CONF-9007134-- —

Proceedings S B
of the NOV 0 5 1o9p
Workshop on Software Tools for
Distributed Intelligent Control Systems =

The Lighthouse Hotel

Pacifica, Califernia
July 17-19, 1990

Editor: Charles J. Herget

September 1990

g Ly
“1'; . . c 7 1
i‘l’ koo ki

NSTRIBUTION 0F Tws Gacument 1 UNLIMITEY

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes
any warranty. express or implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus. product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any specific commercial products, process,
or service by trade name, trademark, manufacturer, or atherwise, does not necessarily constitute or imply its
endorsement. recommendation. or favoring by the United States Government or the University of California,
The views and opinions of wuthors expressed herein do not necessarily state or reflect those of the United
States Government thercof, and shall not be used for advertising or product endorsement purposes.

Work performed under the auspices of the U.S, Department of Energy by Lawrence Livermore National
Laboratory under Contract W-74(05-Eng-48.

CONF-9007134
Page i /,',‘

Workshop on Software Tools for
Distributed Intelligent Control Systems

Co-Chairs:

Administrator:

Program Committee:

Meeting Facilitators:

Lighthouse Hotel
Pacifica, California

CONF-9007134--
DE91 001755

July 17-19, 1990

Dr. Charles J. Herget
Lawrence Livermore National Laboratory

Col. John R. James
U.S. Army

Carol Richardson
Lawrence Livermore National Laboratory

Dr. Charles J. Herget
Lawrence Livermore National Laboratory

Dr. David Hislop

U.S. Army Research Office

Col. John R. Jarﬁes
U.S. Army HQ TRADOC

LTC Erik Mettala
DARPA

Dr. Abraham Waksman
U.S. Air Force Office of Scientific Research

Dr. Margaret Barbee, Principal Facilitator
Lawrence Livermore National Laboratory

Marianne Clark
Lawrence Livermore National Laboratory

Linda Donald
Lawrence Livermore National Laboratory

Helen Holmes
Lawrence Livermore National Laboratory

Ronald Weinberg
Lawrence Livermore National Laboratory

7
/
[P

BISTRIBUTION N TUIO nantzarie o voeis o s
Morales U iR LN L B NN UHL.”“I!IH

ne
Uty

CONTENTS
EXECUNIVE SUMMAIY......cciniiiiiiininnescensesnsssessssssssissssssstssssesssssssssssassesssssasssessssssssessesssessnessssV
... 1
Author Title
James S. Albus and Toward a Reference Model Architecture for :
- Richard Quintero Real-Time Inteligent Control Systems (ARTICS).....ccuieeeriinnccenecrnnienca 1
Thomas E. Bihar, Applying a Computer Aided Prototyping System to the
Robert B. McGhee, and Software of an Autonomous Underwater Vehicle...........cceereeereennienes 11
Lugi, Yuh-jeng Lee :
J. Douglas Birdwell and Concurrent Processing Environments for Distributed
Sheng Liang Intelligent CONrOl SYSIBIMS........veiiireeriiirersrerereeessriimeesssrsessesesssrenees 21
James L. Caldwell I and Hierachical Approach to Speciﬁcation and Verification of
Ricky W. Butler Fault-tolerant Operating SyStemS...........cccevvrererseserinessrereecsnnns vveeen 29
N. Coleman An Emulation/Simulation Environment for Intelligent
COMIOIS. . o.cevsrnscssinnscssssssssnsansssnsssissassstssisssstssasssst s nessansssossnssness 37
Michael Fehling and Software Engineering Environments for Military Vehicle
Charles F. Hall Management SYSIEIMS.cvceeeeerrirrerrnreeserseecsnesssrenessasseseesssessasenes 53
Dean K. Frederick A Second-generation Expert System for Computer-
aided Control System DeSigN........cceeurirererervinrieeererinessrersssenncosmnerens 63
Donald T. Gavel Control Systems Engineering in an Open-Architectured
Object-Oriented Software ENVIironmMent............ceeeveereeeenisririeereeeneens 73
B. J. Glass Hierarchical Heterogeneous Symbolic Control: Lessons
Leamed froM TEXSYS.....ciiiiieciceiierercirreeresnneess e s seseesaeesssssesentsanens 83
James R. Greenwood, CASE Products for Knowledge Based Systems Design
Gregory Stachnick, and Development iN Aa.........ccveerrreniereereriiesesenreensaeeessssansieenones 89
H. Stephen Kaye, Robin Wada
and Jorge Gautier
~ S. Harmon, D. Payton and Tool Needs for a Behavior-based Approach to
D. Tseng Distributed Inteligent COMIOL......c...uvveiiereeereiierrarieereseerinenns 103
Roger T. Hartley Conceptual Programming........uveeieesueeeierersererersnessnnrssseensseressnenes 111
Vincent P. Heuring Language Development Systems in Support of Software
(5% T =TT o U SRR 121
Roland Jones The G2 Real-time Expert SysteM.........ccceeereeeniuneieninencsnnaasaans 127
Dirk R. Klose, Larry U. Dworkin, Software Tools for Lower Echelon Systems
and Lanny L. L. Gorr DEVEIOPIMEM.eevviercriereeesesireriesesatressesasesssesssseseseaessssenns 131

CONF-9007134 '
Page iii

CONF-9(X
Page iv

Wolf Kohn Declarative Hierarchical COMrOlIErs.........c.ccerecreerivursennrercannenreoranes 141
Darrei L. Lager, Hal R. Brand An Expert System for Tuning Particle :
and Wiliam J. Maurer Beam ACCRIBIAIONS....ccvvirrenremrenersressrrnressssnseresesstsrsessorsessnsesessesas 165
Nancy G. Leveson Safety of Process-Control SORWAre.........cccerrerrerrireseeneesseersneeerans 175
Jane W. S. Liu Real-time Responsiveness in Distributed Operating

Systems and Dalabases........eeveeereererssneeecsessreaesrsosararrescansrencaces 185
J. Maitan Large-scale Distributed Computation Structures for

COMIOl SYSIBIMS. ...ceureeerresecasraneeesarssssarsesssnsseressessnsserasssarsnsenses 193
Reinhold C. Mann A Hardware/Software Environment to Support R&D in

Intelligent Machines and Mobile Robotic Systems...........c...eeeeene. 203
Swaminathan Natarajan Requirements for intelligent Real-time Control Systems............... 209
and John Yen |
Anil Nerode Modélling INteligent COMPOL.......covevererrernerrenessrenessrensesrrnesnsnne 219
Colin Potts Distributed Computing Research at MCC/STP........ccciveveerieiennennn 227
Magnus Rimvall integrating Controls System Design with Systems and

SoRware ENGINEeMNG.ccceeerrreeeeeerrersseeeereesionsnseeneniessnnersessases 233
G. Rodriguez Spatial Operator Software for Intelligent Control.........coeerervreennnne. 245
James R. Symon and Single Board System for FUzzy INference..........cccveerevneeereiineeenes 253
Hiroyuki Watanabe
Matthew R. Wette On Computational Requirements for Design of Large

Order, Complex Control SYSIemMS..........uerveerreemmrrerecenioeeermeereeenns 263
Xiaoping Yun, Eric Paljug TRACS: An Experimental Multiagent Robotic System................ 267
and Ruzena Bajcsy

Appendix | - WOrkShOp AGENGA.......ccoueirririeiriicciareesien ettt et a e seas e s e sae e 275
Appendix Il - Group SUMMANES......cceceecriieeeverereenrreieeesseesesasenees tereveee e et n st saeeas 279

Appendix 1l - List Of PAriCIPANTS.......cceoveeiinieeiinienicieeseeesneeesseecssessssaesessessesssnssnesssessesnnns 295

CONF-900713.
Page v

EXECUTIVE SUMMARY
INTRODUCTION

The Workshop on Software Tools for Distributed Intelligent Control Systems was
organized by Lawrence Livermore National Laboratory for the United States Army
Headquarters Training and Doctrine Command and the Defense Advanced Research
Projects Agency. It was held at the Lighthouse Hotel in Pacifica, California, on July 17
to 19, 1990.

DARPA has recently expressed interest in architectural based software development
methodologies. DARPA is now putting into effect a program for the development cf
common architectures and models of computation for particular applications to reduce
“the rapdily increasing cost of the life cycle of software. One of the more important areas
of domain specific software architecture is that of vehicle management systems. The
intention is to build a software engineering environment for intelligent control systems
for military vehicles which would improve the productivity of control design engineers
and lower the software costs to DOD.

The goals of the workshop were to (1) identify the current state of the art in tools which
support control systems engineering design and implementation, (2) identify research
issues associated with writing software tools which would provide a design
environment to assist engineers in muitidisciplinary control design and implementation,
(3) formulate a potential investment strategy to resolve the research issues and
develop public domain code which can form the core of more powerful engineering
design tools, and (4) recommend test cases to focus the software development process
and test associated performance metrcs.

Recognizing that the development of software tools for distributed intelligent control
systems will require a multidisciplinary effort, experts in systems engineering, control
systems engineering, and computer science were invited to participate in the
workshop. In particular, experts who could address the following topics were selected:
operating systems, engineering data representation and manipulation, emerging
standards for manufacturing data, mathematical foundations, coupling of symbolic and
numerical computation, user interface, system identification, system representation at
different levels of abstraction, system specification, system design, verification and
validation, automatic code generation, and integration of modular, reusable code.

There were 48 attendees from industry, government, and academia. A complete list of
attendees is contained in an appendix.

During the first two days of the Workshop, presentations were made by all of the
attendees in an attempt to establish the state-of-the-art in distributed intelligent control
systems.

CONF-9007134

" Page vi

On the morning of the third day, the attendees were divided into five working groups,
each group having representatives from the three technologies: systems engineering,
control systems, and computer science.

Each of the working groups was given the tasks: (1) develop a short term plan, (2)
recommend a research plan, and (3) identify potential test beds for implementing
software tools for distributed intelligent controi systems.

On the afternoon of the third day, the entire group recovened to form a consensus of the
five werking groups. A meeting facilitator, Dr. Margaret Barbee, from LLNL coordinated
the daily activities of the Workshop. Additional facilitators from LLNL were availabie to
assist each of the Working Groups on the morning of the third day.

This report contains a summary of the findings of the participants of the Workshop. It

‘also contains a collection of papers submitted by the participants.

SUMMARY OF FINDINGS

Short Term
1. Perform a state of the art review of distributed intelligent control systems.

It was felt that the status of the technologies which are required for distributed
intelligent control were acquately presented at the Workshop; however because
of the diverse nature of the individual technologies, it was not possible to form a
comprehensive review in a three day workshop. In general, there was agreement
that distributed intelligent control, as an emerging discipline, is currently
ill-defined. The usefulness of testbeds to focus issues and demonstrate the
technology was emphasized by each group. The NASA/NBS Standard
Reference Model for Telerobotic Control System Architecture (NASREM) was the
only software architecture model offered as a central system view around which
software tools can be built. At least one group concluded that there is low
technical risk in applying Discrete Event Dynamic System (DEDS) mathematics
to the NASREM model to achieve an initial set of software tools within two years.

2. Develop a taxonomy of currently available tools.

It was felt that there are numerous tools which are available to perform various
aspects of distributed intelligent control. It was recommended that a taxonomy of
them be made. Areas where applicable tools were identified as being available
included artificial intelligence (Al), data base (DB) management, computer-aided
control systems design (CACSD), computer-aided software engineering (CASE),
computer-aided design (CAD), and simulation.

CONF-900713¢
Page vii

3. Develop a tool which will perform a high level integration of existing tools.
it was felt that the cost of developing all new tools would be prohibitively
expensive. Furthermore, it was felt that the taxonomy would identify a large
number of available tools. What is missing is a high level tool which some
preferred to call Computer Aided Software Systems Engineering (CASSE).

4. Develop a technology transfer plan.

5. Establish a repository for the software developed.

Long Term

The following research areas were identified.

1. Theory of distribhted intelligent control systems. It was felt a theory of distributed
intelligent control systems is not available and should be established on its own.

2. Theory of other than linear control system, e.g knowledge based control systems.
3. Stability of knowledge based control systems
4. Theory on multi-agent interactions.

5. Related computer science topics:

real time programming, e.g. languages to specify tasks which incorporate notions
of time, function and events at each level;

software re-use, e.g. the indexing problem to store and index;

automatic programming, e.g. develpment of a design specification language for
distributed intelligent control systems;

real time control, e.g. imprecise computation, time-limited computation,
concurrency, and data communications; and

real time operating systems, e.g. scheduling.

CONF-9007134

Page viii

| Recommended Test Beds

Potential test beds which were identified included the Advanced Field Artillery System
(AFAS), unmanned air vehucles (UAV), unmanned underwater vehicles (UUV), and the
Block 3 tank.

It was recommended that there should be a laboratory test bed as well as a field test
bed; that the problem should be very focused, i.e. select a specific application from the
given test bed, not the entire test bed; and there should be at least two efforts, each
focusing on a different test bed.

General comments

There was not unanimous agreement among ali of the participants on what the target of
the software should be; however, those representing the control systems community
generally favored the discrete event dynamic system model (DEDS).

There was general agreement that the development of a comprehensive package from
scratch would require hundreds of millions of dollars. It was strongly recommended
that a more modest effort be undertaken as outlined in the short term goals. It was felt
that the short term goals could be achieved within five years with a budget of tens of
millions of dollars. After feasibility is demonstrated, it was felt that larger funding would
become available. Several corporate attendees indicated that matching funds would
be made available by corporations if general agreement could be reached on a
standard architecture. This would leverage government investment in software tools.

It was recommended that the long term research be carried out simultaneously but
separately from the short term program, with the short term program providing
inspiration and applications.

CONF-900713¢
Page 1

Toward a Reference Model Architecture for Real-Time Intelligent
Control Systems (ARTICS)

by

James S. Albus and Richard Quintero
Robot Systems Division
National Institute of Standards and Technology

INTRODUCTION

This position paper is a condensed version of a paper titled “Concept for a Reference Model
Architecture for Real-Time Intelligent Control systems (ARTICS)”, [Al 90], which advocates the
development of a reference model open-system architecture as a means to accelerate the pace of
technological development in automation and robotics. We believe many of the major bottlenecks in

the development of intelligent machine systems could be alleviated, if not eliminated, by the
development of a set of ARTICS guidelines. :

The pace of commercial and military technological advancement in the fields of robotics, intelligent
machine systems and automation is falling short of expectations. Problem complexity is one of the
major contributors to this problem. Intelligent robot systems projects typically require bringing
together teams of technologists with a broad mix of engineering disciplines and a high level cof
expertise. Robotics and automation manufacturers must make large investments in both developing
custom test-beds and in recruiting and training competent engineering teams in order to compete in
this market area. A second problem is the lack of a widely accepted theory, or system architecture
model that ties together the many disciplines involved in intelligent robot systems. This limits the
dissemination of intelligent machine systems technology developed in different parts of the robotics

community. This prevents new projects from building upon the foundations laid by previous
efforts. *

A set of ARTICS guidelines would reduce the impact of problem complexity and would provide an
efficient means of transferring technology between projects. Manufacturers will adopt ARTICS
guidelines if they believe that their potential profits would be enhanced by an expanded market.
This must be driven by traditional market forces (user demand). We need a way to create
automation building blocks so that more complex systems can be developed without making the
technologies more difficult to understand and to apply and without "reinventing the wheel" each
time a new project begins. We believe that a common hardware/software shell structure would

facilitate the incremental improvement which would produce rapid advancement in automation and
robotics technology.

To summarize the goals advocated by this paper, we suggest that an Architecture for Real-Time
Intelligent Control Systems (ARTICS) is needed to:

* reduce the impact of problem complexity in the development of robotic

applications

" CONF-9007134

Page 2

* expand the market for intelligent control system components through open-system
interface guidelines and protocols.

* promote portability, inter-operability and modularity of intelligent control system
. software and hardware

* facilitate technology transfer between intelligent control system projects

* reduce the time, cost, risk, and initial investment required in bringing new, world
class, intelligent machine systems and control system products into the market place

2. ARTICS VISION

ARTICS guidelines would specify a reference model infrastructure of hardware components,
software components, interfaces, communications protocols, and application development tools.
Such a set of guidelines would make it possible for industry to develop and market a diverse line of
control system components which could be interchangeable and realizable on many different
vendors’ control systems platforms.

ARTICS would be designed to facilitate technology and component transfer among the various
users and developers, taking advantage of commonalities among otherwise disparate applications
such as manufacturing, construction, environmental restoration, mining, space exploration

telerobotics, medicine, and military applications of air, land, space, sea-surface, and undersea
robotics.

A commercially manufactured ARTICS implementation product would come with libraries of
algorithms for planning, task execution, sensor processing and world modeling. These libraries
would be user expandable and replaceable. An ARTICS implementation would be fully
documented so that users could easily modify or replace any module with a minimum of effort. It
would also be commercially maintained, so that users would be able to get help in fixing bugs and
making system modifications. In addition, vendors would offer training services to help the user
community apply ARTICS products to their applications.

Widely available ARTICS off-the-shelf products would include a target computer system with a
backplane and bus configured as a card cage, a local area network to link distributed applications
and interface workstations for human/computer interface and software development, a real-time
multi-processor/multi-tasking operating system, compilers, debuggers, and CASE tools. ARTICS
compliant products could be integrated into an extendible open-system architecture with complete
documentation of all hardware and software components.

The ultimate goal would be for ARTICS to evolve into a set of standards for real-time intelligent
control systems. Figure 1 illustrates a possible common system configuration for a Version 1
ARTICS system. It would be organized into three levels.

The top level would consist of a number of workstations on an Ethernet for off-line software
development and testing. A number of Computer Aided Software Engineering (CASE) tools, shell

programs, simulatots, debugging and analysis tools, and compilers for at least C, Ada, and
Common LISP would be available.

CONF-90071:
Page 3

These workstations might include one or more SUNs, LISP machines, VAXes, Butterflys,
Connection Machines, graphics engines and display and image processing machines.

One or more of the workstation machines might also be used for on-line real-time control of
processes where response time can exceed 1 second, and in situations where weight, power, and
other environmental requirements permit. A real-time, multi-computer, multi-tasking operating
system such as real-time UNIX, or MACH would be provided to support this type of operation.

The top level would also support an interface to a gaming environment such as the DARPA
SIMNET. This would provide a low cost means for testing and evaluating the performance of
intelligent machines in a war gaming environment against manned systems, or other unmanned
systems. It would also provide an environment for developing tactics and strategy for using large
numbers of intelligent vehicles and weapons systems in large scale battle simulations.

The middle level of the ARTICS system would consist of target hardware, such as single board
computers and memory boards of the 680X0 variety, using VME or Multi-bus communications.
More than one such bus might be connected via bus gateway cards. This middle level would have
a real-time, multi-processor, multi-tasking operating system such as pSOS, VRTX, or MACH
capable of supporting response times of ten milliseconds or greater.

The bottom level would consist of special purpose hardware which would interface to the VME or
Multi-bus. This level would support high speed parallel processing for images, as well as servo
controllers with response times between ten microseconds and ten milliseconds.

Figure 2 shows a possible reference model architecture based the Real-time Control System (RCS)
concepts NIST has developed since 1980. These have been implemented in a number of
applications including the Automated Manufacturing Research Facility (AMRF), the NASA/NBS
Standard Reference Model for Telerobot Control System Architecture (NASREM) [Al 89], the Air
Force Next Generation Controller for machine tools and robots, and the control system architecture

Eescgrgch conducted for the NIST/DARPA Multiple Autonomous Undersea Vehicle (MAUYV) project
Al 88]. ‘

The version of ARTICS shown here consists of six hierarchical levels: servo, path dynamics,
elemental tasks, individual (vehicle), group (squad), and cell (platoon). The tor (platoon) level of
this reference model architecture would have interfaces to a higher (company) level in a battle
manage.aent system. The bottom (servo) level would interface to actuators and sensors, and
operator interfaces would be defined for all levels.

NIST hopes to enlist the cooperation of experts from industry, academia, and government in
developing and modifying these concepts into an agreed upon initial set of guidelines. NIST also
intends to sponsor research and enlist others to sponsor research, into advanced concepts that will
permit the ARTICS guidelines to evolve as technology advances.

3. REQUIREMENTS

The fellowing “strawman” list of requirements is intended to encourage the robotics community to
begin the discourse. A discussion of these requirements can be found in [Al 90].

3

. N

CONF-9007134
Page 4

. Extensibility

1. Functional Extensibility

2. Temporal Extensibility

. Human/Computer Interface Flexibility

. Level of Automation Flexibility
Teleoperation and Remote Control
Computer Aided Advisory Control
Traded Control

Shared Cortrol

Humson Override

Human Supervised Control
Autonomous Control

Sensory Interactive Control

. Mixed Mode Control

Real-Time and Temporal Reasoning
Distributed System

Graceful Degradation

Application Independence

1. Software Portability

.2, Compatibility and Inter-Operability
. Ease of Use

Cost Effectiveness

.10. Development Environment

]

. 11. Simulation and Animation

4. APPROACH

.1
1.
1.
.2
.3
3.
3.
3.
3.4
3
3.
3
3
3
4
5
6
7
7
7
8
9

29 L0 L0 L L0 1) L0 2 G0 €0 L0 83 00 L) () G 3 L0 Gl L0 L0 Lot L2
T o dO W

To implement the ARTICS concept a consensus must be achieved in several areas of the common
control system architecture. Such a conceptual framework would provide developers with a
common design philosophy to guide the development of new robotic applications and control
system products. A number of control architectures should be considered and evaluated against
some set of agreed upon common control system requirements and finally a common conceptual
architecture must be derived from the results of the process. More than likely such an architecture
would include the ideas of a number of researchers as well as strong input from the user
community. The following is a list of recent research in this area:

Action Networks [Ni 89]

Autonomous Land Vehicle (ALV) [Lo 86]

Automated Manufacturing Research Facility (AMRF) (Si 83, Al 81]
Connéol in Operational Space of a Manipulator-with-Obstacles System (COSMOS)
[Kh 87]

COmmunications Database with GEometric Reasoning (CODGER) [Sh 86]
Field Materiel-Handling Robot (FMR) [Mc 86]

Generic Vehicle Autonomy (GVA) [Gr 88]

Hearsay II [Le 75]

Hierarchical Conitrol [Sk 89, Sk 87, Ko 88, Ko 88]

Hierarchical Real-time Control System (RCS) [Ba 34, Al 81

4

Page“S

Intelligent Control [Sa 85] ,

Intelligent Task Automation (ITA) [Bl 88]

Manufacturing Automation System/Controller (MAS/C) [Ho 88]
Multiple Autonomous Undersea Vehicles (MAUYV) [Al 88] :

NASA/NBS Standard Reference Model for Telerobot Control System Architecture
(NASREM) [Al 89]

Pilot’s Associate [Sm 87]

Robot Control "C" Library (RCCL) [Ha 86)

Robot Schemas [Ly 89]

Soar: Architecture for General Intelligence [La 86]

Subsumption Architecture [Br 86]

Task Control Architecture (TCA) [Si 89]

Tech-based Enhancement for Autonomous Machines (TEAM) [Sz 88]

University of New Hampshire (UNH) Time Hierarchical Architecture [Ja 88]

There are a number of government efforts under way that should be factored into the process of
defining an initial set of common architecture components. Some of these include:

® The NIST Federal Information Processing Standard (FIPS)

® The NIST Government Open Systems Interconnection Profile (GOSIP)
® The Navy's Next Generation Computer Resources (NGCR) program
® The Air Force's Next Generation Controller (NGC) program

® The Army's Standard Army Vetronic Architecture (SAVA) program

In addition there is a Department of Energy interest in establishing guidelines for robotic systems
needed in their Environmental Restoration and Waste Management Program, the U.S. Bureau of
Mines Pittsburgh Research Center is conducting research in automation systems for coal mining

and there are a number of DARPA programs (past, present and on-going) which are producing
relevant technologies.

5. REFERENCE MODEL DEVELOPMENT PLAN

ARTICS must be able to evolve as technological progress is made. It will be important to create an
organizational structure that can coordinate the process of evaluating change and update proposals
and a process for achieving consensus on the release of new versions of the ARTICS guidelines.
Such an organization will need a steering committee made up of leading experts in the field of
robotics, intelligent machines and automation from industry, academia and government.

An ARTICS development effort could take the form of a voluntary organization much like the
Initial Graphics Exchange Specification (IGES)/Product Data Exchange Specification (PDES)
organization [Ig 89] chaired by NIST. Alternatively the reference model could be developed by a
major_user of the technology such as the Department of Defense in the form of a military
specification (MILSPEC). In either case working groups will be needed to steer the ARTICS
development and to document and distribute the results. Once an initial set of ARTICS guidelines
has been agreed to it can be submitted to one or more national or international standards
organizations as a proposed standard (e.g., ANSI, EIA, IEC, IEEE, ISO, RIA, etc.).

CONF-9007134

Page 6

6.
[A190]

[AI89] .

[Al 88]

[Al 81]

[Ba 84]

[B188]

[Br 86]

[Gr 88]

[Ha 86)

[Ho 88]

(Ig 89]

[Ja 88]

[Kh 87]

REFERENCES

J.S. Albus, R. Quintero, R. Lumia, M. Herman, R, Kilmer, and K. Goodwin,
“Concept for a Reference Model Architecture for Real-Time Intelligent Control
Systems (ARTICS),” NIST Technical Note 1277, April 1990.

J.S. Albus, H.G. McCain, and R. Lumia, "NASA/NBS Standard Reference Mode
for Telerobot Control System Architecture (NASREM)," NIST (formerly NBS)
Technical Note 1235, April 1989 Edition.

.S, Albus, "System Description and Design Architecture for Multiple Autonomous
Undersea Vehicles Project," NIST Technical Note 1251, September 1988.

1.S. Albus, "Brains, Behavior and Robotics,” BYTE/McGraw-Hill, Petersborough,
NH, 1981. ‘

A.J. Barbera, J.S. Albus, M.L. Fitzgerald, and L.S. Haynes, "RCS: The NBS Real-

Time Control System,” Robots 8 Conference and Exposition, Detroit, M1, June
1984.

R. Blair, "Intelligent Task Automation Interim Technical Report," Report No. II-6,
Honeywell Corporate Systems, Golden Valley, MN, August 1988.

R.A. Brooks, "A Robust Layered Control System For A Mobile Robot," IEEE
Journal of Robotics and Automation, Vol. RA-2, No. 3, March 1986.

M.D. Grover, et. al., "An Autonomous Undersea Vehicle Software Testbed,"
Proceedings of the Fifteenth Annual Technical Symposium of the Association for
Unmanned Vehicle Systems, San Diego, CA, June 6-8, 1988.

V. Hayward, R.P. Hayward, "Robot Manipulator Control Under Unix RCCL: A

Robot Control "C" Library," International Journal of Robotics Research, Vol. 5, No.
4, Winter 1986.

Honeywell Inc., "MAS/C System Overview," MA70-100, Release C, Honeywell
Inc., Phoenix, AZ, May 1988.

"Welcome to IGES/PDES, Newcomer Material," July 1989, available through the
Chairman, IGES/PDES, NIST, Bldg. 220, Room A150, Gaithersburg, MD, 20899.

J. Jalbert, "EAVE III Untethered AUV Submersible," Proceedings of the Fifteenth

Annual Technical Symposium of the Association for Unmanned Vehicle Systems,
San Diego, CA, June 6-8, 1988.

O. Khatib, "A Unified Approach for Motion and Force Control of Robot

Manipulators: The Operational Space Formulation," IEEE Journal of Robotics and
Automation, Vol. RA-3, No. 1, February 1987.

CONF-9007 124
Page 7

[Ko 88] W. Kohn, T. Skillman, "Hierarchical Control for Autonomous Space Rebots,"
. Proceedings of the AIAA Guidance, Navigation, and Control Conference,
Minneapolis, Minnesota, Aug 15-17, 1988.

[Ko 88] W. Kohn, "Declarative Theory for Relational Controllers," Proceedings of the IEEE
Control Decision Conference, Austin, Texas, Dec 7-9, 1988.

[La 86] J. E. Laird, A. Newell, P. S. Rosenbloom, "Soar: An Architecture for General
Intelligence,” Carnegie-Mellon University paper CMU-CS-86-171, December 1986.

[Le 75] V.R. Lesser, et. al. "Organization of thc “learsay II Speech Understanding System,"
IEEE Trans. on ASSP, Vol. 7, No.1, 1975, p. 11.

[Ly 89] D. M. Lyons, M. A. Arbib, “"A Formal Model of Computation for Sensory-Gased
Robotics,” IEEE Transactions on Robotics and Automation, Vol. 5, No. 3,
June 1989,

[Lo 86] J. Lowerie, et. al. " Autonomous Land Vehicle," ETL- 0413 Martin Marietta Denver
Aerospace, Denver, Co, July 1986. :

[Mc 86] H. G. McCain, et. al. "A Hierarchically Controlled Autonomous Robot for Heavy
Payload Military Field Applications," Proceedings of the International Conference on
Intelligent Autonomous Systems, Amsterdam, The Netherlands,
December 8-11,1986.

[Ni 89] N. Nilsson, "Action Networks," Proceedings from the Rochester Planning
Workshop: From Formal Systems to Practical Systems, J. Tenenberg, et al. (eds.),
University of Rochester, New York, 1989. :

[Ro 89] Robotic Technology Incorporated, "Standard Architecture for Real-Time Control
Systems (SARTICS), Final Report," NIST Contract No. 43NANB909769, dated 21

Nov. 1988, Submitted to NIST Robot Systems Division, Gaithersburg, MD,
3 July 1989.

[Sa 85] G.N. Saridis, "Foundations of the Theory of Intelligent Controls," IEEE Workshop
on Intelligent Control, Troy, August 1985, p. 23.

[Sh 86] S.A. Shafer, et. al. "An Architecture for Sensor Fusion in a Mobile Robot,"

Proceedings of the IEEE International Conference on Robotics and Automation, San
Francisco, CA, April 7-10, 1986, pp. 2002-2010.

[Sk 89] T. L. Skillman, K. Hopping, "Dynamic Composition and Executicn of Behaviors in
Iil Pherarchiczgll Control System," SPIE Mobile Robotics IV, Philade Iphia,
ov 7- 8, 1989,

CONF-9007134
Page 8

[Sk 87]
[589]
[Si 83]
[Sm 87]

[Sz 88]

T. L. Skillman, W. Kohn, et al."Blackboard Based Hierarchical Intelligent Control
Systemn," Proceedings of the AIAA Conference on Computers in Aerospace VI,
Wakefield, MA, Oct 7-9, 1987.

R. Simmons, T. Mitchell, "A Task Control Architecture for Mobile Robots," |

Computer Sciences Dept., Carnegie Mellon Univ., Pittsburgh, PA, AAAI '89 Spring
Symposium, Robotic Navigation, 1989. -

J.A. Simpson, R.J. Hocken, and J.S. Albus, "The Automated Manufacturing
Research Facility of the National Bureau of Standards," Journal of Manufacturing
Systems, Vol.1, No. 1, pg. 17, 1983.

D. Smith, M. Broadwell, “Plan Coordination in Support of Expert Systems

Integration”, Proceedings of the Knowledge-Based Planning Workshop, Austin, TX,
December 8-10, 1987. ‘ '

S. Szabo, H. A. Scott, R. D. Kilmer, "Control System Architecture for the TEAM
Program," Proceedings of the Second International Symposium on Robotics and
Manufacturing Research, Education and Applications, Albuquerque, NM,

November 16-18, 1988.

CONF-9007134

- ARTICS VERSION1 | Page 9
COMMON SYSTEM CONFIGURATION

Off-line: |

Software development and test

CASE tools
SUNS Simulators
ISP machines Debugging and analysis tools
VAX ~ C, ADA, LISP |
Connection machine ‘ Ether
Butterfly ‘ , Net
IRIS On-line: | Communications
N-Cube , Real-time (> 1 second) multi-computer

multi-tasking operating system

(UNIX,MACH)

Gaming interface

Target Hardware:

630X0 Real-time (10 msec - 1 sec) target hardware VME

Sinele multi-processor, multi-tasking operating system or

Bo:rd (pSOS, YRTX’MACH) Multi-bus
Computers Sensory interactive dynamic trajectory generat- Communications

ion ‘
680X0
or Real-time (10 microsec -10 msec) special On

Special purpose boards for high performance servos Board o
Purpose | , Communications
Hardware

SENSORS ACTUATORS

Figure 1

CONF-9007134
Page 10

REFERENCE ARCHITECTURE
FOR |
REAL-TIME INTELLIGENT CONTROL

Z
S
& =

> Q D

22 | 52 2

» £4 d =

Z O oa =

2 =9 2

B = 2

CELL
(PLATOON) .
GROUP 2
(SQUAD) =
&4
=
INDIVIDUAL -
(VEHICLE) Z
ELEMENTAL -
TASKS =
e
<
PATH es
DYNAMICS >
-
SERVOS
SENSORS ACTUATORS

Figure 2

CONF-9007134
Page 11 ‘

Applying a Computer Aided Prototyping System
to the Software of an Autonomous Underwater Vehicle

Thomas E. Bihari*, Robert B. McGhee, Lugqi, Yuh-jeng Lee

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

(408) 646-2449

* Adaptive Machine Technologies, Inc.
1218 Kinnear Road
.Columbus, Ohio 43212
(614) 486-7741

I. Introduction

This workshop addresses an important direction for tool development. Within the current
state of the practice, a great deal of duplicated effort is spent developing similar software
systems within a particular application domain, such as distributed, intelligent vehicle
control. The experience gained during these projects is wasted if it cannot be used to aid the
development of subsequent, similar projects.

We believe that this experience can provide the basis for developing a common ground for all
the applications in a domain. The development of domain-specific architectures and tools
supporting the essential processes and properties of particular application domains will allow
reuse of the domain knowledge and domain-specific solution techniques that comprise the
most expensive part of the effort to develop new systems.

Expensive tool implementation efforts can be wasted if tool construction is started without a
clear idea of the problems the tools are supposed to solve and without a systematic and
formalized set of solution techniques to be incorporated in the tools. Constructing tools is
both labor intensive and skill intensive, and involves knowledge both of software engineering
principles and of the application domain. Because this combination is hard to find, tools
developed by software engineering researchers are often "demo driven" and lack

applicability, while those developed by application domain experts are often ad hoc and lack
strong foundations.

The best tools are those which are based on strong theoretical principles, and also driven by
a strong, vocal user community. This can be difficult to achieve when developing tools that
push the state of the art, regardless of whether the effort is done by industry or by
universities. The perceived reward structure for researchers in the tool provider and user
communities usually makes such interaction seem undesirable - more work with little direct
payoff. DOD support is essential in building an interaction between the nroviders and users

of domain-specific software development tools. Approprlate modes of interaction should be
identified and supported.

CONF-9007134
Page 12

This paper presents the result of a study of the potential for interaction between two on-
going research projects at the Naval Postgraduate School. The Computer-Aided Prototyping
System (CAPS) project! is developing models and support tools for rapid prototyping of
embedded real-time software. The Autonomous Underwater Vehicle (AUV) project? is
developing a computer-controlled submersible vehicle.

The purpose of this study was to examine the goals of the AUV project and its resulting
software requirements, and the goals and capabilities of the CAPS project, and to determine
the benefits of pursuing joint research in the application of CAPS to the AUV software.

II. The Computer-Aided Prototyping System Project

The goal of the Computer Aided Prototyping System (CAPS) project [Luqi88] [Luqi88a]
[Luqi88b] [Luqi89] is to enable rapid prototyping of parallel and distributed real-time
software, as a way of increasing productivity and decreasing software costs. The CAPS
project focuses on automated methods for retrieving, adapting, and combining reusable
components based on normalized module specifications; establishing feasibility of real-time
constraints via scheduling algorithms; simulating unavailable components via algebraic
specifications; automatically generating translators and rcal-time schedules for suppnrting
execution; constructing a prototyping project database using derived mathematical models;
providing automated design completion and error checking facilities in a designer interface;
and establishing a convenient graphical interface for design and debugging.

CAPS is a set of software tools, sharing a common basis consisting of a rapid-protntyping
software development methodology, an enhanced-dataflow computational model and a
prototyping language. The CAPS tool set includes a graphical editor, a syntax directed
editor, a database of existing software components, a database of existing software designs,
a translator which converts the prototyping language into a particular implementation
language (e.g., Ada), static and dynamic task schedulers, a debugger, and others. The tool
set is running on a Sun SPARCstation under UNIX and X-Windows, and is portable to any
system with UNIX and X-Windows. The product produced by the system is Ada code,
which is portable to any system with an adequate Ada compiler. The system can be used to
design distributed and intelligent systems [Luqi89a].

CAPS’ support for the rapid-prototyping methodology makes it possible for prototypes to be
designed quickly and to be executed to validate the requirements. CAPS manages the entire
prototyping process, from the development of the software design, through the retrieval or

creation of reusable Ada software components, to the generation, execution, and analysis of

the resulting Ada program. CAPS users may iterate through this process until they are
satisfied with the software’s behavior.

1. The CAPS project is directed by Dr. Luqi and is supported by the National Science Foundation under grant
number CCR-8710737.

2. The AUY project is directed by Dr. A.J. Healey and is supported by Naval Postgraduate School funding.

Bihari, McGhee, Luqi, Lee Page 2

CONF-9007134
Page 13

The CAPS computational model and tools provide the designer of a software system with a
way to draw an augmented dataflow diagram which contains the necessary timing an<
control constraints for specifying embedded software systems. The model maximize.
parallelism by enforcing timing and control constraints only where necessary. The graphical
design and the constraints drawn through the CAPS graphical editor for an embedded control
systern are based on the syntactical structure of the Prototype System Description Language
(PSDL) [Luqi88a].

The specification part of the PSDL program describes the basic attributes of required
software components. (Currently the components are Ada units, but other languages can
also be supported.) This information is used by a tool which searches for appropriate
reusable components stored in the software base. If no suitable component is found in the
existing software base, the designer may choose to create a completely new component from
scratch or to create a new component by combining or modifying an existing set of
components. When the design is completed, the PSDL program is translated into Ada code
which has the structures for realizing the timing and control constraints built in. The Ada
program is then compiled.

The designer may then execute the program and evaluate the prototype’s behavior against
the behavior that he expected it to have. If the comparison results are not satisfactory, the
designer may modify the prototype and evaluate the prototype again. This process continues
until the prototype meets the rcquxrements

CAPS was designed to be used for developing prototypes for real-time systems. In CAPS, a
hard real-time constraint is a bound on the response of a process which must be satisfied
under all operating conditions. CAPS specifications can represent a variety of real-time
constraints, including (1) maximurn execution times for modules, (2) minimum calling
periods, (3) synchronization of processes with sporadically-arriving external data or
interrupts, (4) delays required by limitations on input/output devices, (5) maximurn response
times, and (6) periodic system actions.

The CAPS model and tool set have been applied to real-time software designs in several
areas, including C3I [Luqi89] and process control [Luqi88a].

III. The Autonomous Underwater Vehicle Project
IIL.1. Overview of the AUV-II

The AUV-Il is the second in a series of autonomous underwater vehicles developed at the
Naval Postgraduate School. It is described in detail in [Cloutier90] [Healey89] [Kwak90].
Briefly, the AUV-II is a self-contained vehicle, approximately 16 inches wide, 10 inches

deep, and 93 inches long. It displaces approximately 387 pounds and is powered by on-
board batteries.

The AUV-II is a research vehicle designed as a testbed for research in mission planning,

path planning, sonar data analysis and world modeling, navigation through obstacle fields,
and other intelligent behaviors.

Bihari, McGhee, Luqi, Lee Page 3

CONF-9007134
Page 14

The AUV-II is propelled by two main screws (port and starboard aft) and four tunnel -
thrusters (fore and aft vertical, and fore and aft athwartships). These may be used to control
five degrees of freedom; the AUV-II's roll axis is not controlled. However, when the AUV-
II is moving with sufficient speed, the control surfaces (bow planes, stern planes, and fore
and aft rudders) may be used in conjunction with the screws and thrusters to control all six
degrees of freedom, including roll.

The AUV-II's sensor system consists of four pencil-beam sonar transducers mounted in the
AUV-II's nose, a full suite of inertial sensors (three rate gyros, three accelerometers, a
vertical gyro and a directional gyro), a flux gate compass, a paddle-wheel speed sensor, and
individual motor RPM sensors.

Because the AUV-II is a research vehicle, its computational requirements are subject to
change. It is important that the on-board computer hardware be modifiable and extensible,
by adding more raw computing power, memory, and I/O devices, and by adding different
types of these components. '

The on-board computer is centered around a 12-slot GESPAC G-96 bus. The bus currently
hosts one GESPAC MPU-20HF single-board computer (25 MHz Motorola 68020 and 68882
processors, 2.5 Mb of RAM, and up to 4 Mb of EPROM), and 5 other boards containing
interfaces to a 200 Mb hard disk, parallel and serial communication ports, analog-to-digital
input channels interfaced to the AUV-II's sensors, and digital-to-analog output channels
interfaced to the AUV-II’s effectors. There are currently 6 free bus slots. These are
expected to be used for additional GESPAC MPU-30HF (68030-based) boards, a

Transputer board, and other devices as necessary. |

The GESPAC computer uses Microware’s OS-9 real-time operating system. OS-9 is a full
operating system, with a file system, native compilers and other development tools. OS-9
uses a time-slicing, prioritized, task scheduler. Intertask communication is via global
memory, pipes, signals, and BSD4.2 sockets for inter-processor communication.

In addition to the AUV-II itself, a laboratory computer identical to that in the AUV-I], and a
graphical simulation of the AUV-II and its environment (running on a Silicon Graphics
workstation), are available for software development.

II1.2. Characteristics of the AUV-II Software

The AUV-II’s software is described in detail in [Cloutier90]. Our main interests for this
study were not in the particular guidance and control algorithms, but in the duties performed
by the software, the software’s real-time requirements, the overall software design, and the
expected life cycle of the software.

The AUV-II's software is designed as a layered architecture in which higher levels pass
requested vehicle states to lower levels. The lower levels attempt to meet the requests,
possibly modifying them to make them feasible, and may pass information back to the higher
levels, allowing the higher levels to modify future requests. There are currently three levels.
The top level consists of the Mission Planner (which is off-board), and the Mission
Replanner (an on-board planning subsystem which may override the off-board planner).

Bihari, McGhee, Lugi, Lee Page 4

CONF-9007134
Page 15

These subsystems generate sets of paths dcscribing particular missions.

The middle level consists of the Guidance sub-system, which receives paths from the
Mission (Re)Planner and calculates individual "postures" to be achieved by the AUV-II.
The bottom level consists of the Autopilot subsystem, which servos the AUV-II’s effectors
to achieve the requested postures. This is performed on a 100 ms period..

To provide input to the Autopilot’s servo control locp, the state of the AUV-II must be
determined from the inertial, depth, and speed sensors. This must be done by the Navigation
sub-system at rates sufficient to provide an accurate cuirent state. The AUV-II state is
currently updated every 100 ms. Project goals call for data from the sonar sensors to be
integrated with other sensor data, and with pre-loaded obstacle maps, in several phases.
Initially, sonar data will be used to correct incrtial sensor drift. Eventually, sonar data will
be used for collision avoidance and for revising the existing world model. Sonar data will be
collected at 100 ms periods, and world modeling will occur at somewhat longer periods.

The relative steering effectiveness of the thrusters vs the control surfaces depends on the
AUV-II's forward velocity. It is anticipated that the control surfaces’ effectiveness will vary
from zero at zero velocity to approximately four times that of the thrusters at maximum
velocity. Therefore, the AUV -II'motion control strategy, and the control software, has been
divided into two modes: Hovering Mode and Transit Mode. The software must be able to
cleanly switch between these modes while in operatior..

In addition to these "normal” opcranorw reflex actions like collision avoidance may be

triggered by special circumstances und must produce quick responses, sometimes overriding
existing activities.

The software characteristics of the AUV-II are both similar to and different from those of the
Adaptive Suspension Vehicle (ASYV), a three-ton, self-contained, six-legged walking
vehicle! with which we have been associated in the past [Bihari89]. Both vehicles perform

- sensing, world modeling, motion planning, and servo control in real time.

For the most part, the AUV-II's guidance and control software is not required to meet
extremely tight real-time requirements. Sensing and servo control periods are on the order
of 100 ms or greater, with some allowable slippage. This is easily within the capabilities of
existing computer hardware, real-time operating system, and software technologies. The
ASYV has tighter real-time requirements than the AUV-II. For example, the ASV’s leg

servo control software executes with periods of 10 ms or less, with serious consequences if
servo cycles are missed. The ASV’ s real-time requirements are well-defined and generally
situation-independent, however.

The AUV-II is required to be completely autonomous, while the ASV has an on-board
operator performing many of the high-level world modeling and motion planning duties. The
AUV-II must maintain a larger view of time (e.g., for an entire mission). For example,

1. Sponsored by the Defense Advanced Research Projects Agency under contracts MDA903-82-K-0058,
DAAE(Q7-84-K-R001, and MDA972-88-C-0031.

Bihari, McGhee, Lugqi, Lee Page §

CONE-9007134
Page 16

planning may take a significant amount of time, and the amount of time may be situation-
dependent. The AUV-II must be capable of reasoning about time, and of "planning to plan",
and the enforcement of the resulting timing constraints must be handled by the underlying
operating system and support tools.

Furthermore, much of the information contained in the AUV-II system is time-dependent.
That is, the AUV-II’s perception of the state of itself, obstacles, and mission plans is
dependent on the relationship between the current time and the time at which the information
was created (e.g., the age of the data). Portions of the AUV-II's software may resemble a
temporal database.

The AUV-II is experimental, and the software’s duties range from low-level sensor data
processing and servo control to high-!evel planning and world modelting. Ideally, the AUV-II
software development environment would support the integration of a variety of programming
paradigms, including procedural, functional, object-oriented, logic-based, and rule- or frame-
based. Practically, a system supporting Ada and Common Lisp could provide a basis for

most of these paradigms. (This would be a step forward in the state of the practice. Almost
all existing AUVs, including the AUV-II, are programmed in C.)

In summary, the AUV-II software system has the following characteristics:

From a suftware architecture standpoint:

1. It is hierarchically structured, and it can best be understood by viewing it at different
levels of abstraction for different purposes.

2. It consists of subsystemns, some of which are tightly coupled, others of which are loosely
coupled (and execute at different rates).

3. It operates in at lcasf two separate modes.

4. It must occasionally perform reflex actions which override normal operations.

5. Most of the computations have real-time constraints.

6. It includes time-dependent representations of the states of the AUV-II and environment.
From a software management standpoint:

1. The specification, design, and implementation of the entire system (mechanical hardware,
electrical and electronic hardware, and software) will evolve as existing research qucsuons

are answered and new questions are asked.

2. Small changes to the software can be expected to occur frequently. That is, software
development will follow an experimental, iterative, implement-execute-evaluate cycle. The
software may also need to be specially configured for specific missions.

3. Multiple versions of the software may be "active" at the same time, as different

Bihari, McGhee, Luqi, Lee Page 6

CONF-9007134
Page 17

researchers conduct independent experiments using spemalxzed components mtcgrated with
a common software base.

4. The software base can be expected to outlive (in a project sense) most of the software
developers. Software development methodology support and enforcement is important,

5. It must be possible for different people to understand and manipulate the system at
different levels of abstraction (e.g., as "black boxes"), so they not have to learn the entire
system in order to perform useful research. It must not take too long to "come up to speed".

6. Different languages and programming paradigms ray be most effective for different
components (or different versions of the same component). A uniform framework for
managmg these disparate components is needed.

IV. The Potential for Further CAPS-AUV Pro;ect Cooperation

In theory, the interaction of a real-time software tool provider (the CAPS project) with a
real-time software tool user (the AUV project) has many advantages. The CAPS project
would benefit from the availability of a realistic application. The AUV project would benefit
from an improved software development methodology and support tools. In practice, the
interaction of two such research projects must be realistic and well-defined if it is to be
beneficial to both parties.

In our view, CAPS provides an appropriate and extremely useful methodology for developing
real-time control software like that of the AUV project. The concepts supported by CAPS
generally match those we expect for the AUV-II's life cycle. The integrated tool set should
lead to easier software development and strict enforcement of the sofiware development
methodology. PSDL seems to contain the features necessary for the AUV software.

There are practical considerations, however. For example, the current AUV software is
written in C, while CAPS supports only Ada at this time. The CAPS tools currently run
under X Windows on a Sun SPARCstation, while the AUV tools are running on an IBM
PC/AT compatible. Resolution of these practical matters could consume valuable "research”
time. Some care is also needed because a complete treatment of the problem requires
solutions to two unsolved research problems: real-time databases and real-time scheduling.
Domain-specific assumptions and approaches must be developed to provide adequate
solutions to these problems. Some progress in these directions has already been made
[Galik88] [Guentenburg89] [Huskins90] [Mostov90] [Sun90] [White89], but these

solutions have not yet been incorporated into the current implementation of CAPS.

We see the potential for a step by step increase in interaction between the CAPS and AUV
projects. This should begin by establishing a realistic set of goals. Those goals might
include, for example:

1. Formulate the AUV-II software design in PSDL and critique the design.

2. Translate the AUV-II’s existing C code to Ada, and move the AUV-II development

Bihari, McGhee, Luqi, Lee Page 7

. ul

CONF-9007134
Page 18

enivironment to a platform with appropriate Ada tools and the X-Windows support needed by
CAPS (e.g., Sun or DEC MicroVAX).

3. Form the AUV-II’s Ada modules into CAPS reusable components and develop a
complete AUV-II software version under CAPS.

And so on.

It is important to avoid over-integrating the two proje<sts. In order to avoid delaying the
progress of either project, the projects should maintain independent critical paths. For
example, the AUV programmers should continue to develop C code until the Ada
development environment is fully operational. A significant benefit might be gained by
interaction at the design level (e.g., Goal 1) regardless of the eventual implementation of
AUV-II software under CAPS. |

Y. Conclusion

The number and complexity of intelligent, autonomous, real-time systems are expected to
grow, driven by the need to perform missions for which human supervision is unavailable or
not cost-effective. The development and maintenance of software for such systems is an
important area of research. We believe that progress in this area is achieved best by the
cooperation of the providers of real-time software engineering rechnology (c.g., CAPS) and
the users of that technology (e.g., AUV). Appropriate modes of interaction must be found.

References

[Bihari89] Bihari, T., Walliser, T. and Patterson, M., "Controlling thc Adaptive Suspension
Vehicle", IEEE COMPUTER, pp. 59-65, June 1989.

[Cloutier90] Cloutier, M., "Guidance and Control System for an Autonomous Vehicle",
Masters Thesis, Naval Postgraduate School, June 1990.

[Galik88] Galik, D., "A Conceptual Design of a Software Base Management System for the

Computer Aided Prototyping System", Masters Thesis, Naval Postgraduate School,
December 1988.

[Guentenburg89] Guentenburg, H., "Automatic Generation of an Aircraft Inertial Navigation
System", Masters Thesis, Naval Postgraduate School, May 1989.

[Healey89] Healey, A., Papoulias, F., and MacDonald, G., "Design and Experimental
Verification of a Model Based Compensator for Rapid AUV Depth Control”, Proceedings of

the 6th Unmanned, Untethered, Submiersible Technology Conference, Washington, D.C., June
12-14, 1989.

{Huskins%0] Huskins, J., "Issues in Expending the Software Base Management System
Supporting the CAPS", Masters Thesis, Naval Postgraduate School, June 1990.

[Kwak90] Kwak, S., Ong, S. and McGhee R., "A Mission Planning Expert System for an
Auvicnomous Underwater Vehicle", TEEE Symnosium on Autonomous Underwater Vehicle

Bihari, McGhee, Lugi, Lee Page 8

CONF-9007134
Page 19/2 0

Technology, pp. 123-128, June 1990.

[Luqi88] Lugi and Berzins, V., "Rapidly Prototyping Real-Time Systems", IEEE\Software,
pp. 25-36, September 1988.

[Luqi88a] Luqi, Berzins, V. and Yeh, R., "A Prototyping Language for Real-Time Software",
IEEE Transactions on Software Engineering, pp. 1409-1423, October 1988.

[Luqi88b] Lugi, "Knowledge-Based Support for Rapid Software Prototyping", IEEE Expert,
pp- 9-18, Winter 1988.

[Luqi89] Luqi and Davis, T., "A Software Prototype of the Message Processor in Navy C3I
Station", Naval Postgraduate School Technical Report NPS52-20-010, August 1989.

[Luqi89a] Lugqi, Berzins, V., Kraemer, B., and White, L., "A Proposed Design for a Rapid
Prototyping Language", Naval Postgraduate School Technical Report NPS52-89-045, March
1989. |

[Mostov90] Mostov, 1., "A Model of Software Maintenance for Large Scale Military
Systems", Masiers Thesis, Naval Postgraduate School, June 1990.

[Sun90] Sun, J., "Developing Portable User Interfaces for Ada Command & Control
Software", Masters Thesis, Naval Postgraduate School, June 1990.

[White89] White, L., "The Development of a Rapid Prototyping Environment", Masters
Thesis, Naval Postgraduate School, December 1989.

0OS8-9 is a registered trademark of Microware Corp.

Ada is a registered trademark of the U.S. Government, ADA Joint Program Office.
C-96 is a registered trademark of GESPAC SA.

UNIX is a registered trademark of AT&T.

All other brand or product names are trademarks or registered trademarks of their respective
holders.

Bihari, McGhee, Lugi, Lee Page 9

CONF-9007134
Page 21

Concurrent Processing Environments for
Distributed Intelligent Control Systems

J. Douglas Birdwell and Sheng Liang
Department of Electrical and Computer Engineering
‘ University of Tennessee
Knoxville, TN 37996-2100

Abstract

Factors affecting the development of concurrent processing environments for knowledge~based sys-
tems in real-time applications are discussed. A collection of cooperating small and simple knowledge-
based systems is an attractive alternative to a large centralized one. There are, however, significant
questions concerning the relative performance and survivability of these systems. This paper will
address some of these issues, including suitable communication frameworks, and the relative merits
of various features of the knowledge base description language and approach. There are several
advantages to distributed implementations including more efficient evaluation of smaller knowledge
bases and specialization of knowledge bases within specific domains of expertise. Potential dis-
advantages include communication delays, performance under degraded operating conditions, and
non-deterministic operation. Some discussion will be provided concerning an expert system shell
design for applications in power electronics. '

Introduction

Our research explores the development of an intelligent controller for a power electronics-based
inverter drive for induction motors. The controller is to be implemented using a dual processor
architecture using an Intel 80386 microcomputer and a Texas Instrurents TMS320C30 digital signal
processor (DSP). The software residing on the microcomputer is to be controlled by a rule-based
expert system while the TMS320C30 DSP carries out time—critical control and decision action.
One project objective is to explore alternate expert control system architectures for implemen-
tation on microcomputers. A modern control algorithm contains significant algorithmic complexity;
along with the necessary protective mechanisms, interfaces, and discrete state logic, it often stresses
an implementor’s ability to meet performance specifications using the available hardware teclinology.
Now we envision the addition of “intelligent” control functions which many hope will accomplish
things which previous, more algorithmic, approaches have failed to do. We view segmentation of
process knowledge, either within a single processor or over a distributed network of processors, as a
necessary strategy to provide sufficient processing capability and flexibility to meet our long-range
goals. This is accomplished in two ways. By reducing the size of each “intelligent” module, the
efficiency with which it can be evaluated is increased, and this increase should more than offset
the added overhead of coordination between cooperating modules. Second, migration to a dis-
tributed computing architecture is nearly transparent. An added benefit is derived from the use of
an object—oriented module structure; modules may be implemented and tested in a somewhat inde-
pendent manner. An attractive approach is to introduce a collection of relatively small distributed
and cooperating knowledge-based systems, or knowledge sources (KSs). This method’s concurrency
tends to favor real-time processing since the execution of one knowledge source will not block the
remaining knowledge sources from real-time events. Our interest is on a development tool rather

CONF-9007134
Page 22

than a single expert system. We intend tu explote the essential requirements of real-time distributed
knowledge-based systems and design an appropriate development tool.

A significant body of literature exists documenting previous research in this area; however, we
believe our work is somewhat unique in the following areas: First, our goal is to develop an expert
system tool capable of supporting very high speed real-time processing; as such, our interest in
segmentation of domain expertise into independent, cooperating knowledge sources is for efficiency
by limiting the size and scope of each knowledge source. Second, rather than focus upon the coor-
dination behaver between knowledge sources, as is done in much of the existing literature, we focus
upon the eventual use of the tool in a complex application; thus, knowledge is decomposed along
easily recognizable boundaries, such as interprocessor communication, human interface, economic
‘optimization, and measurement database functions, and messages are designed based upon “engi-
neering expertise,” rather than upon any rigorous foundation. Third, we sacrifice some flexibility for
efficiency; specifically, classes of objects (frames) and data types are supported and used to further
segment each knowledge source’s fact base, inference is (at present) restricted to forward chaining,
and only limited pattern matching is supported rather than unification. Fourth, we aim to imple-
ment this tool on a very limited architecture and operating system environment, using the 80386
processor and the MS~DOS operating system with an extender which provides protected-mode (flat
address space) operation. This makes it easier to embed the system in real-time hardware.

Our interest spans more than 80386 applications; in that regard, we are developing an equivalent
Unix-based tool using multiple processes and lightweight processes, and intend to explore the im-
plementation of a similar tool in a multi-processor environment using an Intel iPSC/860 hypercube.
Such tools can be used for future research on performance and reliability of object—oriented ex-
pert systems on distributed architectures, and for development of embedded and distributed control
applications.” :

Background

At the outset, one must ask why we should begin development of yet another expert system tool.
Existing tools abound; why are they unlikely to satisfy our requirements? First, we are interested
in embedded applications using relatively small computing resources. Second, we require real-time
processing in a fairly demanding (with respect to the rate at which information is received and
must be interpreted, at least) application. Many existing tools, such as KEE [1] and CLIPS [2],
which represent two extremes of the cost scale, are not designed to deal with real~time applications.
Systems such as G2, Muse and Cronos [3], which are intended for real-time applications, are too
costly for our applications, and are probably too complex to successfully embed in the intended
computer architecture. We wish to take advantage of “intelligence” in the control system design;
however, we need a “lightweight” environment in which to implement the required functionality. At
present, this does not exist commercially, or, to our knowledge, within the research community.

Numerous real~time expert systems for specific applications have been developed in the past ten
years. While the term real time doesn’t say in general how “fast” the system should be, people
have generally agreed that a real-time system should be fast enough for use by the process being
served and should guarantee a response in a strict time limit. Some guidelines are important for the
development of real-time systems and tools. Real-time systems must deal with nonmonotonicity of
incoming data, asynchronous events, an interface to external environments (sensors, actuators, and
possible a human supervisor), and uncertain or missing data. Other requirements include the ability
to maintain continuous operation (not interrupted by garbage collections), guaranteed response time,
controlled focus of attention, and temporal reasoning [4].

Blackboard systems have proved to be successful in dealing with complex problems with large
solution spaces [5]. Under the blackboard framework, knowledge is divided into multiple knowledge
sources that perform the subtask of finding partial solutions. Partial solutions are posted on the
blackboard so they are globally accessible. Controlled by a scheduler, knowledge sources take turns
generating new partial solutions. It’s easy to segment a task into modules and use multiple reasoning
methods; however, knowledge sources in blackboard systems are tightly coupled. Each of them is

CONF-9007134

Page 23

only part of a intelligent system just like a piece of the human brain. They must be well-organized
and tightly connected. In this way, modularity of each knowledge source is limited. System response
time to events is not guaranteed since the activation of a knowledge source will normally not end
until it terminates. Thus, a traditional blackboard system is essentially a centralized system with
the additional features controlling focus of attention and partitioning knowledge. Researchers have
extended this to build distributed blackboard systems for real-time applications, such as distributed
sensor networks (DSN) [6]. These systems use several blackboard systems which communicate via
message passing. Although they were distributed intelligence systems which ran 'in real-time, they
were structurally tailored for a specific a.pplxcatxon This approach is suitable for some problems,
but it is not a general framework.

A type of loosely coupled, distributed cooperative problem-solving system [7] has gained some
interest; in addition, it fits the technology of distributed systems well. Each element in the problem-
solving network works rather autonomously as a member in a cooperative team with little centralized
control. Better modularity is introduced. Unlike blackboard systems, which have been developed
for real-time applications, this class of systems has a8 yet no large application, although it seems
promising for real-time control.

Blackboard system and CDPS are so far &he two most influential approaches to distributed
knowledge based system design. Blackboard systems have undergone more then 15 years of evolution.
The technology is mature due to the numerous large applications which have been implemented,
but they are generally expensive to run and develop. CDPS systems research, on the other hand,
started with an interest in the cooperative behaver of seperate intelligent systems. Researchers have
worked on how to maintain coherent cooperation under limited communication, including the means
to communicate more intelligently. These results are so far primarily of theoretical value. Most of
the work on CDPS is based on prototype implementations and simulation, for the probable reason
of the overwhelming acceptence of blackboard systems in complex real-world applications. To date,
CDPS suffer from the lack of application and development tools. The only way to heal this situation
is to test CDPS in applications of a realistic size.

Researchers in artificial intelligence (AI) seem to be overlooking the possible wide use of their |

complex frameworks in low-end control systems, such as embedded controllers. In this area tradi-
tional control argorithms and simple Al approaches still dominate. Currently complex systems at
most work at a very high level of control systems where real-time features and restrictions are lost.
A significant dependence upon the support services of the operating system has been assumed during
development of most of these systems; such support is unlikely to be present in low-end applica-
tions. These factors make it hard to migrate the framework to a low—end processor for real-time
processing; on the other hand, this migration may alleviate the current complexity of the control
algorithm once more capable Al frameworks reside on low-end processors. This gap can be filled by
the development of suitable expert system tools that meet the following: First, they should support
the development of expert system under a new and effective real-time AI framework. Second, they
should provide guaranteed response to external events. Third, these systems should be simple to
learn and easy to use by control system engineers.

Framework

We are interested in exploring the use of cooperative distributed knowledge-based systems for real-
time control and in developing an environment for testing. Our framework differs from most existing
expert system shell’s in that we introduce fully concurrent inference on distributed knowledge bases.
Many of the ideas are from CDPS systems; however, since it’s a development tool, it leaves the upper
layer coordination protocol to the expert system’s developer, while supporting only the concurrent
inference and communication framework.

Each knowledge source is an independent system. Knowledge sources residing on a single pro-
cessor are scheduled by a preemptive scheduler. In our system the scheduler knows nothing about
what’s going on within each knowledge source; it only guarantees the execution time allocated to a
knowledge source will not exceed a pre-determined time slice, and that knowledge sources will be

CONF-9007134
Page 24

scheduled according to the assigned priorities. The scheduler knows nothing about the reasoning,
and is unable to organize the execution of each knowledge source on the basis of the state of the
reasoning process. Alternate methods are the design of non-preemptive or self-scheduling processes.
In a self-scheduling system, the active process decides when to suspend itself and which other pro-
cess to activate. Blackboard systems use non-preemtive scheduling, as do some CDFSs such as the
AF system [8]. This approach introduces less overhead on task switching and synchronization; also
it appears more favored in producing a trackable process. We favor our approach because of the
following reasons:

e It enhances structural simplicity and modularity. Unlike non-preemptive scheduling,
which needs a centralized scheduler, and self-scheduling processes, which assume each KS
performs proper scheduing, scheduling is transparent to the KS implementer. Each KS is
responsible only for itself. Structural simplicity is obvious compare with blackboard systems.
Also, self-scheduling increases the connectivity of KSs and decreases modularity.

¢ Reliability is improved. Dangerous situations like system deadlock due to errors in one KS
are prevented. Fatal error in a single KS can be detected and, by reseting that particular KB,
the rest of the system will still work. This leads to better error recovery and system diagnosis.
In a non-preemptive system, this situation normally leads the entire system into an unwanted
state forcing a system-wide reset.

e Quicker response to external stimuli is obtained. The maximum delay for response
to an asynchronous event is the length of the time slice. The scheduler can also be designed
to immediately start re-scheduling upon receipt of an urgent event. For a non-preemptive
system, the KS writer must either take meticulous care to guarantee each KS's maximum time
consumption, or must let activation of a KS be interruptable by an event. The later solution
violates non-preemptive scheduling, so the action that deals with events can not be considered
a standard KS. This leads to increased structual complexity.

¢ Implementations and behavior on single and networked computers are similar.
KSs can run concurrently on networked computers. The behavior of the system is essentially
the same as the case of a single computer (up to non-deterministic solutions which depend
upon the relative timing of KS execution). The overhead of multitasking vanishes, although it
is replaced by communication delays and overhead.

¢ Embedded system implementations are easier to support. For an morden embedded
system, most state of the art microprocessors have hardware support of multitasking with little
overhead. They do not, however, have support for specialized language features which may
have been assumed in current implementations.

Communication between knowledge sources is limited to message passing, which allows maxi-
mum flexibility in the implementation; instead of considering each knowledge source as a large rule
as in blackboard systems, here it can be considered as a large object capable of reasoning. We
believe introducing this kind of powerful object can greatly increace the power and integrity of our
framework. From one KS’s point of view, all other’s internal implementations are hidden. Not only
can different knowledge sources use different inference schemes; they can also be implemented with
different languages. A knowledge engineer or control system engineer can choose his own way of
adding a piece to the whole system. '

We consider each knowledge base identically in spite of the fact some of them are not intelligent
systems at all. These members only do routine jobs and are considered part of the problem solving
team. They may have lower priority and be subordinate to more intelligent knowledge sources.
This approach puts a heavier burden on the central scheduler, but appears to be a good trade-
off between efficiency and structural simplicity for our control problems. For larger applications
distributed across multiple processors, this approach becomes natural and introduces no overhead
in addition to that already present due to communication delays. In this way symbolic and numeric
processing are easily coupled and become a powerful problem solver.

CONF-9007134
Page 25

Approach and Discussion

Language

The distributed cooperating framework doesn’t require the definition of a specific knowledge base de-
scription language. The KS designer can choose any conventional programming language (C,Fortran),
Al language (Lisp, Prolog), or expert system development tool (CLIPS). In this case, the operating
system or distributed operating system serves as scheduler and deals with messages; however, we
design a new language because of the following reasons: First, our goal is to develop a tool which
should provide a convenient knowledge representation, an efficient inference mechanism, and good
support for debugging and maintenance. The language is an essential part of the tool to support
these. It also provides a standard programming environment. Second, we want a language that
can best fit our {ramework and real-time applications. Third, our current application is to run on a
Intel 80386 under MS-DOS. We have no operating system support for multitasking. Thus we have to
write a small multitasking kernel ourself. Last, in implementations on a single processor, we wish to
share code segments between KS processes; it would be difficult to adapt an existing expert system
shell to fit these conditions. This last consideration becomes extremely important for émbedded
systems, where memory space may be restricted. ‘

The basic element of this language is the frame or object. Currently, a frame consists of only
slot-value pairs. Inheritance between frames is supported. Frames have proved to be an effective
way of knowledge representation. We find them also quite suitable for describing real-time control
~ systems. Each frame belongs to a class. Classes define the structure of frames and serve as type
information. This reduces the flexibility of knowledge representation but gains efficiency for the
inference engine.

The language is currently a forward chaining system. Frames are treated as facts to express the
current status of inference. If... then rules with condition and action parts describe the inference.
Rules can be assigned a priority. Pattern matching and function evaluation are closely coupled in
the condition part of the rule. We deem this necessary for control system applications. Variables
serve as wild cards in pattern matching. Normally the inference engine searchs through all instances
of variables to test a pattern match. The user can also provide his own control of the pattern match
process. The rule with the highest priority which has its condition satisfied fires by executing its
action. Typical actions of a rule include assertion, retraction, or modification of frames. Other
actions include sending messages to other knowledge sources. If no rule can be fired, the knowledge
source will sleep, waiting for an external events (the arrival of a message) to wake it up.

The type of a frames’s slot must be defined as either symbolic or numeric in its class definition.
Symbolic values serve as atoms for pattern matching in inference. Floating point numeric values
represent real-time data. This approach sacrifices some flexibility, but allows the language to be
efficiently compiled for both symbolic and numerical processing.

The language is implemented entirely in C. Some ideas are from the CLIPS system, which allows
the user to add functions written in C. The knowledge base and inference engine can be embedded
in a user-written C main program. A small C-style embedded language is designed to allow the
definition of functions as part of the knowledge source. These functions are compiled to an internal
form, and interpreted by the inference engine; however, unlike functional programming languages,
functions are statically defined and can’t be mixed with data.

The language introduce a special type of when ... then rule to deal with asynchronous events and
messages. When rules are fired not by conditions, but by events. The priority of a when-rule defines
the priority of the corresponding event. The difference between a condition and an event is that a
condition can change while an event is saved. Even if the condition of an if . .. then rule has once been
satisfied, it may never fire if another rule with a higher priority fires first and changes the condition.
On the other 1w !, every event that occures will be stored in a queue and kept in the queue until
it is either acted upon by a when ... then rule or is removed from the queue by a clear queue
action. Events can arrive at any time. The arrival of message is an event; the result of a function
evaluation can also be an .- ent. This support has direct application in dangerous situations or error
detection and alarm processing. Each when-rule has a corresponding event queue. The system will

CONF-9007134
Page 26

update the corrsponding queue each time a message arrives or a sensitive variable (one whose value
contributes to a function evaluation used by the condition of a when-rule) is changed. Also note
repeated satisfaction of same condition can send multiple events to the corresponding when-rule
even if they are not immediately processed. This simple but effective approach gives the system its
ability to deal with real-time events such as hardware interrupts,

Several special features are designed as part of the language's support for real-time applications.
Issues like dealing with asynchronous events and guaranteed response time have already been dis-
cussed. This language keeps track of the time information. The following time information is kept
internally:

e the time a frame was last created, used, or modified,
o the time a slot was last used or modified, |

e the time a rule was last fired, and

e the time of arrival of each message.

This information can be retrieved by calling built-in functions. This gives direct support to temporal
reasoning. This luxury can be disabled for efficiency. In addition, the frame design of the language
is implemented in a manner which is garbage-free, eliminating the need for garbage collections and
their impact upon system performance. All freed memory is incrementally collected, consuming very
little overhead. ‘

Messages

Message passing is the only means by which knowledge sources are able to communicate. In our
language, messages have the same syntax as frames, although their internal data structures are
different. This provides a consistent message format. However, unlike transmitting simple ASCII
string as messages, as many other systems do, knowledge sources don’t have to do translations. This
approach requires consistency of class definitions in different knowledge sources.

Message passing between knowledge sources is done by the scheduler. Messages can be assigned
with priority. When a knowledge source is going to send a message, it calls a built~in send function.
The system translates the call into a request to the scheduler. The scheduler picks messages in
order of their priority and sends them to their targets, perhaps via a network. The scheduler is also
responsible for putting messages into receivers’ event queues and waking them up. Based on the
urgency of the message, the scheduler also decides whether to immediately start a knowledge source
or wait until the current time slice is over. This way message management and the sleep/wake
mechanism is completely transparent to knowledge sources. Knowledge sources implemented by
different languages, on different machines can be treated as identical in terms of message passing.

Although knowledge sources are logically unlayered, they can be organized as a complex physical
structure. Just as in the case of distributed operating system, efforts are made to hide this physical
complexity so every knowledge source is accessed by name. However, the designer of the expert
system should be aware of this physical arrangement. Each knowledge source is responsible for it’s
own work, but local ones may form a group with frequent message exchange between members while
exchanging information with remote KSs ata a more leisurely rate. Close coupling with a distributed
operating system and direct utilization of much of it’s facilities is a characteristic of our system.

Detailed coordination protocols are left to KS designer. They can be implemented using message
passing primitives. At some special occasion, knowledge sources that share memory space on the
same machine (such as lightweight processes) can pass addresses as message instead of large data
segments, so shared memory can also be supported.

