the Zenith, and a Matrix x diary file records ali of the information
that is displayed on the screen of the XI'. In addition, tile values of ali of the Matrix., variables
are saved at each step of the design in binary fries that can be loaded into the Marx.. work
space. With this information, it is possible to follow and reconstruct the details of the'design
process after the run has been completed.

Lightly.damped plant modes: The rule base has been expanded to be able to handle plants with
lightly-damped modes which the original version of CACE-III was unable to do. This is
accomplished by inserting a notch filter in series with the plant and then proceeding with the
design algorithm.

B. Possible extensions

Although numerous improvements have been made so far over the original implementation of
CACE-III, there are still a number of features that can be added by taking advantage of the
GoldWorks environment, and there are further enhancements to the existing implementation that
can be incorporated.

Rule-base consolidation and greater use of object-oriented programming: The rules have
developed to a point where they are no longer as clean and orderly as we would like, and the
division of tasks within the Lisp code is not as clear as it could be. Also, we have not taken full
advantage of the object-oriented-programming techniques that GoldWorks has put at our
disposal. For example, handlers can be created to send messages to the frames (objects) and a
slot value in that frame might be the name of the procedure for calculating the closed-loop
bandwidth, lt is anticipated that simplifications can be made and GoldWorks programming
techniques incorporated that will prove beneficial when adding some of the new features that
follow.

Faster algorithm convergence: lt is believed that the convergence of the current design
algorithm can be speeded up by using a more sophisticated rule for selecting the amount of phase
lead change based on the error in the closed-loop bandwidth specification. Such a rule would
use the mathematical model of the plant, which is available to the expert system, to analytically
predict the expected changes in the closed-loop bandwidth and adjust the lead alpha accordingly.
One could also incorporate a learning mechanism, perhaps tied to the plant model.

Vary compensator center frequencies: It might be possible to get some benefit when more
than one lead is involved by allowing the center frequencies of the leads to differ from the
desired closed-loop bandwidth frequency or by letting them differ from one another. Similar
changes could be made in the center frequencies of the lag(s), based on recognizing distinctive
geometric cho cteristics of the Nichols plot.

Reduce overshoot at plant input: Once the basic algoritm has met the specifications, the expert
system can alleviate the high overshoot that will occur at the input to the plant following a step
change in the reference input. This can be done by moving the lead part of the compensator
from the forward path to the feedback path. However, this will affect the zeros of the closed-
loop transfer function and the step response, so the specifications will probably no longer be met.
lt will be necessary to have some additional rules for adjusting the compensator.
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Sampled-data designs: It should also be possible to do sampled-data designs by using the
bilinear transformation of the discrete-time model to a pseudo continuous-time model, carry out
the design with the present rules, and transform the controller back to the discrete-time domain.

Allow additional specifications: lt would be desirable to be able to accomodate a wider range
of specifications, such as percent overshoot, settling time, rise time, and steady-state error to a
disturbance input. At present, the diagnosis of the Plant detects the presence of a lightly-damped
mode and the expert system will insert a notch filter to compensate for it. lt should be possible
to have other characteristics of the plant detected and used to determine it the user's
specifications arc reasonabl_ and, if not, how they might be modified.

Multiple gain=margin values: When Matrix x detects multiple values for the gain margin, i.e.i
multiple crossings of the -180 degree phase lii_e, it reports these to GoldWorks but at the present
time the rules required to use this information intelligently are not available.

Explanations: The expert system could be strengthened by making better use of the capabilities
of GoldWorks to provide explanations of the design process to the user.

Design tradeoffs: Another area for possible improvement is to provide the user with assistance
in making design tradeoffs, once the specifications have been met or it has been determined that
they can not be met.

Constraints: Along with this, it would be useful to incorporate some constraints on the design
that the user could adjust, if desired. Examples of these would be maximum number of leads
and lags, maximum value of the parameter alpha for the leads and lags.

Phase margin: At present, the phase margin and the phase-margin frequency are not used in the
design procedure, lt is weU known that one can have a satisfactory gainmargin but still have a
very oscillatory response if the phase margin is too low. Also, there arc plants for which the
phase margin is defined but the gain margin is noto The original version of CACE-III could deal
with such plants, but this feature has not been carried along.

Hybrid rule base: lt might make sense to have two classes of rules. One class would implement
the design algorithm, say as it is presented in Fig. 4, and the other class of rules would respond to
problems or exceptions that might arise. Examples would include multiple gain-margin values,
unusual bandwidth values, lack of convergence, failure of compensator changes to yield
expected results, etc. One approach would be to create subframes of the OL-SYS and CL-SYS
frames that would be used to store the patterns recognized as being anomalous. When detected,
a pattern could be used to fire the rules for a variation in the design algorithm. In such a case,
the expert system would be using the heirarchical inheritance mechanism of the frames to define
the problem and the situation-action mechanism of the rules to perform the design.

Application to real-time control: The question of using an expert system as part of a real-time
control system has not been specifically addressed. However, we believe that much of what we
have accomplished so far is applicable to that goal provided that the design is done in a
supervisory role by using the rules to adapt to parameter variations and uncertainty.

CONCLUSION

lt has been demonstrated that the combination of GoldWorks and Matrix x provides an effective
environment for carrying out the dcsign of SISO control systems. In _oing so, much of the
infrastructure that is necessary for doing this type of work has been put into place in a way that it
is adaptable to a variety of other applications.
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ABSTRACT
f

Over the past decade, the practice of eontr,A systems engineering has been pro-

roundly affected by the explosion in computer hardware and software technology. This

paper describes the emerging concepts of open-architeetured object--oriented software

design which allow for both compatibility and expandability of computer based engi-

neering tools in the face of ever expanding user needs.

1. Introduction

Fueled by the explosion in computer workstation and networking technology, there has been a rapid

increase in both the availability and capability of the software tools most useful to control systems engineers.

Today, software technology has advanced to a point where significant standardization issues have been worked

out and very low cost or even free software is available for many of the important computational tasks

performed by the control systems engineer, such as symbolic equation manipulation, numerical calculations,

graphical display, and documentation.

While incorporating ali of the control system design tools into a single "package" seemed the obvious

answe r years ago, by far the most pGpular solution now is the "open environment" approach, that is, using

a good general purpose operating system, such as Unix, and a small set of well documented data formats,

e.g. IEEE floating point standard, TIFF graphics format, etc., which are now widely accept across multiple

engineering disciplines. The principal advantage of the open environment is that tools are allowed maximum

flexJblity for future growth and enhancement.

In order to encourage wide dissemination of software across computer hardware architectures and oper-

_O: ating systems, much of today's software is made available in an pen-archttectured" format. The open-

architectured software package includes all of the source files and all of the script files necessary to regenerate

the working program. This approach allows users to tailor programs to their own needs by editing the source

or input files. Unfortunately, however, software is often written so obscurely that its operation is hard to

determine from source listings, and users are tempted to start over from scratch, resulting in a wastefld

duplication of effort.

The object-oriented approach, which has developed over the past several years, has helped to aleviate

1
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this problem by making source files more manageable and easier to debug a. The technique and has been

widely adopted by modern software designers. The Ada and C++ are programming languages are clear

indications of the tendency in this direction.

This paper will focus on a new open-architectured, _object--oriented engineering design tool called MatC,

which can do most of the matrix-based numerical calculations for control systems design, as well as for.a

number of other disciplines. MatC integrates well with other tools, both open- and closed-architectured, that

are useful to engineers, for example: Ma*,hematica (symbolic manipulator), VIEW (image processing/data

display), Erases (editor/window system), and TEX(document typesetter). As shown in figure 1, an engineer

can go from conceptual design to parametric design to final report, ali electronically, which lends itself well

to traceability and repeatability of the design process.

equationsof
Euler/Lagrange motion DlotteO
formulas

RobotArm results,
oDJect numerical

clara, etc.

prWstcal

parameters CAD
arawIng

Final
Report

Fig. 1. The Flow of Engineering Data During Control System Design

In section 2 we describe the operation of MatC in a window based environment. Section 3 describes the

software objects from which MatC is constructed, and explains how they can be reused in other programs.

In section 4, we discuss the other important pieces of software that form an integrated engineering software

environment. Finally, in section 5 we will use the design of a robot control system as an example of modern

computer-based engineering development.

2.The Marc Program

MatC is ba_icaliy an interactive calculator. The user types commands and the computer responds with

the calculated answer. The simplest "commands" are arithmetic calculations, for example

<> 8*3

AI_S=

24

The program has calculated the product 8 x 3 = 24 and stored the answer in the variable A/IS, which

always contains the result of the most recent calculation. MatC allows you to specify and do calculations on

matrices:

<>a= [ 1 2

2
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34];

<>b=[l

2];

<> a*b

ANS =

8

11

(1 2) (1) then multiplied them'We have set the variable a equal to the matrix 3 4 and set b equal to 2

according to the rules of matrix multiplication to get the result ( 151),
MatC has a large number of built-in matrix functions that can be called interactively. For example, since

a is a square matrix, we can compute its eigenvalues

<> eig(a)

ANS =

-0.3723

5. 3723

<>

or, we can generate a complex number

<> i = sqrC(-i)

i =

0.0000 + 1.0000 i

MatC calculations work on both real and complex numbers. The MatC functions ali allow complex argu-

ments, and may produce complex results. Figure 2 shows alist of MatC functions generated by the "WHAT

FUN" command.

........ Bulltln Functions (* • not Impllmented Yet) -- 77 Items .......
AB5 ASTIG Al'AN BA5F CHOL CLiP
COND CON4 CONV C05 CURV DET
DIAG DIARY* DI5P* EDIT EIG £RF
ERFC EXEC EXP EYE FFT FFT2D
FLOP GAU55 GRID HESS HILB HIST
IMAG INV ISTHERE KRON LABEL LEV
LOAD LOG LU LYAP MAGI MINM
NORM 0N£5 ORTH P30 PCOLOR PINV
PLOT POLY PRINT* PROD OR RAND
RANK RAT RCON REAL RICC ROOT
ROUN ,RREF 5AVE 5CHU 51N 51ZE
50RT 5QRT 5UM 5VD TRACE TRIL
TRIU -JiPS _I _INF. _Pl

.........................................................................

Fig. 2. A Lzst of MarC Functions

The features of MatC are'

® At the most basic level, the program acts as an interactive calculator for matrices. Users familiar with

3



CONF-9007134
Page 76

BASIC, FORTRAN, or even a hand calculator find MatC easy to learn and use.

• The MatC language is a complete interactive programming environment, with structured programnling

constructs (FOR, WHILE, IF), function calls, database manipulation, etc.

• MatC has an extensive built-in function library. Matrix calculations are based on the proven LINPACK

and EISPACK software packages.

• There is a variety of ways to enter data into MarC: it can be entered from the terminal, read from script

files, read from MarC formated data flies, or read from ascii data flies written by other programs.

• There is a similar variety of ways to save data on disk files. Ali or part of the MatC database can be

saved for later use, either in future MatC interactive sessions, or for transfer to other programs.

• MatC has extensive interactive plotting capabilities. Both 2-D and 3-D plots can be generated. The

resulting graphical display can be sent to a printer or transfered as picture data to other programs such

as word processers, viewgraph makers, etc.

• MatC has a standard interface to "external" software. Users can easily add their own subroutines or

entire libraries of functions into the MarC environment, thus specializing the program to the a particular

application's needs.

• Thz C language sources are available to users. MarC was designed and programmed using an object

oriented approach. Each object is a data structure and the set of operations relevant to that data structure.

For example, the MarC objects are familiar items such as Matrix, Plot, TextFile, etc. Typical operations

are Print, Copy, Dispose, etc. MatC's objects can be easily modified at the C source level to suit a

user's specialized needs. The objects can also be incorporated into other programs.

The interactive environment is both intelligent and user friendly. Windows are used to display one or more

interactive MatC sessions (each with its own database). Script files can be edited in seperate windows, then

"sent" to the MatC processor in one keystroke. Each plot has its own window and a set of smart operations

that go with it. "Help" files are on-line and can be viewed while running MatC in a separate smart window

with a topical search facility. All of the documentation is available on-line in TEXtiles.

The MatC software package can be distributed completely electronically, on tape or disk, or over a network,

which makes it easy to access ali of the information in one place when it is needed, cuts down on paperwork,

and gives users easy access to the most up-to-date version. The open-archtecture allows for customization

to a particular application. An example of a customized robot control design application is given later in

this report.

4
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2. Objects

The development of MarC was made easier through the use of objects, An object is a data structure

combined with ali of the operations (methods) that are valid on that data structure. Ideally, objects are

conceptually easy to grasp entities, such as a Matrix or a Graph, for which high level operations, such as

Plot or Save, convey immeadiate meaning. The actual implimentation of an object's methods, as well as

the structure of the object itself, can be hidden from ali the other routines that use the object.

The data hiding feature, called encapsulation, turns out to be an extremely valuable technique for reusabil-

ity of code, ease of enhancement, and isolation of bugs. For example, in the process of developing an en-

hanced version of the code, an object's capabilities can be expanded or modified, even its data structure

can be changed, without requiring any changes in the existing software that uses the object. The upgraded

object is always user-compatible with old version. In fact, the tendency in object-oriented design is to never

throw away old code (since it is reusable) but only to add o_l completely new capabilities.

Most objects understand a generic set of methods. Object.New and Object.Dispose create and dispose

instances of objects. Object_Print displays object data at the terminal. Object.Copy, Objeci.l'tename,

Object._ize, etc. also do obvious operations. Particular objects may actually impliment these methods

differently, depending on what is appropriate. Particular objects also have their own unique methods,

expanding upon the basic set.

Some of the objects used in Marc are explained below.

• Matrix -- contains the size, data, and name of a matrix. Methods are Matrix..Multiply, Ma-

trix..Divide, Matrix_Eigenvalues, etc.

• SymbolTable -- maintains the MatC database. Typical methods are SymbolTable..Add, Symbol-

Table_Remove, SymbolTable..Lookup, SymbolTable_Sort, etc.

• Symbol -- is the entity stored in a SymbolTable. It contains the Matrix or Function, creation time,

"i and protection bits.

: • Lexer -- is ttle MatC command interpreter. The method Lexer_PazseAndExecute absorbs the user's

command string and sends it on to the parser. Since MarC understands infix mathematical syntax and

uses a specialized syntax for matrices, a rather complex parser is used. The parser was constructed from a

syntax description file using the Yacc parser generator program. A subordinate Machine object executes

the parsed code. Lexer also handles commands read from text files using the Lexer_ExecFile method.

• Graphic -- contains the graphical information about a plot or other drawing.

• Window, TE (TextEdit extension), MenuBar, and EventHandler --are specific to the IVlacintosh

environment and maintain the user interface. On Unix, these operations are taken care of' in a Vterm,

Xterm, or EMACS window.

The reusablity and encapsulation properties of MatC objects make them ideal as seperate entities that

can be incorporated in other programs: For example, if one wants to read the data stored in a MatC

5



CONF.9007134

Page 78

"save" formated file into another program, t,hat program can be modified to use the Matrix object. The

Matrix_Load method will read t_hedata from disk, and other Matrix methods are available to extract the

important information contained in the matrix.

Alternatively, the Matrix object can be modified so that it can read and write data stored in ihe other

program's format. As MatC develops, we will see an increasing tendency toward compatibility with other

programs and data formats. This, make sense in light of MatC's open-architectured philoeophy and the fact

, °14that MarC has such an extensive interactive data manipulation and display capabl lty. It is the logical choice

as a data "switching station."

4. Integrated Engineering Software Environment

In order to assure a systematic and repeatible design process, engineers demand a sophisticated operating

system as well as a significant amount of support software. In the ideal open environment, there is always

be allowance for modification, ewhancement, partial execution , and general twiddling by the design engineer.

The objective is to make the tedious parts of the engineering job easy to accomplish in a systematic manner

and not to favor any particular engineering design approach.

• A comfoltable operating system and terminal screen environment is flexible enough to allow the simulta-

neous display of large amounts of information. For example, in Figure 3 the on-line help, a script file editor,

directory listings, and the progri_an doing calculations are ali simultaneously visible.

Several tools make it possible i,oday to have this arrangement using almoet ali open-archit_ctured software.

To mention a few: the MIT X-Windows system provides an excellent, window system for graphics worksta-

tions, and is available free of charge; GNU EMACS is an excellent multi-port environment that will work on

non graphics terminals (GNU offeres a variety of open-architectured Unix utilties, including a C compiler,

debugger, make facility, etc.); Mat/C has the basic tools for control systems design, general calculation, data

analysis, simulation, and plotting; TEXis a document typesetting program that can be tailored to allow text

and graphics pasting.

5. Robot Control System Design Example

As an example problem we consider the design of a robot motion controller. The dynamics of a robot

__ system are highly nonlinear, uncertain, and depend on the load, operating speed, and position of the arm.

Our design process will roughly follow the path outlined in Figure 1. We start from a basic mechanical

description of the system (say, a parameterized CAD drawing), the basic inertial parameters (mass, CG,

moments of inertial of _eachpart), and the geometry of the arm (the Denavit-Hartenberg parameters), and

proceed to develop a controller and anaylze the behavior.

The Lagrangian for the system is
=

1

L =T- V = _61Tj(q)TMJ(q)fl--g(q) (1)
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<24> X

X -

0.0960 0.0960 0.0716
-0,1783 -0,1783 -0,1992 ,
1.oooo i.oooo 1.oooo Fl

<25>
i-------.MatCDatabase (modifie_ -- 14 items- .....

R RNS B C D E

i J L M R S T
i X Y
Frotalof 1408 bytes

<26>

! ....u :--=--= . ___w.iill;_Ir,.....r_1.,,......[I....................!_-................................ii
i//wavelets.exec orthoyor,al multiresolutiondecomposition $ 16584 Ma_ 17 16:24 pt.sdt
!// $ 45 Ma9 17 16"24 pt.spr
i// ref: [1] S.G.Mallat,"A Theor_ for MultiresolutionSiynal $ 4194304 Jun 7 17:22 pyramid.sdt
i// I)_;ol_F_:)sJtion:The Wavelet Representation," $ 49 J_, 7 17:21 pyramid.spr
i.'/ IEEE Trans. Pat. Anal. & Mach. Intell., V.I1 $ 0 Ma_ 17 _,G:57p_='ami_louds.sav

i// No,7,Juiy,i989,pp.G74-G93 (CLOUDS) $ 65536 May 17 17:25 pyramidClouds.sdt
:// $ 47 M_ 17 17:25 p_ramidClouds.spr

r
i// defin_'c_._s:,,.H-- I-D quadraturemirror filter palr $ 16384 May 1.716:05 p_jramidTest.sdt
i// ajplusl -- htyh resolution image $ 45 Ma9 17 16:05 pyramidTest.spr
i// aj -- half resolution approximation $ 18726 Ma9 17 16:00 quadMirror.sav
i// djl,dj2,dj3-- half resolution detailc $ 0 Nov 20 1989 seq_db.db
i// $ 15,984Jul II _2:25 siynal_db.db
i// sa_le pattern: box $ 512 Rpr 16 11:00 stuff
i//ajplusl= O*ones(64,64)" $ 0 SeR 21 1989 s_non_s
!//ajplus1(17:64-16,17:64-16)= ones(32,32); $ 223 Ma_j17 16:33 te_p.exec
i// $ 106 Nov 9 1989 testr

, !A= fft(ajplusl)" // first the rows... $ 181 Jul 13 09:29 texput.lo9
i[n,m] = size(A); $ 304 l:lpr"27 16:59 tmp
ifiln= size(H)*[l'O]; $ 17 Rpr 27 15:58 tmp~

!// loof_ $ 25 Jul !1 12:25 viewloq.cmd: I _ l

o/. °*° -- Infix Kronecker operators are not yet
supported° KRONworks however°

iHELP HELf" 91yes assistance°
HELP HELPobviously prints this message°
To see all the help messages, look at the File "MatE_Help'

< < > Brackets ¢_reused in formin9vectors aralmatrices.
<6.9 9.64 SORT(-1)). is a vector with three elements

separated b9 blanks. <G.9, 9.64, SQRT( 1)> _s the seine
thin9. But <l+I 2-I 3> and <I +I 2 -I 3> are not the same.
The first has three elements, the second has five.

<11 _2 13; 21 22 23> is a 2 b9 3 _,atrix. The semicolon
ends the first row.

Vectorsand matrices can be used inside< > brackets.
<A B" C> _s al lo_._d if the r_mber of rous of A equals
the number of rows of B and the number of columns of A

Fig. 3 Running MatC ,_,:;der EMACS
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where T is the kinetic energy, V is the potential energy, q represents the vector of robot joint displacements

or rotation angles along then degrees of freedom of the robot. M is an 2n x 2n diagonal matrix containing

the link masses and moments of inertia of each moving link. The Jacobian, J (jT, 7' T= J_ ) is defined by

Jr(q) = Ov/OCl; Jw(q) = Ow/O(t. (2)

From the Lagrangian, the Euler-Lagrange equations of motion can be derived

O'L aL
re.,ern_d= (_"_) - _qq = H(q)ti + G'(q, 4) + a(q) (3)

The functions H(.), C(., .), and G(.) are very complicated expressions in terms of the original robot inertial

parameters and robot geometry _. These expressions are best derived using a symbolic math manipulation

program such as Mathematica. The problem of performing tedious but straightforward symbolic calculations

arises in many control and state estimation tasks, particularly those involving non-linear systems. It is

important to have computer assistance in performing these calculations so that they can be done without

error.

Given the equations of motion, we can use MatC to perform analysis and design. For example, say we wish

to compare a decentalized design (that is, independent parallel controllers for each joint) to the computed

torque approach, which requires a centralized control computer. Computed torque is given by

raopli_ = H(q)[-kae - kpe + C(q, el) + a(q)] (4)

where e = q- qd is the difference between desired and actual joint position, and kp and ka are proportional

and derivative gains, respectively. The closed loop system has predictable 2n-order linear behavior, but note

that the method relies on calculating H(), C(., .), and G(.) in real time with a centralized control computer.

A decentralized control law, which could be implimented using commercially available PID controller chips

at each joint, will be of the form

r_pli_ = pD(-ka_- kpe). (5)

In this control law, D can be consid¢ :d a diagonal approximation to the inertia matrix H(.). The parameter

p is to be adjusted in the design process. The performance of the independent joint controller will not in

general be as good as perfect computed torque control. Our aim is to select control parameters, ka, lep, D,

and p that optimize system performance given the contrant of a decentralized law.

The degree of stability for the decentralized controller is given by

# = Amin[I-p-tKTW(q)TH(q)W(q)K]aO (6)

where a0 is the magnitude of the real part of the computed torque closed-loop eigenvalue closest to the jwl

axis, K = (kp, ka)T, and
_

- W(q) = H(q)-lD- I (7)

8
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which is a measure of how closely D approximates H(.). Note that the best possible performance is W = 0
!

giving/J = 1. The closed loop settling time is

T.~31, (8)

and the closed loop tracking error is given by

I/2

(9)UeU
Pp

where _ is a function of the desired trajectory accelerations and the magnitude of Coriolis and gravity forces.

The designer must iterate on choices of K, D, and p in order to maximize _, and minimize 7", and Ilell.
A portion of the MatC script file that does this is shown in Figure 4 which also shows the robot arm in

simulated configurations and plots of simulation results.
r

The drawing of the robot arm is an example of how MatC can be customized for particular applications. A

new object Robot was coded and attached to MatC through the standard function interface module (called

User_'_unctions). This new object constructs a 3-D polygonal representation of the arm given some defining

geometrical d imensi:_oasand the Denavit-tIartenberg parameters (which include q, the arm's configuration).

The object, has methods that create projections onto a 2-D graphic port, as shown, or writes the polygons

to a file for input to a program that produces a shaded color rendition. Using a MatC script file, pictures

can be redrawn at different configurations to make a movie, if desired.

6.Conclusion

As control systems engineers are relying more and more on powerful personal computer workstations to aid

in their design work, opcn-architectured software is beginning to play a key role in the engineering software

environment, lqatC is an example of this kind of easily customizable software that can perform general

sources, makes MatC adaptable to expanding needs.

9
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i i i1 i ii iii ii IIIII IIIIII

II example I
Ke - [-24 - I01;
A- [0 l;Ke];

B-[O 11'; I_0 - eye(2);
P - Lyap(A,Q); "
Kebar - -B'"P;
rho - I e3;

lamQ - elg(Q-(l/rho)MKe'_(,I)_Ke);
lamP - elg(P);
mu • (mlnm(lamQ)*[I;O])/,,

(minm(larnP)_[O; i }); _ :::=
tau-2/mu; "'"' _ "" "'" ' _
maxerr - sqrt(xi/,, Tracking Error vs Time

(rho_mu_(minm(lamP)_[I;O]))); _• •.._tw'i'i"n___..+n ll___= n i_ iI._ n

+.,°,.,.,..,.O!l, V V +(D(I,I)_Ke • rho_Kebar) -15 ,

(D(2,2)"Ke + rho*Kebar) -30 I I _ -
(D(3,3)+*Ke + rho_*Kebar) ];

lamA - elg(A); -45 "
lamAcl - elg(A.B*rho"Kebar); -60
imgr- [-I I -! 1];
view - [_pi/4 -_pr/4 0 0 0]'; -75 I

_ roDot(dim,dhp,n,lmg,r.,,vlew),;,_ ........0 50 lO0,,, ,, 150,, 200

Fig. 4. MatC Script File for Robot Controller Design and Graphic Output
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are to be expected in the creation and deployment of
Abstract complex systems. Also, operational robustness is generally

enhanced by the ability to operate and to reach at least
A multilayered approach to the symbolic control of partial conclusions with incomplete data2. '

complex electromechanical assemblies is discussed. An
example of this approach is given in some recent tests of A prototype thermal control system, or external
the Thermal Expert System (TEXSYS) in control of the thermal bus, for the Space Station Freedom was initially
Boeing Aerospace Thermal Bus System (BATBS), a selected as a representative space system for a symbolic
prototype two-phase Space Station Freedom thermal bus. control application. The thermal bus used for TEXSYS
The BATBS hardware requires read-update-act cycles of tests was the Boeing Aerospace Thermal Bus System
under a minute, and it is subject to dynamic reconfiguration (BATBS) resident at the NASA Johnson Space Center. lt is
while operating. These performance requirements are a complex, self-balancing system with many independent
addressed by hierarchical layering of model-based expert parameters, which has thus far made conventional dynamic
system software on a conventional numerical data numerical simulation infeasible 3.
acquisition and control system. Temporal and structural
reasoning capabilities are found to be needed to identify ali To automate some of the operational functionality of a
component faults. TEXSYS test results demonstrate both thermal test engineer, existing artificial intelligence
nominal control and fault recovery actions with the techniques such as frame systems 4, data-driven
BATBS. Dynamic modification of the symbolic model used programming and model-based reasoning 5 were employed
in this approach is compared to that of a classical numerical to create a symbolic thermal bus model. Together with
adaptive controller, rules for conflict interpretation and tasks for representing

procedural knowledge, this knowledge base comprised the
Introduction core Thermal Expert System (TEXSYS). The core

TEXSYS was layered on conventional software for data

Some complex space-based systems require constant acquisition and control, creating a hierarchical "expert" (as
monitoring and control -- parameters, configuration, and defined by Astrrm and others) ° or "symbolic" controller. 7
component health change with time. Current operational In a series of tests, this approach was demonstrated to be
practice generally requires human operators to scan capable of real-time monitoring and control of the BATBS
telemetry, watching for deviations from expected during both nominal operations and induced faults8.
performance. In real-time, large-scale applications, such as
Space Station Freedom (SSF) subsystems, this will prove The first section of this paper discusses the control
expensive -- since many operators are required given the requirements for the BATBS. An overview of the layered
data processing limitations of humans. Transmission and symbolic controller approach used in TEXSYS is given in
processing delays, coupled with human inattentiveness, the second section, followed by an example and
also tends to reduce safety and stability margins. By conclusions.
automating some or most of the monitoring,
troubleshooting, and control of these dynamic space Problem Setting

' systems, the need for direct human involvement is reduced SSF External Thermal Bus -- a nonlinear,
and robustness is improved. This paper discusses the

dynamic electromechanical plant
approach used to implement "expert" control on a
representative SSF prototype subsystem.

i Ground test prototypes of several two-phase thermal
bus designs for space station use have been consu'ucted for

A symbolic model-based reasoning approach to
evaluation. Initial TEXSYS development assumed a seriesidentification and control, such as is taken here, is desirable
of different thermal bus designs, but was shifted to the

because of its ability to follow changes in parameters, BATBS prototype when the original target testbed delivery
varying hardware configuration, and sensor failures; and,
I-........ ,, :,..,.:,: ................. ,:,_.:..... .4_, was delayed. A descendant of the BATBS architecture is

in the absence of a detailed numerical model 1. Frequent now the baseline design for the SSF external thermal bus.
design changes, damage, and highly nonlinear components
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Thephysical design of this thermal architecture is discussed reason for this problem is clear when one considers the
in more detail elsewhere, 3 combinations of sensors that would be have to be referenced

in separate rules for each fault or required control action.

Given several highly nonlinear components, no Otherwise, sensor failures could render a simple rule-based
accurate dynamic numerical simulation of this architecture controller useless, unable to rely on backup sensors. Also,
has yet been developed, making the design of conventional _ simple rule-based expert controllers generally have no
numerical control laws difficult. Empirical performance mechanism for identifying unanticipated conditions --
descriptions of these black-box component._ has thus far thereby limiting their stability.
been substituted for accurate mathem,,_,icalfi_odels. Given

these poorly-known componems, ,,fie i'.¢_68eii_;not easily SPECIFICFUNCTIONALITYDEMONSTRATED
used as a state estimator, i i/

, ,, '_,,, , i',, ,. NOMINALOPER4TIONS
Thermal Bus identification and control _n.m._M "_

requirements • sa'rpol_ cmu_u Is..m-,.m s...-_-,_

The conventional data acquisition and control system FAOLTDETECTION,ISOLATION,At_tJRECOVERY
.. (DACS) software preceded the symbolic software at the

BATBS site and was separately verified and validated. •7_LeVet.I,Aut'rs • 10coupoNem'Uana.r,,_ut.'m
DACS sampled ali sensors once every five seconds. To _.,t_mm,_,.,.,,_.,_ _..ut_t nino _,m_nm_w our_ Tm.muCZ ii W,Uemma _MJn

avoid consideration by the expert system of steady or ,.,,,,u,,t,m,:**t_ ,,.,_,_,,.,m..m_e,,,,_,tL _ k4TITMmltmAClmm IL I_W PMLUm
li. _ _ Hol_X)mmmmU_411_

slowly-changing data, data were filtered for significant L.v_,_TO_,_,_._U ,-_,,,,,¢,_,_,,,0_I_ _ tllj_ o_ ilmOt_IrC,tPOIttTOn

changes. This filtering, as well as integration of the expert ,.,_N.m,_m,,,m,. ,,.,_,_t,,_,**-,_.,m**,,,u_p_l_ltml Immoll I'ALWII

system with the DACS, was done by the TEXSYS Data
Acquisition System (TDAS). Filter deadbands and alarm
limits were defined for sensor values, trends (five-point fit: Fig. 1. Required BATBS induced faults included
25 sec. trend) and long-term trends (sixty-point fit: 5 rain. in 1989 te_ts.
trend), and were refined by trial-and-error during expert
system validation testing. This testing procedure and the Approach

filtering services provided by the TDAS software are Hierarchical, heterogeneous levels of control
described in another paper. 9

Broadly speaking, this approach implements control at
When hardware taults occur, the BATBS may reach off- four hierarchical layers. As shown in the example in Figure

nominal operating states_ These states have been 2, the plant with its actuators and sensors is at the bottom.
characterized in terms, of broad, systemic faults caused by A conventional control layer provides millisecond-level
specific componea_t faults, l0 TEXSYS was required to responses, with hard-wired limit-checking of critical
identify and react to ali of the seven known system-level parameters. These controllers will shut down the plant if an
faults and to ten (of 34) component-level faults chosen by unsafe state is approached, and cannot be altered by higher
thermal engineers as most interesting or representative, levels--providing a fail-safe for higher levels of control. A
Figure 1 shows a chart listing these faults. The trending procedural level of control implements checklists for
capability provided by TDAS, together with discrete event activities such as setpoint changes, lt also encompasses
histories, provided a temporal reasoning capability that was data filtering and general limit checks (corresponding to the
necessary in order to unambiguously identify these faults. DACS and TDAS software, as well as TEXSYS task

operators described below). The core expert system is on
. Most of the other 25 component faults were in fact top of the procedural layer, with current technology

tested with TEXSYS -- for instance, pressure sensor failure providing response time,_typic_._Jlymeasured in seconds. On
was the only formally required sensor fault, but the same top is the human operator, responding to changing plant
capability could be (and was) also used to detect states in seconds to minutes, depending on attentiveness,
temperature, flow, delta-pressure, and position sensor data presentation, distractions, etc. The procedural and
failures. Certain destructive faults (e.g., explosive pipe expert layers then supplant a bank of operators in reporting
rupture) were not tested because of safety, cost and plant state to a g_ven chief engineer or system manager.
downtime constraints. Other layered architectures have been proposed for real-time

Problems with using siraple rule.based symbolic controllers, e.g. ARTIFACT 11. Rather than a
approaches hierarchy of functionally-similar controllers assembled at

many layers of abstraction, the architecture shown in

Given scores to thousands of sensors, and given that Figure 2 has only a few layers of functionally-different
,..... ,......... ,..... .,.,.,,4................ ,,, ,,,,;,,, t',-,,.,.,.;,;,._,_ controls. This relatively fiat, heterogeneous hierarchy was

: parameters, simple rule-based approaches become increasing found to speed real-time performance, perhaps at ',he
- infeasible in proportion to the number of sensors. The expense of elegance.

2
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topology at their analogous locations and propagated along
L_,orJoi _ connections to ¢reale a functional simulation of the planL

r_mm Mmmm,
ttmm mm

Model Conflicts and Collisions Trigger
30mZ_

High,Level Responses,,,,,

_ emm,.,,m _ s._,-- In its most general definition, model-rinsedreasoning is
e,,.,,.. ,,,_ diagnosisbasedonthe comvaisonof a device'smeasured

"' 1._

rtxs,sr,, _ '_.m_**m, I- ,_s_ behavior with the expectedbehavior from the model. In

.,,r,_ _ TEX,SYS, this comparison is handled in two ways:
structuraldataconflicts in the model, or damcollisions,are

_s "---I ...._ _ .. "" treatedasabnormalities.Likewise, parameterconflictswith
themodel'sexpectedvaluesaresignifiedby translationofa

[ : parameter value into a status which is not "nominal" (or,, Plant

not "steady," typically, for trends).
Nim _ NIs

In the case of data collisions, ali components touched
by propagation of the conflicting values are marked as

Fig. 2. A layered symbolic control architecture, possible failure candidates. Candidate sets of component
failures which would explain the collision are generated

Useful AI Techniques with a GDE-Iike approach 15, with joint probabilities
calculatedfrom theapr/or/expected failureprobabilitiesof

MechanismmodellinginTEXSYS wasaddressedwith theaffectedcomponents.
theModel Toolkit(MTK) 12,whichuseda hierarchyof

frames to represent the natural taxonomy of subsystems, This architecture can then be imagined as having two
assemblies, branches, and components. Slots in these fault identification processes working in parallel,
frames may refer to declarative knowledge (i.e., physical responding to conflicts and collision in the mode,l. The
parameters), other frames (e.g., connections between former uses rules to match off-nominal parameter states
component frames) or attached procedures. The Model with known fault,modes, while structural reasoning is very
Toolkit was built on the KEE13 object-oriented useful for detecting sensor failures and unforeseen faults. In
programming environment. More detail on the AI either ease, assertion that a given fault exists triggers an
techniques used by TEXSYS may be found in a separate active value, which initiates a corresponding prestored fault
Paper14. recovery procedure and/or notifies the human operator.

Model-Based Monitoring and Control Design Tasks: Procedural Control Layer

Schematic.like Symbolic Model for Executive Toolkit: Framework for
Functional Simulation Procedural Knowledge

In order to shift between hardware designs and respond All expert system-layer executive behavior, both for
quickly to field modifications of hardware, itwas desired to the TEXSYS system read-update-act cycle and for fault
decouple generic component behavior (how a valve diagnosis and recovery, is implemented via
behaves, how pipes or pumps function, etc.) from the intercommunicating goal-driven subprocesses, or tasks,
behavior of a given thermal bus design. The approach taken cTeated with the Executive Toolkit (XTK) 16. XTK provides
in TEXSYS was to create a library of plant components, a high-level structured language for writing procedural task
with default behaviors associated with them. The domain specifications. Tasks are invoked by creating a goal to be
knowledge captured in this library was then preserved accomplished -- if multiple tasks exist which match the
during changes from one target plant to another. This desired goal, processing takes the form of backward-
modular, component-oriented modelling approach also made chaining. Tasks can specify subgoals, which may trigger
ongoing plant design changes comparatively easier to other tasks in mm. Tasks may access parameter values and
follow, compared with procedural or simple rule.based status in the model, and may contain structured
approaches, programming constructs (loops, recursion, conditionals).

Given a library of relatively generic components, a The fault processing active value sets a goal of
specific plant design can be modelled by creating instances recovery from the given fault; any def'med tasks which
of components corresponding to the hardware, then creating satisfy that goal are then initiated as independent processes,
connectionsbetweencomponents tocreatea schematic-likedistinctfromthe TEXSYS executivetasks.
_pology.Sensormeasurementscanthenbe placedinthis
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Page 86 reasoning was still found to be useful for detecting sensor
Tasks Responding to Model Changes: failures andunforeseen faults,
Spawning Independent Adaptive Agents

TEXSYS Results

Some fault diagnosis and recovery tasks include TEXSYS Met Project Requirements
branching and looping constructs, provided by XTK, which
allow these tasks to control the BATBS'dependent on the In tests run with the BATBS at the NASA Johnson

state of the model and its parameters. For example, the Space Center in August, 1989, TEXSYS successfully
recovery task from one fault, that of excessive non- controlled the BATBS during ali real-time nominal
condensible gas (NCG), checks the end-to-end delta pressure operations such as startup, shutdown and setpoint changes.
(a measure of pump performance in the BATBS) TEXSYS successfully identifiedandactedonall 17required
periodically in a loop internal to the task. If the parameter induced system and component-level faults shown in Figure
status is "very low" at a given update, the task sets a
subgoal of opening and closing a valve which vents vapor 1, as well as identifying some unplanned faults,
from the RFMD, which is then done by a command sent to Multi-level Control Example
the DACS layer; if the status is marginal or "low," the task
does nothing for that cycle; if the status is nominal or As examples, Figure 3 shows the diagnosis and
better, the task marks the goal of recovery as satisfied and recovery by TEXSYS of excessive non-condensible gases
terminates. Given that a task may perform different control (NCGs), which causes a loss of pitot pump efficiency --
actions depending on the model's identified parameter end-to-end delta pressure (BDP703)--somewhat analogous
values and statuses, TEXSYS implements a form of to cavitation in an ordinary vane pump. This fault is often
adaptive control somewhat analogous to a qualitative self- seen after setpoint temperature is ' lowered, causing the
tuning regulator. Fault recovery and nominal control tasks NCGs to come out of solution in the anhydrous ammonia
are spawned and run as independent processes, separate from working fluid. Since this was a steady-state mode of
the main expert system loop. operation with respect to setpoint and heat loads, and the

Run.time Compromises Required for Real-Time pump speed remained constant within nominal bounds
Performance in TEXSYS (approx. 2920 rpm), and the net subcooling (another

measure of BATBS performance) was nominal, then

TEXSYS used a truth maintenance system (TMS) to TEXSYS interpreted the drop in BDP703 beginning at
index and follow which facts were true or untrue at a given 20:15 as due to excessive NCGs. It responded by notifying

the human operator of the problem and requestingtime, Small floating point variations would in practice
cause new strings of facts to be created along data permission to purge the NCGs.
propagation paths: the TMS would simply mark the ,r,O,,,V, _.,J4.) _._' ' _,_b'.rb-t,,bt,ELva,, _.7 ,_DIUICOOLING: 111,3 Dol. lP I),FMD VOLTAGE: 115 Vell_

previous facts as untrue, rather than purging them. This led ,EAVt.O_s., _w ,ceu, ,oamo,, ,
to a slow accumulation of old beliefs in memory, resulting o . , a
in slow performance degradation, lt proved to be necessary t,-| ..... __

to take TEXSYS offline every 4-5 hours for about twenty I' ..... .........

minutes to clear the TMS. i[ _ ,,1
7

_'_OAn initial performance problem was due to the j

in the model, as well as for device behavior description and i,'- : ! :
fault recognition. Initial TEXSYS cycle times with "1 _ ' : i_,|_[_| II | I/l_-_ "I 3. =- ..' II] Bl$11$11ll_llilI 11 I III _ I
interpreted rules were over three hours. A rule compiler was \. . litHIIIIiIIHI_IIII1 • 11I 1_ k

2 _ " - I ." jt,,r_ ,,._ . -
developed which converted rules into compiled Lisp "1 .... _ l [ _ _ _ _]1 ,,. ,.. , t , ;;Lr '" ...."
functions. These run-time rules ran roughly 3000 times ".i.l jt,ua_ut,__" ... . _ii
faster than interpreted rules, allowing TEXSYS cycles to be _1 _ in°'_r'_] ') [" . , ,

lO' I_ lO l0 20145 ll:_O 21
measured in terms of seconds, owr(ust/.)

Fig.3° Excessive NCGs controlled by TEXSYS.
An inefficient indexing scheme for candidate fault sets

caused expert system response times to rise linearly with After operator approval was granted around 20:35,
the number of hypothetical worlds extant. This performance TEXSYS summoned a NCG recovery controller into
problem, plus the existence of unmodellable black-box existence. This independent process toggled the NCG purge
components in file BATBS, caused more fault detection and v',dve, BSV705, as shown by the series of pulses in Figure
control knowledge to be explicitly encoded in rules rather 3. It did so by sending valve-open and valve-closed
than left for the GDE mechanism to discover. Hypothetical commands to the underlying DACS layer, which in turn

varied voltage levels to trigger BSV705 (a solenoid valve).
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BDP703, as shown by comparing the pulses and their
spacing to the BDPT03 curve. Once BDP703 was stabilized Systems Control," Proc. of the 27th IEEE Conference on
within nominal bounds, the NCG recovery controller* Decision and Control, Austin, TX, December, 1988, pp,
terminated itself. 881-886.

3 Bland, T.J,, Downing, R.S,, and Rogers, D.P., " A
Conclusions Two-Phase Thermal Management System for Large

Spacecraft," 15th lntersociety Conference on Environmental
Systems, SAE Paper 851351, San Francisco, CA, July

The success Of the hierarchical symbolic model-based 1985.

control approach taken in TEXSYS demonstrates that a 4 Minsky, M.,"A framework for representing
layered symbolic controller can be used to successfully knowledge," in P.Winston (edl), The Psychology of
control complex hardware in real time. The use of Computer Vision, McGraw-Hill, New York, 1975, pp.211-
qualitative model-based and temporal reasoning in TEXSYS 277.

is one of the first applications of tb"se techniques to 5 Bobrow, D.G., cd., Qualitative Reasoning about
online, real.time process control. Furt::_er research will Physical Systems, MIT Press, Cambridge, MA, 1985.
focus on improving the real.dme performance of these 6 /_,str_m, K.J., Anton, J.J., and and z_trzdn, K.E.,
knowledge-based methods, including the processing of "Expert control," Automatica, Vol. 22, 1986, pp. 277-
multiple simultaneous faults in real time. 286.

7 James, J.R., and Suski, G.J., "A Survey of Some
A generic, component-oriented modelling approach is Implementations of Knowledge-Based Systems for Real-

recommended in order to follow dynamic hardware Time Control,"Proc. of the 27th IEEE Conference on
Decision and Control, AustJ.n, "IX, December, 1988, pp.configurations. A component-oriented rather than a system-

oriented approach can avoid much rewriting of rules when 580-585.
8 Glass, B.J., "A Model-Based Approach to the

components are rearranged in a device, as often happens Symbolic Control of Space Subsystems," 1990 AIAA
during repairs, upgrades, and design changes of complex Guidance, Navigation, and Control Conference, AIAA
mechanisms. The operational success of TEXSYS Paper 90-3430, Portland, OR, August 1990.
demonstrates that the integration of a range of techniques 9 Hack, E.H,, and DeFilippo, D. "Demonstrating
(model-based and qualitative reasoning, classification Artificial Intelligence for Space Systems: Integration and
systems, frame-based representations, temporal reasoning, Project Management Issues," Sixth IEEE Conference on
and procedural reasoning) can be used to control and Artificial Intelligence Applications (CAIA-90), Santa
diagnose faults in certain relevant electromechanical Barbara, CA, March, 1990.
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Layersof Control connecdons to create a functional simulation of the plant,
Con_l_DmJlng , T_r_ ne_ponu

Mo_uJe Times

r....., - , ,_ . Model Conflicts and Collisions Trigger
_.,.,.., - [ _.o,.,..o, [- _o....2m,. High-Level Responses

_svs _ _=._._ I"_------ s._... In its most general definition, model-based reasoning is
_'_"'_ _ diagnosis based on the comparison of a device's measured

behavior with the expected behavior from the model. InTEXSYSTM_ _ ProceOur_c_ro_, j 0,5.5 t_

,_roAs _ TEXSYS, this comparison is handled in two ways:structural data conflicts in the model, or data collisions, are
D^cs _ c=._o_._,. _ _J'_' treated as abnormalities. Likewise, parameter conflicts with

the model's expected values are signiqed by translation of a
_I Plant parameter value into a status which is not "nominal" (or

-I _ not "steady," typically, for trends).Nem I_

In the case, of data collisions, ali components touched
by propagation of the conflicting values are marked as

Fig. 2. A layered symbolic control architecture, possible failure candidates. Candidate sets of component
failures which would explain the collision are generated

Useful AI Techniques with a GDE-like approach 15 with joint probabilities
calculatedfrom the a priori expected failure probabilitiesof

Mechanism modelling in TEXSYS was addressed with the affected components.
the Model Toolkit (MTK) 12, which used a hierarchy of

frames to represent the natural taxonomy of subsystems, This architecture can then be imagined as having two
assemblies, branches, and components. Slots in these fault identification processes working in parallel,
frames may refer to declarative knowledge (i.e., physical responding to conflicts and collision in the model. The
parameters), other frames (e.g., connections between former uses rules to match off.nominal parameter states
component frames) or attached procedures. The Model with known fault modes, while structuralreasoning is very
Toolkit was built on the KEE 13 object-oriented useful for detecting sensor failures and unforeseen faults. In
programming environment. More detail on the AI either case, assertion that a given fault exists triggers an
techniques used by TEXSYS may be found in a separate active value, which initiates a corresponding prestored fault
paperl4 • recovery procedure and/or notifies the human operator,

Model-Based Monitoring and Control Design Tasks: Procedural Control Layer

Schematic-like Symbolic Model for Executive Toolkit: Framework for

Functional Simulation Procedural Knowledge

In order to shift between hardware designs and respond Ali expert system-layer executive behavior, both for
quickly to field modifications of hal _ware, it was desired to the TEXSYS system read-update-act cycle and for fault
decouple generic component b avior (how a valve diagnosis and recovery, is implemented via
behaves, how pipes or pumps tunction, etc.) from the intercommunicating goal-driven subprocesses, or tasks,
behavior of a given thermal bus design. The approach taken created with the Executive Toolkit (XTK) 16. XTK provides
in TEXSYS was to create a library of plant components, a high-level structured language for writing procedural task
with default behaviors associated with them. The domain specifications. Tasks are invoked by creating a goal to be
knowledge captured in this library was then preserved accomplished -- if multiple tasks exist which match the
during changes from one target plant to another. This desired goal, processing takes the form of backward-
modular, component-oriented modelling approach also made chaining. Tasks can specify subgoals, which may trigger
ongoing plant design changes comparatively easier to other tasks in turn. Tasks may access parameter values and
follow, compared with procedural or simple rule-based status in the model, and may contain structured

-- approaches, programming constructs (loops, recursion, conditionals).

