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ABSTRACT

Naturally occurring assemblages of phytoplankton and

bacterioplankton were radiolabelled with sodium C-b1carbonate and
3

sodium H-acetate and size fractionated to determine the size

structure of planktonic autotrophy and microheterotrophy in DeGray

Reservoir, an oligotrophic Impoundment of the Caddo River 1n

south-central Arkansas. Size distributions of autotrophy and

rnicroheterotrophy were remarkably uniform seasonally, vertically within

the water column, and along the longitudinal axis of the reservoir

despite significant changes 1n environmental conditions. Planktonic

autotrophy was dominated by small algal cells with usually >50% of

the photosynthetic carbon uptake accounted for by organisms

<8.0 urn. Microheterotrophic activity in the 0.?- to 1.0-iim size

fraction, presumably associated with free-living bacterioplankton not

attached to suspended particles, usually accounted for >75% of the

planktonic microheterotrophy. Longitudinal patterns in autotrophic and

microheterotrophic activities associated with >3-v-in and >l--u.m

size fractions, respectively, suggest an uplake to downlake shift from

riverine to lacustrine environmental influences within the reservoir.
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INTRODUCTION

The plankton ecologist's perception of the environment that he

investigates is shaped to a large extent by the methods used for

collecting and examining plankton samples. For years, our views of

plankton community structure, metabolism, and trophic interactions were

restricted to the organisms retained by a 64-um pore size plankton

net; I.e., the "net plankton." Smaller organisms that passed through

the net (<64 v.m, the "nanoplankton") were unnoticed until it was

realized that they were responsible for much of the biomass and most

of the metabolic activity occurring 1n the planktonic environment

(e.g., Rodhe et al. 1958, Holmes 1958, Yentsch and Ryther 1959).

Recent investigations of the size distributions of planktonic biomass

and metabolic activities, using epifluorescence and scanning electron

microscopy, radioisotopic labelling, differential filtration methods,

and autoradiography, have focused attention on progressively smaller

organisms. Because particle size is a primary determinant of the food

resources available to consumers and the efficiency of energy transfer

through foodwebs (Ryther 1969; Gliwicz 1969; Parsons and Lebrasseur

1970; Kerr 1974; Sheldon et al. 1972, 1977), the size distributions

of planktonic autotrophy (algal photosynthesis) and microheterotrophy

(bacterial productivity) are of considerable ecological interest.

The contribution of nanoplankton (<64 -\m) to phytoplankton

production and biomass is now well documented (e.g., Rodhe 1958, Ryther

and Yentsch 1958, Gilmartin 1964, Malone 1971, Kalff 1972, Kalff and

Knoechel 1978), and recent studies have demonstrated the importance of

rnicroplankton (<8 iim) to algal community productivity in

nutrient-poor planktonic environments (Paerl 1977, Paerl and Mackenzie

1977, Ross and Duthie 1981, Hunawar and Hunawar 1975, Li et al. 1983,

Platt et al. 1983). The predominance of small algae in oligotrophic

environments is usually attributed to high cell surface to volume

ratios and a resulting enhanced ability to grow at low nutrient

concentrations (Dugdale 1957, Eppley et.al. 1969, Caperon and Meyer

1972, Parsons and Takahashi 1973, Friebele et al. 1978). The relative



Importance of the larger algae generally increases in more productive

systems where nutrient availability is higher (e.g., mesotrophic and

eutrophic lakes, estuaries, upwelling and coastal marine environments)

relative to oligotrophic lakes and the open ocean (Kalff and Knoechel

1978, Malone 1980, Watson and Kalff 1981, Schlesinger et al. 1981).

Net plankton can make major contributions to phytoplankton productivity

by virtue of large biomass accumulations (Kalff and Knoechel 1978).

However, the biomass-specific productivity of large algae is usually

low (Stull et al. 1973, Kalff and Knoechel 1978), and zooplankton

grazing occurs primarily on small (<30 vm) cells that are most

efficiently filtered, ingested, and assimilated (Burns 1968, Gliwicz

1969, Porter 1977).

Phytoplankton photosynthesis is the primary means of organic

matter production in most planktonic systems; however, bacterial

production may also be an important trophic resource for planktonic

consumers (Pomeroy 1974, Sieburth 1976, Sieburth et al. 1978, Peterson

et al. 1978, Porter et al. 1979, Ducklow 1983). Bacterial uptake of

algal excretion products returns an otherwise unharvestable portion of

the primary production to the grazer food chain (Paerl 1974, 1978;

Cole 1982). In aquatic systems that receive considerable organic

matter loading from their watersheds (e.g., reservoirs and riverine

lakes), the microheterotrophic conversion of biologically available

allochthonous dissolved organic matter (DOM) to bacterial biomass

may significantly supplement ecosystem productivity (Kuznetsov 1968,

Sorokin 1972) if the bacterial production is efficiently harvested by

planktonic consumers. Bacteria associated with detrital particles or

aggregates appear to be more efficiently harvested by macrozooplankton

than are free-living bacterioplankton by virtue of their greater

effective particle size (Peterson et al. 1978, Hobble and Wright 1979,

Kimmel 1983). Small (<30 -u.m) ciliates and heterotrophic

microflagellates may provide a trophic link between the free-living

bacterioplankton and macrozooplankton (Sieburth et al. 1978, Porter

et al. 1979, Pace and Orcutt 1981, Beaver and Crisman 1982); however,

the energetic cost of additional trophic transfers may diminish the

significance of this linkage to the foodweb.