Summary

A design for an expert sytem environment for real-time control applications has been discussed.
This environment is intended to support multiple knowledge sources cooperating via message passing

(@]

and residing either on a single processor or a network of processors. A language for expert system
applications has been defined which integrates message passing and a class/object structure designed
for control applications. The end result can be viewed as providing support for a cooperating network
of intelligent objects on small platforms suitable for embedded control system implementations.

. Acknowledgments

This research has been supported by the Electric Power Research Institute’s Power Electronics
Applications Center under contract TCRD05~CR89-D070 with the Tennessee Center for Research
and Development. ‘

‘References\

(1] KEE Software Development System for EXPLORER Systems. Sperry Corporation, 1985.

(2] J. C. Giarratano, CLIPS User’s Guide, Version 4.9. Artificial Intelligence Section, Lyndon B.
Johnson Space Center, NASA, Aug. 1989.

[3] S. E. Sallé and K. Arzén, “A comparison between three development tools for real-time ex-
pert systems: Chronos, G2, and Muse,” in 1989 IEEE Control Systems Society Workshop on
Computer-Aided Conlrol System Design, pp. 50-67, IEEE, Dec, 1989.

(4] T.J. Laffey, P. A. Cox, J. L. Schmidt, S. M. Kao, and J. Y. Read, “Real-time knowledge-based
systems,” Al Magazine, vol. 9, pp. 27-45, Spring 1988.

(5] H. P. Nii, “Blackboard systems: the blackboard model of problem solving and the evolution of
blackboard architectures,” Al Magazine, vol. 7, pp. 38-53, Summer 1986.

(6] J. R. Delaney, R. T. Lacoss, and P. E. Green, “Distributed estimation in the MIT/LL DSN
testbed,” in Proceedings of the American Control Conference, pp. 306-311, AACC, June 1983.

(7] E. H. Durfee, V. R. Lesser, and D. D. Corkill, Cooperative Distributed Problem Solving, pp. 83~
147. Vol. 4, Reading, MA: Addison-Wesley, 1989.

(8] P. E. Green, AF: A Framework for Real-Time Distributed Cooperative Problem Solving, pp. 163~
175. London: Pitman, 1987.

CONF-9007134
Page 27/3@

Hierarchical Approach to Specification and

Verification
of Fault-tolerant Operating Systems

JaMes L. CALDWELL II & Ricky W. BUTLER
NASA Langley Research Center
- Hampton, VA. 23665-5225

BENEDETTO L. DIVITO |
Vigyan, Inc.
- Hampton VA. 23666

9 June 1990

Abstract

The goal of formal methods research in the Systems Validation
Methods Branch (SVMB) at NASA Langley Research Center (LaRC)
is the development of design and verification methodologies to sup-
port the development of provably correct system designs for life-critical
control applications. Specifically, our efforts are directed at formal
specification and verification of the most critical hardware and soft-
ware components of fault-tolerant fly-by-wire control systems., These
systems typically have reliability requirements mandating probability
of failure < 10~° for 10-hour mission times. To achieve these ultra-
reliability requirements implies provably correct fault-tolerant designs
_based on replicated hardware and software resources.

1 Introduction

The application of theorem provers to verification of critical properties of
real-time fault-tolerant digital systems is being explored at NASA Langley.
Specifically, we are interested in fly-by-wire digital avionics systems. Typi-
cally these systems continuously read sensor values, perform computations
implementing the desired control laws, and output the resulting values to
actuators. Sensor values might include airspeed or input on the attitude of
the aircraft. The actuators control engines, flaps, and/or rudders.

CONF-9007134
Page 29

Wi

CONF-9007134
Page 30

The reliability requirements for commercial aircraft are very high —
probability of failure less than 10~° over 10-hour mission times. This level
of reliability is often referred to as ultra-reliability. If quantification of system
reliability to this level seems a questionable endeavor, consider the problem
of latent design errors. Design errors affect system reliability in unpre-
dictable ways and measuring their effects in the lab is infeasible. In systems
containing latent design errors, failures of individual replicated processors
are not independent and render the reasoning behind replicated str: tegies
for fault-tolerance impotent. ‘

A current approach to solving the problem of latent design errors is based
on notions of design diversity. This approach is typically implemented by
independent design groups working from common specifications. However,
in an often cited paper (2], Knight and Leveson have shown, at least in the
software domain, that design diversity does not necessarily ensure indepen-
dence of design errors. Moreover, quantification of software reliability in
the ultra-reliability range is not feasible in the presence of design errors [5].
Historically, quantification of hardware unreliability due to physical failure
has not been viewed as a problem and, reliability analysts assume hardware
components are immune from design errors. However, as we move into the
nineties, hardware description languages, silicon compilation, ASIC’s, and
microcoded architectures are blurring the boundaries between hardware and
software development methodologies. Based on this observation, we believe
caveats regarding quantification of unreliability attributable to design errors
now apply to hardware as well.

Hence, we argue for verification through mathematical proof, rather than
design diversity, as a partial solution to the serious problem of design errors
in digital systems. Our approach is to formally specify and verify the correct-
ness of mechanisms that implement the required fault tolerance. Manage-
ment of the distributed resources that implement the required fault tolerance
is a complex systems problem. Considering the obvious requirement that
the voted results prodiuced by the replicated processors must be voted in a
fault-tolerant fashion seems to lead to a vicious circle. A second difficulty
arises from the fact that voted results mask errors only if each replicate re-
ceives the same inputs; thus sensor values must also be distributed to each
processor in a fault-tolerant manner. Ingenious algorithms have been devel-
oped to perform these tasks [4]. Verifying that these algorithms have been
correctly incorporated into the fabric of a distributed operating system is at
the heart of reliable fault-tolerant system design.

2 A Science of Réliable Design

Mathematical reliability models provide the foundation for a scientific ap-
proach to fault-tolerant system design. Using these models, the impact of
architectural design decisions on system reliability can be analytically evalu-
ated. Reliability analysis is based on stochastic models of fault arrival rates
and system fault recovery behavior. Faul; arrival rates for physical hard-
ware devices are available from field data or empirical models [7]. The fault

recovery behavior of a system is a characteristic of the fault-tolerant system

architecture. .

The justification for building ultra-reliable systems from replicated re-
sources rests on an assumption of the failure independence between redun-
dant units. The alternative approach of modeling and experimentally mea-
suring the degree of dependence is infeasible, see [5]. The unreliability of
a system of replicated components with independent probabilities of failure
can easily be calculated by multiplying the individual probabilities. Thus,
the assumption of independence allows fault-tolerant system designers to
obtain ultra-reliable designs using moderately reliable parts. Often complex
systems are constructed from several ultra-reliable subsystems. The subsys-
tem interdependences (e.g. due to shared memories, shared power supplies,
etc.), can still be modeled (assuming perfect knowledge about the failure
dependencies) and the system reliability can be computed. Of course, the
reliability model can become very complex.

The validity of the reliability model depends critically upon the cor-
rectness of the software and hardware that implements the fault tolerance
of the system. If there are errors in the logical design or implementation
of the fault-recovery strategy or in the design of individual system com-
ponents, failures between redundant units may no longer be independent.
The quantification of system unreliability due to physical failure would be
meaningless.

Based on this analysis, the validation of the reliability of life-critical
systems can be decomposed into two major tasks:

o Establishing that design errors are not present.
e Quantifying the probability of system failure due to physical failure.

The first task is addressed by formal specification and mathematical proof
of correctness. The second task is addressed by the use of reliability analysis
models and tools to analytically evaluate the effects of individual component
failure rates on the overall system reliability.

CONF-9007134
Page 31

CONF-9007134
Page 32

3 Formal Methods

The major difference between the approach advocated here and approaches
used for design of more traditional fault-tolerant operating systems is in the
application of formal methods. This approach is borne from the belief that
the successful engineering of complex computing systems requires the appli-
cation of mathematically based analysis analogous to the structural analysis
performed before a bridge or airplane wing is built. The mathematics for
the design of a software system is logic, just as calculus and differential
equations are the mathematical tools used in other engineering fields.

The application of formal methods to a development effort are charac-
terized by the following steps.

1. Formalization of the set of assumptions characterizing the intended
environment in which the system is to operate. This is typically a
conjunction of clauses A = {4y, Aq,..., A, } where each A; captures
some constraint on the intended environment. Typically A has many
models although the author of a specification generally has a particular
model in mind. |

2. The second step is the formal characterization of the system specifi-
cation in the formal theory. This is a statement S characterizing the
properties which any implementation must satisfy.

3. The third step is formalization in the theory of an implementation Z.
Typically, an implementation is a decomposition of the specification to
a more detailed level of specification. In a hierarchical design process
there may be a number of implementations, each more detailed than
its specification.

4. The final stage is a proof that the implementation Z satisfies the spec-
ification § under the assumptions .A. Formally, this is a proof of the
statement A O (Z D §), where O denotes logical implication. That is,
under any model of A, Z is an implementation of the specification §.

Some comments are in order. If the set of assumptions proves to be
inconsistent, i.e. there is no model of A, then any implementation satisfies
all specifications and the entire effort is in vain. This suggests a strategy
of minimizing both the number and complexity of the assumptions. The
assumptions can be seen as constraints on the operating environment in
which the specified component is to be placed,

The author of the formalizations typically has some specific model in
mind which he is trying to characterize in the formal statements A, S, and
Z. From the perspective of methodology, it is a good idea to prove some
putative theorems about these statements to ensure that the intended model
has been faithfully captured. For example, in a formal characterization of
a memory, say M, it is important to ensure that the specification correctly
captures notions of reading and writing. One property of interest might

be that reading the contents of address a at times ¢; and t; will yield the

same value, v, as long as there is no write to a of a value u,u # v, during
the interval (ty,t2). This property should surely hold in any model of M.
Proving such a theorem builds confidence that M correctly characterizes
the intended models. ‘ :

It should be noted that, strictly speaking, this property could only be

shown by reasoning about the specification; no amount of testing can es-
tablish that this property holds. In fact, many of the properties of interest
in fault-tolerant design are within the domain of formal methods and their
verification depends on reasoning as opposed to testing-based approaches.
The existence of formal characterizations of a system provides a basis for
such reasoning.

3.1 Hierarchical Proof

The methodology outlined here is inherently hierarchical. Under the as-
sumptions A, if implementation Z; is shown to be an implementation of a
specification § and I, is shown to be an implementation of Z; we conclude
that Z is also an implementation of §. The sentence above can be formally
restated as an inference rule:

AD(Z:DT1), AD(Th D S)
AD(Z,09)

Logically, this is a simple consequence of the transitivity of implication.
Its significance for a hierarchical verification strategy is obvious; it provides
formal justification for linking together a chain of formal proofs of correctness
to show the lowest level decomposition of a series of decompositions is an
implementation of the original specification.

3.2 Levels of Application

Formal methods are the applied mathematics of computer systems engi-
neering. In other engineering fields, applied mathematics are utilized to the

CONF-9007134
Page 33

CONF-9007134
Page 34

extent that they are required to achieve acceptable levels of assurance for
safety, performance, or reliability. It is often assumed that the application
of formal methods is an “all or nothing” affair. This is not the case. There
is a useful taxonomy of levels of application identified here.

0. No application of formal methods.

1. Formal Specification of all or part of the system.

2. Pap:. and pencil proof of correctness.

3. Formal proof checked by mechanical theorem prover.

Significant gains in assurance are possible in existing design methodolo-
gies by formalizing the assumptions and constraints, the specification, and
the implementation. Experience shows that application of level ! alone of-
ten reveals inconsistencies and subtle errors that might not be caught until
much later in the development process, if at all. It is generally accepted that
the later a design error is identified the more costly is its repair, therefore
this level of application can provide significant benefits.

The use of paper and pencil proof in the design process adds another
level of assurance in design correctness. Level 2 application forces explicit
consideration of the relationships between the implementation and the spec-
ification and often reveals forgotten assumptions or incorrect formalizations.

A proof of correctness is only as good as the prover. Even stronger
evidence for correctness can be established by forcing proofs through a me-
chanical theorem prover. This is level & application of formal methods. It
must be noted that there is no guarantee that the implementation of the
mechanical prover is correct or that the hardware on which the mechanical
verification was performed was not fauity. Thus, there is no absolute guar-
antee of the correctness of an implementation even after a mechanical proof
has been performed. What is gained by the additional effort is a detailed
argument for the correctness of the implementation. The process of “con-
vincing” a mechanical prover is really a process of developing an argument
for an ultimate skeptic who must be shown every detail.

Partial application of any of the levels is possible for different parts of
the system. We advocate the application of level 3 formal methods only
for the most critical (and hopefully reusable) system components. What is

classified here as level 1 and level 2 formal methods are being widely applied
in the U.K.

n

4 Architectural Approach

In our research at Langley on provably correct fault-tolerant control systems
we consider architectures consisting of four or more electrically isolated pro-
cessors that can communicate with one another. Typically these systems
run with a static multi-rate schedule with tasks scheduled periodically. Each
processor synchronously executes the same schedule, and the system votes
all actuator outputs to mask individual processor faults. The fault models
used are worst case models in which faulty processors can maliciously co-
operate in attempts to defeat the fault tolerance of the system. Under this
worst case model, 3m + 1 processors must be working in order to tolerate
m faults [1]. If we assume the existence of a fault-tolerant basis providing
clock synchronization and interactive consistency, then a simple majority of
working processors suffices to out vote any minority of faulty processors.

Empirical evidence indicates that transient faults are significantly more
common than permanent faults. If designed correctly, these systems are able
to recover gracefully from transient faults. Each computation generally only
depends on a short part of the input history and typically has a minimal
amount of global state information. If the global state is voted periodically
and internal state is recoverable from sensors, it is clear that after some
finite time errors can be flushed from the system.

The approach adopted here for the design of the distributed aspect of
the system is motivated by Lamport’s papei [3]. At the base of the system
is a distributed clock synchronization algorithm, allowing the system to
be viewed as a synchronous system. Under contract to NASA, Rushby
and von Henke [6] formally verified Lamport and Melliar-Smith’s [4] clock
synchronization algorithm® providing a key system building block. In a
system relying on exact match voting it must also be ensured that each
processor receives the same inputs from the sensors. This is accomplished
by a Byzantine resilient interactive consistency algorithm running on the
distributed system. With these algorithms as a base, the voter ensures that
as long as a majority of the processors are working then the replicated system
produces the same results as an ideal non-faulty processor would.

'nterestingly, they found at least one error in the published proof that had remained
undiscovered through the social review process.

CONF-9007134
Page 35

o

CONF-9007134
Page 36

5 Conclusion

It has been argued that quantification of system reliability in the ultra-
reliable range depends on the provably correct implementation of fault tol-
erance. Absolute correctness is unattainable. However, formal methods pro-

~vide added assurance of correctness by forcing detailed consideration of the

assumptions, the specification, and the implementation in a formal setting.
Hierarchical design proofs provide a formal framework to allow considera-
tion of these details at the appropriate level of abstraction. These methods
are being applied in research efforts underway at NASA LaRC. A NASA
technical report outlining the first phase of design specification and proof of
a fault-tolerant operating system for control applications will be available
in the near future.

References

(1) D. Dolev, J. Y. Halpern, and H. R. Strong. On the possibility and impos-
sibility of achieving clock synchronization. In Proceedings of 16th Annual
ACM Symposium on Theory of Computing, pages 504-511, Washington,
D.C., April 1984. :

[2] J. C. Knight and N. G. Levenson. An experimental evaluation of the as-
sumptions of independence in multiversion programming. IEEE Trans-
actions on Software Engineering, SE-12(1):96-109, Jan 1986.

(3] Leslie Lamport. Using time instead of timeout for fault-tolerant dis-
tributed systems. ACM Transactions on Programming Languages and
Systems, 6(2):254-280, April 1984.

[4) Leslie Lamport and P. M. Melliar-Smith. Synchronizing clocks in the
presence of faults. Journal of the ACM, 32(1):52-78, January 1987.

(5] Doug Miller. Making statistical inferences about software reliability.
Technical Report CR-4197, NASA, December 1988.

[6] John Rushby and Friedrich von Henke. Formal verification of a fault
tolerant clock synchronization algorithm. Technical Report 4239, NASA,
June 1989, Contractor Report.

[7] Reliability Prediction of Electronic Equipment. U.S. Department of De-
fense, January 1982. MIL-HDBK-217D.

CONF-9007134
Page 37
An Emulation/Simulation Environment For
Intelligent Controls

~ Dr. N. Coleman 4
U.S. Army Armament Research, Development and Engineering Center
Picatinny Arsenal, NJ 07806-5000

ABSTRACT: This paper describes a rapid prototyping tool for intelligent control
system software development which supports both knowledge based simulation and
real time emulation capability. The tool was developed to help bridge the gap
hetween the disciplines of artificial intelligence and control system theory by
providing a system architecture and software development environment compatible
with both low level, high bandwidth control applications and higher level low
bandwvidth cognitive processes involving perceptual reasohing and planning. A
simple example illustrating an application of the tool in support of on-going
weapon platform automation research within the Armament Research and Development
Center is presented. .

Introduction: There has been a growing interest within the Army and the DOD
community over the past several years in the areas of artificial intelligence and
robotics and the application of these technologies to enhance the performance and
effectiveness of future armament systems while reducing development and
operational cost. One means of achieving this goal is through "intelligent” task
automation of on-board crew functions thereby permitting reduction and eventual
elimination of crew requirements for certain high risk, limited duration missions.
The levels of automation required dictate the need for highly sophisticated on-
board real time expert systems which are tightly coupled and fully integrated (in
a closed loop sense) with on-board sensors (i.e., trackers, radar, flir, etc.) and
actuation devices (i.e., weapon/sensor controls, vehicle controls, loading
devices, etc.). The purpose of this paper is to discuss progress on two aspects
of this "intelligent"” autcmation issue, namely (1) the definition of a platform

CONF-9007134
Page 38

control architecture and (2) software de?elopment tools required to support
prototyping experimentation and evaluation of advanced automation software.

Hierarchical Control Architecture: The system architecture selected to provide
the basic framewcork for intelligent control/automation, is based on concepts
originally developed by Albus. The Control structure, as originally described,
consists of a hierarchy of finite-state machine modules, each of which implements
a local hybrid-state feedback controller corresponding to the performance of a
particular subtask. The inputs to each local controller consist of a command ,
input from the module above and acknowledgements from the modules below it in the
hierarchy; the outputs consist of an acknowledgement/error message.to the module
above and commands to the modules below. The lowest level modules are interfaced
to the physical environment through sensors and actuators as shown in Figure 1.
The nominal actions of the controller are to (a) decode the command input, (b)
properly command and synchronize the concurrent actions of the modules below it,
and (c) generate an acknowledgement when the subtask is completed. I1f off-nominal
conditions occur, the module must determine whether it can control the resources
to take corrective actions; if so, the actions are taken; if not, an error signal
to the next highest module is generated. An analysis of the finite-state case of
this architecture has been given in 2, 6, and 8.

Generalizations of the original modular hierarchical control concept are
necessary in order to support the requirements dictated by intelligent/autonomous
military systems.

o Ability of the module hierarchy to reconfigure itself

© Incorporation of task planning/replanning and perceptual reasoning in some
(higher level) modules; enhansed error analysis capabilities

o Direct interfaces between some higher level modules and the physical
environment (e.g. intelligent tracker or sensor based robotic loader)

o Provision of knowledge bases

CONF-9007134
Page 39

© Multiple commnication channels between modules (e.g., message passing as
well as common memory)

All of these features have been incorporated into the extended architecture
and fuily supported by the software develcpment tool described below.

Laying out the control hierarchy for a particular task is to a large extent,
ad hoc due to the lack of a comprehensive theary of intelligent control. Some of
the parameters which must be defined by the designer are:

o Number of levels

o0 Number of independent concurrent processes at each level

o) Connectivity, maximum branching factor -

o0 Information rates between modules (nxessages/channel/tine unit)
0 Processing capacity (computation/node/time unit)

o Closed-l‘oop response time (time-scale for each level)

These parameters should be selected so as to balance the response time scales
and computation loads at each level of the hierarchy.

Simulation/Emulation Environment: The inherent high cost and complexity of
embedded software for future battlefield robotic systems and automated weapon‘
platforms makes the need for powerful development, evaluation, validation and
rapid prototyping tools absolutely essential. The modular hierarchical control
approach is well suited to rapid software development in a multi-programmer
environment, to interface standardization and to multi processor implementation.

Some of the important features associated with this first generation prototyping
tool for intelligent controls are:

o] Task/sub{:ask layout capability

CONF-9007134
Page 40

o Interactive graphics tool for design and implementation of Finite State
Machine Modules (FSM). This tool is hosted on Symbolics 3675 and generates
FSM files which are commnicated over ethernet to a VAX 750 which executes
the State Machine Hierarchy |

o Assignment of modules to processors or énulated processors. Ability to |
. examine alternate network qonfigurations

o Emulation of a hierarchical ‘control system

o0 Simulation of the environment and controlled subsystems (terrain, sensors,
tactics, weapon platforms, visibility, etc.) '

o Emulation of hierarchical control systems and multiple copperating systems
o Knowledge based simulation of hostile forces

o Graphics display capability (map, system status displays)

o Interface with digital terrain data base

o0 On-line monitoring and modification of control system status for debugging
purposes

o Off-line performance analysis and evaluation
o Provision for emulation to drive physical subsystems
o Incorporation of prerecorded field test data

0 Knowledge base interface for control system emulation and simulation (e.g.,

~ interface with tactical knowledge bases and knowledge based threat scenario
simulaticn,. etc.)

il

CONF-9007134

Page 41

o Incorporation of procedure libraries with different source languages (LISP,
Flavors, C, PASCAL, etc.)

The structure of the emulation is shown in figure 2. Its use involves three
stages: (a) laying out modules and specifying control systeﬁs and simulation
logic; (b) running the emulation, monitoring control system status and debugging;
(c) port processing for performance analysis and evaluation. The next section
describes a prototype application developed with the emulation tool.

Exanmple: Figure 3 illustrates the major elements of a platoon level control
emulation consisting of a world model terrain data base, blue tank platoon, red
tank platoon and two expert system modules for mission. planning and
threat/situation assessment. The world model coordinates all elements of the
tactical simulation including tank dynamic models, sensor models, terrain models,
turret stabilization models, knowledge bases and tactic for red platoon, etc.

The blue tank platoon commander module emulates the command and control functions
of the blue tank platoon leader including mission planning, engagement planning,
route planning, command and control functions and threat assessment. This module
interfaces directly with the route/mission planning expert system and the
situation assessment expert system running on a Symbolics 3675 with low resolution
color display. A simplified state transition diagram for the platoon leader
module is shown in fig 4. Each tank commander module communicates, coordinates
and controls the functions of a gunner, loader and driver module as showr in fig.
5. The driver module controls a simulated tank (speed and direction), the gunner
module controls a simulated tank turret and interfaces also with a laboratory
automatic target recognition (ATR) and tracker subsystem. The loader FSM module
interfaces with and controls a Puma 560 robot which is configured as shown in fig.
6. The Puma 560 recieves a load command from the loader FSM and uses its own
vision sensor to determine locating and oriéntation of projectiles and breech. It
uses a Lord force/torque sensor for active compliance control during loading and a

polaroid range sensor for obstacle avoidance. The loader hardware configuration
is shown in fig. 7. ‘

Although detailed discussions of the expert system modules within the
emulation is beyond the scope of this paper, a few comments will be made for

CONF-9007134
Page 42 |

purpose of clarification. The route planning module is somewhat unique in its

- hierarchical structure which uses object oriented programming (Flavors) to

generate a family of feasible routes from the current tank location to the
objective location. A rule based expert system is used to reason about and
evaluate the feasible paths based on tactical considerations, mission requirements
and resource constraints. Fig. 8 glves a view of the commanders display showing
the planned route for the commanded blue tank and a projected route for a hostile
red tank based on expert knowledge of terrain and tactics.

Conclusion: Future weapon platforms will be required to operate in increasingly
hostile environments with fewer crew members and ultimately must be capable of

- operation with minimal operator interaction or intervention. Powerful and general

purpose software prototyping and development tools will be required to design such
systems. The Intelligent Hierarchical Control System Emulation described in this
paper is a first generation tool of this type. Hierarchical Intelligent Weapon
Platform Control Concepts have been demcnstrated in a prototype system which is
capable of autonomous operation.

1. Albus, J. S., Barbera, A. J. and Nagel, R. N. "Theory and Practice of
Hierarchical Control", Proc. 23rd IEEE Computer Society International Conference,
Washington, D.C., 1981.

2. Johnson, T. L., "Hierarchical Decision-In~The-Loop Processes", Proc. Oakland
University, Conference On Artificial Intelligence, Rochester, MI, April 1983.

3. N. Coleman, T. Johnson, "A Hierarchical Control Architecture for Autonomous

Systems”, Proc. Oakland University Conference on Artificial Intelligence,
Rochester, MI, April 1984.

4. N. Coleman, "An Approach to Intelligent Weapon Platform Automation", ADPA Fire
Control Symposium, April 1984.

ROV Bial) LVIVY IRV T

Page 43

5. N. Coleman, S. Redington, "Hierarchical Intelligent Control"™, ARDC Report SCS-
C=-IR(SC) 83-005.

6. N. Coleman, "A Hierarchical Ccntrol Architecture for Intelligent Systems",
ARDC Report 84-007.

7. N. Coleman, "A Hierarchical Approach to Intelligent Weapon Control”, Proc.
IEEE/NSF Workshop on Intelligent Contrel, RPI, April 1985.

8. N. Coleman, "An Approach to Intelligent Weapon Platform Automation", WESCON,
November 1985.

9. N. Coleman, S. Milligan, "Planning For Autonomous Weapon Control®, Proc.
Oakland University Conference on Int. Machines and Systems, April 1985.

{ embiy

9in19831Yoly |013U0) WSS |elyoselsl 1BINnpoN
1NIWNOYIANI a13143111ve

g1

WHO4LV1d NOdV3IM

L

) 001 5 » 0oLp ‘ » .
o, 3 Otip :

00,

%n
:.> FF: O~> O_.:
4 334l NOISIJ3d
0L
JHUNLINYILS
~OHIVI.,

ONF 9007 134

C

44

Page

W31SAS

CONF-9007134

Page 45

M3YI

AVdSIa
HAWod

AVdSIO | .. 5

- ¢ enbyy

0JN}oNJIig uoREBINWJ |0JIU0D jRIYIIBIBIH

{S)13TINAONW

an

aaivinwis

i

S3ITNAONW

’ll'll

32iA30 TVIISAHd

¥

I3IAITM3IYD

y 1

AQI.Y

S3TNAOW
A3AIT

H3IANVWWOD

| U

. SANVWWOD

S3T1NAOW T3IAIT
—p-1 H3TT0HINOI/ITIAIA

SINIWIDAITMONNIV

————

(NOLLVINWIS
/NOILVINII)
ITNAONW
WS4 TVIIdAL

<n--u>1

AHvHEI

3HNA300Ud B S3Sva
Viva/3Da3TMONA

SHILIWVYHVd 1NO
‘JLVIS 1X3N ‘INd1INO

-A.ll.l.Illl!ll.tll.l.l!l.lltl.!llv

SHIL3IWVHVd
NI ‘3LV1S

LNIHHNI "LNJNI

ON11HOd3H
anv
SOILSILVLS
HNIDD01 Viva
INIT-440

AI.&ICI.IOI..llll'lll'lll!lllle Il‘

AHOW3IW
NOWWOD

(SSIHAVHD ‘1X31)
AVYdSIa
HOLINOW IWILNNY

. CONF-9007134
Page 46

TERRAIN
MODEL

- STATE MACHINES |

WORLD MODEL

e
i WORLD
DISPLAY

pd

STATE MACHINES

_J

" BLUE PLATOON

TANK 1 LOADER
{ TANK 2 LOADER
TANK 3 LOADER
TANK 4 LOADER

N\

[TSTATE MACHINES |

STATE MACHINES |

RED PLATOON

ROBOT
LOADER
(TANK 1)

0oBOT
ADER

OBOT

TANK 2|TANK 3
CMDR | CMDR

PLT
CMDR

TANK 4
CMDR

rNK 2)

\

ROUTE/MISSION
PLANNER

I EXPERT SYSTEM

SITUATION
(THREAT)
ASSESSOR

[EXPERT SYSTEM

/

ADER
NK 3)

T |

Simulation/Emulation Architecture

Figure 3

JOBOT
ADER
NK 4)

CONF-9007134

Page 47

MNVLOL
. 3IHVSSIN ..aVIA.. ON3IS

/av3a M34D

ONIAG . /AV3G M3IYD HINN

M3IHI 40 1S3H 01
JOVSSIW ..ONIAC.. ONIS/——

== INV1 NOYHd MIovE
JOVSSIW .. TVOO 1V..

H3IAIHQ 01
; 3IOVSSIW..ISHNOD 1H
NOOLV14 01 1J3HHO0J.. ON3S
3IDVSSIW .. TYOS.. ON3S : /388Nn0J 340 41 1531 ~— [MNV1 WOH4 JOVSSIN ..LIH.. 3AIIIIH
/1v0D G3IHOV3IY Ji .]
. = o 1VIHHL

3374, 411831

| —/vowuianoo yaHto o N

— [JOVSSIN

a334S ONV INIOJAVM LX3IN 20 HIAITHA WHOSN! /1NIOdAVM .SNVY1d M3N.. 41 1531
I— 1v 31 1531
m ol ﬂ—w‘\«_ﬂﬂoo U ‘ INIOdAVM ._.cv m SMNY1d ‘Swzv
NOILVINHO4 NV ‘033dS ‘'NOILIIHIG LINIOJAVM LX3N (@334S 'SLNIOJAVAM)
40 SHIGNVWNOD HIHLI0 WHOINI IAJIYLIY | SNVId M3IN 1S3IND3Y
— 1— . /-

NV1d 3LN0Y LHO1T4 LS3ND3Y /-~

A SONVWWOD ><._u® [AQv3u\ SNV 1d 3LvVadn
. SNYT1d MIN N :
SNV1d 3HOLS ONY LY ISNVHL ‘GV3IY / SNV1d JHOLS ONY
- /AQV3H SNV ‘3LVISNVHL 'aV3IH

SNV1d ONIL13D -
/AQV3H SNV 41 1531

WILSASBNS ¥OVLLY NMVJS ‘(GI34S 1
"SINIOJAVM) SNV 1d 1S3ND3IH ‘M3IY¥I 01 ..AQV3Y.,
NUNLIYW/GIAIFIIH IDVSSIW ..AGVIH.. NIHM

1ivm
/MNV1 WOYd4 Q3AI1303H
@-(h yo4 02-.2@“ IHDVSSIW ..AQVIH.. 1L NN

WS4 IN3UV4) INVL Qv
Ol IDVSSIN ..AGYIH MIYD.. G~N3S
[.AQV3Y.. M3HD € 1TV

M3IHI HO4 ONILIVM /SHITW3IW MIHI UIHLIO0 E 1TV WOHS
J3A1323H SIDVYSSIN ..AQVIYH.. TIINN

G3033IN SV SITIBVIHVA IJZIVILINI)
\l

ONIZITVILINI

oo

"~ JAQV3IH SNV1d M3N

Page 48

CONF-9007134

~

.\ll.'l-ll-“l‘-‘ltf\[([r?\(N

>

e liro- %

e 00 00 O U >
|
-
5 w3
HoOsSN3s] | LndN1 = b
AVN NOISIA . .
1
10Y1INOCD
zo_Em TOULINOI| 1464 N0OD wsin
. TJOHLINOD 37INAOW NOIL -YHI3IW
PAINVI | | 344100 wAI13 zv Iu4
TOHLNOD T0HiNOD a3asve H3NOVHL] | O LIHENL NONNYS
ONIH3ILS INION3 HOSN3S NONNVO
; b ; ;
WdY 201 113HS 03aIA 13 0G1 23S/00L 44
LHODIVHIS 0002 RRELS 3sv3i3y o
o1 /dsvuo | {aw? son
L ¢ ¢ 3AOW \ + _
3IONVAIOAY] 4 *]
s€0 37INAOW 37INAOW ~ 37NAOW
ONIMOTI03 [T0YLNOD . JOHLNOD 0 TOHANOD | Y1V
L 4W3IAIHG L8 H3avol 118 HINNND
NOILVDIAVN LUVIWS » LUYWS
118
LUVWS SNLVLS/AIV 3N avol
| rvyl Q3ANVWWOD SN1VLS/NIV
SN1V1S/SOd 10V 4 4 ﬁ 501191
HOSIAGY | [oW |=— s
_ €
WILSAS —] HIANVWINOI NNVL |t | uosnas
33NVaIND ‘|
s3 HaWo SH3IAHO 3
INIWSSISSY NOISSIW ONINNV 14
NOILYNLIS. NOISSIW

uonewoNy UiIofIEld uodeap Jualijjaiuy

CONF-9007134

Page 49

IND oMl
VHIWNYD YHIWYD
wJ J
..lguulu(u
Gy 11T w SERREA
HNOYINGD L eaguic b iag
IND 10808 | > ikl *! omu 1080y
uemmmsened JINVY 14 pe——l
ey |/4
WAISASENS HOSNSS WA ISASINS YOSNIS ‘ I
ING 19804 OM} 10904 .
. ¥IONINDD
‘ 10808 FRISAS
] WOSSI0UL 11NN WONSIA WOJIA
aIsSva-9et .
WILSASENS RISIA

- RO YNMIGY00] IRINNY IS P
E : 0WINDD WY 1vng
Illl ‘NIANO WOSNIS |yl
: "SI LAY LISIO/ W HHIYVEITH dVddL

¥401dX3 1l [NDS |
WRISASENS JTVNINVY ‘
VUNIVN 20108
O [rowonvs
NOtIViS aISVe aan 0 MIYD WL TVIY INdIND IN0A
I903IMONY WIILIVL ot o O WSO

JUN1IILIHIYY NOILYINOLNY NOILY LS M3YJ

CONEF-0071
Page S0

CONF-9007134

. . . Page 53
Software Engineering Environments
| for
Military Vehicle Management Systems
Prof. Michael Fehling Dr. Charles F. Hall
Laboratory for Intelligent Systems Lockheed Artificial Intelligence Center
321 Terman Center 0/96-20 Bldg. 259
Stanford University 3251 Hanover Street
Stanford, CA 94305-4025 Palo Alto, CA 94034
Abstract

The costs associated with software development and maintenance seem to increase
without bound on some programs. This has led to comparing software to entropy. It
has been proposed that a way to control software costs is to provide an appropriate
software engineering environment (SEE) and make sure that it is used throughout the
program life cycle. This approach has been successful in some cases and in others
disastrous. Three major issues are 1) all software development programs do not fit
neatly into a single space, 2) what is worse, we do not seem to have as yet a method-
ology for matching program requirements to software environment attributes, and 3)
programmers like to use what they like to use. We feel that any attempt to develop a
standardized software engineering environment must address all three of these issues
if it is to be accepted and successful. Based on these issues, the problem can be parti-
tioned into three tasks 1) developing a taxonomy of problem domain characteristics
that can be used to partition the problem space, 2) developing a taxonomy of SEE at-
tributes and appropriate benchmarks and tests that can be used to define an environ-
ment given a particular problem, and 3) defining a generic framework based on ac-
cepted software standards (e.g., X-windows, Ada, Etc.) within which system develop-
ers can, and will, want to work. This position paper will discuss how some of these is-

sues are being addressed for a specific military vehicle domain, the autonomous con-
trol of underwater vehicles. |

CONF-9007134
Page 54

Introduction

‘The main emphasis at this workshop is
the development of a software engineer-
ing environment (SEE) for building mili-
tary vehicle intelligent control systems.
The goal is to improve the productivity of
control design engineers and lower the
total life cycle costs to DoD. The issues
go beyond a suitable set of tools for build-
ing distributed intelligent control systems.
The total software life cycie, appropriate
methodologies, standards, and computer-
aided software engineering (CASE) tools
need to be considered.

Given that an appropriate life cycle
model and SEE have been defined, what
specializations -- if any -- are required for
specific application domains of interest?
In particular, are there characteristics of
problem domains that can be used to par-
tition the space of all problem domains?
We believe the answer is yes. Moreover,
there will be sets of overlapping charac-
teristics common to sets of domains, as
well as characteristics unique to specific
domains. Given such a partitioning, the
question becomes, can a mapping from
domain characteristics to SEE attributes
be found? If so, a set of specialization re-
quirements for a particular SEE can then
be defined.

How can the problem domain parti-
tioning and the requirements to attributes
mapping be found? An attempt to take a
top down approach by defining character-
istics of all problems and breaking that
into subsets, etc., seems to be a very diffi-
cult task. We propose therefore, a bot-
toms up approach in which a specific
problem is chosen to constrain the solu-
tion. Once this domain is thoroughly un-
derstood and an appropriate SEE and
set of tools is defined, that solution could
then be generalized.

Since the emphasis at this work-
shop is intelligent control systems for mili-
tary vehicles we have selected a specific
instance of this general domain -- the au-
tonomous control of underwater vehicles.

In the next section we will briefly re-
view some of the software life cycle and
general SEE issues. Then we shall dis-
cuss some of the special issues that are
associated with the engineering of intelli-
gent control systems. This will be fol-
lowed by a discussion of the Schemer ar-
chitecture, a distributed control executive
for real-time control. We will then discuss
how we are using Schemer to prototype a
control system for an autonomous under-
water vehicle and then make some con-
cluding remarks.

Software Engineering and Life-
Cycle Issues

The software life cycle can be broken
down into three phases: definition, devel-
opment, and maintenance. A complete
software engineering environment (SEE)
should support the development cycle
through all three phases. Moreover, there
are several different procedural ap-
proaches that may be taken to software
engineering. The classic life cycle ap-
proach -- or “waterfall model” -- is shown
in Figure 1. This approach is character-
ized by little or no formal feedback from
step to step. It also requires, in its purest
implementations, the freezing of require-
ments and design specifications at an
early stage of the life cycle. This ap-
proach is appropriate when the require-
ments are completely specified and the
problem is well defined. It has been suc-
cessfully used for some very complex
and ill defined system developments; but,
only under carefully managed conditions.
A poorly managed software development

Concept
Definition

Figure 1. Standard S/W Development Life Cycle
team can produce disastrous results
using this model.

A life cycle paradigm that circum-
vents some of the problems of the classic
apprcach is the evolutionary or rapid pro-
totyping model. There are several varia-
tions of this model, one of which is shown
in Figure 2. The two key aspects are the
tightly coupled iteration between the con-
cept definition and rapid prototyping
phases; and, the multiple feedback paths
that occur in each step of the process.
The former ensures a *“quick” conver-
gence to a demonstrated agreed upon set
of requirements that can then be passed
on to the detailed design phase. The latter

Concept
Definition
Rapid -
\ Prototyping
l Detailed
Design
A ?’ Development
b ’ Testing

‘ Maintenance

\
Figure 2. Evolutionary Model

ensures that potential “gotchas”are identi-

fied and fed back into the process at the

appropriate level as soon as possible.

Ideally, the long feedback paths will have

CONF-9007134

Page 55

little traffic. In general, this paradigm-
works best when heavy human-computer
interactions are required, when complex
output is to be produced, or when new or
untested algorithms are to be supplied. |t

"is less beneficial for large, batch-oriented

processing or embedded process control
applications. As the case with the classic
model, this approach provides substantial
benefit when properly applied and man-
aged. It should be viewed as comple-
mentary to the classic life cycle model.

Regardless of the life cycle model
used, one should select a software engi-
neering environment (SEE) that supports
not only the creation and manipulation of
source code, but methodology as well.
That is, the environment should provide
assistance for software requirements
analysis, design, and test, as well as aids
for project planning, tracking, and control.
In addition, a desktop publishing capabili-
ty should be provided for efficient produc-
tion of high quality documentation. Such
a computer-aided software engineering
(CASE) system is a software engineer's
assistant, taking the drudgery out of soft-
ware engineering that leads to low pro-
ductivity and quality. The selected SEE
needs to be built on top of, and be com-
patible with, existing standards to insure
portability, maintainability, and interoper-
ability.

Engineering Intelligent Contro!
Systems

To summarize, our view of the software
engineering issues entails three principal
areas of concern — (1) defining a compu-
tational architecture that supports an ap-
propriate generic approach to the perfor-

‘mance and other requirements of the ap-

plication domain, (2) providing a SEE that

CONF-9007134
Page 56

encourages, and even enforces, use of an
appropriate engineering methodology
both in general, and tailored to the special
needs of the application domain, and (3)
supporting general and domain-specific
aspects of life-cycle maintenance.
Although limitations of space preclude a
detailed discussion, let us briefly review
some of the more salient issues in each of

these three areas for the focus of this

workshop, software for the intelligent con-
trol of complex, military vehicles.

Functional Requirements:

We believe that the research and devel-
opment community can avail itself of a
reasonably mature view of the functional
requirements of intelligent vehicular-con-
trol systems. These functional require-
ments derive from the need of these con-
trol systems to interact effectively and effi-
ciently with conditions in the complex, dy-
namic environments in which the vehicle
must perform. These dynamic conditions
constrain (and sometimes serendipidous-
ly enhance) system performance, includ-
ing operations of the control software it-
self. In other papers, one of us (Fehling)
has examined and analyzed a number of
important functional requirements that are
imposed on ‘“intelligent control” software
intended to manage complex systems that
are embedded in, and interact with, real-
world domains. The following are among
the most important of these requirements:

* Real-time performance — Intelligent ve-
hicular-control systems must enable the
vehicle's prompt reaction to, and interac-
tion with, its environment. Fehling and his
colleagues (e.g., Fehling et al., 1986;
Fehling & D'Ambrosio, 1990) have dis-
cussed the demands imposed upon soft-
ware embodying intelligent problem-solv-

ing capébi!ities that must be realized

under reai-time performance constraints.
To deliver real-time performance, the con-
trol software must support the vehicle’s
ability to (a) react to critical events by
promptly changing the focus problem-
solving or other actions to bear upon
tasks that embody appropriate responses
to those critical events, and (b) gracefully
“trade-off” extent, precision, or quality of
the vehicle’s responses against the
amount of time available to complete
those responses. To provide these abili-
ties, the intelligent control system must be
able to guarantee, or at least reliably esti-
mate, the time required by candidate re-
sponses. 5

« Uncertainty management — Military ve-
hicles must successfully accomplish mis-
sions under uncertain conditions. The in-
telligent vehicular-control system must be
able to reason about how and when to
perform tasks in the face of this uncertain-
ty. As Fehling and his colleagues have
pointed out, this requires that the vehicle's
problem solving system and intelligent-
control methods (a) are robust in the face
of this uncertainty, (b) can be adapted to
provide the highest quality response pos-
sible in the face of the limitations imposed
by the uncertain information on which
they are based, and (c) allow the intelli-
gent controller to opportunistically man-
date actions that may reduce the level of
uncertainty upon which future actions are
based.

» Autonomy/Flexibility — Intelligent control
requires that the vehicle be capable of
maintaining its operational integrity in the
face of conditions and events in its envi-
ronment that have the potential to impair
the vehicle and its ability to survive.
Autonomy requirements must be traded
against the criticality of the vehicle's mis-
sion and the extent to which undertaking

C o W CONE-9007 {34

o . ; ’)agc.ﬁ],sz‘

1
i

actions to achieve the mission might im-
pact the vehicle's autonomy or survivabili-
ty. As we are coming to see these issues,
we believe that an intelligent control sys-
tem must include a principled basis for (a)
~evaluating the relative priorities or “utli-
ties” of predicted, alternative outcomes of
its actions under anticipated conditions,
and (b) managing the vehicle’s commit-
ment to a course of action so as to maxi-
mize the expected utility of its activities (in
the full decision-theoretic sense). Thus,
for example, the costs of damage to the
vehicle must be weighed against the ben-
efits of full completion of the vehicle's op-
erational mission.

The preceding views about these
categories of functional requirement result
from our own experience in building intel-
ligent control software for applications to
advanced avionics systems, command-
and-control (C2) systems, and industrial
process control systems, as well as vehic-
ular control systems. Our efforts in devel-
oping and applying intelligent-control ar-
chitectures such as Schemer (discussed
below) have heiped to evolve these
views.

SEE and Enginearing Methodology:

While we agree that the issues and ap-
proaches ot software engineering for con-
ventional systems can shed valuable light
on intelligent-control engineering, we feel,
nevertheless, that the application domain
of vehicular control imposes important, id-
iosyncratic requirements on software en-
gineering. For example, the preceding
functional requirements discussed im-
pose special software engineering re-
quirements that challenge conventional
software engineering concepts and the
assumptions that underlie conventional
CASE toocls. In particular, system devel-

CONF-9007134

Page 57

opers’ lack of information about the do-
main includes uncertainty about the prop-
er way to model that domain as well as
uncertainty about the details of events
(e.g., how and when these events will be

realized) that are expressible within some

particular model. (Cf., the presence of
“modeling uncertainty” is a situation that is
well known to control theorists.) Due to
our belief in the importance of dealing
with such modeling uncertainty, we feel
that SEEs for intelligent vehicular control
must especially support engineering ac-
tivities such as the following:

» Performance estimation — Engineers
building intelligent control systems re-
quire tools that aid them in estimating the
performance of various candidate control
methods under a conditions that are most
likely to occur in the application domain.
In our own work, for example, we have
found it useful to provide engineers with a
tool that calculates upper bounds on per-
formance times that will result from apply-
ing a problem-solving method such as a
rule-set in a rule-based system.

* Empirical testing — Engineers must be
able to construct and carry out expeti-
ments with their partially completed con-
trol systems and sub-systems. To obtain
realistic information, the tools that support
empirical testing must allow engineers to
simulate the operation of vehicles and ve-
hicular subsystems being managed as
well as simulating the dynamic flow of crit-
ical events and conditions in the opera-
tional environment.

* “Impact assessment” — This is really a
special case of the two previous require-
ments. In discussing the functional re-
quirements of intelligent control we noted
the importance of managing tradeoffs
among alternative courses of action in
terms of their impact on such things as

CONF-9007134
Page 58

successful mission completion and vehic-
ular autonomy. Engineers must examine
these tradeofts in the most concrete way
possible when faced with the requirement
to design tradeoff policies into an intelli-
gent controller. Thus, engineers need
support in analyzing the potential impact
of a control strategy under expected oper-
ational conditions so that they can evalu-
ate and implement policies with the high-
est expected positive impact on system
performance. '

Life-cycle Maintenance:

If we are successful in building and de-
ploying intelligently controlied vehicles
that survive to carry out their assigned
missions, then we will face issues of life-
cycle maintenance similar to those faced
by developers of conventional systems.
Unfortunately, the scientific and engineer-
ing community has so little experience
with fully deployed intelligent-control sys-
tems, that little can be said at this time.
However, this is not meant to deempha-
size the importance of this topic. Rather,
~ we caution that the engineering communi-
ty not prematurely apply to intelligent-con-
trol systems approaches to life-cycle
maintenance merely because they ap-
pear to work well for other types of soft-
ware. As earlier preceding remarks indi-
cate, intelligent control entails unique
functional and engineering-methodology
requirements. Thus, the issues of life-
cycle support are also likely include some
unique approaches.

We have a great deal to learn be-
fore we can confidently determine the re-
quired features of SEEs and software en-
gineering methodology across the full
spectrum of intelligent control applica-
tions. This is particularly true for the is-
sues of engineering methodology and

life-cycle support of these systems.

For this reason, we believe that a
“bottom-up” approach is called for. In car-
rying out such an approach we urge the
development of computational architec-
tures and development-support tools that
are especially tailored for use in building
intelligent-control software. Initially, the
methods and tools should probably be
further restricted to apply to specialized
subdomains rather than attempting from
the outset to construct an SEE for the full
range of intelligent control applications.
As SEEs become mature for various do-
mains, their common features can be ab-
stracted and SEEs can be developed that
support a broader range of applications.
This approach promises quick payoff for
certain domains of intelligent control with-
out compromising our overall interest in
producing a general-purpose SEE for the
full range of intelligent control applica-
tions.

Schemer

As our previous remarks imply, the ap-
proach to a practical software engineering
methodology and SEEs for intelligent
control begin with the definition and im-
plementation of a suitable computational
architecture tailored for such applications.
Fehling (Fehling et al., 1989) describes
such a computational architecture. This
architecture, called Schemer, has been
developed especially for intelligent con-
trol applications. Schemer has been suc-
cessfully used to build over two dozen in-
telligent-control applications in domains
such as advanced aerospace avionics,
resource-deployment, industrial process
management and process control, and
autonomous vehicle control. At this time
at least four Schemer applications have
been fully deployed and put into regular

use as part of commercial and fielded mil-
itary systems.

Here again space precludes a de-
tailed discussion of Schemer. However,
we summarize the following properties of
this architecture: |

* Real-time performance — At this time we
believe that Schemer is the only problem-
solving architecture that has been de-
signed and implemented specifically to
address the issues of distributed, real-
time applications. Schemer provides im-
portant basic features to support real-time
performance. These include (a) an ap-
proach to problem-solving control that
supports the simultaneous management
of multinle problem-solving tasks, (b) pre-
emptive, prioritizing control of these con-
current tasks, (c) full encapsulation facili-
ties for modularization and “transaction
protection” under preemptive, prioritizing
control, (d) formal models of control and
data-flow, (e) a “high-level” language for
specifying computational control among
combinations of Schemer problem-solv-
ing elements, and (f) full support for event-
driven and data-driven control to achieve
reactive and interactive styles of computa-
tion.

» Development-support Tools — To sup-
port application development, we have
augmented the basic Schemer architec-
ture with tools and other facilities that sup-
port the builder of distributed, real-time
applications. These facilities (a) include
stepping, tracing, checkpointing, and
checkpoint editing at the level of interac-
tion among Schemer constructs as well
as in the underlying implementation lan-
guage (usually LISP), (b) provision of a
“library” of module templates that provide
basic problem-solving sub-systems (e.g.,
a forward- or backward-chaining rule-
based system) that might be included as

CONF-9007134

Page 59

part of the implementation of the intelli-
gent control system, and (c) performance
metering packages that can measure
(again at the level of Schemer constructs)
the speed and complexity of computation

- of specified Iimplementation elements.

» Simulation Testbed Support — In recent
projects using Schemer, we have begun
to explore tools and techniques that allow
implementers to rapidly construct simula-
tions of the application domain and other
aspects of application environment.
Unlike our work on the basic Schemer ar-
chitecture and the types of tools just
sketched, our understanding of simulation
testbed facilities remains far more primi-
tive. We are hopeful, however, that cur
early successes in developing such
testbed capabilities for Schemer applica-
tions will soon lead us to a more mature
view of these issues.

« Iterative, “Bottom-up” Development —

In keeping with our earlier remarks, we
are evolving our Schemer-based ap-
proach to an SEE for intelligent control by
working in a “bottom-up” manner on cir-
cumscribed domains and then integrating
across these domains as commonalities
and higher-level abstractions reveal
themselves and allow us to generalize
Schemer’'s design and the construction of
the software engineering tools within this
architecture.

AUV Control System Development

As an example of our bottom-up ap-
proach, we are using Schemer to proto-
type an intelligent control system for an
autonomous underwater vehicle (AUV).
This AUV controller monitors the condi-
tions during a mission, including the con-
dition of the AUV itself, determines the
presence of conditions and events that
potentially compromise the mission, and

CONF-9007134
Page 60

specifies actions to cope with such unan-
ticlpated events.

Schemer is being used as the
basis for an integration framework for
building AUV control applications such as
this one. This includes the use of
Schemer as a run-time framework within
which to manage the activities of the AUV
and its subsystems. In particular,
Schemer provides the preemptive, priori-
tizing, multi-tasking management of the
~ controller's actions as well as the actions
of the other AUV subsystems.

Schemer also provides the archi-
tectural basis and set of tools for this ap-
plication. In fact, in developing this AUV
application we are finding it useful tc aug-
ment the basic tools and templates (as
noted earlier) with special purpose tools
and methods that are tailored to, and em-
body detailed knowledge of, the applica-
tion domain.

Finally, we note that we are finding
Schemer to be especially useful as an
open architecture, suitable for encapsulat-
ing and managing the interactions among
diverse problem-solving elements. This
Schemer capability is an aspect of SEE
architectures that we have ignored so far
in this paper.. We are using Schemer to
encapsulate and manage problem-solv-
ing elements that are based on a very di-
verse range of programming and prob-
lem-solving approaches. This includes
the integration of Al programming meth-
ods with conventional mathematical con-
trol and optimization methods, for exam-
ple. In adition, many of these elements
were originally developed independently
of Schemer. Schemer strong support for
encapsulation and its data communica-
tion constructs are serving well to provide
an “open architecture” within which to
easily integrate diverse styles and ap-
proaches to system development. At least

for AUV applications, we are finding that
Schemer's open architecture is crucial.

As noted earlier, we have used
Schemer in a similar manner to support
development and deployment of intelli-
gent control applications for other do-
mains. As our use of this approach ma-
tures we are exploiting opportunities to
merge concepts and methods across
these areas. In fact, the generality we
have already achieved with Schemer is
due to this evolutionary, bottom-up ap-
proach.

Conclusions

We have outlined some of our concerns
about the tools and methods needed to
support the engineering of software to in-
telligently control complex military vehi-
cles. We believe that the research and
development community should attend
closely to the full range of software engi-
neering issues in developing tools and
approaches for such applications. This
includes attention to the issues of main-
tainability and life-cycle support.
However, we also caution that, at this
time, the issues of intelligent control are
rather poorly understood. For this reason,
we urge an evolutionary approach to de-
termine the proper solution to this impor-
tant problem in software engineering. We
have adopted such an evolutionary ap-
proach in our our work. This has helped
us to deploy a number of important intelli-
gent-control applications and to keep an
evolving focus on crucial research issues
that must be addressed. This evolution-
ary strategy is serving us well in making
progress toward our eventual goal of pro-
ducing truly general-purpose computa-
tional architectures and development-
support tools for building intelligent con-
trol systems.

References

Fehling, M., Altman, A., & Wilber, B.M.
(1989) “The HCVM: An Instance of the
Schemer Architecture for Real-time

Problem-Solving.” In R. Jagganathan, R.

Dodhiawala, and L. Baum (Eds.)
Blackboard Systems and Applications,
New York, Academic Press.

Fehling, M., Sagalowicz, D. & Joerger, K.
(1986) “Knowledge Systems for Process

Management,” In Proceedings of ISA-86.

CONF-9007134

Page 61 ('1

CONF-9007134
A Second-generation Expert System for Page 63
Computer-aided Control System Design

Dean K. Frederick
DKF Consulting Service, Inc.
Ballston Lake, NY 12019 ‘
(Rensselaer Polytechnic Institute, Troy, NY)

ABSTRACT

The CACE-II expert system [1] for designing series lead-lag compensators for single-
input/single-output plants to satisfy three frequency-response specifications has been
implemented using the GoldWorks inference engine and expert-system development tools. The
implementation makes use of the frames and user-interface features of GoldWorks to provide an
environment from which further extensions of the design approach or other design methods can
be created in an orderly fashion. The control-analysis program Matrix, has been used to perform
the required control-system modeling and analysis calculations at ‘the request of the expert
system.

A number of ways in which the present design system can be improved and expanded are
discussed. Among these are a hybrid organization of the rules that combines the known
procedural knowledge of the design process with an ability to constantly look for off-nominal or
unexpected trends in the design process and to react to them. Another way is to make greater use
of object-oriented programming techniques in conjunction with the frames and their slot values.
The tools that have been developed for handling the varied interactions between the expert
system and the numerical applications program are described, with specific attention paid to their
robustness. Details of the work done to date may be found in [2].

INTRODUCTION

The project described in this paper relates to the development of an expert-system environment
for the computer-aided design of feedback control systems and to the creation of a rule base
specifically tailored to the design of lead-lag compensators for single-input/single-output (SISO)
systems. It is an extension of earlier work by James, Frederick, and Taylor [1] that had led to a
package called CACE-IIl. That version ran on a VAX computer and used a proprietary
~ inference engine called Delphi from General Electric, and the Cambridge Linear Analysis and
Design Program (CLADP) from Cambridge University in England for the control-system model-
building and analysis calculations. The block diagram in Fig. 1 shows the components of the
feedback system under consideration. The plant is linear and time-invariant and the controller is
a series lead-lag compensator, entirely in the forward path.

ref compensator ; plant output
- (gain, leads, lags) o

Figure 1. Feedback systems being considered.

[T

CONF-9007134
Page 64

The objective of the present study has been to build a knowledgs-based system for control
design that uses a state-of-the-art inference engine and can be run on an IBM-PC/AT compatible
computer. The current phase of the project has been to establish the initial hardware and
software of the system. ‘

Work has been directed at establishing sufficient expertise with the GoldWorks expert-system
development environment to enable the effective use of its many and varied capabilities. The
knowledge-representation techniques available in the GoldWorks environment have been used to
implement a knowledge-based system for aiding engineers in the design of lead-lag
compensators for SISO systems. The work has been performed on two personal computers that
~ are operated in parallel. The expert system runs on a Zenith-248 that has an eight-megabyte
memory board in order to accomodate the extensive GoldWorks code. The numerical control-
related calculations are done on an IBM PC/XT using the commercial package Matrix,/PC.

Additional tasks that have been pursued during this phase of the project include:

(1) writing ruies without embedded Lisp code so as to maintain a clear separation between
the knowledge and the procedural porticns of the system,

(2) making use of the frames allowed by the GoldWorks inference engine to organize the
knowledge about the control system design,

(3) several improvements in the design algorithm,

(4) expansion of the lead-lag design capabilities to handle plants with lightly-damped modes,

(5) enhancing the robustness of the design process so the user can recover from a variety of
problems, should they arise during a run,

(6) improving the user interface so as to provide up-to-date status information and pop-up
forms, data-entry menus, and acknowledgement messages,

(7) providing & mechanism whereby the user can interrupt the run and modify the
specifications or the parameters of the controller, and

(8) allowing the user to continue a completed design with altered specifications.

Figure 2 shows the clements of the expert system and the means by which they interact.

plant

model

file

inference commands Y

user e engine " Matr1xx

RULES /FACTS\

assertions frame slot
values

Figure 2. Principal elements of the design system.

CONF-9007134
Page 65

The knowledge base is made up of the rules and the facts (assertions and slot values). Matrix, is
used for all of the control-related calculations such as determining the closed-loop bandwidth
and implementing the models of the plant and the compensator (controller). A set of plant
models has been written in Matrix, and this can easily be augmented by the user to include
additional plants. When a session begins the user selects the plant to be considered and is
prompted to enter the specifications.

The development thus far has not resulted in the exploitation of the object-oriented nature of the
GoldWorks environment to provide better justifications to the user. However, the restructuring
of the lead-lag design heuristic into the frames and rules of GoldWorks has provided the
underlying knowledge representation which can now be used to provide that kind of information.
Perhaps more importantly, that same representation method has resulted in a knowledge base
which is easier for the developer to create and maintain.

FRAME ORGANIZATION

The first major design decision was the definition and organization of the frames so as to

properly fit the tasks to be accomplished, namely the design of control systems. Figure 3 shows
the organization that has been used.

TOP-FRAME is part of GoldWorks and is always the starting point for the user-defined
frames. Below that we show the frames that have been created for the control-design
problem, namely:

DESIGN-FLOW CONTROL contains information relating to the design process itself, rather
than the control system,

PLANT contains information pertaining to the plant or process that is to be controlled,

OL-SYS contains information that relates to the open-loop system comprising the plant and
the controller,

CONTROLLER contains controller information and has child frames for each of the
components (gain, leads, lags, and possibly a notch filter) that make up the controller
(compensator),

CL-SYS stores information relating to the closed-loop behavior of the plant and controller,

INTT stores information relating to the particular design run being made, and

SPECS contains the specifications, their tolerances, and whether or not the specifications are
met by the current controller.

top~frame

deS|gr\"”OW o]-sys CI"SYS specs
. controtl '

plant controller nit

l
[l l |

gain | [leads| | lags | | notch

Figure 3. The control-system-related frames.

CONF-9007134
Page 66

DESIGN ALGORITHM

The design method used for the original version of CACE-III [1] has been retained, with several
modifications. As suggested by Fig. 4, there are three main parts to the algorithm. First, the
initial version of the compensator is created to contain a gain, lead, and lag. Then an iteration is
begun during which the gain and the alpha, i.e., the pole-to-zero ratio, of the lead are adjusted
until the gain margin and the closed-loop bandwidth specifications are met (hopefully). Then the
lag is given a final adjustment and all three of the specifications are tested. In the following, we
will discuss the algorithm in more detail and conclude with some suggestions for further

improvements.

tnsert
leadis)

Y

insert gatn
& lag(s)

LI
] |

adjust gain adjust lead
(1 necgssary) alpha

)

all
specs
ok?

Figure 4. Flow chart of the design algorithm

The basic idea for starting the compensator is to insert one or more leads based on the phase
angle of the frequency response of the plant alone, measured at the specified closed-loop
bandwidth frequency. The center frequncy of the the lead is set equal to the closed-loop
bandwidth specification and the value of alpha is determined so as to make the phase angle at
that frequency of the combined plant and lead to be -175 degrees if the plant is type O and -140

| CONF-9007134
‘ . Page 67

degrees if the plant is type 1. The objective of this heuristic is to start the design process from a
point that is in the "ballpark” as far as being able to attain the desire closed-loop bandwidth.

Once the initial lead(s) have been set, a calculation is done in Matrix, to determine the gain
margin and the frequency at which the gain margin is calculated. Then the gain is adjusted to
meet the gain-margin specification and one or more lags are inserted to meet the specified low-
frequency gain (type-0 plant) or velocity constant (type-1 plant). At this point we know that two
of the three specifications have been met, so we next have Matrix, evaluate the closed-loop
bandwidth. In the unlikely event that the value falls within the tolerance of the specification, the
design has been completed because a controller has been found that satisfies all three of the
specifications, within the tolerances.

The more likely situation is that we have not satisfied the closed-loup bandwidth specification.
In this event, an adjustment will be made in the alpha parameter of the lead(s) so as to increase
the amount of phase lead if the actual closed-loop bandwidth is low and to decrease the phase
lead if the closed-loop bandwidth is above the specified value. A relatively simple heuristic rule
is used to select the change in the value of alpha (the pole-zero ratio) of the lead(s) and no
‘change is made in the center frequency at present.

Assuming that the adjustments of the lead and the gain finally result in the closed-loop
bandwidth specification having been met, there is a final adjustment made to the lags to ensur.
that the low-frequency-gain or velocity constant specification has been met. Then the other two
specifications are retested, because we must expect to retest the specifications after any change
has been made to the compensator. :

Another significant change from the original version of CACE-III is the step taken to recognize
and compensate for lightly-damped modes of the plant. It has been known that the presence of
such modes (say complex poles with a damping ratio less than 0.2) will cause the original
CACE-IIl algerithm to yield unsatisfactory results. If such a mode is discovered during the
diagnosis phase the expert system inserts a notch filter in series with the plant.

INTERFACE CODE AND FILES

Because of the necessity of developing and modifying the mathematical model of the control
system and of carrying out a multitude of control-related calculations, it is not practical to
implement the entire expert system for the design of lead-lag controllers in GoldWorks. Because
Matrix, has been used for the control calculations, it has been necessary to develop a mechanism
for having GoldWorks write the necessary Matrix, commands and to interpret the results.

For example, when the compensator must be modified, the alpha of the leads must be increased.
The rule that decides this task must be performed will call a specialized Lisp procedure. This
procedure will extract any required numerical values, such as the new values of the compensator
parameters (gain, lead center frequency and alpha, and lag center frequency and alpha) from the
slots of the appropriate frames. Then it will use them to write the required commands to a file
that is read by Matrix,. After any required modification of the compensator and calculations are
completed, Matrix, will write the results and an error code to a file. GoldWorks will read the
file, test the error code, and digest the results. In Fig. 5, we show the result of a design where the
final compensator is composed of a gain, two leads, and two lags.

CONF-9007134

Page 68
gain lag 1 lag 2 lead | lead 2 plant
. 1 s+1037 . 6.710s - 2331
| 358 |ef 2 1037 1 |3 8710823311] - Gp(s) -
: s+012) s$+0.121 s+ 2331 s+ 2331

Figure 5. Block diagram of the final feedback system.

RESULTS

During the course of this project a number of significant changes have been made that have
resulted in a vastly-improved implementation of the original design methodology and made
modest improvements in the design algorithm. With these changes, the opportunity now exists
for further growth. In the remainder of this section we will list and give brief descriptions of
these changes.

A.C hangesfrom the original CACE-III

Expert-system shell: The current work has been done with the original version of GoldWorks
that was produced by Gold Hiil Computers, Inc. of Cambridge, MA in 1987.

Rules: The rule base has been greatly simplified from that of the original version. Part of this
reduction came from a decision not to implement the model-development feature of the original
version, but for the most part it came from having had the benefit of the earlier work and being
able to use a second-generation expert-system shell.

GoldWorks-Matrix, interface code: A considerable amount of effort went into the
development of the code for the interface between GoldWorks and Matrix,. Because Matrix
handles its models in a very different fashion from CLADP (its counterpart in the origina)j
version of CACE-III), it was necessary to completely redefine the manner in which the expert
system and the application program keep track of and modify the compensator and open- and
closed-loop models. For example, GoldWorks thinks of the compensator in terms of poles,
zeros, and center frequencies, whereas Matrix, thinks of it as a packed matrix consisting of the
A, B, C. and D matrices of the state-space representation. When a pole or zero is modified, the
corresponding slot value is changed in GoldWorks, but in Matrix, the entire compensator is
discarded and a new one is built. Also, error flags, that had not been used in the original
implementation, were introduced in the Matrix, code. The net result is that the present system is
far more robust and extendable than its predecessor. For the most part, the Matrix, side of the
interface does the state-space model manipulations caused by the adjustments in the compensator
and the control calculations required for the design algorithm and the evaluation of the
specifications. The GoldWorks side of the interface, written in Lisp, does the compensator
manipulations in terms of the alphas and the center frequencies, the writing of the Matrix,
command files, and the interpretation of the results received from Matrix,,.

User interface with GoldWorks: The user-interface development tools of GoldWorks have
made it possible for the user to enter information such as the plant name and the specifications
with a minimum of typing and with reduced chance for error. The specifications are entered by
editing the default values that appear on a form, with their tolerances, and the names of any
predefined plant models can be entered by clicking on a menu. Additional displays have been

CONF-9007134
Page 69

created to keep the user informed as to the status of the design process, in terms of the open- and
closed-loop system characteristics and the controller parameters.

Post-run review and restart: All of the files of Matrix, commands and results that are passed
back to GoldWorks during a run are saved. Also the firing of every rule is recorded in a
GoldWorks log file running on the Zenith, and a Matrix, diary file records all of the information
that is displayed on the screen of the XT. In addition, the values of all of the Matrix, variables
are saved at each step of the design in binary files that can be loaded into the Matrix, work
space. With this information, it is possible to follow and reconstruct the details of the design
process after the run has been completed.

Lightly-damped plant modes: The rule base has been expanded to be able to handle plants with
lightly-damped modes whick the original version of CACE-III was unable to do. This is
accomplished by inserting a notch filter in series with the plant and then proceeding with the .
design algorithm.

B. Possible extensions

Although numerous improvements have been made so far over the original implementation of
CACE-III, there are still a number of features that can be added by taking advantage of the
GoldWorks environment, and there are further enhancements to the existing implementation that
can be incorporated.

Rule-base consolidation and greater use of object-oriented programming: The rules have
developed to a point where they are no longer as clean and orderly as we would like, and the
division of tasks within the Lisp code is not as clear as it could be. Also, we have not taken full
advantage of the object-oriented-programming techniques that GoldWorks has put at our
disposal. For example, handlers can be created to send messages to the frames (objects) and a
slot value in that frame might be the name of the procedure for calculating the closed-loop
bandwidth. It is anticipated that simplifications can be made and GoldWorks programming

techniques incorporated that will prove beneficial when adding some of the new features that
follow.

Faster algorithm convergence: It is believed that the convergence of the current design
algorithm can be speeded up by using a more sophisticated rule for selecting the amount of phase
lead change based on the error in the closed-loop bandwidth specification. Such a rule would
use the mathematical model of the plant, which is available to the expert system, to analytically
predict the expected changes in the closed-loop bandwidth and adjust the lead alpha accordingly.
One could also incorporate a leamming mechanism, perhaps tied to the plant model.

Vary compensator center frequencies: It might be possible to get some benefit when more
than one lead is involved by allowing the center frequencies of the leads to differ from the
desired closed-loop bandwidth frequency or by letting them differ from one another. Similar
changes could be made in the center frequencies of the lag(s), based on recognizing distinctive
geometric ch. cteristics of the Nichols plot.

Reduce overshoot at plant input: Once the basic algoritm has met the specifications, the expert
system can alleviate the high overshoot that will occur at the input to the plant following a step
change in the reference input. This can be done by moving the lead part of the compensator
from the forward path to the feedback path. However, this will affect the zeros of the closed-
loop transfer function and the step response, so the specifications will probably no longer be met.
It will be necessary to-have some additional rules for adjusting the compensator.

CONF-9007134

Page 70

Sampled-data designs: It should also be possible to do sampled-data designs by using the
bilinear transformation of the discrete-time model to a pseudo continuous-time model, carry out
the design with the present rules, and transform the controller back to the discrete-time domain.

Allow additional specifications: It would be desirable to be able to accomodate a wider range
of specifications, such as percent overshoot, settling time, rise time, and steady-state error to a
disturbance input. At present, the diagnosis of the plant detects the presence of a lightly-damped
mode and the expert system will insert a notch filter to compensate for it. It should be possible
to have other characteristics of the plant detected and used to determine it the user's
specifications are reasonable and, if not, how they might be modified.

Multiple gain-margin values: When Matrix, detects multiple values for the gain margin, i.e.,
multiple crossings of the -180 degree phase ling, it reports these to GoldWorks but at the present
time the rules required to use this information intelligently are not available.

Explanations: The expert system could be strengthened by making better use of the capabilities
of GoldWorks to provide explanations of the design process to the user.

Design tradeoffs: Another area for possible improvement is to provide the user with assistance
in making design tradeoffs, once the specifications have been met or it has been determined that
they can not be met.

Constraints: Along with this, it would be useful to incorporate some constraints on the design
that the user could adjust, if desired. Examples of these would be maximum number of leads
and lags, maximum value of the parameter alpha for the leads and lags. ‘

Phase margin: At present, the phase margin and the phase-margin frequency are not used in the
design procedure. It is well known that one can have a satisfactory gain margin but still have a
very oscillatory response if the phase margin is too low. Also, there are plants for which the
phase margin is defined but the gain margin is not. The original version of CACE-III could deal
with such plants, but this feature has not been carried along.

Hybrid rule base: It might make sense to have two classes of rules. One class would implement
the design algorithm, say as it is presented in Fig. 4, and the other class of rules would respond to
problems or exceptions that might arise. Examples would include multiple gain-margin values,
unusual bandwidth values, lack of convergence, failure of compensator changes to yield
expected results, etc. One approach would be to create subframes of the OL-SYS and CL-SYS
frames that would be used to store the patterns recognized as being anomalous. When detected,
a pattern could be used to fire the rules for a variation in the design algorithm. In such a case,
the expert system would be using the heirarchical inheritance mechanism of the frames to define
the problem and the situation-action mechanism of the rules to perform the design.

Application to real-time control: The question of using an expert system as part of a real-time
control system has not been specifically addressed. However, we believe that much of what we
have accomplished so far is applicable to that goal provided that the design is done in a
supervisory role by using the rules to adapt to parameter variations and uncertainty. '

CONCLUSION

It has been demonstrated that the combination of GoldWorks and Matrix, provides an effective
environment for carrying out the design of SISO control systems. In éoing so, much of the
infrastructure that is necessary for doing this type of work has been put into place in a way that it
is adaptable to a variety of other applications.