Given a library of relatively generic components, a The fault processing active value sets a goal of
specific plant design can be modelled by creating instances recovery from the given fault; any defined tasks which
of components corresponding to the hardware, then creating satisfy that goal are then initiated as independent processes,
connections between components to create a schematic-like distinct from the TEXSYS executive tasks.
topology. Sensor measurements can then be placed in this
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Abstract

During the past decade significant progress has been made in demonstrating the utility of
Knowledge Based System (i.e., Artificial Intelligence) technologies in diagnostics,
situation assessment, and planning applications. These technologies have enabled more
complex problems to be addressed than could otherwise be handled with classical
algorithmic software approaches. Some of the underlying knowledge based technologies
have matured and have been incorporated in "AI tools or shells" available on the market
today. While these tools allow the application of these advanced technologies by 'experts",
*,heyhave not bougi_ _:nowledgebased system development into the general software
engineering community.

During the past several years, we have been developing engineering oriented products that
allow generation of knowledge based applications on embedded systems written in Ada.
These products combine pictorial CASE front-ends for design and specification,
sophisticated auto-generation (i.e., compilation) systems that convert the specification of
knowledge based systems directly to Ada code, and real-time run-time environments for
execution of knowledge based applications within the multi-tasking Ada environment.

The fin'stof these CASE products is an Ada Object Base 1(AOB) that provides general
purpose object-oriented facilities (i.e., classes/objects/methods), knowledge-base
capabilities for incremental retraction of object changes, hypothesis management, and
persistence (i.e., save/restore) delivered in the Ada run-time environment. The second
CASE product is the Procedural Reasoning System2,3 (PRS-Ada) that provides goal-
directed and data-directed inferencing typically employed in advanced planning and
resource allocation applications.

I Work supported under DARPA/MICOM initiative in Real-Time Mission Planning
Contract DAAHOI-90-C-0164

2 Work partially supported under DARPA/BRL Airland Battle Management (ALBM) sy_em
Contract 7840B0820M

3 Work partially supported under RADC/DARPA Survivable Adaptive Planning Experiment (SAPE)
, Contract 89925041
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These first products incorporate advances in pictorial CASE, advanced development
environments, compilation of knowledge base constructs into Ada, and inference control
directed towards engineering embedded systems in Ada. This paper provides an overview
of these products, as well as, a model for software engineering products that augment the
development and delivery of knowledge based systems in Ada.

1.0 Introduction

During the last ten years significant advances have been made in demonstrating the utility of
advanced technologies to automate problems that heretofore could not be automated via
traditional approaches. Knowledge Based systems and/or expert systems (i.e., Artificial
Intelligence) is one such technology that has been demonstrated on numerous projects and
applications in both the Government and Commercial arena. However, with the maturing
and wider acceptance of these technologies, the tools for developing knowledge based
applications have fallen behind the needs of the market. That is, applications nowrequire
robustly engineered solutions delivered on standard hardware platforms in standard
programming languages. In addition, there is wide need for software engineers to develop
knowledge base applications, as opposed to a need for specialized knowledge base system
developers. Thus, a need for products that can allow a typical software engineer to utilize
knowledge based system technology exists.

In addition to knowledge based systems, significant advances have been made in two other
areas: compilers and Computer Aided Software Engineering (CASE). Compiler
technology has matured tremendously in the last decade in the ability to compile (i.e.,
generate/convert) advanced constructs into executable code. The advanced compilation
techniques designed to compile Ada, such as genetics, tasking, strong type checking, and
separate compilation, are now well understood. Also, generating highly optimized code for
a wide range of machine architectures is now possible.

CASE has emerged over the past five years as a set of tools and technology for defining
and augmenting the software engineerizig process. Typically what is referred to as CASE
is various forms of diagramming of the requirements, design, and specification of
software. Several products allow simulation of the specification and designs to ensure
correctness and completeness. Several products allow generation of code or code templates
from the diagrams or specifications. CASE has been traditionally focussed on MIS or real-
time front-end applications; not on knowledge based systems,

These three technologies for knowledge based systems, CASE, and compilation as
combined into a single product could provide tools for software engineers tailored to
knowledge based systems development.

During the last three years, Advanced Decision Systems has developed a set of software
engineering tools that combine CASE and compilation technology in development and run-
time environments that facilitate the engineering of knowledge based systems in Ada.
These tools are part of a family of products called Cobra. The first product being the Ada
Object Base and the second being PRS-Ada.

2.0 Common Architecture

The Cobra family of products is is based on the approach of combining advanced
development environments, CASE design tools, advanced compiler technology, and
separate real.time run-time environments. The product s are designed to deliver fully

-2-
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engineered applications for real-time embedded system applications. The products have a
common set of components:

Development Environment:
CASE Fron!-end - a pictorial CASE development environment for

designing and specifying thesoftware or system.
Auto.Generator - a compiler or translator that converts the design and

specification to executable code.
Run-Time Environment - the run-time support for the executable code that

allows testing and debugging interactively tied back to the CASE front-end.

This common architecture for each Cobra product is shown bathe figure below:

GemerloCobra Gem_l©Cobra
DevelopmentEnvironment Run-TimeEnvironment

_,:,:,:,:,: , ,:,,,:,,,:,_r_.:........ ,v.,:,:....... :.......... ;...;,..:.:,,¢_:.:,._:,:,,,:,:+,,,,:_,, _:. ._ . _. :_ ..... : _ ... :.7 . . . :

_..q_-"_ll-II_!iil Front.End I_li! _illi_J ........................_

_ui II "_.._iI __::_i _.,,:,!il OPERATOR

i_, ' iiii!_il ,__ _iii_l _,_,_, ,iii_iii_iII -!1 .
l!iil. l_!il" "_ t,_,_,-u_,_---ilill
[_`_``:_i_i_!ii_!_`!!_i_!!i:_::_!!_._;_i_!_?:?:_i!_:`..::.!__i_`...;;`i_:.:..:i:_.:`_::``._:_.::_``:::_.._:::`_ii!_

::i::_:::_:::::_..:_._::::::_:::i:._:_::::.i::::::::::::;:::;:ii::::_:::;::::::.::::)iii:_:..::._:_i;:::::;:i_:::::::::::::::::::::::::::::::::::::::::.

li'ili
:',:::'.:: LIBRARY

TArgetProgrammlngLanguageCompiler

These three elements underlay the initial Cobra products PRS-Ada and Ada Object Base
that are described more fully later in this paper.

2.1 Pictorial CASE

Each product contains an integrated CASE environment referred to as a Pictorial
Programming System that allows the construction and generation of software. Pictorial
Programming is constructing and testing software through a series of pictures called
Pictograms. All aspects of the software design, development, and testing process are
performed interactively through multiple pictograms on workstation graphic displays.

The software development process proceeds through a set of pictograms specific to the
problem solving approach being employed in the software application. Pictograms for data
and relationships are available, as well as, pictograms for code d¢:velopment. Pictograms
are syntactic and semantic pictures specific for each type or operation.

Multiple developers construct the software concurrently through pictograms on their
individual workstations.
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Each developer has multiple views (i.e., pictograms) into the software that is being
constructed. The Software Semantic Structure is a complete representation of the concept,
specification, design, code, and configuration of the software.

2.1.1 The Pictorial Language

Each Cobra product's language has been developed originally as a non-lexical pictorial
language specific to the product domain (e.g., data and objects for the Ada Object Base).
Typically, CASE products are merely diagramming tools that have limited underlying
semantics with no compilation ability, severely limiting their usefulness. The Cobra
product line supplies pictorial programming for each domain.

Each pictogram embodies specific syntax and semantics, allowable iconic representationS,
and rules on how the pictogram can be manipulated. These pictogr.ams replace both design
diagrams from traditional CASE v:ools,as well as lexical programming languages. For
instance, the figure below shows a typical pictogram that embodies a complete set of

' programming functions in a pictorial language.

_' Path2Searchand 13'ataFlow ' '
-, , t.,,.,_ .. ........

l'

ParameterPassing_ , " .. ": ,, :_+ '

DataFlow "-"'__ 1
ControlFlow _-

Action _ __" _ _ I

Data Structure

SearchControl "'-

PatternMatching ---"

: ProcedureI-xit --...

This pictogram can be convertex[ by the Auto-generator into directly executable code,
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2.1.2 Pictograms

Pictograms are the fundamental representation of design, implementation and execution of
programs in the Cobra system. These pictograms are grouped into several categories:
Concept formation, execution paradigm, group, relation, physical, and interface categories.
Examples of the execution paradigm pictograms are described below.

Execution Paradigm - These pictograms are the programming (or coding) level of the
development system such as PRS-Ada. Execution pictograms compile directly into
executable code and replace the traditional lexical programming language of the system.

i i I i i II

Data Flow Path Search rst

2.1.3 Pictogram Connections

Even though the picto_ams can be viewed as top-down design, development need not
proceed in that manner. A developer will typically move "up and down" through sets of
pictograms, modifying the design so that coding is easier, changing data structures to
reflect prototype results, and making other such changes. This feature is supported by the
Software Semantic Structure within the pictorial programming environment.

Pictograms are interconnected through the Software Semantic Structure that contains the
representation of the software being developed. This complex structure provides multiple
levels of abstraction to represent the design and description of the software. This Structure
keeps these views consistent and semantically correct. Changes in one pictogram are
reflected directly as changes in related pictograms, provided the change is semantically
correct between the pictograms. This extensive "checking" substantially reduces the
chance for error and speeds the development process. Incomplete or inconsistent
modifications of the design or code for the system are nearly impossible to make. Thus,
higher quality software can be developed and maintained with less people in less time.

This Cobra architecture provides high development performance and compatibility with
evolving CASE standards. Development performance is gained by having the Software

-5-
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Semantic Structure in a distributed shared memory between the workstations, not on a disk
or in a data base.

Archival to disk of the software design and development information is only done when
necessary to preserve information between development sessions. This allows a factor of
10 to 100 improvement in the interactive development and checking aspects of the system
over comparable repository-based CASE products. Cobra is specifically designed to
satisfy the professional developer who is sensitive to this development performance.

2.2 Pictogram Compilation

A unique aspect of the Pictorial Programming System is that these pictograms compile
directly into executable code that can be directly debugged at the pictorial (i.e., graphical)
level. The Cobra products incorporate a unique compilation process that compiles the
pictograms into executable code as depicted in the figure below.



Advanced Decision Systems , CONF-9007134.
Page 95

Development Environment software Developer

iii:!i _

:!:i:i
_:_:i: ,x,:,,,,_ Debugging
i!!ili

ii '
;!iii: Software Semantic
!i!i_i I
i_::_ Structure

:i!i!

_ Semantic_i!ii

Compilation

.:::_i iiii!i:.i::i::;::i::ili::!::i::ii!i;i;iiii!::_..D...ebugg!.n.g.:ii;_i_:ii!Debugging __,,-_..... _...... _.....

| 1 ,_ _" Compilation""
.._ ?,._:_" .,_"

ii :Program: "" " _:..i

r×ecutable Program in
,, R_n-tim?Environment

The development environment compiles, links, and loads the software into a separate run-
time environment on a target processor. The executable program is linked back to the
pictograms in the development environment for full interactive debugging of the software
through the pictogram representations. This approach allows detailed debugging and test
of real-time software through the high-level pictogram representations. When debugging
and tes; is complete, the connection between the development and run-time environment
can be removed to allow the resulting software to run independently, pezhaps on an
embedded real-time processor.

3.0 The Ada Object Base

The Ada Object Base (AOB) product is the first Cobra product. It provides a CASE tool to
build Ada object bases for applications, and the run-time support in Ada to test, debug, and
deliver the applications. AOB is one of the few tools that really allows transition
demonstration of Artificial Intelligence knowledge bases into operational systems written
in Ada.

The AOB is an object oriented knowledge base for the Ada domain, and a development
environment for specifying, creating, and browsing the objects/knowledge. The Ada
Object base provides ali the facilities typically associated with an object oriented language
(e.g., C++) and a knowledge base development system, but delivered in the Ada
environment.

-7-



CONF-9007134 i -Advanced Decision Systems
Page96

The AOB supports for an Ada framework the following features:

Object Oriented Language Features:
- Class Def'mitions

.... Dynatnic Object Creation (Instances)
- Inheritance
- Methods on objects and classes in Ada or in PRS-Ada
- Specialization of Methods
- Class Variables
- Object initialization

Knowledge Base Features:
- Persistence at Class, Instance (i.e., object), or module (i.e., package) level
- Transaction History supporting checkpointing and incremental retraction.

" - Multiple Hypotheses Support (i.e., worlds)

CASE Development Features:
- Pictorial Entity-Relationship Specification system
- Pictorial Browser/Editor/Debugger for Class, Objects, and Methods

The Ada Object Base is patterned after the object-oriented systems developed in CLOS,
SmallTalk, C++, and Objective-C. The AOB execution structures, and object
representations mimic implementation details of Objective-C, but mapped to the Ada
record, pointer, and packaging constraints.

The AOB knowledge base features allow RAM-resident knowledge bases that support data
dependent backtracking, multiple hypotheses support, and methods to save and restore the
data. The complex internal mechanisms and bookkeeping for these capabilities are handled
by the AOB, freeing the application programmers to concentrate on reasoning strategies.
The initial features are useful in planning, resource allocation, scheduling, and data fusion
applications.

The development environment for the AOB is a mini-CASE environment that allows
pictorial definition of the classes and objects via extended entity-relationship diagrams that
are auto-generated (i.e., compiled) into the Ada data declarations and execution structures.
The development environment also provides pictorial editing and browsing of the classes,
objects, and methods.

The AOB mimics product features from Objectworks, from the KEE frame system, and
from data base CASE tools (e.g., Oracle CASE tool) in a single tool for developing
knowledge bases targeted to applications written in Ada. The AOB is either a stmd-alone

: product or can be utilized as an integral part of PRS-Ada product (See next section).

3.1 Architecture

J The figure below the shows the architecture of the AOB development and delivery
_ environments.
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As with all thetools in the Cobra product family, the AOB toot hasa pictorial CASE front
end, an auto-generatefeature for producing code, an applicationtun-dme, and an
interactive debugging environment coupled back to the pictorial CASE tool.

3.1 E&R and Class Pictograms

Pictorial Specification: The class definitions, class hierarchy, and composite class
def'mitions are defined via the Class pictogram shown on the right in the figure below.
Composite objects (i.e., part-of relationships) are defined with the extended entity-
relationship (E-R) diagrams (i.e., pictograms) shown on the left below.

i

System

,Event_ Pict_
_i c

,
The extensions provide the extra object oriented features typically not found in traditional
entity-relationship diagrams. These Class and E-R pictograms are converted by the auto-
generator to the Ada source code declarations and run-time structures that provide the object
base features.

-9-
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Class/Object Browser' The browser utilizes the pictorial class, object, and method
pictorial representation, showing structures, values, relationships, inheritance, and
composite pictograms. Interacting through these pictograms allows rapid understanding of
the specified object base. The browser provides the interface to the persistence (i.e.,
save/restore) mechanism and overall development environment.

AOB Classes, Objects and Methods: The AOB classes are defined both as Ada
types and as associated Ada data declarations that hold method connections and class
variables. The object instances are dynamically created and discarded from the Ada heap.
Both class and instance methods can be provided in Ada, or as PRS-Ada procedures. Ada
methods are written as Ada procedures with a specific calling sequence. Methods me
bound to the classes or object instances at compile time. Method specialization is
supported. Composite objects that provided "part-of" relations are also provided.

3.2 Run.time Support
i

The AOB supports the data dependent backtracking feature allowing both incremental
backtracking and checkpointing to changes to the object base. In addition, the object base
supports a multiple hypothesis (i.e., world) mechanism necessary for reasoning or
handling multiple alternatives or sets of data. The persistence mechanism is auto-generated
ada code that saves and restores object instances and their definitions to/from a disk. Single
objects, all objects in a class, and all objects in a module can be save/restored. Future
versions of the AOB will allow interface to data bases for loading (i.e., populating) the
AOB. The AOB run-time also has a remote debugging facility that allows the object base to
be browsed and/or debugged through the graphical CASE facilities.

3.3 Auto-Generator

The auto-generator is the component of the AOB development environment that converts
the pictorial specification, method definitions, and class structures into a complex set of ada
source code that provides the application specific AOB. The resulting Ada source code can
be linked with "hand-written" Ada code to comprise an application written in Ada. The
development environment runs any standard Ada compiler and Ada library mechanism as a
slave to this generation process. The Ada compiler produces the executable program from
the auto-generated Ada code and the hand-written Ada code.

3.4 Development History

The AOB has been under development during the past year in support of the Survivable
Adaptive Planning Experiment (SAPE) for RADC/DARPA, the Advanced Planning System
(APS) for RADC/'ITAC, and the Real-time/Mission Planning (RT/MP) for DARPA/ASTO.
A subset of the AOB system is now in beta test on SAPE.

The AOB is a unique capability being developedat ADS in support of multiple projects. It
ultimately provides a path for knowledge based applications into an Ada delivery
environment of operational systems.

4.0 The PRS.Ada Product

PRS-Ada is a graphical (i.e., pictorial) software development tool for designing and
delivering knowledge based systems in an Ada domain. PRS-Ada provides facilities for
pictorial knowledge capture, pictorial development of reasoning strategies, and pictorial
testing and debugging. PRS-Ada provides an automatic code generation facility that
converts the pictorial forms to standard Ada source code.

-10-
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The PRS-Ada pictorial language and run-time support provides the following capabilities:

Goal.Directed Reasoning - The language supports the execution of
procedures to accomplish specified goals. The execution strategy allows the
search for a line of reasoning that satisfies a set of goals. Satisfied goals are
stored in a global achievement base.

Dependency.Directed Backtracking - As part of the execution strategy for
procedures, dependency-directed backtracking with retraction of knowledge
changes is supported. This provides capabilities similar to Prolog that are
useful in planning and other goal-directed search strategy systems..

Data.Directed Invocation - Trigger conditions can be specified on procedures
tlaatmatch against data in either the goal achievement base or knowledge in
the Ada Object Base (AOB). When a trigger condition is met then the
associated procedure will execute.

Multiple Hypotheses Support - The procedure execution, achievement base,
and object base support multiple hypothesis reasoning. That is, alternative
lines of reasoning can be pursued providing a means to generate multiple
alternatives directly. This provides a feature similar to the world mechanism
in KEE by Intellicorp but designed to provide much more efficient
execution.

Pattern Matching on Achievements and Data - PRS-Ada pattern matches
against achievements in the achievement base and against data/facts in the
AOB. Matched facts or data are utilized to control inference. For instance,
this allows reasoning about the plan generation (i.e., reasoning) process,
and the generated plan in a planning system.

Explanation Facility - The explanation facility provides interactive evaluation
and interpretation of the reasoning results through a flexible hierarchical
explanation capability.

4.1 Architecture

The PRS-Ada system architecture is shown in the figure below:

11-
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4.2 Pictograms

PRS-Ada utilizes two primary pictograms: Path-Search and Goal-Procedure Navigator.
These pictograms shown below allow goal-directed reasoning processes to be encoded,
and compiled directly into source code.

Path-Search Programming

Goal-Procedure Navigator

The path-search pictogram allows encoding of lines of reasoning. Specific operators for
_.. achieving goals, retrieving goals from the achievement base, and for testing if goals have

been achieved are provided by icons in the language. The flow between the icons specifies
a depth first search strategy during execution.

ii ....
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The Goal-Procedure Navigator pictogram specifies the relationship between goalsand sub-
goals, and between goals and the procedures that can achieve those goals. These two
pictograms are coupled through the semantic structure that represents the software system.
Other pictograms are being added to the PRS-Ada to allow other search strategies (i.e.,
breadth..first) to be employed.

4.3 Development Environment

Like ali the Cobra products, PRS-Ada has distinct development and run-time
environments. The development of procedures and knowledge proceeds in a two ways:
ftrst, reasoning strategies are captured through knowledge elicitation and captured in the
graphical procedures; and second, kno _ledge (i.e., objects, facts, data) is solicited and
captured in the Ada Object Base (AOB) (see: previous section - AOB). The development
environment supports the compilation of these declarations and definitions directly into Ada
source code md dynamic knowledge bases based on Ada constructs and functions. The
resulting reasoning system is thus directly compatible with any Ada application or any Ada
compiler and run-time support system. PRS-Ada has been interfaced to three different Ada
compilers/environments: Alsys, Verdix, and Telesoft on two different hardware platforms
(e.g., Sun-3 and Sparcstation). The current system runs under X-windows/UNIX on the
Sparcstation. Porting PRS-Ada to additional hardware platforms is underway.

4.4 Auto-Generator

The auto-generator is the component of PRS-Ada development environment that converts
the pictorial specification into Ada source code that provides the application specific
reasoning code. The resulting Ada source code can be linked with "hand-written" Ada
code to comprise a full application written in Ada. The development environment runs any
standard Ada compiler and Ada library mechanism as a slave to this generation process.
The Ada compiler produces the executable program from the auto-generated Ada code and
the hand-written Ada code. Several auto-generation options are available allowing various
levels of debugging information to be embedded in the generated code. This allows fully
interactive graphical debugging of down-loaded ( into the run-time system) code, and then
later recompilation to remove debugging hooks in the final production embedded systems
code.

4.5 Run-time Environment

After the reasoning strategies and knowledge have been compiled into Ada the Ada source
is compiled and linked to form the application run-time. This application run-time can be
coupled directly back to the development environment for graphical debugging of reasoning
strategies, and knowledge and goal decompositions. In addition the run-time environment
can be configured to allow editing and modification in an operational system of the
knowledge and goals as required. The run-time also has a remote debugging facility that
allows the graphical (i.e., pictorial) procedures to be debugged, via traces, breakpoints,
and inspection directly though the pictorial formulation in the CASE front-end.

A significant advantage discovered in transitioning from the original PRS (i.e., PRS-
CommonLisp) to PRS-Ada is the run-time performance of the generated application. The
mn-time performance of PRS-Ada procedures is approximately fifty (50) times that of the
PRS-CommonLisp procedures on the identical platform (i.e., Sun-3). The Sparcstation
PRS-Ada provides another factor of three (3) in performance over the Sun-3 due to a faster
hardware processor. Thus, run-time performance of the knowledge based applicatiofa is
quite good as compared to typical CommonLisp based knowledge based systems.
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4.6 Development History

PRS-Ada has been under development during the past three years in support of the AirLand
Battle Management program (DARPA/BRL) for a Army Corps and Division level planning
system. It is currently supporting the Survivable Adaptive Planning Experiment (SAPE)
for RADC_ARPA, the Advanced Planning System (APS) for RADC_AC, and the Real-
time/Mission Planning (RT/MP) for DARPA/ASTO.

PRS-Ada is a powerful tool that satisfies the majorrequirements of many DoD contracts for
delivering knowleA.ge based systems in Ada. The tool provides high performance goal-
direct and dam-directed reasoning in an Ada mn-time environment, yet retains the graphical
(i.e., pictorial) interactive knowledge engineering metaphor. PRS-Ada is a pictorial CASE
tool for delivering knowledge base applications in Ada.

5.0 Summary

The Cobraproduct family is a set of CASE products for knowledge bases systems design
and development. The fu'st products, Ada Object Base and PRS-Ada, are targeted to
embedded system applications in the Ada programming language. These products provide
engineering oriented tools for utilizing advanced technology in production embedded
systems.

Prototypes of these products have demonstrated significant productivity gains in
developing complex systems, and have allowed a typical software engineer to build
systems heretofore requiring a knowledge based system developer.
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TOOL NEEDS FOR A BEHAVIOR-BASED APPROACH TO

DISTRIBUTED INTELLIGENT CONTROL

S. Harmon, D. Payton & D. Tseng
Hugher Research Laboratories

Malibu, CA 90265

_ODUCTION
i

A distributed intelligent control system can be modelled as a collection of individual

inteUigent agents which coordinate their actions through communications and common

knowledge. An agent in this collection can be constructed as a set of behaviors whose

outputs are integrated by some form of arbitration logic. This class of designs of intelligent

systems includes subsumption architectures, community models and some biological

paradigms.

Each agent contains its own sensors, computing, controls, actuators, local knowledge and

communications. A behavior is a control loop which determines some aspect of the agent's

responses to a particular set of sensed conditions. Arriving communications simply are

treated as sensor input which alter the agent's local knowledge of the task state. An agent's

arbitration logic ultimately decides the appropriate set of control and communication actions

to take when given the combined recommendations of the instantiated behaviors.

This approach to intelligent system design has numerous advantages. An enormous range

of flexible interactions are possible between individual behaviors. The formulation of

behaviors as control loops permits the design to build upon a vast body of control theory

and tools. The arbitration logic takes advantage of the synergy of constructive h_terference

between behaviors. In addition, it can effectively resolve the effects of simultaneous

cooperating and competing goals. Thus, simple behavioral conslaucts can produce

complex agent responses to complex situations. The agents in this design can exhibit

reactive and opportunistic behavior when the task is not well understood at design time.

This enables the agents to participate in dynamic community interactions in which roles

may shift between agents as a function of task state. The flexibility of this design approach
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together with the ability to construct and test pieces of the system incrementally makes

exploratory implementation of distributed intelligent control systems much more practical.

Despite the compelling advantages to this design approach, it is at a very early stage of

development and several problems have been recognized and others undoubtedly exist

which have not yet been ent, ountered, Complex coupling between behaviors is possible

which complicates the design of individual behaviors. This complexity also makes the

configuration of the arbitration logic quite tricky. Furthermore, determining the stability of

the complete control system is not straightforward and classical analysis techniques may

not be sufficiently powerful. In general, controlling the system complexity is difficult.

Faithful simulations of the agent processes may lessen the impact of these problems but

verifying the accuracy of any simulation of an agent's responses or of the responses of a

collection of agents may require considerable effort.

CONSTRUCTION OF DISTRIBUTED INTELLIGENT CONTROLSY_

The construction of a distributed intelligent control system consists of several steps: task

description, system design and system implementation.

Task Description

The task description step should precede any aspect of design but seldom does in reality.

The task description identifies what is important in the task environment and defines

precisely what the distributed intelligent control system must accomplish. The task

definition includes spec,ifications of the point at which the system enters the task, the goal

conditions which define termination, if any, and the envelope of constraints which exist

between starting and goal conditions: If aspects of the task are not understood at this time

then obtaining sufficient information about the task becomes part of the task itself. This

description is formulated before anything whatsc_:ver is said about the specific nature of the

control system. No attempt should be made to include any more information about the task

than is needed to specify it since overspecification only limits the design options.

" Presently, no formal representation and methods for task description are available even

though this may be one of the most important conponents of design.
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Design

This discussion of the design of distributed intelligent control systems considers the

'influences of the design philosophy, describes the design process, briefly reviews some

decisions which must be considered in the design of a distributed intelligent system and
summarizes some of the lessons which have been learned to date.

The prevailing design pb_ilosophygreatly influences the end product. Two primary

philosophies exist. A design can be formulated from the top down or from the bottom up.

Top-down design works splendidly when ali aspects of the task are very well understood.

Although this philosophy is quite appealing to the designer, rework of the design due to

errors or omissions is expensive and poter)tially dangerous. Bottom-up design is often

needed when the design team is knowledge poor (e.g., rapid prototyping of expert

systems). While this philcsophy is appealing to the implementor, it is often time

consuming and inefficient. Most design efforts of intelligent systems use both

philosophies with the hope that a clean juncture in the middle will be possible when it is
needed.

First, the system,performance specification must be derived from the task description. This

infonaation is used at several stages in the construction process. The actual design usually

consists of decomposing the task description into system and subsystem components,

mapping function into hardware and software, and designing components and component

interactions. Once a system or subsystem design is complete it should be verified either

through simulation or formal proof or both to be sure that the design meets the performance

specification. The verification step may well reveal the need for corrections to the design or

the task description. Thus, design becomes an iterative process. Only when the complete

design has been verified can it be communicated to the implementor.

Several i.mportantdecisions must be considered when designing any distributed intelligent

system. Some of these involve the distribution of knowledge. All interacting agents must

share common knowledge. Common knowledge includes overlapping task knowledge,

communications protocols, information sharing strategies and interaction strategies. A

tradeoff exists between the amount of communications and the amount of common

knowledge in the system. Communications are expensive (in terms or"communications



CONF-9007134
Page106

bandwidth and actual cost) and the interactions can often be slow. However, agent

communications make the system more versatile. Communications between agents are not

needed ff the task is well understood so that ali agent interactions can be specified at design

time and if the agents do not cooperate (i.e., share resources) and dynamics permit no

interactions. On the other hand, common knowledge is both cheap (i.e., in terms of

memory) and fast. However, a system which relies completely upon common knowledge

with no communications updates is likely to be unresponsive to deviations from the

expected situations. Some minimum amount of common knowledge _tween agents is

always needed. This can be minimized if everything is open for negotiation, if a large

communications bandwidth between agents is available and if the time exists for

negotiation.

Several issues of system organization are also important to distributed intel.ligentsystem

design. The system organization defines the communications strategy and interactions

which are available to the agents. The organization can be either fixed or dynamic and

either hierarchical or community-based. Agent roles never change throughout the entire

task in a fixed organization while agent roles can be reassigned repeatedly in a dynamic

organization. A f'Lxedhierarchical organization is the best understood of ali the

possibilities. In addition, it is the most efficient organizational choice. The other choices

are not as well understood. However,, the community organization is desirable because it is

the most flexible and responsive to new situations. Clearly, hybrid organizations also have

attractive attributes. Dynamic organizations are necessary if the roles of the agents must

change due to unknown task conditions or factors which might change agent capabilities

(e.g., agent attrition).

In the course of gaining what little experience with intelligent control systems which exists,

several design lessons have been learned which can be extended to distributed intelligent

control systems. In general, design errors become expensive once they have been

implemented (e.g., Hubble Space Telescope). The interactions between loosely coupled

components are often not suitably appreciated and accommodated. It is in these interactions

where redesign is usually necessary. The designer must use the principle of least

constraints when the task is not well understood so as to maintain flexibility for himself and

the implementor. Obviously, well understood tasks are not so picky. Existing tools

support this domain weil. However, existing software engineering tools (maybe,

engineering tools altogether) do not support exploratory implementation weil. In these

: cases, even documentation becomes a problem!
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Implementation

During the implementation process, the implementor take the completed design and maps it

onto actual hardware and software. Each component and, ultimately, the entire system

must be debugged and repah'ed. The imple_nentor also evaluates the performance of the

subsystems and of the completed system against the performance specification which is

derived from the task description. Failures tomeet the specification may require

implementation reworks, design revisions or modifications to the task description. Thus,

like the design phase, the construction process (i.e., design plus implementation) is

iterative. However, implementation problems are much more costly to resolve than design

problems which have not been implemented. Once the completed system passes the

evaluation tests, it can be delivered to the customer.

Some of the lessons learned from the implementation of intelligent control systems can be

applied to distributed intelligent control systems. The implementor has the fewest options

when he needs the most. Thus, the differences between the designer's verification

methodology and reality show up here. Unfortunately, the implementation step of

intelligent control systems is very poorly supported by software tools. Existing debuggers

are barely adequate for centralized control systems and totally inept for distributed control

systems. Poorly understood tasks, usually those to which intelligent control systems are

applied, require much more iteration between design and implementation than tasks which

are completely understood. Repeated iterations increase the cost of the construction of

distributed intelligent control systems significantly. Finally, implementors are often those

who are least appreciated in the construction process but they solve the really hard

problems (i.e., getting the thing to work).

NEEE ED TOOLS

Considerable work is needed in tool development because the state of the art of distributed

intelligent control systems is so immature. Tools are needed for the foundations of design,

for individual intelligent agent design, for distributed intelligent system design and for

implementation.
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Foundation tools support the description of the task and the specification of system

performance requirements. In addition, these include any standards which may be needed.

Formal methods and representations are needed for describing a distributed intelligent

control task. Techniques must be developed to derive system performance specifications

from the task description. Even though distributed intelligent control is in its infancy,

standards are needed for communications protocols and for a common language to

represent common knowledge(i.e., vocabulary and syntax). However, standards are only

needed if interoperability at any point in the system's life is desired. These would enable

the products from several different manufacturers to be integrated relatively painlessly.

Design of a distributed intelligent control system is quite complex. Several tools are needed

to aid the designer. The designer needs assistance with the decomposition of the task

description and the mapping of its components onto the individual agents. A tool which

enabled the designer to easily evaluate the effects of different organizations,

communications strategies and shared knowledge allocations would be invaluable.

Techniques are also needed which enable the designer to reliably evaluate the performance

and stability of the completed system design. These techniques should be founded upon

formal methods for describing distributed intelligent control system performance.

Several tools are needed to aid in the design of the individual agents in a distributed

intelligent control system as well. For instance, tools are needed to aid the designer in the

efficient mapping of task requirements onto component functions, the specification and

construction of individual behaviors, and the identification of cooperative and competitive

coupling between behaviors. Reliable simulations and formal methods must be developed

to debug and, ultimately, verify the resultant behavior of the control system within the

complete task context. In the distant future, it should be possible to formally verify the

robustness of the combined system behavior..

Finally, as mentioned earlier, implementation of intelligent control systems is very poorly

supported and several tools are needed in this area. The implementor needs assistance with

the debugging of a system and its components. These tools should aid in the identification

and location of bugs and should make the distinction between hardware and software

problems clear. Performance measures are needed which derive directly from the task

description. These may require much more complete theoretical understanding of

" intelligent control systems than now exists. A tool is needed which assists the implementor
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in the construction of an evaluation test plan from the task description. Finally, reliable

, evaluation techniques and methods to analyze the evaluation results must be developed.

CONCLUSIONS

In all, the state of the art of intelligent control systems is underdeveloped. Thus, the
construction of distributed intelligent control systems is at an even more primodal stage.

Very little substantive and widely accepted theory is available. Almost no tools for design

and implementation are available and few of those which exist for conventional systems can

be adapted. Almost no experience exists in the construction of intelligent control systems

and none exists in the construction of distributed intelligent control systems. Therefore,

almost any results (even negative) in any of these areas would be significant.
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Conceptual Programming

Roger T. Hartley
Computer Science Department and

Computing Research Laboratory
New Mexico State University

Las Cruces, NM 88003

Abstract

Conceptual Programming (CP) is a knowledge representation language based on Sowa's conceptual
graphs. It provides an, expressiveness at least equal to filst-order logic, and extends both logic and
conceptual graph theory in several aspects. CP allows representation of causality through actor nodes

that accept proper epistemological categories as input and output. The concepts of state and event
have been expanded to allow for both temporal and spatial representations, and both are integrated
as far as reasoning is concerned. Another type actor of actor node allows functlo,al computation with
individuals which may be symbols, numbers or sets of these. The graph operationa join and project allow
structures to be built (called pro#mms) that serve as qualitative and quantitative simulations. Constraint
propagation through the actor nodes determines the outcome of the simulation.

CP serves as the representation underlying the techniques of Model Generative Reasoning (MGR)
problem solving methodology that builds interpretations of data abductively through parsimonious set
cover and allows for revision of these interpretations through differential deduction.

1 Languages for knowledge-based systems

The history of knowledge based systems is full of attempts to provide a user, whether novice or expert, with

a set of tools that ease the task of building a working application in the shortest possible time. Early work

concentrated on extensions to Lisp givingit the flavor of a deductive retrieval data-base, i.e. one based on
a deductive model of problem solving. Micr_planner and Conniver can be seen as forerunners of Prolog in
this sense. Other attempts to provide a tool based on the deductive model (e.g. Omega) have been made
since then.

On the other hand, early expert system work lead eventually to the rash of expert system shells that

are sold on the commercial market today. These are ali close cousins to the logic-based systems in that a
set of rules are executed by an inference procedure to effect the desired computations. Some of these are

" now powerful enough to be called general-purpose languages (they are Turing machine equivalent) rather
than just single application packages (e.g. OPS83). Moreover, many shells incorporate a variety of symbolic

knowledge representation schemes such as frames, demons, classes and so on (e.g. KEE, ART).
Ali of these systems share a set of common beliefs. These are:

• Problem solving can be effected through the manipulation of symbolic representations.

• A representation language can be designed to capture ali relevant knowledge, in an easy-to-use yet

expressive form.

• An inference procedure can be designed to allow ali desired inferences to be drawn through computa-
tions on these symbolic structures.
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• The representations and procedures can be made generic enough for a wide variety of problem solving
activities.

Apart from afew hard-line connectionists, most people in AI stick to these principles. We are no different
in our design of Conceptual Programming, although the details of how the representations and procedures
come together are somewhat different. This paper presents an overview of our beliefs, how they are explicated
through CP and how CP is used to support a general problem solving system.

2 Conceptual graphs

In 1984, John Sows (op. cii.) published his influential book that describes his ideas of knowledge and its
representation. His theory of conceptual graphs r_.mains as the best example of the form of representation
loosely called semantic networks. From this book there sprung a community of like-minded people who hold
regular workshops at the AI conferences, and who participate in regular discussions over an e-mail based
bulletin board. Sows himself has improved his theory since the book was published and several research
groups have made other changes and additions. Conceptual Programming is one such attempt to enrich the
basic theory with the aim of becoming a general purpose tool for problem solving.

2.1 A brief summary

The theory of conceptual structures can be described briefly as (see Sowa's book for more detail):

• Knowledge can be organized through a system of concept types that have sub/super-type relationships
in a lattice. This is very much like any taxonomy of natural types, except that new types may be
defined (i.e a new concept can be introduced) as having more than one sub or super-type to form
complete lattice.

• Concepts are related together by relations that form a disjoint set of terms having their own lattice.

• Concepts can be specialized by individuals that refer to distinct objects, not to a class of objects as do
the concept terms themselves.

• Concepts are defined in one of three ways:

1. As an Aristotelian definition, with a a genus term and a set of differentiae.

2. As a schematic (i.e. contingent) definition, that relates the term to others.

3. As a prototype that looks like a compound individual containing typical (default) values for the
related terms.

• Relations can be primitive (defined canonically) but may also be defined in a schematic form that
mentions the concepts involved.

• The expressiveness of first-order predicate calculus (FOPC) can be obtained by notating the forms as
two-color graphs (one for concepts, one for relations) call conceptual graphs.

• Functional dependencies between individuals may be expressed as actor nodes tying concept nodes
together.

• A set of starter graphs may be defined in the same way that axioms are defined in logic.

• The canonicality (i.e. their semantic well-formedness) of this starter set may be maintained thrc,ugh
four operations: copy, join, project and simplify. These operations allow graphs to be combined in a
variety of ways to support inference. Project is truth preserving, whereas join is not.

2
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2.2 Expressiveness of CGs

Sown provides an operator C that translates any well-formed conceptual graph into an equivalent FOPC form,
The inverse operator ¢, reverses the transformation. Thus, FOPC and CGs are simply notational variants
for a first-order logic with equality. Both have advantages, but the graphical form has a distinct advantage
in that variables can very often be omitted entirely where they are merely place-holders for equal values in
different sub-expressions. Overall the Strengths of CGs are shown in declarative representations, matching
the power of FOPC (there are improvements to make, however, notably in the area of sets). Weaknesses
show up when these forms are used to express dynamic happenings i.e. causality.

2.2, Limitations

This being so, the weaknesses of CG theory are the weaknesses of FOPC. For knowledge based system work,
the lack of a theory of causality (therefore of the real world) is the worst omission. Often FOPC uses material
impliization to capture causality, and even the modal variants are based on this. Where FOPC would write

A..-.B

meaning A causes B, S0wa would be forced to draw

because of the absence of a pictorial equivalent to disjunction. The boxes delimit conjunctive regions called
contexts. Neither form really captures the directionality of the intended causality.

A further limitation of.CGs also comes through the insistence on FOPC equivalence. Inference making
in FOPC reduces to its proof theory, usually reductio ad absurdum and the use of the rules of inference
like modus ponens, resolution etc. Again this is not adequate for many forms of inference, especially where
hypotheses are generated, as in many forms of problem solving. Meta-rules can express these inference
control relationships, bug this is a cumbersome and confusing way to proceed, when a more direct method
can be used. The production system, as used in almost ali expert.system shells, is one answer to this problem,
As we shall see, CP has another a.nswer, based on the idea of a simulation.

3 Conceptual Programming

3.1 Epistemology of CP

CP follows fairly conventional ideas, but extends the epistemology of FOPC (objects, predicates, functions)
to include categories for problem solving, In particular, a duality between spatial and temporal notions has
proved to be useful.

The world consists of ENTITIES and RELATIONS. Entities can be OBJECTS, ACTS, or PROPERTIES.
Relations are:

J

• SPATIAL, between objects

• TEMPORAL, between acts

• TEMPORO/SPATIAL between objects or acts and properties

• CASE, between objects and acts

Properties are:

3
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• CHARACTERISTICS that are intrinsic

• ATTRIBUTES that are accidental

Characteristics can be omitted (unknown), their value can change, but they cannot be negated. Attributes
can be omitted (uni_ nown), their value can change, and they can be negated.

Spatial relation,, can be omitted (unknown), their value can change and every one haz an inverse (nega-
tion). Temporal relations can be omitted (unknown), their value can change and every one has an inverse
(negation).

A temporal INTERVAL consists of an infinite number of MOMENTS. The smallest moment is the

interval's START-POINT, and the largest is its END-PGINT.

A spatial REGION consists of an infinite number of LOCATIONS. A region has a BOUNDARY.
An object and its properties form a STATE. A single triple (object relation pi'operty) is a PARTIAL

STATE. A state is fixed at a moment.

An act and its properties form a PROCESS. A single triple (act relation property) is a PARTIAL
PROCESS. It is fixed at a location.

J

An act and a number of objects are connected in EVENTS, through case relations. Events occupy time
through i've act's interval, and sptsce through the objects' regions.

An object and a number of acts are connected irl EXPERIENCES, through case relations. Experiences

occupy time through the acts' intervals, and space t'.hrough the object's region.
A set of objects and their spatial relations to other objects forms a SCItEMATIC. It is time-independent.

A single triple (object relation object) is a PARTIAL SCHEMATIC. A schematic plus its objects' states at
one point in time forms a SNAPSHOT.

A set of acts and their temporal relations forms a CHRONICLE. It is space-independent. A single triple

(act relation act) is a PARTIAL CHRONICLE. h chronicle plus its acts' processes at one location forms a
HISTORY.

A temporal sequence of snapshots is the same as a spatial arrangement of histories and they form a
WORLD. It is a number of events, connected by temporal relations, seen from an act perspective, or a
number of experiences, connected by spatial relations, seen from an object perspective.

Over a given spatial region and temporal interval objects and spatial relations persist in time, whereas
acts and temporal relations do not; acts and temporal relations pervade the region, whereas objects and
spatial relations do not.

A SITUATION is a partial state or schematic. Situations enable or trigger acts. Acts constrain the
start/end points of situations.

A situation persists unless destroyed by one or more acts. This is causally PREDICTIVE. A situation
pre-exists unless created by one or more acts. This is causally EXPLANATORY.

A partial chronicle or partial process has infinite (i.e. unknown) extent unless delimited by one or more

objects. Objects constrain the boundaries of process/chronicles. Processes/chronicles constrain the regions
of objects.

3.1.1 Declarative forms

In CP there is only one declarative form, the schema. The purpose of a schematic definition of a concept

is to relate the concept to others, in a given generic context. Thus, only concept and relation nodes appear

in a schema. Figure 1 shows a simple schema that can be paraphrased as "Giving involves an agent and an
experiencer, both people, and a patient that is a ball.". Ali of the case relations used in CP are fixed and

primitive. There are also a number of primitive spatial and temporal relations.
The terms defined ia this way form a lattice of concept types, as explained above. GIVE, for instance

might be a subtype of PHYSICAL-ACT, which in turn is a subtype of ACT. It is also possible to define a
schematic cluster for a concept. This cluster contains several alternate definitions of a concept for different
purposes.

4
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Figure 1: The graph for GIVE

,

Figure 2: The temporal overlay for CATCH ,

3.1.2 Procedural forms

The largest change to the general philosophy of CGs comes in CP's ability to define procedural additions to
the basic schema, called overlays. There are three kinds of overlay currently implemented:

• A feasibility overlay that performs semantic checking during graph operations. Basically it stops
production of canonical but meaningless graphs, such as a coin with three sides, a pipe with three ends
etc.

• A temporal overlay that enables simulations to compute the intervallic relations between acts and the
states that enable them, and are altered by them. This overlay models causality according to the
epistemology above.

• A constraint overiay thai enables functional computations in a similar fashion to Prolog. This is very
close to Sowa's functional actors, but whereas he only allows one-way computations (input-output
functions), CP allows constraint checking and propagation just like Prolog.

A fourth overlay, the spatial .werlay, when it is implemented, will be the dual of the temporal overlay in the
spatial domain. Figure 2 shows a temporal overlay that changes in the person's eraltionship with the ball
during catching. The actor node serves to draw these elements together. The relation ACT connects the
temporal actor with its act; the relation SCHEM connects the actor with the concept-relation-concept triple
that represents a partial schematic.

3.2 The implementation of CP

CP has been implemented on the Symbolics 3600 series under Genera 7.2 using CommonLisp, New Flavors
and Symbolics Windows. lt is currently undergoing a rewrite to improve speed and file-handling efficiency
and will be ported to the Sun/UNIX environment in CommonLisp (Allegro), CLOS and Common Windows.
After the rewrite, we plan to reimplement on the Symbolics and maintain the two versions thereafter.

5
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° Figure 3' The CP screen

CP presents itself as a graphic editor for conceptual graphs. Ali input and editing is done graphically by
using a menu/mouse interface methodology. Figure 3 shows the appearance of the Symbolics screen during a

graph edit session. A window (not shown) displays the lattice of concept types, in a mouse-sensitive fashion
(for browsing) and another has a hypertext sub-system for adding descriptive comments, with mouse-sensitive
words, to any graph entered into the system. Functional constraints are written in Lisp into a pre-formed

skeleton with parameters taken from the overlay graph. Figure 4 shows sample code for a numeric function.

4 Model Generative Reasoning

4.0.1 An operator based arehlteeture

CP was always intended to form the representational substrate for research in problem solving. The work at
- CRL in the Knowledge Systems Group has attacked the brittleness problem of expert systems in two ways.

