

SAND97-2726C  
SAND-97-2726C  
**DEVELOPING OPERATIONAL SAFETY REQUIREMENTS  
FOR NON-NUCLEAR FACILITIES**

CONF-980616-

**Jeffrey A. Mahn, Sandia National Laboratories**

Sandia National Laboratories  
P.O. Box 5800, MS 0369  
Albuquerque, NM 87185-0369  
(505) 844-9995

RECEIVED  
NOV 18 1997

OSTI

## **Introduction**

Little guidance has been provided by the DOE for developing appropriate Operational Safety Requirements (OSR) for non-nuclear facility safety documents. For a period of time, Chapter II of DOE/AL Supplemental Order 5481.1B (Ref. 1) provided format guidance for non-reactor nuclear facility OSRs when this supplemental order applied to both nuclear and non-nuclear facilities. However, after the nuclear facility portion of the supplemental order was superseded by DOE Order 5480.23 (Ref. 2), it was never rewritten. Thus, DOE Albuquerque Operations Office personnel still want to see non-nuclear facility OSRs in accordance with the supplemental order (i.e., in terms of Safety Limits, Limiting Conditions for Operation, and Administrative Controls). Furthermore, they want to see a clear correlation between the OSRs and the results of a facility safety analysis. Unfortunately, the supplemental order addresses neither the type of safety analysis to be performed for non-nuclear facilities nor how OSRs are to be derived from safety analysis results.

This paper demonstrates how OSRs can be rather simply derived from the results of a risk assessment performed using the "binning" methodology of SAND95-0320 (Ref. 3).

## **An "OSR-friendly" Risk Assessment Methodology**

The methodology of SAND95-0320 is used to evaluate accident scenario likelihoods of occurrence by considering the failure probabilities of facility structures and systems and the probabilities of human errors involved in accident scenarios. The methodological approach is to first characterize individual accident scenarios in terms of the following four elements, as applicable:

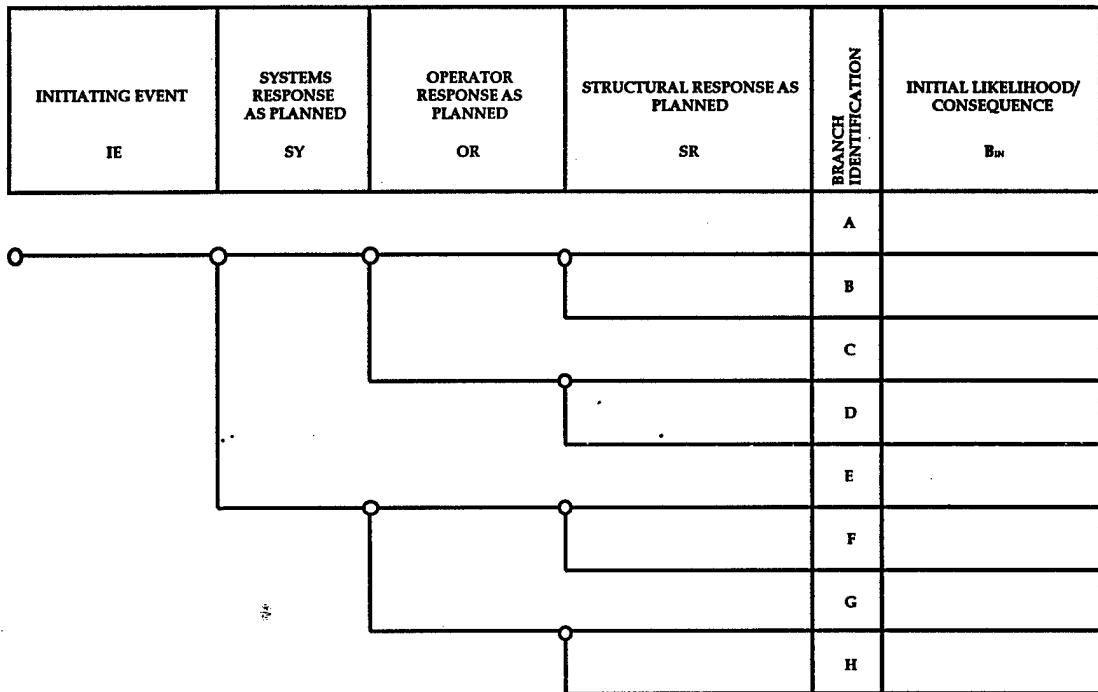
Initiating Event  
System Response  
Operator Response  
Structure Response

DTIC QUALITY INSPECTED

This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED




MASTER

19980423 095

## **DISCLAIMER**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

These elements allow ready identification of relevant safety structures and systems as well as worker safety programs that are applicable to individual accident scenarios. The frequency of an accident initiating event and the probabilities of applicable system and structural failures and associated human errors are then determined using generic frequency/probability data provided in the methodology report. The overall likelihood of occurrence of an accident is found by considering these elements as the functional events of an event tree (Figure 1). The methodology report provides four levels of “binning” criteria for both consequence severity and likelihood of occurrence, which can be used as shown below for developing appropriate OSRs.