CONF-9007134

- Page 71 /71
REFERENCES

[1] James, John R., Dean K. Frederick, and James H. Taylor, "Use of expert-systems
programming techniques for the design of lead-lag compensators”, IEE Proceedings, vol. 134, pt.
D, no. 3, May 1987.

[2] Frederick, Dean K., John R. James, Alfred Antoniotti, and Hiroyuki Nitta, "A Second-
generation Expert System for computer-aided control system design”, DKF Consulting Service,
Inc., Ballston Lake, NY, February 1990.

ACKNOWLEDGEMENTS

The author was assisted in this work by Col. John R. James, HQ TRADOC, Fort Monroe, VA
and by Alfred Antoniotti and Hiroyuki Nitta, both of the Electrical, Computcr, and Systems
Engineering Department, Rensselaer Polytechnic Institute, Troy, NY. The work was performed
for Dr. Norman Coleman of the U.S. Army Armament Research and Development Center at
Picatinny Arsenal, Dover, NJ. The research was performed under Contract No. DAALQ3-86-D-
0001, Delivery Order 1100, of the Scientific Services Program, Battelle Research, Research
Tna.nglc Park, NC. The views, opinions, and/or findings contained in this report are those of the
author and should not be construed as an official Department of the Army position, policy, or
dccxslon unless so designated by other documentation.

CONF-9007134
Page 73

Control Systems Engineering in an
Open—Architectured Object—Oriented
Software Environment
Donald T. Gavel

Lawrence Livermore National Laboratory
P.0. Bozx 808, Livcrmore, CA 94550

ABSTRACT

Over ﬁhe past decade, the practice of contrui systems engineering has been pro-
foundly affected by the explosion in computer hardware and software technology. This
paper describes the emerging concepts of open-architectured object-oriented software
design which allow for both compatibilif,y and expandability of compufter based engi-

neering tools in the face of ever expanding user needs.

1. Introduction

Fueled by the explosion in computer workstation and networking technology, there has been a rapid
increase in both the availability and capability of the software tools most useful to control systems engineers.
Today, software technology has advanced to a point where significant standardization issues have been worked
out and very low cost or even {ree software is availvable for many of the important computational tasks
performed by the control systems engineer, such as symbolic equation manipulation, numerical calculations,

graphical display, and documentation.

While incorporating all of the control system design tools into a single “package” seemed the obvious
answer years ago, by far the most popular solution now is the “open environment” approach, that is, using
a good general purpose operating system, such as Unix, and a small set of well documented data formats,
e.g. IEEE floating point standard, TIFF graphics format, etc., which are now widely accept across multiple
engineering disciplines. The principal advantage of the open environment is that tools are allowed maximum

flexiblity for future growth and enhancement.

In order to encourage wide dissemination of software across computer hardware architectures and oper-
ating systems, much of today’s software is made available in an “open-architectured” format. The open-
architectured software package includes all of the source files and all of the script files necessary to regenerate
the wgrking program. This approach allows users to tailor programs to their own needs by editing the source
or input files. Unfortunately, however, software is often written so obscurely that its operation is hard to
determine from source listings, and users are tempted to start over from scratch, resulting in a wasteful

duplication of effort.

The object-oriented approach, which has developed over the past several years, has helped to aleviate

1

CONF-9007134
Page 74

this problem by making source files more manageable and easier to debug . The technique and has been
widely adopted by miodern software designers. The Ada and C++ are programming langﬁages are clear

indications of the tendency in this direction.

This paper will focus on a new open-architectured, object-oriented engineering design tool called MatC,
which can do most of the matrix-based numerical calculations for cbntrol systems design, as well as for a

" number of oﬁher disciplines. MatC integrates well with other tools, both open—- and closed-architectured, that
are useful to engineers, for example: Mathematica (symbolic manipulator), VIEW (image processing/data
display), Emacs (editor/window system), and TgX(document typesetter). As shown in figure 1, an engineer

* can go from conceptual design to parametric design to final report, all eléctronically, which lends itself well

to traceability and repeatability of the design process.

equations of
motion

Mat/C

cassesasen

Robot Arm
object

Euler/Lagrange

fOFMUIAS commeede| Mathematica™ plotted

resylts,
numerical
data, etc.

physical Tex™
parameters
CAD
drawing
Final
Report

Flg 1.‘ The Flow of Engineering Data During Control System Design

In section 2 we describe the operation of MatC in a window based environment. Section 3 describes the
software objects from which MatC is constructed, and explains how they can be reused in other programs.
In section 4, we discuss the other important pieces of software that form an integrated engineering software
environment. Finally, in section 5 we will use the design of a robot control system as an example of modern

computer-based engineering development.

2.The MatC Program

MatC is bﬁ's‘ica.“y an interactive calculator. The user types commands and the comﬁuter responds with
the calculated answer. The simplest “commands” are arithmetic calculations, for example
<> 8%3
ANS =
24
The program has calculated the product 8 x 3 = 24 and stored the answer in the variable ANS, which

always contains the result of the most recent calculation. MatC allows you to specify and do calculations on

matrices:

<>a=[12

CONF-9007134

Page 75
341); |
<>b=[1
21
<> a*b
ANS =
5
11
<

‘We have set the variable a equal to the matrix (; 3) and set b equal to <;) then multiplied them

according to the rules of matrix multiplication to get the result (151> .

MatC has a large number of built-in matrix functions that can be called inte‘racti‘vely.‘ For example, since
a is a square matrix, we can compute its eigenvalues ‘
<> eig(a)
ANS =
-0.3723
5.3723
<o
or, we can generate a complex number
<> i

i =

sqre(-1)

0.0000 + 1,0000 i
MatC calculations work on both real and complex numbers. The MatC functions all allow complex argu- .

ments, and may produce complex results. Figure 2 shows a list of MatC functions generated by the “WHAT

FUN” command.

-------- Butitin Functions (* = not Implimented yet) == 77 Items ~======
ABS ASTIG ATAN BASE CHOL cLiP
COND CONJ CONV Cos CURV DET
DIAG DIARY* DISP* EOIT EIG ERF
ERFC EXEC ExXP EYE FFT FFT2D
FLOP GAUSS GRID HESS HILB HIST

IMAG INV ISTHERE KRON LABEL LEV
LOAD LOG L LYAP MAGI MINM
NORM ONES ORTH P30 PCOLOR PINV.
pPLOT POLY PRINT® PROD QR RAND

RANK RAT RCON REAL RICC ROOT
ROUN . RREF SAVE SCHU SIN SIZE
SORT SQRT SUM SVD TRACE TRIL
TRIV -EPS =l ~INF. - P

Fig. 2. A List of MatC Functions
The features of MatC are:

o At the most basic level, the program acts as an interactive calculator for matrices. Users familiar with

3

CONF-9007134

Page 76

BASIC, ‘FORTRAN, or even a hand calculator find MatC easy to learn and use.

The MatC language is a complete interactive programming environment, with structured programming
constructs (FOR, WHILE, IF), function calls, database manipulation, etc. |

‘MatC has an extensive built-in function library. Matrix calculations are based on the proven LINPACK
and EISPACK software packages.

There is a variety of ways to enter data into MatC: it can be entered from the terminal, read frcm script

files, read from MatC formated data files, or read from ascii data files written by other programs.

There is a similar variety of ways to save data on disk files. All or part of the MatC database can be

saved for later use, either in future MatC interactive sessions, or for transfer to other programs.

MatC has extensive interactive plotting capabilities. Both 2-D and 3-D plots can be generated. The
resulting graphical display can be sent to a printer or transfered as picture data to other‘programs such

as word processers, viewgraph makers, etc.

MatC has a standard interface to “external” software. Users can easily add their own subroutines or
entire libraries of functions into the MatC environment, thus specializing the program to the a particular

application’s needs.

Th. C laﬁguage sources are available to users. MatC was designed and programmed using an object
oriented approach. Each object is a data structure and the set of operations relevant to that data structure.
For example, the MatC objects are familiar items such as Matrix, Plot, TextFile, etc. Typical operations
are Print, Copy, Dispose, etc. MatC'’s objects can be easily modified at the C source level to suit a

user’s specialized needs. The objects can also be incorporated into other programs.

The interactive environment is both intelligent and user friendly. Windows are used to display one or more

interactive MatC sessions (each with its own database). Script files can be edited in seperate windows, then

“sent” to the MatC proceésor in one keystroke. Each plot has its own window and a set of smart operations

that go with it. “Help” files are on-line and can be viewed while running MatC in a separate smart window

with a topical search facility. All of the documentation is available on-line in TgrXfiles.

The MatC software package can be distributed completely electronically, on tape or disk, or over a network,

which makes it easy to access all of the information in one place when it is needed, cuts down on paperwork,

and gives users easy access to the most up~to-date version. The open—archtecture allows for customization

toa particular application. An example of a customized robot control design application is given later in

this report,

il

CONF-9007134
- Page 77

2. Objécts

The development of MatC was made easier through the use of objects. An object is a data structure
combined with all of the operations (methods) that are valid on that data structure. Ideally, objects are
conceptually easy to grasp entities, such as a Matrix or a Graph, for which high level operations, such as
Plot or Savé, convey immeadiate meaning. The actual implimentation of an object’s methods, as well as
the siructure of the object itself, can be hidden from all the other routines that use the object.

The data hiding feature, called encapsﬁlation, turns out to be an extremely valuable tech‘nique for reusabil-
ity of code, ease of enhancement, and isolation of bugs. For example, in the process of developing an en-
hanced version of the code, an object’s capabilities can be expanded or modified, even its data structure
can be changed, without requiring any changes in the existing software that uses the object. The upgraded
object is always user-compatible with old version. In fact, the t.endéncy in object-oriented désign is to never
throw away old code (since it is reusable) but only to add on completely new capabilities.

Most objects understand a generic set of methods. Object.New and Object Dispose create and dispose
instances of objects. Object. Print displays object‘ data at the terminal. Ob]'eét_Copy, Object Rename,
Object_Size, etc. also do obvious operations. Particular objects may actually impliment these methods
differently, depending on what is appropriate. Particular objects also have their own unique methods,
expanding upon the basic set. ‘

Some of the objects used in MatC are explained below.

¢ Matrix — contains the size, data, and name of a matrix. Methods are Matrix_Multiply, Ma-

trix_Divide, Matrix_Eigenvalues, etc.

e SymbolTable — maintains the MatC database. Typical methods are SymbolTable_Add, Symbol-
Table Remove, SymbolTable Lookup, SymbolTable_Sort, etc.

¢ Symbol — is the entity stored in a SymbolTable. It contains the Matrix or Function, creation time,

and protection bits.

¢ Lexer — is the MatC command interpreter. The method Lexer.ParseAndExecute absorbs the user’s
command string and sends it on to the parser. Since MatC understands infix mathematical syntax and
uses a specialized syntax for matrices, a rather complex parser is used. The parser was constructed from a
syntax description file using the Yacc parser generator program. A subordina‘te Machine object executes

the parsed code. Lexer also handles commands read from text files using the Lexer_ExecFile method.
¢ Graphic — contains the graphical information about a plot or other drawing.

e Window, TE (TextEdit extension), MenuBar, and EventHandler — are specific to the Macintosh

environment and maintain the user interface. On Unix, these operations are taken care of in a Vterm,
Xterm, or EMACS window.

The reusablity and encapsulation properties of MatC objects make them ideal as seperate entities that

can be incorporated in other programs, For example, if one wants to read the data stored in a MatC

5

CONF-9007134

© Page 78

“save” formated file into another program, that program can be modified to use the Matrix object. The
M_atriic.Load method will read the data from disk, and other Matrix methods are available to extract the
important information contained in the matrix. ‘

. Alternatively, the Matrix object can be modified so that it can read and write data stored in the other
program'’s format. As MatC develops, we will see an increasing tendency toward compatibility with other
programs and data formats. Thiﬁ make sense in light of MatC'’s open-architectured philosophy and the fact
that MatC has such an extensive interactive data manipulation and display capability. It is the logical choiée

as a data “switching station.”

4. Integrated Engineering Software Environment

In order to assure a systematic and repeatible design process, engineers demand a sophisticated operating
system as well as a significant amount of snpport software. In the ideal open environment,. there is always
be allowance for modification, enhancement, partial execution, and general twiddling by the design engineer.
The objective is to make the tedious parts of the engineering job easy to acoomplish in a systematic manner
and not to favor any particular engineering design approach.

A comfortable operating system and terminal screen environmént is flexible enough to allow the simulta-
neous display of large amounts of information. For example, in Figure 3 the on-line help, a script file editor,
directory listings, and the program doing calculations are all simultaneously visible.

Several tools make it possible {oday to have this arrangement using almost all open-architsctured software.
To mention a few: the MIT X-Windows system provides an excellent, window system for graphics worksta-
tions, and is‘ava.ilable free of charge; GNU EMACS is an excellent multi-port environment that will work on
non graphics terminals (GNU offeres a variety of open-architectured Unix utilties, including a C compiler,
debugger, make facility, etc.); Mat/C has the basic tools for control systems design, general calculation, data

analysis, simulation, and plotting; TgXis a document. typesetting program that can be tailored to allow text

and graphics pasting.

5. Robot Control System Design Example

As an example problem we consider the design of a robot motion controller. The dynamics of a robot
system are highly nonlinear, uncertain, and depend on the load, operating speed, and position of the arm.
Our design process will roughly follow the path outlined in Figure 1. We start from a basic mechanical
description of the system (say, a parameterized CAD drawing), the basic inertial parameters (mass, CG,

moments of inertial of each part), and the geometry of the arm (the Denavit-Hartenberg parameters), and

proceed to develop a controller and anaylze the behavior.

The Lagrangian for the system is

L=T-V=%¥VMVMN®d-d® (1)

6

=

CONF-9007134
Page 79

.emacs @ dagwoodInk.govss e i

0,0960 0.0960 0.0716
-0,1783 -0,1783 -0,1992 .
1.,0000 1.0000 1,000 [

<5>
- MatCDatabase (modifie) -- 14 items —-—-—-- -—
A ANS B C D E
J L) R S T
X Y

Total of 1408 butes

<26>
f-—%%-Emacs$ *shellx = © o i9hells run)===4Bot=——m——— -~ ‘
// wavelets,exec --- orthogonal multiresolution deconposxtxon k3 18384 May 17 16:24 pt. sdt
/7 % 45 May 17 16:24 pt,spr
/7 ref: [11 S,G.Mallat, “A Theory for Multiresolution Signal |$ 4194304 Jun 7 17:22 puramid.sdt
// Decomposition: The Wavelet Representation,® I$ 49 Jun 7 17:21 puramid,spr
4 [EEE Trans. Pat, Anal, & Mach, Intell., V.11 R 0 May 17 16:57 pyramidClouds,sav
e No.7,Juiy,1989,pp.674-693 (CLOUDS) 1% 65536 May 17 17:25 pyramidClouds,sdt
a4 (RS 47 May 17 17:25 pyramidClouds.spr
74 definitims: S5.H == 1-D quadrature mirror filter pair 1% 16384 May 17 16:05 pyramidTest,sdt
24 ajplusl -- high resolution image R 45 May 17 16:05 pyramidTest,spr
4 aj == half resolution approximation i$ 10726 May 17 16:00 quadiirror,sav
/7 dj1,dj2.dj3 -- half resolution detailc 1% 0 Nov 20 1989 seq.db.db
/7 I$ 13984 Jul 11 12:25 signal_db.db
// sample pattern: box 4 512 fApr 16 11:00 stuff
/Zajplusl = Owones(B4,64); {4 0 Sep 21 1989 synonyms
//ajplusl(17:64-16,17:64-16) = ones(32,32): R} 223 May 17 16:33 temp.exec
/7 R 106 Nov 9 1989 testr
A = ffelajplusl)s // first the rows... k] 181 Jul 13 09:28 texput.log
[n,m] = size(A):; |4 304 Ppr 27 16359 tmp
filn = size(H)x(1:;0); ks 17 fpr 27 15:58 tmp”
/7 loop 1% 25 Jul 11 12: 25 v1ewloq cmd

-——-Emacs:-waveletsiexec . - (Fundamental)-=--Topr=—=~——-—— —~/i-Direds qavél S TV et e |

/. %, == Infix Kronecker operators are not yet
supported, KRON works however,

HELP HELI glves assistance,
: HELP HELP obviously prints this message,
To see all the help messages, lock at the file "MatC_Help’

A

< > Brackets are used in forming vectors and matrices,

<6,9 9.64 SORT(-1>> is a wvector with three elements
separated by blankg. <6.9, 89.64, SQRT(1)> 1s the same
thing, But <1+1 2-1 3> and <1 +I 2 -1 2> are not the same,
The first has three elements, the second has five,

{11 12 13: 21 22 23> is a2 by 3 matrix ., The semicolon
ends the First row,

Vectors and matrices can be used inside < > brackets.,
<A B; C> is allowed if the rumber of rows of A equals
the number of rou°‘0€ B and the number of columns of A

‘-———Emar::: Magl_Help: - = 7 - 0 S FuRdanenta] foe e B e e e e e e e i e e

Fig. 3 Running MatC zuder EMACS

L]
i

[I T R W\H.

Bl

CONF-9007134
Page 80

where T is the kinetic energy, V is the potential energy, q represents the vector of robot joint displacements
or rotation angles along the n degrees of freedom of the robot. M is an 2n x 2n diagonal matrix containing

the link masses and moments of inertia of each moving link. The Jacobian, J = (JT,JT)7 is defined by
Jv(q) = 0v/dq; Ju(q) = dw/dq. S (2)

From the Lagrangian, the Euler-Lagrange equations of motion can be derived

8L. 4L . . ~
Texternal = (55 ~ %" H(q)d + C(q,q) + G(q) (3)

The functions H(-), C(-,-), and G(-) are very complicated expressions in terms of the original robot inertial

parameters and robot geometry 2. These expressions are best derived using a symbolic math manipulation

- program such as Mathematica. The problem of performing tedious but straightforward symbolic calculations

arises in many control and state estimation tasks, particularly those involving non-linear systems. It is
important to have computer assistance in performing these calculations so that they can be done without
error.

Given the equations of motion, we can use MatC to perform analysis and design. For example, say we wish
to compare a decentalized design (that is, independent parallel controllers for each joint) to the computed

torque approach, which requires a centralized control computer. Computed torque is given by
Tapplied = H(Q)["'kde - kPe + C(q, q) + G(q)] ‘ (4)

where e = q — qq is the difference between desired and actual joint position, and k, and k4 are proportional
and derivative gains, respectively. The closed loop system has predictable 2n-order linear behavior, but note
that the method relies on calculating H('), C(-,-), and G(-) in real time with a centralized control computer.

A decentralized control law, which could be implimented using commercially available PID controller chips
at each joint, will be of the form

Tapplied = pD(—~kqé — kpe). (5)

In this control law, D can be conside :d a diagonal approximation to the inertia matrix H(-). The parameter
p is to be adjusted in the design process. The performance of the independent joint controller will not in
general be as good as perfect computed torque control. Qur aim is to select control parameters, ka, kp, D,

and p that optimize system performance given the contrant of a decentralized law.

The degree of stability for the decentralized controller is given by
= Aminll = p" ' KTW(Q)T H(q)W(q)K]o0 (6)

where o¢ is the magnitude of the real part of the computed torque closed-loop eigenvalue closest to the jw
axis, K = (kp, kq)¥, and

W(q)=H(q)"'D -1 (7)

8

CONF-9007134
Page 81

" which is a measure of how closely D approximates H(:). Note that the best possible performance is W = 0

giving 4 = 1. The closed loop settling time is

Tny ~ 3//‘ (8)
and the closed loop tracking error is given by
1/3
lell < | ©
Pl

where £ is a function of the desired trajectory accelerations and the magnitude of Coriolis and gravity forces.
The designer must iterate on choices of K, D, and p in order to maximize u, and minimize T, and |e||.
A portion of the MatC script file that does this is shown in Figure 4 which also shows the robot arm in

simulated configurations and plots of simulation results.

The drawing of the robot arm is an example of how MatC can be customized for particular applications. A
new object Robot was coded and attached to MatC through the standarid function interface module (called
UserFunctions). This new object constructs a 3-D polygonal representation of the arm given some defining
geometrical dimensions and the Denavit-Hartenberg parameters (which include q, the arm’s configuration).
The object has methods that create projections onto a 2-D graphic port, as shown, or writes the polygons
to a file for input to a program that produces a shaded color rendition. Using a MatC script file, pictures

can be redrawn at different configurations to make a movie, if desired.

6. Conclusion

As control systems engineers are relying more and more on powerful personal computer workstations to aid
in their design work, open~architectured software is beginning to play a key role in the engineering software

environment. MatC is an example of this kind of easily customizable software that can perforin general

IR Vo S RV B T U T a abllant amia ; 3 3
caicuiations, daia nandling, aind graphics tasks. The object oricnted design, combined wit

sources, makes MatC adaptable to expanding needs.

" CONF-9007134

Page 82

9. B. Armstrong, O. Khatib, and J. Burdick, The Ezplicit Dynamic Model and Inertial Parameters of the
PUMA 560 Arm, Proceedings IEEE 1986 International Conference on Robotics and Automa-

References

1. B. Cox, Object-Oriented Programming: An Evolutionary Approach Addison-Wesley, Reading,

MA, 1987.

// example |

Ke = [-24 -10);
A= {0 1;Kel;
gB=[01];

Q = eye(2);

P = Lyap(A,Q);
Kebar = -B'*P,;
rho = 1e3;

jamQ = eig(Q-(1/rho)*Ke *(1)%*Ke);

lamP = eig(P);

mu = (minm{lamQ)*(1;01)/..
(minm(lamP)*{0; 1));

tau = 2/mu;

maxerr = sqri(xi/.. ‘
(rho*mu%(minm(lamP)*(1;01));

gainMatrix = {
(D(1,1)%Ke + rho*Kebar)
(D(2,2)%Ke + rho*Kebar)
(D(3,3)*Ke + rho*Kebar) 1;

lamA = eig(A);
JamAc! = eig(A+B*rho*Kebar);
imgr = (=1 t =1 1];

view = [_pi/d -_p174 00 0l
robat(dim,dhp,n,imgr,view),

Tracking Error vs Time

Ll TTIT o JIgh 0 LI L)

[NENEE NN .

-75 ©
0

50 100 150 200

tion, April, 1986, San Francisco, CA, 510—518.

10

Fig. 4. MatC Script File for Robot Controller Design and Graphic Output

R

CONF-9007134

Page 83

Hierarchical Heterogeneous Symbolic Control: Lessons Learned from TEXSYS

B. J. Glass
NASA-Ames Research Center
Moffett Field, CA 94035
glass@pluto.arc.nasa.gov

Abstract

A multilayered approach to the symbolic control of
complex electromechanical assemblies is discussed. An
example of this approach is given in some recent tests of
the Thermal Expert System (TEXSYS) in control of the
Boeing Aerospace Thermal Bus System (BATBS), a
prototype two-phase Space Station Freedom thermal bus.
The BATBS hardware requires read-update-act cycles of
under a minute, and it is subject to dynamic reconfiguration
while operating. These performance requirements are
addressed by hierarchical layering of model-based expert
system software on a conventional numerical data
acquisition and control system. Temporal and structural
reasoning capabilities are found to be needed to identify all
component faults. TEXSYS test results demonstrate both
nominal control and fault recovery actions with the

BATBS. Dynamic modification of the symbolic model used

in this approach is compared to that of a classical numerical
adaptive controller.

Introduction

Some complex space-based systems require constant
monitoring and control -- parameters, configuration, and
component health change with time. Current operational
practice generally requires human operators to scan
telemetry, watching for deviations from expected
performance. In real-time, large-scale applications, such as
Space Station Freedom (SSF) subsystems, this will prove
expensive -- since many operators are required given the
data processing limitations of humans. Transmission and
processing delays, coupled with human inattentiveness,
also tends to reduce safety and stability margins. By
automating some or most of the monitoring,
troubleshooting, and control of these dynamic space
systems, the need for direct human involvement is reduced
and robustness is improved. This paper discusses the
approach used to implement “expert” control on a
representative SSF prototype subsystem.

A symbolic model-based reasoning approach to
identification and control, such as is taken here, is desirable
because of its ability to follow changes in parameters,
varying hardware configuration, and sensor failures; and,
becaise of its avility to construct a qualitative model cven
in the absence of a detailed numerical model!l. Frequent
design changes, damage, and highly nonlinear components

are to be expected in the creation and deployment of
complex systems. Also, operational robustness is generally
enhanced by the ability to operate and to reach at least
partial conclusions with incomplete data2.

A prototype thermal control system, or external
thermal bus, for the Space Station Freedom was initially
selected as a representative space system for a symbolic
control application. The thermal bus used for TEXSYS
tests was the Boeing Aerospace Thermal Bus System
(BATBS) resident at the NASA Johnson Space Center, It is
a complex, self-balancing system with many independent
parameters, which has thus far made conventional dynamic

‘numerical simulation infeasible3,

To automate some of the operational functionality of a
thermal test engineer, existing artificial intelligence
techniques such as frame systems*, data-driven
programming and model-based reasoning> were employed
to create a symbolic thermal bus model. Together with
rules for conflict interpretation and tasks for representing
procedural knowledge, this knowledge base comprised the
core Thermal Expert System (TEXSYS). The core
TEXSYS was layered on conventional software for data
acquisition and control, creating a hierarchical “expert” (as
defined by Astrém and others)® or “symbolic” controller.”
In a series of tests, this approach was demonstrated to be
capable of real-time monitoring and control of the BATBS
during both nominal operations and induced faults8.

The first section of this paper discusses the control
requirements for the BATBS. An overview of the layered
symbolic controller approach used in TEXSYS is given in
the second section, followed by an example and
conclusions.

Problem Setting

SSF External Thermal Bus -- a nonlinear,
dynamic electromechanical plant

Ground test prototypes of severai two-phase thermal
bus designs for space station use have been constructed for
evaluation. Initial TEXSYS development assumed a series
of different thermal bus designs, but was shifted to the
BATBS prototype when the original target testbed delivery
was delayed. A descendant of the BATBS architecture is
now the baseline design for the SSF external thermal bus.

- LUNF-9007134
Page 84

The physical design of this thermal architecture is discussed
in more detail elsewhere3

Given several highly nonlinear components, no
accurate dynamic numerical simulation of this architecture

has yet been developed, making the design of conventional

numerical control laws difficult. Empirical performance
descriptions of these black-box components has thus far
been substituted for accurate mathemasical iiodels. Given
these poorly-known components, 'he mo;}/cl is not easily
used as a state estimator. e /

(‘r
Thermal Bus identification and controi
requirements

The conventional data acquisition and control system
(DACS) software preceded the symbolic software at the
BATBS site and was separately verified and validated.
DACS sampled all sensors once every five seconds. To
avoid consideration by the expert system of steady or
slowly-changing data, data were filtered for significant
changes. This filtering, as well as integration of the expert
system with the DACS, was done by the TEXSYS Data
Acquisition System (TDAS). Filter deadbands and alarm
limits were defined for sensor values, trends (five-point fit:
25 sec. trend) and long-term trends (sixty-point fit: 5 min.
trend), and were refined by trial-and-error during expert
systemn validation testing. This testing procedure and the
filtering services provnded by the TDAS software are
described in anothér paper

When hardware faults occur, the BATBS may reach off-
nominal operating states, These states have been
characterized in terms of broad, systemic faults caused by
specific cornponeat faults.!0 TEXSYS was required to
identify and react to all of the seven known system-level
faults and to ten (of 34) component-level faults chosen by
thermal engineers as most interesting or representative,
Figure 1 shows a chart listing these faults. The trending
capability provided by TDAS, together with discrete event
histories, provided a temporal reasoning capability that was
necessary in order to unambiguously identify these faults.

Most of the other 25 component faults were in fact
tested with TEXSYS -- for instance, pressure sensor failure
was the only formally required sensor fault, but the same
capability could be (and was) also used to detect
temperature, flow, delta-pressure, and position sensor
failures. Certain destructive faults (e.g., explosive pipe
rupture) were not tested because of safety, cost and
downtime constraints.

Problems with using simple rule-based
approaches

Given scores to thousands of sensors, and given that
for oaf\u.y 5 sake redundant sensors u '"-‘"ﬂnw exist for critical

parameters, simple rule-based approaches beCOme increasing
infeasible in proportion to the number of sensors. The

reason for this problem is clear when one considers the
combinations of sensors that would be have to be referenced
in separate rules for each fault or required control action.
Otherwise, sensor failures could render a simple rule-based
controller useless, unable to rely on backup sensors, Also,
simple rule-based expert controllers generally have no
mechanism for identifying unanticipated conditions --
thereby limiting their stability.

SPECIFIC FUNCTIONALITY DEMONSTRATED

NOMINAL OPERATIONS
. BTA%}J':‘_ CHANGES m a. » L
* SHUT DOWN mu PO clamanes vt

FAULT DETECTION, ISOLATION, AlD RECOVERY

+ 7 SYSTEM LEVEL FAULTS + 10 COMPONENT LEVEL FAULTS
MVENTORY OUT OF 1 WA .
tmmmnmwan;u‘wm Su. APMO WOTOR FALED
£ EVARORATOR LOOP PLOW OUT OF TOLERANGE 3a. SINGLE RVAPORATOR BLOCKAGR
4 INADEQUATE BURCOOLING o M SIOK TEMPERATUR
L SETPOMT HQT STABLITRACIONG - Avung o
G EVAPORATON TEMPENATUR KUTSTARK 48, BPAY ACTUATOR PALLSE vAPORATOR
7, EARCIEOUS MITAUMIMTATION Ta. ACCUMKATOR POSITION SENSOR
‘ Th. PREDSURE SINSOA P

Fig. 1. Required BATBS induced faults included
in 1989 tests,

Approach

Hierarchical, heteroggneous levels of control

Broadly speaking, this approach implements control at
four hierarchical layers. As shown in the example in Figure
2, the plant with its actuators and sensors is at the bottom,
A conventional control layer provides millisecond-level
responses, with hard-wired limit-checking of critical
parameters, These controllers wiil shiut down the plant if an
unsafe state is approached, and cannot be altered by higher
levels -- providing a fail-safe for higher levels of control. A
procedural level of control implements checklists for
activities such as setpoint changes. [t also encompasses
data filtering and general limit checks (corresponding to the
DACS and TDAS software, as well as TEXSYS task
operators described below). The core expert system is on
top of the procedural layer, with current technology
providing response times typically measured in seconds. On
top is the human operator, responding to changing plant
states in seconds to minutes, depending on attentiveness,
data presentation, distractions, etc. The procedural and
expert layers then supplant a bank of operators in reporting
plant state 10 a given chief engineer or system manager,
Other layered architectures have been proposed for real-time
symbolic controllers, e.g. ARTIFACT!!, Rather than a
hierarchy of functionally-similar controllers assembled at
many layers of abstraction, the architecture shown in
Figure 2 has only a few layers of functionally-different
controls. This relatively flat, heterogeneous hierarchy was
found to speed real-time performance, perhaps at the
expense of elegance.

0.8-5 sec

Fig. 2. A layered symbolic control architecture.
Useful AI Techniques

Mechanism modelling in TEXSYS was addressed with
the Model Toolkit (MTK)!2, which us*d a hierarchy of
frames to represent the natural taxonomy of subsystems,
assemblies, branches, and components, Slots in these
frames may refer to declarative knowledge (i.e., physical
parameters), other frames (e.g., connections between
component frames) or attached procedures. The Model
Toolkit was built on the KEE!3 object-oriented
programming environment. More detail on the Al
techniques used by TEXSYS may be found in a separate
paperl4

Model-Based Monitoring and Control Design

Schematic-like Symbolic Model for
Functional Simulation

In order to shift between hardware designs and respond
quickly to field modifications of hardware, it was desired to
decouple generic component behavior (how a valve
behaves, how pipes or pumps function, etc.) from the
behavior of a given thermal bus design. The approach taken
in TEXSYS was to create a library of plant components,
with default behaviors associated with them. The domain
knowledge captured in this library was then preserved
during changes from one target plant to another. This
modular, component-oriented modelling approach also made
ongoing plant design changes comparatively easier to
follow, compared with procedural or simple rule-based
approaches.

Given a library of relatively generic components, a
specific plant design can be modelled by creating instances
of components corresponding to the hardware, then creating
connections between components to create a schematic-like
Wwpology. Sensor measurcmenis can ten be piaced in this

CONF-900713«

Page 85

topology at their analogous locations and propagated along
connections to create a functional simulation of the plant.

Model Conflicts and Collisions Trigger
High-Level Responses

In its most general definition, model-based reasoning is
diagnosis based on the comparison of a device's measured
behavior with the expected behavior from the model. In
TEXSYS, this comparison is handled in two ways:
structural data conflicts in the model, or data collisions, are
treated as abnormalities. Likewise, parameter conflicts with
the model’s expected values are signified by translation of a
parameter value into a status which is not “nominal” (or
not “steady,” typically, for trends).

In the case of data collisions, all components touched
by propagation of the conflicting values are marked as
possible failure candidates. Candidate sets of component
failures which would explain the collision are generated
with a GDE-like approach 13, with joint probabilities

- calculated from the a priori expected failure probabilities of

the affected components.

This architecture can then be imagined as having two
fault identification processes working in parallel,

~ responding to conflicts and collision in the model. The

former uses rules to match off-nominal parameter states
with known fault modes, while structural reasoning is very
useful for detecting sensor failures and unforeseen faults. In
either case, assertion that a given fault exists triggers an.
active value, which initiates a corresponding prestored fault
recovery procedure and/or notifies the human operator.

Tasks: Procedural Control Layer

Executive Toolkit: Framework for
Procedural Knowledge

All expert system-layer executive behavior, both for
the TEXSYS system read-update-act cycle and for fault
diagnosis and recovery, is implemented via
intercommunicating goal-driven subprocesses, or tasks,
created with the Executive Toolkit (XTK)!6. XTK provides
a high-level structured language for writing procedural task
specifications, Tasks are invoked by creating a goal to be
accomplished -- if multiple tasks exist which match the
desired goal, processing takes the form of backward-
chaining. Tasks can specify subgoals, which may trigger
other tasks in turn. Tasks may access parameter vaiues and
status in the model, and may contain structured
programming constructs (loops, recursion, conditionals).

The fault processing active value sets a goal of
recovery from the given fault; any defined tasks which
satisfy that goal are then initiated as independent processes,
distinct from the TEXSY'S executive tasks.

CONF-9007134
Page 86

Tasks Responding to Model Changes:
Spawning Independent Adaptive‘Agents

Some fault diagnosis and recovery tasks include
branching and looping constructs, provided by XTK, which
allow these tasks to control the BATBS dependent on the
state of the model and its parameters. For example, the
recovery task from one fault, that of excessive non-
condensible gas (NCG), checks the end-to-end delta pressure

. (a measure of pump performance in the BATBS)

periodically in a loop internal to the task. If the parameter

status is “very low” at a given update, the task sets a
subgoal of opening and closing a valve which vents vapor
from the RFMD, which is then done by a command sent to
the DACS layer; if the status is marginal or “low,” the task
does nothing for that cycle; if the status is nominal or
better, the task marks the goal of recovery as satisfied and
terminates. Given that a task may perform different control
actions depending on the model's identified parameter
values and statuses, TEXSYS implements a form of
adaptive control somewhat analogous to a qualitative self-
tuning regulator. Fault recovery and nominal control tasks
are spawned and run as independent processes, separate from
the main expert system loop. '

Run-time Compromises Required for Real-Time
Performance in TEXSYS

TEXSYS used a truth maintenance system (TMS) to
index and follow which facts were true or untrue at a given
time. Small floating point variations would in practice
cause new strings of facts to be created along data
propagation paths: the TMS would simply mark the
previous facts as untrue, rather than purging them. This led
to a slow accumulation of old beliefs in memory, resulting
in slow performance degradation. It proved to be necessary

to take TEXSYS offline every 4-5 hours for about twenty

minutes to clear the TMS.

An initial performance problem was due to the
slowness of using interpreted rules for propagation of data
in the model, as well as for device behavior description and

. fault recognition. Initial TEXSYS cycle times with
interpreted rules were over three hours. A rule compiler was
developed which converted rules into compiled Lisp
functions. These run-time rules ran roughly 3000 times
faster than interpreted rules, allowing TEXSYS cycles to be
measured in terms of seconds.

An inefficient indexing scheme for candidate fault sets
caused expert system response times to rise linearly with
the number of hypothetical worlds extant. This performance
problem, plus the existence of unmodellable black-box
components in the BATBS, caused more fault detection and
control knowledge to be explicitly encoded in rules rather
than left for the GDE mechanism to discover, Hypothetical

reasoning was still found to be useful for detecting sensor
failures and unforeseen faults,

TEXSYS Results
TEXSYS Met Project Requirements

In tests run with the BATBS at the NASA Johnson
Space Center in August, 1989, TEXSYS successfully
controlled the BATBS during all real-time nominal
operations such as startup, shutdown and setpoint changes.
TEXSYS successfully identified and acted on all 17 required
induced system and component-level! faults shown in Figure
1, as well as identifying some unplanned faults,

Multi-level Control Example

As examples, Figure 3 shows the diagnosis and
recovery by TEXSYS of excessive non-condensible gases
(NCGs), which causes a loss of pitot pump efficiency --
end-to-end delta pressure (BDP703)-- somewhat analogous
to cavitation in an ordinary vane pump. This fault is often
seen after setpoint temperature is lowered, causing the
NCGs to come out of solution in the anhydrous ammonia
working fluid. Since this was a steady-state mode of
operation with respect to setpoint and heat loads, and the -
pump speed remained constant within nominal bounds
(approx. 2920 rpm), and the net subcooling (another
measure of BATBS performance) was nominal, then
TEXSYS interpreted the drop in BDP703 beginning at
20:15 as due to excessive NCGs. It responded by notifying
the human operator of the problem and requesting
permission to purge the NCGs.

END-TO-END DELTA P: 8.7 rsiD
AFMD VOLTAGE: 18 Vel
ACCUM POSITION: 9" »
(USV /0 HEM203 HFM201) v -

) 9 a a
fon PN
Jl e
, e = 1IN
3 y G
[TS]
b 4 £ il 1H - M
1 I
X 1
S0 1 o °
14— M 1 Mhh.
X AN
\Y P) hd
L o — R SO e v {
20:18 20:30 201458 21:00 21118
GMT (8/31/89)

Fig.3. Excessive NCGs controlled by TEXSYS.

After operator approval was granted around 20:35,
TEXSYS summoned a NCG recovery controller into
existence. This independent process toggled the NCG purge
valve, BSV705, as shown by the series of pulses in Figure
3. I. did so by sending valve-open and valve-closed
commands to the underlying DACS layer, which in turn
varied voltage levels to trigger BSV705 (a solenoid valve).

The NCG controller was both value and rate-dependent on
BDP703, as shown by comparing the pulses and their
spacing to the BDF703 curve. Once BDP703 was stabilized
within nominal bounds, the NCG recovery controller
terminated itself.

Conclusions

The success of the hierarchical symbolic model-based
control approach taken in TEXSYS demonstrates that a
layered symbolic controller can be used to successfully
control complex hardware in real time. The use of
qualitative model-based and temporal reasoning in TEXSYS
is one of the first applications of th~se techniques to
online, real-time process control. Furt..er research will
focus on improving the real-time performance of these
knowledge-based methods, including the processing of
multiple simultaneous faults in real time,

A generic, component-orienied modelling approach is
recommended in order to follow dynamic hardware
configurations. A component-oriented rather than a system-
oriented approach can avoid much rewriting of rules when
components are rearranged in a device, as often happens
during repairs, upgrades, and design changes of complex
mechanisms. The operational success of TEXSYS
demonstrates that the integration of a range of techniques
(model-based and qualitative reasoning, classification
systems, frame-based representations, temporal reasoning,
and procedural reasoning) can be used to control and
diagnose faults in certain relevant electromechanical
systems in real time. Given their success in the TEXSYS
demonstration, the model-based symbolic control methods
discussed in this paper are a possible general approach to
the automation of the monitoring and control of large,
dynamic clecromechanical systems.

Acknowledgements

The TEXSYS project reflects the work of over thirty
people at two NASA centers, but space does not permit
mentioning them all. However, the Executive Toolkit was
created by Richard Levinson, and the TEXSYS top-level
cycle was designed originally by William Erickson and
Richard Owens. Mary Rudokas and Edmund Hack deserve
special recognition for their knowledge cngineering
contributions. Project leadership was provided by Carla
Wong and John Buil.

References

! Scarl, E., “Sensor Failure and Missing Data: further
induccments for reasoning with models,” Proc. 1989
Workshop on Model-Based Reasoning, American Assoc.
for Artif. Intelligence, Detroit, MI, August 1989, pp. 1-6.

2 Glass, BJ., and Wong, C.M., “A Knowledge-Based

nnnnnn ri,~- ifiantime ned AAn
o

[Y T H h
npynuawa to aGCnitinication and A HOHEH ynamica

oAb 1
GpPLALIvVIE A A yla amiCai

CONF-9007134

Page 87

Systems Control,” Proc. of the 27th IEEE Conference on
Decision and Control Austin, TX, December, 1988 pp.
881-886.

3 Bland, T.J., Downing, R.S., and Rogers, D.P., * A
Two-Phase Thermal Management System for Large
Spacecraft,” 15th Intersociety Conference on Environmental
Systems, SAE Paper 851351, San Francisco, CA, July
1985.

4 Minsky, M.,”A framework for representing
knowledge,” in P.Winston (ed.), The Psychology of
Computer Vision, McGraw Hill, New York, 1975, pp.211-
2717.

5 Bobrow, D.G., ed., Qualitative Reasoning about
Physzcal Systems, MIT Press Cambridge, MA, 1985.

6 Astrom, K.J., Anton, J.J., and and Arzén, K.E.,
“Expert control,” Automatzr:u Vol 22, 1986, pp. 277-
286.

7 James, J.R., and Suski, G.J., “A Survey of Some
Implementations of Knowledge-Based Systems for Real-
Time Control,” Proc. of the 27th IEEE Conference on
Decision and Control, Austin, TX, December, 1988, pp.
580-585.

8 Glass, B.J., “A Model-Based Approach to the
Symbolic Control of Space Subsystems,” 1990 AlAA
Guidance, Navigation, anc Control Conference, AIAA
Paper 90-3430, Portland, OR, August 1990,

9 . Hack, E.H., and DeFilippo, D. “Demonstrating
Artificial Intelhgence for Space Systems: Integration and
Project Management Issues,” Sixth IEEE Conference on
Artificial Intelligence Applications (CAIA-90), Santa
Barbara, CA, March, 1990.

0 “Space Station Prototype Two-Phase Thermal Bus
System (TBS) Fault Detection, Isolation, and Recovery
(FDIR),” Crew and Thermal Systems Division, NASA
Johnson Space Center, September 8, 1988.

1T Francis, J. and Leitch, R., “Towards Intelligent
Control Systems,” in Expert Systems and Optimisation in
Process Control, ed. A. Mamdani and J. Efstathiou, Gower
Technical Press, Aldershot, England, 1986, pp. 63-72.

12 Erickson, W.E., and Rudokas, M.R., “MTK - An
Al Tool for Model- Based Reasoning,” Third Conference on
Artificial Intelligence for Space Applications, V. II, NASA
CP-2492, Huntsville, AL, November, 1987, pp. 1-5.

13 Fikes, R. and Kehler, T., “The role of frame-based
representation in reasoning,” Communications of the
ACM, Vol.28, Nov. 1985, pp. 904-920.

14 Glass, B.J., Erickson, W. and K. Swanson,

“Qualitative and Temporal Reasoning in TEXSYS: a
Device-oriented Approach to Reasoning about Physical
Systems,” International Workshop on the Principles of
Dzagnos:s, Stanford, CA, July 1990,

5 deKleer, J. and Williams, B.C., “Reasoning about
Muluple Faults,” Proc. Fifth Nanonal Conference on
Artificial Intelligence, Philadelphia, PA, August 1986, pp.
132-139,

16 evinson, R., “Autonomous prediction and reaction
with dynamic deadlines,” Proc. AAAI Spring Symposium,
Stanford, CA, March, 1990,

ool w0

CONF-9007134
Page 88

Layers of Control
Corresponding Typical Response
thodule Times

Thermal \
TEXSYS "1 5.30s

Expent system

TEXSYS Tass 1 Pocsumiconron g4
and T

\
A

OACS [Convertonal comruis] misec.

Fig. 2. A layered symbolic control architecture,
Useful AI Techniques

Mechanism modelling in TEXSYS was addressed with
the Model Toolkit (MTK)!2, which used a hierarchy of
frames to represent the natural taxonomy of subsystems,
assemblies, branches, and components. Slots in these
frames may refer to declarative knowledge (i.e., physical
parameters), other frames (e.g., connections between
component frames) or attached procedures. The Model
Toolkit was built on the KEE!3 object-oriented
programming environment. More detail on the Al
techniques used by TEXSYS may be found in a separate
paperl4

Modei-Based Monitoring and Control Design

Schématic-like Symbolic Model for
Functional Simulation

In order to shift between hardware designs and respond
quickly to field modifications of havware, it was desired to
decouple generic component b .avior (how a valve
behaves, how pipes or pumps iunction, etc.) from the
behavior of a given thermal bus design. The approach taken
in TEXSYS was to create a library of plant componerts,
with default behaviors associated with them. The domain
knowledge captured in this library was then preserved

. during changes from one target plant to another. This

modular, component-oriented modelling approach also made
ongoing plant design changes comparatively easier to
follow, compared with procedural or simple rule-based
approaches,

Given a library of relatively generic components, a
specific plant design can be modelled by creating instances
of components corresponding to the hardware, then creating
connections between components to create a schematic-like

topology. Sensor measurements can then be placed in this

topology at their analogous locations and propagated along
connections to create a functional simulation of the plant.

Model Conflicts and Collisions Trigger
High-Level Responses

In its most general definition, model-based reasoning is
diagnosis based on the comparison of a device's measured
behavior with the expected behavior from the model. In
TEXSYS, this comparison is handled in two ways:

.structural data conflicts in the model, or data collisions, are

treated as abnormalities. Likewise, parameter conflicts with
the model’s expected values are signified by translation of a
parameter value into a status which is not “nominal” (or
not “steady,” typically, for trends).

In the case of data collisions, all components touched
by propagation of the conflicting values are marked as
possible failure candidates. Candidate sets of component
failures which would explain the collision are generated
with a GDE-like approach 15, with joint probabilities
calculated from the a priori expected failure probabilities of
the affected components.

This architecture can then be imagined as having two
fault identification processes working in parallel,
responding to conflicts and collision in the model. The
former uses rules to match off-nominal parameter states
with known fault modes, while structural reasoning is very
useful for detecting sensor failures and unforeseen faults. In
either case, assertion that a given fault exists triggers an
active value, which initiates a corresponding prestored fault
recovery procedure and/or notifies the human operator,

Tasks: Procedural Control Layer

Executive Toolkit: Framework for
Procedural Knowledge

All expert system-layer executive behavior, both for
the TEXSYS system read-update-act cycle and for fault
diagnosis and recovery, is implemented via
intercommunicating goal-driven subprocesses, or tasks,
created with the Executive Toolkit (XTK)!6. X TK provides
a high-level structured language for writing procedural task
specifications. Tasks are invoked by creating a goal to be
accomplished -- if multiple tasks exist which match the
desired goal, processing takes the form of backward-
chaining. Tasks can specify subgoals, which may trigger
other tasks in turn. Tasks may access parameter values and
status in the model, and may contain structured
programming constructs (loops, recursion, conditionals).

The fault processing active value sets a goal of
recovery from the given fault; any defined tasks which
satisfy that goal are then initiated as independent processes,
distinct from the TEXSYS executive tasks.

Advanced Decision Systems CONF-9007134 -
Pagce 89

CASE Products
for
- Knowledge Based Systems
Design and Development
in Ada

Dr. James R. Greenwood
Gregory Stachnick
Dr. H. Stephen Kaye
‘Robin Wada
Jorge Gautier

July 1990

Advanced Decision‘ Systems
1500 Plymouth Street
Mountain View, CA 94043

_ Abstract

During the past decade significant progress has been made in demonstrating the utility of
Knowledge Based System (i.e., Artificial Intelligence) technologies in diagnostics,
situation assessment, and plannm g applications. These technologies have enabled more
complex problems to be addressed than could otherwise be handled with classical
algorithmic software approaches. Some of the underlying knowledge based technologies
have matured and have been incorporated in "Al tools or shells" available on the market
today. While these tools allow the application of these advanced technologies by ‘experts”,
they have not bouk::. knowledge based system development into the general software
engineering community.

During the past several years, we have been develeping engineering oriented products that
allow generation of knowledge based applications on embedded systems written in Ada.
These products combine pictorial CASE front-ends for design and specification,
sophisticated auto-generation (i.e., compilation) systems that convert the specification of
knowledge based systems directly to Ada code, and real-time run-time environments for -
execution of knowledge based applications within the multi-tasking Ada environment.

The first of these CASE products‘ is an Ada Object Base! (AOB) that provides general
purpose object-oriented facilities (i.e., classes/objects/methods), knowledge-base
capabilities for incremental retraction of object changes, hypothesis management, and
persistence (i.e., save/restore) delivered in the Ada run-time environment. The second
CASE product is the Procedural Reasoning System?2.3 (PRS-Ada) that provides goal-

directed and data-directed inferencing typically employed in advanced planning and
resource allocation applications.

1 work supported under DARPA/MICOM initiative in Real-Time Mission Planmng
Contract DAAHOI-90-C-0164

2 Work partially supported under DARPA/BRL Airland Battle Managemem (ALBM) syz'em
Contract 7840B0820M

3 Work partially supported under RADC/DARPA Survivable Adaptive Planning Experiment (SAPE)
Contract 89925041

CONF-9007134 Advanced Decision Systems
Page 90 ‘

These first products incorporate advances in pictorial CASE, advanced development
environments, compilation of knowledge base constructs into Ada, and inference control
directed towards engineering embedded systems in Ada. This paper provides an overview
of these products, as well as, a model for software engineering products that augment the
development and delivery of knowledge based systems in Ada.

1.0 Introduction

During the last ten years significant advances have been made in demonstrating the utility of
advanced technologies to automate problems that heretofore could not be automated via
traditional approaches. Knowledge Based systems and/or expert systems (i.e., Artificial

- Intelligence) is one such technology that has been demonstrated on numerous projects and
applications in both the Government and Commercial arena. However, with the maturing
and wider acceptance of these technologies, the tools for developing knowledge based
applications have fallen behind the needs of the market. That is, applications now require
robustly engineered solutions delivered on standard hardware platforms in standard
programming languages. In addition, there is wide need for software engineers to develop
knowledge base applications, as opposed to a need for specialized knowledge base system
developers. Thus, a need for products that can allow a typical software engineer to utilize
knowledge based system technology exists.

In addition to knowledge based systems, significant advances have been made in two other
areas: compilers and Computer Aided Software Engineering (CASE). Compiler
technology has matured tremendously in the last decade in the ability to compile (i.e.,
generate/convert) advanced constructs into executable code. The advanced compilation
techniques designed to compile Ada, such as generics, tasking, strong type checking, and
separate compilation, are now well understood. Also, generating highly optimized code for
a wide range of machine architectures is now possible.

CASE has emerged over the past five years as a set of tools and technology for defining
and augmenting the software engineering process. Typically what is referred to as CASE
is various forms of diagramming of the requirements, design, and specification of
software. Several products allow simulation of the specification and designs to ensure
correctness and completeness. Several products allow generation of code or code templates
from the diagrams or specifications. CASE has been traditionally focussed on MIS or real-
time front-end applications; not on knowledge based systems.

These three technologies for knowledge based systems, CASE, and compilation as
combined into a single product could provide tools for software engineers tailored to
knowledge based systems development.

During the last three years, Advanced Decision Systems has developed a set of software
engineering tools that combine CASE and compilation technology in development and run-
time environments that facilitate the engineering of knowledge based systems in Ada.
These tools are part of a family of products called Cobra. The first product being the Ada
Object Base and the second being PRS-Ada.

2.0 Common Architecture
The Cobra family of products is is based on the approach of combining advanced

development environments, CASE design tools, advanced compiler technology, and
separate real-time run-time environments. The product s are designed to deliver fully

pp, o

- 9007134
Advanced Decision Systems g;)gr;n;foo ‘

engineered applications for real-time embedded system applications. The products have a
common set of components:

Development Environment:
CASE Front-end - a pictorial CASE development environment for
designing and specifying the software or system.
Auto-Generator - a compiler or translator that converts the design and
specification to executable code.
Run-Time Environment - the run-time support for the executable code that
allows testing and debugging interactively tied back to the CASE front-end.

This common architecture for each Cobra product is shown in the figure below:

Generic Cobra Generic Cobra
elopment Environment Run-Time Environment

A;Spllcallon
Interface

CASE
Front-End Eilaes

1 APPLICATION
OPERATOR

DEVELOPER

Auto-Generato

1

SOURCE Code

nguage cdmpller

Target Programm ng

These three elements underlay the initial Cobra products PRS-Ada and Ada Object Base
that are described more fully later in this paper.

- 2.1 Pictorial CASE

Each product contains an integrated CASE environment referred to as a Pictorial
Programming System that allows the constructicn and generation of software. Pictorial
Programming is constructing and testing software through a series of pictures called
Pictograms. All aspects of the software design, developiment, and testing process are
performed interactively through multiple pictograms on workstation graphic displays

The software development process proceeds through a set of pictograms specific to thc
problem solving approach being employed in the software application. Pictograms for data
and re]atlonshlps are avaxlable, as well as, pictograms for code development. Pictograms
are syntactic and semantic pictures specific for each type or operation.

Multiple developers construct the software concurrently through pictograms on their
individual workstations.

[It}

‘ CONF*9007134 .

Page 92

.Advanced Decisioi: Systems

Semant

. Software Semantio 2
mantic
Structure . I) K
Foedback o~ i3
e
) s
‘3
Iy
> o =B
kY, z
‘ -
.
’
“ g;.}. o %
i Il Tt ™
1 /
i : “ Y]
d ’ CA' /

Softwere Developers

Each developer has multiple views (i.e., pictograms) into the software that is being .
constructed. The Software Semantic Structure is a complete representation of the concept,
specification, design, code, and configuration of the software.

2.1.1 The Pictorial Language

Each Cobra product's language has been developed originally as a non-lexical pictorial
language specific to the product domain (e.g., data and objects for the Ada Object Base).
Typically, CASE products are merely diagramming tools that have limited underlying
semantics with no compilation ability, severely limiting their usefulness. The Cobra
product line supplies pictorial programming for each domain.

Each pictogram embodies specific syntax and semantics, allowable iconic representations,
and rules on how the pictogram can be manipulated. These pictograms replace both design
diagrams from traditional CASE tools, as well as lexical programming languages. For
instance, the figure below shows a typical pictogram that embodies a complete set of
programming functions in a pictorial language.

Path-Search and Data Flow

Parameter Passing
Data Flow

Control Flow
Action

Data Structure

Search Control
Pattern Matching

Procedure Exit

Advanced Decision Systems

2.1.2 Pictograms

Pictograms are the fundamental representation of design, implementation and execution of
programs in the Cobra system. These pictograms are grouped into several categories:
¢oncept formation, execution paradigm, group, relation, physical, and interface categories.
Examples of the execution paradigm pictograms are described below.

Execution Paradigm - These pictograms are the programming (or coding) level of the
development system such as PRS-Ada. Execution pictograms compile directly into
executable code and replace the traditional lexical programming language of the system.

CONF-9007134
-+ Page 93

Data Flow Path Search (Depth-first)

y -
(e

—
Select I

2.1.3 Pictogram Connections

Even though the pictograms can be viewed as top-down design, development need not
proceed in that manner. A developer will typically move "up and down" through sets of
pictograms, modifying the design so that coding is easier, changing data structures to
reflect prototype results, and making other such changes. This feature is supported by the
Software Semantic Structure within the pictorial programming environment.

Pictograms are interconnected through the Software Semantic Structure that contains the
representation of the software being developed. This complex structure provides multiple
levels of abstraction to represent the design and description of the software. This Structure
keeps these views consistent and semantically correct. Changes in one pictogram are
reflected directly as changes in related pictograms, provided the change is semantically
correct between the pictograms. This extensive "checking" substantially reduces the
chance for error and speeds the development process. Incomplete or inconsistent
modifications of the design or code for the system are nearly impossible to make. Thus,
higher quality software can be developed and maintained with less people in less time.

This Cobra architecture provides high development performance and compatibility with
evolving CASE standards. Development performance is gained by having the Software

-5-

CONF-9007134 ! - Advanced Decision Systems
Page 94

Semantic Structure in a distributed shared memory between the workstations, not on a disk
or in a data base.

Archival to disk of the software design and development information is only done when
necessary to preserve information between development sessions. This allows a factor of
10 to 100 improvement in the interactive development and checking aspects of the system
over comparable repository-based CASE products. Cobra is specifically designed to
satisfy the professional developer who is sensitive to this development performance.

2.2 Pictogram Compilation

A unique aspect of the Pictorial Programming System is that these pictograms compile
directly into executable code that can be directly debugged at the pictorial (i.e., graphical)
level. The Cobra products incorporate a unique compilation process that compiles the
pictograms into executable code as depicted in the figure below.

Advanced Decision Systems : . CONF-9007134 .
‘ Page 95 -

Development Environment Software Developer

St) T Debugging

Windows

Machine -
Compilation

pProgram f o)
Executable Program in
Run-time Environment

The development environment compiles, links, and loads the software into a separate run-
time environment on a target processor. The executable program is linked back to the
pictograms in the development environment for full interactive debugging of the software
through the pictogram representations. This approach allows detailed debugging and test
of real-time software through the high-level pictogram representations. When debugging
and test is complete, the connection between the development and run-time environment
can be removed to allow the resulting software to run independently, pernaps on an
embedded real-time processor.

3.0 The Ada Object Base

The Ada Object Base (AOB) product is the first Cobra product. It provides a CASE tool to.
build Ada object bases for applications, and the run-time support in Ada to test, debug, and
deliver the applications. AOB is one of the few tools that really allows transition

demonstration of Artificial Intelligence knowledge bases into operational systems written
in Ada.

The AOB is an object oriented knowledge base for the Ada domain, and a development
environmernt for specifying, creating, and browsing the objects/knowledge. The Ada
Object base provides all the facilities typically associated with an object oriented language

(e.g., C++) and a knowledge base development system, but delivered in the Ada
environment.

CONF-9007134 | .Advanced Decision Systems
Page 96 ‘

The AOB supports for an Ada framework the following features:

Object Oriented Language Features:
- Class Definitions
.- Dynamic Object Creation (Instances)
- Inheritance
- Methods on objects and classes in Ada or in PRS-Ada
- Specialization of Methods
- Class Variables
- Object initialization

Knowledge Base Features:

- Persistence at Class, Instance (i.e., object), or module (i.e., package) level
- Transaction History supporting checkpointing and incremental retraction.

- Multiple Hypotheses Support (i.e., worlds)

CASE Development Features:
- Pictorial Entity-Relationship Specification system
- Pictorial Browser/Editor/Debugger for Class, Objects, and Methods

The Ada Object Base is patterned after the object-oriented systems developed in CLOS,
SmallTalk, C++, and Objective-C. The AOB execution structures, and object
representations mimic implementation details of Objective-C, but mapped to the Ada
record, pointer, and packaging constraints.

The AOB knowledge base features ailow RAM-resident knowledge bases that support data
dependent backtracking, multiple hypotheses support, and methods to save and restore the
data. The complex internal mechanisms and bookkeeping for these capabilities are handled
by the AOB, freeing the application programmers to concentrate on reasoning strategies.
The initial features are useful in planning, resource allocation, scheduling, and data fusion
applications.

The development environment for the AOB is a mini-CASE environment that allows
pictorial definition of the classes and objects via extended entity-relationship diagrams that
are auto-generated (i.e., compiled) into the Ada data declarations and execution structures.
The development environment also provides pictorial editing and browsing of the classes,
objects, and methods.

The AOB mimics product features from Objectworks, from the KEE frame system, and
from data base CASE tools (e.g., Oracle CASE tool) in a single tool for developing
knowledge bases targeted to applications written in Ada. The AOB is either a stand-alone
product or can be utilized as an integral part of PRS-Ada product (See next section).

3.1 Architecture

The figure below the shows the architecture of the AOB development and delivery
environments. :

Advanced Decision Systems CONF-9007134 -

Page 97
Ada Object Base Ada Object Base

Dsvelopment Environment

Class/Objec
Browser
Interface

Class/Methog APPLICATION

Definer OPERATOR

DEVELOPER

Class/Method
Auto-Generalo

u

SOURCE Code

Ada Compiler and Ada ‘leréry

As with all the tools in the Cobra product family, the AOB tool has a pictorial CASE front
end, an auto-generate feature for producing code, an application run-time, and an
interactive debugging environment coupled back to the pictorial CASE tool.

3.1 E&R and Class Pictograms

Pictorial Specification: The class definitions, class hierarchy, and composite class
definitions are defined via the Class pictogram shown on the right in the figure below.
Composite objects (i.e., part-of relationships) are defined with the extended entity-
relationship (E-R) diagrams (i.e., pictograms) shown on the left below.

(N\ PeN)

System

Menu) Window ‘
T MItem 7 WItem

divsion

«(Eventr Pictogram

employee

(soliware) Picture{Icond
VAN o v _/
The extensions provide the extra object oriented features typically not found in traditional
entity-relationship diagrams. These Class and E-R pictograms are converted by the auto-
generator to the Ada source code declarations and run-time structures that provide the object
base features.

CONF-9007134 ‘ Advanced Decision Systems
Page 98 :

Class/Object Browser: The browser utilizes the pictorial class, object, and method
pictorial representation, showing structures, values, relationships, inheritance, and
composite pictograms. Interacting through these pictograms allows rapid understanding of
the specified object base. The browser provides the interface to the persistence (i.e.,
save/restore) mechanism and overall development environment.

AOB Classes, Objects and Methods: The AOB classes are defined both as Ada
types and as associated Ada data declarations that hold method connections and class
variables. The object instances are dynamically created and discarded from the Ada heap.
Both class and instance methods can be provided in Ada, or as PRS-Ada procedures. Ada
methods are written as Ada procedures with a specific calling sequence. Methods are
bound to the classes or object instances at compile time. Method specialization is
supported. Composite objects that provided "part-of” relations are also provided.

3.2 Run-time Support

The AOB supports the data dependent backtracking feature allowing both incremental
backtracking and checkpointing to changes to the object base. In addition, the object base
supports a multiple hypothesis (i.e., world) mechanism necessary for reasoning or
handling multiple alternatives or sets of data. The persistence mechanism is auto-generated
ada code that saves and restores object instances and their definitions to/from a disk. Single
objects, all objects in a class, and all objects in a module can be save/restored. Future
versions of the AOB will allow interface to data bases for loading (i.e., populating) the
AOB. The AOB run-time also has a remote debugging facility that allows the object base to
be browsed and/or debugged through the graphical CASE facilities.

3.3 Auto-Generator

- The auto-generator is the component of the AOB development environment that converts
the pictorial specification, method definitions, and class structures into a complex set of ada
source code that provides the application specific AOB. The resulting Ada source code can
be linked with "hand-written" Ada code to comprise an application written in Ada. The
development environment runs any standard Ada compiler and Ada library mechanism as a
slave to this generation process. The Ada compiler produces the executable program from
the auto-generated Ada code and the hand-written Ada code. ‘

3.4 Development History

The AOB has been under development during the past year in support of the Survivable
Adaptive Planning Experiment (SAPE) for RADC/DARPA, the Advanced Planning System
(APS) for RADC/TAC, and the Real-time/Mission Planning (RT/MP) for DARPA/ASTO.
A subset of the AOB system is now in beta test on SAPE.

The AOB is a unique capability being developed at ADS in support of multiple projects. It
ultimately provides a path for knowledge based applications into an Ada delivery
environment of operational systems.

4.0 The PRS-Ada Product

PRS-Ada is a graphical (i.e., pictorial) software development tool for designing and
delivering knowledge based systems in an Ada domain. PRS-Ada provides facilities for
pictorial knowledge capture, pictorial development of reasoning strategies, and pictorial
testing and debugging. PRS-Ada provides an automatic code generation facility that
converts the pictorial forms to standard Ada source code.

-10-

Lin D

Advanced Decision Systems ~. CONF-9007134 |
Page 99

The PRS-Ada pictorial language and run-time support provides the following capabilities:

Goal-Directed Reasoning - The language supports the execution of
' procedures to accomplish specified goals. The execution strategy allows the -
search for a line of reasoning that satisfies a set of goals. Satisfied goals are
stored in a global achievement base.

Dependency-Directed Backtracking - As part of the execution strategy for
procedures, dependency-directed backtracking with retraction of knowledge
changes is supported. This provides capabilities similar to Prolog that are
useful in planning and other goal-directed search strategy systems..

Data-Directed Invocation - Trigger conditions can be specified on procedures
that match against data in either the goal achievement base or knowledge in
the Ada Object Base (AOB). When a trigger condition is met then the
associated procedure will execute.

Multiple Hypotheses Support - The procedure execution, achievement base,
and object base support multiple hypothesis reasoning. That is, alternative
lines of reasoning can be pursued providing a means to generate multiple
alternatives directly. This provides a feature similar to the world mechanism
in KEE by Intellicorp but designed to provide much more efficient
execution.

Pattern Matching on Achievements and Data - PRS-Ada pattern matches
against achievements in the achievement base and against data/facts in the
AOB. Matched facts or data are utilized to control inference. For instance,
this allows reasoning about the plan generation (i.e., reasoning) process,
and the generated plan in a planning system.

Explanation Facility - The explanation facility provides interactive evaluation

and interpretation of the reasoning results through a flexible hierarchical
explanation capability.

4.1 Architecture

The PRS-Ada system architecture is shown in the figure below:

.11 -

CONE-9007134 '
Page 100

ENGINEER
@R
SOFTWARE

DEVELOPER

4.2 Pictograms

—~Advanced Decision Systems

PRS-Ada RUN-TIME ENVIRONMENT

{APSE)

PRS-Ada utilizes two primary pictograms: Path-Search and Goal-Procedure Navigator.
These pictograms shown below allow goal-directed reasoning processes to be encoded,
and compiled directly into source code.

Goal-Procedure Navigator

Path-Search Programming

 (ERD)

The path-search pictogram allows encoding of lines of reasoning. Specific operators for
achieving goals, retrieving goals from the achievement base, and for testing if goals have

been achieved are provided by icons in the language. The flow between the icons specifies
a depth first search strategy during execution.

-12-

Advanced Decision Systems .+ CONF-9007134 .
: ‘ Page 101

The Goal-Procedure Navigator pictogram specifies the relationship between goals and sub-
goals, and between goals and the procedures that can achieve those goals. These two
pictograms are conpled through the semantic structure that represents the software system. .
Other pictograms are being added to the PRS-Ada to allow other search strategies (i.e.,
breadth-first) to be employed.

4.3 Development Environment

Like all the Cobra products, PRS-Ada has distinct development and run-time
environments. The development of procedures and knowledge proceeds in a two ways:
first, reasoning strategies are captured through knowledge elicitation and captured in the
graphical procedures; and second, knowledge (i.e., objects, facts, data) is solicited and
captured in the Ada Object Base (AOB) (see: previous section - AOB). The development
environment supports the compilation of these declarations and definitions directly into Ada
source code ind dynamic knowledge bases based on Ada constructs and functions. The
resulting reasoning system is thus directly compatible with any Ada application or any Ada
compiler and run-time support system. PRS-Ada has been interfaced to three different Ada
compilers/environments: Alsys, Verdix, and Telesoft on two different hardware platforms
(e.g., Sun-3 and Sparcstation). The current system runs under X-windows/UNIX on the
Sparcstation. Porting PRS-Ada to additional hardware platforms is underway.

4.4 Auto-Generator

The auto-generator is the component of PRS-Ada development environment that converts
the pictorial specification into Ada source code that provides the application specific
reasoning code. The resulting Ada source code can be linked with "hand-written" Ada
code to comprise a full application written in Ada. The development environment runs any
standard Ada compiler and Ada library mechanism as a slave to this generation process.
The Ada compiler produces the executable program from the auto-generated Ada code and
the hand-written Ada code. Several auto-generation options are available allowing various
levels of debugging information to be embedded in the generated code. This allows fully
interactive graphical debugging of down-loaded (into the run-time system) code, and then
lat(ejr recompilation to remove debugging hooks in the final production embedded systems
code.

4.5 Run-time Environment

After the reasoning strategies and knowledge have been compiled into Ada the Ada source
is compiled and linked to form the application run-time. This application run-time can be
coupled directly back to the development environment for graphical debugging of reasoning
strategies, and knowledge and goal decompositions. In addition the run-time environment
can be configured to allow editing and modification in an operational system of the
knowledge and goals as required. The run-time also has a remote debugging facility that
allows the graphical (i.e., pictorial) procedures to be debugged, via traces, breakpoints,
and inspection directly though the pictorial formulation in the CASE front-end.

- A significant advantage discovered in transitioning from the original PRS (i.e., PRS-
CommonLisp) to PRS-Ada is the run-time performance of the generated application. The
run-time performance of PRS-Ada procedures is approximately fifty (50) times that of the
PRS-CommonLisp procedures on the identical platform (i.e., Sun-3). The Sparcstation
PRS-Ada provides another factor of three (3) in performance over the Sun-3 due to a faster
hardware processor. Thus, run-time performance of the knowledge based application is
quite good as compared to typical CommonLisp based knowledge based systems.

-13 -

[

CONF-9007134 | Advanced Decision Systems .

Page 102

4.6 Development History

PRS-Ada has been under development during the past three years in support of the AirLand
Battle Management program (DARPA/BRL) for a Army Corps and Division level planning
system. Itis currently supporting the Survivable Adaptive Planning Experiment (SAPE)
for RADC/DARPA, the Advanced Planning System (APS) for RADC/TAC, and the Real-
time/Mission Planning (RT/MP) for DARPA/ASTO. ‘

PRS-Ada is a powerful tool that satisfies the major requirements of many DoD contracts for
delivering knowledge based systems in Ada. The tool provides high performance goal-
direct and data-directed reasoning in an Ada run-time environment, yet retains the graphical
(i.e., pictorial) interactive knowledge engineering metaphor. PRS-Ada is a pictorial CASE
tool for delivering knowledge base applications in Ada.

5.0 Summary

The Cobra product family is a set of CASE products for knowledge bases systems design
and development. The first products, Ada Object Base and PRS-Ada, are targeted to
embedded system applications in the Ada programming language. These products provide
engineering oriented tools for utilizing advanced technology in production embedded
systems.

Prototypes of these products have demonstrated significant productivity gains in
developing complex systems, and have allowed a typical software engineer to build

- systems heretofore requiring a knowledge based syster: developer.

-14 -

‘CONF-9007134
Page 103

TOOL NEEDS FOR A BEHAVIOR-BASED APPROACH TO
DISTRIBUTED INTELLIGENT CONTROL

S. Harmon, D. Payton & D. Tseng
- Hugher Research Laboratories
Malibu, CA 90265

INTRODUCTION

A distributed intelligent control system can be modelled as a collection of individual
intelligent agents which coordinate their actions through communications and common
knowledge. An agent in this collection can be constructed as a set of behaviors whose
outputs are integrated by some form of arbitration logic. This class of designs of intelligent
systems includes subsumption architectures, community models and some biological
paradigms.