Firstly, we have attempted to remove the reliance on the perfect quality of input data seen by the system.
An expert system assumes that ali data fed to it are accurate, relevant and true. However, data often does

6
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(DefActor ETA CONSTRAINT-OVERLAYMARCH((CONCEPT DATE1) (CONCEPT DATE) (CONCEPTTIME))

(Declare ((TIMENUMBER)

(DATE NAME)

(DATE1 NAME)))
(LET (M D Y M1 DI Y1 START-TIME END-TIME)

(WHEN DATE

(MULTIPLE-VALUE-SETQ (M DY), ,,
(TRANSLATE-DATE DATE))

(SETQ END-TIKE (TIME:ENCODE-UNIVERSAL-TIME 0 0 0 D M Y)))
(WHEN DATE1

(MULTIPLE-VALUE-SETQ (Ml DI ¥1)
(TRANSLATE-DATEDATEI))

(SETQ START-TIME,(TIME:ENCODE-UNIVERSAL-TIME 0 0 0 DI,MI YI)))

(COED ((AND DATE
DATE1

TIME)

(IF (OR (> START-TIME END-TIME)

(>TIME (/ (- END-TIME START-TIME) 60 60 24)))

(SETQ OUTPb_S JFAILED)

(SETQ OUTPUTS 'SUCCEEDED)))
((AND DATE TIME)

(I_JLTIPLE-VALUE-BIND(IGNORE IGNORE _GNORE D2 M2 Y2)

(TIME:DECODE-UNIVERSAL-TIME (- END-TIME (* TIME 24 60 60)))

(ASSIGN-VALUE DATEI (UNTRANSLATE-DATE M2 D2 Y2))))

((AND DATEI TIME)

(MULTIPLE-VALUE-BIND (IGNORE IGNORE IGNORE D2 M2 Y2)

(TIME:DECODE-UNIVERSAL-TIME (+ START-TIME (* TIME 24 60 60)))

(ASSIGN-VALUE DATE (UNTRANSLATE-DATE M2 D2 Y2))))

(T (SETQ OUTPUTS 'FAILED))))
)

Figure 4: The code for a functional constraint

not come in such a nicely packaged form. Too often data are imprecise, irrelevant or just plain wrong. Any

problem solver should be able to cope with this noise in the 'input data. Secondly, most expert systems,

if they are model-based, will do differential diagnosis on the data that do not conform to the norm. They
cannot cope with data that are novel in any way, i.e where the difference goes off the scale, or cannot be
measured at all.

These limitations of expert system technology led us to a system that addresses these issues head-on.
We have developed the ideas in model generative reasoning for these purposes. The basic technique is to

view the data as interpretable, not as correct, true, etc. Data are interpreted by generating a model that
'covers' it. The notion of covering data with stored knowledge is similar to the general set covering model
of Reggia et al. as used in medical diagnosis. A successful cover leads to a program, that consists of a graph

formed by merging one or more schematic definitions, complete with their overlays, with the data graph
being covered, lt is at this point that MGR depends on the ideas of canonicality in CP. The operation of

join that is used to merge ali the graphs ensures that the resultant program is well-formed. The program

can be seen as a simulation (since it contains actor nodes) of the local cause and effects. Figure 5 shows the
graphs for catch and throw with their temporal overlays. Below each graph is the time-chart for the actor.

7
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(OIR) "---"t [THROW]_ F----t
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Figure 5: The graphs for CATCH and TttROW

This time-chart is part of the definition of the graph, i.e. it is part of the knowledge of what it is to throw
a ball to a person or to catch it. Figure 6 shows the two combinations of the individual catch and throw
time-charts (the two graphs join in two ways on PERSON and BALL). It shows that if the sequence of
acts is THROW-CATCH (one peson to another) then THROW must precede CATCH (hence the temporal
relation computed is BFOR). However, if the sequence is CATCH-THROW (by the same person), then there
is ambiguity. Either the throw comes after the catch, when the person hangs on to the ball for a period of
time, or the throw immediately follows the catch,_ The ambiguity is show by the dashed line for the interval
for POSS after CATCH. This indicates a partial ordering between the end-points of these intervals. In the
CATCH-TItROW case we might talk of catch and throw 'in one motion'. These time-charts are produced
by constraint propagation through the actor network. In this example there are only two actors, but in
general there could be a network of multiply connected actors where there are multiple events happening
simultaneously.

(DIR) = : (POSS) -,=-.-I

[CATCH] I---I [THROW] l--ml

(POSS) _ - -I (DIR) I-----I

[THROW] F-----I [CATCH] I-----I

(DIR) _ (POSS) I >

Figure 6: The time charts for CATCH and TItROW
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4.0.2 The logical basis of MGR

MGR consists essentially of two operations: Specialize and Fragment. Specialize is the abductive operator

that takes data and covers them with schemata to form programs, which are then executed to form models.
It is composed of two more primitive operators, cover and join. This leads to tae slogan:

Abduction = cover 4- join

The functionality of specialize 'is:

specialize : 27 x 2v .--, 2_

where ._"is a set of input graphs representing data, _ is a !mt of schemata (definitions) and 7"/is the resultant
set of hypotheses produced by cover and join.

That specialize is abductive can be seen by considering that the hypothesis generated contains a projection
of each input graph, whether data or schema. When these are joined together, some concepts may be

specialized by replacement by a common subtype, and new nodes may be added. Considering the truth
values of the graphs, the hypothesis implies its constituents. Put another way

FLUS-... F
!

where F is the input data, F' is this data specialized through join, and S is the additional nodes added by
the covering schemata. As an abductive task, this can bi.• stated as "given F, what ' is the (minimal) S that
can be added s,t. the result implies F".

Fragment takes models apart by breaking links such that data are preserved in each fragment. The
functionality of fragment is:

fragment : 2:r x 7t --, 2_

Here a set of fact graphs taken from .T" are projected into a single hypothesis h E 7/ to produce a set of
fragments "H. It is not necessary for the subset jr to be the set of facts that were originally covered to

produce h. Fragment implements a deductive operation since each fragment is guaranteed to be a projective
sub-graph of the original model.

4.0.3 Tlm implementation of MGI't

Currently MGR operates as an open architecture with the operators specialize and fragment embedded in
CommonLisp on the Symboiics, together with a host of ancillary functions. Thus MGR is an embedded algo-

rithmic language like those mentioned in the introduction. Work is underway to implement the architecture
in a parallel environment (Sequent Symmetry) in order to combat the explosion of alternative hypotheses
produced by cover and join, and to handle the multiple hypothesis space demanded by the architecture.

We are also engaged in a research effort to let the operators run autonomously and opportunistically and
to optimize their effects through a genetic algorithm, and eventually through a dynamical systems control
mechanism where the rates of execution of the operator:s will be important parameters.
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1. ABSTRACT

An important way to enhance productivity in software engineering is to provide the
means for appropriate descriptions of problems and their solutions. This paper will
describe the, Eli Language Development System, and its use in developing application
software. The Eli system provides an integrated set of tools that translates formal
specifications for the lexical, syntactic, and semantic parts of an application program into
executable code. The Eli system encourages the writing of declarative specifications
instead of code, allows specification reuse, partitions the specifications for the language
into manageable modules, and employs an expert system to manage the details.

2. THE SOFTWARE ENGINEERING PROCESS

Software engineering can be viewed as the process of designing sc.'utions to problems.
Or, restated, as the production of code from requirements. The conventional software
engineering process proceeds in stepwise fashion from requirements to coding, with the
coding being done in a more-or-less appropriate programming language. Much of the
code may concern itself with parsing user input, testing for errors, building tables for the
storage of information and 19reparingdata for output. Often the "heart" of the application
comprises relatively little of the total code written. The basis for writing the code is,
"how can I solve this problem," rather than, "how do I specify the solution to this prob-
lem."

The latter basis seems a more natural approach to problem solution, since requirements
can be viewed as specifications of what problem is to be solved, not how the problem is
to be solved. So the programmer needs to translate requirements into algorithms. Con-

. trast this approach with the specification approach, where the programmer translates
specification to specification,

Unfortunately, there are presently not many formal specification languages that are
appropriate to the application domain. Many of the current generation of specification
languages are not general purpose, but are specialized to the areas of algebraic
simplification or theorem proof. The Eli system can be viewed as a general purpose
specification system where solutions are described in the form of specifications that may
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be created specially, or extracted from a library. The next section describes the Eli sys-
tem.

2.1. THE ELI SYSTEM

The Eli? system was originally developed as a compiler construction environment that
integrated off-the-shelf tools and libraries with specialized language processors to pro-
vide a system for generating complete compilers quickly and reliably. Its aim was to
simplify the development of new special-purpose languages, implementation of existing
languages on new hardware and extension of the constructs and features of existing
languages.

Considerable experience with the Eli system has shown us that it is also useful in
developing a variety of specification-to-program translators. Eli automates the solution
to complex problems: problems that can be broken down into smaller problems. Thus we
can easily put together complex systems from existing pieces.

The reader should understandthat in a very real sense, developing a compile r is no dif-
ferent than developing any other piece of complex software: the user input must be col-
lected into a sequence of basic symbols; the symbol sequence must be parsed to ascertain
the structure of the user input; when certain pieces of input structure have been recog-
nized, the program must provide processing and output, Intelligent and timely error
reports must be generated. (The same process obtains whether the processor being gen-
erated is an interpreter or a compiler. The only difference is when the final interpretation
process takes piace.)

Eli's collection of off-the-shelf tools is controlled b_: an expert system whose problem
domain is the management of complex user requests.- This expert system is discussed in
the next section.

Because the expert system manages the cc,,n_truction process, we can interpose
arbitrarily complex processing to make simple user input acceptable to off-the-shelf
tools. The number of specifications can be reduced, and special-purpose languages can
be used to simplify those specifications. Values for many of the tool parameters can be
deduced from the specifications themselves.

The Eli system allows arbitrary processing to be carried out to match the output of

one '.ool to the input of another, to prepare consistent input for several tools from a single
specification, and to combine outputs from several tools. Thus, tools developed by dif-
ferent people with different conventions can be combined into an integrated system, even
when only executable versions of those processors are available.

To add a new tool to Eli, or to replace an existing tool with a better one, only the
expert system's knowledge base must be changed. Eli users are not concerned with the
knowledge base; they are only interested in the products and parameters that Eli pro-
vides. Knowledge base changes may add new products and parameters or make existing
ones disappear, but most users can continue business as usual.

t NamedafterEli Whitney,whowasthefirstUS manufacturertomakeextensiveuseof interchangeableparts.
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2.1.1. Controlling the Tools A complete system specification will probably consist of
several files, each containing an additional specification or part of a specification. Some
of these files may be taken from a library, others may be shared among several different
projects. A user needs to be able to submit this collection of files to Eli, and to specify a
user request to Eli. It may only be necessary to test some aspect of the application. On
the other hand, it might be necessary to obtain an executable version of the application,
or a directory of source files from which an executable version could be built without the
use of Eli.

Most requests will invoke a bewildering array of tools and intermediate products.
Some of these products may already have been constructed to satisfy previous requests.
Eli removes the burden of managing this complexity from the user by placing it upon the
shoulders of an expert system called Odin, 2 whose area of expertise is the management
of complex user requests. Eli's component tools and their relationships are described by
a derivation graph that resides in Odin's knowledge base. Odin also manages a cache of
derived objects. When a user makes a request of Eli, Odin's inference engine determines
the sequence of operations needed to satisfy that request, re-using cached objects in the
derivation wherever possible.

Eli's primary input is a text file whose name is the name of the application being
generated, followed by the extension ". specs". (Each file name has an extension that
gives the "type" of that file; file types are used by the expert system to determine how
the file should be processed.) Eli passes the specification file through the C pre-processor,
and then interprets each line as the name of a specification file. The use of the C pre-
processor allows the user to group specification file names logically, control the selection
of certain specifications by directives, and include specifications from libraries.

Figure 1 shows the top-level specification file for the development of a Minilax
compiler, and some Eli requests that might be made during compiler development.
(Minilax is a small teaching language used in our compiler construction classes.) The
specification files structure, specs, translate, specs and vax. specs list
the specifications for the three major compilation subtasks of structuring, translation, and
encoding. 3 A standard module for carrying out the name analysis task is available in
Eli's library, and this module's interface is made available via environment, lib.
Opident. oil and Properties .ala are ali themselves specifications, describing
operator identification, and symbol table properties respectively.

Figure lb shows examples of some user requests of the Eli system. Each request
line in the figure is read from left to fight. A colon (:) can be read as "derive to"; plus
(+) introduces a keyword parameter, which may or may not have an associated value.
Notice that it is possible to derive an object from a derived object -- ": err" is a gen-
eral derivation that obtains error reports produced by some other derivation. Greater than
(>) is a re-direction mechanism; it is used to piace the object resulting from the deriva-
tion into a file or a directory.

Notice that individual tools are never invoked directly when using Eli, and their
particular interfacing requirements are invisible. The user is concerned only with com-
posing the appropriate request. Based upon that request, and the state of the cache, Eli
determines what needs to be done: what tools to invoke, and what intermediate results to
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#include "structure. specs" Specificationsfor the structuring task
#include "translate. specs" Attribute grammarfor the translationtask
environment, lib Use thestandardname analysismodule

Opident. oil Specification for the type analysis module
Properties. ddl Sl_eification for the definition table module
Properties. ala Implementation of the stored information
#include "vax. specs" Specifications for the encoding task

a) The content of file Minilax. specs, a specification file

Check whether the concrete syntaxsatisfiesthe parser generatorconstraints:
Minilax.specs :parsable

Apply the compiler being develol_d to program test. mla and display its output:
Minilax.specs +arg=(test.mla) :stdout

As above, but only display error reports:
Minilax.specs +arg=(test°mla) :stdout :err

Put an executable version of the Minilax compiler into file Minilax. exe:
Minilax.specs :exe > Minilax.exe

Put complete source text for the Minilax compiler into directory s rc"
Minilax.specs :source > src

Obtain a version of the Minilax compiler with embedded profiling code:
Minilax.specs +prof :exe > Minilax_prof.exe

b) Some _ypical Eli requests involving the specification file of (a)

Figure 1
Using Eli

. produce. In order to make requests of Eli, a person must learn only a few derivation and
parameter names. By hiding all of the conventions and most of the options needed to
control each tool, Eli sharply reduces the number of things that must be learned.

Eli uses a hypertext-based help system that provides the entire system documentation on
line. This documentation is constantly being upgraded, and presently comprises nearly 1
MB of text. 4
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3. CONCLUSIONS

Eli is a complete, flexible specification based software engineering development
system. Although it was odginaJly developed as a compiler construction environment, it
is useful in many other areas of software engineering. Based on existing tools, it is an
open system that is able to evolve as new tools and techniques become avaiIable. Eli
does not rely on any one specification language to describe all of the subproblems that
might be involved in a developmentproject; rather it provides a coherent framework in
which specifications written in a number of languages are combined to describe a com-
plete product. A simple user interface provides a uniform method for requesting deriva-
tions from specifications. Such requests only involve product names. Eli determines the
particular set of tool invocations on the basis of the state of its cache, as reflected in a
knowledge base.

We have used Eli to create processors for small, special-purpose languages, stan-
dard programming languages and extensions to existing languages. It has improved our
productivi .ty and has enabled inexperienced users to undertake and complete significant
software development projects. Our current research program is aimed at further simpli-
fying the use of Eli itself and improving the performance of the generated software.
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THEG2 REAL-TIME EXPERT SYSTEM

Roland Jones.

Gensym. Corporation

' The practical application of expert systems to dynamic domains requires a
second-generation approach toward knowledge,representation. In
particularthere is a need to representdynamic qualitativeknowledge,
dynamic analytic knowledge and the structure of the object interactions in
the domain. The application of inference in real-time requires paradigms
which go beyond rote pattern matching, to use metaknowledge to focus
the inferencing resources of the expert system. Finally the application of
truth maintenance requires a temporal model of the time dependence of
the truth of data and inferred results.
The G2 expert system technology was developed for real-time
applications. Current installations are primarily in large chemical process
plants, where the need for this technology is to advise operators for safety
and economic reasons. Recently the application of the technology of real-
time expert systems has been extended to robotics, and the Savannah
River Laboratory of the Department of Energy has used G2 in mobile robot
applications. Their purpose is to employ expert systems supervision to
eliminate many of the requirements for human supervision. Additional
applications in the aerospace industry include rapid prototyping and on-
line manufacturing.

The underlying methodology of G2 is object oriented. Classes, frames,
inheritance and other concepts are extended from heuristic reasoning to
include analytic dynamic models. Expert system reasoning is extended
from rules to Structure using object connections. The resulting G2
application framework allows an engineer, or a cooperating group of
engineers, to rapidly prototype new expert systems, control systems,
decision supp(t:t systems, networks, schedules and other applications
where a combination of heuristics, analytic models and domain structure is
needed.

Several considerations of dynamic domains impose requirements of the
knowledge representation:

1 The concurrent use of analytic and heuristic models. Conventional
simulation methods allow analytic models. Conventional expert
systems allow heuristics, but leave the analytic part for the use to
program. The combination of analytic and heuristic knowledge in
an object oriented framework allows the applications to be
addressed in a unified way.
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2. Interactionbetween objects. The structure of an application is
frequently important in predictingbehavior, performing diagnosis or
in scenario simulation. Structureis generally expressedas
connectednessof objects, orproximity of objects. Structuremay
also be expressed in an object'sattributes, especiallywhere
connections may vary in time. A framework which has the builtqn
capabilityto reason interms of object connectednessor proximity,
and to integrate analytic as well as heuristic knowledgein these
terms, allows constructionof the knowledge for the application.

3. Dynamic behavior and live data. Many problemshave a real-time
aspect, includingdynamicknowledge in differentialequation form,
such as equationsof motion. Live data may be needed for the
eventual deployment, and data access and real-time processing
may be important. A frameworkwhich includesthese real-time
considerationsin the expert system design is required. The
framework allows simulationto provide real-time values for
prototyping and development, to be supplanted by sensor-based
dataat installation. Data servers provide interfaces to other

- systems with a minimum of user work, so the prototype can become
the actual application.

In addition to the general characteristics of the applications, which call for
a unified framework, the general desirability of rapid implementation calls
for the use of high level interfaces. In G2 these include graphical
construction of the application domain and structured natural language for
expression of knowledge, models, and other information. Modern parsing
techniques allow the user to express the knowledge in reasonably natural
form, and G2 checks the user input as it occurs. Look-ahead menus help

_ the user, and errors are immediately flagged. This eliminates a whole
level of debugging which conventional programming requires.

Two apparently conflicting requirements dominate the inference paradigm
considerations in the real-time domains. One is the need for truth
maintenance. With thousands of data changing rapidly, the validity of
conclusions at ali levels of inference are in question. The other
requirement is fr real-time performance, where real-time means fast
enough to advise the human operatorand/or control the robot process.

Code improvements and computer improvements can help. However a
fundamentally different inference approach is appropriate for real-time
problems. The approach that a human expert uses in a real-time situation
is to maintain a peripheral awareness across the domain, watching for
performance exceptions, and then focusing on areas of interest. The G2
inference engine operates similarly. The inference engine continually
scans knowledge which the expert has specified for p6ripheral
awareness. If a safety-threateningconditionoccurs in a reactor, for
example, the G2 inference engine uses metaknowledge to determine
which knowledge to invoke, thus focussing on the area of interest.
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One benefit of the metaknowledge approach is that very large knowledge
bases can be run in real time. Since many types of problems and
behaviors are represented in the knowledge base, lt can get quite large,
with thousands of rules. HoweverGe does not consume computer time
looking for patterns in ali of this knowledge ali the time. Rather lt focuses
attention on the knowledge needed. The concept is like the human
thought process, tn that a human does not use knowledge of swimming or
ddving when walking in the park. The human mind focuses, using the
knowledge relevant to the task.

In static expert systems, truth maintenance involveschanging inferences
when data changes. In real-time problemsthere is an additional
requirement to ehmlge inferences even if no new data is available, since
time is a factor in validityor certaintyof inference. One way to express this
temporal validity information is to attach an expiration time to each value
maintained by the inference engine, and propagate this when inference is
carried forward. Generally, when a conclusion is based on several time
sensitive variables, the earliest of their respective expiration times will be
carried forward. Expiration times can be propagated forward through
multiple levels of inference, but there are also ways to limit this
propagation

The real-time expert system technology described in this paper represents
a departure from static expert system design, as the issues of time
relationships and dynamic behavior have been addressed. The resulting
expert system is capable of applying thousands of rule-frames of
knowledge, and of performance in real time for reasonably complex
operations.
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Software Tools for
Lower Echelon Systems
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Dr.LarryU. Dworkln Dr.DirkR.Klose LannyL. L.Gorr
Consultant U.S. ArmyCommunications- "IELOSCorporation

Holmdel,New Jersey 07733 ElectronicsCommand Shrewsbury,NewJersey 07702
CenterforCommand,Control,
andComrnunk;atk_nsSystems

Fod Monmouth,New Jersey 07703-5000

ABSTRACT INTRODUCTION exacerbated by the complexity

The U.S. Army Communications- Significant financial resources of the LEC3I ATTD, in that it
Rleatronice CoBand (crees) Cen- are being focussed on Comput- includes reverse engineering,
tar for Command ,_ Control, and

Communicstlons (C-) Systems h•m er-AidedSoftwareEngineering traditionaldesignand systemproposed sn Advanced Technology

Tr•nsition Desonstration (ATTD) (CASE) tool development generation,and extensiveuseoffor • Lower Echelon Commend,
Control, Communications, end In-
telligence (uzc-z_=ystm. Currenttoolsarequicklybeing modeling and simulation.The

The LZC3Zsystemcontalnafea- supplantedby onesthatarefar situationisfurtherexacerbated
turos auoh se • distributed superior,l_,Lanyofthetoolsare by the factthat the develop-:_tolligence control system to

un•ge the network of .esr units very specialized, choosing to ment work will be performed inend nodes (e.g., dynamic recon-

flgur•tlonto •ddressnode/unlt deal thoroughly with only a heterogeneous developmentlosses and •oquisltlons); a very

blg,-apuddistributedaet•bess portion of the development environments at a group of_ansgoment systom_ • near real-

time remote •nal local •ccess processand often limitedto organizationshavinglocalvaria-knowledge-based Decision Support

systu (pss);an sure=ilo_or_t very specificdevelopment tionsh_methodoloay.and protocol conversion capabill-

ty to facilitate interoperabili- and/or target systems. Thety; sn obJect,orlented, "Fact"-

based approach to reduce the available tools typically inte- As a result, the initial focus forcommunication volume, stste-of-

the-•rt oomffiunlcstlonerror gratepoorlywithoneanother(i£ specificallyidentifyingneededdetection and correction; and a

genericsoftware interface sp- atall),and areoftennotusable toolsison the criticalissueofpreach for stsndardlzlng user

display hardware, software, and atthelevelofcomplexityfound clearlydeFudng a methodologyhuman interfaces.

The LEC3I ATTD development is s _1 Government systems. There- model: how is information

rapid prototyping provesu that fore, to identify the tools needed about information organizedbegins using modeling and simula-

tion techniques, evolves to • for a system development activi- and how is the I_C3I system tomixture of prototype elements and

modeledelements connected to tysuch as the Lower Echelon be developedfrom thatbase?simulators, and concludes with

field duonatration, of • proto- Command, Control_ Communi- This meta model is critical intype system. The paper will

identify the tools needed to cations, and Intelligence determiningwhat CASE toolssupport the full development

cycl= of rh= aTTD, particularZy (LEC3I) Advanced Technology will be needed to support thethe need for consistency in

•pproaoh,l•nguags,end object Transition Demonstration ATTD methodology, handlerepresentation over the entirs

cycle. (A_D), itiscriticallyimportant objectsand relationships,and

todefme thescopeoftheappli- integratewith the different

cation development being modeling and simulationcon-

addressed. This situationis cepts. Having identifiedthe
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ATTD methodology and envi- enemy destruction or _capture, the Battlefield Functional Areas

ronment, tool requirements cat.; The probability of individual (BFAs) and representative task

be identified that support the unit loss at the lower echelons force elements. The "Smart w

desired methodology, handle (coupled with the fluidity of node infrastructure will be a

objects and relationships, and conditions, low communications design that transitions the

use the different modeling quality, and severe data volume Combat Vehicle Command and

concepts. The intent of this limitations) has historically Control (CVC 2) and the Battal-

paper is to recommend tool resulted in a low level ofproc- ion and Below Command and

concepts that can be developed essing power and automation. Control (B2C 2) concepts into

:to support a complex project LEC3I capabUities and provides

methodology such as the LEC3I The lower echelons battlefield seamless functional connectivity

A'VPD, not to move to a differ- conditions lobby for a solution to to the Arm_ Tactical Command

ent methodology to fit the predi- be based on a loosely coupled and Control System (ATCCS).

lections of current tool vendors, network of powerful, compact The hierarchy of these tactical

processors. Since communica- command and control acronyms

The following paragraphs will tions capacity is limited and is shown in Figure 1. An over-

present a brief description of transmission quality is often view of the LEC3I ATTD is

the lower echelon battlefield poor, any data collection process provided in Figure 2.
environment and the LEC3I needs to correlate data as soon

system to be developed by the as feasible to minimize the The LEC3I system will contain

ATTD, an overview of the volume of data to be passed the f011owingsegments:

engineering design process over onward. Personnel providing/-

the various phases of the ATTD receiving information at the 1. A Combined Arms Com-

life cycle, a listing of the tool lower echelons are normally mand and Control (C 2)

capabilities desired, and a quite busy and therefore re- system providing vertical

summary of the required capa- quire a graphical information and horizontal interfacing of
bilities, presentation interface, ali BFAs at the Battalion

and Below (B2) echelons,

i.e., a Lower Echelon C2

BA_ _ AI'PI} (LEC 2) system

CHARA_CS DICKinSON

2. A secure,dispersed,tactical

The lowerechelonbattlefieldis The Advanced Technology information collection,

nonlinearand containsmany Transition Demonstration correlation,storage,and

highly mobile units. Large facil- (ATTD) for Lower Echelon dissemination system, i.e., a
ities, such as those used in the Command, Control, Communi- Battlefield Information

higher echelons, are not practi- cations, and Intelligence Management System

cal because soldiers to man (LEC3I) is an advanced devel- (BIMS) and the high-speed

them are not likely to be avail, opment effort to transition the database search/retrieval

able and the large facility size set of technologies needed to hardware

and commetmurate lack of high implement a "smart node" infra-

mobi!i'tY are likely to make the structure that collects, process- 3. A near real-time Tactical

large facility vulnerable to es, and distributes cnta among Situation Status Display

2
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(TSSD) generic software inter- utilizing the MSE network, a select a technology to be utilized

face for user display devices storage and processing le,,_,:,,_;_n in the demonstrations and to

such as heads-up displays, for the BIMS, a filtering and make a recommendation for a

A near real.time, remote correlating system to provide production LEC3I system.

access Decision Support users only the data that they

System (DSS), including the wish and in the form most The LEC3I ATTD will make

advanced processing hard- conducive for immediate com- extensive use of modeling and

ware and software technol- prehension, and a source for ES simulation to evolve require-

ogy required to provide support to those users whose ments definitions, evaluate

Expert System (ES) deci- own computer resources are _ design alternatives, and quanti-

sion support aids inadequate to support ES appU., fy expected benefits from field-

cations. ' ing-recommended products.

4. A communication system The LEC3I ATTD expects to

that is transparent to the The LEC3I ATTD is based on make significant use of the

dispersed and diverse state-of-the-art commercial Simulation Network (SIMNET)

combined arms user technology and the products program.

community, secure, highly developed under a number of
flexible,and linkedtoexist- otherATTDs, particularlythe The LEC31 A_FD willuserapid

ing systems such as the Multi-Mission Area Sensor prototypingto determinewhat

Mobile SubscriberEquip- (MMAS) ATTD and the Air- capabilitiescan be implemented

ment (MSE) network and Land Battle Management and to improve the

Combat Net Radio (CNR). (ALBM) ATTD. The LEC31 performance.

The systemwillutilizesuch ATTD willdetermine what

software and hardware tools capabilities are required for a

as are needed to address LEC 2 system and identify the ATrD ENGINEERING

the interoperability prob- requirements for the communi- DESIGN P_

lems present among con- cations, database management,

nectedsystems, decision support, and data The ATTD forLEC31 can be

display elements needed to dividedintoa four-phaselife

The LEC31 ATTD proposesto supportallof the lowereche- cycle.During'the firstphase,

combine the infrastructure Ions. A prototype set of alternativearchitecturesforthe

needed for the BIMS, TSSD, productswillbe builtand tested LEC31 systemarereviewedand

DSS, and communications tovalidatethe requirements conceptualsystemand segment

network node into a single analysesand betteridentifyand designsare made. The hard-

assemblageknown as a %mart quantifythebenefitsexpectedi£ ware and softwareforthemost

node".A smartnode isintended a production version isfully promisingconceptsare modeled

tofunctionasa relayforpoint- deployed, fortestingand evaluationusing

to-point and conference the SIMNET program. The

communication withinitsown The LEC31 ATTD willinvesti- designwillevolveasdictatedby

servicearea,a fullyautomated gate commercial and military results of the simulations.

format/protocolconverterto state-of-the-artradiocommuni- During thisphase,theexisting

= support interoperability, a cation technology and existing assets being incorporated will be

transparent gateway for traffic Army communication systems to reverse engineered and choices
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will be made among off-the-shelf information with deployed mill- been determined as a matter of

components by comparative tary systems and be operated by national policy that restriction
evaluation. The f'mal conceptual military personnel. Based on of competition is undesirable

design from the phase one the experience gained from the (e.g., the Competition in Con-
simulation efforts will be the field demonstrations, the LEC3I tracting Act). Therefore, the

starting point to design and specification and requirements details of the development

construct a few prototype units documents will be revised, approach and the selection of

during phase two. the software development tools
The fourth phase is the trarmi- to be used are influenced by the

During phase two, hardware will tion of the prototypes, testing outcome of the competitive

be acquired and integrated and documentation, and specifica- bidding process. This influence

software will be written to build tions to the appropriate Pro- in particularly acute when tran-

prototype units suitable for use gram Executive Offices (PEOs) sitioning from the ATTD devel-

with SIMNET and AIRNET. for Full Scale Development opment team to a PEO and,

Mathematical models of the (FSD). later, to the FSD contractor(s).

prototypes will also be produced

so that the simulations can be The ATTD effort is expected to Because of the leverage of exist-

performed with a normal de- be organized against the five ing programs such as CVC 2,

ployment quantity of units, primary product development existing technology demonstra-

Lower echelon systems typically efforts; i.e., Lower Echelon tion (e.g., ATTDs, Small Busi-

deploy in quantity. Therefore, Command and Control (LEC2) ness Initiative Research [SBIR]

the simulators can reduce the System, near real-time Battle- programz, Balanced Technology

cost and time needed to evolve a field Information Management Initiatives [BTIs]), and commer-

lower echelon system design System (BIMS), Tactical Situa- cial efforts, considerable parallel

using a rapid prototyping tion Status Display (TSSD), efforts are present. Therefore,

approach. It should be noted Decision Support System (DSS), software portability and rous-

that user community participa- and the communication system, ability are significant cost driv-

tion is continual throughout the Work in these areas will be ers. These cost drivers are

ATTD life cycle. Therefore, the coordinated to avoid duplication negat'vely influenced by the

results of the simulations are of effort, obtain the maximum heterogeneous mix of develop-

expected to change the user level of synergy, and produce ment methodologies, tools, and

requirement documents and products on the schedule documentation techniques

battle strategies. The final needed to meet transition goals, present in the DoD community.

prototype hardware and soft- Metrics indicators are expected In view of the passion displayed

ware design from phase two will to be used to aid in meeting by proponents of various design

be used to build the phase three quality, schedule, and cost goals, approaches, there is no reason

prototypes, to expect that the DoD commu-

The execution of an ATTD nity will adopt a single approach

During phase three, an ade- project involves the combined (e.g., object-oriented, struc-

quate number of ruggedized efforts of Government organiza- tured). Any tool set developed

prototypes will be built to tions, their support contractors, will have to accommodate more

conduct field demonstrations, and an ATTD prime contractor than one approach.
The prototypes will exchange with subcontractors. It has
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TOOL REQUIRRMI_/_ conformtoa setofarchitecturalmanagers,ormodulesofsource

principalsthatwere probably codethatimplementparticular-

A genericengineeringdesign partofthelibraryproductsto lycomplexalgorithms.Retch-

approachisshown inFigure3. use as components ofthe new tionofsourcecodewould seem

Itshouldbe notedthatFigure3 system, tobe particularly_ inthatit

isgeneric in that the 'New may undermine the complete-

System"productcanrangefrom When the old system assets nessand aecura_oftheoldand

the phase one model of the were designed,differentstand- new system descriptions,and

I_CSI systemrun ina comput- arcl8and performancecriteria thereforethequalityofthenew

erizedsimulationofa battleto may have been utilized.An system. Retention,ina sense,

phase three executablecode issue raised by Figure 3 is 'shortcircuits"the reverse/-

running on prototyl__ target representedby the dottedbox forwardengineeringprocess,as

and lines.Can any components thediagramshows. The retch-

ofthe oldsystem be salvaged tion step isincluded in this

The firstactivityistoreverse and retained in the new? discussionbecause itmay be

engineertherealassets(source Candidatesforretentionmight appealingon economic,sched-

code,testcases,etc.)thathave includedevicedrivers,database ule,andcomplexitygrounds.

been obtained from existing

systems and other research _
activities.This activityis I

seeded to generatea descrip- [ b_ !
tiondata set. Although new,

such reverseengineeringtools

do existand have been proven
=

tobe effective.Once the de-

scriptionofthe oldsystem has

beenbuilt,more f_rni!i_rground

isreached. Many CASE tools

. existto del'me requirements,

create a design, and generate _ii _ _

the resulting new system assets, c

As Figure 3 shows, this task is

unusual in that the create ,....................a

the traditional define require- ! ,

ments stepand thedescription : _ENe_Te: SYSTEM

ofthe existingsystems. More i
correctly,the oldsystem de-

_ e

scription servesas a resource _...........................RerE_mo.

thatthe designercan draw on,

athisoption.Hisi'u-stconcern _v:_. P,OCESSO" p,ooucT
ispresumablytoreflectthenew

_

6
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The main criteriathatcan be ronment provencapabilityforuse of

used toselectCASE toolstoad- The ATTD will have a the toolon large,complex

dressthisATTD arethefollow- number of participating systemsisa likelyprerequi-

Government and contractor siteforuseon theATTD.

organizations.The tools

a. MethodologySupport must dealwitha varietyof g. SupportforRapidPrototyp-

The constructs used by the developer execution envi- ing

CASE toolmustsupportthe ronments. The need to Rapid prototyping is a

conceptsused todesignthe targeta varietyofcomputer x,aluable technique for

targetsystem and handle systemstocomparealterna- improvingthequalityof the

informationaccordingtothe tirescreatesa heterogene- designand keeping users

methodologymodel ous executionenvironment, involved.The use ofthis

The Government require- techniquehas been men-

b. FunctionalSpan ments for competitive tionedasa requirement.

No singleCASE toolexists procurement ensure the

todaythatencompassesall persistenceof heterogene- h. LevelofAbstraction

oftheprocessesinFigure3, ousenvironments. The currentfocusof many

particularlythe need to tools is the design and

producemodels fora simu- e. Portability to Another generation code, i.e.,an

latoras wellas executable ExecutionEnvironment automationof the current

code.This beingso,each The Government's pro- designand codingactivities

toolneeds tobe evaluated curement policiesrequire for writing high order

interms of itsfunctional freeand open competition, language programs, ltis

span. Therefore,when hardware desired that the ATTD

used in the ATTD is re- CASE toolsdocument the

c. Integration with Other placed by the hardware softwareand targethard-

Tools proposed by the winning ware at as high a levelof

Sinceseveraltoolswillbe FSD prime contractor,the abstractionasistechnically

requiredtosupplyallofthe executionenvironmentmay feasibleand generating

requiredcapabilities,itis change significantly.Itis executablecode from that

essentialthattheybe inte- desirablethatthe system levelofinput.The intentis

gratedwithoneanotherina being developed with the tomove tothenextgenera-

cohesivefashion.Common- CASE toolsbe portabletoa tionofprogramming tech-

alityof user interface, new FSD executionenvi- nology, eliminating the

designapproach,and data ronment, thus avoidinga generationand documenta-

structuresisa key require- need for a repeat of the tionofcode suchas Ada or

ment. Support foremerg- developmentprocess. C languagestatements.
ingstandardssuchasEDIF

would be evidenceofatten- f. Scalability L OtherCriteriaInclude:

tiontotheintegrationissue. Many CASE toolsperform

wellwhen used toaddress 1. Function_l richness

d. SpecificityoftheDevelop- smallproblems and small withinthe ,,3panbeing

ment and ExecutionEnvi- systems. Therefore, a addressed

7
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9.. Learning curve port the modeling process, The products of the ATTD are

3. Ease of use (human providing a convenient way to transitioned to one or more

factors) assemble known hardware mad PEOs. To support a PEO, input

4. Representation of software pieces into system to a Procurement Data Package

ambiguity pending element models and to integrate (PDP) is provided. A prime

resolution the element models to obtain a contractor is selected by com-
5. Support for multiple system model. Capabilities of petitive bid and the ATTD

iterations the tool set should make it easy materials are provided to the

6. Availability of technical to build models for custom contractor for use in FSD. The

support hardware and software and tool set must support the

7. Linkage to commercial integrate the individual models documentation actha'ties needed

marketplace to ensure into the system model. The to produce specification materi-

an aggressive program modeling system should readily als of suitable quality for tree in

of tool maintenance and facilitate swapping out modeled a solicitation.

enhancement to remain items to permit the direct

in step with the state of evaluation of alternative items,

the art. e.g., a 50 MFLOP processor CONCLUSIONS

versus a 100 MFLOP processor,

The tool set needs to support the substitution of elements to In conclusion, no current tool

the system concept develop- permit the use of one commtmi- set has ali the capabilities re-

ment. The tool set needs to cations protocol versus another, quired. Any new tool set de-

permit designers to define the The tool set should provide the veloped should:

system and its segments con- capability to reverse engineer

ceptually by supporting first the existing software to facilitate a. Work at the highest of level

requirements del'tuition, then generation ofthe models, ofabstraction technically

the system definition, and final- possible to improve devel-

ly the segment clef'tuition proc- As a minimum, the modeled opment productivity, reduce

ess. battlefieldsystemmust beable documentation require-

tobe utilizedboth on-lineand ments, and increaseport-

DoD systems are increasingly off-linewith SIMNET and its abilitybeyondthatprovided

beingbuiltwithstandardpieces derivatives(e.g.,AIRNET). In by current high order

such as thosecontainedinthe theon-linemode, experienced languages

U.S.Army Common Hardware militaryand civilianpersonnel b. Use a uniformapproachand

and Software(CHS). A conven- canexercisethemodeledbattle- standardizedhuman inter-

lentlibrarycapabilityisneeded fieldsystem to determine its faceacrossallfunctions

toencouragereusabilityofdata, strengthsand weaknesses.In c. Be capableofworkingina

code,and designparameters, theoff-linemode, thedeveloper heterogeneousdevelopment

canreplayarton-lineexerciseor and targetexecutionenvi-

In the post-ColdWar period, executean unmanned simulator ronment

modelingand simulationwillbe scenariodesigned to isolate d. Be capableofpassingdata

more heavilyutilizedinsystem problem sourcesand evaluate among usersitespossessing

developmentand testing.The solutionalternatives, different development
*^,,1 o.-.,,_,,o, *l_,,_,,n,l_l. *l,n. p.nvirnnments
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e. Fully support rapid proto- _ _ _ Definitmn

typing BIMS Battlefield Informa- MS Inter-Vehicular

f. Support, as a minimum, tion Management Intbrmation System

model and simulation for System JTIDS Joint Tactical

system development using BTI Balanced Technolo- Information Distri-

S]MNET gy Initiative bution System
g. Provide technical support C2 Command _ and LEC2 Lower Echelon C2

and adequate ties to the ' Control LEC3I Lower Echelon

commercial market to C3 CommRqd, Control, CommRqd, Control,

ensures tool maintenance and Communica- Communications,

and frequent updates to tions and Intelligence

remain at the state of the CASE Computer-Aided MCS Maneuver Control

art Software Engineer- system

h. Provide support for interna- ing MMAS Multi.Mission Area

tionaland national data CECOM U.S.Army Commu- Sensor

standards,genericdevice nications- MSE Mobile Subscriber

interfacestandards,and Electronics Equipment

communication standards Command MVR Maneuver Control

(e.g., International Stand- CHS Common Hardware PDP Procurement Data

ards Organization[ISO], and Software Package

FederalInformationProc- CNR Combat Net Radio PEO Program Executive

essingStandards[FIPS]) CSS Combat Service Office

Support PM ProjectManager

CVC 2 Combat Vehicle SAVA Standard Army
GIA)SSARY Command and VetronicsArchitec-

Control ture

DSS Decision Support SBIR Small Business

Definition System InitiativeResearch

AI) AirDefense EPLRS Enhanced Position SIMNET SIMulation

ALBM Air-Land Battle LocationReporting NETwork

Management System SINCGARS Single-Channel

ATCCS Army Tactical ES ExpertSystem Ground and Air-

Command and FIPS FederalInformation borne Radio Sys-

ControlSystem ProcessingStand- terns

ATTD Advanced Technol- ard TRADOC Training and Doc-

ogy Transition FS FireSupport trineCommand

Demonstration FSD Full-ScaleDevel- TRI-TAC Tri-ServiceTactical

B 2 Battalionand Below opment Communications

B2C 2 Battalionand Below ]:EW Intelligence- TSSD TacticalSituation

Command and Electronic Warfare Status Display
Control ISO International VCOS Vehicle Control and

BFA Battlefield Func- Standards Organi- Operating System
tional Area zation
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DECLARATIVE HIERARCHICAL CONTROLLERS
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1. INTRODUCTION

This paper presents a new general purpose feedback controller for driving a system through
complex tasks. The proposed controller, termed Declarative Hierarchical Controller is
based on a theory of knowledge based controllers developed by the author [1], [2], [3]. In
this theory, the plant dynamics, control requirements, and goal dynamics are declared in an
axiom base. The actuator commands, whichare functions of the sensor and goal command
signals, are generated on-line as side effects of showing whether a theorem (Task
Theorem) representing the system task, logically follows from the equational axiom base.
That is, the controller is an on-line mechanical theorem prover, whose inference mechanism
is based on equation solving over a Variety. The Task Theorem is constructed by an on-
line planner as a conjunction of primitive lemmas, each of which is a carder of an
elementary control action. The control actions are multiplexed in time so that at each
instance one and only one is active.

The theorem prover of the controller operates as follows:

• At each controller sample interval, the Task Theorem and the corresponding active
axioms generate a set of simultaneous equations in which the variables are
Actuator commands and the Controller state. This set is referred to as the Active
Set.

• The Active Set is used by the inferencer to, build a procedure for computing
instance values of the variables. This procedure is a locally f'mite automaton over
the Rational variety.

• The automaton is executed to compute instances of the commanded actions.

In addition, the theory provides an algorithm for transforming the axiom base and the
inferencer into a recursive hierarchy for its efficient implementation and for satisfying real
time and architectural constraints.

The paper illustrates the theory of Declarative Hierarchical Controllers with a robot
manipulator control under End Effector force constraints. It also gives some stability,
robustness and complexity results. The general controller capabilities are illustrated with a
particular robot: A planar 3 link manipulator robot controller for painting the inside surface
of a 2-dimensional balloon which deforms elastically under contact force The task will
also be constrained by End Effector angular velocity and positior, constraints (over
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determined problem). The problem has no known solutions using conventional control and
planning schemes.

The rest of the paper is organized into 5 sections: Section 2 presents an overview of
knowlege based controllers, Section 3 presents declarative eontollers, Section 4 discusses
the main elements of multiplexing action in the context of declarative controllers, Section 5
illustrates the concept with an example, and in Section 6 some conclusions are established.

2. OVERVIEW OF KNOWLEDGE BASED CONTROLLERS

Declarative Rational Controllers are a class of knowledge based feedback digital
controllers.

As for conventional controllers, the function of a declarative controller is to generate an
action (e.g. actuator command) as a function of sensor data, stored data and goal command
data. In symbols, let T be the set of natural numbers, called the time set. Let G, S, X, A
be semimodules over a common semiring H. A controller is fully characterized by two

functions p,

p: GxSxXxT.-oA
(1)

• : GxSxXxAxT---)X

called the control law [4].

The semimodules G, S, X, A are referred to respectively as the goal space, the sensor
space, the internal storage space, and the action space.

The control law (P, _F) is determined by the requirements, the characteristics of the system

to be controlled (the plant) and the characteristics of the goals the system is supposed to
achieve.

.]

In conventional controllers the control Law (p, _F) is explicitly implemented as an

algorithm for generating actions as a function of time. Specifically, let s(k), g(k), x(k),
x(k) be the sensor data goal data and internal storage data at the current sample time keT.
Then, the control action a(k+ 1) and the updated internal storage x(k+ 1) are given by

a(k+1)= p(g(k),s(k), x(k), k)
(2)

x(k+1)= s(k),x(k), a(k),k)

In knowledge-based controllers in general, and in declarative controllers in particular, the
control law is not constructed explicitly. Instead a knowledge base containing the
requirements, plant dynamics representation and goal characteristics is constructed. At run
time the controller generates the action signals {a(k), k----0,1,...} by an inference procedure
[5] which operates on the knowledge base at each sample time to find an instantiation of the
control action to be implemented in the next sample time.
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Some of the potential advantages of knowledge based controllers over conventional ones
are [6]: simplified design process, multiplicity of control laws, built-in adaptability, hooks
and scars and dependency on computational characteristics. These are briefly discussed
next.

Simplified Design Process: In principle, given an inferencing shell and a compatible
specification for knowledge representation, the design process consists of collecting the
rules or frarnes that capture the control and computational requirements and those aspects of
the plant and goal that are relevant to the design and the encoding of them. The actual
"algorithm" implementing the control law is inferred from the knowledge base at run time.

Multiplicity of Control .Laws: Since the control requirements are explicitly declared in the
knowledge base, the controller may have more than one control law if knowledge is
encoded so that it can select which one to execute as a function of external (goal)
commands.

Built In Adaptability: Parameters or structural characteristics of the plant can be easily
declared in generic form and appropriate instances of them can be generated as a function of
sensory data at run time [7].

Hooks and Scars: Typically the knowledge base of a knowledge base controller is
composed of independent discrete elements (clauses, rules, frames, etc.) which are only
connected at run time during inference. Therefore adding or deleting elements does not
destroy the logic of the controller.

Dependency on Computational Characteristics: The knowledge base may include
characteristics of the architecture in which the controller runs. These characteristics are

treated in the same way as control requirements.

However, general knowledge based controllers suffer from three serious drawbacks which
have damped their popularity among control designers. These are stability verification,
performance verification, and computational complexity. These are briefly discussed next.

Stability Verification: This is understood as a test on the controller specification to
determine whether it will drive the system to the current desired goal while satisfying the
control requirements in a finite interval of time. In most of the knowledge based control
schemes that have been proposed, no such test is available.

Performance Verification: Since the control law function is not explicitly given, it is very
difficult and in most cases practically impossible to guarantee a performance level for ali the
possible inference paths.

Computational Complexity: Many knowledge based control systems are implemented on
expert system shells which are not well suited for real time implementation. The theory of
declarative hierarchical controllers was developed to address some of the special
requirements for robot control systems. "lheir functionality possesses the good
characteristics of knowledge based controllers discussed previously. In addition, the theory
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provides for effective stability and performance tests and feasible (with current hardware)
computational requirements.