**Figure 1. Generic Event Tree for Accident Likelihood of Occurrence Evaluation.**

### Derivation of OSRs - A Case Study

This process for developing OSRs can best be understood by illustrating how it was used to derive OSRs for Sandia National Laboratories' Kauai Test Facility (KTF). The potential accidents evaluated for the KTF included 10 operational accidents, 3 natural phenomena occurrences, and an aircraft crash scenario. The structure, system, and component (SSC) failures and human performance errors evaluated for the operational accident scenarios are shown in Table 1. The operational accident assessment results are summarized in Table 2.

These results indicate that only 6 of the 10 operational accidents are considered credible, while only 3 of the 6 credible accidents have potentially serious consequences. There are no credible

accidents having the potential for serious consequences to the offsite public. The three credible accidents with the potential for serious worker consequences are the Missile Assembly Building rocket motor fire, the launch pad missile ignition during "safing," and the dropped solid rocket motor explosion. The accident scenario SSC failures and human performance errors of Table 1 thus identify the relevant safety structures and systems and relevant worker safety programs relied upon for prevention and mitigation of these operational accidents, as shown in Table 3.

**Table 1. KTF Accident Scenario Failures**

| Accident                                                                   | SSC Failures                                                                          | Human Errors                                                  |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Launch Operations Bldg. (LOB) Fire                                         | Fire detection system<br>Fire suppression system                                      | Inadequate response by PMRF Fire Department personnel         |
| Missile Assembly Bldg. (MAB) Rocket Motor Fire                             | Ordnance grounding system                                                             | Worker failure to maintain electrical ground                  |
| Launch Pad Missile Ignition During Safing Procedure                        | Ordnance grounding system                                                             | Worker failure to preclude undesired electrical current       |
| Uninterruptible Power Supply (UPS) Failure with Loss of Onsite AC Power    | Onsite AC power system<br>Uninterruptible power supply                                | None                                                          |
| Dropped Solid Rocket Motor Explosion                                       | Crane/hoist                                                                           | Inadequate maintenance of crane/hoist systems                 |
| Atmospheric Release of Unsymmetrical Dimethylhydrazine (UDMH) from Storage | Primary storage container                                                             | Inadequate surveillance monitoring                            |
| Atmospheric Release of UDMH During Fueling                                 | UDMH fuel transfer system                                                             | Inadequate actions by emergency response personnel            |
| Hazardous Material Leak to Soil                                            | Primary storage container<br>Secondary containment structure<br>Leak detection system | Inadequate surveillance monitoring of fuel storage containers |
| Electromagnetic Field Radiation Exposure (Radar)                           | Radar tracking system                                                                 | Radar operator error                                          |
| Lightning Strike of Fueled STARS Missile                                   | Ordnance grounding system<br>Lightning protection system                              | Failure to ensure adequate electrical ground                  |

There are no structures, systems, or components (SSC) associated with preventing or mitigating accident consequences to the offsite public, while only one safety system is identified as necessary to prevent significant, credible accident consequences to workers --- the ordnance grounding system. Operability of this system represents the lowest functional capability or performance level of equipment required for continued safe operation of the KTF, and thus constitutes a limiting condition for operation (LCO). Note that even though an explosion of a

dropped solid rocket motor is considered to be a credible accident, drop tests with Class 1.1 rocket motors have not been able to achieve a detonation event. Thus, KTF cranes and hoists have not been classified as safety systems.