Each agent contains its own sensors, computing, controls, actuators, local knowledge and

. communications. A behavior is a control loop which determines some aspect of the agent's
responses to a particular set of sensed conditions. Am'ving communications simply are
treated as sensor input which alter the agent's local knowledge of the task state. An agent's
arbitration logic ultimately decides the appropriate set of control and communication actions
to take when given the combined recommendations of the instantiated behaviors.

This approach to intelligent system design has numerous advantages. An enormous range
of flexible interactions are possible between individual behaviors. The formulation of
behaviors as control loops permits the design to build upon a vast body of control theory
and tools. The arbitration logic takes advantage of the synergy of constructive interference
between behaviors. In addition, it can effectively resolve the effects of simultaneous
cooperating and competing goals. Thus, simple behavioral constructs can produce
complex agent responses to complex situations. The agents in this design can exhibit
reactive and opportunistic behavior when the task is not well understood at design time.
This enables the agents to participate in dynamic community interactions in which roles
may shift between agents as a function of task state. The flexibility of this design approach

CONF-9007134
Pagc 104

togethcr with the ability to construct and test pieces of the systém incrementally makes
exploratory implementation of distributed intelligent control systems much more practical.

Despite the compelling advantages to this design approach, it is at a very early stage of
development and several pro‘oiemé have been recognized and others undoubtedly exist
which have not yet been encountered. Complex coupling between behaviors is possible
which complicates the design of individual behaviors. This complexity also makes the
configuration of the arbitration logic quite tricky. Furthennore, determining the stablhty of
the complete control system is not straightforward and classical analysis techniques may
not be sufficiently powerful. In general, controlling the system complexity is difficult.
Faithful simulations of the agent processes may lessen the impact of these problems but
verifying the accuracy of any simulation of an agent's responses or of the responses of a
collection of agents may require considerable effort.

The construction of a distributed intelligent control system consists of several steps: task
description, system design and system implementation.

- Task Description

The task description step should precede any aspect of design but seldom does in reality.
The task description identifies what is important in the task environment and defines
precisely what the distributed intelligent control system must accomplish. The task
definition includes specifications of the point at which the system enters the task, the goal
conditions which define termination, if any, and the envelope of constraints which exist
between starting and goal conditions. If aspects of the task are not understood at this time
then obtaining sufficient information about the task becomes part of the task itself. This
description is formulated before anything whatsocver is said about the specific nature of the
control system. No attempt should be made to include any more information about the task
than is needed to specify it since overspecification only limits the design options.
Presently, no formal representation and methods for task description are available even
though this may be one of the most important conponents of design.

CONF-9007134
Page 105

Design

This discussion of the design of distributed intelligent control systems considers the
'influences of the design philosophy, describes the design process, briefly reviews some
decisions which must be considered in the design of a distributed intelligent system and
summarizes some of the lessons which have been learned to date.

The prevailing design philosophy greatly influences the end product. Two primary
philosophies exist. A design can be formulated from the top down or from the bottom up.
Top-down design works splendidly when all aspects of the task are very well understood.
Although this philosophy is quite appealing to the designer, rework of the design due to
errors or omissions is expensive and potentially dangerous. Bottom-up design is often
needed when the design teain is knowledge poor (e.g., rapid prototyping of expert
systems). While this philcsophy is appealing to the implementor, it is often time
consuming and inefficient. Most design efforts of intelligent systems use both
philosophies with the hope that a clean juncture in the middle will be possible when it is
needed.

First, the system performance specification must be derived from the task description. This
infornation is used at several stages in the construction process. The actual design usually
consists of decomposing the task description into system and subsystem components,
mapping function into hardware and software, and designing components and component
interactions. Once a system or subsystem design is complete it should be verified either
through simulation or formal proof or both to be sure that the design meets the performance
specification. The verification step may well reveal the need for corrections to the design or
the task description. Thus, design becomes an iterative process. Only when the complete
design has been verified can it be communicated to the implementor.

Several important decisions must be considered when designing any distributed intelligent
system. Some of these involve the distribution of knowledge. All interacting agents must
share common knowledge. Common knowledge includes overlapping task knowledge,
communications protocols, information sharing strategies and interaction strategies. A
tradeoff exists between the amount of communications and the amount of common
knowledge in the system. Communications are expensive (in terms of communications

CONF-9007134
Page 106

bandwidth and actual cost) and the interactions can often be slow. However, agent
communications make the system more versatile. Communications between agents are not
needed if the task is well understood so that all agent interactions can be specified at design
time and if the agents do not cooperate (i.e., share resources) and dynamics permit no
interactions. On the other hand, common knowledge is both cheap (i.e., in terms of
memory) and fast. However, a system which relies completely upon common knowledge
with no communications updates is likely to be unresponsive to deviations from the
expected situations. Some minimum amount of common knowledge between agents is
always needed. This can be minimized if everything is open for negotiation, if a large
communications bandwidth between agents is available and if the time exists for
negotiation.

Several issues of system organization are also important to distributed intelligent system
design. The system organization defines the communications strategy and interactions
which are available to the agents. The organization can be either fixed or dynamic and
either hierarchical or community-based. Agent roles never change throughout the entire
task in a fixed organization while agent roles can be reassigned repeatedly in a dynamic
organization. A fixed hierarchical organization is the best understood of all the
possibilities. In addition, it is the most efficient organizational choice. The other choices
are not as well understood. However, the community organization is desirable because it is
the most flexible and responsive to new situations. Clearly, hybrid organizations also have
attractive attributes. Dynamic organizations are necessary if the roles of the agents must
change due to unknown task conditions or factors which might change agent capabilities
(e.g., agent attrition).

In the course of gaining what little experience with intelligent control systems which exists,
several design lessons have been learned which can be extended to distributed intelligent
control systems. In general, design errors become expensive once they have been
implemented (e.g., Hubble Space Telescope). The interactions between loosely coupled
components are often not suitably appreciated and accommodated. It is in these interactions
where redesign is usually necessary. The designer must use the principle of least
constraints when the task is not well understood so as to maintain flexibility for himself and
the implementor. Obviously, well understood tasks are not so picky. Existing tools
support this domain well. However, existing software engineering tools (maybe,
engineering tools altogether) do not support exploratory implementation well. In these
cases, even documentation becomes a problem!

CONF-9007134
Page 107

Implementation

During the implementation process, the implementor take the completed design and maps it
onto actual hardware and software. Each component and, ultimately, the entire system
must be debugged and repaired. The impleinentor also evaluates the performance of the
subsystems and of the completed system against the performance specification which is
derived from the task description. Failures to meet the specification may require
implementation reworks, design revisions or modifications to the task description. Thus,
like the design phase, the construction process (i.e., design plus implementation) is
iterative, However, implementation problems are much more costly to resolve than design
problems which have not been implemented. Once the completed system passes the
evaluation tests, it can be delivered to the customer.

Some of the lessons learned from the implementation of intelligent control systems can be
applied to distributed intelligent control sysiems. The implementor has the fewest options
when he needs the most. Thus, the differences between the designer's verification
methodology and reality show up here. Unfortunately, the implementation step of
intelligent control systems is very poorly supported by software tools. Existing debuggers
are barely adequate for centralized control systems and totally inept for distributed control
systems. Poorly understood tasks, ﬁsually those to which intelligent control systems are
applied, require much more iteration between design and implementation than tasks which
are completely understood. Repeated iterations increase the cost of the construction of
distributed intelligent control systems significantly. Finally, implementors are often those
who are least appreciated in the construction process but they solve the really hard
problems (i.e., getting the thing to work).

NEECED TOOLS

Considerable work is needed in tool development because the state of the art of distributed
intelligent control systems is so immature. Tools are needed for the foundations of design,
for individual intelligent agent design, for distributed intelligent system design and for
implementation.

CONF-9007134
Page 108

Foundation tools support the description of the task and the specification of system
performance requirements. In addition, these include any standards which rhay be needed.
Formal methods and representations are needed for describing a distributed intelligent
control task. Techniques must be developed to derive system performance specificatiohs
from the task description. Even though distributed intelligent control is in its infancy,

 standards are needed for communications protocols and for a common language to
represent common knowledge (i.e., vocabulary and syntax). However, standards are only
needed if interoperability at any point in the system's life is desired. These would enable
the products from several different manufacturers to be integrated relatively painlessly.

Design of a distributed intelligent control system is quite complex. Several tools are needed
‘to aid the designer. The désigner needs assistance with the decomposition of the task
description and the mapping of its components onto the individual agents. A tool which |
enabled the designer to easily evaluate the effects of different organizations,
communications strategies and shared knowledge allocations would be invaluable.
Techniques are also needed which enable the designer to reliably evaluate the performance
and stability of the completed system design. These techniques should be founded upon
formal methods for describing distributed intelligent control system pcrfdrmance.

Several tools are needed to aid in the design of the individual agents in a distributed
intelligent control system as well. For instance, tools are needed to aid the designef in the
efficient mapping of task requirements onto component functions, the specification and
construction of individual behaviors, and the identification of cooperative and competitive
coupling between behaviors. Reliable simulations and formal methods must be developed
to debug and, ultimately, verify the resultant behavior of the control system within the
complete task context. In the distant future, it should be possible to formally verify the
robustness of the combined system behavior..

Finally, as mentioned earlier, implementation of intelligent control systcms is very poorly
supported and several tools are needed in this area. The implementor needs assistance with
the debugging of a system and its components. These tools should aid in the identification
and location of bugs and should make the distinction between hardware and software
problems clear. Performance measures are needed which derive directly from the task
description. These may require much more complete theoretical understanding of
intelligent control systems than now exists. A tool is needed which assists the implementor

CONF-9007134
Page 109///0
in the construction of an ¢valuation test plan from the task description. Finally, reliable
evaluation techniques and methods to analyze the evaluation results must be developed.

CONCLUSIONS

In all, the state of the art of intelligent control systems is underdeveloped. Thus, the
construction of distributed intelligent control systems is at an even more primodal stage.
Very little substantive and widely accepted theory is available. Almost no tools for design
and implementation are available and few of those which exist for conventional systems can
be adaptgd. Almost no experience exists in the construction of intelligent control systems
and none exists in the construction of distributed intelligent control systems. Therefore,
almost any results (even negative) in any of these areas would be significant.

CONF-9007134
Page 111

Conceptual Programming

Roger T. Hartley
Computer Science Department and
Computing Research Laboratory
New Mexico State University
Las Cruces, NM 88003

Abstract

Conceptual Programming (CP) is a knowledge representation language based on Sowa's conceptual
graphs. It provides an expressiveness at least equal to fitst-order logic, and extends both logic and
conceptual graph theory in several aspects. CP allows representation of causality through actor nodes
that accept proper epistemological categories as input and output. The concepts of state and event
have been expanded to allow for both temporal and spatial representations, and both are integrated
as far as reasoning is concerned. Another type actor of actor node allows functioual computation with
individuals which may be symbols, numbers or sets of these. The graph operations join and project allow
structures to be built (called programs) that serve as qualitative and quantitative simulations. Constraint
propagation through the actor nodes determines the outcome of the simulation.

CP serves as the representation underlying the techniques of Model Generative Reasoning (MGR)
problem solving methodology that builds interpretations of data abductively through parsimonious set
cover and allows for revision of these interpretations through differential deduction.

1 Languages for knowledge-based systems

The history of knowledge based systems is full of attempts to provide a user, whether novice or expert, with
a set of tools that ease the task of building a working application in the shortest possible time. Early work
concentrated on extensions to Lisp giving it the flavor of a deductive retrieval data-base, i.e. one based on
a deductive model of problem solving. Micro-planner and Conniver can be seen as forerunners of Prolog in
this sense. Other attempts to provide a tool based on the deductive model (e.g. Omega) have been made
since then.

‘On the other hand, early expert system work lead eventually to the rash of expert system shells that
are sold on the commercial market today. These are all close cousins to the logic-based systems in that a
set of rules are executed by an inference procedure to effect the desired computations. Some of these are
now powerful enough to be called general-purpose languages (they are Turing machine equivalent) rather
than just single application packages (e.g. OPS83). Moreover, many shells incorporate a variety of symbolic
knowledge representation schemes such as frames, demons, classes and so on (e.g. KEE, ART).

All of these systems share a set of common beliefs. These are:

¢ Problem solving can be effected through the manipulation of symbolic representations.

o A representation language can be designed to capture all relevant knowledge, in an easy-to-use yet
expressive form.

¢ An inference procedure can be designed to allow all desired inferences to be drawn through computa-
tions on these symbolic structures.

CONF-9007134
Page 112

o The representations and procedures can be made generic enough for a wide variety of problem solving
activities.

Apart from a few hard-line connectionists, most people in Al stick to these priuciples. We are no different

in our design of Conceptual Programming, although the details of how the representations and procedures

come together are somewhat different. This paper presents an overview of our beliefs, how they are explicated
through CP and how CP is used to support a general problem solving system.

2 Conceptual graphs

In 1984, John Sowa (op. c:t) published his influential book that describes his ideas of knowledge and its

. representation. His theory of conceptual graphs remains as the best example of the form of representation
loosely called semantic networks. From this book there sprung a community of like-minded people who hold
regular workshops at the Al conferences, and who participate in regular discussions over an e-mail based
bulletin board. Sowa himself has improved his theory since the book was published and several research
groups have made other changes and additions. Conceptual Programming is one such attempt to enrich the
basic theory with the aim of becoming a general purpose tool for problem solving,

2.1 A brief summary

The theory of conceptual structures can be described briefly as (see Sowa’s book for more detail):

° Knowledge can be organized through a system of concept types that have sub/super-type relationships
in a lattice. This is very much like any taxonomy of natural types, except that new types may be
defined (i.e a new concept can be introduced) as having more than one sub or super-type to form a
complete lattice,

o Concepts are related together by relations that form a disjoint set of terms having their own lattice.

e Concepts can be specialized by individuals that refer to distinct objects, not to a class of objects as do
the concept terms themselves,

o Concepts are defined in one of three ways:

1. As an Aristotelian definition, with a a genus term and a set of differentiae.

2. As a schematic (i.e. contingent) definition, that relates the term to others.

3. As a prototype that looks like a compound individual containing typical (default) values for the
related terms.

¢ Relations can be primitive (defined canomcally) but may also be defined in a schematic form that
mentions the concepts involved.

o The expressiveness of first-order predicate calculus (FOPC) can be obtained by notating the forms as
two-color graphs (one for concepts, one for relations) call conceptual graphs.

e Functional dependencies between individuals may be expressed as actor nodes tying concept nodes
together.

o A set of starter graphs may be defined in the same way that axioms are defined in logic.

* The canonicality (i.e. their semantic well-formedness) of this starter set may be maintained through
four operations: copy, join, project and simplify. These operations allow graphs to be combined in a
variety of ways to support inference. Project is truth preserving, whereas join is not.

2

CONF-9007134
Page 113

2.2 Expressiveness of CGs

Sowa provides an operator ¢ that translates any well-formed conceptual graph into an equivalent FOPC form.
The inverse operator ¢’ reverses the transformation. Thus, FOPC and CGs are simply notational variants
for a first-order logic with equality. Both have advantages, but the graphical form has a distinct advantage
in that variables can very often be omitted entirely where they are merely place-holders for equal values in
different sub-expressions. Overall the strengths of CGs are shown in declarative representations, matching
the power of FOPC (there are improvements to make, however, notably in the area of sets). Weaknesses
show up when these forms are used to express dynamic happenings i.e. causality.

2.3 Limitations
This being so, the weaknesses of CG theory are the weaknesses of FOPC. For knowledge based system work,

the lack of a theory of causality (therefore of the real world) is the worst omission. Often FOPC uses material
implication to capture causality, and even the modal variants are based on this. Where FOPC would write

A—-B

_meaning A causes B, Sowa lwould be forced to draw

,
-|~[al(8]

because of the absence of a pictorial equivalent to disjunction. The boxes delimit conjunctive regions called
conterts. Neither form really captures the directionality of the intended causality.

A further limitation of CGs also comes through the insistence on FOPC equivalence. Inference making
in FOPC reduces to its proof theory, usually reductio ad absurdum and the use of the rules of inference
like modus ponens, resolution etc. Again this is not adequate for many forms of inference, especially where
hypotheses are generated, as in many forms of problem solving. Meta-rules can express these inference
control relationships, but, this is a cumbersome and confusing way to proceed, when a more direct method
can be used. The production system, as used in almost all expert system shells, is one answer to this problem.
As we shall see, CP has another answer, based on the idea of a simulation.

3 Conceptual Programming

3.1 Epistemology of CP

CP follows fairly conventional ideas, but extends the epistemology of FOPC (objects, predicates, functions)

to include categories for problem solving. In particular, a duality between spatial and temporal notions has
proved to be useful.

The world consists of ENTITIES and RELATIONS. Entities can be OBJECTS, ACTS, or PROPERTIES.

Relations are:
o SPATIAL, between objects
e TEMPORAL, between acts
e TEMPORO/SPATIAL between objects or acts and properties
e CASE, between objects and acts

Properties are:

T

CONF-9007134
Pagc 114

. » CHARACTERISTICS that are intrinsic
° ATTRIBUTES that are accidental

Characteristics can be omltted (unknown), their value can change but they cannot be negated. Attributes
can be omitted (unknown), their value can change, and they can be negated.

Spatial relations, can be omitted (unknown), their value can change and every one has an inverse (nega-
tion). Temporal relations can be omitted (unknown), their value can change and every one has an inverse
(negation).

A temporal INTERVAL consists of an infinite number of MOMENTS. The smallest moment is the
interval’s START-POINT, and the largest is its END-POINT.

A spatial REGION consists of an infinite number of LOCATIONS. A region has a BOUNDARY.

An object and its properties form a STATE A single triple (object relation pi-operty) is a PARTIAL
STATE. A state is fixed at a moment.

An act and its properties form a PROCESS. A single triple (act relation property) is a PARTIAL
PROCESS. 1t is fixed at a location. ;

An act and a number of objects are connected in EVENTS, through case relations. Events occupy time
through ("\e act’s interval, and space through the objects’ regions.

An object and a number of acts are connected in EXPERIENCES, tnrough case relations. Experiences
occupy time through the acts’ intervals, and space through the object’s region.

A set of objects and their spatial relations to other objects forms a SCHEMATIC. It is time-independent.
A single triple (object relation object) is a PARTIAL SCHEMATIC. A schematic plus its onjects’ states at
one point in time forms a SNAPSHOT.

A set of acts and their temporal relations forms a CHRONICLE. It is space-independent. A single triple
(act relation act) is a PARTIAL CHRONICLE. A chronicle plus its acts’ processes at one location forms a
HISTORY.

A temporal sequence of snapshots is the same as a spatial arrangement of histories and they form a
WORLD. It is a number of events, connected by temporal relations, seen from an act perspective, or a
number of experiences, connected by spatial relations, seen from an object perspective.

Over a given spatial region and temporal interval objects and spatial relations persist in time, whereas
acts and temporal relations do not; acts and temporal relatlons pervade the region, whereas objects and
spatial relations do not.

A SITUATION is a partial state or schematic. Situations enable or trigger acts. Acts constrain the
start/end points of situations.

A situation persists unless destroyed by one or more acts. This is causally PREDICTIVE. A situation
pre-exists unless created by one or more acts. This is causally EXPLANATORY.

A partial chronicle or partial process hus infinite (i.e. unknown) extent unless delimited by one or more

objects. Objects constrain the boundaries of process/chronicles, Processes/chromcles constrain the regions
of objects.

3.1.1 Declarative forms

In CP there is only one declarative form, the schema. The purpose of a schematic definition of a concept
is to relate the concept to others, in a given generic context. Thus, only concept and relation nodes appear
in a schema. Figure 1 shows a simple schema that can be paraphrased as “Giving involves an agent and an
experiencer, both people, and a patient that is a ball.”, All of the case relations used in CP are fixed and
primitive. There are also a number of primitive spatial and temporal relations.

The terms defined in this way form a lattice of concept types, as explained above. GIVE, for instance
might be a subtype of PHYSICAL-ACT, which in turn is a subtype of ACT. It is also possible to define a

schematic cluster for a concept. This cluster contains several alternate definitions of a concept for different
purposes.

. CONF-9007134
Page 115

Figure 2: The temporal overlay for CATCH .

’ 3.1.2 Procedural forms

The largest change to the general philosophy of CGs comes in CP’s ability to define procedural additions to
the basic schema, called overlays. There are three kinds of overlay currently implemented:

‘e A feasibility overlay that performs semantic checking during graph operations. Basically it stops
production of canonical but meaningless graphs, such as a coin with three sides, a pipe with three ends
etc. ‘

e A temporal overlay that enables simulations to compute the intervallic relations between acts and the
states that enable them, and are altered by them. This overlay models causality according to the
epistemology above.

e A constraint overiay that enables functional computations in a similar fashion to Prolog. This is very
close to Sowa’s functional actors, but whereas he only allows one-way computations (input-output
functions), CP allows constraint checking and propagation just like Prolog.

A fourth overlay, the spatia. »verlay, when it is implemented, will be the dual of the temporal overlay in the
spatial domain. Figure 2 shows a temporal overlay that changes in the person’s eraltionship with the ball
during catching. The actor node serves to draw these elements together. The relation ACT connects the

temporal actor with its act; the relation SCHEM connects the actor with the concept-relation-concept triple
that represents a partial schematic.

3.2 The implementation of CP

CP has been implemented on the Symbolics 3600 series under Genera 7.2 using CommonLisp, New Flavors
and Symbolics Windows. It is currently undergoing a rewrite to improve speed and file-handling efficiency
and will be ported to the Sun/UNIX environment in CommonLisp (Allegro), CLOS and Common Windows.
After the rewrite, we plan to reimplement on the Symbolics and maintain the two versions thereafter.

5

il

CONF-9007134
Pagc 116

\
Conceptual Programming T YTy
Yol Tor CURCTANIRY-WENUNY VRN 15 [@

TR 19 & constraint actor that computes the relation batueen TING, end
two DATE's = & stert DATE ond & finish DATE. OSiven any tue of the thres (ot relevant)
1t will computa the third, Gilven cll threa valuas 1t uill succeed f

the value of T11ME 13 lass then the difference batusen tha tue DATE'S.

[orcentual Trowrenning commandi Shou Ursshe TRWCH

L 1 1
Conceotual Progremning conmend!
0 o Ts

Figure 3: The CP screen

CP presents itself as a graphic editor for conceptual graphs. All input and editing is done graphically by
using a menu/mouse interface methodology. Figure 3 shows the appearance of the Symbolics screen during a
graph edit session. A window (not shown) displays the lattice of concept types, in a mouse-sensitive fashion
(for browsing) and another has a hypertext sub-system for adding descriptive comments, with mouse-sensitive
words, to any graph entered into the system. Functional constraints are written in Lisp into a pre-formed
skeleton with parameters taken from the overlay graph. Figure 4 shows sample code for a numeric function.

4 Model Generative Reasoning

4.0.1 An operator based architecture

CP was always intended to form the representational substrate for research in problem solving. The work at
CRL in the Knowledge Systems Group has attacked the brittleness problem of expert systems in two ways.
Firstly, we have attempted to remove the reliance on the perfect quality of input data seen by the system.
An expert system assumes that all data fed to it are accurate, relevant and true. However, data often does

6

. ‘ | CONF-9007134
Page 117

(DefActor ETA CONSTRAINT-OVERLAY MARCH ((CONCEPT DATE1) (CONCEPT DATE) (CONCEPT TIME))
(Declare ((TIME NUMBER)
~ (DATE NAME)
(DATE1 NAME)))
(LET (M D Y M1 D1 Y1 START-TIME EKD-TIME)
(WHEN DATE
(MULTIPLE-VALUE-SETQ (M D Y) .
(TRANSLATE-DATE DATE))
(SETQ END-TIKS (fIME:ENCODE-UNIVERSAL-TIME 0 0 O D M Y)))
(WHEN DATE1
(MULTIPLE-VALUE-SETQ (M1 D1 Y1)
(TRANSLATE-DATE DATE1))
(SETQ START-TIME (TIME:ENCODE-UNIVERSAL-TIME O 0 O D1 M1 Y1)))
(COND ((AND DATE
DATE1
TIME)
(IF (OR (> START-TIME END-TIME)
(> TIME (/ (- END-TIME START-TIME) 60 60 24)))
(SETQ OUTPUTS ’'FAILED)
(SETQ OUTPUTS ’'SUCCEEDED)))
(CAND DATE TIME)
(MULTIPLE-VALUE-BIND (IGNORE IGKORE LGNORE D2 M2 vz)
(TIME:DECODE-UNIVERSAL-TIME (- END-TIME (* TIME 24 60 60)))
(ASSIGE-VALUE DATE1 (UNTRANSLATE-DATE M2 D2 Y2))))
((AND DATE1 TIME)
(MULTIPLE-VALUE-BIND (IGNORE IGNORE IGHORE D2 M2 Y2)
(TIME:DECODE-UNIVERSAL-TIME (+ START-TIME (# TIME 24 60 60)))
(ASSIGN-VALUE DATE (UNTRANSLATE-DATE M2 D2 Y2))))
(T (SETQ OUTPUTS ’FAILED))))

Figure 4: The code for a functional constraint

not come in such a nicely packaged form. Too often data are imprecise, irrelevant or just plain wrong. Any
problem solver should be able to cope with this noise in the input data. Secondly, most expert systems,
if they are model-based, will do differential diagnosis on the data that do not conform to the norm. They
cannot cope with data that are novel in any way, i.e where the difference goes off the scale, or cannot be
measured at all.

These limitations of expert system technology led us to a system that addresses these issues head-on.
We have developed the ideas in model generative reasoning for these purposes. The basic technique is to
- view the data as interpretable, not as correct, true, etc. Data are interpreted by generating a model that
‘covers’ it. The notion of covering data with stored knowledge is similar to the general set covering model
of Reggia et al. as used in medical diagnosis. A successful cover leads to a program, that consists of a graph
formed by merging one or more schematic definitions, complete with their overlays, with the data graph
being covered. It is at this point that MGR depends on the ideas of canonicality in CP. The operation of
Join that is used to merge all the graphs ensures that the resultant program is well-formed. The program
can be seen as a simulation (since it contains actor nodes) of the local cause and effects. Figure 5 shows the
graphs for catch and throw with their temporal overlays. Below each graph is the time-chart for the actor.

7

CONF-9007134
Page 118

oR — [THROW] —

[CATCH] — (POSS) g

(S - (OIR). —

Figure 5: The graphs for CATCH and THROW

This time-chart is part of the definition of the graph, i.e. it is part of the knowledge of what it is to throw.
a ball to a person or to catch it. Figure 6 shows the two combinations of the individual catch and throw
time-charts (the two graphs join in two ways on PERSON and BALL). It shows that if the sequence of
acts is THROW-CATCH (one peson to another) then THROW must precede CATCH (hence the temporal
relation computed is BFOR). However, if the sequence is CATCH-THROW (by the same person), then there
is ambiguity. Either the throw comes after the catch, when the person hangs on to the ball for a period of
time, or the throw immediately follows the catch. The ambiguity is show by the dashed line for the interval
for POSS after CATCH. This indicates a partial ordering between the end-points of these intervals. In the
CATCH-THROW case we might talk of catch and throw ‘in one motion’. These time-charts are produced
by constraint propagation through the actor network. In this example there are only two actors, but in

- general there could be a network of multiply connected actors where there are multiple events happening
simultaneously. :

(DIR) ~— (POSS) ~—

[CATCH) — THROW]

(POSS) —-- | OF) —

[THROW] — [CATCH| —

(DIR) — (POSS) —

Figure 6: The time charts for CATCH and THROW

CONF-9007134
‘Page 119

4.0.2 IThe logical basis of MGR

MGR consists essentially of two operations: Specialize and Fragment. Specialize is the abductive operator
that takes data and covers them with schemata to form programs, which are then executed to form models.
It is composed of two more primitive operators, cover and join. This leads to tne slogan:

Abduction = cover + join

The functionality of specialize ‘is:
specialize : 2F x 20 — 2%

where F is.a set of input graphs representing data, D is a set of schemata (definitions) and H is the resultant
set of hypotheses produced by cover and join.

That specialize is abductive can be seen by considering that the Liypothesis generated contains a projection
of each input graph, whether data or schema. When these are joined together, some concepts may be
specialized by replacement by a common subtype, and new nodes may be added. Considering the truth
values of the graphs, the hypothesis implies its constituents. Put another way

F'US—F

where F is the input data, F' is this data specialized through join, and S is the additional nodes added by
the covering schemata. As an abductive task, this can be stated as “given F, what is the (minimal) S that
can be added s.t. the result implies F”.
Fragment takes models apart by breaking links such that data are preserved in each fragment. The
functionality of {ragment is: ‘
fragment : 2% x H — 2%

Here a set of fact graphs taken from F are projected into a single hypothesis h € H to produce a set of
fragments ‘K. It is not necessary for the subset F to be the set of facts that were originally covered to

produce h. Fragment implements a deductive operation since each fragment is guaranteed to be a projective
sub-graph of the original model.

4.0.3 The implementation of MGR

Currently MGR operates as an open architecture with the operators specialize and fragment embedded in
CommonlLisp on the Symboliics, together with a host of ancillary functions. Thus MGR is an embedded algo-
rithmic language like those mentioned in the introduction. Work is underway to implement the architecture
in a parallel environment (Sequent Symmetry) in order to combat the explosion of alternative hypotheses
produced by cover and join, and to handle the multiple hypothesis space demanded by the architecture,

We are also engaged in a research effort to let the operators run autonomously and opportunistically and
to optimize their effects through a genetic algorithm, and eventually through a dynamical systems control
mechanism where the rates of execution of the operators will be important parameters.

References

[1] Coombs, M. J. and R. T. Hartley (1987) The MGR. algorithm and its application to the generation of
explanations for novel events. International Journal of Man-Machine Studies 27: 679-708.

(2] Coombs, M. J. and R. T. Hartley (1988) Explaining novel events in process control through model
generative reasoning. International Journal of Ezpert Systems 1 *3-109.

[3] Coombs, M.J. and Hartley, R.T. (1987a). CP: A Programming Environment for Conceptual Interpreters.
CRL Memoranda Series MCCS-87-82, New Mexico State University.

9

CONF-9007134

Page 120

(4]

(5]

(8!

(7]

(8]

[9]

(10]

[11]
(12]
(13)
[14]

(15]

Eshner, D.P. and Hartley, R.T. (1988). Conceptual Programming with Constraints. In Proceedings Third
Annual Workshop on Conceptual Graphs, Minneapolis, MN, 3.1.2-1-3.1.2-6.

Fields, C. A., M. J. Coombs and R. T. Hartley (1988). MGR: An architecture for problem solving in
unstructured task environments. Proceedings of the Third International Symposium on Methodologies

for Intelligent Systems, Elsevier, Amsterdam, 44-49.

Fields, C. A., M. J. Coombs, E. S. Dietrich, and R. T. Hartley (1988b) Incorporating dynamic control
into the Model Generative Reasoning system. Proc. ZCAI-88, 439-441.

Hartley, R. T. (1986). The Foundations of Conceptual Programming. In Proceedings of First Rocky
Mountain Conf. on Al, Boulder, CO, 3-15.

Hartley, R.T. (1986). An overview of conceptual programmmg Conference on Intelhgent Systems and
Machines. Oakland University, Rochester, Michigan. 43-48.

Hartley, R.T. (1988). CP - The Manual. Memoranda in Computer and Cognitive Science series. Com-
puting Research Lab. MCCS-88-127, New Mexico State University, Las Cruces, NM.

Hartley, R. T. and Ccombs, M. J. (1989) Conceptual programming: Foundations of problem solving.
In: J. Sowa, N. Foo, and P. Rao (Eds) Conceptual Graphs for Knowledge Systems. New York, NY:
Addison-Wesley.

Hartley, R.T. and Coombs, M.J. (1989) Reasoning with graph operations. Proc. workshop on foundations
of semantic networks. Santa Catalina Island, 1989.

Hartley, R.T. (to be published, 1990) A uniform representation for time and space. Invited paper, special
issue on semantic networks, Journal of Mathematics and Computers with Applications.

Pfeiffer, H.D. and Hartley, R.T. (1989) Semantic additions to conceptual programming. Proc. {th Annual
Conceptual Graphs Workshop, IJCAI89, Detroit, MI.

Pfeiffer, H.D. and Hartley, R.T. (1990) Additions for SET representation and processing to Conceptual
Programming. Accepted for 5th. Annual Conceptual Graphs workshop, AAAI90, Boston, MA.

Sowa, J.F. (1984). Conceptual Structures. Reading, MA: Addison Wesley.

y—
[t

CONF-9007134
Page 121

Language Development Systems in Support of Software Engineering

Vincent P. Heuring
Departments of Electrical and Computer Engineering
and Computer Science
University of Colorado - Boulder
Boulder CO 80309-0425

1. ABSTRACT

An important way to enhance productivity in software engineering is to provide the
means for appropriate descriptions of problems and their solutions. This paper will
describe the Eli Language Development System, and its use in developing application
software. The Eli system provides an integrated set of tools that translates formal
_specifications for the lexical, syntactic, and semantic parts of an application program into
executable code. The Eli system encourages the writing of declarative specifications
instead of code, allows specification reuse, partitions the specifications for the language
into manageable modules, and employs an expert system to manage the details.

2. THE SOFTWARE ENGINEERING PROCESS

Software engineering can be viewed as the process of designing sc.utions to problems.
Or, restated, as the production of code from requirements. The conventional software
engineering process proceeds in stepwise fashion from requirements to coding, with the
coding being done in a more-or-less appropriate programming language. Much of the
code may concern itself with parsing user input, testing for errors, building tables for the
storage of information and preparing data for output. Often the "heart" of the application
comprises relatively little of the total code written. The basis for writing the code is,
“‘how can I solve this problem,’’ rather than, ‘*how do I specify the solution to this prob-
lem.”’

The latter basis seems a more natural 2pproach to problem solution, since requirements
can be viewed as specifications of what problem is to be solved, not how the problem is
to be solved. So the programmer needs to translate requirements into algorithms. Con-
trast this approach with the specification approach, where the programmer translates
specification to specification.

Unfortunately, there are presently not many formal specification languages that are
appropriate to the application domain. Many of the current generation of specification
languages are not general purpose, but are specialized to the areas of algebraic
simplification or theorem proof. The Eli system can be viewed as a general purposc
specification system where solutions are described in the form of specifications that may

CONF-9007134
Page 122

be created specially, or extracted from a library. The next section describes the Eli sys-
tem.

2.1, THE ELI SYSTEM

The Elit system was originally developed as a compiler construction environment that

_integrated off-the-shelf tools and libraries with specialized language processors to pro-
vide a system for generating complete compilers quickly and reliably. Its aim was to
simplify the development of new special-purpose languages, implementation of existing
languages on new hardwarc and extension of the constructs and features of existing
languages.

Considerable experience with the Eli system has shown us that it is also useful in
developing a variety of specification-to-program translators. Eli automates the solution
to complex problems: problems that can be broken down into smaller problems. Thus we
can easily put together complex systems from existing pieces.

The reader should understand that in a very real sense, developing a compiler is no dif-
ferent than developing any other piece of complex software: the user input must be col-
lected into a sequence of basic symbols; the symbol sequence must be parsed to ascertain
the structure of the user input; when certain pieces of input structure have been recog-
nized, the program must provide processing and output. Intelligent and timely error
reports must be generated. (The same process obtains whether the processor being gen-
erated is an interpreter or a compiler. The only difference is when the final interpretation
process takes place.)

Eli’s collection of off-the-shelf tools is controlled bY an expert system whose problem
domain is the management of complex user requests.” This expert system is discussed in
the next section.

Because the expert system manages the counstruction process, we can interpose
arbitrarily complex processing to make simple user input acceptable to off-the-shelf
tools. The number of specifications can be reduced, and special-purpose languages can
be used to simplify those specifications. Values for many of the tool parameters can be
deduced from the specifications themselves.

The Eli system allows arbitrary processing to be carried out to match the output of
one ‘ool to the input of another, to prepare consistent input for several tools from a single
specification, and to combine outputs from several tools. Thus, tools developed by dif-
ferent people with different conventions can be combined into an integrated system, even
when only executable versions of those processors are available.

To add a new tool to Eli, or to replace an existing tool with a better one, only the
expert system’s knowledge base must be changed. Eli users are not concerned with the
knowledge base; they are only interested in the products and parameters that Eli pro-
vides. Knowledge base changes may add new products and parameters or make existing
ones disappear, but most users can continue business as usual.

t Named after Eli Whitney, who was the first US manufacturer to make extensive use of interchangeable parts.

CONF-9007134
Page 123

2.1.1. Controlling the Tools A complete system specification will probably consist of
several files, each containing an additional specification or part of a specification. Some
of these files may be taken from a library, others may be shared among several different
projects. A user needs to be able to submit this collection of files to Eli, and to specify a
user request to Eli. It may only be necessary to test some aspect of the application. On
the other hand, it might be necessary to obtain an executable version of the application,
or a directory of source files from which an executable version could be built without the
use of Eli.

Most requests will invoke a bewildering array of tools and intermediate products.
Some of these products may already have been constructed to satisfy previous requests.
Eli removes the burden of managing this complexity from the user by placing it upon the
shoulders of an expert system called Odin,” whose area of expertise is the management
of complex user requests. Eli’s component tools and their relationships are described by
a derivation graph that resides in Odin’s knowledge base. Odin also manages a cache of
derived objects. When a user makes a request of Eli, Odin’s inference engine determines
the sequence of operations needed to satisfy that request, re-using cached objects in the
derivation wherever possible.

Eli’s primary input is a text file whose name is the name of the application being
generated, followed by the extension ‘‘. specs’’. (Each file name has an extension that
gives the ‘‘type’’ of that file; file types are used by the expert system to determine how
the file should be processed.) Eli passes the specification file through the C pre-processor,
and then interprets each line as the name of a specification file. The use of the C pre-
processor allows the user to group specification file names logically, control the selection
of certain specifications by directives, and include specifications from libraries.

Figure 1 shows the top-level specification file for the development of a Minilax
compiler, and some Eli requests that might be made during compiler development.
(Minilax is a small teaching language used in our compiler construction classes.) The
specification files structure.specs, translate.specs and vax.specs list
the specifications for the three major compilation subtasks of structuring, translation, and
encoding.3 A standard module for carrying out the name analysis task is available in
Eli’s library, and this module’s interface is made available via environment.lib.
Opident.oil and Properties.ala are all themselves specifications, describing
operator identification, and symbol table properties respectively.

Figure 1b shows examples of some user requests of the Eli system. Each request
line in the figure is read from left to right. A colon (:) can be read as ‘‘derive to’’; plus
(+) introduces a keyword parameter, which may or may not have an associated value.
Notice that it is possible to derive an object from a derived object — ‘‘: err’’ is a gen-
eral derivation that obtains error reports produced by some other derivation. Greater than
(>) is a re-direction mechanism; it is used to place the object resulting from the deriva-
tion into a file or a directory.

Notice that individual tools are never invoked directly when using Eli, and their
particular interfacing requirements are invisible. The user is concerned only with com-
posing the appropriate request. Based upon that request, and the state of the cache, Eli
determines what needs to be done: what tools to invoke, and what intermediate results to

CONF-9007134
Pagc 124

#include "structure.specs" Specifications for the structuring task
#include "translate.specs" Attribute grammar for the translation task

environment.lib Use the standard name analysis module
Opident.oil Specification for the type analysis module
Properties.ddl Specification for the definition table module
Properties.ala Implementation of the stored information
#include "vax.specs" Specifications for the encoding task

- a) The content of file Minilax. specs, a specification file

Check whether the concrete syntax satisfies the parser generator constraints:
Minilax.specs :parsable

Apply the compiler being developed to program test .mla and display its output:
Minilax.specs targ=(test.mla) :stdout

As above, but only display error ref)orts:
Minilax.specs targ=(test.mla) :stdout :err

Put an executable version of the Minilax compiler into file Minilax.exe:
Minilax.specs :exe > Minilax.exe

Put complete source text for the Minilax compiler into directory src:
Minilax.specs :source > src

Obtain a version of the Minilax compiler with embedded profiling code:
Minilax.specs +prof :exe > Minilax prof.exe

b) Some iypical Eli requests involving the specification file of (a)

Figure 1
Using Eli

produce. In order to make requests of Eli, a person must learn only a few derivation and
parameter names. By hiding all of the conventions and most of the options needed to
control each tool, Eli sharply reduces the number of things that must be learned.

Eli uses a hypertext-based help system that provides the entire system documentation on
line. This documentation is constantly being upgraded, and presently comprises nearly 1
MB of text.*

CONE-9007134
Page 125//:6

3. CONCLUSIONS

Eli is a complete, flexible specification bascd software engineering development
system. Although it was originally developed as a compiler construction environment, it
is useful in many other areas of software engineering. Based on existing tools, it is an
open system that is able to evolve as new tools and techniques become available. Eli
does not rely on any one specification language to describe all of the subproblems that
might be involved in a devclopment project; rather it provides a coherent framework in
which specifications written in a number of languages are combined to describe a com-
plete product. A simple user interface provides a uniform method for requesting deriva-
tions from specifications. Such requests only involve product names. Eli determines the
particular set of tool invocations on the basis of the state of its cache, as rcﬂcctcd in a
knowledge base.

We have used Eli to create processors for small, special-purpose languages, stan-
dard programming languages and extensions to existing languages. It has improved our
productivity and has enabled inexperienced users to undertake and complete significant
software development projects. Our current research program is airned at further simpli-
fying the use of Eli itself and improving the performance of the generated software.

4. REFERENCES

1. W. M. Waite, V. P. Heuring and U. Kastens, ‘Configuration Control in Compiler
Construction’, in Proceedings of the International Workshop on Software Version
and Configuration Control, Teubner, Stuttgart, FRG, 1988.

2. G. M. Clemm- and L. J. Osterweil, ‘A Mechanism for Environment Integration’,
ACM Transactions on Programming Languages and Systems, 12 1-25 (January
1990).

3. R. W. Gray, V. P. Heuring, S. P. Krane, A. M. Sloane and W. M. Waite, ‘Eli: A
Complete, Flexible Compiler Construction System’, Software Engineering Group
Report 89-1-1, University of Colorado ECE Dept. Boulder Colorado, June 6, 1989.

4, R. M. Stallman and R. J. Chassell, Texinfo - The GNU Documentation Format,
Free Software Foundation, 675 Massachusetts Ave. Cambridge MA 02139, May
1988.

" CONF-9007134
Pag¢127

THE G2 REAL-TIME EXPERT SYSTEM

Roland Jones -
Gensym Corporation

' The practical application of expert systems to dynamic domains requires a
second-generation approach toward knowledge representation. In
particular there is a need to represent dynamic qualitative knowledge,
dynamic analytic knowledge and the structure of the object interactions in
the domain. The application of inference in real-time requires paradigms
which go beyond rote pattern matching, to use metaknowledge to focus
the inferencing resources of the expert system. Finally the application of
‘truth maintenance requires a temporal model of the time dependence of
the truth of data and inferred results.

The G2 expert system technology was developed for real-time

. applications. Current installations are primarily in large chemical process
plants, where the need for this technology is to advise operators for safety
and economic reasons. Recently the application of the technology of real-
time expert systems has been extended to robotics, and the Savannah
River Laboratory of the Department of Energy has used G2 in mobile robot
applications. Their purpose is to employ expert systems supervision to
eliminate many of the requirements for human supervision. Additional
applications in the aerospace industry include rapid prototyping and on-
line manufacturing.

The underlying methodology of G2 is object oriented. Classes, frames,
inheritance and other concepts are extended from heuristic reasoning to
include analytic dynamic models. Expert system reasoning is extended
from rules to structure using object connections. The resulting G2
application framework allows an engineer, or a cooperating group of
engineers, to rapidly prototype new expert systems, control systems,
decision suppa:t systems, networks, schedules and other applications
where g combination of heuristics, analytic models and domain structure is
needed. \ ’

Several considerations of dynamic domains impose requirements of the
knowledge representation:

1. The concurrent use of analytic and heuristic models. Conventional
simulation methods allow analytic models. Conventional expert
systems allow heuristics, but leave the analytic part for the use to
program. The combination of analytic and heuristic knowledge in
an object oriented framework allows the applications to be
addressed in a unified way.

[T TR

CONF-9007134
Page 128

2. Interaction between objects. The structure of an application is
frequently important in predicting behavior, performing diagnosis or
in scenario simulation. Structure is generally expressed as
connectedness of objects, or proximity of objects. Structure may
also be expressed in an object's attributes, especially where
connections may vary in time. A framework which has the built-in
capability to reason in terms of object connectedness or proximity,
and to integrate analytic as well as heuristic knowledge in these
terms, allows construction of the knowledge for the application.

3. Dynamic behavior and live data. Many problems have a real-time
aspect, including dynamic knowledge in differential equation form,
such as equations of motion. Live data may be needed for the
eventual deployment, and data access and real-time processing
may be important. A framework which includes these real-time
considerations in the expert system design is required. The
framework allows simulation to provide real-time values for
prototyping and development, to be supplanted by sensor-based
data at installation. Data servers provide interfaces to other
systems with 2 minimum of user work, so the prototype can become
the actual application.

In addition to the general characteristics of the applications, which call for
a unified framework, the general desirability of rapid implementation calls
for the use of high level interfaces. In G2 these include graphical
construction of the application domain and structured natural language for
expression of knowledge, models, and other information. Modern parsing
techniques allow the user to express the knowledge in reasonably natural
form, and G2 checks the user input as it occurs. Look-ahead menus help
the user, and errors are immediately flagged. This eliminates a whole
level of debugging which conventional programming requires.

Two apparently conflicting requirements dominate the inference paradigm
considerations in the real-time domains. One is the need for truth
maintenance. With thousands of data changing rapidly, the validity of
conclusions at all levels of inference are in question. The other
requirement is fr real-time performance, where real-time means fast
enough to advise the human operator and/or control the robot process.

Code improvements and computer improvements can help. However a
fundamentally different inference approach is appropriate for real-time |
problems. The approach that a human expert uses in a real-time situation
is to maintain a peripheral awareness across the domain, watching for
performance exceptions, and then focusing on areas of interest. The G2
inference engine operates similarly. The inference engine continually
scans knowledge which the expert has specified for peripheral

awareness. If a safety-threatening condition occurs in a reactor, for
example, the G2 inference engine uses metaknowledge to determine
which knowledge to invoke, thus focussing on the area of interest.

CONF-9007134
Page 129/60

One benefit of the metaknowledge approach is that very large knowledge
bases can be run in real time. Since many types of problems and
behaviors are represented in the knowledge base, it can get quite large,
with thousands of rules. However Ge does not consume computer time
looking for patterns in all of this knowledge all the time. Rather it focuses
attention on the knowledge needed. The concept is like the human
thought process, in that a human does not use knowledge of swimming or
driving when walking in the park. The human mind focuses, using the
knowledge relsvant to the task.

In static expert systems, truth maintenance involves changing inferences
when data changes. In real-time problems there is an additional
requirement to change inferences even if no new data is available, since
time is a factor in validity or certainty of inference. One way to express this
temporal validity information is to attach an expiration time to each value
maintained by the inference engine, and propagate this when inference is
carried forward. Generally, when a conclusion is based on several time
sensitive variables, the earliest of their respective expiration times will be
carried forward. Expiration times can be propagated forward through
multiple levels of inference, but there are also ways to limit this
propagation.

‘The real-time expert system technology described in this paper represents
a departure from static expert system design, as the issues of time
relationships and dynamic behavior have been addressed. The resulting
expert system is capable of applying thousands of rule-frames of
knowledge, and of performance in real time for reasonably complex
operations.

CONF-9007134

‘ Page 131
Software Tools for
Lower Echelon Systems
Development
Dr. Larry U. Dworkin Dr. Dirk R. Klose - Lanny L. L. Gorr
~ Consultant U.S. Army Communications- TELOS Corporation
Holmdel, New Jersey 07733 Electronics Command Shrewsbury, New Jersey 07702
Center for Command, Control,
and Communications Systems

Fort Monmouth, New Jaersey 07703-5000

ABSTRACT

The U.S. Army Communications-
Rlectronics Command (CECOM) Cen~
ter for Command,,Control, and
Communicationas (C°) Systems has
proposad an Advanced Technology
Transition Demonstration (ATTD)
for a Lower Echelon Command,
Control, Communications, and In-
telligence (LEC I) system.

The LBC’I system contains fea-
turecs such as a distributed
.ntelligence control system to
manage the network of user units
and nodes (e.g., dynamic recon-

figuration to address node/unit

losses and acquismitions); a very
high-speed distributed database
management system: a near real-
time remote and local access
knowledge-based Decision Support
System (DSS); an automatic format
and protocol conversion capabili-
ty to facilitate interoperabili-
ty; an object-oriented, "“Fact"-
based approach to reduce the
communication volume, state-of-
the-art communication error
detection and correction; and a
generic software interface ap-
proach for standardizing user
display hardware, software, and
human interfaces.

The L3031 ATTD development is a

rapid prototyping process that

bagins using modeling and simula-~
tion techniques, evolves to a
mixture of prototype elements and
modeled elements connected to
simulators, and concludes with
field demonstrations of a proto-
type system. The paper will
identify the tools needed to
pupport the full development
cycle of the ATTD, particularly
the need for consistency in
approach, language, and object
representation over the entire
cycle.

INTRODUCTION
Significant financial resources
are being focussed on Comput-

~ er-Aided Software Engineering

(CASE) tool development.
Current tools are quickly being
supplanted by ones that are far
superior. Many of the tools are
irery specialized, choosing to
deal thoroughly with only a

‘portion of the development

process and often limited to
very specific development
and/or target systems. The
available tools typically inte-
grate poorly with one another (if
at all), and are often not usable
at the level of complexity found
in Government systems. There-
fore, to identify the tools needed
for a system development activi-
ty such as the Lower Echelon
Command, Control, Communi-
cations, and Intelligence
(LECSI) Advanced Technology
Transition Demonstration
(ATTD), it is critically important
to define the scope of the appli-

.cation development being

addressed. This situation is

exacerbated by the complexity
of the LEC®I ATTD, in that it
includes reverse engineering,
traditional design and system
generation, and extensive use of
modeling and simulation. The
situation is further exacerbated
by the fact that the develop-
ment work will be performed in
heterogeneous development
environments at a group of
organizations having local varia-
tions in methodology.

As a result, the initial focus for
specifically identifying needed
tools is on the critical issue of
clearly defining a methodology
model: how is information
about information organized
and how is the LECI system to
be developed from that base?
This meta model is critical in
determining what CASE tools
will be needed to support the
ATTD methodology, handle
objects and relationships, and
integrate with the different
modeling and simulation con-
cepts. Having identified the

CONF-9007134
Page 132

ATTD methodology and envi-
ronment, tool requirements car;
be identified that support the
desired methodology, handle
objects and relationships, and
use the different modeling
concepts. The intent of this
paper is to recommend tool
concepts that can be developed
'to support a complex project
methodology such as the LECI
ATTD, not to move to a differ-
ent methodology to fit the predi-
lections of current tool vendors.

The following paragraphs will
present a brief description of
the lower echelon battlefield
environment and the LE031
system to be developed by the
ATTD, an overview of the
engineering design process over
the various phases of the ATTD
life cycle, a listing of the tool
capabilities desired, and a
summary of the required capa-
bilities,

BATTLEFIELD
CHARACTERISTICS

The lower echelon battlefield is
nonlinear and contains many
highly mobile units. Large facil-
ities, such as those used in the
higher echelons, are not practi-
cal because soldiers to man
them are not likely to be avail-
able and the large facility size
and commensurate lack of high
mobility are likely to make the
large facility vulnerable to

enemy destruction or capture.
The probability of individual
unit loss at the lower echelons
(coupled with the fluidity of
conditions, low cdmmunications
quality, and severe data volume
limitations) has historically
resulted in a low level of proc-
essing power and automation.

The lower echelons battlefield

conditions lobby for & solution to

be based on a loosely coupled
network of powerful, compact
processors. Since communica-
tions capacity is limited and
transmission quality is often
poor, any data collection process
needs to correlate data as soon
as feasible to minimize the
volume of data to be passed
onward. Personnel providing/-
receiving information at the
lower echelons are normally
quite busy and therefore re-
quire a graphical information
presentation interface.

LEC? ATTD

DESCRIPTION

The Advanced Technology
Transition Demonstration
(ATTD) for Lower Echelon
Command, Control, Communi-
cations, and Intelligence
(LECSI) is an advanced devel-
opment effort to transition the
set of technologies needed to
implement a "smart node" infra-
structure that collects, process-
es, and distributes Cata among

the Battlefield Functional Areas

. (BFAs) and representative task
. force elements.

The "Smart"
node infrastructure will be a
design that transitions the
Combat Vehicle Command and
Control (CVC?) and the Battal-
ion and Below Command and
Control (B202) concepts into
LEC®I capabilities and provides
seamless functional connectivity
to the Arm) Tactical Command
and Control System (ATCCS).
The hierarchy of these tactical
command and control acronyms
is shown in Figure 1. An over-
view of the LEC3I ATTD is
provided in Figure 2.

The LECsl‘system will contain
the following segments:

1. A Combined Arms Com-
mand and Control (C2)
system providing vertical
and horizontal interfacing of
all BFAs at the Battalion
and Below (B2) echelons,
i.e,, a Lower Echelon c2
(LECz) system

2. A secure, dispersed, tactical
information collection,
correlation, storage, and
dissemination system, i.e., a
Battlefield Information
Management System
(BIMS) and the high-speed
database search/retrieval
hardware

3. A near real-time Tactical
Situation Status Display

|

CONF-9007134
Page 133

ATCCS - ARMY TAGTICAL COMMAND AND CONTROL SYSTEM (TOTAL FORCE)

—

B2c2

« BATTALION AND BELOW COMMAND AND CONTROL
AND EXPANSION TO COMBINED ARMS OPERATIONS

‘ A
LEC3 ATTD [
Focus |

I

TR

vecos

SA}A « STANDARD ARMY VETRO} iCS ARCHITECTURE

CVC2 - COMBAT VEHICLE COMMAND & CONTROL (ARMORAINFANTRY)

REAL-

TIME

CRITICAL OUTSIDE VEHICLE

[VI3 < INTERVEHICLE INFORMATION SYSTEM (M1A1 STARTER FOR CVC2 AND VCOS)]
INSIDE VEHICLE VETRONICS
PROGRAM
FOCUs

- VEHICLE CONTROL AND OPERATING SYSTEM

—

(T T TR

FIGURE 1. COMMAND AND CONTROL ACRONYM HIERARCHY

ORIECTIYE
* PROVIDE CRITICAL INPORMATION IN A TIMELY MANNER

THROUGH:
« AUTOMATED INTEGRA

INFORMATION RZSOURCES TO R
VOLM WITHOUT THE LOGS OF FACT INFORMATION

+ AUTOMATED TAILORING, DCSWA'HON. AND PRESENTATION
OF INFORMATION IN A GRAPHICAL DECISION-ORIENTED

+ REMOTE ACCESS DISTRIBUTED PROCESSING CAPABELITIES
«BATTALION AND BELOW FORCE LEVEL counot SYSTEM
« A HIGHILY MOBILE COMMUNICATION INFRASTRUCTURE

« ACOMMON POSITION AND TIME GRID FOR SYNCHRONIZATION

OF FORCES

» PROVIDE INTERF A GIN'EROF!RAIMTYTO!XIITING

COMMUNICATION AND C2 §Y!

LOWER ECHELON C3{

+ AREA SYSTEM, o4, MSE, TRI-TAC . ATCCS
JSINCOARS -~ ¥ « IV15,CYC2, 33C2 ROW-ON-
. EPLRS/JTIDS . CATC2 THE-GROUNLF USE
PROGRAM SCHEDULE
m me rm e + CREATR/EVOL VE TECHNOLOGY AND REQUIREMENTS BASELINE
DY =1 Y) LEVERAGING OFF ATCCS CV(3, ATTDs, SBlRs, AND COMMERCIAL
TECHNOLOGY

OFELUNME PRAA' Y.
: P - wovent 4 + DO STMULATIONS AND DETAILED ANALYSES TO IDENTTFY INFORMATION
. NEEDLINE, INFORMATION FLOW, LINK LOADING, TIMELINESS,
4 SICI ChOMITRATIN Unave Py PERFORMANCE, AND INTEROPERABILITY CONSTRAINTS

P PROCLNIEIT ouse a « WITH TRADOC/USER/SUBJECT MATTER EXPERT INVOL YEMENT,
N ™ M M ESTABLISH SYSTEMS CONCEPT AND TEST USING MODELING,
v ey e & T oe—etr—r SIMULATION, AND LECH PROTOTYPES
e T o g e a « DEMONSTRATE PROTOTYPE APPLICATIONS SUCH AS SMART MAP,

VERSCLES, ILSTORATY SeaL v v INFORMATION FILTERING, AND DECISION SUPPORT AIDS
§ SVETLN 6TRA & THET WTATIY Lot 0 4 + RUN A SERIES OF TECHNOLOGY DEMONSTRATIONS AND FIELD TESTS
& SveTm orree o TeNY wamn PO TO FULLY EVALUATE PROTOTYPES, DESIGN CONCRITS, AND DERIVE

. USER REQUIREMENTS
. — AND FINALIZED
+ TRANSITION LECY TECANOLOGY PROTOTYPLS

nEm———— SPECIFICATIONS TO APPROPRIATE PEO/PM COMMUNITY

» POTENTWAL JONIY STRAEC 3 CRWOMITIA TION
- BASCE ON FITIAATE OF ¢ SUANT HOOES ANS 18 UBIN TALD

= BAMGN G5 GETIRATE OF 70 MEAAY NODES

FIGURE 2. LOWER ECHELON C3| ATTD

CONF-9007134
Page 134

_ (TSSD) generic software inter-
face for user display devices
such as heads-up displays.
A near real-time, remote
access Decision Support
System (DSS), including the
advanced processing hard-
ware and software technol-
ogy required to provide
Expert System (ES) deci-
sion support aids

4. A communication system
that is transparent to the
dispersed and diverse
combined arms user

community, secure, highly
flexible, and linked to exist-
ing systems such as the
Mobile Subscriber Equip-
ment (MSE) network and
Combat Net Radio (CNR).
The system will utilize such
software and hardware tools
as are needed to address
the interoperability prob-
lems present among con-
nected systems.

The LEC3I ATTD proposes to
combine the infrastructure
needed for the BIMS, TSSD,
DSS, and communications
network node into a single
assemblage known as a "smart
node". A smart node is intended
to function as a relay for point-
to-point and conference
communication within its own
service area, a fully automated
format/protocol converter to
support intéroperability, a
transparent gateway for traffic

utilizing the MSE network, a
storage and processing l¢ativn
for the BIMS, a filtering and
correlating system to provide
users only the data that they
wish and in the form most
conducive for immediate com-
prehension, and a source for ES
support to those users whose
own computer resources are
inadequate to support ES appli-
cations. '

The LEC3I ATTD is based on
state-of-the-art commercial
technology and the products
developed under a number of

‘other ATTDs, particularly the

Multi-Mission Area Sensor
(MMAS) ATTD and the Air-
Land Battle Management
(ALBM) ATTD. The LEC31
ATTD will determine what
capabilities are required for a
LEC? system and identify the
requirements for the communi-
cations, database management,
decision support, and data
display elements needed to
support all of the lower eche-
lons. A prototype set of
products will be built and tested

to validate the requirements .

analyses and better identify and
quantify the benefits expected if
a production version is fully
deployed.

The LEC3I ATTD will investi-
gate commercial and military
state-of-the-art radio communi-
cation technology and existing
Army communication systems to

select a technology to be utilized
in the demonstrations and to
make a recommendation for a
production LECSI system.

The LEC3I ATTD will make
extensive use of modeling and
simulation to evolve require-
ments definitions, evaluate
design alternatives, and quanti-
fy expected benefits from field-
ing-recommended products.
The LEC3I ATTD expects to
make significant use of the
Simulation Network (SIMNET)

program.

The LEC®I ATTD will use rapid
prototyping to determine whnt
capabilities can be implemented
and to the
performance.

improve

ATTD ENGINEERING
DESIGN PROCESS

The ATTD for LEC?I can be
divided into a four-phase life
cycle. During the first phase,
alternative architectures for the
LECaI system are reviewed and
conceptual system and segment
designs are made. The hard-
ware and software for the most
promising concepts are modeled
for testing and evaluation using
the SIMNET program. The
design will evolve ax dictated by
results of the simulations.
During this phase, the existing
assets being incorporated will be
reverse engineered and choices

will be made among off-the-shelf
components by comparative
evaluation. The final conceptual
design from the phase one
simulation efforts will be the
starting point to design and
consiruct a few prototype units
during phase two.

During phase two, hardware will |

be acquired and integrated and
software will be written to build
prototype units suitable for use
with SIMNET and AIRNET.
Mathematical models of the
prototypes will also be produced
so that the simulations can be
performed with a normal de-
ployment quantity of units.
Lower echelon systems typically
deploy in quantity. Therefore,
" the simulators can reduce the
cost and time needed to evolve a
lower echelon system design
using a rapid prototyping
approach. It should be noted
that user community participa-
tion is continual throughout the
ATTD life cycle. Therefore, the
results of the simulations are
expected to change the user
requirement documents and
battle strategies. The final
prototype hardware and soft-
ware design from phase two will
be used to build the phase three
prototypes.

During phase three, an ade-
quate number of ruggedized
prototypes will be built to
conduct field demonstrations.
The prototypes will exchange

information with deployed mili-
tary systems and be operated by
military personnel. Based on
the experience gained from the

‘field demonstrations, the LECaI
specification and requirements -

documents will be revised.

The fourth phase is the transi-
tion of the prototypes, testing
documentation, and specifica-
tions to the appropriate Pro-
gram Executive Offices (PEOs)
for Full Scale Development
(FSD).

The ATTD effort is expected to
be organized against the five
primary product development
efforts; i.é., Lower Echelon
Command and Control (LEC?)
System, near reel-time Battle-
field Information Management

. System (BIMS), Tactical Situa-

tion Status Display (TSSD),
Decision Support System (DSS),
and the communication system.
Work in these areas will be
coordinated to avoid duplication
of effort, obtain the maximum
level of synergy, and produce
products on the schedule
needed to meet transition goals.
Metrics indicators are expected
to be used to aid in meeting
quality, schedule, and cost goals.

The execution of an ATTD
project involves the combined
efforts of Government organiza-
tions, their support contractors,
and an ATTD prime contractor
with subcontractors. It has

CONF-9007134

~ Page 135

been determined as a matter of
national policy that restriction
of competition is undesirable
(e.g., the Competition in Con-
tracting Act). Therefore, the
details of the development
approach and the selection of
the software development tools
to be used are influenced by the
outcome of the competitive
bidding process. This influence
is particularly acute when tran-
sitioning from the ATTD devel-
opment team to a PEO and,

later, to the FSD contractor(s).

Because of the leverage of exist-
ing programs such as CVCz,
existing technology demonstra-
tion (e.g., ATTDs, Small Busi-
ness Initiative Research [SBIR]
programs, Balanced Technology
Initiatives {BT1s]), and commer-
cial efforts, considerable parallel
efforts are present. Therefore,
software portability and reus-
ability are significant cost driv-
ers. These cost drivers are
negatively influenced by the
heterogeneous mix of develop-
ment methodologies, tools, and
documentation techniques
present in the DoD community.
In view of the passion displayed
by proponents of various design
approaches, there is no reason
to expect that the DoD commu-
nity will adopt a single approach
(e.g.,object-oriented, struc-
tured). Any tool set developed
will have to accommodate more
than one approach.

izl 1w

CONF-9007134
Page 136

TOOL REQUIREMENTS

A generic engineering design
approach is shown in Figure 8.
It should be noted that Figure 8
is generic in that the "New
System" product can range from
the phase one model of the
LECSI system run in a comput-
erized simulation of a battle to
phase three executable code
running on prototyp: target

system.

The first activity is to reverse
engineer the real assets (source
code, test cases, etc.) that have
been obtained from existing
systems and other research
activities. This activity is
needed to generate a descrip-
tion data set. Although new,
such reverse engineering tools
do exist and have been proven
to be effective. Once the de-
scription of the old system has
been built, more familiar ground
is reached. Many CASE tools
exist to define requirements,

create a design, and generate

the resulting new system assets.
As Figure 3 shows, this task is
unusual in that the create
design process is driven by both
the traditional define require-
ments step and the description
of the existing systems. More
correctly, the old system de-
scription serves as a resource
that the designer can draw on,
at his option. His first concern
is presumably to reflect the new

a FEFT YN . . v .
Al L1y requlremﬁ‘lbs alu vu

conform to a set of architectural
principals that were probably
part of the library products to
use as components of the new

systern.

When the old system assets
were designed, different stand-
ards and performance criteria
may have been utilized. An
issue raised by Figure 8 is
represented by the dotted box
and lines. Can any components
of the old system be salvaged
and retained in the new?
Candidates for retention might
include device drivers, database

REQUIREMENTS
LEFINE DESCRIPTION
REQUIREMENTS OF
NEW SYSTEM

STANDARDS, ETC.)

DEFINE DEVELOPMENT DESCRIPTION
ENVIRONMENT OF CREATE |
(DESIGN METHODOLOGY, DEVELOPMENT DESIGNS

ENVIRONMENT

managers, or modules of source
code that implement particular-
ly complex algorithms. Reten-
tion of source code would seem
to be particularly risky in that it
may undermine the complete-
ness and accuracy of the old and
new system descriptions, and
therefore the quality of the new
system. Retention, in a sense,
"short circuits” the reverse/-
forward engineering process, as
the diagram shows. The reten-
tion step is included in this
discussion because it may be
appealing on economic, sched-
ule, and complexity grounds.

IDENTIFY
LEVERAGED =

TECHNOLOGY TO BE | &%’&’Zﬁi ‘

DESCRIPTION
OF

OLD SYSTEM

ASSETS

DESCRIPTION
OF

NEW SYSTEM

GENERATE |
SYSTEM

ASSETS

b

RETENTION =’

KEY: E'_': « PROCESS o » PRODUCT

FIGUKE 3. RYPOTHETICAL CASE-ORIENTED FRAMEWORK

Vol

The main criteria that can be

 used to select CASE tools to ad-

dress this ATTD are the follow-
ing:

a. Methodology Support
The constructs used by the
CASE tool must support the
concepts used to design the
target system and handle
information according to the
methodology model.

b. Functional Span
No single CASE tool exists
today that encompasses all
of the processes in Figure 3,
particularly the need to
produce models for a simu-
lator as well as executable
code. This being so, each
tool needs to be evaluated
in terms of its functional

span.

c¢. Integration with Other
Tools
Since several tools will be
required to supply all of the
required capabilities, it is
essential that they be inte-
grated with one another in a
cohesive fashion. Common-
ality of user interface,
design approach, and data
structures is a key require-
ment. Support for emerg-
ing standards such as EDIF
would be evidence of atten-
tion to the integration issue.

d. Specificity of the Develop-
ment and Execution Envi-

ronment

The ATTD will have a
number of participating
Government and contractor
organizations. The tools
must deal with a variety of
developer execution envi-
ronments. The need to
target a variety of computer
systems to compare alterna-
tives creates a heterogene-
ous execution environment.
The Government require-
ments for competitive
procurement ensure the
persistence of heterogene-
ous environments.

Portability to Another
Execution Environment

The Government’s pro-
curement policies require
free and open competition.
Therefore, when hardware
used in the ATTD is re-

‘placed by the hardware

proposed by the winning
FSD prime contractor, the
execution environment may
change significantly. It is
desirable that the system
being developed with the
CASE tools be portable to a
new FSD execution envi-
ronment, thus avoiding a
need for a repeat of the
development process.

Scalability

Many CASE tools perform
well when used to address
small problems and small
systems. Therefore, a

g

i

CONF-9007134

Page 137

proven capability for use of
the tool on large, complex
systems is a likely prerequi-
site for use on the ATTD.

Support for Rapid Prototyp-
ing

Rapid prototyping is a
valuable technique for
improving the quality of the
design and keeping users
involved. The use of this
technique has been men-

~ tioned as a requirement.

Level of Abstraction

The current focus of many
tools is the design and
generation code, i.e., an
automation of the current
design and coding activities
for writing high order
language programs. It is
desired that the ATTD
CASE tools document the
software and target hard-
ware at as high a level of
abstraction as is technically
feasible and generating
executable code from that
level of input. The intent is
to move to the next genera-
tion of programming tech-
nology, eliminating the
generation and documenta-
tion of code such as Ada or
C language statements.

Other Criteria Include:
1. Functional richness

within the span being
addressed

CONF-9007134
Page138

2. Learning curve
3. Ease of use (human

factors)

4. Representation of
ambiguity pending

. resolution

5. Support for multiple
iterations

6. Availability of technical
support

7. Linkage to commercial
marketplace to ensure
an aggressive program
of tool maintenance and
enhancement to remain
in step with the state of
the art.

The tocl set needs to support
the system concept develop-
ment. The tool set needs to
permit designers to define the
system and its segments con-
ceptually by supporting first the
requirements definition, then
the system definition, and final-
ly the segment definition proc-
ess.

DoD systems are increasingly
being built with standard pieces
such as those contained in the
U.S. Army Common Hardware
and Software (CHS). A conven-
ient library capability is needed
to encourage reusability of data,
code, and design parameters.

In the post-Cold War period,
modeling and simulation will be
more heavily utilized in system
development and testing. The

tool set must theroughly sup-

port the modeling process,
providing a convenient way to
assemble known hardware and
software pieces into system
element models and to integrate
the element models to obtain a
system model. Capabilities of
the tool set should make it easy
to build models for custom
hardware and software and
integrate the individual models
into the system model. The
modeling system should readily
facilitate swapping out modeled
items to permit the direct
evaluation of alternative items,
e.g., a 50 MFLOP processor
versus a 100 MFLOP processor,
the substitution of elements to
permit the use of one communi-
cations protocol versus another.
The tool set should provide the
capability to reverse engineer
existing software to facilitate
generation of the models.

As a minimum, the modeled
battlefield system must be able
to be utilized both on-line and
off-line with SIMNET and its
derivatives (e.g., AIRNET). In
the on-line mode, experienced
military and civilian personnel
can exercise the modeled battle-
field system to determine its
strengths and weaknesses. In
the off-line mode, the developer
can replay an on-line exercise or
execute an unmanned simulator
scenario designed to isolate
problem sources and evaluate
solution alternatives.

The products of the ATTD are
transitioned to one or more
PEOs. To support a PEO, input
to a Procurement Data Package
(PDP) is provided. A prime
contractor is selected by com-
petitive bid and the ATTD
materials are provided to the
contractor for use in FSD. The
tool set must support the
documentation activities needed
to produce specification materi-
als of suitable quality for use in
a solicitation.

CONCLUSIONS

In conclusion, no current tool

- set has all the capabilities re-

quired. Any new tool set de-
veloped should:

a. Work at the highest of level
of abstraction technically
possible to improve devel-
opment productivity, reduce
documentation require-
ments, and increase port-
ability beyond that provided
by current high order
languages

b. Use a uniform approach and
standardized human inter-
face across all functions

c. Be capable of workingin a
heterogeneous development
and target execution envi-
ronment

d. Be capable of passing data
among user sites possessing
different development

envirnnments

Fully support rapid proto-
typing

Support, as a minimum,
model and simulation for
system development using
SIMNET

Provide technical support
and adequate ties to the
commercial market to
ensures tool maintenance
and frequent updates to
remain at the state of the
art

Provide support for interna-
tional and national data
standards, generic device
interface standards, and
communication standards
(e.g., International Stand-
ards Organization [ISO],
Federal Information Proc-
essing Standards [FIPS])

GLOSSARY

AD

ALBM

ATCCS

ATTD

B2¢2

BFA

Air Defense
Air-Land Battle
Management

Army Tactical
Command and
Control System
Advanced Technol-
ogy Transition
Demonstration
Battalion and Below
Battalion and Below
Command and
Control
Battlefield Func-
tional Area

BIMS

CASE

CECOM

CHS

CSsS

cvc?