The central objective of knowledge based controllers in general, and of Declarative
Hierarchical Controllers in particular, is the generation of autonomous feedback policies.

Autonomous feedback policies are trajectories of control actions and control action

generators that are causally measurable in the Z-algebra defined by the sensory data. This
means that the control law is not completely pre-specified, as in conventional control
systems, but rather it is inferred locally at run time as a function of the environment, the
stated goal and the control specifications.

The degree of autonomy is a quantitative measure of the amount of knowledge that is
generated at run time to complete a local instance of the control law. This measure is the
central discriminator between conventional control systems and knowledge based control
systems.

A des_,_ptive overview of declarative rational controllers is given in the next section.

3. DECLARATIVE RATIONAL CONTROLLERS

This section presents an overview of Declarative Hierarchical Controllers. Space
constraints prevent the detailed discussion of the mathematical basis behind some of their
characteristics. These can be found in some of the references. [8], [9].

The structure of a Declarative Hierarchical Controller is illustrated in Figure 1. It is
composed of four functional elements: a Knowledge Base, an Inference Mechanism, a
Theorem Planner and an Adapter. In the next paragraphs those elements are briefly
described.
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Actuator (A)
Theorem /

..... (G S,A ) I __ True
Planner "' _- Inference _ or

, FalseI ii

Knowledge
base

II II

Dynamic
Assert (6-3_ base

it

Assert (G)

t Adapter

Figure 1. Declarative Rational Controller

Knowledge Base: This element consists of a set of equational, fin'storder logic equational
clauses [10] with some extension whose characteristics are described next.

A clause in the knowledge base of a declarative rational controller with sensor semimodule
S, control action semimodule A, goal semimodule G, and internal storage semimodule X
and time set T, is one or more Horn clauses of the form:

°

Pi(x(t)) ¢= el'(x(t), y(t))^... ^
(3)

esi(X(t),y(t)) °

where _=. is the logical implication, ^ is the logical And, and x(t), y(t) are sets of
mappings of the form:

Let U =G xS xX xA,

X(t) = (Xl(t),...,Xn(t))

y(t) = (Yl(t),...,Ym(t))

with Xr: e U l = 1,...,n
(4)

Yt: _X /= 1,...,m
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The {xt }are called the external variables and the {Yt } are called the internal variables.

In (3), P/is termed the clause head. The logical interpretation of (3) is P/(,,,) is true if

eli (O0")riStrue and,,,, ej (ooo) is true. The ej' (o,,) are referred to as the terms of

the body of the ith clause.

Each term e/ x(t), y(t) is exactly one of 5 possible forms:

a) an equational term.

b) an inequational term,

c) a partial order term.
b

d) a clause name.

e) a frozen term.

a) An equational term is an expression of the fore1

w(x, = v (a, (5)

where w and v are polynomic terms associated in an 'algebraic variety VR defining
the domain of the control system.

In an equational term, the variables and parameter sequences are subsequences of
variables and parameters, respectively, the sequences appearing in the associated
clause head.

i i
The semantics of an equational term e_,,_ is a subset Enameof a cartesian product

• of the universe U in which the variables and parameters take values. In symbols
this subset can be expressed as

{ (/ ( /}_y) = xi length(x) = n x _ w x,y = v x,y
i

where length is a function that computes sequence length. Note that the set E_

is a function of the parameter sequence _. This set is a rational set.

b) An inequational term is an expression of the form
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where w, v, x, and Y are defined as in (5), The semantics of an inequational term
i i

e,,a._ is a subset Ena,.e of a cartesian product of the universe U defined as
follows:

i
i

i
Let D,_ be the following set:

Dina,_ y x I length(x) n x E , W x y., v x,y (7)

i
Then, E_ defined the compliment of D,_ respect UN.

¢.(r_)- -
This set is rational.

c) A partial order term is an expression of the form

where <a is a partial order over the one or more of the polynomial algebras

associated with the algebras in the rational variety.

i
The semantics of a term of.the form of (9) is the relation that is the set E_ (.7)

defined by

If the lattice La co_esponding to the partial order <__is modular, the set del'reed by
(10) is rational.

d) A clause name is the head of a clause in the knowledge base. Its semantics is the
intersection of the rational sets of the terms in its body. This includes recursive
clauses. For example, a clause of the form:

p (x,y) ¢= _ (x,y) = Vl (x,y)^ w2 (x,y) = V2 ^ P3 (x,y)

has semantics given by the set:

Ep(y) = EJ(y) N E_(y)1") E_(x,y)

where the semantics of the third term is the rational set associated with a clause.

e) A frozen term is an expression of the form:
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mt(relation, polynomial 1, p°lyn°mial2, variables, parameters) (11)

where relation is either _, or ,,_, or, ._t, and polynomial 1 and polynomial 2 are
polynomic expressions,

A frozen te_Tnis a term associated with a clause in which w is activated, i.e.,
unfrozen, as a consequence of the instantiation of another clause during an
inference process. Any term in a clause can be frozen during inference. The
purpose of this capability is to allow for context and _ of alternative
semantics, i.e., rational sets for a concept.

The terms w, v in (5) and (6) are polynomials [10] over an algebra B =<U,_> where U,

' the universe of the algebra is given in (4), and f_ is the set of primitive operations:

These operations satisfy the following axioms:

(i) (U, +, 0) is a commutative monoid, with unit 0

(ii) (U,, ,1 ) is a monoid with unit 1

(iii) For ali a, b, c in U

(a + b) . c=a. c + b. c

a. (b + c) =a. b + a . c

That is <U, +, *, 0, 1> is a semiring.

(iv) The set [ fr,r _ R] is a set of unary operations of the algebra, referred to
as the Custom 0perat0r_.. Their axioms, and computation values are
determined for each controller by the clauses in the knowledge base. This
means that each declarative controller C have associated with it a unique

algebra B c = <Uc, f_c>. The custom operators are the basis for the local
construction of the control law under composition.

(v) The algebra <U, f_> satisfies the central factorization principle. This
: principle states that a term w constructed by composition from primitives in

f_ is either a primitive or else can be expressed in finitely many different
ways in terms of derived operations of the algebra on some of its elements.

The denotational semantics of the clauses defined in (3) are one of the following

1) A conservation principle, or

2) An invariance principle, or

3) A control constraint.
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Conservation principles are logic statements about dynamic behavior of the controller,
associated plant or goal. These principles serve analogous roles to the ones played by mass
momentum and energy conservation principles in mechanics and thermodynamics.

Invariance Principles are logic statements establishing constants of motion in a general
sense. Examples include logic formulations of stationarity principles and geodesics.

Both conservation and invariance principles are characterized by equations or inequations
valid in the controller algebra andtherefore can be written as clauses of the form of (3).

Finally, control constraints include actuator and sensor limitations and the control
requirements. These can either be written in equational form or cise written in tems of
more general Horn clause forms. If a clause is not in the form of (1) it can be transferred to
a set of clauses of that form using Colmerauer's construction which is compatible with the
algebraic structure of elements of V,

The clause database is organized in a nested hierarchical structure as illustrated in Figure 2.
The bottom of this hierarchy contains the equations that characterize the variety V, termed
Laws of the Variety.

i i i i i , ,

Model builder realization
ii ii ii ii i

Dynamic control specit cations

Control performance specifications

ii i i 11_ I i

Genetic control Plant Goal class
specifications representation representation

[ ..... 1Laws of the variety
........

Figure 2. Clause Knowledge Base of a Declarative Rational Con:roller

At the next level of the hierarchy, three types of clauses are stored: Genetic Control
Specifications, Plant Representation and Goal Class Representation.

The generic control specifications are clauses expressing general desired behavior of the
system. They include statements about stability, complexity and robusmess that are genetic
to the class of declarative rational controllers. These specifications are written by
constructing clauses that combine laws of the variety using the Horn clause forrnat
described earlier.

The Plant Representation is given by clauses characterizing the dynamic behavior and
structure of the plant, which includes sensors and actuators. These clauses are written as
conservation principles for the dynamic behavior and as invariance principles for the
structure. As for the generic control specifications they are constructed by combining
variety laws in the equational Horn clause format.
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The next level of the hierarchy involves the Control Performance Specifications. These are
typically problem dependent criteria and constraints, They are written either in equational
Horn clause format or in rational tree format [4] which can be translated into this equational
form.

Dynamic control specifications are equational Horn clauses whose bodies are modified as a
function of the sensor and g0al commands. (See Figure 1.)

Finally model builder realization clauses constitute a recipe for building a procedural model
for variable instantation and theorem proving. Their function serves as an interface to the
inferencer whose operation will be discussed next,

Inferencer: This is an.on-line equational theroem prover. The class of theorems it can
prove are represented by clauses of the form:

Theorem (G(t),s(t),x(t),A(t+l),x(t+l))

unify (G(t), s(t), x(t); y(t)) ^

unify (A(t+l),x(t+l); z(t+l)) ^
$

A Pi_.(z(t + 1), y(t)) • (13)k=l

In expression (13), theorem is the clause head, t is the current time, G(t), S(t), and A(t+ 1)
correspond to the variables representing the goal command to the controller (G(t)) the
sensor inputs (S(t)) and the actuator commands (A(t+ 1)). Note that the actuator commands
to be generated, are one unit of time ahead of current time.

In the right hand side of (13) unify is a special factual clause head whose function is to
unify some of the external variables X(t) with the input output variables G(t), S(t), A(t+ 1),

and P/j ... P/kare clause heads of clauses in the knowledge base.

The theorem represents the desired behavior at the current update time. The purpose of the
inferencer is to determine whether the theorem logically follows from the clauses in the
knowledge base. A side effect is to find values in the universe of the controller algebra for
tuples of the form (G(t), S(t), x(t), x(t+l), A(t+ 1)) where G(t)_S(t), X(t) are given.

Note that the theorem is an encoding of a system of equations and inequations from the
knowledge base. So, proving the theorem is equivalent to solving this system.

The inference principle can be stated as follows: Let Z be the set of clauses in the
knowledge base. Let _ represent one or more partial orders in the universe of the
controller algebra. Then proving the theorem is equivalent to show.

Y2 _ L (14)



CONF-9007134
Page 151

In principle the proof can be accomplished by a sequence of applications of the following
axioms:

a) Equality axioms

Let w, v and u be polynomic forms in an FPS algebra. The equality inference principles
are:

al w ,, w identity

w = v
a2 v = w eommutativity

(w . _)^ (_ - u)
a3 w = u transitivity

a4 let Wl,...,w n, vi,..., vn be polynomic terms:

h. n-ary operation A W1 --- V1 A , ". , A W,, -----V,,

( ) ( ',h wl , ... wn = h vi, ... vn y
composition

p a substitution ^ w = v
a5 w p = v,p

a6 The equality clauses in the knowledge base are valid.

Briefly, al establishes that every polynomic form is equal to itself, a2 and a3 are self-
explanatory, and a4 says that if h is any arbitrary derived n-ary operation in the associated
algebra, then the equality of n pairs of terms is preserved by the operation. In a5 the
symbol p, termed a substitution, is an equation of the form:

x = u(z,y) (15)

where x is a variable, z is a sequence of variables not containing x, and _ is a
sequence of parameters.

As an example of the operation of the substitution inference principle, suppose that:

w(x, - y)
and let p be of the form:

x 1 = u(x_, y')

then upon the application ,of the substitution principle,

_,(,,r__,,,_ _ _ .__.,,¢,,t_ ,,,_ _ ,,_
_
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which is denoted by

w p = v p

Finally, a6 establishes that there is no conflict between the knowledge base clauses and the
inference principles of equality.

b) Inequation axioms

Let v and w be polynomic terms in an FPS algebra. The inequation inference principles
al_:

v ,_ w
bl w _ v symmetry

v_, w
b2 v = w set1 definition

set A complement(set, U, set1) A Vi Wl

b3 The inequality terms in the clauses of the knowledge base are satisfied.
,)

bl is clear, b2 says that if v _ w entails that the rational set associated with v -_w i s
set and the complement of set relative to the universe U of the semimodule is setl the
semantics of the term V1 = WI.

In b2 one exploits the fact that rational sets are both mappings and sets and
furthermore, if a set is rational its complement is also rational and therefore is generated
by a polynomic e4uatioi_, which is a member of the semimodul¢.

c) Partial orders axioms

Let w, v and u be polynomic terms in an FPS algebra B. For each partial order <_ctdefined
in B, the partial order inference principles are:

cl w <ct w identity

c2 w -<_t v A V-<_ U
w <ct u transitivity

c3

h is an n-ary operation Ah monotonicA w1 <ct v 1 ^ ... wn <ct v n

... ...
composition

c4 p asubstitution A w <g V
wp _<ct vp substitution

- c5 "lhe partial order terms m the clauses of the knowledge base are valid.
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In addition to c 1 -c5 the following compatibility principle is given

ac l w -<_tv ^ v -<Orw compatibility
w_<ct v

The meaning of these inference principles is similar to the corresponding principles for
equality.

d) Convergence principles

The convergence principles are formal inference principles derived from the defining
axioms of convergent sequences discussed in section 2.1. These principles, together with
the limit principles are t.obe given in e).

Both the convergence and limit principles are needed to determine solutions of equational
systems in the presence of recursion.

Let B be a rational algebra, B N the associated algebra of sequences with values in B, and
CN the set of convergence sequences that can be inductively built from z(n)and A(n) using
the following inference principles.

dl z(n) A A(n) _ CN z(n) = 0 Vn inifiality
n(n) = 1 Vn

a _ CN A b _- CN

d2 (a +sb) _ C N additiveclosure

a_ CNAc_ B
d3 c°a _ CN A a.c _ CN scalar closure

d4 a E CN ^ c E B
ac _ cN shift closure

e) Limit axioms

These are given by the following inference clauses.

el lim (z) = 0 A lim (A) = 1 initiality

a _ CN A b _ CN ^ lim a --- A A lim b _- B
e2

lim(a +s b) = A +s B
additive

preservation
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a _ C s A C _ B_^ lima = A
e3

lim(c.a) " coa A lim(a°c)'= AoC
scalar

multiplication
preservation

a _ CN ^ c _ B ^ lim a ,_ A
e4

lim (ac) _ A shift preservation

Note that in d) and e) the inference clauses include membership terms. These terms can be
written as equational terms by including in the custom operations of the associated base
algebra, Iill]i.q,_operation s.

Let a_ U the universe of the base algebra an indicator operation fa on the base algebra is a
function

fa: U _ U defined as follows:

1 a = x (16)sCa(X) = 0 otherwise

Indicator operations on the associated rational algebra are defined in terms of indicator
operations on the associated base algebra component wise.

Because rational sets are subadditive, each rational set can be decomposed as the union
(addition) of singletons that is in fact, the structure of the semantics of the elements in the
associated semimodule. Therefore, membership can be reduced to equational definitions of
the form of (16).

The following theorem summarizes the inference procedure.

Theorem: Given a controller algebra B, and the corresponding knowledge base Z then if L
is the system associated with the goal theorem, then there exists an effective procedure for
showing

Y_ _- L

Outline of the proof: Since B satisfies the central factorization principle, a finite chain of
applications of the axioms in 1-,2-, 3- will yield the proof.

The theorem above is an extension to rational algebras of a result for finite algebras due to
Evans [11].

Although theorem 1 guarantees convergence of the proof, it is a nondeterministic, highly
inefficient procedure. Therefore, for practical reasons, a more efficient but equivalent
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procedure has been developed [12]. This approach, which involves the construction of a
procedure for solving the system L, is outlined next.

The inferencer operates according to the following procedure.

Step 1. Unify the appropriate subset of the external variables £(t) with the current value
of G(t), S(t), and x(t).

Step 2. Search the database for the equations and inequations associated with clauses

P/j "'" P/k" The result of this step is a system of simultaneous equations and

inequations in terms of the unknowns, the subset of X(t) unified with A(t+ 1).
This system is referred to as the Active Set (As).

Step 3. Convert the system into the active set into a system of equations inthe canonical
form, This system is referred to as the Linear Set (Ls).

The object of step 3 is to rewrite the Active Set in a form which allows the
construction of a procedural model which in turn can be used to compute
instance values of the unknown. This procedural model is a locally Finite
Automaton. The canonical form of LS is given by a system of equations of the
form

X(t) = E_(t)) xct) + T(Y(t)) (17)

where E(.) is a matrix of appropriate dimensions with entries in the algebra of
formal power series over the controller Algebra B: B<M>, M is the locally finite

monoid generated by the set of primitive custom unary operations in B, OR,
and T(o) is a vector whose entries are elements of U<M>.

Step 4. Given the linear set (Ls), construct a Locally Finite Automation (LFA) for
solving it.

Step 5. Execute the LFA to obtain the values, if any, forA(t+l).

If the theorem (13) logically follows from the knowledge base (i.e., it is true), the
inferencer procedure outlined will terminate on step 5 with an actuator command value
A(t+ 1). If this is not the case, then the adapter is activated and the theorem is modified by
the theorem planner according to a prespecified strategy.

Before proceeding to discuss the theorem planner, a brief outline of the theory behind steps
3-5 of the inferencer will be presented. This theory is the central element of the paper.

In general, given a knowledge base of Horn clauses and a goal, the process of proving the
goal and finding instances of its variables can be carried out by a procedure, developed by
Kowalsky, known as resolution [13]. The Resolution Procedure is based on constructing
a tree (the Resolution tree) with the goal as its root and with the appropriate predicates of
the knowledge base at its branches.
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The resolution procedure consists of two subprocedures, a Navigator and a Unifier. The
Navigator is a strategy for traversing the tree. Most systems currently available use depth
f'u'st with backtracking as a strategy [14]. Theunifier, usually a variant of Robinson's
unification principle [15] is a general pattern matching re.cursive algorithm, which given a
set of clause heads, generates the Most General Unifier (MGU) associated with them.

In contradistinction with the approach discussed above, the infereneer of a declarative
controller builds a procedure for variable goal variable instantiation: a locally finite
automaton.

A locally f'miteautomaton is a non-deterministic machine with an arbitrary numberof states
(without loss of generality, it can be assumed that the number of its states is infinity), that

: satisfy the following condtions:

a) There is a f'mitenumber of states that are initial states

b) There is a finite number of states that are terminal states

c) Thebehavior of the automaton is the set of ali paths from initial to terminal states
(successful paths). This set is an element of a semimodule of formal power series
over the Controller Algebra B<M>.

d) Every successful path involves a finite number of automaton edges (this is the
locally finite condition).

e) Every successful path represents a map of the semimodule space G x S x A into
itself, where G is the space of goals, S is the space of sensor signals and A is the
space of actuator commands.

f) The Automaton is provided with an input and an output function: The input
function is of the form:

I: GxSxX _ GxSxSxA

(18)
z (g,s,x) --(g,s,x,_)

where @ is the additive identity in the semimodule A. The output function is of the form

O" GxSxA _ A
(19)

0 (g,s,a) = a

That is, O, is a projection function.

In synthesis, each successful path is a feasible control law.

The successful paths can be well ordered by any user defined optimization crite_'ion for
selection of the actual control law to be executed.

_
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Now the theorem planner is described. The theorem planner generates theorems of the
form of (3) according to a prespecified strategy. A theorem remains in effect as long as it
has truth value true. The theorem has truth value true if the system of equations LS have at
least one solution different from the empty set.

If the theorem is not true, the adapter (see Figure 1) activates the strategy procedure in the
planner. This produces a modified theorem to be proved.

This concludes the description of the concept of declarative controllers. A more detailed
description of this concept will appear in [16].

4. MULTIPLEXING IN DECLARATIVE HIERARCHICAL
CONTROLLERS

This section introduces the concept of multiplexing action in the context of declarative
controllers and establish its use for the control of robot manipulators. A detailed
description of multiplexing action in the context of a robot application can be found in [17].

Let A be an interval in the nonnegative real line. Let A1,...,An be subintervals of A such
that

A = A 1 U...U An (20)

A multiplexing action over A is a staircase function fa overA taking values in the
semimodule of control actions A such that

fix(t) =ai ai_A tEAi

A multiplexing action f over the nonnegative real line is a staircase function f_ over each
interval A on it.

A feedback multiplexing action over A is a term of the form

O(wi(g,s,x,a)) : IxGxSxXxA _A (21)
i = 1,...,n

Where wi is a polynomial of the controller algebra B; O is the output function of the
controller automaton introduced in the previous section and I is the set {1, 2,..., n }

A feedback multiplexing action over A with sub intervals AI,.., An generates a
multiplexing action fA(t):

f_(t)=O(wi (g, x, x, ai))=ai , t _ A t i = 1, ..., n (22)

A feedback multiplexing action over A is termed synchronous if the subintervals Ai i = 1,

..., n are ali equal. In this paper only synchronous multiplexing is considered.

Now the concept is particularized for robot manipulators.
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Suppose that a manipulator has a DC motor at each of its joints. Eaeh motors armature
voltage is driven at every instant of time by exactly one of three possible controllers: a
position controller, a rate eontroUer or a force controller further suppose that the time line is
divided into intervals of duration A and each A is further subdivided into 3 subintervals Al,

A2 A3 at each Ai, i = 1,2, 3, and for each joint only oneof the 3 possible eon_ollers
position, rate or force is active. Clearly this schema is a feedback multiplexing action over
A if it is assumed that the three controllers for each joint are generated as functions of the
form of (22).

Note that for an n-joint manipulator there are 3N+3 - 1 different eontroUers. So, the
function of a declarative controller is to select for each A interval and for each joint the type
of length -3 control sequence to be applied and then to determine the appropriate
polynomial of the controller algebrafor each element in the sequence.

As discussed in the previous section, this is accomplished by generating a locally finite
automaton and simulate it to generate the Valuesof the joint commands. The LFA at each A
interval is a representation of the proof of the theorem characterizing the task to be
accomplished by the manipulator in this time interval. This is illustrated with an example
inr he next section

5. EXAMPLE _

The concept of multiplexing declarative controllers will be illustrated with a simple
manipulator. The manipulator is a plannar three-link chain with rotational joints and a
rigidly attached and effector (Figure 3). The central characterisitcs of the manipulator are:

- The fists are assumed to be,solid rigid long cylinders

- The joints are driven by ideal permanen-magnet DC motors

- Each joint is coupled to its driving motor by a "sloppy" gear box whose
characteristics are shown in Figure 4. This gear box characteristic is similar to that
in each joint of NASA'S Shuttle RMS.

- Each joint is equipped with a position, rate and force sensors

- A sensor, which detects the quadrant in which the end effector is with respect to
= base coordinates, is attached to the end effector.
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The dynamicsofthemanipulatorisrepresentedintheknowledgebasewiththefollowing

Langrangianconservationprinciple.

3N+3_I

L=e-V- vi (23)

where E is kinetic energy, V is the physical potential energy and Vi are virtual potentials
representing the characteristics of the 3 types of controllers available at each joint in the
multiplexing schema.

The maneuver to be accomplished by the robot is the following. The end effector is to
follow a circular path exercising a constant force against it. The circular path defozm's
elastically under load. This is modelled as a preloaded spring distributed over the path.
The stiffness of the spring is constant and uniform along the path. The base of the _robot is
not located at the center of the circular path.

In addition, tolerance for end effector position angular velocity and force are provided.

The controller also monitors the health of the manipulator with respect to failures such as
joint runaways and tachometer failures and executes a crating maneuver if a failure is
detected.

The thereom that characterizes this maneuver is given by:

thereom (...) ¢= pos (r, b, c, ep) A

vel (r, b, c, ev) A

for (r, b, KEe ef) ^
HMS (...). (24)

In (24) pos(...) is the end effector position lemma, vel(...)is the end effector velocity
lemma, for(+..) is the end effector lemma, r is the radius of the circular path b is the rleative
position of its center with respect to the base, c is the vector of joint command

° (multiplexing actions) and ep, Ev, ef are the corresponding tolerances. HMS (...) is the
health monitoring lemma.
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A multiplexing declarative controller for this robot was implemented in Q_ntus Prolog on a

Sun 3-160 Workstation. Following are some sample results of a typical run. First A was

selected to be 6 milliseconds. Ai , i -1, 2, 3 was selected to be 2 milliseconds. The

maneuver was completed in 6.48 seconds. The system ran 1.5 times faster than real time.

Figure 5a shows the angle described by the end effector with respect of the base as a
function of kilo samples. Note that the path followed is nearly linear in angle (no detected
backtracking). Figure 5b, 5c, and 5d, show the position velocity and force potentials of
the end effector with respect to kilosamples. Note that these potentials, after an initial
transient reach a steady state which is maintained throughout the maneuver in spite of the
fact that the manipulator go through several singularities as can be seen in Figure 5e that
shows the path as detected by the quandrant sensor.

Notice also the effects of those singularities in the magnitude of the end effector angular
velocity, Figure 5f. _
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In summary, the concept of declarative multiplexing controllers was used in solving a
reasonably complex robot control problem and shows ali the advantages predicted by the
theory.

Finally the knowledge acquisition and coding took about 2 weeks.

6. CONCLUSIONS

A new class of knowledge based controllers was introduced. The class termed declarative
rational multiplexing controllers shows great promise for addressing the verification issues
discussed in Section 2.

In addition it was illustrated with the example, which is a representation of a wide class of
robot control problems, that the concept yields to feasible implementations.
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An Expert System for Tuning Particle 165

Beam Accelerators
D a ..el L. Lager, Hal R. Brand, and
Wilham J. Maurer
Engine, ering Research Division

Electronics Engineering

We have developed an expert system that acts as an ta_telligent assistant to operators tuning a

particle beam accelerator. The system incorporates three approaches to tuning:
• Duplicating within a software program the reasoning and the procedures used by an

operator to tune an accelerator. This approach has been used to steer particle beams through
the transport secti'on of LLNL's Advanced Test Accelerator and through the injector section of
the Experimental Test Accelerator.

• Ushag a model to simulate the position of a beam in an accelerator. The simulation is based
on data taken directly from the accelerator while it is running. This approach will ultimately be
used by operators of the Experimental Test Accelerator to first compare actual and simulated
beam performance in real time, next to determine which set of parameters is optimum in terms
of centering the beam, and.finally to feed those parameters to the accelerator. Operators can
also use the model to determine if a component has failed.

• Using a mouse to manually select and control the magnets that steer the beam. Operators
on the ETA can alsouse the mouse to call up windows that display the horizontal and vertical

positions of the beam as well as its current.
i , i i

(a frequent occurrence). MAESTRO is a software
Introduction program that blends physics models of the system

and operator heuristics. We chose the MAES'IRO
Particle beam accelerators are members of a acronym to emphasize the metaphor of a conduc-

class of large, complex systems that must be oper- tor unifying and coordinating the activities of con-
atecl by people rather than machines to be effec- trol, diagnostics, physics models, and post-run
tively controlled. When machines have been used analysis _ ali activities that are critical to the suc-
to control such systems in the past, they have fre- cess of physics experiments. Traditionally those
quently failed, usually because the conventional activities would have been separated, and different
approach of feedback control using a numerical people within different groups would have been
model of the system has failed. This failure occurs responsible for them. However, one of the advan-
because the system is strongly nonlinear, continu- tages of MAESTRO is that is imposes unity and
ally changes due to component failures, involves consistency on the system while it is also helping
physical phenomena for which satisfactory models operators tune the system more efficiently. As an
have not been derived, or may be so complex that example of the latter, operators can make much
it is simply too expensive to derive the model, more informed control decisions because they can

Despite these problems, individual operators are observe the simulation while the machine is run-
able to run such complex systems effectively. The ning. Also, physicists can quickly gain insight into
operators appear to have a set of small, rule-of- a particular phenomenon and make appropriate
thumb (heuristic) models for the various compo- changes to the model because discrepancies be-
nents of the system and to know how to manipu- tween the model and the machine are more readily
late those components to achieve the desired con- apparent.
trol.

In an attempt to duplicate the expertise of opera-
tors of large accelerators, we have developed an Particle Beam Accelerators
expert system called MAESTRO (Model and Expert
System Tuning Resource for Operators) that mo:l- A particle beam accelerator is a device that ac-
els the procedures involved with tuning such accel- celerates electrically charged atomic or subatornic
erators and with fixing them when components fail particles, such as electrons, protons, or ions to high

1
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energies, l.aboratory researchers use accelerators given experiment. The op0mum distribution or
to study high-energy physics problems that arise in "beam profile" is depicted in Fig.l, where the beam
the Weapons, Beam Research, and Magnetic Fusion pulse traveling dowa the beam pipe is on center
Programs. We have focused our efforts on two ac- within a few millimeters, all the electrons have uni-
celerators, the Advanced Test Accelerator (ATA) form axial velocity and zero transverse velocity,
located at Ll2qL's Site 300, and the Experimental and all are uniformly distributed within the pulse.
Test Accelerator (ETA) located at the Laboratory it- In reality the beam has nonuniform velocities and
self. The ATA is the more complex of the two and is subject to a variety of instabilities, causing it to
consists of an injector, an accelerator, a transport disperse at the nose and taft. (A common instabil-
section, _n emittance selector, a tuning dump, an ity is a corkscrew, named for the spiral shape as-
achromatic jog (a-jog) and a wiggler. The injector sumed by the beam.) Serious instabilities cause the
produces a pulse of electrons and injects it into a beam to break up or strike the wall of the beam
beam pipe, an evacuated pipe a few inches in di- pipe.
ameter running the length of the machine. (A Flgare 2 shows the devices used for tuning the
beam pipe with its ass(xSated components is called beam line. The beam bugs shown at the left of the
a beam line.) The accelerator section inca'eases the figure are diagnostic devices for determining the
energy of the electrons in the beam pulse up to beam position and current profile. A beam bug
about 50 MeV. An alignment laser guides the produces three oscilloscope traces as the beam
beam through the accelerator section and delivers pulse passes through it, one for the current, one for
it to the transport section. The transport section the x-position, and one for the y-posilSon. The op-
steers and focuses the beam into the emittance st,- erator determines if the beam has the desired axial

lector which "strips off" the electrons with unde- charge distribution and total charge by observing
sired energy. A bending magnet directs the beam the current waveform. The position waveforms
either to the tuning dump which absorbs the en- give the beam position along the horizontal (x) and
ergy in the beam while the operator is tuning, or to vertical (y) transverse axes of the pipe. Video cam-
the a-jog which moves the beam onto the wiggler eras record the light emitted when the beam strikes
beam line. The wiggler couples energy from the foils inserted into the beamline. The resulting ira-
electron beam into another laser beam, greatly in- ages give information on the transverse distribu-
creasing the energy in the laser beam. A typical tion of the beam pulse and are used to determine
experiment ts to deliver an electron beam into the the beam focus.
wiggler and investigate its characteristics for pro- Steering magnet,; change the direction of propa-
ducing gain in the laser beam. The ETA is some- gation of the beam. It requires a pair of steering
what simpler than the ATA and consists of an in- magnets a distance apart to displace the axis of
jector, an accelerator, a transport section and a wig- propagation without changing the direction. The
gler. One of the differences between the two is that first changes the angle of propagation and the sec-
the ETA accelerator increases the energy of the ond compensates for the angle introduced by the
electrons in the beam pulse to only about 6 MeV, first. Quadrupole magnets focus the beam and
without using laser guiding. Another difference is have the usually undesirable side effect of steering
that the wiggler couples energy into a microwave the beam when it enters off-center. A general rule-
beam, increasing the energy of the beam. In a typi- of-thumb is to keep the.beam on-center through the
cal experiment the ETA produces high-power mi- quadrupoles to suppress the unwanted steering.
crowaves that heat a magnetic fusion plasma. Both
accelerators have a variety of diagnostic devices Complications
that determine the beam's position within the pipe
and its energy distribution. Both systems also have The tuning task is complicated by things the op-
ancillary components (vacuum pumps, safety sys- erator can readily adapt to, but are difficult for
terns, cooling systems, and pulsed power systerna) computers to deal with. Since the machine is made
Ln their beam lines, further increasing their com- up of a large number of components, and since
plexity, many of them are highly stressed state-of-the-art

......... designs operating at high voltage and high current,
there are random failures in the hardware that oc-

Tunin, cur each day. Common occurrences are power

The goal when tuning an accelerator is to pro- out of position° Less often magnets will short- or
duce a beam that has the desired temporal and spa.- open-circuit. The operator handles these by peri-

__ tial energy and charge distributions required for a odically observing the status of the machine. If he

2
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Figure 1. Beam profile while tuning.
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Figure 7.. Components affecting tuning.
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can't correct the problem, he modifies his tuning change beam position he will vary both x and y to
strategies and attempts to tune anyway until the do it. He will also move a knob and if the beam
problem is fixed, steers in the wrong direction, he will just move the

The operator must also deal with unreliable di- knob the other way. The components are also ira-
agnostics data. There is a high shot-to-shot vari- perfect so they all need calibration curves. The op-
ation in the characteristics of the trace data. There erator easily deals with these problems because
are also bad sho_ that must be ignored entirely much of the tuning is aimed at achieving a position
when the machine misfires. As a result the opera- equal to zero (on center). However a model needs
tor observes several shots and determines an "av- more precise knowledge than an operator of the
erage" of the beam characteristics. He will also de- calibrations, positions, and orientations of the de-
vote one beam bug to watching the beginning of a vices if it is to compute a desired change in one
section so he can determine if changes in the bug step (an operator can determine a change experi-
he is observing are caused by his tuning efforts or mentally).
by changes in the beam characteristics at the input. Finally, the machine does not measure the same

Since these accelerators are research tools the way from one day to the next, even when all the
hardware is often reconfigured. Generally, the hardware is unchanged. Various critical aspects of
changes involve adding or deleting components, the machine are impossible to measure accurately
moving existing ones to different pla_s or chang- enough. For example the ion gauges that measure
ing the relationships among them (e.g., connecting the vacuum profile along the beam path are not
magnets to different power supplies). Another sufficiently accurate. As a result the benzene pro-
way the configuration can change is that during a file is not the same as before and the propagation
run the beam may be directed down different beam of the beam through the benzene is slightly differ-
pipes to do a desired experiment. T'he operator is ent. The physics of transport of a beam through
usually told of the changes at the beginning of a benzene are not well understood, so it is extremely
shift and readily adapts to the differences. How- difficult to compensate for the measurement sys-
ever, the expert system .had to be designed with an tem by modeling. The operator has evolved tuning
interface that could tell it about the changes and strategies that are relatively insensitive to these
could verify that the MAESTRO representation re- phenomena.
flex-ted the true machine.

Another complication the operator easily adapts Expert System Techniques
to is that the machine is not built exactly as de-.
si_ed. Beam bugs may be installed with their MAESTRO blends three distinct tuning ap-
measurement axes rotated away from perfectly proaches to achieve t:_etterpertormance than any
vertical or horizontal. The operator simply realizes one alone. A trade-off among these approaches
this and instead of just using the x-axis knob to can be made as the machine is modified or grows

3
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more complex, as the operators learn more of its edge of the machine than is economically feasible
idiosyncrasies, or as more is understood about its to encode into a computer program. Moreover,
physics. In the first approach, called "cloning the they can take into account information that may
operator," we encode as faithfully as possible the not be readily accessible to the computer such as
procedures and reasoning followed by the opera- the "sound" the machine makes when it is not nan-
tor. This was the approach taken for tuning the ning quite right. They may also be able to instantly
ATA because it was not possible within the allotted diagnose a failure because they remember what
time to develop an accurate model for the beam- happened when that same situation arose on a ma-
line. A disadvantage of only using this approach is chine they were tuning 20 years ago.
that operators may not be able to develop success- ............
ful procedures for the far more complex machines
being designed, such as the superconducting Cloning the Operator
supercollider. A second approach, model-based
tuning, simulates the beam propagating through The operators of the Lab's accelerators go
the sections of the machine. The notable aspect of through a set of procedures when their machines
this approach is that the model is hooked into the are first powered up. The procedures reflect two
actual system and is running at the same time the different kinds of reasoning by the operator. In the
machine is running, so the simulation is bared on first instance, the operator inconcerned with the
measurements that are being made by the machine overall tuning of the machine ("global strategy").
at the moment the machine is making them. This Global strategy is made up of many lower-level
approach allows the operator to compare the simu- "local strategies" that are each concerned with the
lation with the actw-I beam position, to choose an tuning of a small section of the machine.
optimum set of parameters for centering the beam, When operators are performing a local strategy,
and to download those parameters onto the real they reason about com_x:_nents upstream (opposite
machine at a substantial savings in time. The dis- the direction of propagation) and downstream
advantage is that it may not be economically fea- from a chosen diagnostics device. For example, as
sible to develop a sufficiently accurate simulator, shown in Fig. 3, when steering through the trans-
either because the machine may be too complex or port section, the operator observes the trace data
because it changes too often due to component fail- and determines there is a position error at a bug.
ure. The third approach is to tune the system He reasons about the devices downstream and de-
manually, but provide the operator with more cides whether it is desirable to correct the error at
powerful tools for tuning the machine. For ex- this bug or to ignore it a_'Ldexamine the next bug.
ample, this might take the form of displays derived He reasons about devices upstream to decide
from the raw data or different interfaces that make which can be used to correct the error. He usually
it easier to control the machine. The goal is to chooses a steering magnet and changes its field
achieve a blend of these approaches that minimi_s strength until the position error is zero.
the time required to tune and maximizes the time In pseudo-english form this strategy can be de-
available for performing physics experiments, scribed as:
Each _f these approaches is discussed below. Walk the bugs of the transport section moving

Actually, no matter which approach we stress, downstream from the one nearest the injector --
we will always need the manual approach because if the position error at a bug is too large and the
operators will almost always have more knowl- error can't be ignored

iiiiiiii!i}i iiiii i iii  i!!!i! ii !  iiii ii i!iiiii iiiii!iiii N  iii ii iii  iii ii iiiii iii!iiiiiiiii i..ii!1i!N  i! iii  iii ii!ii ®!i 'iiliiii i   iiiii! . ii! iiiiiiiiiiiiNiii!i!illi',iiiii!iii iiiiii4i',ili ' iii',iii}iiiiiii ,iiiiiiiiiii ,iiiii i !
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Figure3. The operalor reasoning about devices upstream and downstream from a bug.
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then reduce the error to zero by tweaking the according to what state the accelerator is in; that is,
steering magnets upstream whether the accelerator is _n the start-up, coarse, or

if there are none, align the laser fine-tuning states. One of these states is listed in a
if there are two with no quadrupole so-called pre-condition field of each MDS. F,ach
betw_n them, use them as a pair MDS also contains a post-condition field, within
if the first upstream steerer is too close, use which is listed the result of successfully executing
the second one upstream the MDS. For example, if a particular MDS has a
otherwise use the first upstream steering pre-condition field that lists initial start-up, then
magnet the post-condition field would state that the beam

Note that this strategy is relatively unaffected by has reached the tuning dump. We have also devel-
component failures, since a failed component is oped an ,_I program called an inference engine to
simply deleted from the beamline and is no longer manipulate the MDS's and perform the global
considered as an upstream or downstream compo- strategy. The engine first checks to see which state
nent. • the accelerator is in; next, it matches that state with

The global strategy is concerned with properly one of the MDS's that lists the state in its pre-condi-
applying local strategies, based on the present state tion field; next, it selects one of these MDS's and
of tune of the machine. The guiding philosophy is executes it. Executing the MDS puts the machine
"focus and steer the beam but don't put the beam in a new state (not necessarily the one listed in the
into the wall." Given that philosophy, the opera- post-condition), then the cycle of match, select, and
tors first check each major section of the accelerator execute is repeated until the accelerator is tuned.
to see if the beam has arrived from the previous We applied the MDS and inference engine pro-

. section. If it has not, the operators go back to the grams to the problem of centering the beam in the
previous section and use a coarse steering tech- transport section of the ATA accelerator. Our ini-
nique to get the beam through the section. Once tial approach was to decompose the steering prob-
the beam has made it ali the way to the tuning lem into two simpler, decoupled problems;
dump (that portion at the end of the accelerator namely, centering the beam in x, then y. We
that can absorb the full energy of the beam without thought this was possible because our system had

: disrupting the ._stem or damaging components), "knowledge" of the beam bug rotation angles and
the operator goes back to the begining of the trans- other information that would enable decoupling
i:_ortsection and meticulously centers the beam the x and y steering. Unfortunately this approach

. while monitoring the beam current at the tuning w_s unsuccessful because there was coupling be-
dump. We have encoded the local strategies fol- tween the vertical and horizontal steerers that we
lowed by the operator in a representation we call a were unable to represent given our time con-
Monitored Decision Script (MDS). An MDS is an straints. Instead we modified our approach to
extension of the notion of scripts introduced by more faithfully incorporate the strategy used by
Schank. _ Scripts are used to represent step-by-step the operator. This was performed in two phases.
procedural knowledge. The canonical example is In the first phase we diagnosed a pair of steerers
the script for eating at a restaurant _ first you are and determined which more strongly influenced
seated, then you order, then you eat, then you pay, the x position and which the y. In the second
and then you leave. These things have to be per- phase we centered the beam using the steerers by
formed in order, but exactly what is done at each repeatedly halving the error in x, then y, using an
step is decided when you visit a particular restau- optimization algorithm. 2 This approach success-
rant. We use _e Script part of an MDS to repre- fully automated the centering of the beam.
sent the procedures involved in performing the lo-

cal strategies. The Decision part of the MDS name Model-Based Tuning
comes from the decisions that must be made when

en'ors are detected (say when a magnet doesn't re- For the ATA discussed above, we chose to clone
spond to a request to change its field because the the operator as the best way to automate the sys-
supply connected to it has failed). The Monitor tem, given the complexity of the accelerator and
portion of the name comes from monitors that are the limited amount of machine time available to us.
periodically examined to check the health of the For the ETA we chose to model the system because
system. This emulates the behavior of the operator, the ETA is less complex than the ATA and there
for example, when he periodically checks to see if has been more of an opportunity to get onto the
the laser alignment has drifted off position, system and model the various components. Conse-

To implement the global strategy, we have writ- quently, ttus fiscal year we are much t:lo_r Loa
ten a number of separate MDS's that are grouped tuning model of an accelerator.

5
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Making use of such a model involves two dis-
tinct phases. The first is the "commissioning"
phas@ during which the simulator is matched with
the real accelerator by measuring what effect each
component has on the beam. This phase forces
proper bookkeeping because the effect of each
component on the beam trajectory must be calcu-
lated accurately for the model to work. Any rota-
tions, tilts, offsets, and miscalibrations must be
eliminated or incorporated into the model during

this phase so the simulator and real machine pro-
duce the same beam trajectory. As part of the com-

missioning phase we have developed procedures
to measure various beam parameters. For ex-
ample, we measure the effects that steering mag-
nets have on beamposition by sweeping horizontal
and vertical steering magnets through a range of
values, producing the cross-shaped pattern in Fig.
4. Similarly, we measure the effects that solenoid
magnets have on focus by sweeping through a Figure 4. Variation of x and y beam positions as the
range of settings, producing the spiral-shaped pat- verticaland horizontal steering magnets are swept
tern shown in Fig. 5. We have started the commis- through a range of values.
sioning phase on the injector section of the ETA ac- .......
celerator and have chosen the smallest subset pos- !ii!_!! _!_..--.!!_

sible: one magnet followed imn_iately by a _i

beam-bug. Once the effects of these components _ E_:...:.,.:__ :_:_:_:___
have been measured, we will commission the re- _ _i_i_ _,_,_:':_

rosining injector magnets and then proceed down i _i_i_ :i!i!!!

the accelerator beginning with the first ten-cell set. _ iiiii_
Once we're finished with the accelerator, we will _i!Ii ,.,._-:__

tackle the remaining beam lines. !_i•:..,_.. ._.

As discussed above, during the commissioning :.:::_i:i _:_
phase, we bring the simulation model and the ..... ::i.!_!!ii!
accelerator into relative agreement. In the second, :.i_:::_::!ii::ii!!ii_:':_:: -:.....
operational phase we can actually begin to tune the ii!iii_:iiiiiiiil::i::.:!::.:i
accelerator and diagnose failure. TOtune the iiiiiiiiiiiiiiiii_i'i'i'i_ ....

accelerator, the first step is to turn the system on iliiiiiiiiiiii!, !i_.!.':':.......

and measure actual beam position in the i::i_!iiii_':::::ii_...........
accelerator. Given these measurements, the initial ':_:_......::::::_:: ....

estimate the launch conditions of the beam-its iii{_iiiii!i!l!!i!!!!i!::i+i,_
initial position and transverse velocities (denoted :._i_._i_i!::i!i..... ''"
as x, x', y, y'). These conditions are estimated by ii::i::_::i::iii
fitting the measured data to simulated data and Figure 5o Variation of x and y beam positions as the
then varying the launch conditions to get the best solenoidal field is varied through a range of values.
fit. Finally, we can use a nonlinear parameter The solenoidal field causes the beam to spiral as it
estimator (part of the simulation model) to select passes through the magneL As a result, varying the
tuning parameters that will center the beam. field causes the locus of points representing the beam

position to assume a spiral shape. The spiral becomes
Obviously, a very large number of tuning
parameters are available. Initially, an experienced tighter as the field increases.
operator will select a subset of these for tuning,
and iten:te the process with different subsets.
Eventually, the operator's knowledge and
experience will be encoded into an expert system
that will select the subset of tuning parameters and
will decide how much iteration is necessary.
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When the simulation model and the accelerator only a few possibilities. Beam redirection
go out of relative agreement (due tocomponent experiments can then be performed to further
failure), the model can be used to find those isolate the accelerator-model discrepancy.
regions within the accelerator where there is still Selection of these experiments will initially be done
agreement. For a single component failure, there by experienced operators, but will eventually be
will be two regions of agreement roughly included within the expert system's capabilities.
surrounding the failed component. From this When the problem is finally found, then either the
information, a list of suspect components can be accelerator can be fixed and/or the model can be
compiled. With the aid of an expert operator (or updated with the (fit) error information, and
eventually, an expert system), a number of possible tuning can proceed as before.
failures can be proposed. The nonlinear parameter In conclusion, model-based tuning promises to
estimator is then used to estimate both the put more science into the art of tuning and lead to
magnitude of the proposed error and the a more rigorous understanding of the machines.
improvement in the model's predictive ability, ' The model enables operators to "see" the effects of
given the proposed error and the data currently their tuning in the regions between (not covered
available from the acceleratorsensors. With this by) sensors. Given suffidently accurate models it
information, many proposed errors can be rejected should be possible to determine _set of parameters
because either the magnitude of the error is beyond that will change the present state of the machine to
reasonable limits; or the improvement in the model a desired (tuned) state in a single step.
by the addition of the error is too small. In the Experiments can be performed off-line using the
ideal case, one is left with only one reasonable model to determine, for example, the effects of
error. In the other cases, one is normally left with adding new components to the beamline at far less
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expense than would be the case if the real machine vs distance down the bean'dine.
were used. There are also windows for displaying histori-

cal data. Clicking the mouse over a beam bug
Manual Interface icon causes a "shot history" window to appear.