**Table 2. KTF Operational Accident Results Summary.**

| Accident                                                                              | Public Consequence | Worker Consequence | Credible? ( $>10^{-6}$ yr $^{-1}$ ) |
|---------------------------------------------------------------------------------------|--------------------|--------------------|-------------------------------------|
| Launch Operations Building (LOB) Fire                                                 | NA                 | Negligible         | Yes                                 |
| Missile Assembly Bldg. (MAB) Rocket Motor Fire                                        | NA                 | Catastrophic       | Yes                                 |
| Launch Pad Missile Ignition During Safing Proc.                                       | NA                 | Catastrophic       | Yes                                 |
| Uninterruptible Power Supply (UPS) Failure with Loss of Onsite AC Power               | NA                 | Negligible         | No                                  |
| Dropped Solid Rocket Motor Explosion                                                  | NA                 | Catastrophic       | Yes                                 |
| Atmospheric Release from Unsymmetrical Dimethylhydrazine (UDMH) Storage - Fast - Slow | Critical<br>NA     | NA<br>Marginal     | No<br>Yes                           |
| Atmospheric Release of UDMH During Fueling                                            | Critical           | NA                 | No                                  |
| Hazardous Material Leak to Soil                                                       | Negligible         | NA                 | No                                  |
| Electromagnetic Field Radiation Exposure (Radar)                                      | Negligible         | NA                 | Yes                                 |
| Lightning Strike of Fueled STARS Missile                                              | NA                 | Negligible         | No                                  |

One other system has also been given LCO status because of its importance to the explosive safety program, even though its failure does not necessarily contribute to an accident. The Potential Gradient Measurement System is used to control explosive operations on site such that all outdoor explosive operations and indoor operations with unsafed ordnance are to be terminated whenever the atmospheric potential gradient reaches a level of  $\pm 2000$  volts per meter.

Since the other safety structures and systems listed above are not necessary to prevent significant accident consequences to workers, their effective performance in preventing or mitigating lesser accident consequences can be assured via normal conduct of operations program controls (e.g., procedures). Enhanced effectiveness of worker performance in preventing or mitigating accident consequences can similarly be achieved via safety training programs. Thus, both procedures for assuring reliability of these structures and systems and associated safety training for facility workers are classified as administrative controls within the context of operational safety requirements.

**Table 3. Facility Structures, Systems, and Worker Safety Programs Providing Accident Prevention/Mitigation Functions**

| Accident                                            | Relevant Safety Structures & Systems                                                    | Relevant Worker Safety Programs                             |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|
| LOB Fire                                            | LOB fire detection system<br>LOB fire suppression system                                | Fire extinguisher awareness<br>Emergency response awareness |
| MAB Rocket Motor Fire                               | Ordnance grounding system                                                               | Explosives safety                                           |
| Launch Pad Missile Ignition During Safing Procedure | Ordnance grounding system                                                               | Explosives safety                                           |
| UPS Failure with Loss of AC Power                   | Onsite diesel generators<br>Uninterruptible power supply                                | None                                                        |
| Dropped Solid Rocket Motor Explosion                | Cranes/hoists                                                                           | Crane, hoist, and rigging safety                            |
| Atmospheric Release from UDMH Propellant Storage    | UDMH storage tank with overpack                                                         | Hypergolic propellant awareness                             |
| Atmospheric Release of UDMH During Fueling          | UDMH fuel transfer system                                                               | Hypergolic propellant awareness                             |
| UDMH Leak to Soil                                   | UDMH storage tank with overpack<br>Above-ground, concrete lined pit for UDMH tank       | Hypergolic propellant awareness                             |
| Gasoline Leak to Soil                               | Double-walled, underground gasoline storage tank<br>Gasoline tank leak detection system | None                                                        |
| Diesel Fuel Leak to Soil                            | Diesel fuel storage tank<br>Above-ground, concrete basin for diesel fuel tank           | None                                                        |
| Radar Exposure                                      | Radar tracking system                                                                   | None                                                        |
| Lightning Strike of STARS Missile                   | Ordnance grounding system<br>Lightning protection system                                | Explosives safety                                           |

This evaluation of the KTF accident analysis results culminated in the following Operational Safety Requirements:

## Limiting Conditions for Operation

| CONDITION                                                                                                                  | NON-COMPLIANCE ACTION                                                                        | RESPONSE                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| The ordnance grounding system shall be operable with a resistance to ground not exceeding 0.001 ohms.                      | Explosive operations shall not be permitted on site.                                         | Explosive operations may be initiated after the ordnance grounding system is declared operable.                                    |
| The potential gradient measurement system shall be operable with a maximum potential gradient of less than $\pm 2000$ V/m. | Outdoor explosive operations and indoor operations with unsafed ordnance shall be suspended. | Explosive operations may not be resumed until 15 minutes after the atmospheric potential gradient returns to the acceptable range. |