DSS
EPLRS

ES
FIPS

FS
FSD
IEW

ISO

 Definiti
Battlefield Informa-
tion Management

System

Balanced Technolo-
gy Initiative
Command and
Control

Command, Control,
and Communica-
tions
Computer-Aided
Software Engineer-
ing

U.S. Army Commu-
nications-
Electronics
Command

Common Hardware
and Software
Combat Net Radio
Combat
Support
Combat Vehicle
Command and
Control

Decision Support
System

Enhanced Position
Location Reporting
System

Expert System
Federal Information
Processing Stand-
ard

Fire Support
Full-Scale Devel-
opment
Intelligence-
Electronic Warfare
International
Standards Organi-
zation

Service

VIS

JTIDS

LEC?
LEC3I

MCS

PDP -

PEO

PM

SAVA

SBIR

SIMNET

CONF-9007134

Page 139 /N{)

Inter-Vehicular
Information System
Joint Tactical
Information Distri-
bution System
Lower Echelon C2
Lower Echelon
Command, Control,
Communications,
and Intelligence
Maneuver Control
System
Multi-Mission Area
Sensor

Mobile Subscriber
Equipment
Maneuver Control
Procurement Data
Package

Program Executive
Office

Project Manager
Standard Army
Vetronics Architec-
ture

Small Business
Initiative Research
SIMulation
NETwork

SINCGARS Single-Channel

TRADOC

TRI-TAC

TSSD

VCOS

Ground and Air-
borne Radio Sys-
tems

Training and Doec-
trine Command
Tri-Service Tactical
Communications
Tactical Situation
Status Display ‘
Vehicle Control and
Operating System

DECLARATIVE HIERARCHICAL CONTROLLERS

Wolf Kohn

Boeing Computer Services
Scientific Computing and Analysis
Seattle, WA 98124-034€

1. INTRODUCTION

This paper presents a new general purpose feedback controller for driving a system through
complex tasks. The proposed controller, termed Declarative Hierarchical Controller is
based on a theory of knowledge based controllers developed by the author [1], [2], [3]. In
this theory, the plant dynamics, control requirements, and goal dynamics are declared in an
axiom base. The actuator commands, which are functions of the sensor and goal command

CONF-9007134
Page 141

signals, are generated on-line as side effects of showing whether a theorem (Task.

Theorem) representing the system task, logically follows from the equational axiom base.
That is, the controller is an on-line mechanical theorem prover, whose inference mechanism
is based on equation solving over a Variety. The Task Theorem is constructed by an on-
line planner as a conjunction of primitive lemmas, each of which is a carrier of an
elementary control action. The control actions are multiplexed in time so that at each
instance one and only one is active. ‘

The theorem prover of the controller operates as follows:

. At each controller sample interval, the Task Theorem and the corresponding active
axioms generate a set of simultaneous equations in which the variables are
Actuator commands and the Controller state. This set is referred to as the Active
Set.

» The Active Set is used by the inferencer to build a procedure for computing
instance values of the variables. This procedure is a locally finite automaton over
the Rational variety.

. The automaton is executed to compute instances of the commanded actions.

In addition, the theory provides an algorithm for transforming the axiom base and the
inferencer into a recursive hierarchy for its efficient implementation and for satisfying real
time and architectural constraints.

The paper illustrates the theory of Declarative Hierarchical Controllers with a robot
manipulator control under End Effector force constraints. It also gives some stability,
robustness and complexity results. The general controller capabilities are illustrated with a
particuiar robot: A planar 3 link manipulator robot controller for painting the inside surface
of a 2-dimensional balloon which deforms elastically under contact force. The task will
also be constrained by End Effector angular velocity and position constraints (over

CONF-9007134

. Page 142

determined problem). The problem has no known solutions using conventional control and
planning schemes. ' |

The rest of the paper is organized into 5 sections: Section 2 presents an overview of
knowlege based controllers, Section 3 presents declarative contollers, Section 4 discusses
the main elements of multiplexing action in the context of declarative controllers, Section 5
illustrates the concept with an example, and in Section 6 some conclusions are established.

2. OVERVIEW OF KNOWLEDGE BASED CONTROLLERS

Declarative Rational Controllers are a class of knowledge based feedback digital
controllers.

As for conventional controilers, the function of a declarative controller is to generate an
action (e.g. actuator command) as a function of sensor data, stored data and goal command
data. In symbols, let T be the set of natural numbers, called the time set. Let G, S, X, A
be semimodules over a common semiring H. A controller is fully characterized by two
functions p, ¥ |

p: GxSxXxT—oA

(1)
Y: GxSxXxAxT—-X

called the control law [4].

The semimodules G, S, X, A are referred to respectively as the goal space, the sensor
space, the internal storage space, and the action space.

The control law (p, ¥) is determined by the requirements, the characteristics of the system

to be controlled (the plant) and the characteristics of the goals the system is supposed to
achieve.

In conventional controllers the control Law (p, ¥) is explicitly implemented as an
algorithm for generating actions as a function of time. Specifically, let s(k), g(k), x(k),
x(k) be the sensor data goal data and internal storage data at the current sample time keT.
Then, the control action a(k+1) and the updated internal storage x(k+1) are given by

a(k+1) = p(g(k), s(k), x(k), k)

@)
x(k+1) = ¥(g(k), sk), x(k), a(k), k)

In knowledge-based controllers in general, and in declarative controllers in particular, the
control law is not constructed explicitly. Instead a knowledge base containing the
requirements, plant dynamics representation and goal characteristics is constructed. At run
time the controller generates the action signals {a(k), k=0,1,...} by an inference procedure
[5] which operates on the knowledge base at each sample time to find an instantiation of the
control action to be implemented in the next sample time.

CONF-9007134
Page 143

Some of the potential advantages of knowledge based controllers over conventional ones
are [6]: simplified design process, multiplicity of control laws, built-in adaptability, hooks
~and scars and dependency on computational characteristics. These are briefly discussed
next.

Simplified Design Process: In principle, given an inferencing shell and a compatible
specification for knowledge representation, the design process consists of collecting the
rules or frames that capture the control and computational requirements and those aspects of
the plant and goal that are relevant to the design and the encoding of them. The actual
“algorithm" implementing the control law is inferred from the knowledge base at run time.

Multiplicity of Control ,Law&: Since the control requirements are explicitly declared in the
knowledge base, the controller may have more than one control law if knowledge is

encoded so that it can select which one to execute as a function of external (goal)
commands.

Built In Adaptability: Parameters or structural characteristics of the plant can be easily
“declared in generic form and appropriate instances of them can be generated as a function of
sensory data at run time (7].

Hooks and Scars. Typically the knowledge base of a knowledge base controller is -
composed of independent discrete elements (clauses, rules, frames, etc.) which are only
connected at run time during inference. Therefore adding or deleting elements does not
destroy the logic of the controller.

Dependency on Computational Characteristics: The knowledge base may include
characteristics of the architecture in which the controller runs. These characteristics are
treated in the same way as control requirements.

However, general knowledge based controllers suffer from three serious drawbacks which
have damped their popularity among control designers. These are stability verification,
performance verification, and computational complexity. These are briefly discussed next.

Stability Verification: This is understood as a test on the controller specification to
determine whether it will drive the system to the current desired goal while satisfying the
control requirements in a finite interval of time. In most of the knowledge based control
schemes that have been proposed, no such test is available.

Performance Verification: Since the control law function is not explicitly given, it is very

difficult and in ' most cases practically impossible to guarantee a performance level for all the
possible inference paths.

Computational Complexity: Many knowledge based control systems are implemented on
expert system shells which are not well suited for real time implementation. The theory of
declarative hierarchical controllers was developed to address some of the special
requirements for robot control systems. Their functionality possesses the good
characteristics of knowledge based controllers discussed previously. In addition, the theory

CONE-9007134

Page 144

provides for effective stability and performance tests and feasible (with current hardware)
computational requirements.

The central objective of knowledge based controllers in general, and of Declarative
Hierarchical Controllers in particular, is the generation of gutonomous feedback policies.

Autonomous feedback policics are trajectories of control actions and control action

generators that are causally measurable in the Z-algebra defined by the sensory data. This

means that the control law is not completely pre-specified, as in conventional control
systems, but rather it is inferred locally at run time as a function of the environment, the
stated goal and the control specifications.

The degree of autonomy is a quantitative measure of the amount of knowledge that is
generated at run time to complete a local instance of the control law. This measure is the
central discriminator between conventional control systems and knowledge based control
systems. :

A descriptive overview of declarative rational controllers is given in the next section.
3. DECLARATIVE RATIONAL CONTROLLERS

This section presents an overview of Declarative Hierarchical Controllers. Space
constraints prevent the detailed discussion of the mathematical basis behind some of their
characteristics. These can be found in some of the references. [8], [9].

The structure of a Declarative Hierarchical Controller is illustrated in Figure 1. It is
composed of four functional elements: a Knowledge Base, an Inference Mechanism, a

Theorem Planner and an Adapter. In the next paragraphs those elements are briefly
described.

CONF-9007134
Page 145

‘ T Actuator (A)
Theorem

(G,S,A) True
Planner [————® Inference P or
| False
T '
Knowledge
base

D .
Assert (G) ——{ oot
Assert (G) : T

L Adapter

Figure 1. Declarative Raticnal Controller

Knowledge Base: This element consists of a set of equational, first order logic equational
clauses [10] with some extension whose characteristics are described next.

A clause in the knowledge base of a declarative rational controller with sensor semimodule
S, control action semimodule A, goal semimodule G, and internal storage semimodule X
and time set 7, is one or more Horn clauses of the form:

B(x(t)) & e/ (x(1),y() Ao n

| ©)
e (x(1),y(1))

where <= is the logical implication, A is the logical And, and x(z), y(t) are sets of
mappings of the form:

LetU=GxSxXxA,
x(5) = (%0, e, 2, (D)
(1) = (N (D) Y (D)

with x,: € U L=1,...,n

4)
Y €X L=1..,m

CONF-9007134

Page 146

The {x,) are called the external variables and the (Y,) are called the internal variables.

In 3), B is termed the clause head. The logical interpretation of (3) is £ (eee) is true if

eli(---) istrueand e o ¢ ef(ﬂ*) is true. The eji(‘“) are referred to as the terms of
the body of the i** clause. |

Each term e‘j" (£(l‘)y Z(t)) is cﬁactly one of § possible forms:

a)

a) an equational term.
5) an inequational term,
c) apartial order term.
d) é clause name.

e) afrozenterm.

An equational term is an expression of the form
wx ¥ =V &Y ®)

where w and v are polynomic terms associated in an algebraic variety V4 defining
the domain of the control system.

In an equational term, the variables and parameter sequences are subsequences of
variables and parameters, respectively, the sequences appearing in the associated
clause head. ‘

. . i . i .
The semantics of an equational term €, is a subset E,,,, of a cartesian product

of the universe U in which the variables and parameters take values. In symbols
this subset can be expressed as

Evane (2) = {zl Clengh(x) =n, zelU", w(xy)- V(“)}

-re

. . i
where length is a function that computes sequence length. Note that the set £,,,,,
is a function of the parameter sequence y. This set is a rational set.

b) Aninequational term is an expression of the form

(CEINE N CH B

CONF-9007134
Page 147

where w, v, X, and Y are defined as in (5). The semantics of an inequational term

“ i) ‘ +
€name 15 @ subset E,:a,,,e of a cartesian product of the universe U defined as
follows: '

Let D,:a,,,, be the following set:

i n ‘
Dm(z) = {gl length(x) =n , xelU" , w(;,z) =~ v(g, Z)} (7)
Then, E,:a,,, (Z) is defined as the compliment of D,:a,,,; (g_’) with respect to UV,

B (3) = V" = D[y -

This set is rational.

c) A partial order term is an expression of the form
W(zc_,z) So V(z,z) |)

where S¢ is a partial order over the one or more of the polynomial algebras
associated with the algebras in the rational variety.

The semantics of a term of the form of (9) is the relation that is the set £ ,:ame (»)
defined by

Brame (3) = {5\ length(x) = 1, w(x,7) < V(zc.»z)} (10)

If the lattice L, corresponding to the partial order <, is modular, the set defined by
(10) is rational.

d) A clause name is the head of a clause in the knowledge base. Its semantics is the

intersection of the rational sets of the terms in its body. This includes recursive
clauses. For example, a clause of the form:

‘p (x,y) &= W (x,y) = V] (x,y) AW (x,y) = V2 A Dy (x,y)
has semantics given by the set:
En(y) = E(») N Ex(») N E}(x,y)

where the semantics of the third term is the rational set associated with a clause.

e) A frozen term is an expression of the form:

CONF-9007134
Page 148

rat(relation, polynomial, polynomial,, variables, parameters) | (11)

where relation is either = , or, # , or, <g , and polynomial; and pblynomialz are

polynomic expressions.

A frozen term is a term associated with a clause in which w is activated, i.e.,
unfrozen, as a consequence of the instantiation of another clause during an
inference process. Any term in a clause can be frozen during inference. The
purpose of this capability is to allow for context and covering of alternative
semantics, i.e., rational sets for a concept.

The terms w, v in (5) and (6) are polyndmials [10] over an algebra B =<U,Q2> where U,
' the universe of the algebra is given in (4), and Q is the set of primitive operations:

Q= {+.~,o, L{f.re R]}. | | (12)

These operations satisfy the following axioms:

@) (U, +, 0) is a commutative monoid, with unit 0
(ii) (U, +,1)is a monoid with unit 1
i) Foralla,b,cinlU

(@+b)yec=asc+bec
asb+c)=aeb+a-c

~Thatis <U, +, ¢, O, 1> is a semiring,

(iv) Theset [f,. r e R] is a set of unary operations of the algebra, referred to

as the Custom_Operators. Their axioms, and computation values are
determined for gach controller by the clauses in the knowledge base. This
means that each declarative controller C have associated with it a unique

algebra B, = <U;, Q;>. The custom operators are the basis for the local
construction of the control law under composition.

(v) The algebra <U, Q> satisfies the central factorization principle. This
principle states that a term w constructed by composition from primitives in
Q is either a primitive or else can be expressed in finitely many different
ways in terms of derived operations of the algebra on some of its elements.

The denotational semantics of the clauses defined in (3) aré one of the following

1) A conservation principle, or
2) An invariance principle, or

3) A control constraint.

CONF-9007134
Page 149

Conservation principles are logic statements about dynamic behavior of the controller,
associated plant or goal. These principles serve analogous roles to the ones played by mass
momentum and energy conservation principles in mechanics and thermodynamics.

Invariance Principles are logic statements establishing constants of motion in a general
sense. Examples include logic formulations of stationarity principles and geodesics.

Both conservation and invariance principles are characterized by equations or inequations
valid in the controller algebra and therefore can be written as clauses of the form of (3).

Finally, control constraints include actuator and sensor limitations and the control
requirements. These can either be written in equational form or else written in tems of
more general Hom clause forms. If a clause is not in the form of (1) it can be transferred to
a set of clauses of that form using Colmerauer's construction which is compatible with the
algebraic structure of elements of V.

The clause database is organized in a nested hierarchical structure as illustrated in Figure 2.

The bottom of this hierarchy contains the equations that characterize the variety V, termed
Laws of the Variety.

Model builder realization

Dynamic control specit cations

Control performance specifications

1

Generic control Plant Goal class
specifications || representation || representation

Laws of the variety

Figure 2. Clause Knowledge Base of a Declarative Rational Conroller

At the next level of the hierarchy, three types of clauses are stored: Generic Control
Specifications, Plant Representation and Goal Class Representation.

The generic control specifications are clauses expressing general desired behavior of the
system. They include statements about stability, complexity and robustness that are generic
to the class of declarative rational controllers. These specifications are written by

constructing clauses that combine laws of the variety using the Horn clause format
described earlier.

The Plant Representation is given by clauses characterizing the dynamic behavior and
structure of the plant, which includes sensors and actuators. These clauses are written as
conservation principles for the dynarnic behavior and as invariance principles for the
structure. As for the generic control specifications they are constructed by combining
variety laws in the equational Horn clause format.

CONF-9007134

Page 150

The next level of the hierarchy involves the Control Performance Specifications. These are
typically problem dependent criteria and constraints. They are written either in equational
Horn clause format or in rational tree format [4] which can be translated into this equational

© form.

Dynamic control specifications are equational Horn clauses whose bodies are modified as a
function of the sensor and goal commands. (See Figure 1.)

Finally model builder realization clauses constitute a recipe for building a procedural model
for variable instantation and theorem proving. Their function serves as an interface to the
inferencer whose operation will be discussed next.

Inferencer: This is an-on-line equational theroem prover. The class of theorems it can
prove are represented by clauses of the form: o

Theorem (G(0), s(), x(1), A(e+1), x(1+1)) =

unify (G(1), s(2), x(8); y(D)) A
unify (A(t+1), x(t+1); 2(t+1)) A

A P2+ 1),3(0) @ a3

In expression (13), theorem is the clause head, ¢ is the current time, G(1), S(t), and A(++1)
correspond to the variables representing the goal command to the controller (G(2)) the
sensor inputs (S(f)) and the actuator commands (A(t+1)). Note that the actuator commands
to be generated, are one unit of time ahead of current time.

In the right hand side of (13) unify is a special factual clause head whose function is to
unify some of the external variables X(r) with the input output variables G(z), S(r), A(s+1),

and £ ;e F}k are clause heads of clauses in the knowledge base.

The theorem represents the desired behavior at the current update time. The purpose of the
inferencer is to determine whether the theorem logically follows from the clauses in the
knowledge base. A side effect is to find values in the universe of the controller algebra for
tuples of the form (G(s), S(t), x(¢), x(t+1), A(t+1)) where G(t), S(¢), X(¢) are given.

Note that the theorem is an encoding of a system of equations and inequations from the
knowledge base. So, proving the theorem is equivalent to solving this system.

The inference principle can be stated as follows: Let £ be the set of clauses in the
knowledge base. Let # represent one or more partial orders in the universe of the
controller algebra. Then proving the theorem is equivalent to show.

I -~ L (14)

CONF-9007134
Page 151

In principle the proof can be accomplished by a sequence of applications of the following
axiorns:

a) Equality axioms
Let w, v and u be polynomic forms in an FPS algebra. The equality inference principles
are:

al W= w identity
. w = V | -
a2 v = w : commutativity

w = v) A (V = u

&

W = U transitivity
a4 letwy, ... W, Vi,...,V, be polynomic terms:
h. n—ary operaion A Ww; = V| A, , A W, = V
h(W,"' Wn) = h(vl’... Vn)
composition
p a substitution A w = vV
ad wp = Vp
ab The equality clauses in the knowledge base are valid.

Briefly, al establishes that every polynomic form is equal to itself, a2 and a3 are self-
explanatory, and a4 says that if 4 is any arbitrary derived n-ary operation in the associated
algebra, then the equality of n pairs of terms is preserved by the operation. In a5 the

symbol p, termed a substitution, is an equation of the form:

X = u(g,_}i) (15)

where x is a variable, z is a sequence of variables pot containing x, and y is a
sequence of parameters.

As an example of the operation of the substitution inference principle, suppose that:

w(xl, Xa) = v(xl. Xy, X3, y)
and let p be of the form:
X = u(xs, y‘)

then upon the application of the substitution principle,

\'A')(ll{‘Y_ \:'\ v \1 -~ \'l(ulv v'\ v v
\ / \

MFs T T B\ Xsr Y Xzr X3)

CONF-9007134
pagc \52

which is denoted by
wep = Vp

Finally, a6 establishes that there is no conflict between the knowledge base clauses and the
inference principles of equality.

b) Inequation axioms

Let v and w be polynomic terms in an FPS algebra. The inequation inference principles

are:
v w
bl w¥ Vv symmetry
b2 v v definition
V= w) setl efinition
—ser A complement(set, U, set') A v —
b3 The inequality terms in the clauses of the knowledge base are satisfied.

bl is clear. b2 says thatif v # w entails that the rational set associated with v # w is

set and the complement of set relative to the universe U of the scrmmodulc is set! the

semantics of the term V! = w!l.

In b2 one exploits the fact that rational sets are both mappings and sets and
furthermore, if a set is rational its complement is also rational and therefore is generated
by a polynomic equatioin, which is a member of the semimodule.

¢) Partal orders axioms

Let w, v and u be polynomic terms in an FPS algebra B. For each parnal order <, defined
in B, the partial order inference principles are:

cl w Sg W identity
wSs, VA VS, u

Q o] TN

c2 W<, U transitivity
c3
h isan n-—ary operation A A monotonic A w; S, V; A 0w, S, V,
) h(Wl e Wn) sa h(Vl ere Vn)

composition

a substitution A w < Vv .
c4 P o substitution

wp <, VP

c5 The partial order terms in the clauses of the knowiedge base are vaiid.

‘CONF-9007134

Page 153
In addition to c1 — ¢S5 the following compatibility principle is given
Sqg VA VS, W s
1 W =g a mpatib:
ac WV compatibility

The meaning of these inference principles is similar to the corresponding principles for
equality.

d) Convergence principles

The convergence principles are formal inference principles derived from the defining
axioms of convergent sequences discussed in section 2.1. These principles, together with
the limit principles are to be given in e).

Both the convergence and limit principles are needed to determine solutions of equational
systems in the presence of recursion.

Let B be a rational algebra, BN the associated algebra of sequences with values in B, and

CN the set of convergence sequences that can be inductively built from z(n) and A (n) using
the following inference principles.

d1 2(n) A A(n) € CN z(n) =0 Vn initiality
n(n) =1 Vn

o a e CN A b e CV dditive cl
(a ¥ b) c CN uvegosure
ae CNAceB

d3 ceaec CN A arc e CN scalar closure

N

d4 aeC” A (r:q € B ~ shift closure

a, € C
e¢) Limit axioms
These are given by the following inference clauses.
el lim@@)=0 A lim(A)=1 initiality

a € CNAb e CN A lima =A A limb =B

e2
lim(a +;b) = A+ B

additive
preservation

CONF-9007134

Page 154
e3 a € CN A c e BAlma =A
lim(c-a) = Cce*a A lim(a-c) = Ae(C
' scalar
multiplication
preservation
" ae‘CNAceBAlimaaA |
lim (ac) = A shift preservation

- Note that in d) and e) the inference clauses include membership terms. These terms can be
written as equational terms by including in the custom operations of the associated base
algebra, Indicator.operations.

Leta e U the universe of the base algebra an indicator operation f; on the base algebra is a
function

Jaa U > U defined as follows:
- 1 a=x ‘ (16)
fa(x) = { 0 otherwise)

~Indicator operations on the associated rational algebra are defined in terms of indicator
operations on the associated base algebra component wise.

Because rational sets are subadditive, each rational set can be decomposed as the union
(addition) of singletons that is in fact, the structure of the semantics of the elements in the
associated semimodule. Therefore, membership can be reduced to equational definitions of
the form of (16).

The following theorem summarizes the inference procedure.

Theorem: Given a controller algebra B, and the corresponding knowledge base X then if L

is the system associated with the goal theorem, then there exists an effective procedure for
showing

X - L

Outline of the proof. Since B satisfies the central factorization principle, a finite chain of
applications of the axioms in 1-, 2-, 3- will yield the proof.

The theorem above is an extension to rational algebras of a result for finite algebras due to
Evans [11].

Although theorem 1 guarantees convergence of the proof, it is a nondeterministic, highly
inefficient procedure. Therefore, for practical reasons, a more efficient but equivalent

CONF-9007134
Page 155

procedure has been developed [12]. This approach, which involves the construction of a
procedure for solving the system L, is outlined next.

The inferencer operates according to the following procedure.

Step 1. Unify the appropriate subset of the external variables y(#) with the current value
of G(f), (1), and x(¢).

Step 2. Search the database for the equations and inequations associated with clauses

P,-j -« Fy . The result of this step is a system of simultaneous equations and
inequations in terms of the unknowns, the subset of X(¢) unified with A(s+1).
This system is referred to as the Active Set (Ag).

Step 3. Convert the system into the active set into a system of equations in the canonical
form. This system is referred to as the Linear Set (Lg).

The object of step 3 is to rewrite the Active Set in a form which allows the
construction of a procedural model which in turn can be used to compute
instance values of the unknown. This procedural model is a locally Finite
Automaton. The canonical form of Lg is given by a system of equations of the
form

X(r) = EX(1) X(1) + T(X(r)) 17)

where E(¢) is a matrix of appropriate dimensions with entries in the algebra of
formal power series over the controller Algebra B: B<M>, M is the locally finite
monoid generated by the set of primitive custom unary operations in B, @,
and T(*) is a vector whose entries are elements of U<M>.

Step 4. Given the linear set (Lg), construct a Locally mete Automation (LFA) for
solving it.

Step 5. Execute the LFA to obtain the values, if any, for A(1+1).

If the theorem (13) logically follows from the knowledge base (i.e., it is true), the
inferencer procedure outlined will terminate on step 5 with an actuator command value
A(r+1). If this is not the case, then the adapter is activated and the theorem is modified hy
the theorem planner according to a prespecified strategy.

Before proceeding to discuss the theorem planner, a brief outline of the theory behind steps
3-5 of the inferencer will be presented. This theory is the central element of the paper.

In general, given a knowledge base of Horn clauses and a goal, the process of proving the
goal and finding instances of its variables can be carried out by a procedure, developed by
Kowalsky, known as resolution [13]. The Resolution Procedure is based on constructing

a tree (the Resolution tree) with the goal as its root and with the appropriate predicates of
the knowledge base at its branches.

CONF-9007134

Page 156

The resolution procedure consists of two subprocedures, a Navigator and a Unifier. The
Navigator is a strategy for traversing the tree. Most systems currently available use depth
first with backtracking as a strategy [14]. The unifier, usually a variant of Robinson's
unification principle [15] is a general pattern matching recursive algorithm, which given a
set of clause heads, generates the Most General Unifier (MGU) associated with them.

In contradistinction with the approach discussed above, the inferencer of a declarative
controller builds a procedure for variable goal variable instantiation: a locally finite
automaton.

A lbcally finite automaton is a non-deterministic machine with an arbitrary number of states
(without loss of generality, it can be assumed that the number of its states is infinity), that
satisfy the following condtions:

a) There is a finite number of states that are initial states
b) There is a finite number of states that are terminal states

c) The behavior of the automaton is the set of all paths from initial to terminal states

(successful paths). This set is an element of a semimodule of formal power series
~ over the Controller Algebra B<M>.

d) Every successful path involves a finite number of automaton edges (this is the
locally finite condition).

e) Every successful path represents a map of the semimodule space G x S x A into
itself, where G is the space of goals, S is the space of sensor signals and A is the
space of actuator commands.

f) The Automaton is provided with an input and an output function: The input
function is of the form:

I. GxSxX — GxSxSxA
(18)
I(@g.sx)=(g,s5x,)

where @ is the additive identity in the semimodule A. The output function is of the form

O:GxSxA —» A

(19)
O@sa)=a

That is, O, is a projection function.
In synthesis, each successful path is a feasible control law.

The successful paths can be well ordered by any user defined optimization criterion for
selection of the actual control law to be executed. ‘

CONF-9007134
Page 157

Now the theorem planner is described. The theorem planner generates theorems of the
form of (3) according to a prespecified strategy. A theorem remains in effect as long as it
has truth value true. The theorem has truth value true if the system of equations Lg have at
least one solution different from the empty set.

If the theorem is not true, the adapter (see Figure 1) activates the strategy procedure in the
planner. This produces a modified theorem to be proved.

This concludes the description of the cohccpt of declarative controllers. A more detailed
description of this concept will appear in [16].

4. '~ MULTIPLEXING IN DECLARATIVE HIERARCHICAL
‘ : CONTROLLERS

This section introduces the concept of multiplexing action in the context of declarative
controllers and establish its use for the control of robot manipulators. A detailed
description of multiplexing action in the context of a robot application can be found in [17].

Let A be an interval in the nonnegative real line. Let Ay,...,A, be subintervals of A such
that

A=0U.UA, (20)

A multiplexing action over A is a staircase function fa over A taking values in the
semimodule of control actions A such that

Ja() = aj geA tel;

A multiplexing action f over the nonnegative real line is a staircase function fp over each
interval A on it.

A feedback multiplexing action over A is a term of the form

O(wi(gsxa) : IXGxSxXxA—A 20
i =1,.,n

Where w; is a polynomial of the controller algebra B; O is the output function of the
controller automaton introduced in the previous section and / is the set (1, 2, .. ., n}

A feedback multiplexing action over A with sub intervals Ay, .., A, generates a
multiplexing action fa(r):

fa®=0(w; (g, x,x,a))=a;,teld, i=1,.,n (22)

A feedback multiplexing action over A is termed synchronous if the subintervals A; i =1,
.., n are all equal. In this paper only synchronous multiplexing is considered.

Now the concept is particularized for robot manipulators.

CONF-9007134
Page 158

Suppose that a manipulator has a DC motor at each of its joints. Each motors armature |
voltage is driven at every instant of time by exactly one of three possible controllers: a
position controller, a rate controller or a force controller further suppose that the time line is

divided into intervals of duration A and each A is further subdivided into 3 subintervals A1, J
Az A3 at each Aj, i = 1,2, 3, and for each joint only one of the 3 pessible controllers
position, rate or force is active. Clearly this schema is a feedback multiplcxing action over

A if it is assumed that the three comrollers for each Jomt are generated as functions of the
form of (22).

Notc that for an n-joint manipulator there are 3V+3 — 1 different controllers. So, the
function of a declarative controller is to select for each A interval and for each joint the type

of length -3 control sequence to be applied and then to determine the appropriate
polynomial of the controller algebra for each element in the sequence.

As discussed in the previous section, this is accomplished by generating a locally finite
automaton and simulate it to generate the values of the joint commands. The LFA at each A
interval is a representation of the proof of the theorem characterizing the task to be

accomplished by the manipulator in this time interval. This is illustrated with an example
int he next section

5. EXAMPLE

The concept of multiplexing declarative controllers will be illustrated with a simple
manipulator. The manipulator is a plannar three-link chain with rotational joints and a
rigidly attached and effector (Figure 3). The central characterisitcs of the manipulator are:

— The lists are assumed to be solid rigid long cylinders
- The joints are driven by iJeal permanen-magnet DC motors

— Each joint is coupled to its driving motor by a "sloppy" gear box whose
characteristics are shown in Figure 4. This gear box characteristic is similar to that
in each joint of NASA'S Shuttle RMS,

— Each joint is equipped with a position, rate and force sensors

- A sensor, which detects the quadrant in which the end effector is with respect to
base coordinates, is attached to the end effector. :

CONF-9007134
Page 159

i T &alnout - Nx Cutput

i N egeasiais
Unk 2 Link 3 : lnaut « metst 2

/@—._C Cutput » J2int izm
End Elfecicr N

Link 1 ‘ [+4 T8

2
Ki &g) & ¢s
Qutput lorque, T = s i .
3§ &> &

Base

{ §>0
i} 32

Figure 3. Simplified Robot Geometry Figure 4. Joint Gearbox Characteristic

The dynamics of the manipulator is represented in the knowledge base with the following
Langrangian conservation principle.

3N+3_1
L=E-V- z VY (23)
i=

where E is kinetic energy, V is the physicél potential energy and V; are virtual potentials
representing the characteristics of the 3 types of controllers available at each joint in the
multiplexing schema, ‘

The maneuver to be accomplished by the robot is the following. The end effector is to
follow a circular path exercising a constant force against it. The circular path deform's
elastically under load. This is modelled as a preloaded spring distributed over the path.
The stiffness of the spring is constant and uniform along the path. The base of the robot is
not located at the center of the circular path.

In addition, tolerance for end effector position angular velocity and force are provided.

The controller also monitors the health of the manipulator with respect to failures such as

joint runaways and tachometer failures and executes a crating maneuver if a failure is
detected.

The thereom that characterizes this maneuver is given by:

thereom (...) = pos (r, b, ¢, €p) A
vel (r, b, c, &) A
for (r, b, KgE &) A
HMS (...). (24)
In (24) pos(...) is the end effector position lemma, vel(...) is the end effector velocity

lerama, for(...) is the end effector lemma. r is the radius of the circular path b is the rleative
position of its center with respect to the base, ¢ is the vector of joint command

(multiplexing actions) and €, €y, € are the corresponding tolerances. HMS (...) is the
health monitoring lemma.

CONF-9007134

Page 160 ‘ ‘
A multiplexing declarative controller for this robot was implemented in Quintus Prolog on a
Sun 3-160 workstation. Following are some sample results of a typical run. First A was
selected to be 6 milliseconds. A;,i =1, 2, 3 was selected to be 2 milliseconds. The
maneuver was completed in 6.48 seconds. The system ran 1.5 times faster than real time.

Figure 5a shows the angle described by the end effector with respect of the base as a
function of kilo samples. Note that the path followed is nearly linear in angle (no detected
backtracking). Figure 5b, Sc, and 5d, show the position velocity and force potentials of
the end effector with respect to kilosamples. Note that these potentials, after an initial
transient reach a steady state which is maintained throughout the maneuver in spite of the
fact that the manipulator go through several singularities as can be seen in Figure Se that
shows the path as detected by the quandrant sensor.

Notice also the effects of those singularities in the magnitude of the end effector angular
velocity, Figure 5f. ‘ '

TABLE POSIT TABLE POS_POT
22 -

2

&
N

Output of Table POSIT

Output of Table POS_POT
>
/—

8
\
i

08

|
20 20 »n «@
Fesl independent Variable Firs! incependeni Vasiable

Figure 5a ' Figure 5b

o

FOR_POT

Output of Table

vEL_POT

Outpt of Table

02

TABLE VEL_POT

\VNW\

40

10 20 , %0
Fies{ Independent Varisble
Figure 5¢
TABLE FOR_POT .
1.5
125 M\-\\NW |~
1
075}
0
025
10 0

Figure Se

20
First Independent Yariable

w0

CONF-9007134

Page 161
TABLE SENSOR
35
#
25
i
i
1.5
0 10 f 20 30 40
Fust Independent Varable
Figure 5d
. TABLE RATE
. |
bl
20]
I

10 20
Firdt independent Yariable

Figure 5f

CONF-9007134
"Page 162

In summary, the concept of declarative multiplexing controllers was used in solving a
reasonably complex robot control problem and shows all the advantages predicted by the
theory.

Finally the kri‘owledgc acquisition and coding took about 2 weeks.
6. CONCLUSIONS

A new class of knowledge based controllers was introduced. The class termed declarative

rational multiplexing controllers shows great promise for addressing the venﬂcat:lon issues
discussed in Section 2. |

In addition it was illustrated with the example, which is a representation of a wide class of
robot control problems, that the concept yields to feasible implementations.

REFERENCES

- [1] Kohn, W. "Declarative Theory of Rational Controllers" proc. of IEEE CDC 1988,
Vol. 1, pp. 130-136, Austin, TX, Dec. 7-9, 1988

(2] Kohn, W. "Hierarchical Control Systems for Autonomous Space Robots" proc. of

1988 AIAA GN&C conf Vol. 1, pp. 382-390, Aug. 15-17, 1988, Minneapolis,
Minnesota

[3] Kohn, W. , Butter, J., Graham, R. "The Rational Tree Machine" proc.

Applications of Artificial Intelligence VII SPIE Vol 1, pp. 264-274, Orlando, Fla., March
28-30, 1989

[4] Cadzow, M. "Discrete-Time and Computer Control Systems" Prentice Hall,
Englewood Cliffs, NJ., 1970

[5] Morgenstern, L. "A First Theory of Planning, Knowledge and Action" proc. of the

1986 conf. on Reasoning about Knowledge: Theoretical Aspects, Pp- 09-113, March 19-
22, 1986

[6] Blanchard, D.C., Myers, R.M. "The Knowledge Representation Tool" proc. of
Robex 85, Houston, June 27-28, 1985, pp. 137-140

[7] Kohn, W., Carlsen, K. "Symbolic Design and Analysis in Control" proc. of the
1988 Grainger lecture series at U. of Illinois, Urbana, May 23-25, 1989, pp. 40-52

[8) Kohn, W. "Declarative Control Theory" accepted for publication in AIAA GN&D
Journal, Feb., 1989

(9] Skillman, T., Kohn, W. "A Class of Hierarchical Controllers and their Blackboard
Implementation" accepted for publication in AIAA GN&D Journal, Sep., 1988

[10] Taylor, W. "Equational Logic" in Universal Algebra by G. Gr?atzer, 2nd edition,
Appendix 4, Springer Verlag, NY., 1979

CONF-9007134"
Page 163 //(p

[11] Evans, T. "An Algebra Has a Solvable Word Problem iff it is Embedable in a
Finitely Generate Simple Algebra" Algebra Universalis, 1978

[12] Kohn, W. Lecture Series on "Declarative Control and Rational Algebra", HTC,
June 2 Aug. 28, 1988, Seattle, Wa. ‘

[13] Lloyd, W. “Introduction to the Théory of Logic Programming" 2nd ed., Springer
Verlag, NY., 1987

(14] Yashuhara, A. "Theory of Recursive Function Theory and Logic" Academic Press,
1966

[15] Kowalsky, T. "Logic Programming" Northholland, 1982

[16] Kohn, W. "Declarative Hierarchical Controllers" submitted to AIAA GN&D
Journal, Feb., 1989 .

[17] Jurica, K., Kohn, W., Lai, D. "A Variable Configuration Controller for a
Multipurpose Articulated End Effector" proc. of AIAA/NASA symposium on Automation
Robotics and Advanced Computing for the National Space Program, pp. 11-18, Sept. 4-6,
Washington D.C., 1985 . '

An Expert System for Tuning Particle

Beam Accelerators

Darrel L. Lager, Hal R. Brand, and
William J. Maurer

Engineering Research Division

Electronics Engineering

CONF-9007134
Page 165

We have developed an expert system that acts as an intelligent assistant to operators tuning a
particle beam accelerator. The system incorporates three approaches to tuning:

o Duplicating within a software program the reasoning and the procedures used by an
operator to tune an accelerator. This approach has been used to steer particle beams through
the transport section of LLNL's Advanced Test Accelerator and through the injector section of

the Experimental Test Accelerator.

*Using a model to simulate the position of a beam in an accelerator. The simulation is based
on data taken directly from the accelerator while it is running. This approach will ultimately be
used by operators of the Experimental Test Accelerator to first compare actual and simulated
beam performance in real time, next to determine which set of parameters is optimum in terms
of centering the beam, and finally to feed those parameters to the accelerator. Operators can
also use the model to determine if a component has failed. o 3

»Using a mouse to manually select and control the magnets that steer the beam. Operators
on the ETA can also use the mouse to call up windows that display the horizontal and vertical

positions of the beam as well as its current.

Introduction

Particle beam accelerators are members of a
class of large, complex systems that must be oper-
ated by people rather than machines to be effec-
tively controlled. When machines have been used
to control such systems in the past, they have fre-
quently failed, usually because the conventional
approach of feedback control using a numerical
model of the systemn has failed. This failure occurs
because the system is strongly nonlinear, continu-
ally changes due to component failures, involves
physical phenomena for which satisfactory models
have not been derived, or may be so complex that
it is simply too expensive to derive the model.

Despite these problems, individual operators are
able to run such complex systems effectively. The
operators appear to have a set of small, rule-of-
thumb (heuristic) models for the various compo-
nents of the system and to know how to manipu-
late those components to achieve the desired con-
trol.

In an atternpt to duplicate the expertise of opera-
tors of large accelerators, we have developed an
expert system called MAESTRO (Model and Expert
System Tuning Resource for Operators) that mod-
els the procedures involved with tuning such accel-
erators and with fixing them when components fail

(a frequent occurrence). MAESTRO is a software
program that blends physics models of the system
and operator heuristics. We chose the MAES1RO
acronym to emphasize the metaphor of a conduc-
tor unifying and coordinating the activities of con-
trol, diagnostics, physics models, and post-run
analysis — all activities that are critical to the suc-
cess of physics experiments. Traditionally those
activities would have been separated, and different
people within different groups would have been
responsible for them. However, one of the advan-
tages of MAESTRO is that is imposes unity and
consistency on the system while it is also helping
operators tune the system more efficiently. Asan
example of the latter, operators can make much
more informed control decisions because they can
observe the simulation while the machine is run-
ning. Also, physicists can quickly gain insight into
a particular phenomenon and make appropriate
changes to the model because discrepancies be-
tween the model and the machine are more readily

apparent.

Particle Beam Accelerators

A particle beam accelerator is a device that ac-
celerates electrically charged atomic or subatomic
particles, such as electrons, protons, or ions to high

1

P ' " [T

CONF-9007134
Page 166

An Expert System For Tuning Particle Beam Accelerators

energies. laboratory researchers use accelerators
to study high-energy physics problems that arise in
the Weapons, Beam Research, and Magnetic Fusion
Programs. We have focused our efforts on two ac-
celerators, the Advanced Test Accelerator (ATA)
located at LLNL's Site 300, and the Experimental
Test Accelerator (ETA) located at the Laboratory it-
self. The ATA is the more complex of the two and
consists of an injector, an accelerator, a transport
section, an emittance selector, a tuning dump, an
achromatic jog (a-jog) and a wiggler. The injector
produces a pulse of electrons and injects it into a
beam piDe, an evacuated pipe a few inches in di-
ameter running the length of the machine. (A
beam pipe with its associated components is called
abeam line.) The accelerator section increases the
energy of the electrons in the bearn pulse up to
about 50 MeV. An alignment laser guides the
beam through the accelerator section and delivers
it to the transport section. The transport section
steers and focuses the beam into the emittance se-
lector which “strips off” the electrons with unde-
sired energy. A bending magnet directs the beam
either to the tuning dump which absorbs the en-

ergy in the beam while the operator is tuning, or to -

the a-jog which moves the beam onto the wiggler
beam line. The wiggler couples energy from the
electron beam into another laser beam, greatly in-
creasing the energy in the laser beam. A typical
experiment is to deliver an electron beam into the
wiggler and investigate its characteristics for pro-
ducing gain in the iaser beam. The ETA is some-
what simpler than the ATA and consists of an in-
jector, an accelerator, a transport section and a wig-
gler. One of the differences between the two is that
the ETA accelerator increases the energy of the
electrons in the beam pulse to only about 6 MeV,
without using laser guiding. Another difference is
that the wiggler couples energy into a microwave
beam, increasing the energy of the beam. In a typi-
cal experiment the ETA produces high-power mi-
crowaves that heat a magnetic fusion plasma. Both
accelerators have a variety of diagnostic devices
that determine the beam’s position within the pipe
and its energy distribution. Both systems also have
ancillary components (vacuum pumps, safety sys-
tems, cooling systems, and pulsed power systems)
in their beam lines, further increasing their com-

plexity.

Tuning

The goal when tuning an accelerator is to pro-
duce a beam that has the desired temporal and spa-
tial energy and charge distributions required for a

given experiment. The optimum distribution or
“beam profile” is depicted in Fig.1, where the beam
pulse traveling down the beam pipe is on center
within a few millimeters, all the electrons have uni-
form axial velocity and zero transverse velocity,
and ail are uniformly distributed within the pulse.
In reality the beam has nonuniform velocities and
is subject to a variety of instabilities, causing it to
disperse at the nose and tail. (A common instabil-
ity is a corkscrew, named for the spiral shape as-
sumed by the beam.) Serious instabilities cause the
beam to break up or strike the wall of the beam
pipe. :
Figare 2 shows the devices used for tuning the
beam line. The beam bugs shown at the left of the
figure are diagnostic devices for determining the
beam position and current profile. A beam bug
produces three oscilloscope traces as the beam
pulse passes through it, one for the current, one for
the x-position, and one for the y-position. The op-
erator determines if the beam has the desired axial
charge distribution and total charge by observing
the current waveform. The position waveforms
give the beam position along the horizontal (x) and
vertical (y) transverse axes of the pipe. Video cam-
eras record the light emitted when the beam strikes
foils inserted into the beamline. The resulting im-
ages give information on the transverse distribu-
tion of the beam pulse and are used to determine
the beam focus. ‘

Steering magnets change the direction of propa-
gation of the beam. It requires a pair of steering
magnets a distance apart to displace the axis of
propagation without changing the direction. The
first changes the angle of propagation and the sec-
ond compensates for the angle introduced by the
first. Quadrupole magnets focus the beam and
have the usually undesirable side effect of steering
the beam when it enters off-center. A general rule-
of-thumb is to keep the beam on-center through the
quadrupoles to suppress the unwanted steering.

Complications

The tuning task is complicated by things the op-
erator can readily adapt to, but are difficult for
computers to deal with. Since the machine is made
up of a large number of components, and since
many of them are highly stressed state-of-the-art
designs operating at high voltage and high current,
there are random failures in the hardware that oc-
cur each day. Common occurrences are power
suppiies failing and the alignment laser drifting
out of position. Less often magnets will short- or
open-circuit. The operator handles these by peri-
odically observing the status of the machine. If he

2

CONF-9007134
Page 167

An Expert System For Tuning Particle Beam Accelerators

NS

Figure 1. Beam profile while tuning.

Figure 2. Components affecting tuning.

can’t correct the problem, he modifies his tuning change beam position he will vary both x and y to

strategies and attempts to tune anyway until the do it. He will also move a knob and if the beam
problem is fixed. steers in the wrong direction, he will just move the
The operator must also deal with unreliable di- knob the other way. The components are also im-
agnostics data. There is a high shot-to-shot vari- perfect so they all need calibration curves. The op-
ation in the characteristics of the trace data. There erator easily deals with these problems because
are also bad shots that must be ignored entirely much of the tuning is aimed at achieving a position
when the machine misfires. As a result the opera- equal to zero (on center). However a model needs
tor observes several shots and determines an “av- more precise knowledge than an operator of the

erage” of the beam characteristics. He will also de- calibrations, positions, and orientations of the de-
vote one beam bug to watching the beginning ofa vices if it is to compute a desired change in one

section so he can determine if changes in the bug step (an operator can determine a change experi-
he is observing are caused by his tuning efforts or mentally).
by changes in the beam characteristics at the input. Finally, the machine does not measure the same
Since these accelerators are research tools the way from one day to the next, even when all the
hardware is often reconfigured. Generally, the hardware is unchanged. Various critical aspects of
changes involve adding or deleting components, the machine are impossible to measure accurately
moving existing ones to different places or chang- enough. ror example the ion gauges that measure
ing the relationships among them (e.g., connecting the vacuum profile along the beam path are not
magnets to different power supplies). Another sufficiently accurate. As a result the benzene pro-

way the configuration can change is that during a file is not the same as before and the propagation
run the beam may be directed down different beam of the beam through the benzene is slightly differ-
pipes to do a desired experiment. The operator is ent. The physics of transport of a beam through

usually told of the changes at the beginning of a benzene are not well understood, so it is extremely
shift and readily adapts to the differences. How- difficult to compensate for the measurement sys-
ever, the expert system had to be designed withan tem by modeling, The operator has evolved tuning
interface that could tell it about the changes and strategies that are relatively insensitive to these

could verify that the MAESTRO representation re- phenomena.
flected the true machine.

Another complication the operator easily adapts Expert System Techniques
to is that the machine is not built exactly as de-

signed. Beam bugs may be installed with their MAESTRO blends three distinct tuning ap-
measurement axes rotated away from perfectly proaches to achieve better pertormance than any
vertical or horizontal. The operator simply realizes one alone. A trade-off among these approaches
this and instead of just using the x-axis knob to can be made as the machine is modified or grows

CONF-9007134

Page 168 An Expert System For Tuning Particle Beam Accelerators

more complex, as the operators learn more of its
idiosyncrasies, or as more is understood about its
physics. In the first approach, called “cloning the
. operator,” we encode as faithfully as possible the
procedures and reasoning followed by the opera-
tor. This was the approach taken for tuning the
ATA because it was not possible within the allotted
time to develop an accurate model for the beam-
line. A disadvantage of only using this approach is
that operators may not be able to develop success-
ful procedures for the far more complex machines
being designed, such as the superconducting
supercollider. A second approach, model-based
tuning, simulates the beam propagating through
the sections of the machine. The notable aspect of
this approach is that the model is hooked into the
actual system and is running at the same time the
machine is running, so the simulation is based on
measurements that are being made by the machine
at the moment the machine is making them. This
approach allows the operator to compare the simu-
lation with the actucl beam position, to choose an
optimum set of parameters for centering the beam,
and to download those parameters onto the real
machine at a substantial savings in time. The dis-
advantage is that it may not be economically fea-
sible to develop a sufficiently accurate simulator,
either because the machine may be too complex or
because it changes too often due to component fail-
ure. The third approach is to tune the system
manually, but provide the operator with more
powerful tools for tuning the machine. For ex-
ample, this might take the form of displays derived
from the raw data or different interfaces that make
it easier to control the machine. The goal is to
achieve a blend of these approaches that minimizes
the time required to tune and maximizes the tirne
available for performing physics experiments.
Each >f these approaches is discussed below.
Actually, no matter which approach we stress,
we will always need the manual approach because
operators will almost always have more knowl-

edge of the machine than is economically feasible
to encode into a computer program. Moreover,
they can take into account information that may

- not be readily accessible to the computer such as

the “sound” the machine makes when it is not run-
ning quite right. They may also be able to instantly
diagnose a failure because they remember what
happened when that same situation arose on a ma-
chine they were tuning 20 years ago.

Cloning the Operator

The operators of the Lab’s accelerators go
through a set of procedures when their machines
are first powered up. The procedures reflect two
different kinds of reasoning by the operator. In the
first instance, the operator is concerned with the
overall tuning of the machine (“global strategy™).
Global strategy is made up of many lower-level
“local strategies” that are each concerned with the
tuning of a small section of the machine.

When operators are performing a local strategy,
they reason about components upstream (opposite
the direction of propagation) and downstream
from a chosen diagnostics device. For example, as
shown in Fig. 3, when steering through the trans-
port section, the operator observes the trace data
and determines there is a position error at a bug.
He reasons about the devices downstream and de-
cides whether it is desirable to correct the error at
this bug or to ignore it and examine the next bug,.
He reasons about devices upstream to decide
which can be used to correct the error. He usually
chooses a steering magnet and changes its field
strength until the position error is zero.

In pseudo-english form this strategy can be de-
scribed as:

Walk the bugs of the transport section moving

downstream from the one nearest the injector —

if the position error at a bug is too large and the
error can’t be ignored

Figure 3. The operator reasoning about devices upstream and downstream from a bug.

An Expert System For Tuning Particle Beam Accelerators

AN I

Page 169

then reduce the error to zero by tweaking the
steering magnets upstream
if there are none, align the laser
if there are two with no quadrupole
between them, use them as a pair
if the first upstream steerer is too close, use
the second one upstream
otherwise use the first upstream steering
magnet '

Note that this strategy is relatively unaffected by
component failures, since a failed component is
simply deleted from the beamline and is no longer
considered as an upstream or downstream compo-

nent.

The global strategy is concerned with properly
applying local strategies, based on the present state
of tune of the machine. The guiding philosophy is
“focus and steer the beam but don’t put the beam
into the wall.” Given that philosophy, the opera-
tors first check each major section of the accelerator
to see if the beam has arrived from the previous
section. If it has not, the operators go back to the
previous section and use a coarse steering tech-
nique to get the beam through the section. Once
the beam has made it all the way to the tuning
dump (that portion at the end of the accelerator
that can absorb the full energy of the beam without
disrupting the system or damaging components),
the operator goes back to the begining of the trans-
port section and meticulously centers the beam
while monitoring the beam current at the tuning
dump. We have encoded the local strategies fol-
lowed by the operator in a representation we call a
Monitored Decision Script (MDS). An MDS is an
extension of the notion of scripts introduced by
Schank.! Scripts are used to represent step-by-step
procedural knowledge. The canonical example is
the script for eating at a restaurant — first you are
seated, then you order, then you eat, then you pay,

“and then you leave. These things have to be per-
formed in order, but exactly what is done at each
step is decided when you visit a particular restau-
rant. We use the Script part of an MDS to repre-
sent the procedures involved in performing the lo-
cal strategies. The Decision part of the MDS name
comes from the decisions that must be made when
errors are detected (say when a magnet doesn’t re-
spond to a request to change its field because the
supply connected to it has failed). The Monitor
portion of the name comes from monitors that are
periocdically examined to check the health of the
system. This emulates the behavior of the operator,
for example, when he periodically checks to see if
the laser alignment has drifted off position.

To implement the global strategy, we have writ-
ten a number of separate MDS's that are group<d

according to what state the accelerator is in; that is,
whether the accelerator is in the start-up, coarse, or
fine-tuning states. One of these states is listed in a
so-called pre-condition field of each MDS. Each
MDS also contains a post-condition field, within
which is listed the result of successfully executing
the MDS. For example, if a particular MDS has a
pre-condition field that lists initial start-up, then
the post-condition field would state that the beam
has reached the tuning dump. We have also devel-
oped an Al program called an inference engine to
manipulate the MDS's and perform the global
strategy. The engine first checks to see which state

. the accelerator is in; next, it matches that state with

one of the MDS's that lists the state in its pre-condi-
tion field; next, it selects one of these MDS's and
executes it. Executing the MDS puts the machine
in a new state (not necessarily the one listed in the
post-condition), then the cycle of match, select, and
execute is repeated until the accelerator is tuned.
We applied the MDS and inference engine pro-
grams to the problem of centering the beam in the
transport section of the ATA accelerator. Our ini-
tial approach was to decompose the steering prob-

~ leminto two simpler, decoupled problems;

namely, centering the beamn in x, theny. We
thought this was possible because our system had
“knowledge” of the beam bug rotation angles and
other information that would enable decoupling
the x and y steering. Unfortunately this approach
was unsuccessful because there was coupling be-
tween the vertical and horizontal steerers that we
were unable to represent given our time con-
straints. Instead we modified our approach to
more faithfully incorporate the strategy used by
the operator. This was performed in two phases.
In the first phase we diagnosed a pair of steerers
and determined which more strongly influenced
the x position and which the y. In the second
phase we centered the beam using the steerers by
repeatedly halving the error in x, then y, using an
optimization algorithm.2 This approach success-
fully automated the centering of the beam.

Model-Based Tuning

For the ATA discussed above, we chose to clone
the operator as the best way to automate the sys-
tem, given the complexity of the accelerator and
the limited amount of machine time available to us.
For the ETA we chose to model the system because
the ETA is less complex than the ATA and there
has been more of an opportunity to get onto the
system and model the various components. Conse-
quently, this fiscal year we are much closer i0 a
tuning model of an accelerator.

CONF-9007134
Page 170

An Expert System For Tuning Particle Beam Accelerators

Making use of such a model involves two dis-
tinct phases. The first is the “commissioning”
phase® during which the simulator is matched with
the real accelerator by measuring what effect each
component has on the beam. This phase forces
proper bookkeeping because the effect of each
component on the beam trajectory must be calcu-
lated accurately for the model to work. Any rota-
tions, tilts, offsets, and miscalibrations must be
eliminated or incorporated into the model during
this phase so the simulator and real machine pro-
duce the same beam trajectory. As part of the com-
missioning phase we have developed procedures
to measure various beam parameters. For ex-
ample, we measure the effects that steering mag-

nets have on beam position by sweeping horizontal

and vertical steering magnets through a range of

* values, producing the cross-shaped pattern in Fig.
4. Similarly, we measure the effects that solenoid
magnets have on focus by sweeping through a
range of settings, producing the spiral-shaped pat-
tern shown in Fig. 5. We have started the commis-
sioning phase on the injector section of the ETA ac-
celerator and have chosen the smallest subset pos-
sible: one magnet followed immediately by a
beam-bug. Once the effects of these components
have been measured, we will commission the re-
maining injector magnets and then proceed down
the accelerator beginning with the first ten-celil set.
Once we're finished with the accelerator, we will
tackle the remaining beam lines.

As discussed above, during the commissioning
phase, we bring the simulation model and the
accelerator into relative agreement. In the second,
operational phase we can actually begin to tune the
accelerator and diagnose failure. To tune the
accelerator, the first step is to turn the system on
and measure actual beam position in the
accelerator. Given these measurements, the initial
beam energy, and the commissioned model we can
estimate the launch conditions of the beam - its
initial position and transverse velocities (derioted
asx, X', y,y). These conditions are estimated by
fitting the measured data to simulated data and
then varying the launch conditions to get the best
fit. Finally, we can use a nonlinear parameter
estimator (part of the simulation model) to select
tuning parameters that will center the beam.
Obviously, a very large number of tuning
parameters are available. Initially, an experienced
operator will select a subset of these for tuning,
and iterzte the process with different subsets.
Eventually, the operator’s knowledge and
experience will be encoded into an expert system
that will select the subset of tuning parameters and
will decide how much iteration is necessary.

* Figure 4. Variation of x and y beam positions as the

vertical and horizontal steering magnets are swept
through a range of values.

Figure 5. Variation of x and y beam positions as the
solenoidal field is varied through a range of values.
The solenoidal field causes the beam to spiral as it
passes through the magnet. As a result, varying the
field causes the locus of points representing the beam
position to assume a spiral shape. The spiral becomes
tighter as the field increases.

CONF.90071 34
Page 171

An Expert System For Tuning Particle Beam Accelerators

When the simulation model and the accelerator
go out of relative agre>ment (due to'component
failure), the model can be used to find those
regions within the accelerator where there is still
agreement. For a single component failure, there
will be two regions of agreement roughly
surrounding the failed component. From this
information, a list of suspect components can be
compiled. With the aid of an expert operator (or
eventually, an expert system), a number of possible
failures can be proposed. The nonlinear parameter
estimator is then used to estimate both the
magnitude of the proposed error and the
improvement in the model’s predictive ability,
given the proposed error and the data currently
available from the accelerator sensors. With this
information, many proposed errors can be rejected
because either the magnitude of the error is beyond
reasonable limits, or the improvement in the model
by the addition of the error is too small. In the
ideal case, one is left with only one reasonable
error. In the other cases, one is normally left with

only a few possibilities. Beam redirection
experiments can then be performed to further
isolate the accelerator-model discrepancy.

Selection of these experiments will initially be done
by experienced operators, but will eventually be
included within the expert system’s capabilities.
When the problem is finally found, then either the
accelerator can be fixed and/or the model can be
updated with the (fit) error information, and
tuning can proceed as before.

In conclusion, model-based tuning promises to
put more science into the art of tuning and lead to
a more rigorous understanding of the machines.
The model enables operators to “see” the effects of
their tuning in the regions between (not covered
by) sensors. Given sufficiently accurate models it
should be possible to determine 1 set of parameters
that will change the present state of the machine to
a desired (tuned) state in a single step.
Experiments can be performed off-line using the
model to determine, for example, the effects of
adding new components to the beamline at far less

Machuie litenneation' & Controd tntertwe 1MILDY ‘ .
e

Fover hpply: V)

C"ERERE

(=151¥ 318 714
ST —

Figure 6. Screen dump of the windows associated with the manual interface to MAESTRO. The windows are: a

simulated beam position vs distance down beamline. The x position is the thin line and y is the thick line; b)

icons depicting the components according to their positions in the beamline; c) power supply control window; d)
zcope dicplay showing the I, x and v waveformas from the selected beam bugs; e) field strength vs distance down
the beam line for the solenoids, horizontal steerers, and vertical steerers.

CONF-9007134 S
Page 172 . . ‘
An Expert System For Tuning Particle Beam Accelerators

expense than would be the case if the real machine
were used.

Manual Interface

The manual interface for MAESTRO is shown in
the screen dump in Fig. 6. The interface consists of
several windows that become visible on the screen
as necessary. The Machine Interrogation and Con-
trol (MICI) window is the main one for interacting
with the system. It consists of two panes, one
above the other. The top pane displays the output
from the simulator, showing the horizontal beam
position as a thick line and the vertical position as a
thin line. The lower pane shows a set of icons de-
picting the components in the beamline. The loca-
tions of the icons and their shape are derived from
the information describing the beamline in the
MAESTRO knowledge base. Components added
to the beamline are automatically included in the
MICI display once the information has been added
to the knowledge base.

The operator controls the magnetic fields by po-
sitioning a cursor over an icon with a mouse.
Clicking over a vertical steering magnet icon, for
example, causes power supply control windows to
become visible below the MICI window (Fig. 6).

By clicking the mouse as the cursor is positioned in
the windows we can increase or decrease the cur-
rent in the appropriate power supply by a given in-
crement.

The Scope Display window is used to control
and display data acquisition. Clicking the mouse
over the appropriate label in the window causes
data to be acquired and displayed as a set of three
traces in the window: the time history of the beam
current, x position, and y position. The actual loca-
tion of the beam within the pipe is derived from
the trace data after accounting for sensor misalign-
ment and is displayed in the circular “bulls-eye”
displays in the upper part of the window.

There are other windows that display additional
derived data. A “position display” window shows
a value vs position down the beam line. A “bug-
walk,” for example, makes position displays that
show peak current, x position, and y position at the
locations of the beam-bug position monitors along
the beamline. Similarly a “magnet-walk” shows
the fields at the centers of the magnets vs their lo-
cation in the beamline. Three magnet walks ap-
pear in Fig. 6 showing the solenoidal fields (labeled
PD-B), the horizontal steering fields (labeled PD-
H), and the vertical steering fields (labeled PD-V)

vs distance down the beamline.

There are also windows for displaying histori-
cal data. Clicking the mouse over a beam bug
icon causes a “shot history” window to appear.
By clicking the mouse over buttons on the win-
dow the operator can view all the oscilloscope
traces acquired for that bug for that day’s run.

Future

i

We are planning to improve the shot history
mechanism so that it can not only manipulate
past shot data but also past machine configura-
tion data. For example, we want to have the abil-
ity to re-do the signal processing with different
control parameters. We also want to be able to
ask such questions as, “During the last three
months what was the highest current magnitude
measured when the machine had the long colli-
mator installed?” Our approach is to develop an
unstructured database based on the artificial in-
telligence representation scheme known as a se-

mantic network.

We are also developing the ability to acquire
image data from cameras observing the beam
striking foils inserted into the beamline. We will
apply image understanding techniques (the abil-
ity of an Al program to interpret or judge a visual
image) to determine the position and focus of the
beam.

Summary

The MAESTRO software environment was de-
veloped to function as an intelligent assistant to
an operator tuning complex systems such as par-
ticle-beam accelerators. It incorporates three ap-
proaches to tuning. The “cloning the operator”
approach uses an inference engine and the MDS
representation to encode the strategies and rea-
soning followed by the operator. The model-
based approach makes use of a beamline simula-
tor and a non-linear least squares parameter esti-
mator to first “commission” the model and then
determine optimum tuning parameters. The third
approach lets the operator perform tuning manu-
ally and provides him with displays that easily let
him determine the machine status. Finally, a his-
tory mechanism lets the operator view past data
to compare the present tune with ones previously
obtained.

An Expert System For Tuning Particle Beam Accelerators

CONF-9007134
Page 173 /114

Acknowledgements

The authors wish to gratefully acknowledge the
contributions of Doyle Rogers and John Clark, the
tuning experts. Their ability to make order out of
chaos is truly amazing.

Work performed jointly under auspices of the
U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract W-7405-ENG-
48, for the Strategic Defense Initiative Organization
and the US. Army Strategic Defense Command in
support of SDIO/SDC MIPR No. W43-GBL-0-5007.

R. C. Schank and R. P. Abelson, “Scripts, PLans,
Goals, and Understanding,” Hillsdale, N]: Law-
rence Erlbaum (1977).

P. G. King, and S. N. Demming, “UNIPLEX: Single

~ Factor Optimization of Response in the Presence of

Error,” Analytical Chemistry, Vol. 46, No. 11, pp
1476-1481 (September 1974).

M. Lee, and S. Clearwater, “GOLD: Integration of
Model-Based Control Systems With Artificial Intel-
ligence and Workstations,” Workshop on Model-
Based Accelerator Controls, Brookhaven National
Laboratory, Upton, New York (August 1987).

Safety of Process-Control Software

Nancy G. Leveson
Info. & Computer Science
University of California, Irvine
Irvine, CA 92717
email: leveson@ics.uci.edu

INTRODUCTION

In recent years, advances in computer technology have gone hand-in-hand
with the introduction of computers into new application areas. The problem of
safety has gained importance as these applications have increasingly included
computer control of systems where the consequences of failure may involve
danger to human life, property, and the environment.

System-safety engineering has the goal of designing acceptable safety levels
into systems by identifying and controlling potential hazards. Increasingly,
system-safety engineers are finding themselves faced with the problem of ensuring
safety in systems controlled by digital computers. At the same time, software
engineers are being confronted with ultrahigh reliability requirements such as 10°°
probability of failure over some fixed time. These requirements are essentially an
attempt to prevent accidents by building virtually perfect software, and they are
obviously impossible to guarantee (or even to measure) with today’s technology.

But perfection may not ke necessary to prevent accidents. This is something
that has long been recognized by hardware engineers, probably because they had
no way to prevent wear-out failures in hardware and, instead, had to design to
cope with failure. Although software-design perfection is theoretically possible, it
may not be practical to achieve this in complex systems. An alternative is to
take the hardware approach: to prepare for failures and try to minimize their
consequences.

The goal of software safety is to ensure that software executes within a
potentially hazardous system without causing or contributing to unacceptable
risk of loss such as death, injury, property damage, environmental harm, financial
ruin, and security leaks. Safety is enhanced if the risk of accidents is reduced,
even though the process of risk reduction may require the (perhaps temporary)
nonsatisfaction of some or all of the functional or mission requirements of the
software or of the encompassing system.

Often, the design constraints needed to optimize safety conflict with those
needed to optimize other qualities, including the probability of accomplishing the
basic mission or functional requirements: Even if complete safety were achievable,
it might cost too much in terms of resources and reduced functionality. In fact,

CONF-9007134
Page 175

CONE-9007134 -2-
Page 176 ‘

few things in life are completely safe; how much risk is considered acceptable
depends on the estimated value of the benefits of the activity coxnpared to poten-
tial losses. Identifying and specifying the safety requirements ea.rly in the develop-
ment process and establishing priorities when conflicts arise helps in the
identification and evaluation of any necessary trade-offs.

Safety must be built into software starting from the earliest stages of system
development and continuing through each step of software development. The
goal of the Safety Project at UCI is to develop a set of techniques and tools that
extend and adapt to software the methods used to control risk in the larger sys-
tem within which the software is embedded. The approach combines standard
software engineering techniques with proven system-safety engineering techniques
and special software-safety techniques. ‘

Because safety problems are system problems, solutions must, of necessity,
involve an integrated, consistent, system-wide approach. This has resulted in our
merging system engjjieering and software engineering (especially software require-
ments engineering) techniques. Our approach is an engineering approach that
emphasizes modeling and analysis using both formal and informal techniques.
The resulting software-safety techniques and tools now appear as recommended
approaches in military standards and handbooks and are used around the world. .

TECHNIQUES

Verification of safety differs from the usual verification of correctness in that
the goal is to increase confidence that the code will never let an unsafe state be
reached, although it may still be possible to reach an incorrect but safe state.
Because the goal differs, different techniques become feasible and useful.

Safety-verification techniques often start from a hazardous output and work
backward through the code or design either to demonstrate that the software
cannot produce that output or to determine the conditions under which it can
[LH83] One reason that backward analysis is practical for safety is that the
number of unsafe states is usually much smaller than the number of incorrect
states.

Safety analysis activities should span the entire software development pro-
cess. This has several advantages: (1) errors are caught earlier when they are
easier and less costly to fix; (2) information from the early verification activities
can be used to design safety features into the code and to provide leverage for the
final code verification effort; and (3) the verification effort is distributed through
the development process instead of being concentrated at the end. Ideally, each
step merely requires showing that newly-rdded detail does not violate the
verification of the higher-level abstraction at the previous step. These
verification activities may have both formal and informal aspects: static analysis
using formal proofs and structured walkthroughs and dynamic analysis involving
various types of testing to provide confidence in the models and the assumptions
used in the static analysis.

-3 -

Our techniques can be divided up into those for software hazard analysis,
software requirements analysis, software design, code analysis, and configuration
control and maintenance.

Software-hazard analysis. A hazard is a set of conditions that can lead to an
accident (unacceptable loss). The goal of software-hazard analysis is to identify
and categorize software-related hazards by likelihood and potential severity. For
complex systems, it may be impossible to guarantee that all hazards have been
identified and correctly assessed. But it is possible to make the system safer by
optimizing the design according to the hazard assessment and then planning con-
tingency actions in case a mistake has been made.

Determining all causes of a hazardous state is much more difficult than iden-
tifying hazards. Fortunately, this is not required to make a system acceptably
safe. At worst, many systems can be designed to detect that a hazardous condi-
tion exists (without knowing why or how it occurred) and to take protective
action such as failing safe. At best, analysis techniques can identify and prevent
some potential causes, thus eliminating the need to fail into a safe state in those
cases and increasing the system’s overall reliability and effectiveness.

System-safety engineers have standard procedures for identifying system
hazards. Once system hazards have been identified, fault-tree analysis or other
modeling and analysis techniques can help to identify the software hazards —
those actions or inactions of the software that alone or with other events can lead
to the identified system hazards. We have devised algorithms for software hazard
analysis and demonstrated their use on Petri-net models [LS87]. Our techniques
help to determine software safety requirements directly from the system design;
provide procedures to analyze a system design for safety, recoverability and fault
tolerance; and provide guidance in the use of failure detection and recovery pro-
cedures. For most cases, the analysis procedures require construction of only a
small part of the reachability graph.

We have recently extended this work to statechart models by adding an

environmental-interaction model to statecharts and providing further analysis of

the effects of failure [MEL90]. Most software requirements specifications model
only the behavior of the software component. Much useful analysis can be per-
formed on such models of the software requirements and many important types
of errors detected. However, many of the most important problems in require-
ments specifications involve the interface between the software and the process
being controlled. In order to find these, the model must include at least some
aspects of that interface. We have defined a model, which we call an Environ-
mental Interaction Model, and have illustrated it by extending the Statecharts
modeling technique. Standard system engineering analysis procedures, such as

CONF-9007134
Page 177

Failure Modes and Effects Criticality Analysis (FMECA) and Fault Tree Analysis

(FTA), can be performed on this combined model, and we have provided algo-
rithms to accomplish this. The result provides a partial bridge of the unfortunate
gap between system engineering and software engineering.

CONF-9007134 -4
Page 178 ‘

Once software hazards have been identified, they can be used to write
software-safety requirements (or constraints), which then must be shown to be
consistent with the software-requirements specification.

Software Requirements Analysis. Software reéquirements errors have been
found to account for a majority of production software failures [BMU75,END75]
and have been implicated in a large number of accidents. Errors introduced dur-
ing the requirements phase can cost up to 200 times more to correct than errors
introduced later in the life cycle [BOE8L] and can have a major impact on safety.
In fact, safety engineers have concluded that inadequate requirements
specification and design foresight are the greatest cause of software safety prob-
lems [LEV86]. Therefore, techniques to provide adequate requirements
specifications and to find errors early are of great importance.

We have recently been working on the semantic analysis of requirements
specifications. In process-control systems, minor behavioral distinctions often
have significant consequences. It is therefore particularly important that the
requirements specifications distinguish the behavior of the desired software from
that of any other, undesired program that might be designed, i.e, the software
specification must be both precise (unambiguous), complete, and correct (con-
sistent) with respect to the encompassing system requirements.

Our goal is to provide analysis procedures to help find these types of flaws
(i.e., ambiguity, incompleteness, and inconsistency with system-level require-
ments) in the software requirements specifications for process-control systems.
Special emphasis is placed on robustness and timing. The approach involves
bui..'ing a formal model (the requirements specification) and then analyzing it to
ensure that the properties of the model match the desired behavior. Some of the
analysis procedures involve the checking of consistency with criteria that must be
satisfied by all such systems; these criteria often arise from the basic properties
inherent in any process-control system. Other procedures rely on heuristics that
can be used to improve the specification by examining, within the context of the
particular process being controlled, properties that are often present in such sys-
tems.