By clicking the mouse Over buttons on the win-
The manual interface for MAESTRO is shown in dow the operator can view all the oscilloscope

the screen dump in Fig. 6. The interface consists of traces acquired for that bug for that day's run.
several windows that become visible on the screen ,. .......
as necessary. The Machine Interrogation and Con-
trol (MICA) window is the main one for interacting FtltU1"e
with the system. It consists of two panes, one ............._:
above the other. The top pane displays the output We are planning to improve the shot history
from the simulator, showing the horizontal beam mechanism so that it can not only manipulate
position as a thick line and the vertical position as a past shot data but also past machine ¢ortfigura-
thin line. The lower pane shows a set of icons de- tion data. For example, we want to have the abil-
picting the components in the beamlineo The loca- it), to re-do the signal processing with different
tions of the icons and their shape are derived from control parameters. We also want to be able to
the information describing the bearttline in the ask such questions as, "During the last three
MAESTRO knowledge base. Components added months what was the highest current magnitude
to the beamline are automatically included in the measured when the machine had the long colli-
MICI display once the information has been added mator installed?" Our approach is to develop an
to the knowledge base. unstructured database based on the artificial in-

The operator controls the magnetic fields by po- telligence representation scheme known as a se-
sitioning a cursor over an icon with a mouse, mantic network.
Clicking over a vertical steering magnet icon, for We are also developing the ability to acquire
example, causes power supply control windows to image data from cameras observing the beam
become visible below the MICI window (Fig. 6). striking foils inserted into the beatrdine. We will
By clicking the mouse as the cursor is positioned in apply image understanding techniques (the abil-
the windows we can increase or decrease the cur- it3, of an AI program to interpret or judge a visual
rent in the appropriate power supply by a given in- image) to determine the position and focus of the
crement, beam.

The Scope Display window is used to control - ,..........
and display data acquisition. Clicking the mouse
over the appropriate label in the window causes Summary
data to be acquired and displayed as a set of three
traces in the window: the time history of the beam The MAESTRO software environment was de-
current, x position, and y position. The actual loca- veloped to function as an intelligent assistant to
tion of the beam within the pipe is derived from an operator tuning complex systems such as par-
the trace data after accounting for sensor misalign- ticle-beam accelerators. It incorporates three ap-
ment and is displayed in the circular "bulls-eye" proaches to tuning. The "cloning the operator"
displays in the upper part of the window, approach uses an inference engine and the MDS

There are other windows that display additional representation to encode the strategies and rea-
derived data. A "position display" window shows soning followed by the operator. The model-
a value vs position down the beam line. A "bug- based approach makes use of a beamline simula-
walk," for example, makes position displays that tor and a non-linear least squares parameter esti-
show peak current, x position, and y position at the mator to first "commission" the model and then
locations of the beam-bug position monitors along determine optimum tuning parameters. The third
the beamline. Similarly a "magnet-walk" shows approach lets the operator perform tuning manu-
the fields at the centers of the magnets vs their 1o- ally and provides him with displays that easily let
cation in the bearnline. Three magnet walks ap- him determine the machine status. Finally, a his-
pear in Fig. 6 showing the solenoidal fields (labeled tory mechanism lets the operator view past data
PD--B), the horizontal steering fields (labeled PD- to compare the present tune with ones previously
H), and the vertical steering fields (labeled PD-V) obtained.

- 8
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INTRODUCTION

In recent years, advances in computer technology have gone hand-in-hand
with the introduction of computers into new application areas. The problem of
safety has gained importance as these applications have increasingly included
computer control of systems where the consequences of failure may involve
danger to human life, property, and the environment.

System-safety engineering has the goal of designing acceptable safety levels
into systems by identifying and controlling potential hazards. Increasingly,
system-safety engineers are finding themselves faced with the problem of ensuring
safety in systems controlled by digital computers. At the same time, software
engineers are being confronted with ultrahigh reliability requirements such as 10-9
probability of failure over some fixed time. These requirements are essentially an
attempt to prevent accidents by building virtually perfect software, and they are
obviously impossible to guarantee (or even to measure) with today's technology.

But perfection may not be necessary to prevent accidents. This is something
° that has long been recognized by hardware engineers, probably because they had

no way to prevent wear-out failures in hardware and, instead, had to design to
cope with failure. Although software-design perfection is theoretically possible, it
may not be practical to achieve this in complex systems. An alternative is to
take the hardware approach: to prepare for failures and try to minimize their
consequences.

The goal of software safety is to ensure that software executes within a
" potentially hazardous system without causing or contributing to unacceptable

risk of loss such as death, injury, property damage, environmental harm, financial
ruin, and security leaks. Safety is enhanced if the risk of accidents is reduced,
even though the process of risk reduction may require the (perhaps temporary)
nonsatisfaction of some or all of the functional or mission requirements of the
software or of the encompassing system.

Often, the design constraints needed to optimize safety conflict with those
needed to optimize other qualities, including the probability of accomplishing the
basic mission or functional requirements: Even if complete safety were achievable,
it might cost too much in terms of resources and reduced functionality. In fact,

_
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few things in life are completely safe; how much risk is considered acceptable _
depends on the estimated value of the benefits of the activity compared to poten-
tim losses. Identifying and specifying the safety requirements early in the develop-
ment process and establishing priorities when conflicts arise helps in the
identification and evaluation of any necessary trade-offs.

Safety must be built into software starting from the earliest stages of system
development and continuing through each step of software development. The
goal of the Safety Project at UCI is to develop a set of techniques and tools that
extend and adapt to software the methods used to control risk in the larger sys-
tem within which the software is embedded. The approach combines standard
software engineering techniques with proven system-safety engineering techniques
and special software-safety techniques.

Because safety problems are system problems, solutions must, of necessity,
involve an integrated, consistent, system-wide approach. This haz resulted in our

merging system engi)aeering mad software engineering (especially software require-
ments engineering_ techniques. Our approach is an engineering approach that
emphasizes modeling and analysis using both formal and informal techniques.
The resulting software-safety techniques and tools now appear as recommended
approaches in military standards and handbooks and are used around the world.

TECHNIQUES

Verification of safety differs from the usual verification of correctness in that
the goal is to increase confidence that the code will never let an unsafe state be
reached, although it may still be possible to reach an incorrect but safe state.
Because the goal differs, different techniques become feasible and useful.

Safety'verification techniques often start from a hazardous output and work
backward through the code or design either to demonstrate that the software
cannot produce that output or to determine the conditions under which it can
[LH83] One reason that backward analysis is practical for safety is that the
number of unsafe states is usually much smaller than the number of incorrect
states.

Safety analysis activities should span the entire software development pro-
cess. This has several advantages: (1) errors are caught earlier when they are
easier and less costly to fix; (2) information from the early verification activities
can be used to design safety features into the code and to provide leverage for the
final code verification effort; and (3) the verification effort is distributed through
the development process instead of being concentrated at the end. Ideally, each
step merely requires showing that newly-edded detail does not violate the
verification of the higher-level abstraction at the previous step. These
verification activities may have both formal and informal aspects: static analysis
using formal proofs and structured walkthroughs and dynamic analysis involving
various types of testing to provide confidence in the models and the assumptions
used in the static analysis.
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Our techniques can be divided up into those for software hazard analysis,
software requirements analysis, software design, code analysis, and configuration
control and maintenance.

Software-hazard analysis. A hazard is a set of conditions that can lead to an
accident (unacceptable loss). The goal of software-hazard analysis is to identify
and categorize software-related hazards by likelihood and potential severity. For
complex systems, it may be impossible to guarantee that all hazards have been
identified and correctly assessed. But it is possible to make the system safer by
optimizing the design according to the hazard assessment and then planning con-
tingency actions in case a mistake has been made.

Determining all causes of a hazardous state is muchmore difficult than iden-
tifying hazards. Fortunately, this is not required to make a system acceptably
safe. At worst, many systems can be designed to detect that a hazardous condi-
tion exists (without knowing why or how it occurred) and to take protective
action such as failing safe. At best, analysis techniques can identify and prevent
some potential causes, thus eliminating the need to fail into a safe state in those
cases and increasing the system's overall reliability and effectiveness.

System-safety engineers have standard procedures for identifying system
hazards. Once system hazards have been identified, fault-tree analysis or other
modeling and analysis techniques can help to identify the software hazards
those actions or inactions of the software that alone or with other events can lead

to the identified system hazards. We have devised algorithms for software hazard
analysis and demonstrated their use on Petri-net models [LS87]. Our techniques
help to determine software safety requirements directly from the system design;
provide procedures to analyze a system design for safety, recoverability and fault
tolerance; and provide guidance in the use of failure detection and recovery pro-
cedures. For most cases, the analysis procedures require construction of only a
small part of the reachability graph.

We have recently extended this work to statechart models by adding an
environmental-interaction model to statecharts and providing further analysis of
the effects of failure [MELg0]. Most software requirements specifications model
only the behavior of the software component. Much useful analysis can be per-
formed on such models of the software requirements and many important types
of errors detected. However, many of the most important problems in require-
ments specifications involve the interface between the software and the process
being controlled. In order to find these, the model must include at least some
aspects of that interface. We have defined a model, which we call an Environ-
mental Interaction Model, and have illustrated it by extending the Statechaxts
modeling technique. Standard system engineering analysis procedures, such as
Failure Modes and Effects Criticality Analysis (FMECA) and Fault Tree Analysis
(FTA), can be performed on this combined model, and we have provided algo-

• rithms to accomplish this. The result provides a partial bridge of the unfortunate
gap between system engineering and software engineering.
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Once software hazards have been identified, they can be used to write
software-safety requirements (or constraints), which then must be shown to be
consistent with the software-requirements specification.

Software Requirements Analysis. Software requirements errors have been
found to account for a majority of production software failures [BMU75,END75]
and have been implicated in a large number of accidents. Errors introduced dur-

ing the requirements phase can cost up to 200 timesmore to correct than errors
introduced later in the life cycle [BOE81] and can have a major impact on safety.
In fact, safety engineers have concluded that inadequate requirements
specification and design foresight axe the greatest cause of software safety prob-
lems [LEV86]. Therefore, techniques to provide adequate requirements
specifications and to find errors early axe of great importance.

We have recently been working on the semantic analysis of requirements
specifications. In process-control systems, minor behavioral distinctions often
have significant consequences, lt is therefore particularly important that the
requirements specifications distinguish the behavior of the desired software from
that of any other, undesired program that might be designed, i.e, the software
specification must be both precise (unambiguous), complete, and correct (con-
sistent) with respect _to the encompassing system requirements.

Our goal is to provide analysis procedures to help find these types of flaws
(i.e._ ambiguity, incornpleteness_ mad inconsistency with system-level require-
ments) in the software requirements specifications for process-control systems.
Special emphasis is placed on robustness and timing. The approach involves
bui..!ing a formal model (the requirements specification) and then analyzing it to
ensure that the properties of the model match the desired behavior. Some of the
analysis procedures involve the checking of consistency with criteria that must be
satisfied by all such systems; these criteria often arise from the basic properties
inherent in any process-control system. Other procedures rely on heuristics that
can be used to improve the specification by examining, within the context of the
particular process being controlled, properties that are often present in such sys-
tems.

Because our goal is to provide general semantic analysis procedures that can
be applied to any black-box, behavioral requirements specification, we have dev-
ised a notation and analysis model that is independent of any specific, existing
requirements language -- a requirements state machine (tZSM) --which is an
abstraction of most state-based specification languages. The criteria and analysis
techniques defined on the RSM can be easily mapped to many of the current
real-time requirements specification languages. Our goal in doing this was not to
provide another language for specification of requirements; the formal notation is
for the purpose of providing rigor in defining the analysis procedures mad criteria
while requiring only a small number of primitives that are easily mapped to exist-
ing specification languages.

To date, we have defined the formal criteria that imply the types of
specification correctness important in process-control software [JLHM91]. We are
currently working on designing a real-time specification language that supports
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the type of modeling and analysis required to ensure these criteria. Tl_s work is
being done in the context of a real-life, safety-critical avionics system, Because
this work is being performed for a government agency, the resulting system
requirements specification must be readable and reviewable, with very little
instruction, by employees of the government and industrial representatives
world-wide who axe not computer scientists but rather a,pplication experts. At
the same time, it must be usable as a software requirements specification and be
expressed in a formal language that is amenable to safety analysis. Our approach
to these constraints is to take a two-tier approach with a readable but precise
and graphical top-level requirements specification that is tightly coupled with a
lower-level specification amenable to formal analysis. The language will incor-
porate the best features 0f existing languages such as Statecharts [HAR87] and
the A-7 specification language [HEN80] with new features added when existing
languages do not fulfill our needs. Once the specification is completed, formal
safety analysis procedures will be devised based on our previous work on safety
analysis and semantic analysis of requirements.

Software Design for Safety. Once the hazardous'states are identified and the
software-safety requirements determined, the software can be built to minimize
risk and to satisfy these requirements. Although safety-analysis techniques are
necessary and useful, system safety cannot be ensured by analysis and verification _
alone: The analysis techniques may be so complex that they are themselves
error-prone, their cost may be prohibitive, and high-confidence elimination of ali
hazards may require too severe a performance penalty.

Therefore, hazards will need to be controlled during the software's operation.
A safe software design includes not only standard software-engineering techniques
to enhance reliability but also special safety features such as interlocks, fail-safe
procedures, and safety monitoring or assertions to control potential hazards.

At the high-level design stage, information about the software hazards and
safety constraints can be used to identify safety-critical items (processes, data,
and states). The identification process might involve backward flow analysis
from hazardous outputs or other types of analysis procedures. We are working
on procedures to derive safety invariants for each safety-critical module from the
safety constraints [CHAg0]. This information is important in the later
verification steps and also in the design of assertions or other execution-time pro-
tection mechanisms.

Once the critical items have been identified, they can be subjected to special
treatment in the design. For example, safety will be enhanced and later safety
analysis simplified if the safety-critical code, variables, and states are minimized,
isolated and protected. Isolation may, for example, be useful in satisfying certain
types of safety constraints that involve enforcing separation such as ensuring that
a safety-critical function is not inadvertently activated. Safety-critical data also
needs to be protected from accidental alteration. Security techniques might be
used to accomplish these goals. Rushby has shown how an idea from security,
i.e., the encapsulation kernel, can be used to enforce certain types of safety
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constraints such as the isolation of critical modules [RUSS6].

The safety analysis during high-level design results in a set of design con-
str_nts or assumptions that imply the overall software safety constraints. The
low-level design must be shown to preserve these high-level design constraints.
The analysis is also used to tailor the high-level design in order to reduce the
necessary safety verification in the later stages of development.

The amount and type of safety analysis that can be accomplished during
low-level design depends on how much and what kind of information is included
in the low-level design Sl_cification. Not only must it be shown that the specified
behavior of the individuaj[ modules preserves the individual module safety invari-
ants (which were derived in the high-level design analysis), but it must also be
demonstrated that the modules executing together preserve the high-level design
constraints if this has not already been accomplished in a previous step [CHA90].
In addition, it may be possible to demonstrate that safety-critical variables and
modules are adequately protected from errors in other parts of the software, at
least at this level of abstr'action. If a formal design language has been used, then
formal analysis is possible. Again, information from this analysis can be used to
design protection against hazards into the software.

I have laid out some general approaches to relating safety and software
design [LEV86]. Our firs_; attempt at investigating this relationship will be com-

, pleted soon [CHA90]. We plan further work on this topic.

Code Analysis. Finally, after the coding has been completed, formal ._ld infor-
ma/ verification is needed to ensure that the actual code is consistent with the

assumptions made in the low-level design analysis, e.g., that the code preserves
the module safety invariants, that the protection devices have been implemented
correctly, and that the s_ety-critical functions have been properly isolated. In
general, the goal at each of the analysis levels -- requirements, high-level design,
low-level design, and code -- is to move the assurance of safety to the highest
level of abstraction possible and then to show that the assumptions of this
analysis are preserved throughout each of the levels of mapping down to the
code,

The code-level analysis will probably involve a combination of techniques,

including testing, formal proofs, and informal verification techniques such as
Software Fault Tree Amdysis [LH83, CLS88]. We have developed and demon-
strated such techniques, and they are now used in industry. Currently, we are
working on a tool to aid the analyst in performing software fault tree analysis.

Configuration Contro]t and Maintenance. Whenever any changes occur to
the software, either because of detected faults or because of functional enhance-

ments, a safety analysis is needed to ensure that the changes are safe. This
analysis starts at the higllest level involved in the change' It may be necessary to
start from the requirements analysis if the change involves a system safety con-
straint or the basic software functional requirements; in other cases, it may be
necessary only to redo aspects of the design and/or code analysis. Some types of
changes may not be allocated due to their potential decrease in the safety of the
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software or because they are deemed not worth the effort, of recertification of
safety.

Planning for such changes can help to minimize the re-analysis that is neces-
sary. For example, one of the reasons to isolate safety-critical functions and data
is to minimize the re-analysis resulting from changes in both safety-critical and
non-safety-critical modules. Our methodology incorporates such concerns
throughout.

CONCLUSIONs

Software safety is only recently beginning to be considered a tmique and
important software quality. Focusing ou safety separately from other qualities
allows conflict resolution and careful decision-m_,ing about trade-ofrs, allows
differential handling of erroneous states, provides discipline and procedures to
deal with errors, focuses attention and provides the possibility of assigning
responsibility, and allows measuring and ensuring safety separately from other
goals -- a requirement of most regulatory agencies.

The US Defense Dept. now has strict standards (such as Mil-Std-882B)
reu2_iCng special procedures for safety-critical system software. With the increas-
ing number of accidents, interest in software safety is rising among other regula-
tory agencies, and new standards for safety-critical software are beginning to
appear around the world.

The goal of the Safety Project at U CI is to provide support for development
of safety-critical software that will allow software with acceptable risk to be built.
Considering that there are no current practical software engineering techniques
that alone allow such a high level of assurance as is required in most of these sys-
tems, our approach is to provide layers of protection while not depending on any
one to ensure low risk. This approach augments good software engineering prac-
tice with (1) analysis procedures to identify hazards, (2) elimination and control
of these hazards through various types of hardware and software interlocks and
other protective design features using several layers of protection and backups.,

(3) application of various types of safety analysis techniques during the software
development to provide confidence in the safety of the software and to aid in the
design of hazard protection featur_ s, and (4) evaluation of the effectiveness of the
analysis and design procedures to assess the level of confidence they merit.

Whether this approach is adequate depends upon the acceptable level of r_:'k
and how effective the software safety measures and external protection again,st
software errors are judged for a particular application.
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Introduction

The sample rate and control computations of a digital control system are typically selected to
achieve the best tradeoff arnong many costs and benefits. Once the sample rate is chosen, the tasks of
data transmissions and control computations in each sample period arc considered to be time-critical.
Every time.critical task must meet its timing constraint, which is typically specified in terms of its
deadline, lt is essential for the task to complete and produce its result by its deadline. A timing fault
occurs when the result is produced too late; such a result is of little or no use. In other words, the
embedded computersystem which carriesout the computations andsupervises the data communication is
a hard real-time systems. (Hereafter, by a real-time system, we mean a hardreal-time computing system,
unless it is stated otherwise.) A primary design objective of the operatingsystem or application in a real-
time system is to guarantee that ali critical timing constraints are met at ali times. Other optimization
criteria, such as throughput and resource utilization, are typically of minor importance.

The rapidadvances in computing andcommunication hardware, distributed and parallel algorithms,
and artificial-intelligence techniques have accelerated the progress in real-time computing. The next
generation real-time systems are likely to be based on parallel and distributed architectures, use highly
parallel algorithms, and perform complex and intelligent functions. This paper discusses several critical
problem areas in distributed, real-time operating systems and databases, together with our recent research
efforts and futuredirections_f. Specifically, Section II discusses the problems of end-to-end scheduling to
meet deadlines in distributedsystems, concurrencycontrol to maintain temporal coherence of shared data,
and network access to ensure timely message delivery.

An approach taken to provide flexibility in scheduling and resource management and to enhance
fault tolerance in L_al-timesystems is the useof the imprecise computation technique. Many factors, such
as variations in processing times of dynamic algorithms and congestion or failures of the communication
network, make it difficult to meet all the timing constraints in a dynamic environment. The imprecise
computation technique minimizes this difficulty by trading the result quality for the amount of system
resources and time. In particular, this techni_'ue prevents timing faults and achieves graceful degradation
by making sure that an approximate result of an acceptable quality is available when the exact result of
the desired quality cannot be obtained in time. Section III describes this technique in detail. The
applicability of this technique to intelligent control is discussed.

II. Critical Problems in Distributed Real-Time Systems

As the applications of real-time systems become more critical and the underlying systems become
more complex: one can no longer rely on the ad hoc methods that have been used traditionally for the

t This work hasbeen partially supportedby the U.S. Navy ONR ContractNos. NVYN00014 87-K-0827and No.
N'v"z"NCC_3i48"3-]-iiSi.
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design and construction of real-time systems and for the specification, prediction and enforcement of their
timing behavior. This fact has motivated the recent U.S. Navy ONR research initiative on real-time
computing. In particular, the major objectives of the research efforts supported by this initiative are (1) to
establish theoretical bases that support systematic and rigorous methods for the design, specification, and
implementation of the next generation real-time computing systems and (2) to develop a set of basic
building blocks of predictable and robust schedulers and resource managers for such systems. Despite the
significant progress in recent years [1], many critical problems in the design and construction of
distributed, real-lime systems remain to be solved. Examples of these problem areas are end-to-end
scheduling, real-time concurrency control and time-critical data communications.

End-to-End Scheduling

In a multiprocessor or distributed system, tasks may need to be executed on more than one
processor. While there are simple, optimal and approximate algorithms for scheduling tasks on a
uniprocessor to meet deadlines [2-5], such algorithms for task assignment and scheduling in distributed
environments do not exist. One is forced to rely on either enumerative algorithms or simple heuristic
algorithms. The former are typically too expensive to run for complex systems. The latter do not have
bounded worst-case (that is, guaranteed) performance.

To illustrate the complexity of the distributed scheduling problems, w,: consider the simplest one
among them: the flow-shop problem [6-9]. A flow shop models a multiproc,,s_r or distributed system in
which processors and devices (also modeled as processors) are functionally dedicated. Each task
executes on the processors in turn, following the same order. For example, a control system consisting of
an input processor, a computation processor, and an output processor can be modeled as a three-processor
flow shop. The input processor reads ali sensors; the computation processor processes the sensor inputs
and generates commands; the output processor delivers the commands to the actuators controlled by the
system. Each task, modeling a closed-loop tracker and controller, must be executed first on the input
processor, then on the computation processor, and finally on the output processor. Alternatively, we can
use the slightly more complex, flow-shop-with-recurrence model to characterize systems that have limited
resources and hence do not have a dedicated processor for every function. In a flow shop with recurrence,
ali tasks execute on different processors in the same order, however, each task executes more than once
on one or more processors. As an example, suppose that the three processors mentioned earlier are
connected by a bus. We can model the bus as a "processor" and the system as a flow shop with
recurrence. Each task executes first on the input processor, then on the bus, the computation processor,
the bus again, and finally on the output processor. Each task executes on the bus twice.

Many real-time systems can be modeled as flow shops in which every task has a deadline. A
scheduling algorithm is said to be optimal if it always finds a feasible schedule in which ali tasks

. complete before their deadlines whenever such schedules exist. Past efforts in flow-shop scheduling have
: focused on minimization of completion time, that is, the total time required to complete a given set of

tasks [6-8]. Unfortunately, almost every flow-shop problem that goes beyond the two-processor flow-
shop problem turns out to be NP-complete. (For example, the general problem of scheduling to minimize
completion time on three processors is strongly NP-hard.) We have examined several special cases that
are tractable; we have developed (1) optimal algorithms for scheduling tasks in flow shops when the tasks
have identical processing times on ali processors and when the tasks have identical processing times on
each of the processors but different processing times on different processors, (2) an optimal algorithm for
scbedoling _a_k_with identical processing times in a special class of simple flow shops with recurrence,
and (3) a heuristic algorithm for scheduling ta:ks with arbitraryprocessing times in flow shops [6]. Many
extensions of the flow-shop scheduling problem are of practical interest. Examples include periodic flow
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shops, as well as the general job shops in which tasks execute on processors in arbitrary sequences. We
need to find effective ways to schedule tasks to meet deadlines for these more general models of
distributed systems.

Concurrency Control to Maintain Temporal Coherence
, , , , , ' / ' J

Real-time tasks often shat_ '_:i_at_!'' A concurrency control mechanism must be used to ensure data
consistency, making lt difficult _os_hedule such tasks to meet Ummg constraints. Traditionally, one
approaches this scheduling pr0blerr_//"byaxialyzing the schedulability of conflicting tasks and finding
suboptimal heuristic algorithms to schedule them [10-17]. In general terms, this is the problem of
scheduling tasks subject to resource constraints, which is NP-complete [10,II]. Several heuristic
algorithms for scheduling tasks subject to resource constraints have been developed. 'l'hese algorithms

, are mostly for the case when there are a small number of resources (for example, 10 or 20) and are not
suitable when the resources, such as data, are numerous (for example, 1,000 or more). Recently, several
new concurrency control algorithms have been proposed for scheduling database transactions with
deadlines (e.g., [14-16]).

Alternatively, one can adopt a new approach by introducing a set of continuous criteria for temporal
consistency that is more appropriate for many time-critical applications, such as intelligent control. In
these applications, the notion of state- and view-consistency traditionally used in concurrency control
studies can sometimes be replaced or supplemented by the notion of temporal consistency [17]. We
consider data objects in a real-time database as models of real-world objects. A set of database objects is
said to be relativelY temporally consistent if it represents a valid snapshot of the state of the real-world
objects modeled by it. It is said to be absolutely temporally consistent if the snapshot is suffic3ently up to
date. An objective of a concurrency control algorithm is to keep data temporally consistent in addition to
maintaining state-consistency or view-consistency whenever it is necessary. We need to evaluate well-
known concurrency control algorithms that ensure serializability in order to determine their average and
worst-case performance in term of their ability to maintain temporal consistency [17]. An integrated
scheduling and concurrency control strategy must keep the data as temporally consistent as required by
the application in addition to maintaining data integrity whenever it is necessary. Basic algorithms and
protocols are needed to make such a strategy feasible.

Real-Time Data Communication

lt is likely that many existing network architectures and protocols are well suited for real-time
applications. Unfortunately, existing performance data on them are inadequate to support the design and
synthesis of real-time communication networks. Past work on performance evaluation of networks and
protocols has been concerned primarily with average perforrnance measures, such as the expected
throughput and delay. In a distributed real-time system, the timely completion of dli_tributed tasks can be
ensured only when message transmission delay is reasonably predictable, lt is not sufficient for a real-
time communication r!etwork to have a small average delay and a large average throughput. Variations in
message delay in such networks must also be sufficiently small. We need to have sufficiently accurate
information on the probabilistic distribution of message delay.

III. Imprecise Computati,oi_

One effective way to avoid timing faults is to leave less important tasks unfinished if necessary. In
other words, rather than treating ali tasks equally, the system views important tasks as mandatory and less
:_,,.,.-*_*- _1 ...... ,,*-"._1 Td,- _ ...... *t,-._ _11 _,,-,I._. *--_1_ _1L_1..1_.-,11 ._,..11 ....... _,_..I _ _ _,,.....1..,_6.;_
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before their deadlines. Optional tasks may be left unfinished during transient overload when it is not
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feasible to complete ali the tasks. The imprecise computation technique [18-27] uses this basic strategy
but carries it one-step further. In a system that supports imprecise computations; every time-critical task
is structured in such a way that it can be logically decomposed into two subtasks: a mandatory subtask
and an optional subtask. The mandatory subtask is the portion of the computation that must be done in
order to produce a result of acceptable quality. This subtask must be completed before the deadline of the
task. The optional subtask is the portion of the computation that refines the result. The Optional subtask,
or a portion of it, can be left unfinished if necessary at the expense of the quality of the result produced by

the task. An optional task that is not completed when its deadline is reached is terminated at that time.

To provide maximum flexibility in scheduling, it is ideal to design time-critical tasks so that they
are monotone; a task is said to be monotone if the quality of the intermediate result produced by it is
non..decreasing as it executes longer, that is, as more time is spent to obtain the result. The result
produced by a monotone task when it completes is the desired result; this result is said to be precise or
exact. If the task is terminated before it is completed, the intermediate result produced by it at the time of
its termination is the best among ali intermediate results produced within the available time. This result
may be usable to the user, it is said to be imprecise or approximate° One way to return imprecise results
is to record the intermediate results produced by each time-critical task at appropriate instances of the
task's execution. Programming language primitives are provided [18-20] so that the programmer Can
specify the intermediate result variables to be recorded and the time instants to record them. In addition
to the intermediate result variables, the programmer can also specify a set of' error indicators. The latest
r_:corded values of the intermediate result variables and error indicators are made available to the user

upon premature termination of the task. By examining these error indicators, the user can decide whether
an imprecise result is acceptable when the desired, precise result cannot be obtained in time. Therefore, a
monotone task is logically composed of a mandatory subtask followed by an optional subtask.

The imprecise computation approach makes meeting timing constraints in real-time computing
systems significantly easier for the following reason. To guarantee that all timing constraints are met, the
scheduler only needs to guarantee that ali mandatory subtasks are allocated sufficient processor time to
complete by their deadlines; it then uses the leftover processor time to complete as many optional
subtasks as possible. Only the mandatory subtasks are restricted to have bounded execution time and
resource requirements, lt is not necessary to eliminate non-determinism in the timing requirements of
optional subtasks. A conservative scheduling discipline with guaranteed performance and predictable
behavior (such as the rate-monotone algorithm [2,3]) can be used to schedule the mandatory subtasks.
More dynamic disciplines (such as the earliest-deadline-first algorithm), that are capable of achieving
optimal processor utilization but may have unpredictable behavior, can be used to schedule optional
subtasks. In particular, when tasks are monotone, the decision on which optional subtask and how much
of the optional subtask to execute can be made dynamically. Because the scheduler can terminate a task
any time after it has produced an acceptable result, scheduling monotone tasks can be done on-line or
nearly on-line.

Monotone Computational Algorithms

Monotone algorithms exist in problem domains such as numerical computation, statistical
estimation and prediction, sorting and searching. We have been concerned with the design of monotone
computational algorithms in those application domains where there are no monotone algorithms.

An example of the recent results is the monotone query processing algorithm that produces
improving approximate answers to queries posed in standard relational algebra [21,22]. An answer to
such a query is set-valued; it is a relation. For a set-valued query, a meaningful and useful set of
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approximate answers can be defined in texrns of subsets and supersets of the exact answer. We have
developed an ap0roximate relational model to formally capture this semantics of approximation.
Specifically, this model defines the approximations of any standard relation in terms of supersets and
subsets of the relation, a partial-order relation over the set of ali approximate relations for comparing
them, and a complete set of new relational algebra operations on+approximate operands. Every one of
these relational algebra operations is shown to be monotone in the sense that the result of the oPeration is
better when its operand(s) becomes better. Thus, an improvement in the operands of an expression
containing these operators as primitives will lead to an improvement in the result of the expression. As
read requests to retrieve the base relations of the query are completed or partially completed, such
improvements are realized. The monotone query processing algorithm differs from the traditional query.
processing algorithms in an important aspect: a series of approximate answers are produced, each
integrating the effect of additional data retrieved to answer the query. None but the final, exact answer
requires the read requests for ali base relations be completed before it can be produced. The final answer
is the exact answer obtained by traditional algorithms. If query processing is prematurely terminated (due
to a deadline for instance), some approximate answer will be produced, and the quality of this answer
improves monotonically with the amount of base relation data retrieved and processed.

The semantics of approximation defined by the approximate relational model is not suitable for
single-valued queries, for example, queries for which the exact answers are "yes" or "no". Approximate
data models and monotone query processing strategies to produce approximate answers with other
semantic meanings need to be developed.

Scheduling Imprecise Computations

We have developed several algorithms for scheduling imprecise computations. These algorithms
are based on workload models and optimality criteria that explicitly account for the cost and benefit
incurred when optional subtasks are left incompleted.

A general hard real-time scheduling problem is that of scheduling n tasks each of which has
arbitrary rational ready time, deadline and processing time. The ready time of a task is the time instant
before which its execution cannot begin. The processing time of a task is the amount of processor time
required to complete the task. Tasks may be dependent. A task Ti iS dependent on a task Tj if the

execution of Ti cannot begin until Tj is completed; such dependencies are specified by a set of
precedence constraints. Tasks may have different weights; weights of tasks measure their relative
importance. In the corresponding new workload model of imprecise computations, each task is
decomposed into a mandatory subtask followed an optional subtask; these subtasks have the same ready
time and deadline as the task. A scheduling algorithm is optimal in the following sense" it determines
whether feasible schedules that meet timing constraints and precedence constraints of ali tasks exist, and
when such schedules exist it finds one that minimizes the total length of the unfinished portions of
optional subtasks. We have developed two algorithms for finding optimal preemptive schedules of
dependent tasks on a uniprocessor system [23,24]. The algorithm for optimally scheduling tasks with
identical weights has time complexity O (n log n ). lt can be easily modified and used to schedule
independent tasks with identical weights on v identical processors. The time complexity is
O ( n log n + nv ) in the multiprocessor case. The algorithm for optimally scheduling tasks with different
weights on a uniprocessor system has a time complexity of O ( n 2).

Some applications may require that every task is executed satisfying the 0/1 constraint. The
execution of a task is said to satisfy the OIl cor_,traint if its optional subtask is either completed before its
,1_1,1_ iii_., _,.oi %.,tl_(l_.,t)_._8 '_*Allt.al_,,i.j. • • '_, _..pl%,_,l,,s.t%.,,lii _,,t _,JIi_'_.ill.,lltll|_::) L,U.)._I_._ w_v |til l.jl Al|Itri ,,7 ¢l,,tl_ I._itl.'),..,llit._,L_.,, _wld) i')_Jtl_ I_,,1._.11
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also be formulated as one of scheduling with 0/1 constraint. The alternate version, with shorter
processing time, is modeled as a mandatory subtask. The primary version is modeled as a mandatory
subtask, with processing time equal to that of the alternate version, and an optional subtask, with
processing time equal to the difference between the processing times of the two versions; the latter must
be either completed or discarded entirely. A schedule satisfies the 0/1 constraint when the execution of
every task according to the schedule satisfies the (3/1constraint. Unfortunately, the problem of fmding
optimal preemptive schedules satisfying the 0/1 constraint, meeting timing constraints and minimizing
the total error is NP-complete in general. The two efficient algorithms described in [24] for scheduling
tasks with the 0/1 constraint can be used to schedule dependent tasks on a tmiproeessor system when the
optional subtasks have c_aal processing time. One of the algorithms is optimal when tasks have equal
ready time and has time complexity O (n log n ). The other algorithm is optimal even when tasks have
arbitrary ready times and has dme complexity O ( n 2). We have also found approximate algorithms with
good worst-case performance bounds for scheduling tasks whose optic,nal subtasks have arbitrary
processing times to meet the 0/1 constraint and timing constraints.

A workload model commonly used in studies on hard real-time scheduling is the periodic-job model
[25,26]. In this model, there is a set of periodic jobs to be scheduled. Each job consists of a periodic
sequence of requests for the same computation. The period of a job is the time interval between two

consecutive requests in the job. In scheduling theoretical terms, each rv;questis a task. The ready time
and the deadline of the task in each period iis the beginning and the end of the period, respectively. We
have extended this workload model to characterize imprecise computations for two different types of
applications. Depending on the kind of undesirable effect caused by errors, we classify applications as
error-noncumulative or error-cumulativeo For the former type of application, only the average effect of
errors is observable and relevant. Examples of this type of application include image enhancement and
speech processing. In the workload model characterizing this type of application, the overall quality of
the result of each periodic job is measured in terms of the average error in the results produced in several
consecutive periods. The optional subtasks need not ever be compl('._ed. We evaluated several heuristic
algorithms designed for scheduling error-noncumulative jobs. These algorithms not only ensure that
deadlines are missed in a predictable manner as the load increases, but also make almost full use of the
processor. Many of these algorithms can be used for on-line scheduling and generate feasible schedules
with small average error. Detailed performance data can be found in [25,26]. Their most serious
disadvantage is that they may fail to achieve zero error even when the processor is not overloaded. When
it is known that the overload condition never occurs, classical algorithms should be used. The new
algorithms are suitable when the overload condition occurs frequently or when the variations in the actual
processing times of'tasks are large.

For error-cumulative applications, the effect of errors in different periods is cumulative. Examples
of this type of application include tracking and control. In the workload model characterizing error-

, cumulative applications, for every job, the optional subtask in one period among several consecutive
periods must be completed within that period and, hence, is no longer optional. Thus far, we have
considered only the simple case when the periods of the jobs are the same [26]. Schedulability criteria of
jobs with different periods and error cumulation rates (that is, how often the optional subtasks are
required to be completed by their deadlines) remain to be determined. Good heuristic algorithms for
scheduling workloads consisting of different mixtures of jobs are needed.

The Applicabili;.y of The Imprecise Computation Technique

The applicability of imprecise computation technique in digital control systems needs to be
-"...... : .... ..I T-- -' -" , :.-. tk ..... h _V ,,,-,r_tml rw_mr_))tat;r_n clllt_ to th_ nr_mntllm t_rminntinn of the,
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computation introduces a new source of error, in addition to other types of error, such as quantization

error and truncation error. The characteristics and effect of this new type Of error must be determined for

different types of systems. How this error affects the stability and performance of typical control systems
remains to be studied.
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Abstract
The emergenc_ of high-speed and low-cost communication components combined with the
improved capabilities of a new generation of microprocessors creates a challenging
opportunity in the area of large-scale distributed control systems. These systems may involve
hundreds of nodes and will be based on the use of unreliable components and communications
links. Thus, technologies that foster adaptability and scaleabillty, and that support self-
organizing mechanisms are needed to ' integrate the working fabric of a large-scale distributed
system. The challenge is to fuse the theory, technology, and development methodologies into a
unified framework that cost-effectively satisfies the needs of the users of such large systems.

Recent reintroduction of analog computation performed in the continuous domain adds to the
complexity of the programming of distributed systems. Analog computation used either as
"neural networks" or "smart sensors" can be described in declarative form, but the impact of
the full semantics of such an approach must be further evaluated. The paper discusses, based
on descriptive examples, issues associated with languages used to _lescribe control systems and
their relevance to the implementation of distributed control s_lstems,

1. Introduction

Any attempt to develop an environment to support the design of software for distributed
intelligent systems implies that the methodologies used to develop such systems are well
defined and can be cast into an effective set of software tools. In reality, such designs,
especially those implemented in new technologies, will often violate existing assumptions and
rules. Declarative description of control rules and perhaps the use of a hierarchy of
constraints will help the development and product support of distributed systems. At the same
time, the proposed environment must not alienate designers who use more traditional
technologies, e.g., an all simulation approach.

To cost-effectively implement a design environment to support design methodologies ranging
from the fully analytical models to those relying solely on simulations, one must be able to
generate automatically tools that can accommodate widely diversified design styles. In this
paper, we will use examples to highlight some idiosyncrasies related to the implementation of
declarative stated control rules. Based on the discussion of three projects, we will indicate how
important it is to define the the proper syntax and semantics of the system implementation.

The tenet of our presentation is the belief that the key to the success of complex projects like
distributed control systems is effective communication among the designers. The issues are
the semantics of the languages used to describe various design modules and access to the design
database. We believe that proper understanding of the issues associated with languages used to
describe designs and data-sharing required to validate designs will help in the construction of
syntax-driven editors and associated databases. In the future, a domain-related knowledge
incorporated in the language itself will help to incorporate the elements of system description
into the system to enable it to reason about itself. Thus, the same mechanism that allows the
designer to reflect about the design will be perhaps used to help the designed system reflect
about its own state. The latter is needed to support self-diagnosis and fault recovery
(independently at each node of the distributed system), and they are both necessary in any
autonomous (and perhaps intelligent) system.

The paper is partitioned into three parts, The first section illustrates, with an example, how to
generate a software environment using a well known attribute-grammar technology. The

- !



CONF-9007134
Pago 194

second section, describes two projects containing a distributed control component element.
The last section,summarizes selected issues associated with the language-based approach used
to describe control systems,

2. _e-driven support of system design

Designing a system is a process of accommodating an ever-tightening set of constraints, As
will be later illustrated by the examples, the choice of syntax and semantics describing the
desired system domain plays a very important role in the automatic generation of design-
supporting software or implementation mechanisms. In this section, using an example of a

. hierarchical evaluation of a VLSI circuit, we will show that one can apply compiler technology
to generate the design development environment for a physical system [Maitan 87].

First, we will introduce the concept of attribute grammars (AG). Next, we will illustrate how AG
can be applied to the analysis of VLSI circuit.

2. I Attribute Grammars, The methodology presented in this section is applicable to systems
that use some form of structure description language(s) and support multiple-vlews from a
single database, lt is a subject of ongoing debate as to whether a single language can effecth'ely
support a description of a design across all views. In this paper, a hierarchy of languages is used
to annotate the semantics of a hierarchy of views or design constraints.

This section presents a methodology consisting of a metalanguage to define a database
transformation and its domain, and a method of constraint evaluation based on the analysis
or the semantics of a system description. Both design databases and evaluation of design
semantics are at the kernel of any design envirnment. This methodology is based on the
theory of attribute grammars and can be implemented using existing tools.

The purpose of AG is to map from derivation trees on context-free grammars to corresponding
semantic objects. The semantics is described by functions defined over a set of attributes, Each
attribute is defined as a type (domain). Describing objects using the syntactic structure of a
language builds a network of relations among those objects. Thus, a resulting decorated parse
tree not only annotates objects, but also contains semantics of their composition described by
the network of constrains. A fixed-polnt solution of these constraint functions yields a desired
meaning of the objects described in a given language.

2.2 Hierarchical analysls of VLSI circuits using AG. Performance-driven synthesis is one of
the most challenging tasks in designing commercial VLS! systems. A design is described from
a general specification down to the layout level at increasing levels of accuracy. At each lev_:l,
an exhaustive test of compliance with higher level specifications is made. in this section, a
clrcuit-level model of interconnections and a higher level combinatorial logic model is briefly
described. These models are applied later to analysis of the interaction between desi_,
knowledge representation modules.

In terms of VLSI concepts, a s[mp!ified delay model derived from extracted electrical
parameters is used to describe the semantics of interconnections, and symbolic simulation or
a combinatorial circuit using decision graphs carries the semantics of the combinatorial logic
level. For each of these models, the corresponding grammar and itS attributes are described.

2.3 Summary. A prototype of a system capable of describing and analyzing the semantics of
- interconnection analysis and gate-level analysis based on an extension of symbolic

manipulation has been implemented. Combined t(>gether, both layers provided a simple
hierarchical timing analysis system with an automatically generated editor (Fig. I).
Semantics of both layers is described using AG. The untl'orm treatment of constraints enables
use of the same evaluator for both of them. In addition to the semantics, a tree-oriented
database structure is specified when the AG mechanism is used.

2
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FI_, 1 Two levels of hterarclT used in the pro_ ot_,,ed VLS! design e,nvironrnent.
Model _ (GI) Circuit-i_vel naodel ........ (G21 Combinatorial logic model.

Grammar Interconnectl0n :1=pi_rt net; .... networl_" :- b_exps; .......
net ::= contact bunch; b_exps ::= b_exps b_exp;
bunch ::= segment I btmch segment; b_exp ::= arg "=" operation args;
segment ::= section I section contact I args ::= args arg;
section contact port I l_'ction contaCt arg ::= b_e_-p i name:
(bunch); oPeration ::+ not I hand I nor l mux;

interconnection (args @ g l..code) :::
extension to include G1

Semmati_ • e_ract electrical parameters ® symbolicaUy evaluate teachability
• perform elementary delay tree

computations • annotate tree and propagate
constraints to functional level

lm II i _ i i i i f i ]

The major point in assessing the applicability of AG for vLSI CAD systems is the Issue of the
uniform design knowledge specification environment. AGs have been used In compiler
technology to generate compilers for languages and to specify editors to manipulate programs
written in these languages. In terms of knowledge systems, it means that from a single
declarative specification one can generate a transformation system (compiler), a knowledge
representation (compiler tables), and a system to manipulate thIs representation (editor). An
experiment verifying the applicability of this technology for VLSI CAD software development
was performed and proved the technology.

lt has been shown that:

• using nested hierarchies or knowledge described by formal languages results in a weil-
defined modularization of the semantics for a simple VLSI CAD problem,

• context-dependent constraints are generated automatically as a result of evaluation of
the semantics of objects,

@ as a result of using well-defined knowledge models, a run-time model can manage
memory better by means of recomputing semantics on demand and saving only a
minimal set of information abstracted therefrom.

The approach was limited to noncircular and nonmonotonic semantic functions. The
experiment described in this paper demonstrates that knowledge about VLSI semantics can be
expressed in the concise form of an AG description. The ultimate benefit of this methodology is
a well-documented development environment. Based on a sequence of context-free grammars
it is possible to augment such an environment with multiple domain semantics. AC, thereby,
constitutes a specification metalanguage.

3. Implementation Issues in Nontradltional System Semantics

"I1ais section discusses two examples of declaratively formulated distributed control problems
that were implemented using continuous fixed-point computation. The key advantage of such
implementation was an asynchronuous implementation of computation schemes. The
proposed use of continuous relaxation schemes, since they are not dependent on the use of
finite state machines and discrete arithmetics implies different programming schemes. These
two examples were selected to highlight the diversity which exists in the domain of system
design and implementation.

3.1 Integrated solutions to the early vision problems.[Maltan 89]. Various promising new
algorithms for solving early-vision problems have been developed over the last few years.
These are defined as a set of algorithms to recover properties of the visible 3-D surfaces from
the 2-D intensity arrays on retinae or cameras, as well as several new concepts in architecture
for vision machines. Two examples of the latter are the Connection Machine, conceived by
Danny Hillis and build by TMC, and the analog VLSI retina by Carver Mead at Caltech. These
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two approaches represent the two extremes of programmability, and dedicated hardware.
Many more intermediate machine architectures exist.

We proposed a new parallel architecture, Torus Integrated Machine (TIM), which will
incorporate physical compactness, dedicated analog hardware, and programmability. The
machine is an ideal testbed and implementational vehicle for early-vision algorithms (e.g.,
edge detection, binocular stereo, motion, structure from motion), since any typical short-range
algorithm maps onto our proposed hardware.

3.1. I Foundations of early vision. The reconstruction of 3-D scenes from their 2-D images is
the major purpose of early-vision processing. The task includes: edge detection, optical flow,
surface reconstruction, shape from shading, and stereo. All these vision reconstruction
problems can be precisely formulated as Ill-posed problems: that is, they either

qP have no solution at ali;
• do not have unique solution; or
i do not depend continuously on the initial data.

The technique of regularizatlon has been developed to solve ill-posed problems. This
regularization method turns a vision-processing problem into a variational problem.
Examples of vision algorithms based on regularization are presented in Fig. 2.

Fig. 2 Examples of early vision algorithms.iii I I II ii

Problem Regularized variational formulations

Edge detection _[(Sf- i)2 + _.(fxx )2] dx

Optical flow f_[_.(Ux2+Uy2+Vx2+Vy 2 ) + (Ixu+lyv+It)2 ]dx dy

Surface reconstruction _J[(sf- i)2 + _.(fxx2 + 2fxy 2 + fyy2 )]dx dy

Stereo I{[(_72G * (I/x, y) - R(x + d(x, y), y))]2 + _.(_d )2} dx dyi I I IIII ' IIII I II IIIIIII

Ill-posed problems can be also characterized as having more unknowns than equations_
Regularization provides additional equations needed to solve the problem. Additional
constraints are introduced in the form of stabilizing functionals, which restrict possible
solutions to smooth functions. After regularization, the vision problem can be compiled into
some ibrm of computation structure (Fig. 3).