## Administrative Controls

### *Conduct of Operations*

- Ordnance grounds shall be tested and certified within a year of anticipated use in accordance with KTF-OP-1013, *KTF Ordnance Ground Testing and Certification*.
- Lightning protection on explosive facilities shall be visually inspected annually and electrically tested at least every 47 months in accordance with KTF-OP-1022, *KTF Lightning Protection Inspection and Certification*.
- The Launch Operations Building fire detection and suppression systems shall be inspected annually.
- The uninterruptible power supply shall be tested periodically in accordance with the manufacturer's recommendations.
- The potential gradient measurement system shall be maintained and calibrated annually in accordance with KTF-OP-1019, *KTF Potential Gradient System Calibration and Use*.
- The wind radar system is operated in accordance with KTF-OP-1515, *KTF Wind Radar System Operation*.
- Use and operation of the special KTF low power radios in the vicinity of any ordnance is governed by KTF-OP-1551, *Control and Use of Low Power RF Radios at KTF*.
- All explosives related work and explosives storage is conducted in accordance with SOP SP472378, *Operations at Kauai Test Facility*, Appendix B (Explosives Safety).
- All operations involving overhead cranes are conducted in accordance with KTF-OP-1553, *Crane, Rigging, and Hoisting Operations at Kauai Test Facility*.
- Hazardous operations, such as rocket motor movements, launch pad operations, hypergolic propellant activities, and rocket launches are conducted in accordance with SOP SP472378, *Operations at Kauai Test Facility*, Appendix C (Launch and Hazardous Operations Control).
- Transportation and loading of hypergolic fuels requires the participation of emergency response personnel and equipment in accordance with SOP SP472378, *Operations at Kauai*

*Test Facility*, Appendices C (Launch and Hazardous Operations Control at Kauai Test Facility) and F (KTF Operating Procedures).

- The loading of hypergolic fuels is performed by NASA White Sands personnel in accordance with NASA Standard Operating Procedures.
- In the event of a booster misfire, all systems will be returned to a safe condition, and the launcher area restricted to all personnel for a minimum of 30 minutes.
- Personnel are to maintain a separation distance of 2 feet (0.61 m) from antennae associated with radiating airborne transmitter system with average power ratings greater than 7 watts, or with frequencies greater than 1 GHz.
- Motor vehicles operating without spark arrested exhaust systems are to remain a minimum of 100 feet (30.5 m) from rocket motors and missiles.
- Two of the four available power systems (Kauai Electric Company, 2 onsite diesel electric generators, and the site uninterruptible power supply) must be operable prior to initiating a launch sequence.
- The onsite hypergolic propellant storage tanks shall be inspected weekly for observable leakage in accordance with KTF-LP-006, *Hazardous Material Storage Monitoring*.

### *Training*

- Personnel working in the areas where liquid hypergolic propellants are present have hypergolic propellant awareness training as well as additional training that is dependent upon the individual's involvement with the propellants.
- Personnel working with explosives at KTF are trained in accordance with the requirements of the Sandia Explosives Safety Manual. Training requirements are dependent upon the individual's job classification.
- Personnel working with cranes, hoists, and rigging equipment are trained in accordance with the requirements of KTF-OP-1553, *Crane, Rigging, and Hoisting Operations at Kauai Test Facility*.
- All KTF personnel are required to complete fire extinguisher awareness and SNL emergency response awareness training annually.

### *Non-compliance Action*

If the KTF is found to be out of compliance with any of the above administrative controls, then the out of compliance condition must be corrected within 72 hours or a violation of the OSRs must be declared.

The reason for inclusion of a non-compliance action is because administrative controls do not have action statements as the LCOs do. Thus, if a non-compliance with an administrative control is discovered there is no opportunity to rectify the condition prior to the occurrence of an OSR violation. The inclusion of a generic action statement to cover all administrative control programs permits a non-compliance to be corrected within a reasonable time following discovery of the non-compliance without incurring an OSR violation.

## References

1. DOE/AL Supplemental Order 5481.1B, *Safety Analysis and Review System*, January 1988.
2. DOE Order 5480.23, *Nuclear Safety Analysis Reports*, April 1992.
3. Mahn, J.A., G.W. Hannaman, and P.M. Kryska, *Qualitative Methods for Assessing Risk*, SAND95-0320, Sandia National Laboratories, May 1995.

M98000848



Report Number (14) SAND--97-2726 C

CONF-980616--

Publ. Date (11) 1997/11

Sponsor Code (18) ~~DOE/MA~~ DOE/MA, XF

UC Category (19) UC-907, DOE/ER

**DOE**