Because our goal is to provide general semantic analysis procedures that can
be applied to any black-box, behavioral requirements specification, we have dev-
ised a notation and analysis model that is independent of any specific, existing
requirements language — a requirements state machine (RSM) — which is an
abstraction of most state-based specification languages. The criteria and analysis
techniques defined on the RSM can be easily mapped to many of the current
real-time requirements specification languages. Our goal in doing this was not to
provide another language for specification of requirements; the formal notation is
for the purpose of providing rigor in defining the analysis procedures and criteria
while requiring only a small number of primitives that are easily mapped to exist-
ing specification languages. |

To date, we have defined the formal criteria that imply the types of
specification correctness important in process-control software [JLHM91]. We are
currently working on designing a real-time specification language that supports

-5 - CONF-9007134
Page 179

the type of modehng and analysis required to ensure these criteria. This work is
being done in the context of a real-life, safety- critical avionics system. Because
this work is being performed for a government agency, the resulting system
requirements specification must be readable and reviewable, with very little
instruction, by employees of the government and industrial representatives
world-wide who are not computer scientists but rather application experts. At
the same time, it must be usable as a software requirements specification and be
expressed in a formal language that is amenable to safety analysis. Our approach
to these constraints is to take a two-tier approach with a readable but precise
and graphical top-level requirements specification that is tightly coupled with a°
lower-level specification amenable to formal analysis. The language will incor-
porate the best features of existing languages such as Statecharts [HARS7] and
the A-7 specification language [HEN80] with new features added when existing
languages do not fulfill our needs. Once the specification is completed, formal
safety analysis procedures will be devised based on our previous work on safety
analysis and semantic analysis of requirements.

Software Design for Safety. Once the hazardous states are identified and the
software-safety requirements determined, the software can be built to minimize
risk and to satisfy these requirements. Although safety-analysis techniques are
necessary and useful, system safety cannot be ensured by analysis and verification
alone: The analysis techniques may be so complex that they are themselves
error-prone, their cost may be prohibitive, and high-confidence elimination of all
hazards may require too severe a performance penalty. '

Therefore, hazards will need to be controlled during the software’s operation.
A safe software design includes not only standard software-engineering techniques
to enhance reliability but also special safety features such as interlocks, fail-safe
procedures, and safety monitoring or assertions to control potential hazards.

At the high-level design stage, information about the software hazards and
safety constraints can be used to identify safety-critical items (processes, data,
and states). The identification process might involve backward flow analysis
from hazardous outputs or other types of analysis procedures. We are working
on procedures to derive safety invariants for each safety-critical module from the
safety constraints [CHA90]. This information is important in the later
verification steps and also in the design of assertions or other execution-time pro-
tection mechanisms.

Once the critical items have been identified, they can be subjected to special
treatment in the design. For example, safety will be enhanced and later safety
analysis simplified if the safety-critical code, variables, and states are minimized,
isolated and protected. Isolation may, for example, be useful in satisfying certain
types of safety constraints that involve enforcing separation such as ensuring that
a safety-critical function is not inadvertently activated. Safety-critical data also
needs to be protected from accidental alteration. Security techniques might be
used to accomplish these goals. Rushby has shown how an idea from security,
l.e., the encapsulation kernel, can be used to enforce certain types of safety

oy

CONF-9007134 - ‘ -6 -
Page 180 ‘ ‘

constraints such as the isolation of critical modules [RUS86].

The safety analysis during high-level design results in a set of design con-
straints or assumptions that imply the overall software safety constraints. The
low-level de51gn must be shown to preserve these high-level design constraints.
The analysis is also used to tailor the high-level design in order to reduce the
necessary safety verification in the later stages of development.

The amount and type of safety analysis that can be accomplished during
low-level design depends pn how much and what kind of information is included
in the low-level design specification. Not only must it be shown that the specified
behavior of the individual modules preserves the individual module safety invari-

~ants (which were derived in the high-level design analysis), but it must also be
demonstrated that the modules executing together preserve the high-level design
constraints if this has not already been accomplished in a previous step [CHA90].
In addition, it may be possible to demonstrate that safety-critical variables and
modules are adequately protected from errors in other parts of the software, at
least at this level of abstraction. If a formal design language has been used, then
formal analysis is possible. Again, information from this analysis can be used to
design protection against hazards into the software.

I have laid out some general approaches to relaﬁing safety and software
design [LEV86]. Our firs; attempt at investigating this relationship will be com-
pleted soon [CHA90]. We plan further work on this topic.

Code Analysis. Finally, after the coding has been completed, formal aad infor-
mal verification is needed to ensure that the actual code is consistent with the
assumptions made in the low-level design analysis, e.g., that the code preserves
the module safety invariants, that the protection devices have been implemented
correctly, and that the safety-critical functions have been properly isolated. In
general, the goal at each of the analysis levels — requirements, high-level design,
low-level design, and code — is to move the assurance of safety to the highest
level of abstraction possible and then to show that the assumptions of this
analysis are preserved throughout each of the levels of mapping down to the
code.

The code-level analysis will probably involve a combination of techniques,
including testing, formal proofs, and informal verification techniques such as
Software Fault Tree Analysis [LH83, CLS88]. We have developed and demon-
strated such techniques, and they are now used in industry. Currently, we are
working on a tool to aid the analyst in performing software fault tree analysis.

Configuration Contro| and Maintenance. Whenever any changes occur to
the software, either because of detected faults or because of functional enhance-
ments, a safety analysis is needed to ensure that the changes are safe. This
analysis starts at the highest level involved in the change: It may be necessary to
start from the requirements analysis if the change involves a system safety con-
straint or the basic software functional requirements; in other cases, it may be
necessary only to redo aspects of the design and/or code analysis. Some types of
changes may not be allowed due to their potential decrease in the safety of the

7 -

software or because they are deemed not worth the effort of recertification of
safety.

Planning for such changes can help to minimize the re-analysis that is neces-
sary. For example, one of the reasons to isolate safety-critical functions and data
is to minimize the re-analysis resulting from changes in both safety-critical and
non-safety-critical modules. Our methodology incorporates such concerns
throughout.

CONCLUSIONS

Software safety is only recently beginning to be considered a urique and
important software quality. Focusing ou safety separately from other qualities
allows conflict resolution and careful decision-making about trade-offs, allows
differential handling of erroneous states, provides discipline and procedures to
deal with errors, focuses attention and provides the possibility of assigning
responsibility, and allows measuring and ensuring safety separately from other
goals — a requirement of most regulatory agencies.

The US Defense Dept. now has strict standards (such as Mil-Std-882B)
- reguiting special procedures for safety-critical system software. With the increas-
ing number of accidents, interest in software safety is rising among other regula-
tory agencies, and new standards for safety-critical software are beginning to
appear around the world.

The goal of the Safety Project at UCI is to provide support for development
of safety-critical software that will allow software with acceptable risk to be built.
Considering that there are no current practical software engineering techniques
that alone allow such a high level of assurance as is required in most of these sys-
tems, our approach is to provide layers of protection while not depending on any
one to ensure low risk. This approach augments good software engineering prac-
tice with (1) analysis procedures to identify hazards, (2) elimination and control
of these hazards through various types of hardware and software interlocks and
other protective design features using several layers of protection and backups,
(3) application of various types of safety analysis techniques during the software
development to provide confidence in the safety of the software and to aid in the
design of hazard protection featur s, and (4) evaluation of the effectiveness of the
analysis and design procedures to assess the level of confidence they merit.

Whether this approach is adequate depends upon the acceptable level of ri-k
and how effective the software safety measures and external protection agaiust
software errors are judged for a particular application,

REFERENCES
[BOER1]

S 4

Boehm, B.W. Software Engineering Economics, Prentice-Hall, 1981.

CONF-9007134
Page 181

il

M vk b,

CONF-9007134 ' \ -8-

Pagc182

[BMU75]
Boehm, B.W., McClean, R.L., and Urfig, D.B. “Some experiences with
automated aids to the design of large-scale reliable software,” IREE Tran-
sactions on Software Engineering, SE-1(2), February 1975. Y

[CHA90]

Cha, S.S. Safety Verification On Software Design, Ph.D. Dissertation, ICS
Dept., University of California, Irvine, December 1990 (expected).

[CLS88)

Cha, S.S., Leveson, N.G., and Shimeall, T.J. “Verification of Safety in Ada
- Programs,” Proc. 10th International Conference on Software Engineering,”
Singapore, April 1988, pp. 377-386.

[END735] ‘
Endres, A. “An analysis of errors and their causes in system programs,”
IEEE Transaction on Software Engineering, SE-1(6):140-149, June 1975.

[HARS7]

 Harel, D. “‘Statecharts: A visual formalism for complex systems,” Science of
Computer Programming, 8:231-274, 1987.

[HENSO] ‘
Heninger, K.L. ‘“‘Specifying software requirements for complex systems: New

techniques and their applications,” IEEE Transactions on Software
Engineering, SE-6(1):2-12, January 1980.

[JLHMO91] ,
Jaffe, M.S., Leveson, N.G., Heimdahl, M., and Melhart, B. ‘Software

Requirements Analysis for Real-Time Process-Control Systems,” IEEE Tran-
sactions on Software Engineering, March 1991 (in press).

[LEVS6]

Leveson, N.G. ‘“Software Safety: Why, What, and How,” A CM Computing
Surveys, 18(2):25-69, June 1986.

(LH83)

3
Leveson, N.G. and Harvey, P.R. “Analyzing Software Safety,” IEEE Tran-
sactions on Software Engineering, SE-9(5):569-579, Sept. 1983.

. 1
[LS87)
Leveson, N.G. and Stolzy, J.L. “Safely Analysis Using Petri Ncts,” JEEE

Transoctions on Seftware Engineering, SE-13(3):386-397, March 1987.

CONF-9007134
Page 183//8‘{
[MEL90] |
Melhart, B.E. Specification and Analysis of the Requirements for Embedded
Software with an Ezternal Interaction Model, Ph.D. Dissertation, ICS Dept.,
University of California, Irvine, July 1990.

[RUS86] |
Rushby, J. “Kernels for Safety?,’” Proc. CSR Workshop on Safety and Secu-
rity, Glascow, Scotland, October 1986. Also printed in T. Anderson (ed.),
Safe and Secure Computing Systems, Blackwell Scientific Publications, 1989,
pp. 210-220.

Vol

CONF-9007134

Page 185

Real-Time Responsiveness in Distributed O‘perating SyétemS and Databases

Jane W. S. Liu
Department of Computer Science
University of Illinois
Urbana, Illinois 61801

Introduction

The sample rate and control computations of a digital control system are typically selected to
achieve the best tradeoff among many costs and benefits. Once the sample rate is chosen, the tasks of
data transmissions and control computations in each sample period are considered to be time-critical.
Every fime-critical task must meet its timing constraint, which is typically specified in terms of its
deadline. 1t is essential for the task to complete and produce its result by its deadline. A timing fault
occurs when the result is produced too late; such a result is-of little or no use. In other words, the

“embedded computer system which carries out the computations and supervises the data communication is

a hard real-time systems. (Hereafter, by a real-time system, we mean a hard real-time computing system,
unless it is stated otherwise.) A primary design objective of the operating system or application in a real-
time system is to guarantee that all critical timing constraints are met at all times. Other optimization
criteria, such as throughput and resource utilization, are typically of minor importance.

The rapid advances in computing and communication hardware, distributed and parallel algorithms,
and artificial-intelligence techniques have accelerated the progress in real-time computing. The next
generation real-time systems are likely to be based on parallel and distributed architectures, use highly
parallel algorithms, and perform complex and intelligent functions. This paper discusses several critical
problem areas in distributed, real-time operating systems and databases, together with our recent research
efforts and future directionst. Specifically, Section II discusses the problems of end-to-end scheduling to
meet deadlines in distributed systems, concurrency control to maintain temporal coherence of shared data,
and network access to ensure timely message delivery.

An approach taken to provide flexibility in scheduling and resource management and to enhance
fault tolerance in r=al-time systems is the use of the imprecise computation technique. Many factors, such
as variations in processing times of dynamic algorithms and congestion or failures of the communication
network, make it difficult to meet all the timing constraints in a dynamic environment. The imprecise
computation technique minimizes this difficulty by trading the result quality for the amount of system
resources and time. In particular, this technirue prevents timing faults and achieves graceful degradation
by making sure that an approximate result of an acceptable quality is available when the exact result of
the desired quality cannot be obtained in time. Section III describes this technique in detail. The
applicability of this technique to intelligent control is discussed.

I1. Critical Problems in Distributed Real-Time Systems

As the applications of real-time systems become more critical and the underlying systems become
more complex. one can no longer rely on the ad hoc methods that have been used traditionally for the

t This work has been partially supported by the U.S. Navy ONR Contract Nos. NVY N00014 87-K-0827 and No.

NVY NOOOI4 89-3-1181.

CONF-9007134
Page 186

design and construction of real-time systems and for the specification, prediction and enforcement of their
timing behavior. This fact has motivated the recent U.S. Navy ONR research initiative on real-time
computing. In particular, the major objectives of the research efforts supported by this initiative are (1) to
establish theoretical bases that support systematic and rigorous methods for the design, specification, and
implementation of the next generation real-time computing systems and (2) to develop a set of basic
building blocks of predictable and robust schedulers and resource managers for such systems. Despite the
significant progress in recent years [1], many critical problems in the design and construction of
distributed, real-time systems remain to be solved. Examples of these problem areas are end-to-end
scheduling, real-time concurrency control and time-critical data communications.

End-to-End Scheduling

In a multiprocessor or distributed system, tasks may need to be executed on more than one

processor. While there are simple, optimal and approximate algorithms for scheduling tasks on a

~ uniprocessor to meet deadlines [2-5], such algorithms for task assignment and scheduling in distributed

environments do not exist. One is forced to rely on either enumerative algorithms or simple heuristic

algorithms. The former are typically too expensive to run for complex systems. The latter do not have
bounded worst-case (that is, guaranteed) performance.

To illustrate the complexity of the distributed scheduling problems, w+ consider the simplest one
among them: the flow-shop problem [6-9]. A flow shop models a multiprocessor or distributed system in
which processors and devices (also modeled as processors) are funcidonally dedicated. Each task
executes on the processors in turn, following the same order. For example, a control system consisting of
an input processor, a computation processor, and an output processor can be modeled as a three-processor
flow shop. The input processor reads all sensors; the computation processor processes the sensor inputs
and generates commands; the output processor delivers the commands to the actuators controlled by the
system. Each task, modeling a closed-loop tracker and controller, must be executed first on the input
processor, then on the computation processor, and finally on the output processor. Altemnatively, we can
use the slightly more complex, flow-shop-with-recurrence model to characterize systems that have limited
resources and hence do not have a dedicated processor for every function. In a flow shop with recurrence,
all tasks exccute on different processors in the same order; however, each task executes more than once
on one Or more processors. As an example, suppose that the three processors mentioned earlier are
connected by a bus. We can model the bus as a "processor" and the system as a flow shop with
recurrence. Each task executes first on the input processor, then on the bus, the computation processor,
the bus again, and finally on the output processor. Each task executes on the bus twice.

Many real-time systems can be modeled as flow shops in which every task has a deadline. A
scheduling algorithm is said to be optimal if it always finds a feasible schedule in which all tasks
complete before their deadlines whenever such schedules exist. Past efforts in flow-shop scheduling have
focused on minimization of completion time, that is, the total time required to complete a given set of
tasks [6-8]. Unfortunately, almost every flow-shop problem that goes beyond the two-processor flow-
shep problem tums out to be NP-complete. (For example, the general problem of scheduling to minimize
completion time on three processors is strongly NP-hard.) We have examined several special cases that
are tractable; we have developed (1) optimal algorithms for scheduling tasks in flow shops when the tasks
have identical processing times on all processors and when the tasks have identical processing times on
each of the processors but different processing times on different processors, (2) an optimal algorithm for
scheduling tasks with identical processing times in a special class of simple flow shops with recurrence,
and (3) a heuristic algorithm for scheduling tacks with arbitrary processing times in flow shops [6]. Many
extensions of the flow-shop scheduling problem are of practical interest. Examples include periodic flow

N

CONF-9007134
Page 187

shops, as well as the general job shops in which tasks execute on processors in arbitrary sequences. We
need to find effective ways to schedule tasks to meet deadlines for these more general models of
distributed systems.

Concurrency Control to Maintain Temporal Coherence

Real-time tasks often sham ala A concurrency control mechanism must be used to ensure data
consistency, making it difficult w s;‘hcdule such tasks to meet timing constraints. Traditionally, one
approaches this scheduling problem 'by ‘arialyzing the schedulability of conflicting tasks and finding
suboptimal heuristic algorithms to schedule them [10-17]. In general terms, this is the problem of
scheduling tasks subject to resource constraints, which is NP-complete [10,11]. Several heuristic
algorithms for scheduling tasks subject to resource constraints have been developed. These algorithms
are mostly for the case when there are a small number of resources (for example, 10 or 20) and are not
suitable when the resources, such as data, are numerous (for example, 1,000 or more). Recently, several
new concurrency control algorithms have been proposed for scheduling database transactions with
deadlines (e.g., [14-16]). '

Altematively, one can adopt a new approach by introducing a set of continuous criteria for temporal
consistency that is more appropriate for many time-critical applications, such as intelligent control. In
these applications, the notion of state- and view-consistency traditionally used in concurrency control
studies can sometimes be replaced or supplemented by the notion of temporal consistency [17]. We
consider data objects in a real-time database as models of real-world objects. A set of database objects is
said to be relatively temporally consistent if it represents a valid snapshot of the state of the real-world
objects modeled by it. It is said to be absolutely temporally consistent if the snapshot is sufficiently up to
date. An objective of a concurrency control algorithm is to keep data temporally consistent in addition to
maintaining state-consistency or view-consistency whenever it is necessary. We need to evaluate well-
known concurrency control algorithms that ensure serializability in order to determine their average and
worst-case performance in term of their ability to maintain temporal consistency [17]. An integrated
scheduling and concurrency control strategy must keep the data as temporally consistent as required by
the application in addition to maintaining data integrity whenever it is necessary. Basic algorithms and
protocols are needed to make such a strategy feasible.

Real-Time Data Communication

It is likely that many existing network architectures and protocols are well suited for real-time
applications. Unfortunately, existing performance data on them are inadequate to support the design and
synthesis of real-time communication networks. Past work on performance evaluation of networks and
protocols has been concemed primarily with average performance meaé\ures, such as the expected
throughput and delay. In a distributed real-time system, the timely completion of distributed tasks can be
ensured only when message transmission delay is reasonably predictable. It is not sufficient for a real-
time communication network to have a small average delay and a large average throughput. Variations in
message delay in such networks must also be sufficiently small. We necd to have sufficiently accurate
information on the probabilistic distribution of message delay.

III. Imprecise Computation

One effective way to avoid timing faults is to leave less important tasks unfinished if necessary. In
other words, rather than treating all tasks equally, the system views importam tasks as mandatory and less

P T

lemmem b mans bmrnlemn A ekl ann]
P Lmlt LAdAD A UptlUllal ll CLDUICD uldl au lll(llluﬂLUly labhb aic aumuuluu auu C)\cuuu,u \.U bUlll}.ﬂbuUll

before their deadlines. Optional tasks may be left unfinished during transient overload when it is not

CONF-9007134
Page 188

feasible to complete all the tasks. The imprecise computation technique [18-27] uses this basic strategy
but carries it one-step further. In a system that supports imprecise computations, every time-critical task
is structured in such a way that it can be logically decomposed into two subtasks: a mandatory subtask
and an optional subtask. The mandatory subtask is the portion of the computation that must be done in
order to produce a result of acceptable quality. This subtask must be completed before the deadline of the
~ task. The optional subtask is the portion of the computation that refines the result. The optional subtask,
or a portion of it, can be left unfinished if necessary at the expense of the quality of the result produced by
‘the task. An optional task that is not completed when its deadline is reached is terminated at that time.

To provide maximum flexibility in scheduling, it is ideal to design time-critical tasks so that they
are monotone; a task is said to be monotone if the quality of the intermediate result produced by it is
non-decreasing as it executes longer, that is, as more time is spent to obtain the result. The result
produced by a monotone task when it completes is the desired result; this result is said to be precise or
exact. If the task is terminated before it is completed, the intermediate result produced by it at the time of
its termination is the best among all intermediate results produced within the available time. This result
may be usable to the user; it is said to be imprecise or approximate. One way to return imprecise results
is to record the intermediate results produced by each time-critical task at appropriate instances of the
task's execution. Programming language primitives are provided [18-20] so that the programmer can
specify the intermediate result variables to be recorded and the time instants to record them. In addition
to the intermediate result variables, the programmer can also specify a set of error indicators. The latest
recorded values of the intermediate result variables and error indicators are made available to the user
upon premature termination of the task. By examining these error indicators, the user can decide whether
an imprecise result is acceptable when the desired, precise result cannot be obtained in time. Therefore, a
monotone task is logically composed of a mandatory subtask followed by an optional subtask.

The imprecise computation approach makes meeting timing constraints in real-time computing
systems significantly easier for the following reason. To guarantee that all timing constraints are met, the
scheduler only needs to guarantee that all mandatory subtasks are allocated sufficient processor time to
complete by their deadlines; it then uses the leftover processor time to complete as many optional
subtasks as possible. Only the mandatory subtasks are restricted to have bounded execution time and
resource requirements. It is not necessary to eliminate non-determinism in the timing requirements of
optional subtasks. A conservative scheduling discipline with guaranteed performance and predictable
behavior (such as the rate-monotone algorithm [2,3]) can be used to schedule the mandatory subtasks.
More dynamic disciplines (such as the earliest-deadline-first algorithm), that are capable of achieving
optimal processor utilization but may have unpredictable behavior, can be used to schedule optional
subtasks. In particular, when tasks are monotone, the decision on which optional subtask and how much
of the optional subtask to execute can be made dynamically. Because the scheduler can terminate a task

any time after it has produced an acceptable result, scheduling monotone tasks can be done on-line or
nearly on-line.

Monotone Computational Algorithms

Monotone algorithms exist in problem domains such as numerical computation, statistical
estimation and prediction, sorting and searching. We have been concerned with the design of monotone
computational algorithms in those application domains where there are no monotone algorithms,

An example of the recent results is the monotone query processing algorithm that produces
improving approximate answers to queries posed in standard relational algebra {21,22]. An answer to
such a query is set-valued; it is a relation. For a set-valued query, a meaningful and useful set of

CONF-9007134
Page 189

approximate answers can be defined in terms of subsets and supersets of the exact answer. We have
developed an approximate relational model to formally capture this semantics of approximation.
Specifically, this model defines the approximations of any standard relation in terms of supersets and
subsets of the relation, a partial-order relation over the set of all approximate relations for comparing
them, and a complete set of new relational algebra operations on: approximate operands. Every one of
these relational algebra operations is shown to be monotone in the sense that the result of the operation is
better when its operand(s) becomes better. Thus, an improvement in the operands of an expression

containing these operators as primitives will lead to an improvement in the result of the expression. As
~ read requests to retrieve the base relations of the query are completed or partially completed, such
improvements are realized. The monotone query processing algorithm differs from the traditional query
processing algorithms in an important aspect: a series of approximate answers are produced, each
integrating the effect of additional data retrieved to answer the query. None but the final, exact answer
requires the read requests for all base relations be completed before it can be produced. The final answer
is the exact answer obtained by traditional algorithms. If query processing is prematurely terminated (due
to a deadline for instance), some approximate answer will be produced, and the quality of this answer
improves monotonically with the amount of base relation data retrieved and processed.

The semantics of approximation defined by the approximate relational model is not suitable for
single-valued queries, for example, queries for which the exact answers are "yes" or "no". Approximate
data models and monotone query processing strategics to produce approxnmate answers with other
semantic meanings need to be developed.

Scheduling Imprecise Computations

We have developed several algorithms for scheduling imprecise computations. These algorithms
are based on workload models and optimality criteria that explicitly account for the cost and benefit
incurred when optional subtasks are left incompleted.

A general hard real-time scheduling problem is that of scheduling n tasks each of which has
arbitrary rational ready time, deadline and processing time. The ready time of a task is the time instant
before vehich its execution cannot begin. The processing time of a task is the amount of processor time
rcquired to complete the task. Tasks may be dependent. A task 7; is dependent on a task 7T if the
‘exccution of T; cannot begin until T; is completed; such dependencies are specified by a set of
precedence constraints. Tasks may have different weights; weights of tasks measure their relative
importance. In the corresponding new workload model of imprecise computations, each task is
decomposed into a mandatory subtask followed an optional subtask; these subtasks have the same ready
time and deadline as the task. A scheduling algorithm is optimal in the following sense: it determines
whether feasible schedules that meet timing constraints and precedence constraints of all tasks exist, and
when such schedules exist it finds one that minimizes the total length of the unfinished portions of
optional subtasks. We have developed two algorithms for finding optimal preemptive schedules of
dependent tasks on a uniprocessor system [23,24]. The algorithm for optimally scheduling tasks with
identical weights has time complexity O (nlogn). It can be easily modified and used to schedule
independent tasks with identical weights on v identical processors. The time complexity is
O (nlogn + nv) in the multiprocessor case. The algorithm for optimally scheduling tasks with different
weights on a uniprocessor system has a time complexity of O (n2).

Some applications may require that every task is executed satisfying the 0/1 constraint. The
execution of a task is said to satisfy the 0/] constraint if its optiunal subtask is either completed before its

Aaadlina Aar dAicrardad nnhmlw Tha nenhlam nf crhadnling tacko with mrmary and sltamata voarcinne fon
VWALV VA UlOWMAUIWAE WA A Al .Jl\.lulvlll A \)\dll\duullllb LAADNGD YY LR t-'l lll‘ul] CALAVE MALWERALULEWY VWA OAVLED Wl

CONF-9007134
Page 190

also be formulated as one of scheduling with 0/1 constraint. The alternate version, with shorter
processing time, is modeled as a mandatory subtask. The primary version is modeled as a mandatory
subtask, with processing time equal to that of the alternate version, and an optional subtask, with
processing time equal to the difference between the processing times of the two versions; the latter must
be either completed or discarded entirely, A schedule satisfies the 0/1 constraint when the execution of
every task according to the schedule satisfies the 0/1 constraint. Unfortunately, the problem of finding
optimal preemptive schedules satisfying the 0/1 constraint, meeting timing constraints and minimizing
the total error is NP-complete in general. The two efficient algorithms described in {24] for scheduling
tasks with the 0/1 constraint can be used to schedule dependent tasks on a uniprocessor system when the
optional subtasks have ¢. ual processing time. One of the algorithms is optimal when tasks have equal
ready time and has time complexity O (n logn). The other algorithm is optimal even when tasks have
arbitrary ready times and has time complexity O (n2), We have also found approximate algorithms with
good worst-case performance bounds for scheduling tasks whose optional subtasks have arbitrary
processing times to meet the 0/1 constramt and timing constraints.

A workload model commonly used in studies on hard real-time scheduiing is the periodic-job model
[25,26]. In this model, there is a set of periodic jobs to be scheduled. Each job consists of a periodic
sequence of requests for the same computation. The period of a job {s the time interval between two
‘consecutive requests in the job. In scheduling theoretical terms, each request is a task. The ready time
and the deadline of the task in each period is the beginning and the end of the period, respectively. Wz
have extended this workload model to characterize imprecise computations for two different types of
applications. Depending on the kind of undesirable effect caused by errors, we classify applications as
error-noncumulative or error-cumulative. For the former type of application, only the average effect of
errors is observable and relevant. Examples of this type of application include image enhancement and
speech processing. In the workload model characterizing this type of application, the overall quality of
the result of each periodic job is measured in terms of the average error in the results produced in several
consecutive periods. The optional subtasks need not ever be compleied. We evaluated several heuristic
algorithms designed for scheduling error-noncumulative jobs. These algorithms not only ensure that
deadlines are missed in a predictable manner as the load increases, but also make almost full use of the
processor. Many of these algorithms can be used for on-line scheduling and generate feasible schedules
with small average error. Detailed performance data can be found in [25,26]. Their most serious
disadvantage is that they may fail to achieve zero error even when the processor is not overloaded. When
it is known that the overload condition never occurs, classical algorithms should be used. The new
algorithms are suitable when the overload condition occurs frequently or when the variations in the actual
processing times of tasks are large. ‘

For error-cumulative applications, the effect of errors in different periods is cumulative. Examples
of this type of application include tracking and control. In the workload model characterizing error-
cumulative applications, for cvery job, the optional subtask in one period among several consecutive
periods must be completed within that period and, hence, is no longer optional. Thus far, we have
considered only the simple case when the periods of the jobs are the same [26]. Schedulability criteria of
jobs with different periods and error cumulation rates (that is, how often the optional subtasks are
required 10 be completed by their deadlines) remain to be determined. Good heuristic algorithms for
scheduling workloads consisting of different mixtures of jobs are needed. '

The Applicabilicy of The Imprecise Computation Technique

~ The applicability of imprecise computation technique in digital control sysiems needs to be

investigaied. Imprecision in the result of a control computation due 10 the premature termination of the

LY PR LS LTNR SV S

CONF-9007134
Page 191

computation introduces a new source of error, in addition to other types of error, such as quantization
error and truncation error. The characteristics and effect of this new type of error must be determined for
different types of systems. How this error affects the stabllity and performance of typical control systems
remains to be studied.

IV. References

[1] See the proceedings of the [EEE Real-Time Systems Symposiums, 1987, 1988, and 1989.

(2] Liu, C. L. and J. W. Layland, ‘‘Scheduling algorithms for multiprogramming in a hard real-time
environment,’’ J. Assoc. Comput. Mach., vol. 20, pp. 46-61, 1973.

(3] Dhall, S. K. and C. L. Liu, *“On a real-time scheduling problem "* Operations Research, Vol. 26, No. 1, pp.
127-140, 1978. ‘

(4] Lehoczky, J. P., Sha, L., and J. K. Strosnider, *‘Enhanced aperiodic responsiveness in hard real-time
environments,'* Proc. Eighth Real-Time Systems Symposium, pp. 261-270, San Jose, CA, Dec. 1987.

[S] Sha, L., R. Rajkumar, and J. P. Lehoczky, ‘‘Priority inheritance protocols — an approach to real-time
* synchronization,’’ Technical Report No. CMU-CS-87-181, Camegie Mellon University, November 1987.

[6] Garey, M. R. and D. S. Johnson, Computers and intractability: a guide to the theory of NP-completeness, W.
H. Freeman and Company, New York, 1979.

{71 Garey, M. R,, D S. Johnson, and R. Sethi, “The complexity of ﬂowshop and jobshop scheduling'’, Math
Oper. Res. 1976 vol. 1, pp. 117-129.

[8] Gonzalez, T. and S. Sahni, ‘‘Flowshop and jobshop schedule: complexity and approxxmauon , Operation
Research (1978) vol. 26- 1, pp. 37-52.

[9] Bettati, R. and J. W. S. Liu, ** Algorithms for end-to-end scheduling to meet deadlines,’’ Technical Report No.
UIUCDCS-R-90-1594, April, 1990, Department of Computer Science, University of Illinois, Urbana, Il

[10] Blazewics, J., J. K. Lenstra, and A. H. G. Rinnooy Kan, ‘‘Scheduling subject to resource constraints:
Classification and complexity,’’ Disc. Applied Math., Vol. 5, pp. 11-24, 1983,

(11] Garey, M. R., R. L. Graham, D. S. Johnson, and A. C-C Yao. ‘‘Resource constrained scheduling as
generalized bin packing'’, J. Combinatorial Theory, V.21, pp. 257-298, 1976.

[12] Sha, L., R. Rajkumar, and J. P. Lehoczky, 4“Priority inheritance protocols — an approach to real-time
synchronization,”’ Technical eport No. CMU-CS-87-181, Carnegie Mellon University, November 1987,

(13] Zhao, W., K. Ramamritham, and J. A. Stankovic, ‘‘Scheduling tasks with resource requirements in hard real-
time systems,’’ /[EEE Transaction on Software Engineering, April 1985.

(14] Haritsa, J. R., M. J. Carey and M. Livny, ‘‘Dynamic Real-Time Optimistic Concurrency Control’’, to appear
in the Proceedings of the 11th Real-Time Systems Symposium, December 1990.

(151 Y. Lin and S. H. Son, *‘Concurrency Control in Recal-Time Databases by Dynamic Adjus:ment of

Serialization Order’’, to appear in the Proceedmgs of the 11th Real-Tlmc Systems Symposium, December
1990.

(16] Korth, H. F., N. Soparkar, and S. Silberschatz, **Triggered real-time databases with consistency constraints,"’
to appear in the Proceedings of VLDB, August 1990.

{17) Song, X. and J. W. S. Liu, ‘“‘Performance of multiversion concurrency control algorithms in maintaining

temporal consistency,’’ to appear in Proceedings of IEEE 1990 COMPSAC, Chicago, Illinois, September,
1990.

CONF-9007134

Page 192
[18]
(19]
(20]
[21]
(22]
(23]

(24]

[25]

(26]

(27}

Lin, K. J.,J. W. S, Liuand S. Natarajan. *‘Concord: asystem of unprecise computauons, Proceedings of the
1987 IEEE Compsac, pp. 75- 81 Tokyo, Japan, October 7-9, 1987

Lin, K. J., S. Natarajan, J. W. S. Liu, *‘Imprecise results: uuhzmg pania.l‘computaﬁcms in real-time systems,’’
Proceedings of the IEEE 8th Real-Time Systems Symposium, San Jose, California, December 1987,

Natarajan, S. and K. J. Lin, “FLEX: towards flexible real-time progmms,” Proccedmgs of IEEE
International Conference on Computer Languages, October 1988,

Smith, K. P,, and J. W. S. Liu, ‘“Monotonically improving Approximatie answers to relational algebra
queries,"* Proceedings of COMPSAC '89, Orlando, Florida, October 1989.

Vrbsky, S., K. P. Smith, and J. W. S. Liu, ‘‘An object-oriented query processor that retum monotonically

improving approximate answers,’’ Proceedings of IFIP Workshop on Object-Oriented Systems, July 1990,

Shih, W. K., J. W. S. Liu, J. Y. Chung and D. W. Gillies, ‘‘Scheduling tasks with ready times and deadlines to
minimize average error,’’ ACM Operating Systems Review, July 1989,

Shih, W. K., J. W. S. Liu, and J. Y Chung. “‘Fast algorithms for scheduling tasks with ready times and
deadlines to minimize total error,”” Proceedings of the]Oth IEEE on Real-Time Systems Symposium,
December 1989,

Liu, J. W. S, K. J. Lin and S. Natarajap, ‘‘Scheduling real-time, periodic jobs using imprecise results,"’
Proceedings of the 8th Real-Time Systems Symposium, pp. 252-260, San Jose, California, December 1-3,
1987.

Chung,J. Y.,J. W. S, Liu, and K. J. Lin, **Scheduling periodic jobs that allow imprecise results,’’ to appear in
IEEE Transactions on Computers, August 1990,

Zhab, W and M. Berger, ‘‘An Analytical Model for Imprecise Distributed Systems,” Proceedings of
International Conference on Computational Techniques and Applications, July 1989,

CONF-9007134
Page 193

LARGE-SCALE DISTRIBUTED COMPUTATION STRUCTURES FOR
CONTROL SYSTEMS

J. Maltan, ‘ ‘
Lockheed Missiles & Space Company, Inc., Research & Development Division,
3251 Hanover Street, Palo Alto, CA 94304-1191
' e-malil: jmaitan@a.isi.edu

Abstract : "

The emergence of high-speed and low-cost communication components combined with the
improved capabilities of a new generation of microprocessors creates a challenging
opportunity in the area of large-scale distributed control systems. These systems may involve
hundreds of nodes and will be based on the use of unreliable components and communications
links. Thus, technologies that foster adaptability and scaleability, and that support self-
organizing mechanisms are needed to integrate the working fabric of a large-scale distributed
system. The challenge is to fuse the theory, technology, and development methodologies into a
unified framework that cost-effectively satisfies the needs of the users of such large systems,

Recent reintroduction of analog computation performed in the continuous domain adds to the
complexity of the programming of distributed systems. Analog computation used either as
“neural networks” or “smart sensors” can be described in declarative form, but the impact of
the full semantics of such an approach must be further evaluated. The paper discusses, based
on descriptive examples, issues assoclated with languages used to describe control systems and
their relevance to the implementation of distributed control systems.

1. Introduction

Any attempt to develop an environment to support the design of software for distributed
intelligent systems implies that the methodologies used to develop such systems are well
defined and can be cast into an effective set of software tools. In reality, such designs,
especially those implemented in new technologies, will often violate existing assumptions and
rules. Declarative description of control rules and perhaps the use of a hierarchy of
constraints will help the development and product support of distributed systems. At the same
time, the proposed environment must not alienate designers who use more traditional
technologies, e.g., an all simulation approach.

To cost-effectively implement a design environment to support design methodologies ranging
from the fully analytical models to those relying solely on simulations, one must be able to
generate automatically tools that can accommodate widely diversified design styles. In this
paper, we will use examples to highlight some idiosyncrasies related to the implementation of
declarative stated control rules. Based on the discussion of three projects, we will indicate how
important it is to define the the proper syntax and semantics of the system implementation.

The tenet of our presentation is the belief that the key to the success of complex projects like
distributed control systems is effective communication among the designers. The issues are
the semantics of the languages used to describe various design modules and access to the design
database. We believe that proper understanding of the issues associated with languages used to
describe designs and data-sharing required to validate designs will help in the construction of
syntax-driven editors and associated databases. In the future, a domain-related knowledge
incorporated in the language itself will help to incorporate the elements of system description
into the system to enable it to reason about itself. Thus, the same mechanism that allows the
designer to reflect about the design will be perhaps used to help the designed system reflect
about its own state. The latter is needed to support self-diagnosis and fault recovery
(independently at each node of the distributed system), and they are both necessary in any
autonomous (and perhaps intelligent) system.

The paper is partitioned into three parts. The first section illustrates, with an example, how to
generate a software environment using a well known attribute-grammar technology. The

[

ran, Tt n

CONF-9007134
Page 194

second section, describes two projécts containing a distributed control component element.
The last section,summarizes selected issues associated with the language-based approach used
to describe control systems.

2. Language-dﬂven support of system design

Designing a system is a process of accommodatirig an ever-tightening set of constraints. As

- will be later illustrated by the examples, the choice of syntax and semantics describing the
desired system domain plays a very important role in the automatic generation of design-
supporting software or implementation mechanisms. In this section, using an example of a
hierarchical evaluation of a VLSI circuit, we will show that one can apply compliler technology
to generate the design development environment for a physical system [Maitan 87].

First, we will introduce the concept of attribute grammars (AG). Next, we will ﬁlustrate how AG
can be applied to the analysis of VLSI circuit.

2.1 Attribute Grammars. The methodology prcsentcd in this scctton is applicable to systems
that use some form of structure description language(s) and support multiple-views from a
single database. It is a subject of ongoing debate as to whether a single language can effectively
support a description of a design across all views. In this paper, a hierarchy of languages is used
to annotate the semantics of a hierarchy of views or design constraints.

This section presents a methodology consisting of a metalanguage to define a database
transformation and its domain, and a method of constraint evaluation based on the analysis
or the semantics of a system description. Both design databases and evaluation of design
semantics are at the kernel of any design envirnment. This methodology is based on the
theory of attribute grammars and can be implemented using existing tools.

The purpose of AG is to map from derivatlon trees on context-free grarmnmars to corresponding
semantic objects. The semantics is described by functions defined over a set of attributes. Each
attribute is defined as a type (domain). Describing objects using the syntactic structure of a
language builds a network of relations among those objects. Thus, a resulting decorated parse
tree not only annotates objects, but also contains semantics of their composition described by
the network of constrains. A fixed-point solution of these constraint functions yields a desired
meaning of the objects described in a given language.

2.2 Hierarchical analysis of VLSI circuits using AG. Performance-driven synthesis is one of
the most challenging tasks {n designing commercial VLS! systems. A design is described from -
a general specification down to the layout level at increasing levels of accuracy. At each level,
an exhaustive test of compliance with higher level specifications is made. In this section, a
circuit-level model of interconnections and a higher level combinatorial logic model is briefly
described. These models are applied later to analysis of the interaction between desi;"
knowledge representation modules,

In terms of VLSI concepts, a simplified delay model derived from extracted electrical

parameters is used to describe the semantics of interconnections, and symbolic simulation or
- a combinatorial circuit using decision graphs carries the semantics of the combinatorial logic

level. For each of these models, the corresponding grammar and its attributes are described.

2.3 Summary. A prototype of a system capable of describing and analyzing the semantics of
interconnection analysis and gate-level analysis based on an extension of symbolic
manipulation has been implemented. Combined together, both layers provided a simple
hierarchical timing analysis system with an automatically generated editor (Fig. 1).
Semantics of both layers is described using AG. The uniform treatment of constraints enables
use of the same evaluator for both of them. In addition to the semantlcs a tree-oriented
database structure is specified when the AG mechanism is used.

CONF-9007134

Page 195
Fig. 1 Two levels of hierarchy used in the prototyped VLSI desiﬂenvironment
Model (G1) Circuit-level model (G2) Combinatorial logic model.
[Grammar | Interconnection ::= port net; network ::= b_exps;
net = contact bunch' ‘ b_exps ::= b_exps b_exp;

bunch ::= segment | bunch segment; b_exp ::= arg “=" operation args;

segment ::= section | section contact | args = args arg;

section contact port | section contact | arg ::=b_exp | name;

(bunch); operation ::+ not | nand | nor | mux:
| interconnection (args @ g1_ code)

extension to include G1

Semantics | ® extract electrical parameters ® symbolically evaluate reachability
@ perform elementary delay tree
computations @ annotate tree and propagate

constraints to functional level

The major point in assessing the applicability of AG for VLSI CAD systems is the issue of the
uniform design knowledge specification environment. AGs have been used in compiler
technology to generate compilers for languages and to specify editors to manipulate programs
written in these languages. In terms of knowledge systems, it means that from a single
declarative specification one can generate a transformation system (compiler), a knowledge
representation (compiler tables), and a system to manipulate this representation (editor). An
experiment verifying the applicability of this technology for VLSI CAD software development
was performed and proved the technology.

It has been shown that:

® using nested hierarchies or knowledge described by formal languages results in a well-
defined modularization of the semantics for a simple VLS] CAD problem,

® context-dependent constraints are generated automatically as a result of evaluation of
the semantics of objects,

o as a result of using well-defined knowledge models, a run-time model can manage

memory better by means of recomputing semantics on demand and saving only a
minimal set of information abstracted therefrom.

The approach was limited to noncircular and nonmonotonic semantic functions. The
experiment described in this paper demonstrates that knowledge about VLSI semantics can be
expressed in the concise form of an AG description. The ultimate benefit of this methodology is
a well-documented development environment. Based on a sequence of context-free grammars
it is possible to augment such an environment with multiple domain semantics. AC . thereby,
constitutes a specification metalanguage.

3. Implementation Issues in Nontraditional System Semantics

This section discusses two examples of declaratively forrnulated distributed control problems
that were implemented using continuous fixed-point computation. The key advantage of such
implementation was an asynchronuous implementation of computation schemes. The
proposed use of continuous relaxation schemes, since they are not dependent on the use of
finite state machines and discrete arithmetics. implies different programming schemes. These
two examples were selected to highlight the diversity which exists in the domain of system
design and implementation.

3.1 Integrated solutions to the early vision problems.[Maitan 89). Various promising new
algorithms for solving early-vision problems have been developed over the last few years.
These are defined as a set of algorithms to recover properties of the visible 3-D surfaces from
the 2-D intensity arrays on retinae or cameras, as well as several niew concepts in architecture
for vision machines. Two examples of the latter are the Connection Machine, conceived by
Danny Hillis and build by TMC, and the analog VLSI retina by Carver Mead at Caltech. These

CONE-9007134
Page 196

two approaches represent the two extremes of programmability, and dedicated hardware.
Many more intermediate machine architectures exist.

We proposed a new parallel architecture, Torus Integrated Machine (TIM), which will
incorporate physical compactness, dedicated analog hardware, and programmability. The
machine is an ideal testbed and implementational vehicle for early-vision algorithms (e.g.,
edge detection, binocular stereo, motion, structure from motion), since any typical short-range
algorithm maps onto our proposed hardware.

3.1.1 Foundations of early vision. The reconstruction of 3-D scenes from their 2-D images is
the major purpose of early-vision processing. The task includes: edge detection, optical flow,
surface reconstruction, shape from shading, and stereo. All these vision reconstruction
problems can be precisely forrnulated as Ul-posed problems; that is, they either

L have no solution at all;
L do not have unique solution; or
® do not depend continuously on the initial data.

The technique of regularization has been developed to solve ill-posed problems. This
regularization method turns a vision-processing problem into a variational problem.
Examples of vision algorithms based on regularization are presented in Fig. 2.

Fig. 2 Examples of early vision algorithms.
Problem Regularized variational formulations
Edge detection JUSE - 92 + M fx)2) dx.
Optical flow ”[Mux2+u},2+vx2+vy2) + (Ixu+lyv+lt)2 | dx dy
Surface reconstruction [JUSE - 92 *+ Mk + 2fxy? + fyy? Jldx dy
Stereo [{I(V2G * (Lix, y) - Rix + dix, y), y)I2 + M Vd)2} dx dy

Ill-posed problems can be alsc characterized as having more unknowns than equations.
Regularization provides additional equations needed to solve the problem. Additional
constraints are introduced in the form of stabilizing functionals, which restrict possible
solutions to smooth functions. After regularization, the vision problem can be compiled into
some form of computation structure (Fig. 3).

3.1.2 The outline of the proposed approach. Image processing can be described, using
generalized notions of smoothness and "best fit," as a system of ordinary differential
equations (ODE) or an approximation problem. For a quadratic variational problem, the
resulting computation task can be described as the iterative solution of the matrix equation

Alvl) = f

A well-founded problem can be described as a system of n equations with n unknowns, F(v) = b,

where v, be RIL In the case of nonlinear F(v), the fixed-point solution of the equation can be
found by solving its linearized form Av = b, where the matrix A is a linearized F(v). The

iterative solution process generates a sequence whose nth element v is generated by a formula
vii= vi-l 4 HO[b - F(vi-1)] = v0-1 4 ¢

where € Is an iteration error of the nth step. The choice of matrix H determines the type of an
iterative technique (Seidel, Jacobi, etc.). If H is random, as in the analog case, the relaxation
process is referred to as chaotic or stochastic relaxation.

»

CONF-9007134
Page 197

Relaxation processes to solve visfon
problems are iterative. Two variational Vision Problem
methods, Euler-Lagrange and direct
solution, can be applied. The basis of both
methods is a relaxation solution of an Variational Problen
equation F(v) = b, where F(v) is a vector

function of v e R, and b is an '
independent variable. Many attempts ‘
were made to explore the parallelism

involved in solving this equation. The | Euler-Lagrange Direct Methods
limited communication structure of :

digital computers makes it difficult to
implement these processes in parallel

fashion. In the case of distributed parallel
hardware, the problem is compounded by Discretized Form
the need for processing synchronization. f

Since relaxation techniques compute the
locations of discontinuities in color,
depth, or motion, they can be employed to
solve one of the basic vision problems, Fig. 3 General flow of the proposed
the object segmentation problem. analysis of a vision problem.

Kirchofl Equations

The iterative computation of TIM i{s a relaxation process and is similar to relaxation
algorithms used in digital computers. In both TIM and digital architectures, components with
the largest error,! max(! Ib - AvR-111), change until the process converges. In the analog
doqxaln. this can be observed as a slow change of all v, which satisfies the constraints.

To solve algebraic equations, one can map a discrete problem into a network of analog
compc:ents. In doing this, we are interested only in steady-state responses. In terms of vision,
one can describe each algorithm as a dynamic problem and solve it using analog technology. In
many practical applications, there is no need for very accurate solution (5 to 7 bits is
satisfactory), and this accuracy matches the accuracy of existing focal planes. Recent advarnces
in reducing the sizes of electronic devices have zlso scaled down the duration of the transient
state, allowing for high-density memories with nsec access time and very high speed
processors. The same high-speed devices can be applied to construct high-speed analog solvers
of computer vision problems.

3.1.4 TIM - an architecture. The idea of TIM presented in this paper is a technique to organize

the space allocated to processing elements of the network. Fig. 4 illustrates the idealized
structure of TIM.

To retain a 2-D field of tightly packed photosensors, a cylinder (tube) is formed. Photosensors
are on the face of the cylinder, while all other space-consuming elements are shifted to the
interior of the cylinder. Instead of using a set of 2-D relaxation fields to implement several
concurrent vision algorithms, a sequence of sets of parallel planes is used within a cylinder.
Each plane consists of a set of 1-D relaxation processes linked by buses used to share and
propagate data between these processes.

Both a local communication along the bases and concurrent 1-D relaxation of several
algorithms can be easily implemented on a single plane. This process is repeated on each of
sequentially connected sets of planes. Together they are equivalent to a 2-D relaxation
decomposed into several axes of relaxation.

1 since solving F(x) = b s equivalent to finding an x = min(| | F(x) - bl |), lterative techniques are
comparable to minimization.

CONF-9007134
Page 198

Due to the iterative character of the discussed algorithms (relaxation towards fixed-point), the
signal must be made reentrant; i.e., the cylinder containing connected groups of planes must be
closed, self-feeding, leading finally to the toroidal topology of TIM.

The output from each single column of the 2-D array of the focal plane is directed onto separate
planes contained in appropriate processing chips. Increasing the number or/and complexity of
the algorithms results in elongating the processing tube - the increase in the number of
relaxation planes - while keeping the "retina" size fixed.

3.1.4 Structural assembly of TIM. As 1.,

described above, each 2-D relaxation can be Input L,
decomposed intoc a set of 1-D relaxation Imege j

processes. Each 1-D process is built cut of —— Relaxation

simple cells. Furtherinore, node o
sharing/coupling among cooperating /;_J"’\> planes)
relaxation processes can be implemented] X-aXis Output
using an analog bus to conmuect them, as s Py
illustrated in Fig. 4. Cells and the Imeges

connecting buses define the processing Control J
pipeline. Each cell is a stage of the pipeline R
and it cooperates with any other stages to
which it has access.

In the simplest case, a cell/stage contains
an equivalent of a single resistor. More
ccmplex algorithms are ccnstructed by
linking additional functional units.

- Fig. 4 Simple TIM.

Data on the bus must be multiplexed, so one ctrl ctrl Analog Bus 1 ctrl

can reduce the number of pins to transfer <1 1 I

data in and out from the processor. The E 3

combined structure, a plane, involving the ‘[——&'

cooperation of several pipelines, is presented cell cell | © © 0 pf cel

in Fig. 5. Each 2-D relaxation field was Il 1 1

decomposed into 1-D relaxation processes <:_ >

and is represented here by a single 1-D RV U ¢

pipeline stage corresponding to the selected cell cell | 0 0 © cell

axis of decomposition. In order to interface to ﬂ T TT

the system, the compiler allccates a bus as a

variable shared by the external and intemal stage 1 stage 2 stage n

processes. For example, a focal plane, like | | ¥ AnalogBusm| }

other input devices, can broadcast data to all <

relaxation planes through an allocated bus. U U

As a result, data can be processed at high cell celll 0o 0 O cell

speed and can be used with several

cooperating vision algorithms without the

need of 3-D VLSI structure, Fig. 5 Connectivity structure in a plane
consisting of cooperating 1-D relaxation

processes.

TIM is in principle an analog computer. Programing TIM (s reduced to interconnecting
available functional modules so they can be equivalent to the required algebraic or differential
constraints.

CONF-9007134
Page 199

There is only one rule for building electric analog circuits, the Kirchofl equations. Thus, one
can build circuits based on current or voltage analogy. Discrete forms of variational
formulation of vision are built as a sum of components. This can be obtained by chaining
functional modules, where each module is an analog equivalent of the required component,
The process of transl...:ng an algorithm into analog modules can be simply described as:

Algorithm - component] + ... + componentm =
analog-module) + ... + analog-modulen, + residual

where the number of components is usually different from the number of analog modules, and
a residual is a component for which an analog-module cannot be found.

The simplest approach to TIM programming is to define a set of analog modules available
within a cell and a technique to connect them into circuits emulating a desired vision
algorithm. We propose to use a two-level approach in which

o a digital circuit controls connectivity
® analog circuits perforrn computation.

TIM's programs are stored as lists of interconnected analog components. Writing a program for
TIM is equivalent to reconfiguring its structure. The need for additional mterconnections
makes programming capabilities strongly dependent on the type of available technology
many aspects the idea is similar to semicustom, personalized VLSI circuits. In a prototyped
structural compiler for TIM, symbolic manipulations needed to derive the discrete structure of
Kirhoff equations were performed using Macsyma symbolic manipulation package. The
process of TIM programming is simply equivalent to configuring arrays of processing cells and
can be performed off-line (Fig. 6).

I ‘ Image \\}I\M_’ Enhanced

mage \ Image

Algorithm Hardware \
Compiler ‘

Fig. 6 Simplified structure of TIM's hardware compiler.

There are two scenarios for using TIM as a design platform. In the first scenario, debugged and
fine tuned algorithms are packaged into a vision black box. The resulting machine {s not
programmable, but is simple and small. In the second scenario, the machine features full
reconfigurability and requires larger, more complex chips.

3.2 Fixed- point solvers for concurrency control and resource allocation problems [Maitan 90].
We developed an approach for distributed control based on a formulation of the cost function
for system state changes. This formulation led to a direct analog implementation of cost-
minimization-based constraint solvers. Based on the same energy minimization principle,
we have also developed a fast, parallel algorithm for an assignment problem with potential
application to distributed control. In addition, we investigated potential application of the
technique to a large class of distributed systems -- high-speed fiberoptic networks.

2 technology supporting multiple layers of interconnections will substantially reduce the
necessary wiring problems for dynamically reconfigurable systems. Hardwired systems, due to
the great regularity of interconnecting structures, can be easily built using existing technologies
supporting two metal lavers plus one polystilicon layers.

CONF-9007134
Page 200

We are interested in supporting a concurrent programming methodology based on a sequence of
correctness-preserving transformations. In this methodology, a concurrent processing
application is implemented starting from high-level specifications. The direct mapping from
high-level specifications into high-speed distributed solvers may reduce the number of levels
of abstractions into one equivalent level and results in faster execution. This is especially
important for implementing advanced languages designed to be executed in high-performance,
parallel or distributed computation structures. We explored a link between the language used to
code an application and its parallel operational semantics. To demonstrate the possibility of
direct high-speed implementation of such primitives, we studied the use of cost or energy
formulations to solve the control problem in distributed structures. The results of this
research indicate the possibility of building solvers for cost functions as high-speed analog
computation structures.

3.2,1 Distributed control primitives. Our model of distributed processing is simply a model in
which cooperating processes are bidding for shared resources. (This model was proposed by C.
Tomlinson, MCC.) For this type of processing, we construct a simple cost function for each
interaction. An example of such interacticn: involving synchronization and resource
allocation can be illustrated by the Dining Philosophers Problem (Dijkstra).

In the simplest Dining Philosophers Problem problem, two philosophers, a and b, share forks
f1 and f2. Each philosopher "bids" for a use of both forks. A philosopher can eat only if he can
use two forks. ‘

Each interaction between resources can be represented as a variable. For example, philosopher
b's interaction with fork f2 is labelled by b_f2 . Each variable can be either "1" or "0." Forks
belong to philosopher a if both a_fl and a_f2 equal "1", and similarly, they belong to
philosopher b if both b_f1 and b_f2 equal "1," (Fig. 7). We proposed the method to map this
problem into a minimization problem in which solutions are either 1's or O's.

Fig. 7 Simple graph describing two philosophers, a and b, sharing forks f1 and 2.

Simulation shows that after initial perturbation, a stable state is reached and total cost is
minimum and equal to zero (Fig. 8). An analog circuit can be built to find the minimum cost; at
minimum, forks belong to one philosopher, i.e., a_fi=1 or b_fi=1, 1=1,2,

3.2.2 Synchronization and resource allocation in distributed systems and high-speed
networks. We chose the problem of control of the computer network as a realistic distributed
computation problem. This problem involves the design of both software and hardware.
General topology fiber-optic networks use links in which data are propagated at rates of
Gbps[Maitan90]. This speed forces the use of a short routing widow (us per data packet). In the
case of several concurrently arriving packets, routing at these rates requires high-speed
solutions of resource allocation problems and cannot be made using existing technologies,

CONF-9007134
Page 201

start stable

| a1l

2 b1l

3 af2

4 b_f2

i
|
|

n ‘J

S Phil.a

LI- .
Il A 6 Phil. b
e —

— ‘ 7 Energy

Fig. 8 Simulated cost minimization for a Dining Philosophers Problem.

High-speed fiber-optic networks have been the subject of great interest recently. The
technology is relatively new. The existing network topologies are simple and do not utilize the
full potential of optical processing. A key obstacle in building large-scale networks is the lack
of algorithms for control and management of high-speed networks.

A simple network is built out of interconnected routing nodes. The main purpose of a routing
node is to control an exchange of data with other routing nodes. In case of congestion, routing
nodes are able to reroute packets using different routing paths.

Each node has two types of information: static information localizing a node in relation to
other nodes, and dynamic intormation estimating the cost of routing to other nodes. Necessary
data coercion of cost estimates associated with access to remote nodes is made by each node
locally. Internal maps are continuously exchanged between neighborhood nodes usmg some of
the broad-bandwidth subchannels.

Based on this shared local routing information, nodes bid for resource allocation by setting
appropriate parameters in the cost functions. Minima of these functions computed by node
solvers are the desired allocation of channels. One or more subchannels, at separate noces, are
needed to build path-connecting nodes.

To solve synchronization and resource allocation tasks within such a short time, we will
formulate these tasks as cost minimization problems. We propose the use of hardware minima
finders. It can be shown that by using the proper mapping, coordinates of the minima of cost
function correspond to the desired network control rule, In order to find minima of cost
function, one can apply a relaxation process. This process can be based on continuous analog
signals.

4. Conclusions

In this paper we attempted to identify the approach(es) leading to the design of an environment
for the development of software for distributed intelligent systems. In searching for solutions,
we evaluated three simple projects in the areas of software environments and distributed
systems. We chose projects which extend beyond the traditional real-time processing domain
to include the approaches which may be followed in the future. In particular, we emphasize the

CONF-9007134

Page 202

use of declarative, language-based definitions of control rules and other system constraints,
Our interest in these technologies is dictated by the emerging analog computation or “neural
network” schemes characterized by the use of asynchronous and declaratively defined
constraint solvers. Adaptive capabidlities of these approaches expand the notion of intelligence
in large scale distributed systems.

From the design and maintenance point of view, two major topics of interest in the analysis
and management of distributed systems are:

® computation on a structured representation of knowledge,
® structure of knowledge evaluation.

Issues associated with computation guide the selection of architecture attributes such as data
flow, distribution of databases, fault-recovery etc. Whereas a good understanding of the
structure of knowledge evaluation controls the choice of implementation mechanisms (analog
vs. digital, synchronous vs. asynchronous). Both topics complement each other and must be
simultaneously evaluated to achieve an optimal (if exist) solution to the required computation
problem.

Based on the presented analysis. the following are the selected findlngs that are relevant to the
design of software envircnments for distributed intelligent systems:

1. Simplicity. Complex behavior can emerge from the interaction of relatively simple
components.

2. Flexibility. The decription of design knowledge must be modularized. A single mechanism
to evaluate and maintain its consistency must be developed.

3. Adaptability. Functional and declarative specification of relations may allow for design
portability from one technology to the other. Many context-dependent constraints should
not be entered by a designer. The user must be able to control the analysts of mixed models
(analytic and simulation forms) of complex system.

4. User friendliness. Integrated distributed control+analog+digital systems are hard to debug
and test. New techniques must be developed to specify these systems.

5. Traceabllity. Adaptive knowledge required in intelligent distributed systems is hard to
document, and assessing completeness of the knowledge (with regard to a given problem) is
almost impossible.

Bibliography
Extended bibliography related to the subjects described in this paper can be found in:

[Maitan90] Maitan, J., L. Walichiewicz, and B. Wealand: “Integrated Communication and
Information Fabric for Space Applications,” paper accepted for AIAA/NASA
Second International Symposium on Space Information Systems, Pasadena,
CA, September, 1990.

[Maitan 89] Maitan, J., "TIM: A Compact Architecture for Real-Time Vision System," SPIE
Proceedmgs Advances (n Image Compression and Automatic Target
Recognition, March 1989,

(Maitan87] Maitan, J., "Syntax-Driven Management of Constraints in VLSI Data Bases,"
MCC, Technical Report, PP-195-87, 1987.

10

CONF-9007134
Page 203

A Hardware/Software Environment to Support R&D in Intelligent
Machines and Mobile Robotic Systems®

Reinhold C. Mann
Center for Engineering Systems Advanced Research
Oak Ridge National Laboratory
P.O.Box 2008
Oak Ridge, TN 37831-6364
mnn@ornl.gov

Abstract

The Center for Engineering Systems Advanced Research (CESAR) serves as a
focal point at the Oak Ridge National Laboratory (ORNL) for basic and applied
research in intelligent machines. R&D at CESAR addresses issues related to
autonomous systems, unstructured (i.e. incompletely known) operational
- environments, and multiple performing agents. Two mobile robot prototypes
(HERMIES-IIB and HERMIES-III) are being used to test new developments in
several robot component technologies.

This paper briefly introduces the computing environment at CESAR which "
includes three hypercube concurrent computers (two on-board the mobile
robots), a graphics workstation, VAX, and multiple VME-based systems (several
on-board the mobile robots). The current software environment at CESAR s
intended to satisfy several goals, e.g.: code portability, re-usability in different
experimental scenarios, modularity, concurrent computer hardware
transparent to applications programmer, future support for multiple mobile
robots, support human-machine interface modules, and support for
integration of software from other, geographically disparate laboratories with
different hardware set-ups.

Introduction

CESAR at ORNL focuses its research on the development and experimental
validation of intelligent control techniques for autonomous mobile robots able
to plan and perform a variety of tasks in unstructured environments. The
purpose of this paper is to provide a brief description of the hardware and
software environment at CESAR which has been evolving in order to suppornt
research in several robot component technologies. The material presented in
this paper is excerpted from several reports and articles published previously
by CESAR staff. Selected references are given in this paper. A full CESAR
publication list if available from the author upon request.

Assignments for the robot(s) originate with the human supervisors in a
remote control station, and the robot then performs detailed implementation

* Research sponsored by the Engineering Research Program of the Office of
Basic Energy Sciences and by the Office of Nuclear Energy of the Department
of Energy, under contract No. DE-AC05-840R21400 with Martin Marietta Eunergy
Systems, Inc.

i

CONF-9007134
Page 204

planning and executes the tasks. Since the operational environment is
generally dynamic, the robot must be in sensory contact with its surroundings

~ to capture and recognize changes which bear on its task objectives and , if
necessary, replan its behavior. These capabilities imply that the robot has
cognitive capabilities that enable it to form and modify a model of the world
around it and relate this world model to the task objectives. Research is also
conducted to enable the robot to learn from its past experience, and thus

~ improve its performance.

CESAR's principle current objectives are: (a) to achieve a level of technology
that enables the autonomous performance of classes of navigation and
manipulation tasks of human scale in a spatially complex environment; (b) to
use these performance tasks to focus research objectives. Application drivers
for this basic research effort include, among others, robotics for advanced
nuclear power stations, and environmental restoration and waste management
activities.

CESAR is developing a series of mobile autonomous robot vehicles named
HERMIES (Hostile Environment Robotic Machine Intelligence Experiment
Series) as experimental testbeds for validation and demonstration of research
results. The newest research robot, HERMIES-III, includes the functional
capabilities that permit research in combined mobility/manipulation, and
allows us to experiment with cooperative control of multiple robots having
different capabilities. :

H.ar_dwar.?:_Enmgnms.m

HERMIES-IIB and HERMIES-III are the currently operational mobile robots at
ORNL/CESAR. HERMIES-IIB stands 1m high and weighs 91kg. Rechargeable
batteries supply 20W of power providing about 20 minutes of untethered
running time. Peak movement speed is 0.7m/s. Sensors include four Sony CCD
cameras and a number of Polaroid sonar transceivers mounted on a rotatable
turret. The computer architecture consists of a VME rack housing a Motorola
68020 CPU and a variety of I/O boards interfaced via a BIT-3 communication
link to an NCUBE (NCUBE, Inc., Beaverton, OR) hypercube computer. The
hypercube consists of 16 nodes with 512 Kbytes RAM each and an Intel 80286
I/O processor, which also serves as host for the hypercube. Each node
processor is a 32 bit microcomputer with on-chip floating point and
communications hardware. This gives HERMIES-IIB roughly 16 MIPS in the
on-board hypercube. HERMIES-IIB is cquipped with two Zenith/Heathkit five
degress-of-freedom arms which give the robot extremely limited manipulative
capability, This has not been a drawback, however, since the robot was ot
intended for research in manipulation.

The HERMIES-III mobile robot consists of an omni-directional wheel-driven
chassis, a seven degrees-of-freedom manipulator (CESARm), an Odetics laser
range camera, multiple CCD cameras (two stereo pan and tilt mechanisms), an
array of sonar transceivers, and an on-board computer system that includes
five Motorola 68020 CPUs in four VME racks, and an NCUBE hypercube
concurrent computer. CESARm is a compliant, high capacity-to-weight ratio (~
1/10) robot manipulator, with an adjustable gripper, which is equipped with a
JR3 force-torque sensor, and a LORD tactile sensor pad.

CONF-9007134
Page 205

Both robots can be operated completely autonomously, in which case they can
communicate via RS-232 wireless modems to an off-board computer. They can
also be interfaced through ethernet to a local are network of computers, as
schematically shown in Figure 1. This network includes a Silicon Graphics
IRIS 4D workstation, a microvax, and an NCUBE hypercube computer with 64
processors.

Software Environment

The computer programs that control HERMIES-IIB's behavior are mostly
written in C and can be organized into four classes: the HERMIES primitives
(i.e., functions that directly control platform motion, activate sensors, etc.),
the expert system and associated routines for navigation and multi-sensor
integration (error propagation and conflict resolution), the image analysis
routines (a complete library that makes the concurrent hypercube hardware
transparent), and the control and integration routines. An expert system may
be executed from the NCUBE host processor; however, all of the image analysis
routines and control and integration programs have been developed for
execution on the NCUBE concurrent computer. A computer program that
emulates the response of HERMIES-IIB is used for off-board development of the
expert system rule base prior to implementation on the robot.

The expert system makes high level decisions and diagnoses unexpected
occurrences. When a standard procedure is required, such as avoiding or
removing an obstacle, or mapping an area, the expert system calls the
appropriate routine which executes until completed or until an unexpected
event generates an interrupt which returns control to the expert system. The
rule base controls high level decisions and can call C-compiled navigation
procedures. The rule base is loaded in an expert system shell, CLIPS, and linked
to the navigation procedures. CLIPS and the navigation code run on one of the
NCUBE nodes. Messages are passed from the NCUBE node to a host program
which is linked to the HERMIES-IIB primitives on the VME rack.

Part of the CESAR effort is aimed at addressing crucial issues in systems
integration so that research results can be integrated into the HERMIES
prototypes. Recent experiments also included modules developed by groups at
four university laboratories (Florida, Michigan, Tennessee, Texas) as part of a
collaborative techbase development effort for which the HERMIES robots serve
as user facilities. Detailed accounts of experiments with HERMIES-IIB can be
found in the references.

The following material summarizes software development strategies in support
of the latest experiment in which HERMIES-III was used to clean up a simulated
chemical spill in the CESAR laboratory. The demonstration featured the
capability to make smooth transitions between tele-operation and robot
autonomy, the reconciliation of information in an a priori world model with
information derived from sonars and CCD cameras, and the combined use of
platform and manipulator degrees of freedom.

It is assumed that an a priori model of the environment surrounding the spill is
known. The system uses this knowledge to create a path from the robot's current

CONE-9007134
Page 206

location to a location close to the spill. The robot then navigates to the spill,
automatically avoiding unexpected obstacles en route. Once it has arrived, it senses
the debris and uses a vacuum cleaner mounted on a manipulator to remove it. This
process iterates until the sensing process can find no more debris. There are three
main subtasks: path planning, path execution, and debris removal. 'An additional
subtask permits operator interveation with the autonomous system. In every task,
the operator is provided with a rich graphical description of the current state of the
robot. '

Software to operate and control the HERMIES-III robot in various experimental
scenarios was developed around a simulated shared memory data structure. The
shared memory model of interprocess communication was adopted because of its
conceptual simplicity. This design decision made communication between various
groups involved in the implementation effort relatively easy -- it was necessary only
to define the format and the interpretation of the data structures written by each
process without having to describe mechanisms by which these structures were
communicated. Communications were assumed to be transparent by the authors of
each module. ‘

Some structure was imposed on the shared memory in addition to a simple list of
variable names, types, and locations. Specifically, shared memory was divided into a
number of blocks of contiguous memory, with one or more blocks associated with
individual processes. The shared memory model is not without its problems. Perhaps
the most obvious is that two processes may try to write to the same data item. In this
situation, either of the processes may be correct depending on the state of the system
or the time. Other problems include synchronization between processes and
processes attempting to read a variable whose value has been oaly partially
determined (e.g. only 4 bytes of an 8 byte record have been written). We avoided the
first problem by specifying the system so that each process "owned" an area of
shared memory to which only it could write. We solved the second problem by
implementing a simple semaphore mechanism which guarded each area during
updates.

Processes in this system communicate by accessing the shared memory, which is a
replicated distributed data structure divided into exclusive-write areas (EWA). Each
process making entries into the shared memory has associated with it one or more
EWAs which only that process should change. In the event that multiple processes
determine the values of single variables at different times, the "official" value is
determined by a filtering process. Each EWA is a contiguous sequence of bytes.
Shared memory is allocated by a special allocation process and is permanently
memory resident. It has no internal structure at allocation time, rather, structure is
imposed upon it at compile time through the use of compiler definitions. Addresses
become available at run-time, through a call to the mem_attach() routine. Structure
definitions and the relevant function prototypes are available by using included
definitions.

The entire system is controlled by a single "state variable", and there is one (and only
one) process in the system which determines the value of this variable. Decisions on
the change from state to state are made by this process based on the current value of
the state variable, and a state-dependent inspection of the contents of (possibly
many) shared data areas. Individual processes inspect the value of this variable and
respond in an appropriate manner.

CONF-9007134
Page 207

Conclusions

Research and development at ORNL/CESAR centers on autonomous systems,
_unstructured environments, and multiple performing agents. A number of
projects make use of the HERMIES mobile robot facilities at CESAR, and provide
application focus for the R&D activities. Hardware and software environments
have evolved to support the experimental part of the research. They facilitate
software portability among systcms. and re-use of applications software in
different experimental scenarios. Message-passing concurrent computers
have been incorporated successfully in our systems. Recent experiments show
that the robot systems can perform robustly a variety of tasks of considerable
complexity.