3.1.2 The outline of the proposed approach. Image processing can be described, using
generalized notions of smoothness and "best fit," as a system of ordinary differential
equations (ODE) or an approximation problem. For a quadratic variational problem, the
resulting computation task can be described as the iterative solution of the matrix equation

A(v i) = f

A well-founded problem can be described as a system of n equations with n unknowns, F(v) = b,
where v, b _ Rn. In the case of nonlinear F(v), the fixed-point solution of the equation can be
found by solving its linearized form Av = b, where the matrix A is a linearized F(v). The

iterative solution process generates a sequence whose nth element v n ts generated by a formula

v n = vn-i + Hn[b. F(v n- i)] = vn-1 + E

where _is an iteration error of the nth step. The choice of matrix H determines the type of an
iterative technique (Seidel, Jacobi, etc.). If H is random, as in the analog case, the relaxation
process is referred to as chaotic or stochastic relaxation.
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Relaxation processes to solve vision ['Vis em Iiproblems are iterative. Two variational ion Probl
methods, Euler-Lagrange and direct
solution, can be applied. The basis of both

! " Imethods is a relaxation solution of an Variational Problen
equation F(v} = b, where F(v) is a vector A '

function of T e R n, and b is an _ _ t
independent variable. Many attempts _ ........ i_'" "',_
were made to explore the parallelism
involved in solving this equation. The Euler-Lagrange Direct Methods
limited communication structure of .
digital computers makes it difficult to _ '__"
implement these processes in parallel

fashion. In the case of distributed parallel i
hardware, the problem is compounded by l Discretized
the need for processing synchronization.

ii iii

Since relaxation techniques compute the [ Ilocations of discontinuities in color, Klrchoff Equationsi
depth, or motion, they can be employed to

solve one of the basic vision problems, Fig. 3 General flow of the proposed
the object segmentation problem, analysis of a vision problem.

The iterative computation of TIM is a relaxation process and is similar to relaxation
algorithms used in digital computers. In both TIM and digital architectures, components with

the largest error,1 max(llb -Av n" 111), change until the process converges. In the analog
domain, this can be observed as a slow change of all vi, which satisfies the constraints.

To solve algebraic equations, one can map a discrete problem into a network of analog
compc;lents. In doing this, we are interested only in steady-state responses. In terms of vision,
one can describe each algorithm as a dynamic problem and solve it using analog technology. In
many practical applications, there is no need for very accurate solution (5 to 7 bits is
satisfactory), and this accuracy matches the accuracy of existing focal planes. Recent advances
in reducing the sizes of electronic devices have also scaled down the duration of the transient
state, allowing for high-density memories with nsec access time and very high speed
processors. The same high-speed devices can be applied to construct high-speed analog solvers
of computer vision problems.

3,1,4 TIM - an mrchltecture, The idea of TIM presented in this paper ts a technique to organize
the space allocated to processing elements of the network. Fig. 4 illustrates the idealized
structure of TIM.

To retain a 2-D field of tightly packed photosensors, a cylinder [tube) is formed. Photosensors
are on the face of the cylinder, while all other space-consuming elements are shifted to the
interior of the cylinder. Instead of using a set of 2-D relaxation fields to implement several
concurrent vision algorithms, a sequence of sets of parallel planes is used within a cylinder.
Each plane consists of a set of I-D relaxation processes linked by buses used to share and
propagate data between these processes.

Both a local communication along the bases and concurrent I-D relaxation of several
algorithms can be easily implemented on a single plane. This process is repeated on each of
sequentially connected sets of planes. Together they are equivalent to a 2-D relaxat.lon
decomposed into several axes of relaxation.

1 Since solving F(x) = b is equivalent to finding an x = min( I I F(x) - bl ). iterative techniques are
comparable to mlnlmtzatlon.
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Due to the iterative character of the discussed algorithms (relaxation towards fixed-point}, the
signal must be made reentrant; i.e., the cylinder containing connected groups of planes must be
closed, self-feeding, leading finally to the toroidal topology of TIM.

The output from each single column of the 2-D array of the focal plane is directed onto separate
planes contained in appropriate processing chips. Increasing the number or/and complexity of
the algorithms results in elongating the processing tube - the increase in the number of
relaxation planes - while keeping the "retina" size fixed.

3.1.4 Structural assembly of TIM. As ' ii..,_ i-=_-_idescribed above, each 2-D relaxation can be Input ._.___,
decomposed into a set of 1-D relaxation Image
processes. Each I-D process is built out of _ Relaxation

simple cells. Furthermore, node _ planessharing/coupling among cooperating

relaxation processes can be implemented x-axis Otat]::_t
using an analog bus to conrsect them, as _ IIT_ag_S
illustrated in Fig. 4. Cells and the Control "_ lconnecting buses define the processing

pipeline. Each cell is a stage of the pipeline _¢ lrand it cooperates with any other stages to

which it has access. _'----I _. XiS__,......._y-aIn the simplest case, a cell/stage contains i_

an equivalent of a single resistor. More ___ _ _N_complex algorithms are cGnstructed by
linking additional functional units.

iI

- Fig. 4 Simple TIM.

Data on the bus must be multiplexed, so one etrl etr1 Analog Bus 1etr1

can reduce the number°fplnst° transfer _iil_l i_e eil I o o o i el_?e

data in and out from the processor. The
combined structure, a plane, involving the
cooperation of several pipelines, is presented I
in Fig. 5. Each 2-D relaxation field v, as |'f'l" |_

decomposed into 1-D relaxation processes ___e_] _ _

and is represented here by a single 1-D
pipeline stage corresponding to the selected o o o
axis of decomposition. In order to interface to
the system, the compiler allc_cates a bus as a
variable shared by the external and inte,-nal 5_ac_e1 s_ac_e2 staqe n

processes. For example, a focal plane, like .ni _ 1_' Analog Bu_;rnI _ t,,
other input devices, can broadcast data to all J
relaxationplanesthrough anallocatedbus. _ __ _
As a result, data c_n be processed at high o O o
speed and ca,_ be used with several
cooperating vl_ion algorithms without the
need of 3-D VLSI stra:cture. Fig. 5 Connectivity structure in a plane

consisting of cooperating I-D relaxation
processes.

TIM is in principle an analog computer. Programip.g TIM is reduced to interconnecting
available functional modules so they can be equivalent to the required algebraic or differential
constraints.
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There is only one rule for building electric analog circuits, the Ktrchoff equations. Thus, one
can build circuits based on current or voltage analogy. Discrete forms of variational
formulation of vision are built as a sum of components. This can be obtained by chaining
functional modules, where each module Is an analog equivalent of the required component.
The process of transl,_t_ng an algorithm into analog modules can be simply described as:

Algorithm --* component1 + ... + componentm "*
analog-module 1 + ... + analog-modulen + residual

where the number of components ts usually different from the number of analog modules, and
a residual is a component for which an analog-module cannot be found.

The simplest approach to TIM programming is to define a set of analog modules available
within a cell and a technique to connect them into circuits emulating a desired vision
algorithm. We propose to use a two-level approach in which

• a digital circuit controls connectivity
• analog circuits perform computation.

TIM's programs are stored as lists of interconnected analog components. Writing a program for
TIM is equivalent to reconfiguring its structure. The need for additional interconnections

makes programming capabilities strongly dependent on the type of available technology. 2 In
many aspects the idea is similar to semicustom, personalized VLSI circuits. In a prototyped
structural compiler for TIM, symbolic manipulations needed to derive the discrete structure of
Kirhoff equations were performed using Macsyma symbolic manipulation package. The
process of TIM programming is simply equivalent to configuring arrays of processing cells and
can be performed off-line (Fig. 6).

Ima ge _ Enhanced

Image v'__TIM. _'x'_"_ Image
Algorithm d Hard are .....k_x_

Fig. 6 Simplified structure of TIM's hardware compiler.

There are two scenarios for using TIM as a design platform. In the first scenario, debugged and
fine tuned algorithms are packaged into a vision black box. The resulting machine ts not
programmable_ but is simple and small. In the second scenario, the machine features full
reconflgurability and requires larger, more complex chips.

3.2 Fixed- po_t solvers for concurrency control and resource allocation problems [Maitan 90].
We developed an approach for distributed control based on a formulation of the cost function
for system state changes. This formulation led to a direct analog implementation of cost-
minimization-based constraint solvers. Based on the same energy minimization principle,

i we have also developed a fast, parallel algorithm for an assignment problem with potential
application to distributed control. In addition, we investigated potential application of the
technique to a large class of distributed systems -- high-speed fiberoptic networks.

2 A technology supporting multiple layer.s of interconnections will substantially reduce the
necessary wiring problems for dynamically reconflgurable systems. Hardwired systems, due to
the great regularity of interconnecting structures, can be easily built using existing technologies
supporting two metal layers plus one polysillcon layers.
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We are interested in supporting a concurrent programming methodology based on a sequence of
correctness-preserving transformations. In this methodology, a concurrent processing
application is implemented starting from high-level specifications. The direct mapping from
high-level specifications into high-speed distributed solvers may reduce the number of levels
of abstractions into one equivalent level and results in faster execution. This is especially
important for implementing advanced languages designed to be executed in high-performance,
parallel or distributed computation structures. We explored a Link between the language used to
code an application and its parallel operational semantics, To demonstrate the possibility of
direct high-speed implementation of such primitives, we studied the use of cost or energy
formulations to solve the control problem in distributed structures. The results of this
research indicate the possibility of building solvers for cost functions as high-speed analog
computation structures.

3.2. I Distributed control primitives. Our model of distributed processing is simply a model in
which cooperating processes are bidding for shared resources. (This model was proposed by C,
Tomlinson, MCC.] For this type of processing, we construct a simple cost function for each
interaction. An example of such interactic_n involving synchronization and resource
allocation can be illustrated by the Dining Philosophers Problem (DiJkstra).

In the simplest Dining Philosophers Problem problem, two philosophers, a and b, share forks
fl and IR. Each philosopher "bids" for a use of both forks° A philosopher can eat only if he can
use two forks.

Each interaction between resources can be represented as a variable. For example, philosopher
b's interaction with fork lR is labelled by b_f2. Each variable can be either "1" or "0." Forks
belong to philosopher a if both a_fl and a_f2 equal "1", and similarly, they belong to
philosopher b if both b_fl and b_f2 equal "1," {Fig. 7). We proposed the method to map this
problem into a minimization problem in which solutions are either l's or O's.

a_f b_fl

Q
a_f b_f2

Fig. 7 Simple graph describing two philosophers, a and b, sharing forks fl and f2.

Simulation shows that after initial perturbation, a stable state is reached and total cost is
minimum and equal to zero (Fig, 8). An analog circuit can be built to find the minimum cost; at
minimum, forks belong to one philosopher, i.e., a_ft= 1 or b_ft= I, i= 1,2.

3.2,2 Synchronization and resource allocation in distributed systems and high-speed
networks. We chose the problem of control of the computer network as a realistic distributed
computation problem. This problem involves the design of both software and hardware.
General topology fiber-optic networks use links in which data are propagated at rates of
Gbps[Maitan90]. This speed forces the use of a short routing widow (Ixs per data packet). In the
case of several concurrentlyarriving packets, routing at these rates requires hlgh-speed
solutions of resource allocation problems and cannot be made using existing technologies.



CONF-9007134
Page 201

start stable

- I a_fl

II I I!llI I

2 b_rlk

,,, , _ i

i ii
ii

" ' 3r i ii i

i
I

,, " 4 b..f2
_,_____ ____

- 5 Phil. a

I II
I IIII Ill

_._ .... 5 Phil. b
II --

" ' ' _ 7' Energy
i i

Fig. 8 Simulated cost minimization for a Dining Philosophers Problem.

High-speed fiber-optic networks have been the subject of great interest recently. The
technology is relatively new. The existing network topologies are simple and do not utilize the
full potential of optical processing. A key obstacle in building large-scale networks is the lack
of algorithms for control and management of high-speed networks.

A simple network is built out of interconnected routing nodes. The main purpose of a routing
node is to control an exchange of data with other routing nodes. In case of congestion, routing
nodes are able to reroute packets using different routing paths.

Each node has two types of information: static information localizing a node in relation to
other nodes, and dynamic iniormation estimating the cost of routing to other nodes. Necessary
data coercion of cost estimates associated with access to remote nodes is made by each node
locally. Internal maps are continuously exchanged between neighborhood nodes using some of
the broad-bandwidth subchannels.

Based on this shared local routing information, nodes bid for resource allocation by setting
appropriate parameters in the cost functions. Minima of these functions computed by node
solvers are the desired allocation of channels. One or more subchannels, at separate nodes, are
needed to build path-connecting nodes.

To solve synchronization and resource allocation tasks within such a short time, we will
formulate these tasks as cost minimization problems. We propose the use of hardware minima
finders, lt can be shown that by using the proper mapping, coordinates of the minima of cost
function correspond to the desired network control rule. In order to find minima of cost
function, one can apply a relaxation process. This process can be based on continuous analog
signals.

4. Conclusions

In this paper we attempted to identify the approach(es) leading to the design of an environment
for the development of software for distributed intelligent systems. In searching for solutions,
we evaluated three simple projects in the areas of software environments and distributed
systems. We chose projects which extend beyond the traditional real-time processing domain
to include the approaches which may be followed in the future. I_nparticular, we emphasize the
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use of declarative, langt, age-based definitions of control rules and other system constraints.
Our interest in these technologies is dictated by the emerging analog computation or "neural
network" schemes characterized by the use of asynchronous and declaratively defined
constraint solvers. Adaptive capabilities of these approaches expand the notion of intelligence
In large scale distributed systems.

From the design and maintenance point of view, two major topics of interest in the analysis
and management of distributed systems are:

@ computation on a structured representation of knowledge,
@ structure of knowledge evaluation.

Issues associated with computation guide the selection of architecture attributes such as data
flow, distribution of databases, fault-recovery etc. Whereas a good understanding of the
structure of knowledge evaluation controls the choice of implementation mechanisms (analog
vs. digital, synchronous vs. asynchronous). Both topics complement each other and must be
simultaneously evaluated to achieve an optimal (if exist) solution to the required computation
problem.

Based on the presented analysis, the following are the selected findings that are relevant to the
design of software envtrenments for distributed Intelligent systems:

1. Simplicity. Complex behavior can emerge from the interaction of relatively simple
components.

2. FlexlbllltT, The decription of design knowledge must be modularized. A single mechanism
to evaluate and maintain its consistency must be developed.

3. Adaptabllltyo Functional and declarative specification of relations may allow for design
portability from one technology to the otherD Many context-dependent constraints should
not be entered by a designer_ The user must be able to control the analysis of mixed models
(analytic and simulation forms) of complex system.

4. User friendliness. Integrated distributed control+analog+digital systems are hard to debug
and test. New techniques must be developed to specify these systems.

5. Traceability. Adaptive knowledge required in intelligent distributed systems is hard to
document, and assessing completeness of the knowledge (with regard to a given problem) is
almost impossible.
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Machines and Mobile Robotic Systems*
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The Center for Engineering Systems Advanced Research (CESAR) serves as a
focal point at the Oak Ridge National Laboratory (ORNL) for basic and applied
research in intelligent machines. R&D at CESAR addresses issues related to
autonomous systems, unstructured (i.e. incompletely known) operational

: environments, and multiple performing agents. Two mobile robot prototypes
(HERMIES-IIB and HERMIES-III) are being used to test new developments in
several robot component technologies.

This paper briefly introduces the computing environment at CESAR which
includes three hypercube concurrent computers (two on-board the mobile
robots), a graphics workstation, VAX, and multiple VME-based systems (several
on-board the mobile robots). The current software environment at CESAR is
intended to satisfy several goals, e.g.: code portability, re-usability in different
experimental scenarios, modularity, concurrent computer hardware
transparent to applications programmer, future support for multiple mobile
robots, support human-machine interface modules, and support for
integration of software from other, geographically disparate laboratories with
different hardware set-ups.

Introduction

CESAR at ORNL focuses its research on the development and experimental
validation of intelligent control techniques for autonomous mobile robots able
to plan and perform a variety of tasks in unstructured environments. The
purpose of this paper is to provide a brief description of the hardware and
software environment at CESAR which has been evolving in order to support
research in several robot component technologies. The material presented in
this paper is excerpted from several reports and articles published previously
by CESAR staff• Selected references are given in this paper. A full CESAR.

- publication list if available from the author upon request.

Assignments for the robot(s) originate with the human supervisors in a
remote control station, and the robot then performs detailed implementation_

* Research sponsored by the Engineering Research Program of the Office of
Basic Energy Sciences and by the Office of Nuclear Energy of the Department
of Energy, under contract No. DE-AC05-84OR21400 with Martin Marietta El_ergy
Systems, Inc.
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planning and executes the tasks. Since the operational environment is
generally dynamic, the robot must be in sensory contact with its surroundings
to capture and recognize changes which bear on its task objectives and , if
necessary, replan its behavior. These capabilities imply that the robot has
cognitive capabilities that enable it to form and modify a model of the world
around it and relate this world model to the task objectives. Research is also
conducted to enable the robot to learn from its past experie.nce, and thus
improve its performance.

CESAR's principle current objectives are: (a) to achieve a level of technology
that enables the autonomous performance of classes of navigation and
manipulation tasks of human scale in a spatially complex environment; (b) to
use these performance tasks to focus research objectives. Application drivers
for this basic research effort include, among others, robotics for advanced
nuclear power stations, and environmental restoration and waste management
activities.

CESAR is developing a series of mobile autonomous robot vehicles named
HERMIES (Hostile Environment Robotic Machine Intelligence Experiment
Series) as experimental testbeds for validation and demonstration of research
results. The newest research robot, HERMIES-III, includes the functional
capabilities that permit research in combined mobility/manipulation, and
allows us to experiment with cooperative control of multiple robots having
different capabilities.

Ha_rdw_re Environment

HERMIES-IIB and HERMIES-III are the currently _operational mobile robots at
ORNL/CESAR. HERMIES-IIB stands lm high and weighs 91kg. Rechargeable
batteries supply 20W of power providing about 20 minutes of untethered
running time. Peak movement speed is 0.7m/s. Sensors include four Sony CCD
cameras and a number of Polaroid sonar transceivers mounted on a rotatable
turret. The computer architecture consists of a VME rack housing a Motorola
68020 CPU and a variety of I/O boards interfaced via a BIT-3 communication
link to an NCUBE (NCUBE, Inc., Beaverton, OR) hypercube computer. The
hypercube consists of 16 nodes with 512 Kbytes RAM each and an lntel 80286
I/O processor, which also serves as host for the hypercube. Each node
processor is a 32 bit microcomputer with on-chip floating point and
communications hardware. This gives HERMIES-IIB roughly 16 MIPS in the
on-board hypercube. HERMIES-IIB is equipped with two Zenith/tteathkit five
degress-of-freedom arms which give the robot extremely limited manipulative
capability. This has not been a drawback, however, since the robot was _ot
intended for research in manipulation.

The HERMIES-III mobile robot consists of an omni-directional wheel-driven
chassis, a seven degrees-of-freedom manipulator (CESARm), an Odetics laser
range camera, multiple CCD cameras (two stereo pan and tilt mechanisms), an
array of sonar transceivers, and an on-board computer system that includes
five Motorola 68020 CPUs in four VME racks, and an NCUBE hypercube
concurrent computer. CESARm is a compliant, high capacity-to-weight ratio (~
1/10) robot manipulator, with an adjustable gripper, which is equipped with a
JR 3 force-torque sensor, and a LORD tactile sensor pad.
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Both robots can be operated completely autonomously, in which case they can
communicate via RS-232 wireless modems to an off-board computer. They can
also be interfaced through ethernet to a local are network of computers, as
schematically shown in Figure 1. This network includes a Silicon Graphics
IRIS 4D workstation, a microvax, and an NCUBE hypercube computer with 64
processors.

Software Environment

The computer programs that control HERMIES-IIB's behavior are mostly
written in C and can be organized into four classes: the HERMIES primitives
(i.e., functions that directly con_trol platform motion, activate sensors, etc.),
the expert system and associated routines for navigation and multi-sensor
integration (error propagation and conflict resolution), the image analysis

routines ( a complete library that makes the concurrent hypercube hardware
transparent), and the control and integration routines. An expert system may
be executed from the NCUBE host processor; however, ali of the image analysis
routines and control and integration programs have been developed for
execution on the NCUBE concurrent computer. A computer program.that
emulates the response of HERMIES-IIB is used for off-board development of the
expert system rule base prior to implementation on the robot.

The expert system makes high level decisions and diagnoses unexpected
occurrences. When a standard procedure is req,lired, such as avoiding or
removing an obstacle, or mapping an area, the expert system calls the
appropriate routine which executes until completed or until an unexpected
event generates an interrupt which retarns control to the expert system. The
rule base controls high level decisions and can call C-compiled navigation
procedures. The rule base is loaded in an expert system shell, CLIPS, and linked

to the navigation procedures. CLIPS and the navigation code run on one of the
NCUBE nodes. Messages are passed from the NCUBE node to a host program
which is linked to the HERMIES-IIB primitives on the VME rack.

Part of the CESAR effort is aimed at addressing crucial issues in systems
integration so that research results can be integrated into the HERMIES
prototypes. Recent experiments also included modules developed by groups at

' f_.:ur university laboratories (Florida, Michigan, Tennessee, Texas) as part of a
collaborative techbase development effort for which the HERMIES robots serve
as user facilities. Detailed accounts of experiments with HERMIES-IIB can be
found in the references.

The following material summarizes software development strategies in support
of the latest experiment in which HERMIES-III was used to clean up a simulated
chemical spill in the CESAR laboratory. The demonstration featured the
capability to make smooth transitions between tele-operation and robot
autonomy, the reconciliation of infomaation in an a priori world model with
information derived from sonars and CCD cameras, and the combined use of

platform and manipulator degrees of freedom.

It is assumed that an a priori model of the environment surrounding the spill is
known. The system uses this knowledge to create a path from the robot's current
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location :o a location close to the spill. The robot then navigates to the spill,
automatically avoiding unexpected ob:;taclcs en route. Once it has arrived, it senses
the debris and uses a vacuum cleaner mounted on a manipulator to remove it. This
process iterates until the sensing process can find no more debris. There arc three
main subtasks: path planning, path execution, and debris removal. An additional
subtask permits operator intervention with the autonomous system. In every task,
the operator is provided with a rich graphical description of the current state of the
robot.

Software to operate and control the HERMIES-III robot in various experimental
scenarios was developed around a simulated shared memory data structure. The
shared memory model of interprocess communication was adopted because of its
conceptual simplicity. This design decision made communication between various
groups involved in the implementation effort relatively easy -- it was necessary only
to define the format and the interpretation of the data structures written by each
process without having to describe mechanisms by which these structures were
communicated. Communications were assumed to be transparent by the authors of
each module.

Some structure was imposed on the shared memory in addition to a simple list of
variable names, types, and locations. Specifically, shared memory was divided into a
number of blocks of contiguous memory, with one or more blocks associated with
individual processes. The shared memory model is not without its problems. Perhaps
the most obvious is that two processes may try to write to the same data item. In this
situation, either of the processes may be correct depending on the state of the system

. or the time. Other problems include synchronization between processes and
processes attempting to read a variable whose value has been only partially
determined (e.g. only 4 bytes of an 8 byte record have been written). We avoided the
first problem by specifying the system so that each process "owned" an area of
shared memory to which only it could write. We solved the second problem by
implementing a simple semaphore mechanism which guarded each area during
updates.

. Processes in this system communicate by accessing the shared memory, which is a
replicated distributed data structure divided into exclusive-write areas (EWA). Each
process making entries into the shared memory has associated with it one or more
EWAs which only that process should change. In the event that multiple processes
determine the values of single variables at different times, the "official" value is
deterrnined by a filtering process. Each EWA is a contiguous sequence of bytes.
Shared memory is allocated by a special allocation process and is permanently
memory resident. It has no internal structure at allocation time, rather, structure is
imposed upon it at compile time through the use of' compiler definitions. Addresses
become available at run-time, through a call to the mem_attach()routine. Structure
definitions and the relevant function prototypes are available by using included
definitions.

The entire system is controlled by a single "state variable", and there is one (and only
one) process in the system which determines the value of this variable. Decisions on
the change from state to state are made by this process based on the current value of
the state variable, and a state-dependent inspection of the contents of (possibly
many) shared data areas. Individual processes inspect the value of this variable and

- respond in an appropriate manner.
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Conclusions

Research and development at ORNL/CESAR centers on autonomous systems,
unstructured enVironments, and multiple performing agents. A humber of
projects make use of the HERMIES mobile robot facilities at CESAR, and provide
application focus for the R&D activities. Hardware and software environments
have evolved to support_ the experimental part of the research. They facilitate
software portability among systems, and re-use of applications software in
different experimental scenarios. Message-passing concurrent computers
have been incorporated successfully in our systems. Recent experiments show
that the robot systems can perform robustly a variety of tasks of considerable
complexity.
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Abstract

We firstpresentsome requirementswhichmust be met by intelligentreal-timecontrolsystems.
A crucialaspectof thesesystemsisthatthey must addressthe issueof resourceconstraints.

Therefore,a toolfordesigningand implementingsuch systemsmust enabledesignerstoobtain
and expressresourceinformation,and providea setofcontrolstrategiesthatthedesignermay

specifyforresourceallocation.One such strategy,resource-basedselectivity,isbased on the

conceptofimprecisecomputation,which has been developedin thereal-timecommunity. This

strategycan adapt the resourceneeds of computationsby selectingand usingsubsetsof the
inputs,problem solvingstrategies,or outputs,thus producingimpreciseresultsifnecessary.

Our work examinesthe applicationofthistechniqueinthe contextofrule-basedsystems,and

the developmentofa shellforbuildingrule-basedreal-timecontrolsystem_.Researchissues

to be addressedin orderto buildsuch a shellincludeacquisitionand expressionof resource

information,developmentof a softwarearchitectureto supportresource-basedselectivity,and

, acceptability criteria for validating results obtained.

1 Introduction

This paper aims to set out some of the requirements for intelligent real-time control systems,
present some techniques for meeting these requirements, and identify issues where further re-

search is needed to solve the problems. Intelligent real-time control systems acquire input data

from sensors that monitor an external environment, perform complex computations, and pro-

duce control commands that change the environment. These systems are intelligent because
they need to perform complex reasoning to determine the appropriate actions. They must also

cope with computational resource constraints and produce timely responses, which makes them
real-time applications.

We illustrate our discussion of the requirements fi_r intelligent control using an example of

a robot which picks up objects off a conveyor belt and moves them into bins. Each object must

be categorized using size and shape information (provided by the vision system of the robot)
and placed in the bin for that category. Objects not picked up in time fall off the end of the

conveyor belt. Some types of objects are fragile and sustain damage if they fall off. The objects

may be unevenly spaced on the belt, and several may be visible at any given time. The robot

can therefore concurrently perform several tasks, such as computing the commands needed to
pick up the nearest object and categorizing some of the other objects visible on the belt.
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2 Requirements for Intelligent Real-Time Control Systems

Tile need for interaction with and timely control of multiple ongoing processes imposes several

requirements on the algorithms and teclmiques for the design and implementation of intelligent
real-time control systems, as we discuss below'

1. Timeliness: Since the external process is ongoing, failures may occur if appropriate
control commands art, not received in time. In our example, objects may fall off and

possibly be damaged. Thus the system has deadlines which must be met for correct

operation. In our example, the deadline is dictated by the distance between the object and

the end of the conveyor belt. Deadlines are the most important of the various constraints
on resource availability.

9.. Resource Predictability: Once the resource availability is known, ensuring timely re-
sponses requires knowledge of the resources needed to generate the response. In our

example, irl order to plan our activities, we must have some knowledge of the time needed

for each step: recognizing objects, picking them up, and moving them to their bin. There-
fore, when selecting algorithms for performing tasks, we prefer those whose resource needs

are more predictable.

3. Flexibility: In situations where resource availability varies from one execution of a task

to the next, it is necessary to adapt the resource requirements to match the availability. In
our example, the tmeven spacing of objects imphes that the time available for recognizing
and moving objects varies. Thus we need problem solving teclmiques which are flexible ill

the amount of resources consumed to produce a response. Typically, the only parameter

against which we can make tradeoffs to achieve this is the result quality, hence we may

need to employ techniques such as anytime algorithms [3] Milch make this tradeoff. In

our example, there may be a "miscellaneous" bin into Milch the robot places objects if it
cannot recognize them before they must be picked up.

4. Robustness: Sometimes, in a system with multiple tasks, we may encounter situations

where the available resources are not sufficient to generate appropriate responses for

ali tasks. Under these overload conditions, we would still hke our system to degrade

gracefully, and at least provide responses to tlm most important tasks. In the example,

we must ensure that the fragile objects at least are recognized and picked up in time.
Robustness thus includes a notion of the criticality of requests, i.e. the importance of

generating an acceptable response. The techniques we use for scheduling and resource
allocation must take criticality information and the robustness requirement into account.

5. Focus of attention: When a system controls several processes, it may have several tasks

to perform at any given time. Rather than divide its resources equally anaong ali tasks,

it may choose to devote most of the resources to some subset of the tasks, complete them
and move on to the others. Thus there is a notion of the current focus of attention, which

shifts as responses are generated and new requests arrive. In our example, the robot may

2
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devote most resources to picking up the nearest object and to recognizing tile next one,

and less to recognizing objects further away. Criticality is a factor also in determining

the focus of attention, e.g. the robot may devote more resources to the task of picking

up a fragile object, even if another object is closer. This selectivity in resource allocation

is necessary to ensure that timely responses are generated for the tasks with the closest
deadlines.

6. Responslvlty: When emergencies occur, they must be identified and responded to as
quickly as possible. For instance, if an object leaves the surface of the belt, the robot may

have to move away quickly to avoid damage to itself. This requires tile ability to modify

predetermined schedules and resource allocations and devote most or ali of the resources

tothe new emergency tasks.

7. Asynchrony: Sometimes,some additionalinputsmay be receivedwhich affectthe rc-

sponsefrom some computationin progress.For instance,as an objectcomes closer,the
visionsystem may realizethatitsshapeisdifferentfrom what had been perceivedearlier.

Ifcategorizationisalreadyinprogress,itisdesirableto have the abilityto considerthis
new informationwithouthavingto startover.This actuallyrequiresthat we developa

mechanism forinterruptiblereasoning,hence itisa verycomplex researchproblem.

8. Coherence: Not onlymust thesystem generateresponsesto individualrequests,but it

must alsoensurethatthe overallpatternof responsesfitsome criteria.In our example,

ifthe objectsarespacedvery closetogether,we may findthatwe neverhave quitetime

enough tocompleterecognitionofany oftheobjectsbeforewe must pickthem up,hence

we end up moving them allintothemiscellaneousbin!To avoidsuch undesirableresults,

thescheme usedforresourceallocationmust have some knowledgeofthetypeofresponses

beinggenerated,so thatitmay fittheseintoan overallplan ofaction.

9. Performance: Lastbut notleast,performanceisimportanttoany real-timeapplication.

Inthiscontext,theperformancecriteriontranslatestogeneratingthebestpossiblequality

ofresultgiventhe availableresources.

Furtherdiscussionofseveraloftheserequirementscan be found in[7,2].

lt isinterestingto noticethat most of theserequirementsare imposed by the resource

constraints,and impact resourceallocationand scheduling.This indicatesthatresourcecon-

siderationsshould be an integralpartof any approach to addressingtheserequirements.In

therestof thispaper,we proposean approach thatenablesresponsegenerationto be adapted
explicitlyto resourceconstraints.We presentour approach in the contextof rule-basedex-

pertsystems,but we believethattheunderlyingideasareapplicableto a varietyofintelligent
real-systemapplications.

3
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3 An Architecture for Real-time Rule-based Systems

3.1 Overview and Rationale

The flexibility requirement identified above involves adapting the resource requirement of the

computation to match the availability. Our approach of resource-based selectivity enables the

specification of several alternative ways to generate responses which vary in quality and re-

source needs. A particular method to generate the response is selected based on the resource

constraints. This approach is based on the techniques of imprecise computation [4, 6] developed
in the real-time community, which provide two ways to generate approximate, partial results

from computations when they cannot be completed in time. The reactive technique of impre-

cise computation is similak to the notion of anytime algorithms: periodically the computation

explicitly generates and saves partial results; if the deadline is reached before the computation

completes, the latest partial result is returned as an approximate result from the computation.

The predictive teclmique estimates the resource requirements of computational steps, and if the

available resources are insufficient, opts to skip some steps (previously identified as optional)

so that the rest of the computation may complete in time; the quality of the result is reduced

by the degree that the skipped steps contr';bute to it.

Our approach enables the application of these techniques to provide flexibility in real-time

rule'based systems. We extend the production system architecture to incorporate a task-

oriented reasoning model. The tasks and subtasks serve as units for resource allocation and

selection of alternative methods of generating responses; We describe a hierarchical resource
allocation teclufique which enables adapting the resource needs to the availability, and optimiz-

ing the quality of the overall result. The architecture also contains several control modules to

facilitate the application of selection strategies to several of its components and provide better

control over resource needs and response quality. The proposed architecture, shown in Figure

1, is actually an extension of an existing architecture called CLASP [9].

3.2 A Task-oriented Reasoning Model

A task-oriented reasoning model structures problem solving knowledge based on the notion of

tasks, wlfich are generic functions that the system can perform. The proposed architecture
distinguishes two types of rules: task-triggering rules and task-accomplishment rules. Task-

triggering rules detect situations that require top-level tasks, while task-accomplishment rules
describe various ways to achieve a given task. For the convenience of our discussion, we will refer

to the former rules as productions, the latter rules as methods. Using methods, a complicated

task can be decomposed into subtasks. Methods of a task may vary in their applicability,

resource requirements, and result quality. Top-level tasks are posted to an agenda by production
rules. Selecting a task from the agenda causes certain methods associated with the task to be

selected and executed. The execution of a method may post additional subtasks to the agenda.

The notion of task has been used in several expert systems as a means to focus the attention
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of tile system to a subset ofrules [8, 5, 1]. Here, we further extend their notion of tasks into tile

notion of a basic computation unit that exhibits imprecise computation behavior. Tasks and
methods together form a task/subtask hierarchy where the children of a task are methods, and

tile children of a method are its subtasks. The terminal nodes of the hierarchy are executable
methods.

The model enables the architecture to reason about tradeoffs between resource requirements

and result qualities among various problem solving strategies, for it improves the availability

of partial solutions, facilitates the estimation of resource requirements, and captures the inter-

dependency of rules.

The task-oriented reasoning model improves the availability of partial solutions in two ways.

First, solutions of varying quality can be generated by various methods of a task. Second, by

explicitly representing the criticality of subtasks, the system can generate partial solutions by

skipping non-critical subtasks.

Keseurce requirements in a task-oriented model can be propagated bottom up in a task/subtask
hierarchy. First, we assume that resource requirements of executable methods can be obtained.

l_esource requirements of a non-executable method is just the sum of the resource requirements

of its subtasks. Resource requirements of a task is an interval [minR ,mazR] where minR

and rnaxR are the minimum and maximum resources, respectively, required by its methods.

In general, resource requirements can be represented either numerically or qualitatively (e.g.,
_ small, medium, large, very large, etc). Qualitative description is useful whenever exact numeric

resource requirement is not available.

Inter-dependency oi" rules is explicitly captured in task-oriented reasoning: methods of a

given task are highly independent, while subtasks of a method usually are highly dependent.

From a logic programming point of view, methods of a task are connected through disjuncts;
while subtasks of a method are connected through conjuncts. Thus, the reactive imprecision

technique usually applies to methods, but not subtasks.

3.2.1 A Hierarchical Resource Allocation Technique

R.esource is allocated to tasks and methods in a top-down fashion. When a top-level task is

created, the system allocates some amount of resources (e.g., the deadline for a moving robot
to react to avoid hitting an obstacle) to the task. These resources are divided and allocated
to applicable methods of the task, which further divide and allocate the resources to subtasks

of the methods. When resources are finally allocr, ted to an executable method (i.e., a terminal
node), the method is executed. The execution can be interrupted when the allocated resources
are used up.

At each level of the task/subtask hierarchy, resources can be allocated to child nodes using

: the predictive, reactive, or a hybrid imprecision teclmique. The choice of the technique often

depends on the accuracy of the resource requilement estimates. For instance, using a pure
predictive approach to allocate time among subtasks is advisable only if we have accurate
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knowledge of the resource requirements of each subtask. If we use the predictive approach

to allocate time based on underestimated measures, the system may not generate auy partial
solutions within tlie deadline, even though the resource available is sufficient for a reactive

approach to produce some acceptable solutious. To avoid this contingency, it is often preferable

to first use the reactive approach to obtain some minimal acceptable result wlfich can serve

as a failback, then use the predictive approach to generate the best possible result with the

resources available. We call this combination of the reactive and predictive approaches a hybrid
approach.

The choice of imprecise technique used at each levels of the hierarchical resource allocation

involves a tradeoff between the timeliness and the quality of the solution. In the case that
there is uncertainty about resource requirements, the tradeoff can also be viewed _ between

the probability of generating an acceptable solution and the quality of the solution. Reactive

or hybrid approaches guarantees the generation of an acceptable solution at an earliest possible

time; however, they tend to increase the total resource required for generating a high quality

solution. This is due to the fact that not only there is an overhead for doing resource allocation,

but also the resources spent on producing an approximate result are wasted if subsequent
computation does run to completion and produces a better result. Whether we choose to incur

this overhead depends on several factors: the cost relative to the total time available for the

subtask, the criticality of the subtask, and the uncertainty about the estimate of the subtask's
resource requirement.

3.3 Other Feature,_ of the Architecture

The architecture contains five control modules for active rule selection, active data selection,

selecting rules from conflict set, selecting tasks from agenda, and selecting methods for a task.
Active data/rules are data/rules that the system attends to. Only active data and active rules

are considered during the pattern matching phase. The selection of tasks and the selection of

methods are separated to facilitate the application of different imprecision teclmiques to the
two coutrol problems.

Information about resource requirements and availability is stored in a global meta-level
data base, wlfich is accessible to ali control modules. These meta-level information can be

updated by rules as well as by system calls (e.g., clocks). Each control module can consider

the resource information, perform some selection function and update the resource requirement

information in the data base accordingly. Thus the different control modules operate together
at various granularities to adapt the resource requirements to the availability.

The arclfitecture is general in that all control modules could modify its control strategy

using information about resources. A particular real-time AI application, however, may otfly
need to consider resource information using a subset of these control modules.
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4 Discussion

This architecture addresses the requirements identifiedearlier as follows:

1, Timeliness: The architecture interrupts the execution of methods when their resources

are used up. A partial solution of the task is generated either using other successfully
executed methods or using the interrupted method.

2. Predictability: The use of hierarchical resource allocation ensures that the resource con-
sumption of tasks is bounded.

3. Flexibility: The predictive and reactive ianprecision te_niques are used to adapt the

result quality and resource needs to the availability.

4. Robustness: Criticality information is incorporated into task selection and resource allo-

cation strategies to ensure graceful degradation under overload.

5. Focus of attention: Selective data activation and rule activation enable the system to

focus on data and rules that are relevant to the current top-level task.

6. Responsivity: In an emergency, resources can be withdrawn from other tasks by updating

the meta-level data base and using the reactive technique to generate partial results from

current tasks. The task responding to the emergency can adapt its computation to the
resource constraints to provide a quick response.

7. Asynchrony: This is a research issue yet to be addressed in the current architecture.

8. Performance: Rule and data activation can be used to reduce resource requirements for

pattern matching, particularly when in conjunction with focus of attention. The tech-

niques of imprecise computation are qualitative and hence involve relatively low overhead.

There are several research issues wlfich must be addressed in this approach:

1. Acceptability Criteria: The reactive approach can generate partial results. However,

whether these partial results are useful depends on the particular application and current
situation. It is necessary to define some criteria that indicate whether a particular im-

precise result is acceptable, These would have the effect of restricting the methods which

may be selected.

2. Interruptibility: Asynchronous events can modify the inputs to the pattern matcher dur-

ing its operation. Teclmiques need to be developed to avoid having to discard the partial
results of the pattern matching process.

3. Obtaining resource information: Primitives and tools to specify resource requirements of

rules atm methods need to be developed.
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Introduction

My point of view is conditioned by thirty-six years of academic research in mathematical logic

and computer science, and thirty_ix years of quite separate consultancies for design and

evaluation of military systems for many agencies. These interests seemed quite separate until

about 1980, when expert systems, AI, and intelligent control of military physical systems came

together as a practical combination. My services for combined problems involving both areas at

once suddenly became popular. When I started research in logic and computer science, and

separately in weapons systems, thirty--six years ago, who would have guessed that they would

overlap and then come together? It is an amazing period.

A General Concern

I want to begin by mentioning a general problem beyond the scope of this conference. Despite

claims to the contrary, present and developing software tools are woefully inadequate for

specifying, designing, writing, verifying, documenting, and maintaining software using

distributed and concurrent computing which meets prespecified system performance

requirements. This is not the fault of programmers or software architects. They need to rely on

branches of computer science, science, and engineering not yet mature enough to serve as a

backbone for designing a concurrent program development environment of long terrn use in an

era of changing technology, changing computer architectures, and newly discovered concurrent

algorithms. These inadequacies are present in every area of science and every area of engineering

in which paralle: _m must be exploited, or in which distributed systems interact. Addressing this

problem successfully will affect future national productivity and competitiveness, in addition to

'. meeting military requirements. Training the scientists necessary to advance this problem will

contribute to the development of intelligent control as a scientific discipline. The underlying

mathematical and algorithmicscience for parallel and distributed computing must be developed

1
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systematically in a:ad for ali prospective fields of application in science and engineering. The

present structure of university departments is generally not responsive to these needs. Computer

science Ph. D's usually know little science and little applied mathematics. Applied mathematics

Ph. D.'s usually know little about scientific computing. Hard science and engineering Ph. D.'s

have little interest in developing new algorithms for parallel machines; they want off-the-shelf

programs and subroutines so they can go about their business of end appiications without fuss.

Academic computational science, as opposed to academic computer science divorced from the

rest of science and engineering, is rather thin. People learn on the job what should be part of

their prior training. There should be a bigger university-trained pool from which research and

development organizations can draw their talent. The Cornell Mathematical Sciences Institute,

and the new Minnesota High Performance Computing Institute, and the MIT-Harvard-Brown

Center for Intelligent Control represent part of the US Army Research Office response t0this
need. Much more educational infrastructure is needed nationwide.

Summary: We lack educational infrastructure for producing enough scientists well acquainted

with applied mathematics, parallel and distributed systems, and science or engineering

simultaneously.
ti

What is Intelligent Control?

The term "intelligent control system" means different things to different people. What I mean is

a message-passing network, with one class of nodes representing decision elements based on

Logic, AI, and OR inference engines and optimizers, with another class of nodes representing

effectors or sensors based on mixed discrete-continuous engineering systems, and finally with a

third class of nodes which are human beings. Ali these nodes interact via message passing with

feedback. The effectors and sensors and computers may be lumped or distributed, sequential or

concurrent, synchronous or asynchronous. Intelligent Control adds to the separate subjects of

traditional AI--OR-Computer Science and traditional Systems and Control Theory a unique

additional complication: understanding and modelling, mathematically, and algorithmically,

engineering systems in which there is constant feedback between OR-based and AI- based and

logic-based inference engines and physical devices obeying differential equations. So discrete

logic or AI or OR decisions generated by inference engines and optimizers interact with hurnan

users and exert control over continuous physical processes normally modelled by discretized

differential equations, and in turn the changes in the physical system are sensed and fed back

' into the inference engine databases. I believe that mathematical analysis and design of mixed

AI-OR-logic and differential equation systems is feasible, but this is an uncharted area, a newly

_ emerging territory of the highest order of importance in both systems based on the Von

Neumann sequential architectures and those based on concurrency and distributed systems. It is
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hard enough to analyse cases where there is a single continuous physical device, be it sensor,

effector, or control, interacting in feedback with one inference engine and database. The

challenge of utililizing concurrentprocessing and interacting with distributed devices adds spice

to what is already aleading edge area. This will require a real expansion of the areas of research

for distributed and concurrent systems in computer science, which do not usually address

interaction with distributed physical devices other than computers. It is well worth pursuing as

a significant research initiative.

Foundations of Intelligent Control

The basic requirement on software tools for concurrent intelligent control should be that they

enhance production of readable, modular, upgradable, maintainable, provably correct software.

To achieve this goal we need a broad precise mathematics.--computer science high-level model

encompassing On common mathematical grounds both AI-, logic-based inference engines an._.d.d

differential equation-based models of physical systems controlled with feedback in a concurrent

distributed environment. This is not satisfied by constructing mere interfaces between logic AI

soft_,'_areand FORTRAN or ADA code controlling diverse devices. Instead, this refers to the

development of integral models involving both physical devices and inference engines where

control of those devices is exercised by functions computed from conclusions made continuously

by AI--OR-logic inference engines. I believe that rational design of intelligent control requires

the development of this subject. Of one thing I have no doubt. To validate that a concurrent

program in this context is provably correct (or even convincingly correct) in satisfying high level

program specifications, it_is simply not possible to proceed without such a model.

Here, in a nutshell, is my personal conception of the required mathematical modelling. A

concurrent logic program can be thought of as having a set of possible logical states, each

describing the total state of the inference engine at a single moment of computation; in the logic

programming model, these states are usually described by current bindings of ali variables of all

clauses in all processors. A single execution sequence for the concurrent logic program is a

sequence of states compatible with progam execution (that is, a sequence of states which could

happen). There are many execution sequences for any really concurrent program, including any

concurrent logic program. To prove such a program is correct is to show by some means, formal

or informal, that every possible execution sequence satisfies the program specification. For a

concurrent program, this usually breaks up into a horrendous number of cases, and has to be

proved by some sort of induction, either in a formal language of programs such as the Hoare

systems, or by induction on the number of execution steps. In proofs that programs are correct,

there are so many cases that computing machines are required in order to keep track of what
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cases have already been completely verified,and what cases are left to verify. Similarly, for

physical devices, if we look at control theory, the analog of the program specification for a

physical device is its governing syste m of differential equations and its required accuracy and

robustness of behavior. The set of allowed solutions is crudely (but not exactly) the set of

allowed "execution sequences". To prove that the specification is satisfied is to prove that the

implemented device satisfies the equations within _the desired degree of accuracy and robustness°

When this is modelled on digital machines, the equations and the solutions are modelled in

discrete time steps as sequences solving difference equations. For this simplified explanation, we

think of these time steps as the same time steps as for the logic program, and of the set of ali the

discrete sequences satisfying the physical device program specification as the set of ali execution

sequences for the physical device program

But when concurrent logical programs and physical devices are connected in feedback and used

in single concurrent systems, the current _tate of the whole system is described by the joint

current states of the logic programs and tlm physical device. So the execution sequences of this

joint program are those sequences of joint states satisfying the final program specification. To

prove that ali possible execution sequences satisfy the program specification, we have to perform

inductions on the length of execution seq_tences to see that the specifications, including all

accuracy and robustness requirements for ali physical devices, are satisfied. We could also

invent a formal system for this purpose. To get an informal correctness proof, it seems to me

that some such methodology for classifying and resolving cases as to what behaviors are possible

has to be carried through. This requires a high level of precision about what the specification

says, what the physical models are, what approximations have been made, and what execution

sequences are concurrently possible. This is my own personal analysis, highly simplified. I think

that this is what underlies modelling the mathematics and algorithms of concurrent intelligent
control.