Sﬂmzd__Rsiminm
C. R. Weisbin, "Intelligent Machme Research at CESAR" Al Magazine 4, Spring
1987, Vol. 8, No.1, (1987)

B. L. Burks et al.,, "Autonomous Navigation, Expiorauon, and Recognition", IEEE
Expert, Winter 1987 pp 18-27, (1987)

C. R. Weisbin et al., "HERMIES-III: A Step Toward Autonomous Mobility,
Manipulation and Perception”, Robotica, Vol 8, pp 7-12, (1990)

J. P. Jones, "A Concurrent On-Board Vision System for a Mobile Robot",
Proceedings of the Third Conference on Hypercube Concurrent Computers and
Applications, Pasadena, CA, (1988), CESAR-88/06

J. P. Jones, "On the Design of a Concurrent Image Analysis System",
Proceedings of the Third International Symposium on Robotics and
Manufacturing, ISRAM '90, Vancouver, Canada, 1990

F. J. Sweeney et al.,, "DOE/NE University Program in Robotics for Advanced
Reactors", Program Plan, DOE/OR-884 Rev.2, May 1990

CONF-9007134

Pagce 208

0Z089W

982081

02089

+9

982081

syl

aui-sia

[S

Hun

982081

—

e]

£ o3 w17 R
- e ¢

-340m}au sayndwoszleqos yysid aul ;1 ainbiy

CONE-9007134
Page 209

Requirements for Intelligent Real-Time Control Systems

Swaminathan Natarajan and John Yen
Department of Computer Science, Texas A&M University
College Station, TX 77843-3112

Abstract

We first present some requirements which must be met by intelligent real-time control systems.
A crucial aspect of these systems is that they must address the issue of resource constraints.
Therefore, a tool for designing and implementing such systems must enable designers to obtain
and express resource information, and provide a set of control strategies that the designer may
specify for resource allocation. One such strategy, resource-based selectivity, is based on the
concept of imprecise computation, which has been developed in the real-time community. This
strategy can adapt the resource needs of computations by selecting and using subsets of the
inputs, problem solving strategies, or outputs, thus pro-ducing imprecise results if necessary.
Our work examines the application of this technique in the context of rule-based systems, and
the development of a shell for building rule-based real-time control systems. Research issues
to be addressed in order to build such a shell include acquisition and expression of resource
information, development of a software architecture to support resource-based selectivity, and
acceptability criteria for validating results obtained.

1 Introduction

This paper aims to set out some of the requirements for intelligent real-time control systems,
present some techniques for meeting these requirements, and identify issues where further re-
search is needed to solve the problems. Intelligent real-time control systems acquire input data
from sensors that monitor an external environment, perform complex computations, and pro-
duce control commands that change the environment. These systems are intelligent because
they need to perform complex reasoning to determine the appropriate actions. They must also

cope with computational resource constraints and produce timely responses, which makes them
real-time applications.

We illustrate our discussion of the requirements for intelligent control using an example of
a robot which picks up objects off a conveyor belt and moves them into bins. Each object must
be categorized using size and shape information (provided by the vision system of the robot)
and placed in the bin for that category. Objects not picked up in time fall off the end of the
conveyor belt. Some types of objects are fragile and sustain damage if they fall off. The objects
may be unevenly spaced on the belt, and several may be visible at any given time. The robot
can therefore concurrently perform several tasks, such as computing the commands needed to
pick up the nearest object and categorizing some of the other objects visible on the belt.

B

CONF-9007134

Page 210

2 Requirements for Intelligent Real-Time Control Systems

The need for interaction with and timely control of multiple ongoing processes imposes several
requirements on the algorithms and techniques for the design and implementation of intelligent
real-time control systems, as we discuss below: ‘

1. Timeliness: Since the external process is ongoing, faslures may occur if appropriate
control commands are not received in time. In our example, objects may fall off and
possibly be damaged. Thus the system has deadlines which must be met for correct
operation. In our example, the deadline is dictated by the distance between the ob ject and
the end of the conveyor belt. Deadlines are the most important of the various constraints
ori resource availability.

2. Resource Predictability: Once the resource availability is known, ensuring timely re-
sponses requires knowledge of the resources needed to generate the response. In our
example, in order to plan our activities, we must have some knowledge of the time needed
for each step: recognizing ob jects, picking them up, and moving them to their bin. There-
fore, when selecting algorithms for performing tasks, we prefer those whose resource needs
are more predictable.

3. Flexibility: In situations where resource availability varies from cne execution of a task
to the next, it is necessary to adapt the resource requirements to match the availability. In
our example, the uneven spacing of objects implies that the time available for recognizing
and moving objects varies. Thus we need problem solving techniques which are flexible in
the amount of resources consumed to produce a response. Typically, the only parameter
against which we can make tradeoffs to achieve this is the result quality, hence we may
need to employ techniques such as anytime algorithms (3] which make this tradeoff. In
our example, there may be a “miscellaneous” bin into which the robot places objects if it
cannot recognize them before they must be picked up.

4. Robustness: Sometimes, in a system with multiple tasks, we may encounter situations
where the available resources are not sufficient to generate appropriate responses for
all tasks. Under these overload conditions, we would still like our system to degrade
gracefully, and at least provide responses to the most important tasks. In the example,
we must ensure that the fragile objects at least are recognized and picked up in time.
Robustness thus includes a notion of the criticality of requests, i.e. the importance of
generating an acceptable response. The techniques we use for scheduling and resource
allocation must take criticality information and the robustness requirement into account.

5. Focus of attention: When a system controls several processes, it may have several tasks
to perform at any given time. Rather than divide its resources equally among all tasks,
it may choose to devote most of the resources to some subset of the tasks, complete them
and move on to the others. Thus there is a notion of the current focus of attention, which
shifts as responses are generated and new requests arrive. In our example, the robot may

[T ol RVEVINIIV L

Page 211

devote most resources to picking up the nearest object and to recognizing the next one,
and less to recognizing objects further away. Criticality is a factor also in determining
the focus of attention, e.g. the robot may devote more resources to the task of picking
up a fragile object, even if another object is closer. This selectivity in resource allocation
is necessary to ensure that timely responses are generated for the tasks with the closest
deadlines.

6. Responsivity: When emergencies occur, they must be identified and responded to as
quickly as possible. For instance, if an object leaves the surface of the belt, the robot may
have to move away quickly to avoid damage to itself. This requires the ability to modify
predetermined schedules and resource allocations and devote most or all of the resources
to the new emergency tasks.

7. Asynchrony: Sometimes, some additional inputs may be received which affect the re-
sponse from some computation in progress. For instance, as an object comes closer, the
vision system may realize that its shape is different from what had been perceived eailier.
If categorization is already in progress, it is desirable to have the ability to consider this
new information without having to start over. This actually requires that we develop a
mechanism for interruptible reasoning, hence it is a very complex research problem.

8. Coherence: Not only must the system generate responses to individual requests, but it
must also ensure that the overall pattern of responses fit some criteria. In our example,
if the ohjects are spaced very close together, we may find that we never have quite time
enough to complete recognition of any of the objects before we must pick them up, hence
we end up moving them all into the miscellaneous bin! To avoid such undesirable results,
the scheme used for resource allocation must have some knowledge of the type of responses
being generated, so that it may fit these into an overall plan of action.

9. Performance: Last but not least, performance is important to any real-time application.
In this context, the performance criterion translates to generating the best possible quality
of result given the available resources.

Further discussion of several of these requirements can be found in (7, 2].

It is interesting to notice that most of these requirements are imposed by the resource
constraints, and impact resource allocation and scheduling. This indicates that resource con-
siderations should be an integral part of any approach to addressing these requirements. In
the rest of this paper, we propose an approach that enables response generation to be adapted
explicitly to resource constraints. We present our approach in the context of rule-based ex-
pert systems, but we believe that the underlying ideas are applicable to a variety of intelligent
real-system applications.

CONF-9007134
Page 212

3 An Architecture for Real-time Rule-based Systems

3.1 Over\lriew and Rationale

The flexibility requirement identified above involves adapting the resource requirement of the
computation to match the availability. Our approach of resource-based selectivity enables the
specification of several alternative ways to generate responses whici vary in quality and re-
source needs. A particular method to generate the response is selected based on the resource
constraints. This approach is based on the techniques of imprecise computation [4, 6] developed
in the real-time community, which provide two ways to generate approximate, partial results
from computations when they cannot be completed in time. The reactive technique of impre-
cise computation is similar to the notion of anytime algorithms: periodically the computation
explicitly generates and saves partial results; if the deadline is reached before the computation
completes, the latest partial result is returned as an approximate result from the computation.
The predictive technique estimates the resource requirements of computational steps, and if the
available resources are insufficient, opts to skip some steps (previously identified as optional)
so that the rest of the computation may complete in time; the quality of the result is reduced
by the degree that the skipped steps contribute to it.

Our approach enables the application of these techniques to provide flexibility in real-time
rule-based systems. We extend the production system architecture to incorporate a task-
oriented reasoning model. The tasks and subtasks serve as units for resource allocation and
selection of alternative methods of generating responses. We describe a hierarchical resource
allocation technique which enables adapting the resource needs to the availability, and optimiz-
ing the quality of the overall result. The architecture also contains several control modules to
facilitate the application of selection strategies to several of its components and provide better
control over resource needs and response quality. The proposed architecture, shown in Figure
1, is actually an extension of an existing architecture called CLASP [9].

3.2 A Task-oriented Reasoning Model

A task-oriented reasoning model structures problem solving knowledge based on the notion of
tasks, which are generic functions that the system can perform. The proposed architecture
distinguishes two types of rules: task-triggering rules and task-accomplishment rules. Task-
triggering rules detect situations that require top-level tasks, while task-accomplishment rules
describe various ways to achieve a given task. For the convenience of our discussion, we will refer
to the former rules as productions, the latter rules as methods. Using methods, a complicated
task can be decomposed into subtasks. Methods of a task may vary in their applicability,
resource requirements, and result quality. Top-level tasks are posted to an agenda by production
rules. Selecting a task from the agenda causes certain methods associated with the task to be
selected and executed. The execution of a method may post additional subtasks to the agenda.

The notion of task has been used in several expert systems as a means to focus the attention

/ Select
Active Productions

Production
Rules

Active
Rules

~
Pattern Conflict Select Agenda
Matcher Set Production :
Active !
Data Select
Meta-level Facts Task
Select ®*resource info.
Active Data ;
“focus of attention
B

Facts Database -

Select
Method

Execute

Preprocessor | Preprocessor 2 Preprocessor N

Sensor {nput Sensor Input

Sensor (nput

Method

Figure 1: A Real-time AI Architecture that Supports Imprecise Computation

CONF-9007134
Page 213

CONF-9007134
Page 214

of the system to a subset of rules [8, 5, 1]. Here, we further extend their notion of tasks into the
notion of a basic computation unit that exhibits imprecise computation behavior. Tasks and
methods together form a task/subtask hierarchy where the children of a task are methods, and
the children of a method are its subtasks. The terminal nodes of the hierarchy are executable
methods. ‘

The model enables the architecture to reason about tradeoffs between resource requirements
and result qualities among various problem solving strategies, for it improves the availability
of partial solutions, facilitates the estimation of resource requirements, and captures the inter-
dependency of rules.

The task-oriented reasoning model improves the availability of partial solutions in two ways.
First, solutions of varying quality can be generated by various methods of a task. Second, by
explicitly representing the criticality of subtasks, the system can generate partial solutions by
skipping non-critical subtasks.

Resource requirements in a task-oriented model can be propagated bottoin up in a task /subtask
hierarchy. First, we assume that resource requirements of executakle methods can be obtained.
Resource requirements of a non-executable method is just the sum of the resource requirements
of its subtasks. Resource requirements of a task is an interval [minR ,mazR] where minR
and maz R are the minimum and maximum resources, respectively, required by its methods.
In general, resource requirements can be represented either numerically or qualitatively (e.g.,
small, medium, large, very large, etc). Qualitative description is useful whenever exact numeric
resource requirement is not available.

Inter-dependency of rules is explicitly captured in task-oriented reasoning: methods of a
given task are highly independent, while subtasks of a method usually are highly dependent.
From a logic programming point of view, methods of a task are connected through disjuncts;
while subtasks of a method are connected through conjuncts. Thus, the reactive imprecision
technique usually applies to methods, but not subtasks.

3.2.1 A Hierarchical Resource Allocation Technique

Resource is allocated to tasks and methods in a top-down fashion. When a top-level task is
created, the system allocates some amount of resources (e.g., the deadline for a moving robot
to react to avoid hitting an obstacle) to the task. These resources are divided and allocated:
to applicable methods of the task, which further divide and allocate the resources to subtasks
of the methods. When resources are finally allocated to an executable method (i.e., a terminal
node), the method is executed. The execution can be interrupted when the allocated resources
are used up. ‘

At each level of the task/subtask hierarchy, resources can be allocated to child nodes using
the predictive, reactive, or a hybrid imprecision technique. The choice of the technique often
depends on the accuracy of the resource requirement estimates. For instance, using a pure
predictive approach to allocate time among subtasks is advisable only if we have accurate

CONF-9007134
Page 215

knowledge of the resource requirements of each subtask. If we use the predictive approach
to allocate time based on underestimated measures, the system may not generate any partial
solutions within the deadline, even though the resource available is sufficient for a reactive
approach to produce some acceptable solutions. To avoid this contingency, it is often preferable
to first use the reactive approach to obtain some minimal acceptable result which can serve
as a fallback, then use the predictive approach to generate the best possible result with the
resources avaxlable We ca.ll this combination of the reactive ard predictive approaches a hybrid
approach.

The choice of imprecise technique used at each levels of the hierarchical resource allocation |
involves a tradeoff between the timeliness and the quality of the solution. In the case that
there is uncertainty about resource requirements, the tradeoff can also be viewed as between
the probability of generating an acceptable solution and the quality of the solution. Reactive

or hybrid approaches guarantees the generation of an acceptable solution at an earliest possible
time; however, they tend to increase the total resource required for generating a high quality
solution. This is due to the fact that not only there is an overhead for doing resource allocation,
but also the resources spent on producing an approximate result are wasted if subsequent
computation does run to completion and produces a better result. Whether we choose to incur
this overhead depends on several factors: the cost relative to the total time available for the
subtask, the criticality of the subtask, and the uncertainty about the estimate of the subtask'’s
resource requirement.

3.3 Other Features of the Architecture

The architecture contains five control modules for active rule selection, active data selection,
selecting rules from conflict set, selecting tasks from agenda, and selecting methods for a task.
Active data/rules are data/rules that the system attends to. Only active data and active rules
are considered during the pattern matching phase. The selection of tasks and the selection of

methods are separated to facilitate the application of different imprecision techniques to the
two coutrol problems.

Information about resource requirements and availability ‘is stored in a global meta-level
data base, which is accessible to all control modules. These meta-level information can be
updated by rules as well as by system calls (e.g., clocks). Each control module can consider
the resource information, perform some selection function and update the resource requirement
information in the data base accordingly. Thus the different control modules operate together
at various granularities to adapt the resource requirements to the availability.

The architecture is general in that all control modules could modify its control strategy
using information about resources. A particular real-time AI application, however, may only
need to consider resource information using a subset of these control modules.

CONF-9007134

Page 216

4 Discussion

"This architecture addresses the requirements identified earlier as follows:

. Timeliness: The architecture interrupts the execution of methods when their resources

are used up. A partial solution of the task is generated either using other successfully
executed methods or using the interrupted method.

. Predictability: The use of hierarchical resource allocation ensures that the resource con-

sumption of tasks is bounded.

. Flexibility: The predictive and reactive imprecision techniques are used to adapt the

result quality and resource needs to the availability.

. Robustness: Criticality information is incorporated into task selection and resource allo-

cation strategies to ensure graceful degradation under overload.

. Focus of attention: Selective data activation and rule activation enable the system to

focus on data and rules that are relevant to the current top-level task.

. Responsivity: In an emergency, resources can be withdrawn from other tasks by updating

the meta-level data base and using the reactive technique to generate partial results from
current tasks. The task responding to the emergency can adapt its computation to the
resource constraints to provide a quick response.

. Asynchrony: This is a research issue yet to be addressed in the current architecture.

. Performance: Rule and data activation can be used to reduce resource requirements for

pattern matching, particularly when in conjunction with focus of attention. The tech-
niques of imprecise computation are qualitative and hence involve relatively low overhead.

There are several research issues which must be addressed in this approach:

. Acceptability Criteria: The reactive approach can generate partial results. However,

whether these partial results are useful depends on the particular application and current
situation. It is necessary to define some criteria that indicate whether a particular im-

precise result is acceptable. These would have the effect of restricting the methods which
may be selected.

. Interruptibility: Asynchronous events can modify the inputs to the pattern matcher dur-

ing its operation. Techniques need to be developed to avoid having to discard the partial
results of the pattern matching process.

. Obtaining resource information: Primitives and tools to specify resource requirements of

rules and methods need to be developed.

CONF-9007134
Page 2 17/:,(4

References

[1) J. S. Aikins. Prototypes and production rules: A knowledge representation for computer
consultations. Technical Report STAN-CS-80-814, Department of Computer Science, Stan-
ford University, 1980.

(2] P. R. Cohen, A. E. Howe, and D. M. Hart. Intelligent real-time problem solving: Issues and
examples. In Intelligent Real-Time Problem Solving: Workshop Report. Cimflex Teknowl-
edge Corp., January 1990. ‘

(3] Thomas Dean. An analysis of time-dependent planning. In Proceedings of AAAI~88, pages
49-54, 1988.

(4] K.J. Lin, S. Natarajan, and J.W.S. Liu. Imprecise results: Utilizing partial computations in
real-time systems. In Proceedings of the 8th Real-Time Systems Symposium, pages 210-217,
San Jose, CA, 1987.

(5] John McDermott. R1: A rule-based configurer of computer systems. Artificial Intelligence,
19(1):39-88, 1982.

(6] Swaminathan Natarajan. Building flezible real-time systems. PhD thesis, Univ. of Illinois,
Urbana, Department of Computer Science, 1990.

(7] S. J. Rosenschein, M. Féhling, M. Ginsberg, E. Horvitz, and B. D’Ambrosio. Irtps workshop
" interim team report. In Intelligent Real-Time Problem Solving: Workshop Report. Cimflex
Teknowledge Corp., January 1990.

(8] Edward H. Shortliffe. Computer-Based Medical Consultation: MYCIN. American Elsevier,
1976.

[9] John Yen, Robert Neches, and Robert MacGregor. Using terminological models to enhance
the rule-based paradigm. In Proceedings of the Second International Symposium on Artificial
Intelligence, Monterrey, Mexico, October 25-27 1989, |

CONF-9007134
Page 219

Modelling Intelligent Control -

Anil Nerode
: Director
Mathematical Sciences Institute :
An Army Research Office Center of Excellence
Cornell University, Ithaca, NY 14853
e—mail: nerode@mssun7.msi.cornell.edu

Introduction
My point of view is conditioned by thirty—six years of academic research in mathematical logic
and computer science, and thirty—six years of quite separate consultancies for design and
evaluation of military systems for many agencies. These interests seemed quite separate until
about 1980, when expert systems, Al, and intelligent control of military physical systems came
together as a practical combination. My services for combined problems involving both areas at
once suddenly became popular. When I started research in logic and computer science, and
separately in weapons systems, thirty—six years ago, who would have guessed that they would
overlap and then come together? It is an amazing period.

A General Concern
[want to begin by mentioning a general problem beyond the scope of this conference. Despite
claims to the contrary, present and developing software tools are woefully inadequate for
specifying, designing, writing, verifying, documenting, and maintaining software using
distributed and concurrent computing which meets prespecified system performance
requirements. This is not the fault of programmers or software architects. They need to rely on
branches of computer science, science, and engineering not yet mature enough to serve as a
backhone for designing a concurrent program development environment of long term use in an
era of changing technology, changing computer architectures, and néwly discovered concurrent
algorithms. These inadequacies are present in every area of science and every area of engineering
in which paralle! .m must be exploited, or in which distributed systems interact. Addressing this
problem successfully will affect future national productivity and competitiveness, in addition to
meeting military requirements. Training the scientists necessary to advance this problem will
contribute to the development of intelligent control as a scientific discipline. The underlying
mathematical and algorithmic science for parallel and distributed computing must be developed

2
CONF-9007134
Page 220

systematically in aud for all prospective fields of application in science and engineering. The
present structure of university departments is generally not responsive to these needs. Computer
science Ph. D's usually know little science and little applied mathematics. Applied mathematics
Ph. D.'s usually know little about scientific computing. Hard science and engineering Ph. D.'s

~ have little interest in developing new algorithms for parallel machines; they want off~the—shelf
programs and subroutines so they can go about their business of end applications without fuss.
Academic computational science, as opposed to academic computer science divorced from the
rest of science and engineering, is rather thin. People learn on the job what should be part of
their prior training. There should be a bigger university—trained pool from which research and
development organizations can draw their talent. The Cornell Mathematical Sciences Institute,
and the new Minnesota High Performance Computing Institute, and the MIT—Harvard—Brown
Center for Intelligent Control represent part of the US Army Research Office response to this
need. Much more educational infrastructure is needed nationwide.
Summary: We lack educational infrastructure for producing enough scientists well acquainted
with applied mathematm parallel and distributed systems, and science or engineering
simultancously.

What is Intelligent Control?
The term "intelligent control system" means different things to different people. What I mean is
a message—passing network, with one class of nodes representing decision elements based on
Logic, Al, and OR inference engines and optimizers, with another class of nodes representing
effectors or sensors based on mixed discrete—continuous engineering systems, and finally with a
third class of nodes which are human beings. All these nodes interact via message passing with
feedback. The effectors and sensors and computers may be lumped or distributed, sequential or
concurrent, synchronous or asynchronous. Intelligent Control adds to the separate subjects of
traditional AI-OR—Computer Science and traditional Systems and Control Theory a unique
additional complication: understanding and modelling, mathematically, and algorithmically,
engineering systems in which there is constant feedback between OR—based and AI— based and
logic—based inference engines and physical devices obeying differential equations. So discrete
logic or Al or OR decisions generated by inference engines and optimizers interact with human
users and exert control over continuous physical processes normally modelled by discretized
differential equations, and in turn the changes in the physical system are sensed and fed back
into the inference engine databases. I believe that mathematical analysis and design of mixed
AI-OR-logic and differential equation systems is feasible, but this is an uncharted area, a newly
emerging territory of the highest order of importance in both systems based on the Von
Neumann sequential architectures and those based on concurrency and distributed systems. It is

3

CONF-9007134
Page 221

hard enough to analyse cases where there is a single continuous physical device, be it sensor,
effector, or control, interacting in feedback with one inference engine and database. The
challenge of utililizing concurrent processing and interacting with distributed devices adds spice
to what is already a leading edge area. This will require a real expansion of the areas of research
for distributed and concurrent systems in ‘computer science, which do not usually address
interaction with distributed physical devices other than computers. It is well worth pursuing as
a significant research initiative. -

Foundations of Intelligent Control
The basic requirement on software tools for concurrent intelligent control should be that they
enhance production of readable, modular, upgradable, maintainable, provably correct software.
To achieve this goal we need a broad precise mathematics—computer science high—level model
encompassing on common mathematical grounds both Al—, logic—based inference engines and
differential equation—based models of physical systems controlled with feedback in a concurrent
distributed environment. This is not satisfied by constructing mere interfaces between logic Al
software and FORTRAN or ADA code controlling diverse devices. Ihstead, this refers to the
development of integral models involving both physical devices and inference engines where
control of those devices is exercised by functions computed from conclusions made continuously
by AI-OR-logic inference engines. I believe that rational design of intelligent control requires
the development of this subject. Of one thing I have no doubt. To validate that a concurrent
program in this context is provably correct (or even convincingly correct) in satisfying high level
program specifications, it is simply not possible to proceed without such a model.

Here, in a nutshell, is my personal conception of the required mathematical modelling. A
concurrent logic program can be thought of as having a set of possible logical states, each
describing the total state of the inference engine at a single moment of computation; in the logic
programming model, these states are usually described by current bindings of ail variables of all
clauses in all processors. A single execution sequence for the concurrent logic program is a
sequence of states compatible with progam execution (that is, a sequence of states which could
happen). There are many execution sequences for any really concurrent program, including any
concurrent logic program. To prove such a program is correct is to show by some means, formal
or informal, that every possible execution sequence satisfies the program specification. For a
concurrent program, this usually breaks up into a horrendous number of cases, and has to be
proved by some sort of induction, either in a formal language of programs such as the Hoare
systems, or by induction on the number of execution steps. In proofs that programs are correct,
there are so many cases that computing machines are required in order to keep track of what

4
CONF-9007134 -
Page 222

cases have already been completely verified and what cases are left to verify. Similarly, for
physical devices, if we look at control theory, the analog of the program specification for a
physical device is its governing system of differential equations and its required accuracy and
robustness of behavior. The set of allowed solutions is crudely (but not exactly) the set of
allowed "execution sequences". To prove that the specification is satisfied is to prove that the
implemented device satisfies the equations within the desired degree of accuracy and robustness.
When this is modelled on digital machines, the equations and the solutions are modelled in
discrete time steps as sequences solving difference equations. For this simplified explanation, we
think of these time steps as the same time steps as for the logic program, and of the set of all the

~ discrete sequences satisfying the physical device program specification as the set of all execution
sequences for the physical device program.

But when concurrent logical programs and physical devices are connected in feedback and used
in single concurrent systems, the current gtate of the whole system is described by the joint
current states of the logic programs and the physical device. So the execution sequences of this
joint program are those sequences of joint states satisfying the final program specification. To
prove that all possible execution sequences satisfy the program specification, we have to perform
inductions on the length of execution sequences to see that the specifications, including all
accuracy and robustness requirements for all physical devices, are satisfied. We could also
invent a formal system for this purpose. To get an informal correctness proof, it seems to me
that some such methodology for classifying and resolving cases as to what behaviors are possible
has to be carried through. This requires a high level of precision about what the specification
says, what the physical models are, what apprdximations have been made, and what execution
sequences are concurrently possible. This is my own personal analysis, highly simplified. I think
that this is what underlies modelling the mathematics and algorithms of concurrent intelligent
control.

[would like to see the development of mathematical and computer science models of distributed
and concurrent devices involving AI-OR~logic inference engines as controllers with continuous
physical devices as driven devices. With such models, computer scientists and applied logicians
will be able to define useful semantics and syntax to describe execution and program
specifications for hybrid programs, and a new generation of applied mathematicians and
computer scientists will be able to develop provably accurate, provably robust, mixed
logic—continuous model algorithms meeting program specifications. There are glimmers in
research results in areas such as robot motion, machine vision, data fusion for sensors, discrete
and continuous dynamical systems, concurrent algorithms for distributed systems, dataflow

5

CONF-9007134
Page 223

models for LISP-FORTRAN, concurrent logic programming, discrete event simulation,
distributed knowledge and belief, parallel implementations of combat modelling and battle
management, etc. which have convinced me that this is a viable paradigm to organize future
research.

Summary: Software development for intelligent control should be advanced by developing
theoretical models of hybrid AI-OR—logic and differential equations systems, where results of
inference engine deductions and of differential equation solving for physical devices are in mutual
- feedback.

With a basic understanding of the structure of these models, the features of the needed software
tool environment should be much clearer. What we would like is a modelling fully
understandable to scientists and design engineers and 3!so to computer scienists or
programmers. Hybrid logic—physical models are on one side of a fence, algorithm and software
development are on the other. The scientists and system designers on one side of ilic fence and
the algorithm and software implementors on the other need a common window. At present, the
intelligent control system engineer—designer is much at the mercy of his programmers, simply
due to the fact that hybrid systems don't have a high level mathematical model or specification
language which is mutually understood on both sides of the fence. Difficult problems of correct
modelling and design to meet robustness and accuracy requiremehts due to nonlinear interactions
lurk behind every new code module for hybrid systems. A lesson from contemporary dynamical
systems, which have no OR—AI-Logic subsystems, is that it becomes rapidly intractable to
determine what singular behaviors violate intended specifications as system size goes up, and
that much mathematical and engineering sophistication, in addition to software engineering skill,
is required.

Where are we?
Intelligent control melds historically separate elements: physical networks, as studied by
systems and mechanical and electrical engineers; computer networks and real time operating
systems, as studied by computer scientists; inference engines, as studied in Operations Research,
Artificial Intelligence, and Applied Logic; sensors and effector systems obeying mixed
discrete—continuous differential equations, as studied by control engineers and dynamicists; and,
lastly, human beings interacting with the systems as studied by specialists in human factors,
artificial intelligence, and cognitive science. Here are personal views on the state of development,
of these subjects.

. Modelling and algorithms for design of networks for communicating digital information

(]

6

CONF-9007134
Page 224

between computers is a solid branch of computer science stemming from the study of operating
systems and communication networks. Modelling and algorithms for interacting networks of
inference engines and sensors and effectors is a mostly undeveloped research area. Research is
needed to develop models, datatypes, and efficient, robust, accurate algorithms.

II. Understanding the behavior of networks of interacting physical devices, in the absence of
logical control, requires already that we develop models and algorithms for determining the
exceptional, as well as intended ordinary, behavior of very complicated dynamical systems.
Tools available for this purpose are the mathematical models and algorithms of dynamical
systems, and implementations of these models as software tools for simulation and design and
‘evaluation. Mathematical algorithms and software permitting simulation of small dimensional
problems are being developed. (One implementation is the Kaos system of Guckenheimer at
Cornell, in experimental use at 100 sites, and based on the latest algorithms and theorems.)
Such software, for low dimensional systems, will eventually allow the design engineer to run
simulations with high assurance that there are no unobserved singular behaviors in the range of
parameters likely to be encountered which would violate the program specifications. Similarly,
such programs can help assess robustness, accuracy, efficiency, and correctness of code. But
standard new military systems such as tanks, autonomous underwater vehicles, and distributed
intelligent artillery, are systems with many degrees of freedom. At present such large systems
cannot at present be simulated in full with all degrees of freedom. They rather must be
simulated in simplified form with a much smaller number of degrees of freedom, even on the
largest parallel supercomputers. It takes a lot of scientific and engineering skill to assure that
the simplified systems, as simulated, rule out unwanted exceptional behavior and assure
robustness and accuracy for the full system. Further research on mathematics of dynamical
systems and corresponding algorithms is required if successful general purpose software tools are

- desired for such systems, even without intelligent control. Single applications often present
major, but surmountable, algorithmic and modelling challenges. Modelling and simulation of
large dimensional conventional dynamical systems is at the frontier of current research, without
the added dimensions due to logic control. When we add AI-OR—logic elements to a network of
conventional physical devices, we get a yet more challenging class of dynamical systems. This
area requires simultaneous attention from experts in automated reasoning, OR optimization
techniques, numerical analysis, dynamical systems, algorithm development, and control system
engineering.

III. Now we discuss pure distributed logical decision networks, leaving out any controlled
physical devices. Such systems are built to face continuously changing new information from

oo AL L e I "

7

CONF-9007134
Page 225/22&

many sources and must automate decision making based on fact and belief of many agents. The
decisions are local for single agents and global for whole systems. Cooperating databases and
cooperating expert systems are examples of this; so are command and control systems. This is a
rapidly advancing logic—AI—computer science area, needing much more research.

IV. When we put physical devices to be controlled in feedback networks with decision devices,
we are surely at the frontiers of knowledge. Basic modelling in this area can be developed, but is
very primitive.

Models in these and other closely related areas of AI, OR, Systems, and Control, need further
mathematical and algorithmic development focused on intelligent systems. Such developments,
models and algorithms, will furnish the necessary datatypes and datatype transformations for
implementation of future software tools for hybrid system design, simulation, and testing.

I advise:

— A short—term research program tied to a couple of military testbed projects developing models
and special purpose software tools.

— A simultaneous long term research program, tied to the short—term program for inspiration
and applications, but independent of the short term program. This program should develop
models and algorithms needed by software engineers to produce general purpose software tools
for intelligent control which can insure writing accurate, robust, correct, software.

Postscript
At the ARO Mathematical Sciences Institute at Cornell we have a concentration on algorithmic
mathematics in such diverse areas as partial differential equations and dynamical systems,
symbolic computation in algebra and logic and combinatorics, robust motion planning, geometric
modelling, dataflow models incorporating LISP and FORTRAN, program logics and program
development algorithms for concurrency, etc. Many of these areas enter into intelligent control.
I hope that we will be able to contribute mathematical, computer science, and engineering tools
for this emerging area as well.

CONF-9007134
Page 227

Distributed Computing Research at
MCC/STP

Colin Potts

MCC Software Technology Program

Abstract: The Software Technology Program at MCC is addressing techniques for the
early phases of distributed systems design. We have introduced language abstractions, the
interaction and the team, that permit concise, high-level descriptions of concurrent
behavior. We have implemented a visual language environment, VERDI, that supports
execution and performance simulation of models expressed in terms of these abstractions.
VERDI has been applied by MCC and several of its member companies to practical
distributed systems, We are developing a transformation-based methodology for VERDL
We are investigating several approaches to fault-tolerance, including self-stability. We are
also working on techniques for validating real-time constraints.

The Software Technology Program (STP) at MCC is addressing the early stages of large-scale system
development. Research into distributed computing at MCC/STP, therefore, has focused on tcols and
techniques to assisi in the early design and assessment of distributed systems.

Concepts

During the early stages cf the development process it is desirable to abstract away from architectural
concerns. In centralized systems two classes of abstractions have become widely accepted: structured
programming constructs for control and data abstractions. In distributed systems an additional class of
abstraction is necessary: communication abstractions. Communication abstractions are preferable to the low-
level communication constructs currently in use, such as message-passing and shared memory, because they
require no assumptions about the underlying communication medium.

Our work has focused on the expression of synchronization and communication relations among
distributed processes in terms of multi-party interactions. The interaction is synchronous, multi-party, and
symmetric. In addition, we have developed an encapsulation mechanism, the team, for collections of
interacting processes. Teams can be used to represent subsystems or data abstractions. Their interfaces are
procedures that may be called by any process. Only processes in the same team may interact directly; those
in different teams communicate by calls to interface procedures. In our experience, communication and
contention constructs, such as buffers, blackboards, and shared resources, can easily be modeled by teams,

CONF-9007134
Page 228

and therefore need not be treated as primitives. Interactions and teams form the basis of the Raddle language
model (Attie, 1987; Evangelist, Shen, Forman and Graf, 1988).

Visualization and Modeling

Concurrent systems are difficult to understand because the concurrent execution of multiple processes leads
to an explosion in the size of the state space. Our experience has confirmed that program visualization
techniques can be used to clarify the behavior of practical distributed systems long before they are
implemented. We have developed a visual language that incorporates processes, interactions, and teams, and
we have implemeanted a visual language environment, VERDY, for editing and executing designs (Graf, 1990;
Shen, Richter, Graf and Brumfield, 1990). In VERDI we distinguish the control and communication
constructs, which are represented visually, from the details of the actions and interactions, which are specified
in an embedded textual language (a subset of C). ‘

Figure 1 shows a high-level model of an electronic-funds transfer system in the form of a VERDI
diagram. The large enclosing box denotes the only team in this design. The three processes are aligned
vertically, and their flow of control is read from left-to-right. They are cyclical, so each process includes an
implicit iteration. Choices are shown by parallel branches. Simple boxes denote local actions, whereas
doubly-barred boxes denote interactions. The parts of an interaction have the same name. Thus, processcs
POS, c_bank, and m_bank participate in the interaction named ‘transaction’. ‘

Execution proceeds on two levels, which correspond to the visually and textually specified parts of the
model. The high-level control and communication skeletons of the processes, which are expressed
graphically, are interpreted by an ineraction and process-scheduling mechanism that implements the
operational semantics of Raddle. Local actions, interactions, and the evaluation of guards are ixnplcrhcnted
by interpreting the embedded C code.

VERDI also supports interactive performance modeling. Local actions and interactions may be assigned
durations. VERDI uses these durations and a virtual clock when scheduling events. Performance statistics
may be gathered by including instrumentation teams for timing and throughput analysis. Because these are
just VERDI teams, it is easy to extend the performance-gathering facilities without reprogramming VERDI

itself. ‘
eftl
POS ———
—— reject
o—' input
‘ transaction approve
c_bank
no_op
O—"— transaction c_bal "O
’ debit
m_bank
no_op
O"—'—' transaction m_bal }'O
credit ‘

Figure 1: A high-level model of an EFT system

CONF-9007134
Page 229

Methodology

~ We have developed a methodology for using VERDI. We recommend starting with a tightly
synchronized design that can be shown to have the desired qualitative properties, and then refining the design
by a series of synchrony-loosening transformations. Performance simulation is best delayed until the
transformations have progressed to a point where the teams and processes in the model correspond to
architectural components. Figure 2 depicts the EFT design at a point in its refinement history when the
original 3-party interaction has been replaced by several 2-party interactions. A new switch process has also
been introduced as an intermediary between the POS and the bank processes. Figure 2 is concrete enough for
simulation to be useful for rough estimation of performance.

In practice the methodology is applied rather informally (Forman and Evangelist, 1987). We have,
however, specified several correctness-preserving transformations and have developed several synthesizing
transformnations for obtaining finite-state models from temporal formulae (Attie and Emerson, 1989), We are
planning to implement support for these transformational techniques and demonstrate their effectiveness in
practical designs. To suppbn this transformational methodology, we have integrated VERDI with the MCC/
STP hypertext browser GERM (Bruns, 1988) to forma a prototype VERDI information management
environment (VIM) for recording design history, design alternatives, rationale, and performance data.

Prototype code can be generated from VERDI. A CSIM translator has been implemented (Ojukwu,
1990). Guidelines exist for mapping Raddle constructs to Ada (Attie, 1988), and an Ada translator and run-
time systemn has also been implemented for a variant of VERD], in which the embedded language is Ada
(Attie, Bruns, Evangelist, Richter and Shen, 1989),

eftl
POS e
— reject
input ret_appr
req_appr approve
switch
no_op
req_appr get_appr ret _appr
credit

(o]
1
o
o
=]
=

no_op ‘
get_appr c_bal k(:)

debit

credit m_bal '<:>

m_bank

T

Figure 2: A refined model of the EFT system

CONF-9007134
Page 230

Practical Experience

VERDI has been used to mode! a wide variety of applications within MCC and its shareholder companies.
Applications include transaction processing (including EFT), application-specific protocols (e.g., cellular-
radio handoff), distributed energy management, missile-launching procedures, post-facto tool integration,
and distributed artificial intelligence.

The VERDI model for the distributed Al application was done by David Bridgeland, Natraj Ami, and
Michael Huhns of MCC's Advanced Computer Technology Program. They are developing a distributed truth
maintenance system, in which autonomous heterogeneous reasoners cooperate in solving a commeon problem.
Each reasoner has an unintelligent communication aide that deals with the logistics of communicating with
and delegating tasks to the others. The protocol employed is non-trivial, and an initial demonstration
prototype deadlocked frequently. The VERDI model, completed in two weeks, helped uncover three
problems, two of which led to unexpected classes of deadlock, and all of which were easily corrected at this
stage of the design. We believe that the VERDI visual presentation will help future efforts to propose a
reference model for inter-agent coordination in DAI Systems.

Fault Tolerance

We are taking several approaches to fault tolerance: superimposition, quorum interactions, and self-stability.

One of the problems in understanding fault tolerant systems is that the logic and clarity of the desired
behavior is cluttered by error detection and recovery details. Classical modularity is not a solution, as there
is usually no single point where fault tolerance must be introduced. Superimposition, a layering mechanism
whereby an underlying computation is embellished by additional functionality, is more promising. For
example, a superimposition may monitor the underlying computation for faults. The attractiveness of
superimposition for fault-tolerance is that the specifications of the underlying computation and the
superimposition are separable. '

Superimposition may be accomplished by transformations or by composition. In transformational
superimposition (Katz, 1987), the superimposition is a delta on the underlying program. This technique has
been applied to the EFT case study (Shen, 1988). Unfortunately, the resulting fault-tolerant program is
difficult to understand, because it is specified in separate places in different languages: the design language,
and the tran. formation language. More recently, Forrnan and Francez (1990) have proposed a composition-
based form of superimposition for an extension of Raddle. The superimposition operator conjoins an
underlying and a superimposed process. The superimposed process may regulate the behavior of the
underlying process by inhibiting or delaying interactions in which it participates but may not change the
values of any of its variables.

A Raddle interaction may only be enabled if all of its participants are ready. If a participating process
fails, the interaction cannot occur. In a quorum interaction (Evangelist, Francez and Katz, 1989), the
enablement conditions are relaxed, so that only a quorum of the participants needs to be ready. Its clearest

application is to allow distributed agreements to be implemented when only a subset of the processes are
active.

In the preceding methods, as with all classical approaches to fault tolerance, there is no notion of the
completeness of the recovery procedures. It is generally possible to invent additional failure modes that a
model does not handle. In self-stabilizing systems, by contrast, the state space of the systern is partitioned into
safe ar.; unsafe sub-spaces by specifying a safety predicate. A system is said to be self-stabilizing if it is

CONF-9007134
Page 231

guaranteed to converge to a safe state from any state within a finite number of steps The partitioning of the
state space and the self-stability condition guarantees completeness.

An arbmary program can be made self-stabilizing by superimposition (Katz and Perry, 1989) but at the
cost of great conceptual and computational overhead. We believe that it is preferable to design self-stability
into a system from the start, and that it is possible to discover some useful design beuristics that lead to self-
stability, We have developed several self-stabilizing algorithms and protocols.

Iteration systems provide an abstract model for self-stability. We have demonstrated the tradeoffs
between resources and the convergence rate of an iteration system (Gouda and Evangelist, 1989) and have
shown how to reduce proof obligations for the convergence of discrete iteration systems to fixpoints (Arora,
Attie, Evangelist and Gouda, 1990).

The most interesting application of self-stability is likely to be in the augmentation of classical recovery-
based fault-tolerance procedures. Many subtle system fault modes arise when a recovery procedure itself fails.
It would be valuable to guarantee the eventual success of a recovery procedure in the presence of faults. There
are also applications of self-stability other than fault-tolerance. For example, it may be a useful concept in
discrete-event control systems and in the formalization of some classes of adaptive systems (e.g., neural nets).
Self-statility is currently a subject of great interest. In 1989, MCC/STP organized the first of what is mtended
to become a regular series of workshops in the field (Evangelist and Katz, 1989).

Real-Time Systems

VERDI has been applied to real-time systems. We are currently collaberating with Rockwell, Collins
Avionics Division, to model a real-time executive (RTE) in VERDI. It includes standard real-time facilities,
such as timeouts, interrupts, and priority-based scheduling. The RTE is an ongoing development project, and
is our most significant and sustained technology-transfer project to date. The model will be used by
applications developers to predict the performance of their applications given alternative scheduling
strategies. It reduces the risk of having to wait until a prototype is implemnented on the target hardware. The
current model! is specific to one executive, but we intend to generalize our work into a set of standard real-
time facilities that can be used to validate application models.

For this generalization to be possible, it will be necessary to extend VERDI and its language model.
Although VERDI contains facilities for modeling the passage of virtual time, it is not easy to model hard real-
time constraints and use them in scheduling events, We also plan to investigate the feasibility of model-
- checking in VERDI, or a VERDI-like real-time design language. We envisage real-time constraints being

specified in a specification language based on a computationally tractable real-time logic such as RTL
(Jahanian and Mok, 1986).

References

Arora, A, P. Attie, M. Evangelist and M. Gouda, ‘‘Convergence of iteration systems’’, Proc. CONCUR"90,
Amsterdam, 1990.

Attie, P,, ‘‘A guide to Raddle-87 semantics’’, MCC Technical Report, STP-340-87, MCC, 1987.

Attie, P., ‘*The Generation of Ada Code from Raddle/ VERDI Designs’’, MCC Technical Report, STP-236-
88, MCC, 1988. ‘

Attie, P., G. Bruns, M. Evangelist, C. Richter, and V.Y. Shen, ‘‘Vanna: A visual environment for the design
of distributed systems’’, MCC Technical Report, STP-250-89, MCC, 1989.

CONF-9007134

Page 232

Attie, P. and E.A. Emerson, ‘‘Synthesis of concurrent systems with many similar sequential processes”’,
Proc. 16th Ann. Symp. Princ. Programming Languages, ACM Press, 1989.

Bruns, G., ‘‘Germ: A metasystem for browsing and editing”’, MCC Technical Report STP-122-88, MCC,
1988.

Evangelist, M., N. Francez, and S. Katz, ‘‘Multiparty interactions for interprocess communication and
synchronization'’, IEEE Trans. Software Eng., 15(11). 1417-1426, 1989,

Evangelist, M. and S. Katz (eds.), Proceedings of the MCC Workshop on Self- Stabilizing Systems, MCC
Technical Report, STP-379-89, MCC, 1989,

Evangelist, M., V.Y. Shen, I. Forman, and M.L. Graf, ‘‘Using Raddletodesign distributed systems’’, Proc.
10th Int. Conf. Software Eng., IEEE Comp. Soc. Press, 1988.

Forman, 1. and M, Evangelist, ‘‘EFT: A Case Study in Design usmg Raddle’’, MCC Technical Report, STP-
121-87, MCC, 1987.

Francez, N, and I. Forman, “Supenmposmon for InteracungProcesses » MCC Technical Report, STP-124-
90, MCC, 1990.

Gouda, M. and M. Evangelist, ‘‘Convergence response tradeoffs in concurrent systems’’, MCC Technical
Report, STP-124-89, MCC, 1989. (Submitted to ACM TOPLAS).

Graf, M.L., ‘‘Building a visual designer’s environment’’, in S. Chang (ed.), Prmc:ples othsual Language
Systems, Prentice-Hall, 1990,

Jahanian, F, and A. Mok, ‘‘Safety analysis of timing properties in real-time systems’’, /EEE Trans. Soﬂware

- Eng., SE-12(9): 890-904, 1986.

Katz, S., *‘A Superimposition Control Construct for Distributed Systems’’, MCC Technical Report, STP-

340-87, MCC, 1987. ,

Katz, S. and K.J. Perry, ‘‘Self-stabilizing extensions for message-passing systems’’, in Evangelist and Katz
(1989).

Ojukwu, M., ‘‘Performance Measurement and Evaluation of VERDI Designs’’, MCC Technical Report,
STP-024-90, MCC, 1990.

Shen, V.Y., ‘‘Using Superimposition to Add Fault Handling to an EFT System’’, MCC Technical Report
STP-386-87, MCC, 1988.

Shen, V.Y., C. Richter, M.L. Graf and J.A. Brumfield, ‘‘VERDI: A visual environment for designing
distributed systems'’, J. Parallel Distib. Comp., 9: 128-137, 1990.

CONF-9007134
Page 233

Integrating Controls System Design with
Systems and Software Engineering

Magnus Rimvall Lo
Control System Laboratory |
GE Corporate Research and Development Center
P.O. Box 8, Schenectady, NY 12302

Abstract

The tasks of control system requirements analysis, control system analysis
and design, and controller software/hardware implementation have
traditionally been viewed as three distinct activities. In large projects these
activities are often handled by different groups using incompatible CAD
tools. Consequently, the overall design cost is inflated by the need for
manual data conversion between the different phases. Also, it limits the
traceability of individual requirements through the process, and it prevents
efficient design iteration involving more than one phase. The use of an
integrated set of software tools would bridge the transition of information
between the different project stages, and eliminate the risk of having errors
introduced during any manual specification or design conversion.

Introduction

The 1980’s was an important decade for control engineering. New theories
and methods in such areas as multivariable and robust control, as well as
better numerical algorithms (e.g. for higher-order systems), extended
design capabilities and increased the operational reliability of the designed
controllers. Methods for decomposing algorithms onto parallel processing
architectures increased potential real-time performance. Most
importantly, the introduction of powerful and easy-to-use interactive
Computer Aided Controls Engineering (CACE) tools enabled the average
control engineer to efficiently and confidently put all these new methods
and algorithms to productive use.

Most control engineers now have access to good CACE tools. A class of
extendable programs based on Matlab (Moler, 1980), the so called “matrix
environments”, became very popular during the last decade. A few robust
and well-supported matrix environments have come to dominate the CACE
market, with other tools covering different niche markets. Lead time
between the development of new control algorithms/methods and their
incorporation into some extendable matrix environment has become very
short. Thus, the average control engineer is well equipped to perform his
core engineering tasks.

CONF-9007134
Page 234

These theoretical and computational advances have given industrial
controls engineering and its practitioners a significant productivity boost.
Further developments will undoubtable result in even better algorithms
and even simpler-to-use tools, but such improvements will become more
and more incremental in nature. To make another significant impact on
industrial controls practices and cost, we need to look beyond the traditional
domains of automatic control. We must examine how controls interfaces
with other engineering disciplines in the overall process, and develop
methods and tools to better integrate control engineering with these other

disciplines.

In the next chapter we will introduce two disciplines closely coupled with
controls engineering. Thereafter we will show how CACE methods/tools
are best interfaced/integrated with tools/methods of these other disciplines,
and how this will increase the overall project productivity. Finally, we will

discuss to which extent todays tools can be integrated to accomplish this

and identify technology areas where additional theoretical work and/or
tools development is necessary.

Systems and Software Engineering interactions with Controls

Control Engineering is the primary, but far from the only, technical
discipline involved in the overall process of designing and building a
product with an embedded controller. Some of the ubiquitous activities in
systems and software engineering are very closely coupled with traditional
control engineering tasks (individual projects may require the use of
further disciplines ranging from astronomy to zero-sum games). However,
current practices suffer from duplication of engineering efforts among
these disciplines, and from ineffective information/data exchanges between
them. Considerable productivity and reliability gains could be attained by
integrating methods and tools better, and by streamlining tool interfaces.

Systems and software engineering are established disciplines with their
own set of methods and tools. Although this paper primarily deals with the
control system engineering and control software engineering sub-domains,
the methods and tools of these sub-disciplines typically remain the same:

* Discipline: System Engineering.
Overall activities: Initial system requirements analysis; Overall system
specification, system design and implementation; Administrative tasks
such as project timing, resource allocation, and task coordination.
Controls oriented activities: Initial feasibility studies of the proposed
system/controller; Controller requirements analysis; Higher-level
system/controller decomposition (hardware vs. software, in-house vs.
subcontractor, etc).
Tools: General engineering analysis programs (e.g. modeling and
simulation tools); project planning tools

* Discipline: Controls Engineering
Activities: System modeling and identification; Controller architecture
design; System analysis and detailed controller design. o
Tools: CACE tools (matrix environments), Simulation packages

CONF-9007134
Page 235
* Discipline: Software (Hardware) Engineering

Overall activities: Implementation of the system; Hardware and soft-
ware design of the embedded system and its peripherals; Operatmg
system development/customization; Final validation and testing.
Control-related activities: Implementation of control laws; Integration of
the resulting code into operating software and hardware environments;
Final control law validation and testing.

Tools: Computer Aided Software Engineering (CASE) tools, compllers,
debuggers; CAD tools for Analog/Digital hardware designs.

The considerable overlap in controls-related tasks performed within these
different disciplines is shown in Figure 1. For example, good and reliable
models of the system are necessary hoth during initial control systems
feasibility studies and during the detailed controller design. Also, the
controller architecture must be Jinown both to the control engineer and to
the control software team responsible for implementing the real-time code.

Even the control code itself could be reused if the same code is included both
in simulation models for controls validation and simulation, and in the
production real-time code (this can for example be achieved through an
automatic code generation facility with multiple target-language
capabilities).

Despite the overlaps, these tasks are mostly viewed as separate activities to
be performed by different teams or group of teams. Team members are
typically selected by their core engineering discipline, and each discipline
use its own set of engineering tools. This makes technical interaction
between the related groups difficult and the overall design cost is inflated by
the need for manual data conversion between the different phases. Also,
incompatible tools limit the traceability of individual requirements through
the process, and prevents efficient design iterations.

A tighter integration of controls, systems and software engineering is
particularly important during the design and subsequent implementation
of distributed control systems, as the number of interfaces between the
three disciplines and their relative importance grow with the increased
overall complexity and a finer granularity of the controller architecture.
For example, the systems engineering decomposition must identify and
define the distributed architecture. On the software engineering side, the
binding of distributed control laws onto a distributed processor architecture
substantially increase the complexity of the operating system interface.

In the next two chapters we will see how tools from these three disciplines
can be combined to form an integrated software environment.

An integrated Controls Engineering environment

An integrated controls/system/software environment must incorporate
functional capabilities from all three disciplines: control system require-
ments analysis, control system specification and decomposition, control
system modeling and simulation, system and parameter identification,
control system analysis and design, software specification and design,
automatic control law code generation, computer assisted code testing and
validation, etc. Ideally all these areas should be supported by a single

CONF-9007134
Page 236

program with a uniform user interface. However, this is not a very
realistic approach: :

* The cost of developing and maintaining such an all- encompassmg
system would be prohibitively hxgh compared to the cost of buymg
existing state-of-the-art components 5 wnd integrate them.

* Many of the present market-dominating tools have already achieved a
high degree of acceptance in their respective domains, and the average
engineer will not be very eager to trade in the effective and reliable tool
he is already using for some mandated tool.

* It makes little sense to, for example, introduce a control-law CASE tool
to make it compatible with the used CACE tools if this then makes the
control law CASE activities incompatible with other CASE activities.

A more realistic approach would be to integrate a set of well-established
state-of-the-art tools into a single system with automatic information and
data conversion between the different tools. This would allow the continued
use of established tools, while software development may be concentrated to
specific areas where no good tools are available yet.

A smooth and seamless coupling between the different components is the
key factor to a successful integration. This coupling must be complete
automatic, if any manual conversion is necessary the integration has

 brought little compared to the existing situation. Figure 2 shows primary

flows of information between the different controls related activities. The
System Specification document and the Contrel System Definition constitute
the main interfaces between the three disciplines. However, it is important
to note that the whole process is iterative, with adjustments and re-demgns
potentially going all the way back to the original requirements. Thus, in
order to maintain a traceability of individual requirements through the
process and to ensure consistency the coupling between the different
phases the interfaces must function in both directions.

The use of an integrated set of software tools would not only give
productivity gains by automating the transition of information between
different project stages, it would also eliminate the risk of having errors
introduced during otherwise manual conversions, and provide cross-
checking during any 1terat1ve re-design. ‘

The GE integration effort

GE is currently deﬁmng, implementing and integrating a comprehensive
software suite to be used throughout all phases of controller planning,
specification, design and implementation. The suite will tie the control
systems, control software and control design Engineering worlds together.
It is based on both commercial and proprietary individual tools and runs on
Unix™-based engineering workstatlons All components are graphics
oriented, with simple-to-use "point-and-click” interfaces and powerful
display graphics. Individual workstations may be licensed and configured
to contain only a subset of the component tools. Platform-independent

™ Unix is a trademark of AT&T Bell Laboratories

CONF-9007134 yet well supported by presently available tools. There are several areas
Page238 where further research and basic development is necessary: :

e Control design interchange format. Some CASE tools support de-facto
standards such as EDIF (Electronic Data Interchange Format), but no
commercially available CACE package interface with these data
interchange formats. This prevents a complete integration of the CACE
and CASE world, forces the engineers to rely on manual or custom-
implemented transformations, and prevents a complete consistency
checking between corresponding engineering designs in the two
disciplines. Basic development of a mapping scheme between control
design architectures, controller implementations, and CASE
interchange standards is necessary.

e Optimized code generators. Presently available control-oriented code

generators operate from block-diagrams and/or equation sets on a block-
by-block or line-by-line basis. This results in inefficient and unstruc-
tured code as block interdependencies and hierarchies are not utilized.
The efficiency of simulation code is not mission-critical, however, the
same code may create serious problems when down-loaded into real-
time microprocessor(s). As many cross-compilers do not perform good
code optimization (this is particularly true for most Ada compilers), the
source code itself must be optimized for memory and speed.
Source code optimization is a non-trivial task. The principles behind
general variable/register optimization are known, but this is really a
reverse-engineering process and either very complex or not very
efficient. If the control code specification is in block-diagram form (or
some other canonical representation), with well-defined contro! flows
and algebraic’ operatlons, a much better code optimization could be done
as we already have “answers to all re-engineering questions” such as
dynamic data dependencies and scaling information . Special-purpose
code- -optimization (or, rather, code-generator optimization) could
therefore result in much faster code.

e Automatic validation and testing. Software validation and testing is still

- largely a manual process. Electronic interconnection of the design and
code implementation phases opens up the feasibility of automatic
validation and testing of the produced code both on the module and on
the integration level. As with the code optimization, contextual
information from the control specification (block diagram or canonical
form) could be used to automatically produce test cases and execution
orders for these cases. The goal should be a fully automated generation
and execution of test cases, with automatic or computer- assmted
evaluation of the test results.

Conclusions

With the advent of modern CACE tools the productivity of the individual
control engineer has improved significantly. The same is true in other,
related disciplines such as System and Software Engineering. Yet, on a
project level further overall productivity gain is hampered by tools
incompatibility and the necessity of performing manual translations of
information and data between different controls-related tasks. This
prevents a smooth integration of the different activities and makes the

oW

ASCII files form the primary coupling between the different individual
tools. These files can be exchanged between any networked workstations.

The GE system is a joint development between different GE Aircraft
Engine, GE Aerospace, and GE Corporate Research and Development
departments. It presently contains the following components:

* The Cadre Teamwork™ program has been selected and installed as a
comprehensive CASE tool. This program is used for general software
specification and design, it is also increasingly being used for system
specification and overall system decomposition.

° Beacon, a graphical editor for specifying engineering block diagrams.
Block diagrams have a long tradition in controls engineering, and this
editor gives the control engineer a natural tool for specifying models,
controller dynamics, and controller logic. It can handle large,
hierarchical diagrams. It lets the user perform either top-down or
bottom-up design, or a combination of the two. Figure 3 shows a screen-
dump of the editor. Some of the available blocks are shown on the
palettes to the left, new ones may be added through a built in icon editor.
This proprietary tool is a customization of the generic block-oriented
Design/OA™ software system from Meta Software

¢ GE-MEAD, a proprietary CACE environment (Taylor et. al, 1990) which
features an integrated engineering data base manager, a built-in expert
system shell, and a flexible user-friendly user interface. The user may
arbitrarily switch between an easy-to-use graphical “point-and-click”
mode (Figure 4), and more versatile/demanding command modes.
MEAD uses the Pro-Matlab™ package enhanced with commercial and
proprietary toolboxes for its numerical control algorithms, and the
ACSL™ package for nonlinear sirulation.

* 'Proprietary automatic code generators with the capability of generating
code in different languages. These generators are able to transform the
output from the block-diagram editor to simulation and/or real-time
code. The generators could also serve as an interface between Beacon
and MEAD, and tie in with Teamwork so that the top-level Teamwork
software spemﬁcatlon/generatwn could be automatically coupled with
the lower level control code.

Proposed Future Research Areas

The GE Controls Environment constitutes a comprehensive suite of high-
quality software tools, integrating the overall controls engineering process
involving Controls, Systems and Software engineering groups. These tools
already find important use in the operating departments. On the research
side, the evaluation of existing tools and the integration of these tools intc a
system have revealed technology areas not yet well understood and/or not

™
Meamwork is a regi istered trademarke of Cadre ’T‘pnhnn]nmo: Ine.
™

Design/OA is a registered trademark of Meta Seftware Corporatxon
Pro-Matlab is a trademark of the MathWorks, Inc.
ACSL is a trademark of Mitchell and Gauthier Associates

g

™

CONF-9007134
Page 237

natural iteration and re-engineering a tedious process. Such an
integration is particularly important for distributed control systems with
their increased complexity and the tight coupling between controller and
overall system architecture.

In this paper we have proposed that existing tools from the different
disciplines should be tightly integrated to form a single, unified control
design/system/software engineering environment. We have shown how GE
have applied these 1deas, and we have suggested some areas of further
research.

References

CONF-9007134
Pazg 239

Moler, C. (1980) MATLAB User's Guide. Dept. of Computer Science,

University of Albuquerque, NM.

Taylor, J. H., Frederick, D. K., Rimvall, C. M. and Sutherland, H. (1989),
“A Computer Aided Control Engineering Environment with Expert Aiding
and Data-Base Management”. Proc. IEEE Workshop on Computer-Aided
Control System Design, Tampa, FL. '

Systems
Engineerlng

" Requirement
Analysis L

Modeling»':_ii_";:‘;_l;::‘v‘:‘. Controls

and: Relatsd

Engineenng
"~ Analysis

 Software

and Deslgn ARl A Design
Computer ' ./ Computer
é?net(rjols e éided Software
' ngineering
Engineering bpecmca”o.".; : CASE-tools
(CACE-tools) of code ()

Figure 1. The relationship between Control/System/Software Engineering

T—
CONF-9007134 PROJECT MANAGEMENT
Page 240 g ‘ . l [[
&
Z
g REQUIREMENT HW
E ANALYS!S
7 'T' PE%T?EA# W
\
FEASIBILITY
...L STUDIES m{g%
g DESIGN swW
& CONTROL
¥ SYSTEM
g PECIFICAT
Y
g SOFTWARE _
% oss‘nn |
'1' IMPLEMENTATION \
£ CODE
wde g VALIDATION
g
E OVERALL
-L ‘ ‘ TESTING

\J

MAIN TIME SCALE

Figuve 2. Main flow of information in the controller design cycle;

® o ; | Libre Ry
[Fwe Ek _Cresis__ Avange Pags Setings Analyms | @ ﬂi {\, ,)

Type1 Mane Text? OFF Page Scales 1068 comels | S .
® o R® o8

Wain P, 11 ® U
= Ty - centroller #, 12
SR
M:‘vn: LB lo Conatant - orarcry ~J
@ _@_2 controtier plant
B> [

gl ——
f=]l=lif=d
IO

Figure 3. A Beacon screen with two hierarchical pages

Data Base

Define Hodel

Daf Condition

Steady State

Lin Ndl Xform

Lin Anaiysis

Lineer Design

Algorithas

| ® Runga~Kutta 4th-order variable-siep)

LG Hamaing Pred/cerr varisble-sten |

OEuler Ist-order fixed-stlap

Enter Tol-runc|I|A0E-03

0K

lCcnc||

CONF-900713.

Page 241
lCo-mand [Hucro]Halp]Trosh [Exit
Simulation Dafinition
Algor ' thm (S mnon)
S$tore Var (Nonl!inear)
|End Tine (sec) IIO
Tine Slep [0.015
lEx.cutc]
Display |5¢vo Ibona
Enter result name:|sinufas oK
Y
héd I Siaulation Variables Store]
Inputs Savae Outputs Save
®TINE u]
- REF]
Qvour >] YPLNT B
— BIAS [w]
O REF o
L nipint. X1 0
List Plot ACTUATOR o]
L=HCopy |P~HCopy nipint. X2 a
Oona
Sample interval (steps)|5.0 |0K . |C¢ncnl

Figure 4. The GE-MEAD simulation screen and affiliated forms

CONF-9007134 PROJECT MANAGEMENT

Page 242 : | | } ')

2
g
g REQUIREMENT]
:

FEASIBLITY
STUOKES

AN

L
—
§ SOFTWARE ENGINEERING §

CO0E
VALIDATION N
\ |
— OVERALL
TESTING

MAIN TIME SCALE

Figure 2. Main flow of information in the controller design cycle.

B are

swwroller P, 12

Figure 3. A Beacon screen with two hierarchical pages

| oons - CHIPA

Data Dase

Oafina NModal
Def Condition
Simutatnl

Steady State

INETTTIF T i—
n Nd|l Xferm
|Lin Aneiysis

Lineer Design

IConacnd [Hacro [Hle Trash [Exlt]
Slaulation Definition
Store Var (Mon!inear)

7

End Time (sec) |

Tina Siep |0.013

[!yneu(t

Algori thas

uler Ist-order fixed-step

|QE

Entear Tolarance| 1.0€-83

oK

ipgp:ol

CONF-9007134

Page 243/ '7¢/¢

Display [s.vo Ibono
Entear rasult nene:|sinufes oK
— .] Sisuletion Veriablas Store]
inputs Seve Outputs Save
WTINE a
™1 REF [|
Cvour] JveLnr -]
et BIAS (s
ORErF b |
} nipiat, X} [w]
|
List Plat ACTUATOR 0
L-MCepy |P=HCopy nipint. X2 [w]
Dena
Sanple (ntearvael (atopn)l!.! IOK JC¢ncil

Figure 4. The GE-MEAD simulation screen and affiliated forms

' ‘ CONF-9007134
Spatial Operator Software for Intelligent Control Page 245
G. Rodriguez
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109

Summary

A new spatial operator algebra [1,2,3] provides a model-based architecture for soft-
ware prototyping and development for mobile, articulated robotic systems. The algebra
is a world representation and computing framework which greatly simplifies the difficult
process of modeling, simulation, control, motion planning, and coordination. It provides
a modeling and computational architecture for high-level planning and intelligent control.
It also significantly simplifies software development. The algebra consists of a set of sym-
bolic operators which at a very high level of abstraction summarize the very complex time
and space relationships inherent in mobile, articulated multibody systems. Once set up
and understood, the operations in the algebra are almost as easy to use as addition, mul-
tiplication and division in elementary high-school algebra. Symbolic complexity visible
to the user is reduced by 2 to 3 orders of magnitude because each operator summarizes
about 100 to 1000 more detailed symbols and operations. Each operator leads to a fast
spatially recursive algorithm that performs the corresponding control computations. Com-
putational bottlenecks are avoided because the number of arithmetic operations required
grows only linearly with the number of degrees of freedom. The algebra handles con-
figuration changes easily. Target applications include autonomous vehicle guidance and
control, vehicle-assisted cargo-handling, warehouse tasks, robotic excavation, handling of
unexploded ordnance, surveillance, pointing and control of platform-mounted articulated
assemblies, and robotic vehicle field operations.

1 Problem Statement

Management of complexity is one of the most critical problems in software development for
intelligent control of multiple robotic systems. Such systems can undergo a vast number
and variety of motion and force interactions among themselves and with the environment.
The use of more than one system adds new problems that are typically not present in a
single system. Some operations require: dynamic configuration transients during hand-off
and transportation; intermittent contact and force interactions; and mechanical changes in
the objects being handled. Transitions between operating regimes require corresponding
changes to the motion planning and control software.

These software changes are typically difficult to make. A significant effort is required
to make software development for control and motion planning a more efficient engineering
process. Approaches to control software development typically do not lead to easy software
transfer. Each installation develops its own control software. This leads to a significant

‘amount of duplication. It also leads to control software systems that are not easily operated
and maintained by users not involved in the software development.

CONF-9007134
Page 246

2 Features of the Spatial Operator Algebra

The spatial operator algebra provides a useful model-based architecture for software pro-
totyping and development because: (1) it greatly reduces the symbolic complexity visible
to the user; (2) it is easy to convert high-level operator expressions to computationally
fast algorithms; (3) it allows algorithm and software reconfigurability over a wide range
of operating regimes; (4) it provides a wide range of models for motion planning and con-
trol; (5) it provides the foundation for a task-level programming language; (6) it can be
embedded in a high-level Al-based planning system; (7) it represents the world in a mod-
ular, hierarchical framework which leads to modular and reuseable software. The software
allows easy transitions from planning and control algorithm design, to simulation, and to
experimental hardware evaluation. Some of these features are illustrated in the figures.

Spatial operators reduce symbolic complexity visible to user

Management of complexity using spatial operators is illustrated in Figure 1. Concise
operator expressions for several robot quantities are compared to the corresponding sym-
 bolic expression for the Jacobian, perhaps the simplest robot quantity typical of a robot
arm. A small number of spatial operators implement not only a variety of such familiar
computations as forward kinematics, Jacobian, and the mass matrix, but also other useful
ones such as the Jacobian inverse, the mass matrix inverse and the operational space iner-
tia matrix. The symbolic complexity using four different methods for inverse dynamics of
a typical robot arm is compared in Figure 2. The use of spatial operators leads to a large
reduction in complexity over other trigonometric and recursive descriptions.

Operator expressions map easily to fast recursive algorithms

Spatial operator equations can be easily converted to efficient numerically robust com-
putational algorithms. The algorithms are in the same spirit as the familiar Newton-Euler
algorithms (4] for inverse dynamics and for the manipulator mass matrix. However, they go
further by performing a much wider range of robot computations (5,6,7,8,9]. The number
of arithmetical operations grows only linearly in the number of degrees of freedom leading
to efficiency for large order systems. Conversion of an operator expression into an outward
recursive algorithm that goes from the base of the robot to its tip is illustrated in Figure
3.

The spatial operator algebra also enables development of new motion planning and
control algorithms which represent basic state-of-the-art advances in system control. One
such trajectory design algorithm for a robot manipulator is illustrated in Figure 4. With a
simple set of mathematical statements, no more complex than shown in the blocks forming
the algorithm diagram, the trajectory design algorithm can be developed and tested in
predictive simulation. Conversion to modular software is also immediate and can be done
by visual inspection.

Software editing in response to system reconfiguration is easy

The spatial operator algebra leads to modular, reconfigurable software. The spatial op-
erator algebra algorithms are modular [7] and map to an object—oriented modular software

CONF-9007134
Page 247

architecture, resulting in computational algorithms ideally suited for event-driven systems.
Software can be smoothly reconfigured in response to transitory changes in system config-
uration. Algorithm and software editing during design, or in response to transitory events,
is illustrated in Figure 5. |

A model-based compiler and an automated real-time code generator facilitates
robot hardware implementation.

The spatial operator algebra has a built-in hierarchical architecture [3] that leads to
what can be viewed as a model-driven compilation process. The model-driven compiler
translates high-level spatial operators into low-level algorithms and programs. Figw.
6 illustrates operation of the model-driven compiler. The compiler takes advantage of
the natural map that exists between spatial operators and efficient, spatially recursive,
computational algorithms. Real- time software generation is under investigation to convert
the recursive computational algorithms into real-time code for hardware implementation. -
This is in the same spirit as available tools [10] for real-time control system automated
code generation. '

Computations are embedded in the highly developed filtering architecture

The spatial operator algebra algorithms perform all robot computations within the
highly develc- =d filtering and smoothing architecture, which is very easy to understand,
program and debug [1]. This leads to numerical stability and robustness so that the effects
of truncation and round-off errors tend to remain at a very low level. Some examples of the
applicable techniques are: square-root filtering algorithms for the numerical stability of
Riccati equations; monitoring of the statistical whiteness of residuals to monitor numerical
error buildup, and new [11]| computing architectures for concurrent processing.

3 Software Development

The spatial operator algebra has been used to develop new recursive algorithms and soft-
ware for motion planning and control of single and multi-arm robotic systems. Software
implementation of a large portion of the algebra has been carried out in Ada as well as
in MATHEMATICA. The software has been embedded into part of an integrated teler-
obotic system, consisting of multiple-arms, a vision system, an operator station, and an
Al planner. An object-oriented language and interpreter Thread , has been implemented
(12| for interactive program development. It is used to rapidly prototype various robot
task sequences as weil as to plan, execute and monitor high-level operator commands.

4 Concluding Remarks

The spatial operator algebra provides a model-based architecture for fast software pro-
totyping and development. It applies to the domain of multibody systems formed by
interconnected articulated elements and subassemblies. It provides a unique hierarchical
computational engine to conduct all motion planning and control computations.

CONF-9007134

Page 248

References

[1]
2]
(3]
[4]

5]

(6]

7]
8]
(9]

[10]

11

12]

G. Rodriguez, “Kalman Filtering, Smoothing and Recursive Robot Arm Forward and
Inverse Dynamics,” IEEE Journal of Robotics and Automation, vol. 3, Dec. 1987. (See
also JPL Publication 86-48, 1986).

G. Rodriguez and K. Kreutz, “Recursive Mass Matrix Factorization and Inversion:
An Operator Approach to Manipulator Forward Dynamics,” IEEE Transactions on
Robotics and Automation, 1990. (See also JPL Publication 88-11, 1988).

G. Rodriguez, K. Kreutz, and A. Jain, “A Spatial Operator Algebra for Manipulator
Modeling and Control,” The International Journal of Robotics Research, 1990. (See
also Proceedings of 1989 IEEE Conf. on Robotics and Automation). |

J. Luh, M. Walker, and R. Paul, “On-line Computational Scheme for Mechanical Ma-
nipulators,” ASME Journal of Dynamzc Systems, Measurement, and Control, vol. 102,
no. 2, pp. 69-76, 1980.

G. Rodriguez, “Random Field Estimation Approach to Robot Dynamics,” IEEE
Transactions on Systems, Man and Cybernetics, Sept. 1990.

G. Rodriguez, “Statistical Mechanics Models for Motion and Force Planning,” in SPIE
Conference on Intelligent Control and Adaptive Systems, Philadelphia, PA, Nov. 1989.

G. Rodriguez, “Recuisive Forward Dynamics for Multiple Robot Arms Moving a
Common Task Object,” IEEE Transactions on Roboties and Automatwn, vol. 5, Aug.
1989. (JPL Publication 88-6, 1988).

A. Jain and G. Rodriguez, “Recursive Linearization of Ma;nipula.tor Dynamics Mod-
els,” in JEEE Conference on Systems, Man and Cybernetics, Los Angeles, CA, Nov.
1990.

G. Rodriguez, “Spatial Operatbr Approach to Flexible Multibody Manipulator In-
verse and Forward Dynamics,” in IEEE International Conference on Robotics and
Automation, Cincinnati, OH, May 1990.

“MATRIXx/SYSTEM.BUILD Software Package, Integrated Systems Inc., Santa
Clara, CA.”

J. Charlier and P. Van Dooren, “A Systolic Algorithm for Riccati and Lyapunov
Equations,” Mathematics of Control, Signals, and Systems, vol. 2, no. 2, pp. 109-136,
1989.

J. Beahan, “Thread: A Programming Environment for Interactive Planning—Level

Robotics Applications,” in NASA Conference on Space Telerobotics (G. Rodriguez

and H. Seraji, eds.), Pasadena, CA, Jan. 1989.

Figure 1. SPATIAL OPERATORS PROVIDE A RICH VOCABULARY
FOR COMPLEXITY MANAGEMENT

Jucobiun

J = B¢ll*

Jacobian luverse
JU = [I—HMI\‘.]D;“HW‘B

Manlpulability Measure
= Def[D\]

Masy Matrix
M o= oMl

Mass Matrix [nverse
M-t = ([=HyR)PD'1 = UYK)|

Operutional Space luertia Mutrix [nverse
A = @D Hy

0

Spatial operators provide a rich vocabulary for managing the complexity of robotics systems.

CONF-9007134
Page 249

e

4
e

[4
30T
I

'3

LI

et
1ied

et

.4
Seaife|ecadied

==

sqiaiad
o
ML

REHEREH

1
4 ‘A4 .‘:2 Ty 4‘0:nr '"un_. .)
e G
- {ete v (1
it HIRTHEH R et R £ TPV TR SVATTYPTeYOTY
[’ . t
H'Lui | Ln' i1 tieialy LTI
‘nHAu"h, +4aeiedy o Sall]
‘1 ’l x ’,*1‘ 4 '1l
uc’. 1444 mp‘w : tf'l;"nou momumuwl .
(LR ‘l'*i‘llt' L TRV VNI
Blutisstitts ettt oo o
K 'Lh "JIH'.‘ ,
difatihen it) el iaiedl ¢ nvbaieg o
R e
jHilh :1:;-;;*1;;%-:: i
R R AR T AN L i i
weil e EEAT S T il gt e eniad « @1 0
R

ot
Eu,ugmmqq‘ A e ensarens -

it Y

i 1 ! o
EA' :l “Hieigi{tbia My ﬁ:
I

THS——

"y t

3

:
0014114 ‘:r,
st IS] sl -

1‘..1

il g

e 4104
fittiitadintidie
!‘ 'l!l‘]
1 Oﬂl. " " 1
kiR
§ IRritin uiql :.uj!‘l
t
i R
than +)

1
I .u‘«i- :il&n
LYk :‘:g:w..!m‘lnloﬂ .

|;1ﬁu;h~3uml'mwmmm .

h “Agaigi
Ltantiieted
I 9

]

T qegie

\ H thelat
i, G
"1“1, " "? l‘

"
i

i i
i HAP K TN

iaste e

batieri it TyTIeo

i,

>

widstegiaie

\
.-.r.i‘..:i RIGIOK
. *Caataifibraialitesaiql ¢

naney

“ted 4?1?22.21 ¢

CL AT

1] 4o 18
tHidiedthin
"mi: Silliaaetin Veliliicesialeh ¢ sahaiciidionn
A g WL AR e I g TR TOTPOTEOTITIN

IRt RS A it M BT i

comparing their concise descriptions of most robetics quantities of interest (as illustrated on the left), with the

symbolic expression (on the: right) for jus

FIGURE 2: COMPARISON OF MGDELING
COMPLEXITY VISIBLE TO THE USER

103 T T

102 -

Number

of

Symbolic

Terms
10! + ~

Spatial Operator Algebra

100 | i 1 | { | | |

Computed Torque Control Methods

This is evident from

¢ one of the simpler quantities such as the Jacobian for a typical robot arm.

CONF-9007134
Page 250

FIGURE 3: MAPPING BETWEEN OPERATOR
EXPRESSIONS AND RECURSIVE ALCORITHMS

Vin+1)=0
) . fork = n...1
V=¢"H"O ' '
¢ V(k) = ¢"(k+ 1,k)V(k+ 1) + H*(k)8(k)
end loop
Operator Ezpression Computational Algorithm

Figure 4. EASY MODEL SETUP/EDITING USING SPATIAL OPERATORS

Z
The articulated task object together with the two robot Some of the constrained relationships are transitory
arms represented by means of an object tree/gruph. and evolve with the task. These transitions represent planned
Each link of the robot is a link of the tree/graph and each events as well as unexpected events. It is important that the system
node of the tree/graph represents a constrained spatial remain stable during ull such transitions and that the underlying
relationship at a joint. The overall graph encodes the modon planning and control software aceommodate the changes.

_highly complex non-linear dynamics of the overall system.

| ‘ 3
‘ :
‘e |)
- i
H¥G —m 2 BeweeD 2 o' 0 12Hys| b [yifl

GrYei{s

]
' TASK OBJECT '
' CONTACT FORCES ! U
womr S AND ACCELERATIONS __ |
Deletion of this block accounts for the 7T JOINT ANGLE
T transition from closed- (o open-configuration. ACCELERATIONS

The spatial operator algebra system allows the study of these transitions and provides the basis for quick software/system
reconfiguration or ediling via a graphical user interface. This is useful for modeting, moticn planning and control of robot systems,

CONF-9007134

| ') : Page 251/;52
Figure 5. SMART COMPILATION OF SPATIAL OPERATOR
EXPRESSIONS TO EFFICIENT COMPUTATIONAL ALGORITHMS
[- MIT=(-HYK) D (- H¥K)T .
2
COORDINATE
TRANSFORMATION
Efficient real-time code géneradon is possible because of the smart compilation features of
spatial operators. Fast computational algorithms are easily embedded in these operators.
Figure 6. EASY SETUP OF COMPLEX MOTION PLANNING
| AND CONTROL STRATEGIES
INVERSE JACOBIAN
G BNt e | gnei'oiaes a8
Target '\:f Error ()‘ Joint Angle
Location - Corrections
FORWARD KINEMATICS
Yo | Bn PR
New Location GN+1. 1) New Joint O Current Joint
Angles Angles

The use of spatial operators to detine individual blocks allows the easy set up of complex models, motion planning
and control strategies. Illustrated above is the simple implementation of trajectory design algorithm. Spatal
operators are used to define individual blocks via the graphical user interface, which are then tied together inan
iterative feedback loop to compute a joint and task space trajectory for the robot arm.

il

CONF-9007134
Page 253

Single Board System for Fuzzy Inference

James R. Symon Hiroyuki Watanabe
Department of Computer Science
CB+# 3175 Sitterson Hall
University of North Carolina
Chapel Hill, NC 27514-3175
TEL. (919) 962-1817, 962-1893

Abstract

The VLSI implementation of a fuzzy logic inference mechanism allows the use of rule-based
control and decision making in demanding real-time applications such as robot control and in the
area of command and control. We have desngned a full custom VLSI inference engine. The chip is
fabricated using 1.0 p CMOS technology. The chip consists of 688,000 transistors of which 476,000
are used for RAM memory.

The fuzzy logic inference engine board system incorporates the custom designed integrated cir-
cuit into a standard VMEbus environment. The. Fuzzy Logic system board uses TTL logic parts
to provide the interface between the Fuzzy chip and a standard, double height VMEbus backplane
allowing the chip to perform application process control through the VMEbus host. High level C
language functions hide details of the hardware system interface from the applications level pro-
grammer. The first version of the board was installed on a robot at Oak Ridge National Laboratory
in January of 1990, ,

1 Introduction

Fuzzy logic based control uses a rule-based expert system paradigm in the area of real-time process -
control {4]. "It has been used successfully in numerous areas including train control [12], cement kiln
control [2], robot navigation (6], and auto-focus camera [6]. In order to use this paradigm of a fuzzy
rule-based controller in demanding real-time applications, the VLSI implementation of the inference
mechanism has been an active research topic [1, 11]. Potential applications of such a VLSI inference
processor include real-time decision-making in the area of command and control (3], and control of
precision machinery. ‘

An original prototype experimental chip designed at AT&T Bell Labs [T] was the precursor to the
fuzzy logic inference engine IC that is the heart of our hardware system. The current chip was designed
at the University of North Carolina in cooperation with engineers at the Microelectronics Center of
North Carolina (MCNC) [8]. MCNC fabricated and tested fully functional chips.

The new architecture of the inference processor has the following important improvements compared

CONF-9007134
Page 254

to previous work:

1. programmable rule set memory
on-chip fuzzifying operation by table looknp
on-chip defuzzifying operation by centroid algorithm
reconfigurable architecture

RAM redundancy for higher yield

o s W

The fuzzy chips are now incorporated in VMEbus circuit boards. One of the boards was designed
for NASA Ames Research Center and another board was designed for Oak Ridge National Labora-
tory (ORNL). The latter board has been installed and is currently performing navigational tasks on
experimental autonomous robots [9]. ‘

ORNL will soon receive the second version of the board system featuring seven Fuzzy chips in a
software reconfigurable interconnection network. The network provides host and inter-chip I/O in any
logical configuration of the seven chips.

(3]

2 Fuzzy Inference

The inference mechanism implemented is based on the compositional rule of inference for approximate
reasoning proposed by Zadeh [13]. Suppose we have two rules with two fuzzy clauses in the IF-part and
one clause in the TIIEN-part:

Rule 1: If (x is A;) and (y is B)) then (z is C}),
Rule 2: If (x is A2) and (y is B2) then (z is C»).

We can combine the inference of the multiple rules by assuming the rules are connected by OR
connective, that is Rule 1 OR Rule 2 [7]). Given fuzzy proposition (x is 4’) and (y is B’), weights af
and aB of clauses of premises are calculated by :

af = max(A', A)),
T

ab = myzxx(B', By), for i=1,2.

Then, weights w; and ws of the premises are calculated by :

wy = min(af, af),

ws = min(af, af),
Weight aj' represents the closeness of proposition (x is 4;) and proposition (x is A4'). Weight w;
represents similar measure for the entire premise for the i** rule. The conclusion of each rule is

C{ = min(w;,C;), fori=1,2.
The overall conclusion C’ is obtained by

C' = max(C}, C3).

This inference process is shown in Figure 1. In this example, off = 0.5 and af = 0.25, therefore
wy = 0.25. af = 0.85 and af = 0.5, therefore wy = 0.5.

CONF-9007134
Page 255

\ . Y
A 8 11

0.5
wi 1

0 J — 0 A \ > 0 A\\t\ - :
. ¢ 0 1 \

LA 7

Figure 1: Inference.

lE-Part IHEN-Fart
A Input 4
»y
MN MAX
A Rue ,
——— E Acton
) 4 | 4 '
' 4
MN il MIN 4 o . MN p—va—= TO E THEN:-Tree
B {npast L3) ‘
8 Rue MN MAX .
4
] Recontg
4
C tnput 4)
MIN MAX |
C Rule
4 4 4 4 1
. MIN . MN j=vteeee TO [THEN-Tree
D Input :‘_‘ > ’ v |
o AUl MIN F Action
»
loadw

Figure 2: Fuzzy Chip Datapath.

CONF-9007134
Page 256

3 Fuzzy Chip

The fuzzy logic inference engine is a fully custom designed 1.0 micron CMOS VLSI circuit of 688,000
transistors implementing a fuzzy logic based rule system. Included on chip are a programmable rule set
memory, an optional input fuzzifying operation by table lookup, a minimax paradigm fuzzy inference
processor, and an optional output defuzzifying operation using a centroid algorithm. The standard data
path configuration is shown in Figure 2. The design has a reconfigurable architecture implementing either
50 rules with 4 inputs and 2 outputs, or 100 rules with 2 inputs and 1 output. Separately addressed
status registers allow programmed control of the fuzzy inference processing and chip configuration. All
the rules operate in parallel generating new outputs over 150,000 times per second.

The chip has 12 bidirectional data pins and 7 address pins for rule memory I/O. For process-control
1/0, each of 4 inputs and 2 outputs has 6 pins. Each of 4 inputs has a corresponding load pin. The
chip also has several control signals. Control signals RW(read high write low) and CEN (chip enable)
are similar to that of a memory chip. ‘

4 The System Boards
4.1 Single Chip Systems

The Fuzzy Logic system boards place the Fuzzy chip into a VMEbus environment to provide application
process control through a VMEbus host. The single chip system designed for NASA Ames Research
Center uses an off-the-self VMEbus prototyping board [10]. The overall configuration of the design is
shown in Figure 3. In this design, the VMEDbus interface is provided by the prototyping board system
and nceded a minimum of design for integration of the fuzzy chip. The fuzzy chip interface to the board
is realized using discrete TTL parts and wire-wrapping. In the board system for ORNL, the VMEbus
interface was designed by the first author and realized using a programmable logic device (PLD) and
TTL parts. More robust printed circuit board (PCB) technology was used. The PCB architectural
concept is shown in Figure 4. The UNIX device driver interfaces of these two boards are quite similar.

The ORNL board is designed to standard VMEbus specifications for a 24 bit address, 16 bit data,
slave module as found in The VAMEbus Specification, Revision C.1, 1985. It provides digital communi-
cation between the liost and the Fuzzy chip. A large, UV erasable PLD generates the board control
signals. VMEbus interface is through TTL parts. One Fuzzy Inference IC processes four 6-bit inputs to
generate two G-bit outputs. The interface with the host computer uses memory mapping to include the
Fuzzy chip’s I/O addresses in the application process storage space. All of the chip’s memory as well as
its inputs and outputs are accessed through addresses on the VMEbus so that the entire Fuzzy Logic
board system responds like a section of memory. ‘

The board’s address space is 1024 bytes or 512 16-bit words in length. Most of the addresses in
that space are not used by the board. The lower 128 word addresses of the board are mapped into
the fuzzy chip. One hundred addresses are for rule memory. Another six addresses are mapped to four
fuzzification tables and two status registers. The board has six addresses ‘or I/O for the fuzzy chip, and
addresses for hardware reset and board ID. On-board dip switches and signal jumpers allow the user
to select the board base address comprised of the upper 14 bits of the 24 bit address, and the board’s
user privilege response characteristic determined by the VMEbus address modifier bits. Further design
details are shown in Figure 5.

4.2 Multiple Fuzzy Chip System

The second version of the system board keeps the standard VMEDbus interface of the first version but
adds significant new capabilities. Seven Fuzzy chips communicate with each other and the host through
a software reconfigurable interconnection network. Two Texas Instruments digital crossbar switch [C's

VME bus

certrel

cat2

2ccress

Yy v v

XYCOM 085S

Non-intelligent Prototyping Module

VME Bus Interface

Address Selection
switches

»

)

XYCOM interface Logic
Discrete TTL component

[}

Y

Fuzzy Logic Inference Chip

CMOS VLSI

Figure 3: Single Chip System Based On Prototyping Board.

VMEbus

control

data

address

A

\

Kata

butfers|

kontrol butfers) ddress butterste—
4 4

A

- programmable logic device control

—a

4

1

Fuzzy Logic Inference Engine

address %elaction
switches

Figure 4: Single Chip System Based On Custom PCB.

(@3]

CONF-9007134
Page 257

CONF-9007134
Page 258

_control
VMEbus 4 data

addres:
P00-0 . 18-22 A10-17 01.09

BOMD Aeith B v Bt

e

edwod

| counter |889 control to al chips
EP1810 4

» PLD .
board CLK : . §
FUZZy

.
<
-

addr &

ng

putput

inq

A

Figure 5: Details of PCB Architecture

implement the network. Any logical configuration of the seven chips may be specified in software, e.g.
seven in parallel. 4-2-1 binary tree, etc. Any fuzzy output may be routed to any input. With the new
board more inputs may be processed and hierarchies of rule sets may be explored. We can simulate
rules with up to 16 conditions in the IF-part by using three layers of Fuzzy chips. Another application
is to load multiple rule sets for different tasks in a single board. This is done by configuring multiple
chips in parallel. The new printed circuit board architectural concept is shown in Figure 6.

This arrangement exploits an important feature of the Fuzzy chip. Normal input to the chip is by
6-bit integers which the chip fuzzifies into 64-value membership functions to be fed into the processing
pipeline. The final output membership function is defuzzified into a 6-bit output integer. However, the
chip has another mode of operation. Any input or output can bypass the [de]fuzzification process so that
I/0O occurs in streaming mode. The full 64-value input or output membership function is placed on the
pins, one value per clock cycle. When an output of one chip is connected to an input of another chip (or
itself), communication can be done in streaming mode without the loss of information inherent in the
[de]fuzzification operations. On this system board, all inter-chip communication is done in streaming
mode.

The new board also has four 64-value FIFO queues which allow final output to the host to be done
in streaming mode. The application process is then free to perform its own custom operations on the
full output membership functions. The final defuzzification is no longer limited to a centroid method.
One can, also, generate the result in higher precision than 6 bits if necessary.

CONF-9007134
Page 259

VME Bus

)
VME Bus Interface
3)
) 4 Data Bus
[d 16
- o Y
FIFO
64x4 EPLD
‘
' A
Loy — - 1
Digital ©
Crossbar
Switch Control
-
et
9
Fuzzy chip

Figure 6: Seven Chip System Architecture.

The new board will be installed at ORNL in August, 1990. In addition to navigational tasks the
system will be used to explore fuzzy logic control of manipulator arm functions.

5 Software Interface

High level C language functions can hide the operational details of the board from the applications
programmer. The programmer treats rule memories and fuzzification function memories as local program
structures passed as parameters to the C functions. Similarly, local input variables pass values to the
system and outputs return in local variable function parameters. Programmers are only required to
know the library procedures. Some procedures provided for the version 1 board are described in the
following table.

1. WriteRule(rulenum, ruledaia) - The rule data structure pointed to by ruledata is written to the
board.

9. ReadRule(rulenum, ruledata) - Reads back into ruledata the rule identified by rulenum currently
stored in the chip.

3. WriteFuzz(fuzznum, fuzzdata) - Fuzzification table is written to the board.

4. StartFZIAC(inpA, inpB, inpC, inpD) - Four inputs are sent to the fuzzy board and inference
processing will be started.

5. ReadOut(outE, outF)- Both outputs are read from the board. Inference process will be continued.

CONF-9007134
Page 260

6. StopFZIAC(outE, outF) - Both outputs are read from the board. Inference process will be halted.

6 Summary

We have described the architecture and associated high level software of two VME bus board systems
based on a VLSI fuzzy logic chip. In addition to operating in the robot at ORNL, the single chip
board is installed on a Sun-3 workstation at the University of North Carolina for further research and
software development. For example, it is useful to provide an X-w.ndow based user interface to this
fuzzy inference board. The complex and flexible architecture of the multiple chip board will require more
sophisticated support software to facilitate exploration of various hierarchical interconnection schemes.

7 Acknowledgements

The rescarch reported here is supported in part by Oak Ridge National Laboratory, by MCNC Design
Initiative Program, and by NASA Ames Research Center.

References

(1] Corder, R. J., “A High-Speed Fuzzy Processor,” Proc. of Snd [FSA Congress, pp. 379-381, August
1989. ‘

(2] Holmiblad, L. P. and Ostergaard, J. J., “Control of a Cement Kiln by Fuzzy Logic,” Fuzzy Infor-
mation and Decision Processes (eds. M. M. Gupta and E. Sanchez) pp. 389-399, 1982.

(3] Kawano, K., M. Kosaka, and S. Miyamoto, “An Algorithm Selection Method Using Fuzzy Decision-
Making Approach,” Trans. Sociely of Instrument and Control Enginecrs, Vol. 20, No. 12, pp. 42-49,
1984. (in Japanese)

(1) I(ing,’P. J. and E. H. Mamdani, “The Application of Fuzzy Control Systems to Industrial Pro-
cesses,” Automatica, Vol. 13, No. 3, pp. 235-242, 1977.

[5] Maeda, Y., “Fuzzy Obstacle Avoidance Method for a Mobile Robot Based on the Degree of Danger,”
Proc. of NAFIPS 90, pp.169-172, June 1990.

[6} Shingu, T. and E. Nishimori, “Fuzzy-based Automatic Focusing System for Compact Camera,”
Proc. of 3nd [FSA Congress, pp. 436-439, August 1989.

[7] Togai. M. and II. Watanabe, “An Inference Engine for Real-time Approximate Reasoning: Toward
an Expert on a Chip,” [EEE EXPERT, Vol. 1, No. 3, pp. 55-62, August 1986.

(8] Watanabe, H., W. Dettlofl and E. Yount “A VLSI Fuzzy Logic Inference Engine for Real-Time
Process Control,” IEEE Journal of Solid-Staie Circuits, Vol.25, No.2, pp.376-382, April 1990.

[9] Weisbin, C.R., G. de Saussure, J.R. Einstein, and F.G. Pin, “Autonomous Mobiie Robot Navigation
and Learning,” Computer, Vol.22, No.6, June 1989,

[10] XYCOM, X' VME-85 Prototyping Module Preliminary Manual, 1984.

(11} Yamakawa, T. and T. Miki, “The Current Mode Fuzzy Logic Integrated Circuits Fabricated by
the Standard CMOS Process,” IEEE Transaclions on Computers, Vol. C-35, No. 2, pp. 161-167,
February 1986.

fo n]

CONF-9007134

Page 261 J_u

[12] Yasunobu, S. and S. Miyamoto, “Automatic Train Operation System by Predictive Fuzzy Control,”
in Industrial Applications Of Fuzzy Conirol, M. Sugeno (Ed), pp. 1-18, 1985,

(13) Zadeh, L. A., “Outline of a New Approach to the Analysis of Complex Systems and Decision-
Making Approach,” IEEE Transactions on Systems, Man and Cybernetics, Vol. SME-J, pp. No. 1,
pp. 28-45, January 1973.

CONF-9007134

~ Page 263

On Computational Requirements for Design of Large Order,
Complex Control Systems

Matthew R. Wette
M/S 198-326
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109
mwette@csi.jpl.nasa.gov

Abstract

A position presenting Computatiohal software needs .

for the design and test of guidance and control (G&C)
systems is presented along with a description of cur-
rent and proposed approaches to solving these prob-
lems. The objectives of this work are to provide ad-
vanced computational methods and protot.ype tools
for G&C systems.

1 Introduction

Control system engineers’ design problems are
quickly 'approaching the computational and func-
tional limits of current computer-aided control sys-
tem design (CACSD) packages. In the course of de-
signing guidance and controi systems (G&C) systems
at the Jet Propulsion Laboratory (JPL), we have rec-
ognized a need for advances in control system design
and verification tools and techniques. This recogni-
tion has been influenced by the evidence that per-
formance requirements for design and simulation are
quickly outpacing current design and verification ca-
pabilities. This paper outlines objectives and justifi-
cation for research in the development of design and
verification tools and provides an overview of current
and proposed approaches for developing the required
capabilities.

2 Objectives

The chief objective of this work is to develop compu-
tational methods and prototype tools for the design
and testing of G&C systems. These methods and
tools are intended to support several needs. First, we

wish to relieve the user from the burden of handling
large order, complex systems in the design process.
Second, we wish to bring advanced control system
design techniques to the users’ disposal. Third, we
wish to provide a real time simulation capability for
the verification of control system hardware.

The design of large order, complex control systems
will require advanced control syatem design and anal-

'ysis methodologies. To bring these methodologies to

the user, a flexible environment will be needed which
can support the advanced methodologies and the as-
sociated complex control system models. With this
in mind, we intend to provide a design environment
in which complex system representations and other
information associated with advanced design tech-
niques can be handled in a structured and efficient
manner. This should be done with the user in mind.
That is, however complex the system or design pro-
cess may be, the designer should be isolated as much
as possible from the complexities of the system repre-
sentation as well as the implementation of the design
algorithms.

The existence of a suitable environment for control
system design of large order, complex systems would
provide an opportunity to apply advanced method-
ologies for control system design. Based on such
an implementation, we wish to provide reliable im-
plementations of some siate of the art control sys-
tem design methodologies. Since efficient and reli-
able tools for large order systems are of interest, the
algorithms and software implemented will provide ro-
bust solution techniques on advanced computatlonal
hardware.

No control system design is complete without veri-

fication tests. Hence, with the capability of advanced
control system design would comes the desire for a

CONF-9007134

Page 264

capability for verification, Based on this need we
wish to provide' a capability for real time simulation
of muitiple flexible body systems. This would provide
a means for verification of control system hardware
operating in closed loop with the real time simulation.

3 Justification

Justification of the work is supported by the lack
of current tools to handle current and anticipated
needs. Current computer-aided control system de-
sign (CACSD) packages typically handle only simple
models and simple techniques and their tools can be
very inefficient and even break down for large order
systerns. In addition, current simulation software is
inefficient and does not provide the capability for cur-
rent real time simulation needs.

Current control system design tools provide only
simple modeling capabilities.. Typically, these mod-
els are based on polynomial expressions or are repre-
sented as regular state space models. With advances
in control system design technology, system structure
is becoming more complex and these simple models
are becoming too cumbersome to work with. Cur-
rent CACSD packages do not, in general, provide the

capability to model structured uncertainty, discrete

states, and other features associated with more com-
plex methodologies. For example, a tool recently de-
veloped at JPL for designing optical control systems
had to be recoded into Fortran after the Matlab ver-
sion was found to be too cumbersome and inefficient
due to the need for packing information into arrays,
Packing and unpacking of data into two dimensional
arrays has become a too-often used workaround.
Another important point to make is that currently
available commercial CACSD packages are not de-
signed to handle large order systems. The analysis
and synthesis tools provided by these packages are
often inefficient and even break down for large or-
der systems. For example, engineers at JPL have
experienced CACSD packages which provided, with-
out warning, completely unreliable results for several
analyses. Other packages were able to provide more
reliable results, but at a substantial cost in time. As
an example, a frequency response calculation for a
system of order two hundred required five hours of
user time on our VAX. Other inefficiencies abound.
Graduate students we interviewed at Caltech work-
ing in He, and u synthesis find that typical design
problems of order fifty can require several hours of
computational time with current software. In addi-
tion, they often experience sensitivity problems. In

general, we have found that all packages have prob-
lems. The end effect is that the user must be a master
of the design process as well as its implementation,
Current CACSD packages in general do not provide
efficient storage mechanisms or computational algo-
rithms for large order systems. Often, large order
systems require have special structure for which spe-
cial storage methods and computational algorithms
can be used to provide very efficient and accurate
solutions. Examples include systems modeled with
sparse or banded matrices. Sensitivity is also an is-
sue. With the increase in order and system dynamics,
specialized algorithms and system descriptions may
be required which current CACSD packages cannot
handle. For example, consider the typical state space
system realization for a time-invariant linear system
z=Az+ Bu, y=Cz+ Du
As the systemm dynamics cover a larger range the
eigenvalues of A (and hence its norm) will grow, lead-
ing to large relative computational error in the moc-
eled slow dynamics of the system. This situation can
be overcome by using, for example, generalized state
space realizations of the form

E.i::Ax+Bu, y=Cz+4 Du

Here a wide range in dynamics (i.e., eigenvalue mag-
nitudes) does not imply large magnitude coeflicients
in the system matrices as for the regular state space
representation.

Development of advanced CACSD tools for design
and analysis of large order systems is justified not
only by its need but also by the introduction of a
soon-to-be-released a FORTRANTT subroutine library
(LAPACK) targeted for solving large order matrix
problems on vector and parallel machines. LAPACK
has been developed by leaders in the field of scien-
tific computing and promises to receive much support
from the scientific computing community in the fu-
ture. A natural front end for such a software library
would be much like current Matlab-based CACSD
packages. The success of these packages as an envi-
ronment for the design and application of algorithms
for control system design implies that a new tool
geared toward large order, complex problems should
include capabilities provided by Matlab-type environ-
ments.

In the area of control system hardware verifica-
tion, JPL has experienced a great lack of capabil-
ity in the current technology. Currently, real time
simulation of spacecraft dynamics must be limited

to rigid body models. Models which provide simula-
tion of flexibility effect are too inefficient. Since con-
trol system verification is limited, designers are forced
to make control system performance conservative to
compensate for the uncertainty in behavior., With
the emerging parallel computer hardware techuolo-
gies, the pursuit of specialized algorithms for parallel
architectures seems a good pursuit.

4 Approach

Our proposed approach to providing the needed ca-
pabilities requires selected research efforts in three
areas. The first area involves the development of a
prototype environment for handling advanced control
design techniques for complex systems. The second
area involves selecting a number of advanced control
system design methodologies and providing efficient
and reliable algorithms and software for implement-
ing these methods. The third area involves the devel-
opment of multibody simulation algorithms and soft-
ware for use on state of the art computer hardware
architectures,

In response to the need to provide advanced envi-
ronments for development of CACSD tools we pro-
pose to work on a new version of a Matlab-type tool.
The new tool would provide an environment for the
development, test and application of advanced algo-
rithms and software for control system design. The
purpose for undertaking this work is to “bootstrap”
efforts at producing “next-generation” environments
for design of complex, large ordercontrol systems.
Our hopes are that this effort will encourage further
“development through technology transfer.

The proposed new tool would provide some fea-
tures necessary for large order, complex design prob-
lems which current Matlab-type CACSD packages do
not support (to our knowledge). Possible added fea-
tures include the support of user-defined data types,
the use of the soon-to-be-released LAPACK Fortran
subroutine library for matrix computations and the
support of compiled “toolboxes” for efficiency. We
feel that a well designed “core” implementation would
provide a sound base for the development of advanced
algorithms and software for engineering applications.
The tools would be developed with the intention of
allowing possible other features (graphics, expert-
system front end, etc.) to be added at a later time.
The development of such a tool would provide a sound
base for the production of advanced algorithms and
software for many engineering applications.

In order to provide users advanced control system

CONF-9007134

Page 265 /‘%6

design technologies to users, we propose to survey
the state of the art in control system design. This
would allow us to determine which methodologies
can provide the necessary functionality and practi-
cality for complex, large order systems. Necessary
functionality includes the ability to model system un-
certainties and nonlinearities, Practicality issues in-
clude the need to be reasonably implemented in a
computer-aided environment and that the computer
implementation be reliable and have a reasonable de-
sign turnaround time for large order systems. Once a
set of methodologies has been selected, work will con-
centrate on collecting and developing algorithms and
software for these methodologies. Importance will be
placed on efficiency and reliability (e.g., numerical
stability) of the algorithms and software.

Work in the development of efficient algorithms for
real time simulation of spacecraft systems with mul-
tiple flexible bodies is currently underway. Current
state of the art algorithms based on O(n), O(n?) and
O(n?) formulations are being evaluated for efficient
computation on various (e.g., parallel) computer ar-
chitectures. Amoung the more promising formula-
tions is that based on the spatial algebra developed
by G. Rogriguez and colleges [1].

5 Conclusion

Experience is now showing that the need for new
tools for G&C design has hit a critical level. Current
CACSD packages cannot satisfy current needs and ef-
fectively limit design capabilities. To satisfy the need
for these capabilities we see the need to develop a new
environment for the designing theses tools for com-
plex, large order systems. In addition, we feel a real
time simulation capability is essential to designing
and testing high performance control systems. Lastly,
support of research and advanced development in the
proposed areas will on the long run save costs, en-
hance reliability and improve performance.

References

(1] G. Rodriquez, K. Kreutz, and A. Jain. A spatial
operator algebra for manipulator modeling and
control. In IEEE Conf. Rob. and Aut., May 1989,

CONF-9007134
Page 267

TRACS: An Ekperimental Multiagent Robotic
System | |

Xiaoping Yun, Eric Paljug, and Ruzena Bajcsy
Department of Computer and Information Science
University of Pennsylvania
200 South 33rd Street
Philadelphia, PA 19104-6389

Abstract

TRACS (Two Robotic Arm Coordination System), developed at the GRASP Laboratory
at University of Pennsylvania, is an experimental system for studying dynamically coordinated
control of multiple robotic manipulators. The systems is used to investigate such issues as the
design of controller architectures, development of real-time control and coordination program-
ming environments, integration of sensory devices, and implementation of dynamic coordination
algorithms. The system consists two PUMA 250 robot arms and custom-made end effectors for
manipulation and grasping. The controller is based an IBM PC/AT for its simplicity in I/O
interface, ease of real-time programming, and availability of low-cost supporting devices. The
Intel 286 in the PC is aided by a high speed AMD 29000 based floating point processor board.
They are pipelined in such a2 way that the AMD 29000 processor performs real-time compu-
tations and the Intel 286 carries out I/O operations. The system is capable of implementing
dynamic coordinated control of the two manipulators at 200 Hz.

TRACS utilizes a C library called MO to provide the real-time programming environment.
An effort has been made to separate hardware-dependent code from hardware-independent code.
As such, MO is used in the laboratory to control different robots on different operating systems
(MS-DOS and Unix) with minimal changes in hardware-dependent code such as reading encoders
and setting joint torques. ‘

TRACS utilizes all off-the-shelf hardware components. Further, the adoption of MS-DOS
instead of Unix or Unix-based real-time operating systems makes the real-time programming
simple and minimizes the interrupt latencies. The feasibility of the system is demonstrated by
a series of experiments of grasping and manipulating common objects by two manipulators.

CONF-9007134
Page 268

1 Introduction

An intelligent robotlc system consists of multiple agents such as manipulators, end effectors, sen-
sory devices, controllers, environments, etc. The operation of such a system requires real-time
coordination of multiple agents. Coordination involves many research issues and can be interpreted
differently from different perspectives. A recent NSF sponsored workshop on coordination and co-
ordination theory (8, 5] suggested five definitions of coordination. This lack of a unique definition of
coordination signals a need for understanding and investigation of coordination problems. With re-
spect to a multiagent robotic system, those problems include real-time dynamic coordinated control
of multiple manipulators and real-time communication among agents of the multlagent robatic sys-
tem. Underlying those two problems is the development of a real-time programming environment
and hardware architecture for design and implementation of coordinated control algorithms.

This paper describes an experimental multiagent robotic system, called TRACS, developed at
University of Pennsylvania. TRACS is aimed to primarily address real-time coordinated control of
multiagent systems. Two PUMA 250 manipulators, together with end effectors and sensors, are
utilized in a testbed system. An IBM PC/AT is chosen as the host computer for the development
of real-time programming environment. .

Other real-time robotic systems include Chimera II [10], Condor [7], SPARTA (3], SAGE [9].
TRACS has the advantage of being cost-effective, sxmple to use, free from staff support, and easy
to transfer to other labs and field applications.

2 System Description

As discussed in the introduction section, we are interested in two problems related to coordination
of a multiagent system: control and communication. Realizing the difficulty of the problems, two
independent yet integrated approaches are taken towards understanding of coordination. In the first
approach, the effort is focused on coordinated control algorithms while the effect of communication
delays on coordination is intentionally minimized. This is made possible by considering fewer agents
so that one processor provides adequate computational needs. Interprocessor communications are
thus eliminated. TRACS mentioned early is a result of this approach and it will be addressed in
detail in this paper. In the second approach, the emphasis is placed on real-time communication
of a distributed system. Towards this end, a real-time kernel for distributed system, called TIMIX,
has been developed in the GRASP laboratory [4].

2.1 Hardware

The principal agents of TRACS are two PUMA 250 robot manipulators. The goal of the system is
to dynamically coordinate motions of the two manipulators to perform cooperative tasks in their
common workspace. Due to their primitive computing resources, the original Unimate controllers
of PUMA robots are not capable of implementing dynamic coordinated control algorithms. A new
controller is built. However, to eliminate unnecessary hardware constructions, the power amplifiers,
D/A converters, and encoder decoding/counter circuits of the Unimate controllers are retained.
The following considerations are taken into account before choosing a controller architecture.
Firstly, distributed systems should be avoided to eliminate communication delays as the emphasis
of this study is on coordinated control. Single processor and coprocessor architectures are preferred.
Of course, the choice is constrained by the current technology of microprocessors (speed) as well

ile

CONF-9007134

Page 269

as available budget. Secondly, a simple operating system is preferred which provides such basic
functions as file server, editing, compiling, and debugging and which can provide, after minimal
effort, a real-time programming environment. With this regard, Unix should be on the low end of
preference list. Thirdly, the interface to manipulators and sensors should be simple and standard.

After a thorough evaluation, an IBM PC/AT with the MS-DOS operating systera is chosen as
the host computer. This choice satisfies the above requirements, namely the PC-AT, even with
a coprocessor, is not a distributed system, MS-DOS is a simple operating simple that provides
basic functionality and a real-time environment, and off-the-shelf technology is readiiy available for
sensor interfaces.

The real-time computational burden of the coordinated dynamic control algorithms requires
the addition of a coprocessor to the host computer. An AMD 29000 high speed floating point
coprocessor board by YARC, INC. was chosen to satisfy this requirement. It is a single processor
board with shared memory and I/O space on the PC-AT system. It comes with a C compiler.

The hardware architecture of this system is shown in Figure 1. The PC-AT communicates
with the Unimate controllers through a parallel interface. The exchanged information includes
angular encoder readings from the joints to the host computer and control commands from the
host computer to the Unimate controller. The end-effector control information is communicated
through an analog interface. The host computer can also communicate with other machines, if
needed, through an Ethernet interface.

The end-effectors are custom-made for the experiments. Currently, two end-effectors have been
made, a multi-configurable gripper and an open palm. The open palm is now being used for exper-
iments in coordinated control where the two arms must manipulate large objects by maintaining a
specified internal force between the palms.

2.2 Software

The development of new control algorithms is the purpose of this system. The system’s software
environment must allow the programmer to easily incorporate existing software, such as kinematics
and gravity compensation. It must also provide easy access to information from the agents and
sensors, and to easily communicate the algorithm’s results, It should be based on a portable
language. The system’s underlying operation should be transparent to the normal user. However,
if a programmer must make changes to the system, because, for instance, by the addition of a new
sensor board, then the underlying system software should be simple enough to allow this without
a major effort,.

These requxrements are satisfied by using the MO control structure whlch is written in the C
language [2]. MO is a library of control package which provides a real-time scheduler and a virtual
agent interface. Because of the virtual interface, MO is used throughout the laboratory for real-time
control applications, independent of hardware. :

The PC-AT host computer is configured as a real-time system by use of its clock interrupt. Each
interrupt will cause the PC-AT to execute the code that gathers new data from the manipulators
and sensors into shared memory, signals the AMD 29000 coprocessor to begin calculations with this
new data, and output the latest control result from the AMD 29000 to the manipulator actuators.
The time between interrupts is used by the PC-AT to perform user interface tasks. The AMD 22000
executes its code, the control algorithm in the MO control structure, at the servo rate. Figure 2
shows the pipeline timing table of the Intel 80286 and AMD 29000. Thus the underlying system is
not formidable to the programmer who must reconfigure it.

CONEF-9007134
Page 270

Gripper Control and Sensors

) - - p
o] ° °
e -i. . 6 "/ °
° © ° Q
e o o & e o o o
Modified Modified
Unimation Controller Unimation Controller
Ethernet Adapter
B : (TCP/IP)
e S B R T rer machines
< PC-AT BUS >
» 12MHz, '286-based PC
: Figure 1: TRACS Hardware Architecture
»

CONF-9007134

Page 271
o
1 COMPUTE | COMPUTE
YARC . D CONTROL D CONTROL ves
AMD29K L ALGORITHM L ALGORITHM
E (X) E (K1)
Y —
; e
GATHER | SEND' FORE- GATHER | SEND FORE-
PC-AT INPUT | OUTPUT GROUND | INPUT | OUTPUT GROUND
80286 DATA DATA PROCESS DATA DATA | PROCESS
(9] (K-1) K1) x)
.
TIME } o
Ke1 Ke+2

Figure 2: Timing Table of the Intel 80286 and AMD 29000

3 Implementation of Two-Arm Coordination

A series of experiments are conducted to test the functioning of the TRACS system. The tasks
of the experiments are grasping, lifting and transporting objects by using two manipulators. The
performance of those tasks requires dynamic coordination of the two manipulators, which in turn
requires the understanding of two handed grasping and coordinated control of two manipulators.

Two handed grasping is concerned with the process of approaching the object, detecting con-
tacts, evaluating the grasping configuration, determining the grasping force, and applying the
grasping force to the object. An important step is the evaluation of the initial grasping configu-
ration. Due to the dependence on friction, certain hands/fingers configurations can not guarantee
stable grasping. In experiments, the end effectors (or hands) are simply flat surface palms instru-
mented by force sensors. Using such palms greatly reduces the uncertainty of contact normals.
Regardless of the local geometry of the object at the contact point, the contact normal is that of
the palm which is known to the controller. Given the coefficient of friction, an algorithm has been
established to evaluate grasping configuration based on the relative position and orientation of the
two palms. In the 2-dimensional case, the algorithm is based on the relative offsets of the two palms
in x and y directions, and the relative angle between the two palms. It is noted that this algorithm
does not dependent on the shape of the object and the exact contact points on the palms.

Having stably grasped the object, the next issue is coordinated control of the two manipulators.
This problem has been theoretically studied by various groups including [13, 6, 1, 11]. Nevertheless,
there is little experimental work in this area. Using TRACS, it is straightforward to implerent
and test any control algorithms. Coordination of two manipulators requires the simultaneous
control of the Cartesian position and the interaction force [12]. The challenging problem here is
the development of force control methods and the associated stability analysis. In the TRACS
experiments, the problem is further complicated by the unilateral constraints, namely, each palm
can push but can not pull the object. A solution that utilizes a nonlinear decoupling coordination
algorithm which allows independent control of force and position is being studied. The experiments
show that TRACS is capable of implementing dynamic coordinated control algorithms.

CONF-9007134

Page 272

4 Conclusion

This paper described an experimental real-time control system, TRACS. Though the system was
developed to control a multiagent robotic system, it is applicable to other real-time control systems.
In particular, it is attractive to control of mobile platforms such as vehicles due to the portability
of the system. ' ‘

TRACS uses all off-the-shelf hardware components to reduce the cost and to expedite the
technology transfer. The adoption of the simple MS-DOS operating system simplifies real-time
programming, minimizes interrupt latencies, and reduces response overheads. Using C library to
support the real-time programming environment and to implement real-time control algorithms
makes the system portable and easy for distribution.

5 Acknowledgement

The authors wish to thank Filip Fuma and John Bradley for technical design support. This work
was in part supported by: Airforce grant AFOSR F49620-85-K-0018, Army/DAAG-29-84-K-0061,
NSF-CER/DCR82-19196 Ao2, NASA NAG5-1045, ONR SB-35923-0, NIH grant NS-10939 -11
as part of Cerebro Vascular Research Center, NIH 1-R0O1-NS-23636-01, NSF INT85-14199, NSF

DMC85-17315, ARPA N0014-88-K-0632, NATO grant No. 0224/85, DEC Corp., IBM Corp., and
LORD Corp. ‘

References

[1] Samad A. Hayati. Position and force control of coordinated multiple arms. IEEE Transactions
on Aerospace and Electronic Systems, 24(5):584-590, September 1988.

[2] Gaylord Holder. Mo robot control software. December 1989.

(3] J. Ish-Shalom and P. Kazanzides. SPARTA: multiple signal processors for high-performance
robot control. IEEE Transactions on Robotics and Automation, 5(5):628-640, October 1989.

(4] Robert B. King. Design, Implementation, and Evaluation of a Distributed Real-Time Ker-
nel for Distributed Robotics. Technical Report MS-CIS-90-40, GRASP LAB 220, Dept. of
Computer and Information Science, University of Pennsylvania, 1990.

(5] Joshua Lederberg and Keith Uncapher. Towards a National Collaboratory. Technical Report,
National Science Foundation, The Rockefeller University, March 17-18, 1989. Report of an
Invitational Workshop.

(6] Y. Nakamura, K. Nagai, and T. Yoshikawa. Mechanics of coordinative manipulation by mul-
tiple robotic mechanisms. In Proceedings of 1987 International Conference on Robotics and
Automation, pages 991-998, Raleigh, North Carolina, 1987.

(7] S. Narasimhan, D. M. Siegel, and J. M. Hollerbach. CONDOR: an architecture for controlling
the utah-MIT dexterous hand. IEEE Transactions on Robotics and Automation, 5(5):616-627,
October 1989.

-~ CONF-9007134
Page 273 /‘2744

[8] NSF-IRIS Review Panel. A Report by the NSF-IRIS Review Panel for Research on Coordina-

tion Theory and Technology, June 26, 1989. Technical Report, National Science Foundation,
1989. , ‘ '

[9] Lou Salkind. The SAGE operating system. In Proceedings of 1989 International Conference
on Robotics and Automation, pages 860-865, Scottsdale, Arizona, May 1989.

(10] David Stewart, D. Schmitz, and P. Kiosla. Implementing real-time robotic systems using
CHIMERA I1. In Proceedings of 1990 International Conference on Robotics and Automation,
pages 598-603, Cincinnati, Ohio, May 1990.

[11] T. J. Tarn, A. K. Bejczy, and X. Yun. New nonlinear control algorithms for multiple robot

arms. IEEE Transactions on Aerospace and Electronic Systems, 24(5):571-583, September
1088.

[12] Xiaoping Yun, T.J. Tarn, and A.K. Bejczy. Dynamic coordinated control of two robot manip-

ulators. In The 28th IEEE Conference on Decision and Control, Tampa, Florida, December
1989.

[13] Y. F. Zheng and J. Y. S. Luh. Control of two coordinated robots in motion. In Proceedings

of 24th IEEE Conference on Decision and Control,‘pages 1761-1765, Ft. Lauderdale, Florida,
December 1985.

AGENDA

Workshop on Software Tools
for Distributed Intelligent Contol

July 17-19, 1990

Monday (July 16, 1990)

Arrival at Workshop hotel

Tuesday (July 17, 1990)

0730
0830

0845
0900
0915

0930
0945
1000
1030

1045
1100

1115
1130
1200
1330
1345

1400

1415
1430
1445
1500
1530
1545

Breakfast and registration in the South Bounty room
Welcome

M. Barbee

DARPA Program on Domain Specific aoftware Archxtectures
Workshop Objectives

Architectures/Environments to Support Advanced Weapon
Crew Station Automation

Break

A Software/Hardware Envxronment to Support R&D in Intelligent
Machines and Mobile Robotic Systems

Al Software Architecture and Tools for Process Control

‘Concept for a Reference Model Architecture for Real-Time

Intelligent Control Systems (ARTICS)

Discussion

Lunch

Declarative Hierarchical Controllers

The Rocky Road to "Standardized" Software Engmeermg
Environments for Military Vehicle Management Systems
Challenges of Providing a General-Purpose Environment for
Building Intelligent Control Systems

Modeling Intelligent Concurrent Control

TRACS: An Experimental Multiagent Robotic System
Conceptual Programming

Break

Hierarchical Heterogeneous Symbolic Control: Lessons Learned
From TEXSYS

CONF-9007134
Page 275

‘Appendix I

C. Herget

E. Mettala

J. James

N. Coleman

R. Shumacher
J. Chandra

R. Mann

D. Lager
J. Albus

K. Baheti
W. Kohn
C. Hall

M. Fehling
A. Nerode
X. Yun

R. Hartley

R. Schappell
B. Glass

o i

CONF-9007134

Page 276

Tuesday (confinued)

1600
1615
1630

1645
1700
1730
1830
2000

Tool Needs For A Behavior-Based Approach To Distributed
Intelligent Control

A Performance Based Methodology and Tool Set to Support the
Engineering of Real-time Intelligent Systems

'CASE Products for Knowledge Based Systems

Design and Development in Ada

Discussion
Break
Dinner
Reception

Wednesday (July 18, 1990)

0730
0830
0845

0900
0915

0930
0945

1000
1030
1045
1100

1115
1130
1200
1330
1345

1400
1415
1420
1445

1500
1530
1545

Breakfast

CACE-III Expert System

Concurrent Processing Envizonments for Distributed Intelligent
Control Systems

Computer-Aided Control Systems Engineering

On Computational Requirements for Design of Large Order, Complex
Control Systems

Spatial Operator Software for Modeling, Motion Planning and Control
Integrating Controls System Design with Systems and Software
Engineering

Break

Safety and Reliability of Process Control Software

Requirements of Intelligent Control Systems ,

VERDI: A Visual Environment for Distributed Systems Design

and Simulation

Real-Time Issues in Distributed Operating Systemsand Databases
Discussion

Lunch |

Language Development Systems in Support of Software Engineering
A Hierarchical Approach to Specification and Fault-Tolerant
Operating Systems

Large-Scale Distributed Control Systems

VLSI Fuzzy Inference Chip and Single Board System

Applying a Computer Aided Prototyping System to the Software of an
Autonomous Underwater Vehicle

Break

Software Tools For. Lower Echelon Systems Development

S. Harmon
T. Hester
J. Greenwood

R. Jones

D. Frederick
D. Birdwell

| D. Gavel

M. Wette
G. Rodriguez
M. Rimvall

N. Leveson
S. Natarajan
C. Potts

J. Liu

V. Heuring
J. Caldwell

R. Hayes-Roth

J. Maitan

H. Watanabe
T. Bihari

C. Barrett
D. Klose

" CONF-9097134

Page 277 ;73
Wednesday (continued)
1600 UAV JPO Interest | | K. Thurman
1615 Research at Army Research Office D. Hislop
1630 Discussion '
1645 Break into working groups, instructions for Thursday's meeting M. Barbee

1730 Break ‘
Thursday (July 19, 1990)

0730 Breakfast

0830 Working Groups

1200 Lunch

1330 Recommendations of the Working Groups
1730 Break

1830 Dinner

Group Summaries:

CONF-9007134
Page 279

Appendix II

This appendix contains brief summaries of each of the five‘ working

groups as recorded on flip charts.

Group 1

- Jim Greenwood
Reinhold Mann
David Lager
Swami Natarajan
Norm Coleman
Dean Frederick
Donald Sasseman

NEAR TERM DEVELOPMENT ITEMS

DSSA, SEE
. @
- Process control
- Simulation
. Vehicle Management
. Arch Framework/Delivery
. Framework for tools to develop

Tools - Softwear System Engineering

. Engineering Process
. Targeted to develop for a domain

Common Architecture

1) Tools for Engineering Process

. Software Systems Engineering
. Case - SIM

. Al -DB

. CACE - Management

b

CONF-9007134

Page 280
2) Delivery System
« Candidate Architecture
- Vehicle Sys
-
CASSE
Al tools DB tools CACE CASE CAD SIM
| o tools

(]
®
®
L]

m

Tool Integration

nen

. 0/S

o DB

8 Develop libraries

Tools need to be driven

Tool integration - plck some and apply in integrated fashion
Incremental expansion of tools

New tool development

Priorities - Tools Builds

1)

)

Build CASSE

Computer Aided Software System Engineering

- MegaProgramming?

- SEE.

Tools for Exploring Delivery Architectures

- Design
- Research

- Measure

CASyE

Terrain Reasoning
Matrixy

Real-time O/S

Test/Eval/Simulate

. 0.0/0S - Choices

Posix

VxWorks

0S/01/PSOS
GZ/ABE
PRS/AOB
VERDI - Distributed Systems
Simulation_Tools - SIMSCRIPT
Managment Tools - MRP
CASE
CACE |
Methodology Tools
Al tools - KEE ART, OPSS
Communication Tools

What _is the testbed?
« End item target for testbed'ed systems

o Development Testbed (Lab)
feeds a test bed
~ feeds real system build

Research
P 1ab Testbed

>
Field Testbed

>

System Build

Group seems SYSTEMS oriented

andi Drivers - Targe tem
. AFAS - Mobile artillary
. Blk3 Tank -
. C2.
. U,V -

AFAS

. Semi-autonomous artillary piece

CONF-9007134
Page 281

CONF-90071 34
Page282

Men-machine are system

Intelligent in support of C2 and operations
Reactive

Real-time -

Integral- d1stnbuted/Control/Intelllgence
Hierarchical :

Fiel

Long-

1)
3)
4)

5)
6)

7)

Wargame simulator

Simulation drives for system
SIMNET-like (mand & system)

Evaluate system and software - architecture
Evaluate reasearch and ideas - prototype

Tools for gen/eval

Real platform
Evaluate architecture

I R

Knowledge representations
- fusion

- machine perception
Languages

- real-time

- parallel __2 __
Compiler Tec.

- parallel detection
- visual to code
Data Bases Systems - of Population

- object oriented

- distributed

Expert Systems - Reasoning Strategies
Human Computer Interactions - HCI

- voice recognition

- virtual reality

Control Tkeory

- other than linear

- stability

CONF-9007134
Page 283

Group 2

Ken Thurman
Scott Harmon
Roland Jones
Vince Heuring
Randy Shumaker
Mike Fehling
Colin Potts
Fred Hadaegh
Guillermo Rodriguez

Positions

[. At least three tiers: (languages different at each tier)
Top - global planner/assessment
Intermediate - housekeeping/system integrity. Monitoring
and integrity management for robustness.
Low order on board:
control system (auto-pilot)
» levels of abstraction
 functional task
s interface between tiers
 languages at each level

II. Focus on specific end product.
Unmanned system
But related to the concept as a whole

IIT. Critical design features such as time have to be incorporated
Time as a specification issue

IV. Human interfaces must be ihtegral to whatever we produce (at
least a 2-agent [man/machine] problem requiring distinctly
different technologies)

V. Prototyping test bed is necessary (and available in some form).
Configurations control mandatory

CONF-9007134

Page284

Main Issues

1) Bound the problem: 40-45 briefs. Probably 300 others out
there. ‘ |

2) Est." functional relationship of a specific entity (unmanned
system)

3) What is technology transfer potential with other areas?

4) Product plan - including technology and industry plan (flow

from R&D to user)
5) Way to specify tasks which incorporate notions of time,
function, events.

mmendati

1) State-of-the-art review of distributed intelligent control theory

$200-300K for six months
Tools/database
standards
Analysel/characterize

Goal - whats needed

Experience - what's been done

Deficit - what is missing

Assets - what do we have available?
- what can we do?

2)
feeds .)
soar - virtual reality
automatic
30 days free
UAVIPO
JPL manual

Est. functional relationship for unmanned systems

CONF-9007134
Page 285
3) Review technology transfer potential
other programs
existing tools
$200-300K for six months

4) Languages to specify tasks which incorporate notions of time,
function and events at each level |
MEGA $K

Distributed_Test Bed

5) Prototype should not be one specific hardware at one location.
Establish agent to manage configuration control.
- To include stimulation, simulation,
emulation . . .animation
6) Project Plan

Example: vision code Testbed
Specialized
code
niversi
University \ Example: library of movement & commands, operations
Gov labs Hich level
ligh leve CASE
10015 *Debug
University Example: Structured language: "Move
Gov labs \ the robot to location #5"
| Indus ‘ |
| Ty Fielded | “suppon
| Systems | “ranine
’\ supgrades
sconsulting
Industry ‘

7) Next meeting
- report out on soar
- develop "accurate"budget and program

CONF-9007134
Page 286

End Product
UNMANNED AIR VEHICLE:

1) Systems run by 20-300 people and want to reduce to 2 people
(4-5 people in aircraft, reduce to 1) ,
2) Totally autonomous vehicle with various degrees of smarts:
i.e. | ‘
- (A) Give general directions, when can't find within
parimeters, opens up and finds anything and asks
: permission
- (B) virtual reality system: Man operates, thinks he is in
vehicle (using goggles) - telepresence

oo

™ N

'

Group 3

Doug Birdwell
Thomas Bihari
Jagdish Chandra
Hiroyuki Watanabe
Matthew Emerson
Jacek Maitan
Guillermo Rodriquez

Modeling And Simulation Environment

1) Standardized and integrated w/previous work - 40 man years
- communications
- databases
2) Required features of implemntation - 100-1000 man yrs.
' ‘ 1/4 billion $$
« Equivalent to writing good operation system and support
system
o Soft target architecture
like META-compilers
o« User definable multiple views
» Hierarchiacal executable specification languages
full life cycle (Like VLSI CAD systems)
 Given to everybody supported long term - 5 man years per

year

3. Validation tools

4, Module techniques to support reusability

UAV

Block 3 Tank

AFAS

. Representation should focus on test bed condidates

. Programmable interface so that existing tools can be used in
intelligent design

. Two test beds avoids inbreeding

s Two different problems

CONF-9007134
Page 287

CONF-9007134

Pagc 288

. Goal is to get commercxally viable product win-win for

University and Industry
e Vehicle with incremental improvements and supporting test be

dor software tools

o Must be rich enough - have really distributed

Two Test Beds
Equal_Priori | Fundi

1. UAV - Automatic landing system - Reusability - demonstration
$5 million

2. UUV - Demonstrate ability of multiple groups to develop
Cooperating modules for the same platform(s)
$5 million

Lon T h

Policy: Decouple long term research from short term deliverables
- More theory/algorithms of Distributed Intelligent control
- More work in large distributed real-time computing
systems (full life cycle - specifications to debugging)
- Fund interdisciplinary education
CS, systems and controls
- Fund Technology Transfer -
tight coupling between Umversxty and Industry
- Encourage interaction ~
- Cleaning house for information of ideas on DIC

ol

Group 4

Wolf Kohn
James Caldwell
Jane Liu
John James
Magnus Rimvall
Anil Nerode
Alan Laub
Matthew Wette
Chris Barrett

Long Term
$5.5 M/5 yrs. (inc. manpower, software, hardware)

Short Term

$14.5 M (manpcwer only) all year
$ 3.5 M hardware, software
$? miliatry equipment

Priority (3)
At least one team for each item
Near term is minimum plan
Time (1) 2 years for initial system

Lon erm

Incorporate real-time research -
Co-ordinate, form bond with real-time

National Labs should be included long term
Funding for #3a - 500K/year, 100K/project
3b - 600K/year, 300K/project

(incl manpower, software, hardware)

5 years for 1st results from grad students

Short Term

Find representation - $1 Mjyear 2 teams
Software house to do it

CONF-9007134
Page 289

CONF-9007134

Page 290

e Develop, code programmable translator or integrate prog. trans.
10 man yrs @ $300K/year

Field engineers interface to university 1 man/yr

Meetings, travel, incidentals 3 years @ S50K/year

doesn't include capital cost-software, hardware etc.
COSTS

Hardware $30K/per man 10 sets

Controls tool - 30K each
Simulation

Database

Case tool

System engineering
Specification
Language env. (ADA)
Cross compiler
Networking

Symbolic tools

CONF-9007134
Page 291

Group §

Thomas Hester
, Richard Quintero
' 4 . Xiaoping Yun
BRI S ‘Charles Hall
/" ; Roger Hartley
- Dirk Klose
Brian Glass
David Hislop

TESTBED RECOMMENDATIONS:
Multidomained

*More than 1 testbed

sPerhaps one per program

«Should already be in being at some level

«Take ongoing program and pull out a problem
«Testbed available on a reasonable basis to DARPA
«Look at taxonomy of domain features

oIdentify common set and testbed and problem in set

Examples:
AFATADS
'NAVLAB
AUV AT DRAPER
SHORT TERM OPPORTUNITIES
YEARLY MILESTONES

Year one demonstrate adaptive interfaces 1"

«The look and feel of the user interface for a controls engineer
Interface a software development tool to a controls
development tool

Year two demonstrate encapsulated tools
«Supports prototype standard representing functional
requirements for standards

CONF-9007134

Page 292

eAdaptive interface is controlling the encapsulated tools
" «Info passing among tools

Year three demonstrate an integrated tool set
«Supports a standard methodology
*For specified problem
eIn chosen testbed

TASKS

Year one: develop taxonomies
*Domain features (1 man year)
*Tool features (3 to 4 man years)
eTaxonomy of standards (1 man year)
Interface standards
Reference . architecture -
Methodologies
Leverage existing standards
Needs assessment (1 man year)
Develop demonstration (5 man years)

~Year two: develop system design plan (1 man year)

Define standard (2 man years)
Acquire/develop testbed (GFE)

Encapsulate tools (10 man years)

Demonstrate encapsulated tools (2 man years)

Year three (11 man years): apply tool set
Demonstrate tools set

Evaluate

Iterate

Demonstrate

LONG TERM RESEARCH ISSUES

Not general software engineering but software for control systems

Therefore for control and system engineers designing and integrating
control systems

Levels:
*Systems: C3, tactics, hardware ‘
*Languages for descriptions within a level
eLanguages for descriptions between levels

Formality of description languages
Devices
*Processes
*Control characteristics
«Communications
«Command

Software build according to these requirements will:
eBe modular (interoperable)
*Have standard interfaces
«Conceptually integrated
Tools work:
*Within a level
*Between levels
*Use language for interchange and HCI

Automation should increase formality with help
all tools should emphasize evolutionary design
all tools should emphasize dynamic nature of systems
(animation)

CONF-9007134
Page 293

CONF-9

134

Page 295(294

Appendix III

Participants in the Workshop on Software Tools
for Distributed Intelligent Control

July 17-19, 1990

Dr. James S Albus

National / .stitute of Standards and Technology
Robot Systems Division

Bldg. 220, Rm. B124

Gaithersburg, MD 20899

PH: 301/975-3418

- Dr. Kishan Baheti

National Science Foundation

1800 G Street NW Rm. 1151

Washington, DC 20550

PH: 202/357-9618 | FAX 202/357-7636

Dr. Chris Barrett

Los Alamos National Laboratory

M/S 605 Group A5

Los Alamos, NM 87544 email: cbarrett@LANL.gov
PH: 505/665-0733 FTS 855-0733 FAX 505/665-2017

Dr. Thomas Bihari

Adaptive Machine Technologies

1218 Kinnear Road

Columbus, OH 43212 email: amt@eagle.eng. OHIO-STATE.edu
PH: 614/486-7741 |

Prof.]. Douglas Birdwell

University of Tennessee

Dept. of Elec. ¢z Comp. Engr.

Knoxville, TN 37996-2100 email: birdwell@cascade.engr.utk.edu
PH: 615/974-5468 |

Mr. James Caldwell

NASA Langley Research Center

Mail Stop 130

Hampton, VA 23665-5225 email: jlc@airl2.larc.nasa.gov
PH: 804/864-6214 |

‘lull

CONF-9007134
) Page 297
Dr. Jagdish Chandra

U.S. Army Research Office

SLCRO-MA (Dr. Jagdish Chandra)

P.O. Box 12211 ‘

Research Triangle Park, N.C. 27709 email: Chandra@brl.arpa
PH: 919/549-0641 - FAX 919/549-9399

Dr. Norman Coleman

U.S. Army ARDEC

Attn: SMCAR-FSF-RC (Dr. Norman Coleman) . '
Bldg. 95 North email: ncoleman@pica.mil
Picatinny Arsenal, NJ 07806-5000 FAX 201/724-5597

PH: 201/724-6279 | conf # 724-2124

Mr. Matthew Emerson
Naval Avionics Center
Indianapolis, IN 46219-2189

- PH: 317/353-7825 ' FAX 317/353-3583

Prof. Michael Fehling

Stanford University

Dept. of Engineering Economic Systems

321 Terman Engineering Center

Stanford, CA 94305-4025

PH: 415/723-0344 FAX 415/723-1614

Prof. Dean Frederick

Rensselaer Polytechnic Institute

7032 JEC

Troy, NY 12181 | | - email: dean frederick@mts.rpi.edu
PH: 518/276-6080 ‘

Dr. Donald T. Gavel

University of California

Lawrence Livermore National Laboratory
P.O. Box 808, L-496

Livermore, CA 94550

PH: 415/422-8539

Dr. Brian Glass

NASA Ames Research Center

Mail Stop - 244-18

Mt. View, CA 94035 email: glass@pluto.arc.nasa.gov
PH: 415/604-3379 FAX 415/604-6997

CONF-9007134
Page 298

Dr. James Greenwood
Advanced Decision Systems
1500 Plymouth Street

Mountain View, CA 94043-1230
PH: 415/960-7551

Dr. Fred Y. Hadaegh

Jet Propulsion Laboratory
Guidance and Control Section
4800 Oak Grove Dr.

Pasadena, CA 91109-8099

PH: 818/354-8777 FTS 792-8777

Dr. Charles Hall

‘Lockheed Missile & Space

Organization 259
3251 Hanover Street
Palo Alto, CA 94304
PH: 415/354-5260

Prof. Roger Hartley
Computing Research Lab.
New Mexico State University
P.O. Box 3CU/30001

Las Cruces, NM 88003

PH: 505/646-1218

Dr. Scott Harmon

Hughes Research Laboratory
3011 Malibu Canyon Rd.
Malibu, CA 90265

PH: 213/317-5140

Dr. Frederick Hayes-Roth
Cimflex Teknowledge Corp.
P.O. Box 10119 |
Palo Alto, CA 94303

PH: 415/424-0500 ext. 410

Dr. Charles Herget
University of California

email: greenwood@ADS.COM

email: rth@nmsu.edu
FAX 505/646-6218

FAX 415/493-2645

Lawrence Livermore National Laboratory

P.O. Box 808, L-194
Livermore, CA 94550
PH: 415/422-7786

email: herget@icdc.linl.gov

CONF-9007134

‘ : Page 299
Dr. Thomas Hester ‘

Electronic Engineering & Comp Sci.

FMC Corporate Technology Ctr.

1205 Coleman Ave. |
Santa Clara, CA 95052 email: hester@ctc.fmc.com
PH: 408/289-0461 ‘

Prof. Vincent Heuring

University of Colorado at Boulder

ECE Department

Campus Box 425 : |

Boulder, CO 80309-0425 ' email: heuring@boulder.colorado.edu
PH: 303/492-8751

Dr. David W. Hislop

U.S. Army Research Office

SLCRO-EL (Dr. David W. Hislop)

P.O. Box 12211

Research Triangle Park, N.C. 27709 email: hislop@aro-emhl.mil
PH: 919/549-0641

Col. John R. James
-HQ Training and Doctrine Command

ATRM-K ‘ '

Fort Monroe, VA 23651

PH: 804/727-3945 or 727-3948 FAX 800-365-5181

Mr. Roland A. Jones

Gensym

125 Cambridge Park Dr.

Cambridge, MA 02140

PH: 617/547-9606 ' FAX 617/547-1962

Dr. Dirk Klose

USACECOM C3 System Center

Chief C2 System Development Division

Attn: AMSEL-RD-C3-IR (Dr. Klose)

Fort Monmouth, NJ 07703-5000 ,

PH: 201/544-2213 FAX 201/544-4084

(9,1

—np

il

CONF-9007134

Page 300

Dr. Wolf Kohn

Boeing Company

Chief Researcher in Artifical Intelhgence
Science Computing and Analysis

P.O. Box 24346

Mail Stop 7L-23 ‘ :

Seattle, WA 98124-0346 email: wolfk@boeing.com
PH: 206/865-3598 FAX 206/ 865-2996

Mr. Darrel L. Lager

Umversxty of California

Lawrence Livermore National Laboratory

P.O. Box 808, L-156 ‘

Livermore, CA 94550 | email: lager@lucky.llnl.gov
PH: 415/422-8526 ‘ \

- Prof. Alan Laub
~ Department of Electrical & Computer Engr

University of California
Santa Barbara, CA 93106 email: laub%lanczos@hub.ucsb.edu
PH: 805/893-3616 ‘ FAX 805/893-3262

Prof. Nancy Leveson

Department of Info. & Comp. Science

University of California

Irvine, CA 92717 leveson@ics.uci.edu
PH: 714/856-5517

Prof. Jane Liu

- University of Illinois

Department of Computer Science
1304 W. Springfield Avenue
Urbana, IL 61801

PH: 217/333-0135

Dr. Jacek Maitan

Lockheed

Research & Development Division

0/97-40 B/201

3529 Hanover St.

Palo Alto, CA 94304 email: jmaitan@®a.isi.edu
PH: 415/424-2742

P

I,

CONF-9007134
Page 301

' Dr. Reinhold Mann

Martin Marietta Energy Systems
P.O. Box 2008 |

Bldy; 6025

Oak Ridge, TN 37830

PH: 615/574-0834

LTC Erik Mettala
DARPA/ISTO

1400 Wilson Blvd.
Arlington, VA 22209-2308
PH: 202/694-5037 |

'Dr. David Morganthaler

Martin Marietta’

Information and Communications System

P.O..Box 1260

Mail Stop XL4370

Denver, CO 80201

PH: 303/977-4200 FAX 977-7946

Prof. Swaminathan Natarajan

Texas A&M University

Dept. of Computer Science

College Station, TX 77843-3112 email: swami@cssun.tama.edu
PH: 409/845-8287

Prof. Anil Nerode

Mathematical Science Institute

Cornell University |
Ithaca, NY 14853-7901 email: nerode@mssun7.msi.Cornell.edu
PH: 607/255-3577) ‘

Dr. Colin Potts

MCC

Software Technology Program

P.O. Box 200195 :
Austin, TX 78720 | email: potts@mcc.com
PH: 512/338-3629 FAX 512/338-3899

CONF-9007134
Page 302

Mr. Richard Quintero

National Institute of Standards and Technology

Robot Systems Division

Bldg. 220 B124

Gaithersburg, MD 20899

PH: 301/975-3456 FAX 302/990-9688

Dr. Magnus Rimvall
General Electric Corporate R &D
Mail Stop KWD213

P.O.Box 8
Schenectady, NY 12301 email: rimvall@crd.ge.com
PH: 518/387-5698 FAX 518/387-5164

Dr. Guillermo Rodriguez

Jet Propulsion Laboratory

4800 Oak Grove Dr. MS 198-219
Pasadena, CA 91109

PH: 818/354-4057

Mr. Donald Sassaman

Vitro Corporation

2121 Crystal Dr.

Arlington, VA 22202

PH: 703/418-8038 FAX 703/418-9028

Mr. Roger Schappell

Martin Marietta

Information and Communications System

P.O. Box 1260

Mail Stop XL4370

Denver, CO 80201

PH: 303/977-4474 FAX 977-7946

Dr. Randall Shumaker

Naval Research Laboratory, Code 5500

4555 Overlook Avenue S.W. |
Washington, D.C. 20375-5000 email: shumaker@itd.nrl.navy.mil
PH: 202/767-2903 |

oo

Major Ken Thurman

UAV Joint Program

PEO (CU) - UTMR

Crystal Gateway #4 Room 304
Washington, DC 20361-1014
PH: 703/692-3423

- Dr. David Tseng

Hughes Research Laboratory
3011 Malibu Canyon Rd.
‘Malibu, CA 90265

PH: 213/317-5677

Prof. Hiroyuki Watanabe
University of North Carolina
Sitterson Hall

Campus Box 3175

Department of Computer Science
Chapel Hill, NC 27599

PH: 919/962-1817

Dr. Matthew R. Wette

Guidance and Control Section
Jet Propulsion Laboratory

4800 Oak Grove Dr. M/S 198-326
Pasadena, CA 91109

Prof. Xiaoping Yun

University of Pennsylvania
Computer Science Department
200 South 33rd Street
Philadelphia, PA 19104-6389
PH: 215/898-6783

CONF-9007134
Page 303) 30‘/

- FAX 202/746-5682

FAX 213/317-5484

FAX 919/962-1799

email: mwette@jpl-gnc-gw.jpl.nasa.gov

email: yun@central.cis.upenn.edu

!

H

A y——,

-

[—