I would like tosee the development of mathematical and computer science models of distributed

and concurrent devices involving AI---OR-logic inference engines as controllers with continuous

physical devices as driven devices. With such models, computer scientists and applied logicians

will be able to define useful semantics and syntax to describe execution and program

specifications for hybrid programs, and a new generation of applied mathematicians and

computer scientists will be able to develop provably accurate, provably robust, mixed

_- logic--continuous model algorithms meeting program specifications. There are glimmers in

research results in areas such as robot motion, machine vision, data fusion for sensors, discrete

and continuous dynamical systems, concurrent algorithms for distributed systems, dataflow

=
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models for LISP-FORTRAN, concurrent logic programming, discrete event simulation,

distributed knowledge and belief, parallel implementations of combat modelling and battle

management, etc' which have convinced me that this is a viable paradig'n to organize future
research.

Summary: Software development for intelligent control should be advanced by developing

theoretical models of hybrid AI--OR--logic and differential equations systems, where results ot!

inference engine deductions and of differential equation solving for physical devices are in mul;ual
feedback.

With a basic understanding of the structure of these models, the features of the needed software

tool environment should be much clearer. What we would like is a modelling fully

understandable to scientists and design engineers and __.!soto computer scien_,ists or

programmers. Hybrid logic-physical models are on one side of a fence, algorithm and software

development are on the other. The scientists and system designers on one side of iAi_fc.,_ceand

the algorithm and software implernentors on the other need a common window. At present, the

intelligent control system engineer-designer is much at the mercy of his programmers, simply

due to the fact that hybrid systems don't have a high level mathematical model or specification

language which is mutually understood on both sides of the fence. Difficult problems of correct

modelling and design to meet robustness and accuracy requirements due to nonlinear interactions

lurk behind every new code module for hybrid systems. A lesson from contemporary dynamical

systems, which have no OR-AI-Logic subsystems, is that it becomes rapidly intractable to

determirm what singular behaviors violate intended specifications as system size goes up, and

that much mathematical and engineering sophistication, in addition to software engineering skill,

is required.

Where are we?

Intelligent control melds historically separate elements: physical networks, as studied by

systems and mechanical and electrical engineers; computer networks and real time operating

systems, as studied by computer scientists; inference engines, as studied in Operations Research,

Artificial Intelligence, and Applied Logic; sensors and effector systems obeying mixed

discrete---continuous differential equations, as studied by control engineers and dynamicists; and,

lastly, human beings interacting with the systems a_ studied by specialists in human factors, -_

artificial intelligence, and cognitive science. Here are personal views on the state of development

of these subjects.

I. Modelling and algorithms for design of networks for communicating digital information
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between computers is a solid branch of computer science sternnfing from the study of operating

systems and corrmaunication networks. Modelling and algorithms for interacting networks of

inference engines and sensors and effectors is a mostly undeveloped research area. Research is

needed to develop models, datatypes, and efficient, robust, accurate algorithms.

II. Understanding the behavior of networks of interacting physical devices, in the absence of

logical control, requires already that we develop models and algorithms for determining the

exceptional, as well as intended ordinary, behavior of very complicated dynamical systems.

Tools available for this purpose are the mathematical models and algorithms of dynamical

systems, and implementations of these models as software tools for simulation and design and

evaluation. Mathematical algorithms and software permitting simulation of _mall dimensional

problems are being developed. (One implementation is the Kaos system of Guckenheimer at

Cornell, in experimental use at 100 sites, and based on the latest algorithms and theorems.)

Such software, for low dimensional systems, will eventually allow the design engineer to run

simulations with high assurance that there are no unobserved singular behaviors in the range of

parameters likely to be encountered which would violate the program specifications, Similarly,

such programs can help assess robustness, accuracy, efficiency, and correctness of code. But

standard new military systems such as tanks, autonomous underwater vehicles, and distributed

intelligent artillery, are systems with many degrees of freedom. At present such large systems

cannot at present be simulated in full with all degrees of freedom. They rather must be

simulated in simplified form with a much smaller number of degrees of freedom, even on the

largest parallel supercomputers. It takes _ lot of scientific and engineering skill to assure that

the simplified systems, as simulated, rule out unwanted exceptional behavior and assure

robustness and accuracy for the full system. Further research on mathematics of dynamical

systems and corresponding algorithms is required if successful general purpose software tools are

desired for such systems, even without intelligent control. Single applications often present

major, but surmountable, algorithmic and modelling challenges. Modelling and simulation of7.

large dimensional conventional dynamical systems is at the frontier of current research, without

the added dimensions due to logic control. When we add AI-OR-logic elements to a network of

conventional physical devices, we get a yet more challenging class of dynamical systems. This

area requires simultaneous attention from experts in automated reasoning, OR optimization

" techniques, numerical analysis, dynamical systems, algorithm development, and control system

engineering.

III. Now we discuss pure distributed logical decision networks, leaving out any controlled

physical devices. Such systems are built to face continuously changing new information from

I ,r......... n .... ,¥ V,,:_:''_ ',,r,
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many sources and must automate decision making based on fact and belief of many agents. The

decisions axe local for single agents and global for whole systems. Cooperating databases and

cooperating expert systems are examples of this; so are command and control systems. This is a

rapidly advancing logic-AI-computer science area, needing much more research.

IV. When we put physical devices to be controlled in feedback networks with decision devices,

we axe surely at the frontiers of knowledge. Basic modelling in this area can be developed, but is

very primitive.

Models in these and other closely related areas of AI, OR, Systems, and Control, need further

mathematical and algorithmic development focused on intelligent systems. Such developments,

models and algorithms, will furnish the necessary datatypes and datatype transformations for

implementation of future software tools for hybrid system design, simulation, and testing.

I advise:

- A short-term research program tied to a couple of military testbed projects developing models

and special purpose software tools.

- A simultaneous long term research program, tied to the short-term program for inspiration

and applications, but independent of the short term program. This program should develop

models and algorithms needed by software engineers to produce general purpose software tools

for intelligent control which can insure writing accurate, robust, correct, software.

Postscript

At the ARO Mathematical Sciences Institute at Cornell we have a concentration on algorithmic

mathematics in such diverse areas as partial differential equations and dynamical systems,

symbolic computation in algebra and logic and combinatorics, robust motion planning, geometric

modelling, dataflow models incorporating LISP and FORTRAN, program logics and program

development algorithms for concurrency, etc. Many of these areas enter into intelligent control.

I hope that we will be able to contribute mathematical, computer science, and engineering tools

for this emerging area as well.
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Distributed Computing Research at
MCC/STP

Colin Potts

MCC Software Technology Program

Abstract: The Software Technology Program at MCC is addressing techniques for the
early phases of distributed systems design. We have introduced languageabstractions,
interaction and the team, that permit concise, high-level descriptions of concurrent
behavior. We have implemented a visual language environment, VERDI, that supports
execution and performance simulation of models expressed in termsof these abstractions.
VERDI has been applied by MCC and several of its member companies to practical
distributed systems. We are developing a transformation-based methodology for VERDI.
We are investigating severalapproachesto fault-tolerance, including self-stability. We are
also working on techniques forvalidating real-time constraints.

The Software Technology Program (STP) at MCC is addressing the early stages of large-scale system

development. Research into distributed computing at MCC/STP, therefore, has focused on teols and
techniques to assist in the early design and assessment of distributed systems.

Concepts

During the early stages of the development process it is desirable to abstract away from architectural

concerns. In centralized systems two classes of abstractions have become widely accepted: structured
programming constructs for control and data abstractions. In distributed systems an additional class of

abstraction is necessary: communication abstractions' Communication abstractions are preferable to the low-

level communication constructs currently in use, such as message-passing and shared memory, because they

require no assumptions about the underlying communication medium.

Our work has focused on the expression of synchronization and communication relations among
distributed processes in terms of multi.party interactions. The interaction is synchronous, multi-party, and

symmetric. In addition, wehave developed an encapsulation mechanism, the team, for collections of

interacting processes. Teams can be used to represent subsystems or data abstractions. Their interfaces are

procedures that may be called by any process. Only processes in the same team may interact directly; those

in different teams communicate by calls to interface procedures. In our experience, communication and

contention constructs, such as buffers, blackboards, and shared resources, can easily be modeled by teams,
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and thereforeneednot be treated as primitives.Interactionsand teams form the basisof the Raddlelanguage
model (Attie, 1987;Evangelist,Shen,Formanand Graf, 1988).

Visualization and Modeling

concurrent systemsare difficult to understandbecausethe concurrentexecutionof multiple processes leads
to an explosion in the size of the state space.Ourexperience has conf_ thatprogramvisualization
techniquescan be used to clarify the behavior of practicaldisU'ibutedsystems long before they are
implemented.We havedevelopeda visuallanguagethatincorporatesprocesses,interactions,and teams,and
we haveimplementeda visuallanguageenvironment,VERDI,foreditingandexecutingdesigns(Graf,1990;
Shen, Richter, Graf and Bnunfield, 1990). In VERDI we distinguishthe control and communication
constructs,whicharerepresentedvisually,fromthedetailsof the actionsandinteractions,whicharespecified
in anembeddedtextuallanguage(a subsetof C).

Figure1 shows a high-level model of an electronic-fundstransfersystem in the form of a VERDI
diagram.The largeenclosing box denotes the only team in this design. The three processesare aligned
vertically,andtheirflow of controlis readfromleft-to-right.They arecyclical,so each processincludesan
implicititeration.Choices are shown by parallelbranches.Simple boxes denote local actions, whereas
doubly-barredboxes denoteinteractions.The partsof an interactionhave the samename.Thus, processes
POS,c_bank,andm_bankparticipatein the interactionnamed'transaction'.

Executionproceedson two levels, whichcorrespondto the visuallyand textuallyspecifiedpartsof the
model. The high.level control and communicationskeletons of the processes, which are expressed
graphically, are interpretedby an interactionand process-schedulingmechanismthat implements the
operationalsemanticsof Raddle.Localactions,interactions,and the evaluationof guardsareimplemented
by interpretingtheembeddedC code.

VERDIalsosupportsinteractiveperformancemodeling.Localactionsand interactionsmay be assigned
durations.VERDIuses these durationsand a virtualclock when schedulingevents. Performancestatistics
may be gatheredby including instrumentationteamsfor timing and throughputanalysis. Because these are
just VERDI teams, it is easy to extend the performance-gatheringfacilitieswithout reprogrammingVERDI
itself.
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Figure 1: A high-level model of an EFT system
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Methodology

We have developed a tnethodology for using VERDI. We recommend starting with a tightly
synchronized design that can be shown to have the desired qualitative properties, and then refining the design

by a series of synchrony-loosening transformations. Performance sbnulation is best delayed until the

transformations have progressed to a point where the teams and processes in the model correspond to

architectural components. Figure 2 depicts the EFT design at a point in its refinement history when the

original 3-party interaction has been replaced by several 2-party interactions. A new switch process has also
been introduced as an intermediary between the POS and the bankprocesses. Figure 2 is concrete enough for

simulation to be useful forrough estimation of performance.

In practice the methodology is applied rather informally (Forrnan and Evangelist, 1987). We have,

however, specified several correctness-preserving transformations andhave developed several synthesizing
transformations forobtaining finite-state models from temporal formulae (Attic and Emerson, 1989). We are
planning to implement support for these transformational techniques and demonstrate their effectiveness in

practical designs. To support this transformational methodology, we have integrated VERDI with the MCC/

STP hypertext browser GERM (Brans, 1988) to foma a prototype VERDI information management

environment (VIM) for recording design history, design alternatives, rationale, and performance data.

Prototype code can be generated from VERDI. A CSIM translator has been implemented (Ojukwu,

1990). Guidelines exist for mapping Raddle constructs to Ada (Attic, 1988), and an Ada translator and run-

time system has also been implemented for a variant of VERDI, in which the embedded language is Ada

(Attic, Bruns, Evangelist, Richter and Shen, 1989).
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Figure 2: A refined model of the EFT system
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Practical Experience

VERDI has been used to model a wide variety of applications within MCC and its shareholdercompanies.

Applications include transaction processing (including EFT), application-specific protocols (e.g., cellular-
radio handoff), distributedenergy management, missile-launching procedures, post-facto tool integration,

and distributed artificial intelligence.

The VERDI model for the distributedAI application was done by David Bridgeland, NatrajAmi, and
Michael Huhns of MCC's Advanced ComputerTechnology Program.They aredeveloping adistributedtruth

maintenance System,in which autonomousheterogeneous reasonerscooperate in solving acommon problem.
Each reasoner has an unintelligent communication aide thatdeals with the logistics of communicating with
and delegating tasks to the others. The protocol employed is non-trivial, and an initial demonstration

prototype deadlocked frequently. The VERDI model, completed in two weeks, helped uncover three
problems, two of which led to unexpected classes of deadlock, and ali of which were easily corrected at this

stage of the design. We believe that the VERDI visual presentation will help future efforts to propose a
reference model for inter-agentcoordination in DAI systems.

Fault Tolerance

We aretaking several approachesto fault tolerance: superimposition,quoruminteractions, andself-stability.

One of the problems in understanding fault tolerantsystems is that the logic and clarity of the desired
behavior is clutteredby errordetection and recovery details. Classical modularity is not a solution, as there

is usually no single point where fault tolerance must be introduced. Superimposition, a layering mechanism

whereby an underlying computation is embellished by additional functionality, is mo_e promising. For
example, a superimposition may monitor the underlying computation for faults. The attractiveness of

superimposition for fault-tolerance is that the specifications of the underlying computation and the
superimposition areseparable.

Superimposition may be accomplished by tlansformations or by composition. In transformational
superimposition (Katz, 1987), the superimposition is a delta on the underlying program. This technique has

been applied to the EFT case study (Shen, 1988). Unfortunately, the resulting fault-tolerant program is
difficult to understand,because it is specified in separate places in different languages: the design language,

and the tran.formation language. More recently, Forman andFrancez (1990) have proposed a composition-
based form of superimposition for an extension of Raddle. The superimposition operator conjoins an

underlying and a superimposed process. The superimposed process may regulate the behavior of the
underlying process by inhibiting or delaying interactions in which it participates but may not change the
values of any of its variables.

A Raddle interaction may only be enabled if ali of its participants are ready. If a participating process
fails, the interaction cannot occur. In a quorum interaction (Evangelist, Francez and Katz, 1989), the

enablement conditions are relaxed, so that only a quorumof _he participantsneeds to be ready. Its clearest
application is to allow distributed agreements to be implemented when only a subset of the processes are
active.

In the preceding methods, as with ali classical approaches to fault tolerance, there is no notion of the
completeness of the recovery procedures. It is generally possible to invent additional failure modes that a

model does not handle.In self-stabilizing systems, by contrast,the state space of the system is partitionedinto
safe ar_::unsafe sub-spaces by specifying a safety predicate. A system is said to be self-stabilizing if it is
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guaranteed to converge to a safe state from any state within a finite number of steps. The partitioning of the

state space and the self-stability condition guarantees completeness.

An arbitrary program can be made self-stabilizing by superimposition (Katz and Perry, 1989) but at the

cost of great conceptual and computational overhead. We believe that it is preferable to design self-stability
into a system from the start, and that it is possible to discover some useful design heuristics that lead,to self-

stability, We have developed several self-stabilizing algorithms and protocols,

Iteration systems provide an abstract model for self-stability. We have demonstrated the tradeoffs

between resources and the convergence rate of an iteration system (Gouda and Evangelist, 1989) and have

shown how to reduce proof obligations for the convergence of discrete iteration systems to fixpoints (Arora,
Attic, Evangelist and Gouda, 1990).

The most interesting application of self-stability is likely to be in the augmentation of classical recovery-

based fault-toleranceprocedures. Many subtle systetn fault modes arisewhen a recovery procedure itself fails.

It would be valuable to guarantee the eventual success of a recovery procedure in the presence of faults. There
are also applications of self-stability other than fault-tolerance. For example, it may be a useful concept in

discrete-event control systems and in the formalization of some classes of adaptive systems (e.g., neural nets).

Self-stability is currently a subject of great interest. In 1989, MCC/STP organized the firstof what is intended

to become a regular series of work.shops in the field (Evangelist and Katz, 1989).

Real.Time Systems

VERDI has been applied to real-time systems. We are currently collaborating with Rockwell, COllins

Avionics Division, :o model a real-time executive (RTE) in VERDI. It includes standard real-time facilities_

such as timeouts, interrupts,and priority-based .,_heduling. The RTE is an ongoing development project, and

is our most significant and sustained technology-transfer project to date. The model will be used by
applications developers to predict the performance of their applications given altemative scheduling

strategies. It reduces the risk of having to wait until a prototype is implemented on the target hardware. The

currentmodel is specific to one executive, but we intend to generalize our work into a set of standard real-

time facilities that can be used to validate application models.

For this generalization to be possible, it will be necessary to extend VERDI and its language model.

Although VERDI contains facilities lhr modeling the passage of virtual time, it is not easy to model hard real-

time constraints and use them in scheduling events. We also plan to investigate the feasibility of model-

checking in VERDI, or a VERDI-like real,time design language. We envisage real-time constraints being

specified in a specification language based on a computationally tractable real-time logic such as RTL

(Jahanian and Mok, 1986).
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Abstract

The tasks of control system requirements analysis, control system analysis
and design, and controller software/hardware implementation have
traditionally been viewed as three distinct activities. In large projects these
activities are often handled by different groups using incompatible CAD
tools. Consequently, the overall design cost is inflated by the need for
manual data conversion between the different phases. Also, it limits the
traceability of individual requirements through the process, and it prevents
efficient design iteration involving more than one phase. The Use of an

, integrated set of software tools would bridge the transition of information
between the different project stages, and eliminate the risk of having errors
introduced during any manual specification or design conversion.

Introduction

The 1980's was an important decade for control engineering. New theories
and methods in such areas as multivariable and robust control, as well as
better numerical algorithms (e.g. for higher-order systems), extended
design capabilities and increased the operational reliability of the designed
controllers. Methods for decomposing algorithms onto parallel processing
architectures increased potential real-time performance. Most
importantly, the introduction of powerful and easy-to-use interactive
Computer Aided Controls Engineering (CACE) tools enabled the average
control engineer to efficiently and confidently put all these new methods
and algorithms to productive use.

Most control engineers now have access to good CACE tools. A class of
extendable programs based on Matlab (Moler, 1980), the so called "matrix
environments", became very popular during the last decade. A few robust
and well-supported matrix environments have come to dominate the CACE
market, with other tools coveting different niche markets. Lead time
between the development of new control algorithms/methods and their
incorporation into some extendable matrix environment has become very
short. Thus, the average control engineer is well equipped to perform his
core engineering tasks.
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Page234 These theoreticaland computational advances have given industrial
controlsengineeringand itspractitionersa significantproductivityboost.
Further developmentswillundoubtable resultin even betteralgorithms
and even simpler-to-usetools,but such improvements willbecome more
and more incrementalinnature. To make anothersignificantimpact on

: industrialcontrolspracticesand cost,we need tolookbeyond thetraditional
domains of automaticcontrol.We must examine how controlsinterfaces

with other engineeringdisciplinesin the overallprocess,and develop
methods and toolstobetterintegratecontrolengineeringwith theseother
disciplines.

In the next chapterwe willintroducetwo disciplinescloselycoupledwith
controlsengineering.Thereafterwe willshow how CACE methods/tools
arebestinterfaced/integratedwith tools/methodsoftheseotherdisciplines,

" 1and how thiswillincreasethe overallprojectproductivity.Finaly,we will
discussto which extenttodaystoolscan be integratedto accomplishthis
and identifytechnologyareas where additionaltheoreticalwork and/or
toolsdevelopmentisnecessary.

Systems and Software Engineering interactions with Controls

Control Engineering is the primary, but far from the only, technical
discipline involved in the overall process of designing and building a
product with an embedded controller. Some of the ubiquitous activities in
systems and software engineering are very closely coupled with traditional
control engineering tasks (individual projects may require the use of
further disciplines ranging from astronomy to zero-sum games). However,
current practices suffer from duplication of engineering efforts among
these disciplines, and from ineffective information/data exchanges between
them. Considerable productivity and reliability gains could be attained by
integrating methods and tools better, and by streamlining tool interfaces.

Systems and software engineering are established disciplines with their
own set of methods and tools. Although this paper primarily deals with the
control system engineering and control software engineering sub-domains,
the methods and tools of these sub-disciplines typically remain the same:

* Discipline: System Engineering.
Overall activities: Initial system requirements analysis; Overall system
specification, system design and implementation; Administrative tasks
such as project timing, resource allocation, and task coordination.
Controls oriented activities: Initial feasibility studies of the proposed
system/controller; Controller requirements analysis; Higher-level
system/controller decomposition (hardware vs. software, in-house vs.
subcontractor, etc).
Tools: General engineering analysis programs (e.g. modeling and
simulation tools); project planning tools

* Discipline: Controls Engineering
Activities: System modelingand identification; Controller architecture
design; System analysis and detailed controller design.
Tools: CACE tools (matrix environments), Simulation packages
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• Discipline: Software (Hardware) Engineering
Overall activities: Implementation of the system; Hardware and soft
ware design of the embedded system and its peripherals; Operating
system development/customization; Final validation and testing.
Control'related activities: Implementation of control laws; Integration of
the resulting code into operating software and hardware environments;
Final control law validation and testing.
Tools: Computer Aided Software Engineering (CASE) tools, compilers,
debuggers; CAD tools for Analog_igi_l hardware designs.

The considerable overlap in controls-related tasks performed within these
different disciplines is shown in Figure 1. For example, good and reliable
models of the system are necessary both during initial control systems
feasibility studies _and dur_,ng the detailed controller design. Also, the
controller architecture must be lmown both to the control engineer and to
the control software team responsible for implementing the real-time code.
Even the control code itself could be reused if the same code is included both
in simulation models for controls validation and simulation, and in the
production real-time code (this can for example be achieved through an
automatic code generation facility with multiple target-language
capabilities).

Despite the overlaps, these tasks are mostly viewed as separate activities to
be performed by different teams or group of teams. Team members are
typically selected by their core engineering discipline, and each discipline
use its own set of engineering tools. This makes technical interaction
between the related groups difficult and the overall design cost is inflated by
the need for manual data conversion between the different phases. Also,
incompatible tools limit the traceability of individual requirements through
the process, and prevents efficient design iterations.

A tighter integration of controls, systems and software engineering is
particularly important during the design and subsequent implementation
of distributed control systems, as the number of interfaces between the
three disciplines and their relative importance grow with the increased
overall complexity and a finer granularity of the controller architecture.
For example, the systems engineering decomposition must identify and
define the distributed architecture. On the software engineering side, the
binding of distributed control laws onto a distributed processor architecture
substantially increase the complexity of the operating system interface.

In the next two chapters we will see how tools from these three disciplines
can be combined to form an integrated software environment.

An integrated Controls Engineering environment

An integrated controls/system/software environment must incorporate
functional capabilities from all three disciplines: control system require-
ments analysis, control system specification and decomposition, control
system model,.'ng and simulation, system and parameter identification,
control system analysis and design, software specification and design,
automatic control law code generation, computer assisted code testing and
validation, etc. Ideally all these areas should be supported by a single
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realistic approach:

• The cost of developing and maintaining such an aU-encompassing
system would be prohibitively high compared to the cost of buying
existing state-of-the-art component:_ _:_:_ldintegrate them.

• Many of the present market-dominating tools have already achieved a
high degree of acceptance in their respective domains, and the average
engineer will not be very eager to trade in the effective and reliable teel
he is already using for some mandated tool•

• It makes little sense to, for example, introduce a control-law CASE tool
to make it compatible with the used CACE tools if this then makes the
control law CASE activities incompatible with other CASE activities.

A more realistic approach would be to integrate a set of well-established
state-of-the-art tools into a single system with automatic information and
data conversion between the different tools. This would allow the continued
use of established tools, while software development may be concentrated to
specificareas where no good tools are e/vailable yet.

A smooth and seamless coupling between the different components is the
key factor to a successful integration. This coupling must be complete
automatic, if any manual conversion is necessary the integration has
brought little compared to the existing situation. Figure 2 shows primary
flows of information between the different controls related activities. The
System Specification document and the Control System Definition constitute
the main interfaces between the three disciplines. However, it is important
to note that the whole process is iterative, with adjustments and re-designs
potentially going all the way back to the original requirements. Thus, in
order to maintain a traceability of individual requirements through the
process and to ensure consistency the coupling between the different
phases the interfaces must function in both directions.

The use of an integrated set of software tools would not only give
productivity gains by automating the transition of information between
different project stages, it would also eliminate the risk of having errors
introduced during otherwise manual conversions, and provide cross-
checking during any iterative re-design.

The GE integration effort

GE is currently defining, implementing and integrating a comprehensive
software suite to be used throughout all phases of controller planning,
specification, design and implementation• The suite will tie the control
systems, control software and control design Engineering worlds together.
It is based on both commercial and proprietary individual tools and runs on
UnixrM-based engineering workstations. All components are graphics
oriented, with simple-to-use "point-and-click" interfaces and powerful
display graphics. Individual workstations may be licensed and configured
to contain only a subset of the component tools. Platform-independent

TM Unix is a trademark of AT&T Bell Laboratories
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• Control designinterchangeformat. Some CASE toolssupportde-facto
standardssuch as EDIF (ElectronicData InterchangeFormat),but no
commercially availableCACE package interfacewith these data
interchangeformats.This preventsa completeintegrationofthe CACE
and CASE world,forcesthe engineersto relyon manual or custom-
implemented transformations,and prevents a complete consistency
checking between corresponding engineering designs in the two
disciplines.Basicdevelopmentof a mapping scheme between control
design architectures,controller implementations, and CASE
interchangestandardsisnecessary.

• Optimized code generators.Presentlyavailablecontrol-orientedcode
generatorsoperatefrom block-diagramsand/orequationsetson a block-
by-blockor line-by-linebasis.This resultsin inefficientand unstruc-
turedcodeas blockinterdependenciesand hierarchiesarenotutilized.
The efficiencyofsimulationcode is not mission-critical,however, the
same code may createseriousproblems when down-loaded intoreal-
time microprocessor(s).As many cross-compilersdo not perform good
code optimization(thisisparticularlytrueformost Ada compilers),the
source code itself must be optimized for memory and speed.
Source code optimization is a non-trivial task. The p_nciples behind
general variable/register optimization are known, but this is really a
reverse-engineering process and either very complex or not very
efficient. If the control code specification is inblock-diagram form (or
some other canonical representation), with well-defined control flows
and algebraic operations, a much better code optimization could be done
as we already have "answers to all re-engineering questions" such as
dynamic data dependencies and scaling information . Special-purpose
code-optimization (or, rather, code-generator optimization) could
therefore result in much faster code.

• Automatic validation and testing. Software validation and testing is still
largely a manual process. Electronic interconnection of the design and
code implementation phases opens up the feasibility of automatic
validation and testing of the produced code both on the module and on
the integration level. As with the code optimization, contextual
information from the control specification (block diagram or canonical
form) could be used to automatically produce test cases and execution
orders for these cases. The goal should be a fully automated generation
and execution of test cases, with automatic or computer-assisted
evaluation of the test results.

Conclusions

With the advent of modern CACE tools the productivity of the individual
control engineer has improved significantly. The same is true in other,
related disciplines such as System and Software Engineering. Yet, on a
project level further overall productivity gain is hampered by tools
incompatibility and the necessity of performing manual translations of
information and data between different controls.related tasks. This
prevents a smooth integration of the different activities and makes the
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ASCII files form the primary coupling between the different individual Page237
tools. These flies can be exchanged between any networked workstations.

The GE system is a joint development between differen_ GE Aircraft
Engine, GE Aerospace, and GE Corporate Research and Development
departments. It presently contains the following components:

• The Cadre Teamwork TMprogram has been selected and installed as a
comprehensive CASE tool. This program is used for general software
specification and design, it is also increasingly being used for system
specification and overall system decomposition.

• Beacon, a graphical editor for specifying engineering block diagrams.
Block diagrams have a long tradition in controls engineering, and this
editor gives the control engineer a natural tool for specifying models,
controller dynamics, and controller logic. It can handle large,
hierarchical diagrams. It lets the user perform either top-down or
bottom-up design, or a combination of the two. Figure 3 shows a screen-
dump of the editor. Some of the available blocks are shown on the
palettestotheleft,new onesmay be addedthrougha builtiniconeditor.
This proprietarytoolisa customizationofthe genericblock-oriented
Design/OAzM softwaresystemfrom Meta Software

° GE-MEAD, a proprietaryCACE environment(Taylorct.al,1990)which
featuresan integratedengineeringdata base manager, a built-inexpert
system shell,and a flexibleuser-friendlyuser interface.The user may
arbitrarilyswitchbetween an easy-to-usegraphical"point-and-click_
mode (Figure 4), and more versatile/demandingcommand modes.
MEAD uses the Pro-Matlab_Mpackage enhanced with commercial and
proprietarytoolboxesfor itsnumerical controlalgorithms,and the
ACSL TM package fornonlinearsimulation.

® Proprietaryautomaticcodegeneratorswith the capabilityofgenerating
codeindifferentlanguages.These generatorsareabletotransformthe
output from the block-diagrameditorto simulationand/or real-time
code. The generatorscouldalsoserveas an interfacebetween Beacon
and MEAD, and tiein with Teamwork so thatthe top-levelTeamwork

. software specification/generation could be automatically coupled with
the lower level control code.

Proposed Fumre Resex h Areas

The GE Controls Environment constitutes a comprehensive suite of high-
quality software tools, integrating the overall controls engineering process
involving Controls, Systems and Software engineering groups. These tools
already find important use in the operating departments. On the research

_ side, the evaluation of existing tools and the integration of these tools into a
system have revealed technology areas not yet well understood and/or not

: r_ Design/OA is a registered trademark of Meta Software Corporation
- rM Pro-Matlab is a trademark of the MathWorks, Inc.

rM ACSL is a trademark of Mitchell and Gauthier Associates
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natural iteration and re-engineering a tedious process. Such an
integration is particularly important for distributed control systems with
their increased complexity and the tight coupling between controller and
overall system architecture.

In this paper we have proposed that existing tools from the different
disciplinesshouldbe tightlyintegratedto form a single,unifiedcontrol
design/system/softwareengineeringenvironment.We have shown how GE
have appliedtheseideas,and we have suggestedsome areasof further
research.

References

Moler, C. (1980) MATLAB User's Guide. Dept. of Computer Science,
University of Albuquerque, NM.

Taylor, J. H., Frederick, D. K., Rimvall, C. M. and Sutherland, H. (1989),
=A Computer Aided Control Engineering Environment with Expert Aiding
and Data-Base Management". Proc. IEEE Workshop on Computer-Aided
Control System Design, Tampa, FL.

i

Systems
Engineering

_'_ , . .......

i ilRequir.ement i : ii i_:!i _!i:i_i_oj_:::M_agement:!!::ii::!i Teeing ii ili i

::::_: Modeling : : ::_' Controls _:: : ii ;! !_:_:......

::::_iGeneration.........
.::

.Engineering
Analysis Software i ::
and Design .... Design

Computer ". ........"-::. " . - Computer
Aided Aided Software
Controls Engineering.Specification
Engineering of code (CASE-tools)
(CACE-tools)

Figure 1. The relationship between Control/System/Software Engineering



F

"" 1CONF-9007 ] 34 [ PROJECT MANAGEMENTPage 240

" IW
uJ

FEASIBILITY
STUDIES CONTROL

ANALYSIS '
&

DESIC_ SW
n-

SYSTEM

i SOFTWARE
DESIGN

&

VALIDATION

ii OVERALL
TESTING

"MAINTIMESCALE

Figure 2. Main flow of information in the controller design cycle'

Figure 3. A Beacon screen with two hierarchical pages



CONF-9007154
Page 241

Figure 4. The GE-MEAD simulation screen and affiliated forms
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Summary

A new spatialoperatoralgebra[1,2,3! providesa model,basedarchitectureforsoft-
ware prototypingand developmentformobile,articulatedroboticsystems..The algebra
isa worldrepresentationand computing framework which greatlysimplifiesthe difficult

processofmodeling,simulation,control,motion planning,and coordination,ltprovides
a modelingand computationalarchitectureforhigh-levelplanningand intelligentcontrol.
ltalsosignificantlysimplifiessoftwaredevelopment.The algebraconsistsofa setofsym-

bolicoperatorswhich ata veryhighlevelofabstractionsummarize theverycomplextime
and spacerelationshipsinherentinmobile,articulatedmultibody systems. Once setup

and understood,the operationsinthe algebraarealmostaseasytouse as addition,mul-
tiplicationand divisionin elementaryhigh-schoolalgebra.Symbolic complexityvisible
to the userisreducedby 2 to 3 ordersofmagnitude becauseeach operatorsummarizes
about 100 to 1000 more detailedsymbols and operations.Each operatorleadsto a fast

spatiallyrecursivealgorithmthatperformsthecorrespondingcontrolcomputations.Com-

putationalbottlenecksaxeavoidedbecausethe number ofarithmeticoperationsrequired
grows only linearlywith the number of degreesof freedom. The algebrahandlescon-
figurationchanges easily.Targetappllcationsincludeautonomous vehicleguidanceand

control,vehicle-assistedcargo-handling,warehousetasks,roboticexcavation,handlingof
unexplodedordnance,surveillance,pointingand controlofplatform-mountedarticulated
assemblies,and roboticvehiclefieldoperations.

1 Problem Statement

Management of complexity is one of the most critical problems in software development for
intelligent control of multiple robotic systems. Such systems can undergo a vast number
and variety of motion and force interactions among themselves and with the environment.
The use of more than one system adds new problems that are typically not present in a
single system. Some operations require: dynamic configuration transients during hand-off
and transportation; intermittent contact and force interactions; and mechanical changes in

the objects being handled. Transitions between operating regimes require corresponding
changes to the motion p!anning and control software.

These software changes are typically difficult to make. A significant effort is required
to make software development for control and motion planning a more efficient engineering
process. Approaches to control software development typically do not lead to easy software
transfer. Each installation develops its own control software. This leads to a significant
amount of duplication. It also leads to control software systems that are not easily operated
and maintained by users not involved in the software development.
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2 Features of the Spatial Operator Algebra

The spatial operator algebra provides a useful model-based architecture for software pro-
totyping and development because: (1) it greatly reduces the symbolic complexity visible
to the user; (2) it is easy' to convert high-level operator expressions to computationaUy
fast algorithms; (3) it allows algorithm and software reconfigurabUity over a wide range
of operating regimes; (4) it provides a wide range of models for motion planning and con-
trol; (5) it provides the foundation for a task-level programming language_ (6) it can be
embedded in a high-level AI-based planning system; (7) it represents the world in a mod-
ular, hierarchical framework which leads to modular and reuseable software. The software
allows easy transitions from planning and control algorithm design, to simulation, and to
experimental hardware evaluation. Some of these features are illustrated in the figures.

Spatial operators reduce symbolic complexity visible to user

Management of complexity using spatial operators is illustrated in Figure 1. Concise
operator expressions for several robot quantities are compared to the corresponding sym-
bolic expression for the Jacobian, perhaps the simplest robot quantity typical of a robot

= arm. A small number of spatial operators implement not only a variety of such familiar
computations as forward kinematics, Jacobian, and the mass matrix, but also other useful

ones such as the Jacobian inverse, the mass matrix inverse and the operational space iner-
tia matrix. The symbolic complexity using four different methods for inverse dynamics of
a typical robot arm is compared in Figure 2. The use of spatial operators leads to a large
reduction in complexity over other trigonometric and recursive descriptions.

Operator expressions map easily to fast recursive algorithms

Spatial operator equations can be easily converted to efficient numerically robust com-
putational algorithms. The algorithms are in the same spirit as the familiar Newton-Euler
algorithms [4] for inverse dynamics and for the manipulator mass matrix° However, they go

further by performing a much wider range of robot computations [5,6,7,8,9]. The number
of arithmetical operations grows only linearly in the number of degrees of freedom leading
to efficiency for large order systems. Conversion of an operator expression into an outward
recursive algorithm that goes from the base of the robot to its tip is illustrated in Figure

-- 3.

The spatial operator algebra also enables development of new motion planning and
control algorithms which represent basic state-of-the-art advances in system control. One
such trajectory design algorithm for a robot manipulator is illustrated in Figure 4. With a
simple set of mathematical statements, no more complex than shown in the blocks forming
the algorithm diagram, the trajectory design algorithm can be developed and tested in
predictive simulation. Conversion tomodular software is also immediate and can be done
by visual inspection.

Software editing in response to system reconfiguration is easy=

The spatial operator algebra leads to modular, reconfigurable software. The spatial op-
erator algebra algorithms are modular [7] and map to an object-oriented modular software
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architecture, resulting in computational algorithms ideally suited for event-driven systems.
Software cam be smoothly reconfigured in response to transitory ch_uges in system config-
uration. Algorithm and software editing during design, or in response to transitory events,
is illustrated in Figure 5.

A model-based compiler and an automated real-time code generator facilitates
robot hardware implementation.

The spatial operator algebra has a built-in hierarchical architecture [3] that leads to
what cmu be viewed as a model-driven compilation process. The model-driven compiler
trmuslates high-level spatial operators into low-level algorithms mud programs. Figm_
6 illustrates operation of the model-driven compiler. The compiler takes advantage of
the natural map that exists between spatial operators and efficient, spatially recursive,
computational algorithms. Real- time software generation is under investigation to convert
the recursive computationalalgorithms into real-time code for hardware implementation.
This is in the same spirit as available tools [10] for real-time control System automated
code generation.

Computations are embedded in the highly developed filtering architecture

The spatial operator algebra algorithms perform all robot computations within the
highly develc ed filtering and smoothing architecture, which is very easy to understand,
program and debug [1]. This leads to numerical stability and robustness so that the effects
of truncation and round-off errors tend to remain at a very low level. Some examples of the
applicable techniques are: square-root filtering algorithms for the numerical stability of
Riccati equations; monitoring of the statistical whiteness of residuals to monitor numerical
error buildup, and new [I1] computing architectures for concurrent processing.

!,

3 Software Development

The spatial operator algebra has been used todevelop new recursive algorithms and soft-
ware for motion planning and control of single and multi-arm robotic systems. Software
implementation of a large portion of"the algebra has been carried out in Ada as well as
in MATHEMATICA. The software has been embedded into part of an integrated teler-
obotic system, consisting of"multiple-arms, a vision system, an operator station, and an
AI planner. An object-oriented language and interpreter Thread, has been implemented
[121 for interactive programdevelopment. It is used to rapidly prototype various robot
task sequences as well as to plan, execute and monitor high-level operator commands.

4 Concluding Remarks

The spatial operator algebra provides a model-based architecture for fast software pro-
totyping _nd development. It applies to the domain of multibody systems formed by
intezconnected articulated elements and subassemblies. It provides a unique hierarchical
computational engine to conduct all motion planning and control computations.
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Figure 1. SPATIALOPERATORSPROVIDEARICH VOCABULARY
FOR COMPLEXITYMANAGEMENT

FIGURE 2: COMPARISON OF MODELING
COMPLEXITY VISIBLE TO THE USER
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FIGURE 3: MAPPING BETWEEN OPERATOR,
EXPRE.SSIONS AND RECURSIVE ALGOR_HMS
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Figure 4. EASY MODEL SETUP/EDITING USING SPATIAL OPERATORS
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Tim spatial operator algebra system allows the study of thc._ transitions and provides the basis for quick software/system
reconfiguration or editing via a graphical user interface. This is useful for modeling, motion planning and control of robot systems.
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Figure 5. SMART COMPILATION OF SPATIAL OPERATOR

EXPRESSIONS TO EFFICIENT COMPUTATIONAL ALGORITHMS
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Figure 6. EASY SETUP OF COMPLEX MOTION PLANNING
ANDCONTROL STRATEGIES
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The use of spatial operators to define individual blocks allows the easy set up of complex models, modon planning
and control strategies. Illustrated above is the simple implementation of a trajectory design algorithm. Spatial
operators are used to define individual blocks via the graphical user interface, which are then tied toge_er in an
iterative feedback loop to compute a joint and task space trajectory for the robot arm.
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Abstract

The VLSI implementationofa fuzzylogicinferencemechanism allowsthe use ofrule-based
controland decisionmaking indemandingreM-timeapplicationssuchas robotcontrolaridinthe
areaofcommand and control.Wt havedesigneda fullCustomVLSI inferenceengine.The chipis
f._bricatedusing1.0_ CMOS technology.The chipconsistsof688,000transistorsofwhich476,000
areusedforRAM memory.

The fuzzylogicinferenceengineboardsystemincorporatesthecustomdesignedintegratedcir-

cuitintoastandardVMEbus environment.The FuzzyLogicsystemboardusesTTL logicparts
toprovidetheinterfacebetweentheFuzzychipand a standard,doubleheightVMEbus backplane
allowingthechipto performapplicationprocesscontrolthroughtheVMEbus host.High levelC

languagefunctionshidedet._ilsofthehazdwaresysteminterfacefrom theapplicat!onslevelpro-
grammer. The firstversionoftheboardwas installedon a robotatOak RidgeNationalLaboratory
inJanuaryof1990.

1 Introduction

Fuzzy logic based control uses a rule-based expert system paradigm in the area of real-time process

control [4]. It has been used successfully in numerous areas including train control [12], cement kiln
control [2], robot navigation [6], and auto-focus camera [5]. In order to use this paradigm of a fuzzy
rule-based controller in demanding real-time applications, the VLSI implementation of the inference
mechaIlisla has been an active research topic [1, 11]. Potential applications of such a VLSI inference

processor include real-time decision-making in the area of command and control [3], and control of
precision mach !nery.

An origilm'l prototype experimeatal chip designed at AT&T Bell Labs [7] was the precursor to the
fllzzy logic itfference engine IC that is the heart of our hardware system. The current chip was designed
at the Universil_y of North Carolina in cooperation with engineers at the _Iicroelectronics Center of

North Carolina (hICNC) [8]. MCNC fabricated and tested fully functional chips.

The new architecture of the inference processor has the following important improvements compared



CONF-90O7134
Page 254

to previous work:

1. programmable rule set memory

2. on-chip fuzzifying operation by table look-p

3. on-chip defuzzifying operation by centroid algorithm
i

4. reconfigurable architecture

5. RAM redundancy for higher yield

The fuzzy chips are now incorporated in VMEbus circuit boards. One of the boards was designed
for NASA Ames Research Center and another board was designed for Oak Ridge National Labora-
tory (ORNL). The latter board has been installed and is currently performing navigational tasks on
experimental autonomous robots [9].

ORNL will soon receive the second version of the board system featuring seven Fuzzy chips in a
software reconfigurable interconnection network. The network provides host and inter-chip I/O in any
logical configuration of the seven chips.

¢_

Fuzzy Inference

The inference mechanism implemented is based on the compositional rule of inference for approximate
reasoning proposed by Zadeh [13]. Suppose we have two rules with two fuzzy clauses ill the IF-part and
one clause in the TIIEN-part:

Rule 1: If (x is Al) and (y is BI) then (z is C1),
Rule 2: If(xisA_.) and (yisB2) then(z isC2).

We can combine the inference of the multiple rules by assuming the rules are connected by OR
connective, that is Rule 1 OR Rule 2 [7]. Given fuzzy proposition (x is A') and (y is B'), weights a p
and c.r,u of clauses of premises are calculated by •

a_ = max(A', Ai),

a_ = max(B',Bi), for i = 1,2.
y

" Then, weights _t,1and u,: of the premises are calculated by '

wl = min(aa,a_),

=

\Veigllt ai _ represents the closeness of proposition (x is Ai) and proposition (x is ,4'). Weight wi
represents similar measure for the entire premise for the i _n rule. The conclusion of each rule is

C[= min(wi,Ci), for i = 1,2.

The overall conclusion C' is obtained by

Ct= max(Ci, C_).

This inference process is shown in Figure 1. In this example, c_a = 0.5 and c_ = 0.25, therefore
tc,_= 0.25. a a = 0.85 and a_ = 0.5, therefore w: = U.b.



' CONF-9007134
Page 255

1 1 1

1

0 0 _ _ _

., ' ii A ',,-

I 1 0 .
1 1

/¢'A
0 -- 0 0

1 0 1 1 0 1 1 0 1

Figure 1' Inference.

Figure 2: Fuzzy Chip Datapath.
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3 Fuzzy Chip

The fuzzy logic inference engine is a fully custom designed 1.0 micron CMOS VLSI circuit of 688,000
transistors implementing a fuzzy logic based rule system. Included on chip are a programmable rule set

memory, an optional input fuzzifying operation by table lookup, a minimax paradigm fuzzy inference
processor, and an optional output defuzzifying operation using a eentroid algorithm. The standard data

path configuration is shown in Figure 2. The design has a reconfigurable architeetcre implementing either
50 rules with 4 inputs and 2 outputs, or 100 rules with 2 inputs and 1 output. Separately addressed
status registers allow programmed control of the fuzzy inference processing and chip configuration. All
the rules operate in parallel generating new outputs over 150,000 times per second.

The chip has 12 bidirectional data pins and 7 address pins for rule memory I/O. For process-control

I/O, each of 4 inputs and 2 outputs has 6 pins. Each of 4 inputs has a corresponding load pin. The
chip also has several control signals. Control signals RW(read high Write low) and CEN (chip enable)
are similar to that of a memory chip.

4 The System Boards

4.1 Single Chip Systems

The Fuzzy Logic system boards place the Fuzzy chip into a VMEbus environment to provide application
process control through a VtvIEbus host. The single chip system designed for NASA Ames Research

Center uses an off-the-self VMEbus prototyping board [10]. The overall configuration of the design is
shown in Figure 3. In this design, the VMEbus interface is provided by the prototyping board system
and needed a minimum of design for integration of the fuzzy chip. The fuzzy chip interface to the board
is realized using discrete TTL parts and wire-wrapping, In the board system for ORNL, the VMEbus
interface was designed by the first author and realized using a programmable logic device (PLD) and

TTL parts. More robust printed circuit board (PCB) technology was used. The PCB architectural
concept is shown in Figure 4. The UNIX device driver interfaces of these two boards are quite similar.

The ORNL board is designed to standard VMEbus specifications for a 24 bit address, 16 bit data,
slave module as found in The VMEb_ls Specification, Revision C.1, 1985. It provides digital communi-

cation between tile llost and the Fuzzy chip. A large, UV erasable PLD generates the board control
signals. VM Ebus interface is through TTL parts. One Fuzzy Inference IC processes four 6-bit inputs to
generate two 6-bit outputs. The interface with the host computer uses memory mapping to include the
Fuzzy chip's I/O addresses in the application process storage space. Ali of the chip's memory as well as

its inputs and outputs are accessed through addresses on the VMEbus so that the entire Fuzzy Logic
board system responds like a section of memory.

The board's address space is 1024 bytes or 512 16-bit words in length. Most of the addresses in
tl_at space are not used by the board. The lower 128 word addresses of the board are mapped into

the fuzzy chip. One hundred addresses are for rule memory. Another six addresses are mapped to four
fuzzification tables and two status registers. The board has six addresses %r I/O for the fuzzy chip, and
addresses for hardware reset and board ID. On-board dip switches and signal jumpers allow the user

to select the board base address comprised of the upper 14 bits of the 24 bit address, and the board's
user privilege response characteristic determined by the VMEbus address modifier bits. Further design
details are shown in Figure 5.

. 4.2 Multiple Fuzzy Chip System

The second version of the system board keeps the standard VMEbus interface of the first version but

adds significant new capabilities. Seven Fuzzy chips communicate with each other and the host through
a software reconfigurable interconnection network. Two Texas Instruments digital crossbar switch IC's

_

4
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Figure 5: Details of PCB Architecture

implement tile network. Any logical Configuration of the seven chips may be specified in software, e.g.

seven in parallel, 4-2-1 binary tree, etc. Any fuzzy output may be routed to any input. With the new
board more inputs may be processed and hierarchies of rule sets may be explored. We can simulate

rules with up to 16 conditions in the IF-part by using three layers of Fuzzy chips. Another application
is to load multiple rule sets for different tasks in a single board. This is done by configuring multiple

chips in parallel. The new printed circuit board architectural concept is shown in Figure 6.
This arrangement exploits an important feature of the Fuzzy chip. Normal input to the chip is by

(_-bit. integers which the chip fuzzifies into 64-value membership functions to be fed into the processing
pipeline. The final output membership function is defuzzified into a 6-bit output integer. However, the

chip has another mode of operation. Any input or output can bypass the [de]fuzzification process so that
I/O occurs in streaming mode. The full 64-value input or output membership function is placed on the
pins, one value per clock cycle. When an output of one chip is connected to an input of another chip (or
itself), communication can be done in streaming mode without the loss of information inherent in the
[de]fuzzification operations. On this system board, ali inter-chip communication is done in streaming
mode.

The new board also has four 64-value FIFO queues which allow final output to the host to be done

in streaming mode. The application process is then free to perform its own custom operations on the
full output membership functions. The final defuzzification is no longer limited to a centroid method.
One can, also, generate the result in higher precision than 6 bits if necessary.
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Figure 6: Seven Chip System Architecture.

The new board will be installed at ORNL in August, 1990. In addition to navigational tasks the
system will be used to explore fuzzy logic control of manipulator arm functions.

5 Software Interface

IIigh level C language functions can hide the operational details of the board from the applications
programmer. The programmer treats rule memories and fuzzification function memories as local program

structures passed as parameters to the C functions. Similarly, local input variables pass values to the
system and outputs return in local variable function parameters. Programmers are only required to
know the library procedures. Some procedures provided for the version 1 board are described in the
following table.

1. WriteRule(rulenum, ruledata) - The rule data structure pointed to by ruledata is written to the
board.

2. ReadRule(rulenum, ruledata)- Reads back into ruledata the rule identified by rulenum currently
stored in the chip.

3. WriteFuzz(fuzznum, fuzzda_a) - Fuzzification table is written to the board.

4. StartFZIAC(inpA, inpB, inpC, inpD,)- Four inputs are sent to the fuzzy board and inference
processing will be started.

5. ReadOut(oulE, outF} - Both outputs are read from the board. Inference process will be continued.

i,,, ii, ,, " '' " ' '' ' ' ,,, ' _I"ii ,i
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6. StopFZIAC(outE, outF)- Both outputs are read from the board, Inference process will be halted.

6 Summary

We have described the architecture and associated high level software of two VME bus board systems
based on a VLSI fuzzy logic chip. In addition to operating in the robot at ORNL, the single chip
board is installed on a Sun-3 workstation at the University of North Carolina for further research and
software development. For example, it is useful to provide an X-w.ndow based user interface to this

fuzzy inference board. The complex and flexible architecture of the multiple chip board will require more
sophisticated support software to facilitate exploration of various hierarchical interconnection schemes.
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Abstract wish to relieve the user from the burden of handling
large order, complex systems in the design process.

A position presenting Computational software needs Second, we wish to bring advanced control system
for the design and test ofguidance and control (G&C) design techniques to the users' disposal. Third, we
systems is presented along with a description of cur- Wish to provide a real time simulation capability for
rent and proposed approaches to solving these prob- the verification of control system hardware.

lems. The objectives of this work are to provide cd- The design of large order, complex control systems
vanced computational methods and prototype tools will require advanced control system design and anal-
for G&C systems, ysis methodologies. To bring these methodologies to

the user, a flexible environment will be needed which
can support the advanced methodologies and the as-

1 Introduction sociated complex control system models. With this
in mind, we intend to provide a design environment

Control system engineers' design problems are in which complex system representations and other
o quickly approaching tile computational and func- information associated with advanced design tech-

tional limits Of current computer-aided control sys- niques can be handled in a structured and efficient
tem design (CACSD) packages, la the Course of de- manner. This should be done with the user in mind.

signing guidance and control systems (G&C) systems That is, however complex the system or design pro-
at the Jet Propulsion Laboratory (J PL), we have rec-
ognized a need for advances in control system design cess may be, the designer should be isolated as much

as possible from tile complexities of the system repre-
and verification tools and techniques. This recogni- sentation as well as the implementation of the design
tion has been influenced by the evidence that per- algorithms.
formance requirements for design and simulation are

The existence of a suitable environment for control
quickly outpacing current design and verification ca-
pabilities. This paper outlines objectives and justifi- system design of large order, complex systems would
cation for research in tile development of design and provide an opportunity to apply advanced method-
verification tools and provides an overview of current ologies for control system design. Based on such
and proposed approaches for developing the required an implementation, we wish to provide reliable im-
capabilities, plementations of some s_ate of the art control sys-

tem design methodologies. Since efficient and reli-
able tools for large order systems are of interest, the

2 Objectives algorithms and software implemented will provide ro-
bust solution techniques on advanced computational

The chief objective of this work is to develop compu- hardware.
tational methods and prototype tools for tile design No control system design is complete without veri-
and testing of G&C systems. These methods and fication tests. Hence, with the capability of advanced
tools are intended to support several needs. First, we control system design 'would comes the desire for a
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capability for verification. Based on this need we general, we have found that ali packages have prob-
wish to provide' a capability for real time simulation lems, The end effect is that the user must be a master

of multiple flexible body systems, This would provide of the design process as well as its implementation,
a means for verification of control system hardware Current CACSD packages in general do not provide

operating in closed loop with the real time simulation, efficient storage mechanisms or computational algo-
rithms for large order systems. Often, large order
systems require have special structure for which spe-

3 Justification cim storage methods and computational algorithms

can be used to provide _very efficient and accurate
Justification of the work is supported by the lack solutions. Examples include systems modeled with
of current tools to handle current and anticipated
needs. Current computer-aided control system de- sparse or banded matrices. Sensitivity is also an is-

sue. With the increase in order and system dynamics,
sign (CACSD) packages typically handle only simple specialized algorithms and system descriptions may
models and simple techniques and their tools can be be required which current CACSD packages cannot

very inefficient and even break down for large order handle. For example, consider the typical state space
systems. In addition, current simulation software is system realization for n time-invariant linear system
inefficient and does not provide the capability for cur-

rent real time simulation needs. _ = Ax + Bu , y = Cx + Du
Current control system design tools provide only

simple modeling capabilities. Typically, tliese mod- As the system dynamics cover a larger range the

els are based on polynomial expressions or are repre- eigenvalues of A (and hence its norm) will grow, lead-
seated as regular state space models. With advances ing to large relative computational error in the mo_.-
in control system design technology, system structure eled slow dynamics of the system. This situation can

is becoming more complex and these simple models be overcome by using, for example, generalized state
are becoming too cumbersome to work with. Cur- space realizations of the form
rent CACSD packages do not, in general, provide the

capability to model structured uncertainty, discrete E_: = Az + Bu , y = (7_:+ Du
states, and other features associated with more com-

plex methodologies. For example, a tool recently de- Here a wide range in dynamics (i.e., eigenvalue mag-
veloped at JPL for designing optical control systems nitudes) does not imply large magnitude coefficients
had to be rect)ded into Fortran after the Matlab ver- in the system matrices as for the regular state space
sion was found to be too cumbersome and inefficient representation.

due to the need for packing information into arrays. Development of advanced CACSD tools for design

Packing and unpacking of data into two dimensional and analysis of large order systems is justified not
arrays ha.s become a too-often used workaround, only by its need but also by the introduction of a

Another important point to make is that currently soon-to-be-released a FORTrtAN77 subroutine library
available commercial CACSD packages are not de- (LAPACK) targeted for solving large order matrix
signed to handle large order systems. The analysis problems on vector and parallel machines. LAPACK
and synthesis tools provided by these packages are has been developed by leaders in the field of scien-

often inefficient and even break down for large or- tific computing and promises to receive much support
der systems. For example, engineers at JPL have from the scientific computing community in the fu-

experienced CACSD packages which provided, with- ture. A natural front end for such a software library
out warning, completely unreliable results for several would be much like current Matiab-based CACSD

analyses. Other packages were able to provide more packages. The success of these packages as an envi-
reliable results, but at a substantial cost in time. As ronrnent for the design and application of algorithms

an example, a frequency response calculation for a for control system design implies that a new tool
system of order two hundred required five hours of geared toward large order, complex problems should

user time on our VAX. Other inefficiencies abound, include capabilities provided by Matlab-type environ-
Graduate students we interviewed at Caltech work- ments.

ing in H_ and p synthesis find that typical design In the area of control system hardware verifica-

problems of order fifty can require several hours of tion, JPL has experienced a great lack of capabil-
computational time with current software. In addi- ity in the current technology. Currently, real time
tion, they often experience sensitivity problems. In simulation of spacecraft dynamics must be limited
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to rigid body models. Models which provide simula- design technologies to users, we propose to survey
tion Of flexibility effect are too inefficient. Since con- the state of the art in control system design, This
trol system verification is limited, designers are forced would allow us to determine which methodologies
to make control system performance conservative to can provide the necessary functionality and praeti-
compensate for the uncertainty in behavior, With cality for complex, large order systems, Necessary
the emerging parallel computer hardware teehnolo- functionality includes the ability to model system un-
gies, the pursuit of specialized algorithms for parallel certainties and nonlinearities, Practicality issues in-
architectures seems a good pursuit, elude the need to be reasonably implemented in a

computer-aided environment and that the computer
implementation be reliable and have a reasonable de'

4 Approach sign turnaround time for large order systems, Once a
set of methodologies has been selected, work will con-

Our proposed approach to providing the needed ca- centrate on collecting and developing algorithms and
pabilities requires selected research efforts in three software for these methodologies, Importance will be
areas. The first area involves the development of a placed on efficiency and reliability (e.g., numerical
prototype environment for handling advanced control

stability) of the algorithms and software.
design techniques for complex systems. The second Work in the development of efficient algorithms for
area involves selecting a number of advanced control real time simulation of spacecraft systems with mul-
system design methodologies and providing efficient tiple flexible bodies is currently underway. Current
and reliable algorithms and software for implement- state of the art algorithms based on O(n), O(n 2) and
ing these methods. The third area involves the devel- O(n 3) formulations are being evaluated for efficient
opment of multibody simulation algorithms and soft- computation on various (e.g., parallel) computer at-
ware for use on state of the art computer hardware chitectures. Amoung the more promising formula-
architectures, tions is that based on the spatial algebra developed

In response to the need to provide advanced envi- by G. Rogriguez and colleges [1].
ronments for development of CACSD tools we pro-
pose to work on a new version of a Matlab-type tool.

The new tool would provide an environment for the 5 Conclusion
development, test and application of advanced algo-
rithms and software for control system design. The Experience is now showing that the need for new
purpose for undertaking this work is to "bootstrap" tools for G&C design has hit a critical level. Current
efforts at producing "next-generation" environments CACSD packages cannot satisfy current needs and el-
for design of complex, large ordercontrol systems, fectively limit design capabilities. To satisfy the need
Our hopes are that this effort will encourage further for these capabilities we see the need to develop a new
development through technology transfer, environment for the designing theses tools for com-

The proposed new tool would provide some fea- plex, large order systems. In addition, we feel a real
tures necessary for large order, complex design prob- time simulation capability is essential to designing
lems which current Matlab-type CACSD packages do and testing high performance control systems. Lastly,
not support (to our knowledge). Possible added fea- support of research and advanced development in the
tures include the support of user-defined data types, proposed areas will on the long run save costs, en-
the use of the soon-to-be-released LAPACK Fortran hance reliability and improve performance.
subroutine library for matrix computations and tlm
support of compiled "toolboxes" for efficiency. We
feel that a well designed "core" implementation would References
provide a sound base for the development of advanced
algorithms and software for engineering applications. [1] G. Rodriquez, K. Kreutz, and A. Jain. A spatial
The tools would be developed with the intention of operator algebra for manipulator modeling and
allowing possible other features (graphics, expert- control. In IEEE Conf. Rob. and AuL, May 1989.
system front end, etc.) to be added at a later time.
The development of such a tool would provide a sound
base for the production of advanced algorithms and
software for many engineering applications.

In order to provide users advanced control system
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Abstract

TRACS (Two Robotic Arm Coordination System), developed at the GRASP Laboratory
at University of Pennsylvania_ is an experimental system for studying dynamically coordinated
control of multiple robotic manipulators. The systems is used to investigate such issues as the
design of controller architectures, development of real-time control and coordination program-
ming environments, integration of sensory devices, and implementation of dynamic coordination
algorithms. The system consists two PUMA 250 robot arms and custom-made end effectors for

manipulation and grasping. The controller is ,based an IBM PC/AT for its simplicity in I/O
interface, ease of real-time programming, and availability of low-cost supporting devices. The
Intel 286 in the PC is aided by a high speed AMD 29000 based floating point processor board.
They are pipelined in such a way that the AMD 29000 processor performs real-time compu-
tations and the Intel 286 carries out I/O operations. The system is capable of implementing
dynamic coordinated control of the two manipulators at 200 Hz.

TRACS utilizes a C library called MO to provide ttle real-time programming environment.
An effort has been made to separate hardware-dependent code from hardware-independent code.
As such, MO is used in the laboratory to control different robots on different operating systems
(MS-DOS and Unix) with minimal changes in hardware-dependent code such as reading encoders
and setting joint torques.

TRACS utilizes ali off-the-shelf hardware components. Further, the adoption of MS-DOS
instead of Unix or Unix-based real-time operating systems makes the real-time programming
simple and minimizes the interrupt latencies. The feasibility of the system is demonstrated by
a series of experiments of grasping and manipulating common objects by two manipulators.
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1 Introduction

An intelligent robotic system consists of multiple agents such as manipulators, end effectors, sen-
sory devices, controllers_ environments, etc. The operation of such a system requires real-time
coordination of multiple agents. Coordination involves many research issues and can be interpreted

differently from different perspectives. A recent NSF sponsored workshop on coordination and co-
ordination theory [8, 5] suggested five definitions of coordination. This lack of a unique definition of
coordination signals a need for understanding and investigation of Coordination problems. With re-
spect to a multlagent robotic system, those problems include reM-time dynamic coordinated control

of multiple manipulators and real-time communication a_nong agents of the muli;iagent robotic sys-
tem. Underlying those two problems is the development of a reM-time programming environment
and haxdware architecture for design and implementation of coordinated control algorithms.

This paper describes an experimental multiagent robotic system, called TRACS, developed at
University of Pennsylvania. TRACS is aimed to primarily address real-tlme coordinated control of
multiagent systems. Two PUMA 250 manipulators, together With end effectors and sensors_ are
utilized in a testbed system. An IBM PC/AT is chosen as the host computer for the development
of real-time programming environment.

Other reM-time robotic systems include Chimera II [10], Condor [7], SPARTA [3], SAGE [9].
TRACS haz the advantage of being cost-effective, simple to use, free from staff support, and easy

to transfer to other labs and field applications.

2 System Description

As discussed in the introduction section, we are interested in two problems related to coordination

of a multiagent system: control and communication. Realizing the difficulty of the problems, two

independent yet integrated approaches are taken towards understanding of coordination. In the first

approach, the effort is focused on coordinated control algorithms while the effect of communication

delays on coordination is intentionally minimized. This is made possible by considering fewer agents

so that one processor provides adequate computational needs. Interprocessor communications are

thus eliminated. TI'tACS mentioned early is a result of this approach and it will be addressed in

detail in this paper. In the second approach, the emphasis is placed on real-time communication
of a distributed system. Towards this end, a real-time kernel for distributed system, called TIMIX,

has been developed in the GRASP laboratory [4].

2.1 Hardware

- The principal agents of TRACS are two PUMA 250 robot manipulators. The goal of the system is

to dynamically coordinate motions of the two manipulators to perform cooperative tasks in their

common workspace. Due to their primitive computing resources, the original Unimate controllers

of PUMA robots are not capable of implementing dynamic coordinated control algorithms. A new
corttroiler is built. However, to eliminate unnecessary hardware constructions, the power amplifiers,

D/A converters, and encoder decoding/counter circuits of the Unimate controllers are retained.

The following considerations are taken into account before choosing a corttroller architecture.
Firstly, distributed systems should be avoided to eliminate communication delays as the emphasis

of this study is on coordinated control. Single processor and coprocessor architectures are preferred.

Of course, the choice is constrained by the current technology of microprocessors (speed) as well
f

2
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as available budget. Secondly, a simple operating system is preferred which provides such basic
functions as file server, editing, compiling, and debugging and which cast provide, after minimal
effort, a real-time programming environment. With this regard, Unix should be on the low end of
preference list. Thirdly, the interface to manipulators and sensors should be simple and standard.

After a thorough evaluation, an IBM PC/AT with the MS-DOS operating system is chosen as
the host computer. This choice satisfies the above requirements, namely the PC-AT, even with
a coprocessor, is not a distributed system, MS-DOS is a simple operating simple that provides
basic functionality and a reM-time environment, and off-the-shelftechnology is readily available for
sensor interfaces.

The real-time compu'tational burden of the coordinated dynamic control algorithms requires
the addition of a coprocessor to the host computer. An AMD 29000 high speed floating point
coprocessor board by YARC, INC. was chosen to satisfy this requirement. It is a single processor
board with shared memory and I/O space on thePC-AT system. It comes with a C compiler.

The hardware architecture of this system is shown in Figure 1. The PC-AT communicates
with the Unimate controllers through a parallel interface. The exchanged information includes
angular encoder readings from the joints to the host computer and control commands from the
host computer to the Unimate controller. The end-effector control information is communicated
through an analog interface. The host computer can also communicate with other machines, if
needed, through an Ethernet interface.

The end-effectors are custom-made for the experiments. Currently, two end-effectors have been
made, a multi-configurable gripper and an open palm. The open palm is now being used for exper-
iments in coordinated control where the two arms must manipulate large objects by maintaining a
specified internal force between the palms.

2.2 Software

The development of new control algorithms is the purpose of this system. The system's software
environment must allow the programmer to easily incorporate existing software, such as kinematics
and gravity compensation. It must also provide easy access to information from the agents and
sensors, and to easily communicate the algorithm's results. It should be based on a portable
language. The system's underlying operation should be transparent to the normal user. However,
if a programmer must make changes to the system, because, for instance, by the addition of a new

= sensor board, then the underlying system software should be simple enough to allow this without
a major effort.

These requirements are satisfied by using the MO control structure which is written in the C
language [2]. MO is'a library of control package which provides a real-time scheduler and a virtual
agent interface. Because of the virtual interface, MO is used throughout the laboratory for real-time
control applications, independent of hardware.

The PC-AT host computer is configured as a real:time system by use of its clock interrupt. Each
interrupt will cause the PC-AT to execute the code that gathers new data from the manipulators
and sensors into shared memory, signals the AMD 29000 coprocessor to begin calculations with this
new data, and output the latest control result from the AMD 29000 to the manipulator actuators.

_- The time between interrupts is used by the PC-AT to perform user interface tasks. The AMD 23000
: executes its code, the control algorithm in the MO control structure, at the servo rate. Figure 2

shows the pipeline timing table of the Intel 80286 and AMD 29000. Thus the underlying system is
not formidable to the programmer who must reconfigure it.

=

3
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Figure 1" TRACS Hardware Architecture
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Figure 2: Timing Table of the Intel 80286 and AMD 29000

3 Implementation of Two-Arm Coordination

A series of experiments are conducted to test the functioning of the TRACS system. The tasks

of the experiments are grasping, lifting and transporting objects by using two manipulators. The

performance of those tasks requires dynamic coordination of the two manipulators, which in turn

requires the understanding of two handed grasping and coordinated control of two manipulators.

Two handed grasping is concerned with the process of approaching the object, detecting con-

tacts, evaluating the grasping configuration, determining the grasping force, and applying the

grasping force to the object. An important step is the evaluation of the initial grasping configu-

ration. Due to the dependence on friction, certain hands/fingers configurations can not guarantee

stable grasping. In experiments, the end effectors (or hands) are simply flat surface palms instru-

mented by force sensors. Using such palms greatly reduces the uncertainty of contact normals.

Regardless of the local geometry of the object at the contact point, the contact normal is that of
the palm which is known to the controller. Given the coefficient of friction, an algorithm has been

established to evaluate grasping configuration based on the relative position and orientation of the
two palms. In the 2-dimensional case, the algorithm is based on the relative offsets of the two palms

in x and y directions, and the relative angle between the two palms. It is noted that this algorithm

does not dependent on the shape of the object and the exact contact points on the palms.

tIaving stably grasped the object, the next issue is coordinated control of the two manipulators.

This problem has been theoretically studied by various groups including [13, 6, 1, 11]. Nevertheless,

there is little experimental work in this area. Using TRACS, it is straightforward to impler, ent

and test any control algorithms. Coordination of two manipulators requires the simultaneous

control of the Cartesian position and the interaction force [12]. The challenging problem here is

the development of force control methods and the associated stability analysis. In the TRACS

experiments, the problem is further complicated by the unilateral constraints, namely, each palm

can push but can not pull the object. A solution that utilizes a nonlinear decoupling coordination

algorithm which allows independent control of force and position is being studied. The experiments

_ show that TRACS is capable of implementing dynamic coordinated control algorithms. _

- 5
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4 Conclusion

This paper described an experimental real-time control system, TRACS. Though the system was
developed to control a multiagent robotic system, it is applicable to other real-time control systems.
In particular, it is attractive to control of mobile platforms such as vehicles due to the portability
of the system.

TRACS uses ali off-the-shelf hardware components to reduce the cost and to expedite the
technologytransfer.The adoptionof the simple MS-DOS operatingsystem simplifiesreal-time

programming, minimizesinterruptlatencies,and reducesresponseoverheads.Using C libraryto

support the reM-timeprogramming environmentand to implement real-timecontrolalgorithms

makes thesystem portableand easyfordistribution.
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,_ Appendix I

AGENDA

Workshop on Software Tools
for Distributed Intelligent Contol

July 17-19,1990

Monday (July 16,1990)

Arrival at Workshop hotel

Tuesday (July 17, 1990)

0730 Breakfast and registration irt the South Bounty room
0830 Welcome C. Herget

M. Barbee

0845 DARPA Program on Domain Specific Software Architectures E. Mettala
0900 Workshop Objectives J. James
0915 Architectures/Environments to Support Advanced Weapon N. Coleman

Crew Station Automation
0930 R. Shumacher
0945 J. Chandra
1000 Break

1030 A Software/Hardware Environment to Support R&D in Intelligent R. Mann
Machines and Mobile Robotic Systems

1045 AI Software Architecture and Tools for Process Control D. Lager
1100 Concept for a Reference Model Architecture for Real-Time J. Albus

Intelligent Control Systems (ARTICS)
1115 K. Baheti
1130 Discussion
1200 Lunch
1330 Declarative Hierarchical Controllers W. Kohn

1345 The Rocky Road to "Standardized" Software Engineering C. Hall
Environments for Military Vehicle Management Systems

1400 Challenges of Providing a General-Purpose Environment for M. Fehling
Building Intelligent Control Systems

1415 Modeling Intelligent Concurrent Control A. Nerode
1430 TRACS: An Experimental Multiagent Robotic System X. Yun
1445 Conceptual Programming R. Hartley
1500 Break

1530 R. Schappell
1545 Hierarchical Heterogeneous Symbolic Control: Lessons Learned B. Glass

From TEXSYS
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Tuesday (continued)

1600 Tool Needs For A Behavior-Based Approach To Distributed S. Harmon
Intelligent Control

1615 A Performance Based Methodology and Tool Set to Support the T. Hester
Engineering of Real-time Intelligent Systems

1630 CASE Products for Knowledge Based Systems J. Greenwood
Design and Development in Ada

1645 R. Jones
1700 Discussion
1730 Break
1830 Dinner

2000 Reception

Wednesday (July 18, 1990)

0730 Breakfast
0830 CACE-III Expert System D_ Frederick
0845 Concurrent Processing Environments for Distributed Intelligent Do Birdwell

Control Systems
0900 Computer-Aided Control Systems Engineering D. Gavel
0915 On Computational Requirements for Design of Large Order, Complex M. Wette

Control Systems
0930 Spatial Operator Software for Modeling, Motion Planning and Control G. Rodriguez
0945 Integrating Controls System Design with Systems and Software M. Rimvall

Engineering
1000 Break

1030 Safety and Reliability of Process Control Software N. Leveson
1045 Requirements of Intelligent Control Systems So Natarajan
1100 VERDI: A Visual Environment for Distributed Systems Design C. Potts

and Simulation

1115 Real-Time Issues in Distributed Operating Systemsand Databases J. Liu
1130 Discussion

,,

1200 Lunch

1330 Language Development Systems in Support of Software Engineering Vo Heuring
1345 A Hierarchical Approach to Specification and Fault-Tolerant J. Caldwell

Operating Systems
1400 R. Hayes-Roth
1415 Large-Scale Distributed Control Systems J. Maitan
1430 VLSI Fuzzy Inference Chip and Single Board System H. Watanabe
1445 Applying a Computer Aided Prototyping System to the Software of an T. Bihari

Autonomous Underwater Vehicle
1500 Break
1530 C. Barrett

1545 Software Tools For Lower Echelon Systems Development D. Klose

q

2
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Wednesday (continued)

1600 UAV JPO Interest K. Thurman
1615 Research at Army Research Office D. Hislop
1630 Discussion

1645 Break into working groups, instructions for Thursday's meeting M. Barbee
1730 Break

Thursday (July 19, 1990)

0730 Breakfast
0830 Working Groups
1200 Lunch
1330 Recommendations of the Working Groups
1730 Break
1830 Dinner

3
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Appendix II

Group Summaries:
This appendix contains brief summaries of each of the five working
groups as _recorded on flip charts.

i

Group 1

Jim Greenwood
Reinhold Mann

David Lager
Swami Natarajan

Norm Coleman
Dean Frederick

Donald Sasseman
e

NEAR TERM DEVELOPMENT ITEMS

• C2
- Process control
- Simulation

• Vehicle Management
• Arch Framework/Delivery
• Framework for tools to develop

Tools - Softwear System Engineering

• Engineering Process
• Targeted to develop for a domain

Common Architecture

1) Tools for Engineering Process
• Software Systems Engineering
• Case - SlM
• AI -DB

• CACE - Management

1
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2) Delivery System
• Candidate Architecture

- Vehicle Sys
_ C2

' " '.'1CASSE ......[ , ' ..... _'[r I' ,, I. ...k

Tool Integration
Comoonents--

• O/S
• I3B
8 Develop libraries

® Tools need to be driven
• Tool integration - pick some and apply in integrated fashion
• Incremental expansion of tools
• New tool development

Pri0ritie_ - TooI_ Build_

1) Build CASSE
Computer Aided Software System Engineering
- MegaProgramming?
- S.E.E

2) Tools for Exploring Delivery Architectures
- Design

Research
- Test/Eval/Simulate
- Measure

• CASyE
• Terrain Reasoning
• Matrixx
• Real-time O/S

_

=
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• O.O/OS- Choices
Posix
VxWorks
OS/OI_SOS

• G2/ABE
• PRS/AOB
• yERDI - Distributed Systems
• Simulation Tools - SIMSCRIPT

• b'lanagmentl Tools - MRP
.
.
• Methodology Tools
• AI tools - KEE ART, OPS5
° Communication Tools

What is the testbed?

• End item target for testbed'ed systems
• Development Testbed (Lab)

feeds a test bed
feeds real system build

Research

_" Lab Testbed
, ,,,,,li _

_

Field Testbed
,_v

System Build

Group seems SYSTEMS oriented

Candidate Driv¢rs- Target Systems

• AFAS - Mobile artillary
• Blk3 Tank -
• C2 _
• UxV -

AFA$

• Semi-autonomous artillary piece
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• Men-machine are system
• Intelligent in support of C2, and operations
• Reactive
• Real-time -
• Integral-distributed/Control/Intelligence
• Hierarchical

Test Requirements for AFAS

• Wargame simulator
• Simulation drives for system
• SIMNET-Iike (mand & system)
• Evaluate system and software architecture
• Evaluate reasearch and ideas - prototype
• _ for gen/eval

Field Tested

• Real platform
• Evaluate architecture

Long-Term Research

1) Knowledge representations
fusion
machine perception

2) Languages
real-time
parallel _.2._9__

3 ) Compiler Tec.
- parallel detection
- visual to code

4) Data Bases Systems - of Population
- object oriented
- distributed

5) Expert Systems- Reasoning Strategies
• 6) Human Computer Interactions - HCI

- voice recognition
- virtual reality

7 ) Control Theory
- other than linear
- stability
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Group 2 ,_

Ken Thurman
Scott Harmon

' Roland Jones

Vince Heuring
Randy Shumaker

Mike Fehling
Colin Potts

Fred Hadaegh
Guillermo Rodriguez

Positions

I. At least three tiers" (languages different at each tier)
Top - global planner/assessment
Intermediate - housekeeping/system integrity. Monitoring
and integrity management for robustness.
Low order on board"

control system (auto-pilot)
• levels of abstraction

functional task
• interface between tiers
° languages at each level

II. Focus on specific end product.
Unmanned system

But related to the concept as a whole

III. Critical design features such as time have to be incorporated
Time as a specification issue

IV. Human interfaces must be integral to whatever we produce (at
least a 2-agent [manmachine] problem requiring distinctly
different technologies)

4

V. Prototyping test bed is necessary (and available in some form).
Configurations control mandatory
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.Ma.in ls_sues

1) Bound the problem: 40-45 briefs. Probably 300 others out
there.

2) Est.' functional relationship of a specific entity (unmanned tgt
system)

3) What is technology transfer potential with other areas?

4) Product plan - including technology and industry plan (flow
from R&D to user)

5) Way to specify tasks which incorporate notions of time,
function, events.

Recommendatio_n_

1) State-of-the-art review of distributed intelligent control theory

$200-300K for six months
Tools/database
standards

A nalyse/characterize

Goal - whats needed

Experience - what's been done
Deficit- what is missing
Assets - what do we have available?

- what can we do?

2)

fels
virtual realitysoar

_ _ automatic30 days free

UAVJPO
JPL manual

Est. functional relationship for unmanned systems
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3) Review technology transfer potential
other _ programs
existing tools

$200-300K for six months

4) Languages to specify tasks which incorporate notions of time,
function and eventts at each level

MEGA $K

Distributed TestBeds

5) Prototype should not be one specific hardware at one location.
Establish agent tO manage configuration control.
- To include stimulation, simulation,

emulation . . .animation
6) Project Plan

Example: vision code Testbed

Specialized ]code

University
"_ Example;.library of movement & commands, operations

tl

Gov labs
High level , 'A 12,, , ! .CASE

\ I I_I,S. , ] .Debug

\ University Example: Structured lan,,guage:"MoveGov labs the robot tolocation#5

Industry "_' [Fielded :support

%1

''"-)_, | Systems training
Ik ' / upgrataes
r_ L .consulting

,,

7 ) Next meeting
- report out on soar
- develop "accurate"budget and program_
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End Product

UNMANNED AIR VEHICLE:

1) Systems run by 20-300 people and want to reduce to 2 people
(4-5 people in aircraft, reduce to 1)

2_ Totally autonomous vehicle with various degrees of smarts:
i.e.
- (A) Give general directions, when can't find within

parameters, opens up and finds anything and asks
permission

- (B) virtual reality system: Man operates, thinks he is in
vehicle (using goggles)- telepresence

..................... _lrl NB" ,m, . _ ,
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Group 3

Doug Birdwell ,: ',,,,,
Thomas Bihari

Jagdish Chandra
Hiroyuki Watanabe
Matthew Emerson

Jacek Maitan

Guillermo Rodriquez

Modeling And Simulation Environment

1) Standardized and integrated w/previous work - ,_0 man years
- communications
- databases

2) Required features of implemntation - 100-1000 man yrs.
1/4 billion $$

• Equivalent to writing good operation system and support
system

• Soft target architecture
like META-compilers

• User definable multiple views
• Hierarchiacal executable specification languages

full life cycle (Like VLSI CAD systems)
• Given to everybody supported long term - 5 man years per

year
3. Validation tools

4. Module techniques to support reusability

UAV
Block 3 Tank
AFAS

• Representation should focus on test bed condidates

• Programmable interface so that existing tools can be used in
intelligent design

• Two test beds avoids inbreeding
• Two different problems
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• Goal is to get commercially viable product win-win for
University and Industry

• Vehicle with incremental improvements and supporting test be
dor software tools

° Must be rich enough - have really distributed

Two Test Beds
Equal Priority and Funding

1. UAV- Automatic landing system - Reusability -demonstration
$5 million

2. UUV- Demonstrate ability of multiple groups to develop
Cooperating modules for the same platform(s)
$5 million

Lgng Term Research

Policy: Decouple long term research from short term deliverables
- More theory/algorithms of Distributed Intelligent control
- More work in large distributed real-time computing

systems (full life cycle- specifications to debugging)
- Fund interdisciplinary education

CS, systems and controls
- Fund Technology Transfer-

tight coupling between University and Industry
- Encourage interaction
- Cleaning house for information of ideas on DIC
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Wolf Kohn
James Caldwell

Jane Liu
John James

Magnus Rimvall
Anil Nerode
Alan Laub

Matthew Wette
Chris Barrett

Lon_ Termv

$5.5 Ml5 yrs. (inc. manpower, software, hardware)

Short Term

$14.5 M (manpewer only) ali year
$ 3.5 M hardware, software
$ ? miliatry equipment

Priority (3)
At least one team for each item
Near term is minimum plan
Time (1) 2 years for initial system

Long _erm

Incorporate real-time research -
Co-ordinate, form bond with real-time

National Labs should be included long term
Funding for #3a- 500K/year, 100K/project

3b - 600K/year, 300K/project
(inel manpower, software, hardware)

5 years for 1st results from grad students

_hort Term

Find representation - $| M/year 2 teams
Software house to do it

" _ " ,, _) _ rl p,
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Develop, code programmable translator or integrate prog. trans.
10 man yrs @ $300K/year

Field engineers interface to university 1 man/yr
Meetings, travel, incidentals 3 years @ 50K/year

doesn't include capital cost-software, hardware etCo

Hardware $30K/per man 10 sets

Controls tool 30K each
Simulation
Database
Case tool
System engineering
Specification
Language env. (ADA)
Cross compiler
Networking
Symbolic tools
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Group 5

Thomas Hester

Richard Quintero
,/ Xiaoping Yun/

.... < , Charles Hall
,' , '/:.

' _/,, ,;:, Roger Hartley
Dirk Klose
Brian Glass

David Hislop

_ED RECOMMENDATIONS:

(

Multidomained

•More than 1 testbed

•Perhaps one per program
• Should already be in being at some level
•Take ongoing program and pull out a problem
•Testbed available on a reasonable basis to DARPA

- .Look at taxonomy of domain features
•Identify common set and testbed and problem in set

Examples:
AFATADS
NAVLAB
AUV AT DRAPER

-: SHORT TERM OPPORTUNITIES
YEARLY MILESTONES

J

Year one demonstrate adaptive interfaces (
•The look and feel of the user interface for' a controls engineer

•Interface a software development tool to a controls J

development tool

Year two demonstrate encapsulated tools

• Supports prototype standard representing functional
requirements for standards

=
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•Adaptive interface is controlling the encapsulated :ools
•Info passing among tools

p

Year three demonstrate an integrated tool set
•Supports a standard methodology
•For specified problem
•In chosen testbed

TASKS

Year one: develop taxonomies
•Domain features (1 man year)
•Tool features (3 to 4 man years)
•Taxonomy of standards (1 man year)

Interface standards
Reference architecture
Methodologies
Leverage existing standards

Needs assessment ( 1 man year)
Develop demonstration (5 man years)

Year two: develop system design plan (1 man year)
Define standard (2 man years)
Acquire/develop testbed (GFE)
Encapsulate tools (10 man years)
Demonstrate encapsulated tools (2 man years)

Year three (11 man years): apply tool setz

Demonstrate tools set
Evaluate
Iterate
Demonstrate

LONG "IERMRESEARCH ISSUES

Not general software engineering but software for control systems

Therefore for control and system engineers designing and integrating
control systems

=
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•Systems: C3, tactics, hardware
, ,

•Languages for descriptions within a level
•Languages for descriptions between _ levels

Formality of description languages
.Devices
.Processes
•Control characteristics
,Communications
.Command

Software build according to these requirements will"
•Be modular (interoperable)
•Have standard interfaces
•Conceptually integrated

Tools work:
•Within a level
•Between levels

•Use language for interchange and HCI

Automation should increase formality with help
ali tools should emphasize evolutionary design

ali tools should emphasize dynamic nature of systems
(animation)
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Appendix III

Participants in the Workshop on Software Tools
for Distributed Intelligent Control

July 17-19,1990

Dr. James S. Albus
National $,:tstitute of Standards and Technology'
Robot Systems Division
Bldg. 220, Ran. B124
Gaithersburg, MD 20899
PH: 301/975-3418

Dr. Kishan Baheti
National Science Foundation
1800 G Street NW Rrn, 1151

Washington:, DC 20550
PH: 202/357-9618 FAX 202/357-7636

J

Dr. Chris Barrett

Los Alamos National Laboratory
i M/S 605 Group A5

Los Alamos, NM 87544 ema!& cbarrett@LANL.gov
PH: 505/665-0733 FTS855-0733 FAX 505/665-2017

Dr. Thomas Bihari

Adaptive Machine Technologies
: 1218 Kinnear Road

o Columbus, OH 43212 email: amt@eagle.eng.OHIO-STATE.edu
PH: 614/486-7741

Prof. J. Douglas Birdwell
University of Tennessee
Dept. of Elec. e_ Comp. Engr.
Knoxville, TN 37996-2100 email: birdwell@cascade.engr.utk.edu
PH: 615/974-54.68

Mr. James Caldwell
NASA Langley Research Center
Mai! Stop 130
Hampton, VA 23665-5225 email: jlc@air12.1arc.nasa.gov
PH: 804 / 864-6214
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Dr. Jagdish Chandra
U.S. Army Research Office
SLCRO-MA (Dr. Jagdish Chandra)
P.O. Box 12211

Research Triangle Park, N.C. 27709 emaih Chandra@brl.arpa
PH: 919/549-0641 FAX 919/54%9399

Dr. Norman Coleman

U.S. Army ARDEC
Atm: SMCAR-FSF-RC (Dr. Norman Coleman)
Bldg. 95 North email: ncoleman@pica.mil
Picatinny Arsenal, NJ 07806-5000 FAX 201/724-5597
PH: 201/724-6279 conf # 724-2124

Mr. Matthew Emerson
Naval Avionics Center

Indianapolis, IN 46219-2189
PH: 317/353-7825 FAX 317/353-3583

Prof. Michael Fehling
Stanford University
Dept. of Engineering Economic Systems
321 Terman Engineering Center
Stanford, CA 94305-4025
PH: 415/723-0344 FAX 415/723-1614

Prof. Dean Frederick

Rensselaer Polytechnic Institute
7032 JEC
Troy, NY 12181 emaih dean frederick@mts.rpi.edu
PH: 518/276-6080

Dr. Donald T. Gavel

Universit3 of California
Lawrence Livermore National Laboratory
P.O. Box 808, L-496
Livermore, CA 94550
PH: 415/422-8539

=,

Dr. Brian Glass
NASA Ames Research Center

Mail Stop- 244-18
Mt. View, CA 94035 email: glass@pluto.arc.nasa.gov
PH: 415/604-3379 FAX 415/604-6997
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Dr. James Greenwood
Advanced Derision Systems
1500 Plymouth Street
Mountain View, CA 94043-1230 email: greenwood@ADS.COM
PH: 415/960-7551

t , ,,

Dr. Fred Y. Hadaegh
JetPropulsionLaboratory
Guidance and ControlSection
4800Oak GroveDr.

Pasadena,CA 91109-8099
PH: 818/354-8777 FTS 792-8777

Dr. Charles Hall
Lockheed Missile & Space
Organization 259
3251 Hanover Street
Palo Alto, CA 94304
PH: 415/354-5260

Prof. Roger Hartley
Computing Research Lab.
New Mexico State University
P.O. Box 3CU/30001
Las Cruces, NM 88003 email: rth@nmsu.edu
PH: 505/646-1218 FAX 505/646-6218

Dr. Scott Harmon

Hughes Research Laboratory
3011 Malibu Canyon Rd. ,,
Malibu, CA 90265
PH: 213/317-5140

Dr. Frederick Hayes-Roth
Cimflex Teknowledge Corp.

= P.O. Box 10119

Palo Alto, CA 94303
PH: 415/424-0500 ext. 410 FAX 415/493-2645

Dr. Charles Herget
University of California
Lawrence Livermore National Laboratory
P.O. Box 808, L-194
Livermore, CA 94550 email: herget@icdc.llnl.gov
PH: 415/422-7786

4 _
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Electronic Engineering & Comp Sd.
FMC Corporate Technology Ctr.
1205 Coleman Ave.
Santa Clara, CA 95052 emaih hester@ctc.fmc.com
PH: 408 / 289-0461

Prof. Vincent Heuring
University of Colorado at Boulder
ECE Department
Campus Box 425
Boulder, CO 80309-0425 ernail: heuring@boulder.coJorado.edu
PH: 303/492-8751

Dr. David W. Hislop
U.S. Army Research Office
SLCRO-EL (Dr. David W. Hislop)
P.O. Box 12211
Research Triangle Park, N.C, 27709 email' hislop@aro-emhl.mil
PH: 919/549-0641

Col. John R. James
HQ Training and Doctrine Command
ATRM-K
Fort Monroe, VA 23651
PH: 804/727-3945 or727-3948 FAX 800-365-5181

Mr. Roland A. Jones
Gensym
125 Cambridge Park Dr.
Cambridge, MA 02140
PH: 617/547-9606 FAX 617/547-1962

Dr. Dirk Klose
USACECOM C3 System Center
Chief C2 System Development Division
Attn: AMSEL-RD-C3-IR (Dr. Klose)
Fort Monmouth, NJ 07703-5000
PH: 201/544-2213 FAX 201/544-4084
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Dr. Wolf Kohn

Boeing Company
Chief Researcher in Artifical Intelligence
Science Computing and Analysis
P.O. Box 24346

Mail Stop 7L-23
Seattle, WA 98124-0346 email: wolfk@boeing.com
PH: 206/865-3598 FAX 206/865-2996

Mr. Darrel L. Lager
University of California
Lawrence Livermore National Laboratory
P.O. Box 808, L-156
Livermore, CA 94550 email: lager@lucky.llnl.gov
PH: 415/422-8526

Prof. Alan Laub

Department of Electrical & Computer Engr
University of California
Santa Barbara, CA 93106 email: laub%lanczos@hub.ucsb.edu
PH: 805/893-3616 FAX 805/893-3262

Prof. Nancy Leveson
Department of Info. & Comp. Science
University of California
Irvine, CA 92717 leveson@ics.uci.edu
PH: 714/ 856-5517

Prof. Jane Liu
University of Illinois
Department of Computer Science
1304 W. Springfield Avenue
Urbana, IL 61801
PH: 217/333-0135

Dr. Jacek Maitan
Lockheed

Research & Development Division
0/9740 B/201
3529 Hanover St.

Palo Alto, CA 94304 email: jmaitan@a.isi.edu
PH: 415/424-2742
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Dr. Reinhold Mann
Martin Marietta Energy Systems
P.O. Box 2008

Bldg 6025
Oak Ridge, TN 37830
PH: 615/574-0834

_ LTC Erik Mettala
DARPA/ISTO
1400 Wilson Blvd.

Arlington, VA 22209-Z308
PH: 202/694-5037

Dr. David Morganthaler
Martin Marietta
Information and Communications System
P.O. Box 1260

Mail Stop XL4370
Denver, CO 80201
PH: 303/977-4200 FAX 977-7946

Prof. Swaminathan Natarajan
Texas A&M University
Dept. of Computer Science
College Station, TX 77843-3112 email: swami@cssun.tama.edu
PH: 409/845-8287

Prof. Anil Nerode
_- Mathematical Science Institute

Cornell University
Ithaca, NY 14853-7901 email: nerode@mssun7.msi.Cornell.edu
PH: 607/255-3577)

Dr. Colin Potts
MCC
Software Technology Program
P.O, Box 200195
Austin, TX 78720 email: potts@mcc.com
PH: 512/'338-3629 FAX 512/338-3899
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Mr. Richard Quintero
National Institute of Standards and Technology
Robot Systems Division
Bldg. 220 B124
Gaithersburg, MD 20899
PH: 301/975-3456 FAX 302/990-9688

Dr. Magnus Rimvall
General Electric Corporate R &D
Mail Stop KWD213
P.O. Box 8
Schenectady, NY 12301 email: rimvall@crd.ge.com
PH: 518/387-5698 FAX 518/387-5164

Dr. Guillermo Rodriguez
Jet Propulsion Laboratory
4800 Oak Grove Dr. MS 198-219
Pasadena, CA 91109
PH: 818/.354-4057

Mr. Donald Sassaman

Vitro Corporation
2121 Crystal Dr.
Arlington, VA 22202
PH: 703/418-8038 FAX 703/418-9028

Mr. Roger Schappell
Martin Marietta

Information and Communications System
P.O. Box 1260

Mail Stop XL4370
Denver, CO 80201
PH: 303/977-4474 FAX 977-7946

Dr. Randall Shumaker
Naval Research Laboratory, Code 5500
4555 Overlook Avenue S.W.

Washington, D.C. 20375-5000 email: shumaker@itd.nrl.navy.mil
PH: 202/767-2903
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Major Ken Thurman
UAV Joint Program
PEO (CU) - UTMR

Crystal Gateway #4 Room 304
Washington, DC 20361-1014
PH: 703/692-3423 FAX 202/746-5682

Dr. David Tseng
Hughes Research Laboratory
3011 Malibu Canyon Rd.

•Malibu, CA 90265
PH: 213/317-5677 FAX 213/317-5484

Prof. Hiroyuki Watanabe
University of North Carolina
Sitterson Hall

Campus Box 3175
Department of Computer Science
Chapel Hill, NC 27599
PH: 919/962-1817 FAX 919/962-1799

Dr. Matthew R. Wette
Guidance and Control Section

Jet Propulsion Laboratory
4800 Oak Grove Dr. M/S 198-326 email: mwette@jpl-gnc-gw.jpl.nasa.gov
Pasadena, CA 91109

Prof. Xiaoping Yun
University of Pennsylvania
Computer Science Department
200 South 33rd Street

, Philadelphia, PA 19104-6389 email: yun@central.cis.upenn.edu
PH: 215 / 898-6783
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