There is no general agreement in the literature on the relative

importance of free-living and attached bacteria in planktonic

environments. Numerous investigators have observed bacterial

colonization of suspended particles and microbial-detrital aggregates

(Seki 1972; Paerl 1973, 1975; Bent and Gouldar 1981), but others have

reported most bacterioplankton to be free-living (Wiebe and Pomeroy

1972, Hobbie and Rublee 1975, Ferguson and Rublee 1976). Measurements

made In coastal and open ocean systems indicate that generally 80% or

more of the bacterial biomass and activity is due to free-living rather

than attached bacteria (Azam and Hodson 1977, Wiebe and Pomeroy 1972,

Ducklow and Kirchman 1933), and similar results have been obtained for

a variety of natural lakes (Paerl 1980) and reservoirs (Kimmel 1983).

However, attached bacteria have been reported to dominate

microheterotrophic activity in planktonic systems having high

concentrations of suspended particles; e.g., near-shore waters 1n

large lakes and in coastal regions (Paerl 1977, 1980), and turbid

rivers (Jannasch 1956) and estuaries (Hansun and Wiebe 1977, Bent and

Goulder 1981). Paerl and Goldman (1972) concluded that suspended

particles transported by turbid stream inflow to ultraoligotrophic

Lake Tahoe stimulated planktonic microheterotrophy by serving as both a

surface for microbial attachment and an enriched microenvironment for

bacterial growth.

Jannasch and Pritchard (1972) reemphasized earlier suggestions

(Waksman and Carey 1935a,b; Zobell and Anderson 1936) that adsorption

of dissolved inorganic and organic nutrients increases concentration

gradients at particle surfaces and thereby promotes microbial

attachment to suspended particles in oligotrophic environments.

Fluvial inputs of suspended particles to reservoirs provide a greater

number of particles and a greater surface area for bacterial attachment

and growth than occur in most oceanic and lacustrine environments.

Whether a similar enhancement of laicrobial activity in association with

suspended particle surfaces occurs in higher-nutrient environments,

such as particle-rich reservoirs, remains uncertain (Goldman and Kimmel

1978). However, Harzolf and co-workers (Marzolf 1980, Marzolf and

Arruda 1981, Arruda et al. 1983) have demonstrated that DOM adsorption



and bacterial growth associated with suspended clay particles can be of

major Importance to reservoir zooplankton.when significant phytoplankton

production is prevented by abiogenic turbidity.

Kimmel (1983) surveyed several reservoirs of differing trophic

status and reported that microalgae (<8.0 iim) and free-l1v1ng bacteria

(<1.0 y.rn) were primarily responsible for planktonic autotrophy and

microheterotrophy, respectively, in the impoundments examined. However,

his sampling was limited both spatially and temporally, and did not

Include an oligotrophic system. Here we report the results of a more

thorough sampling of DeGray Reservoir, an oligotrophic impoundment of

the Caddo River 1n south-central Arkansas. Previous water quality

studies of DeGray Reservoir have shown 1t to possess marked longitudinal

gradients In nutrient concentrations, water clarity, algal biomass, and

phytoplankton productivity (Thornton et al. 1982, Kennedy et al. 1982,

0. Nix, unpublished data). This spatial heterogeneity provided us the

opportunity to examine within a single system the responses of

naturally occurring phytoplankton-bacterioplankton assemblages to

gradients of environmental factors hypothesized to control the size

distributions of planktonic autotrophy and microheterotrophy.

METHODS

DeGray Reservoir was sampled on three occasions (31 August -

2 September 1982, 1-4 February 1983, and 21-23 June 1983),

representative of late-summer, mid-winter, and early-summer

environmental conditions, respectively. During each sampling trip, we

obtained near-surface (1 to 2 m) samples from stations localsd along

the longitudinal axis of the reservoir and a vertical series of samples

at selected stations. Water samples were collected with a submersible

pump connected to a weighted opaque hose, pumped Into 10-L plastic

cubitainers, and then subsampled for various measurements and

experiments. Water temperature, dissolved oxygen, pH, and conductance

were measured with either a Hydrolab or a Hartek monitoring system.

Incident solar radiation was monitored with a calibrated mechanical

pyrheliograph, and photosynthetically active radiation (PAR, 400-700 nm)



was measured 1n situ with a L1-Cor quantum meter equipped with a

spherical submersible sensor. In vivo chlorophyll fluorescence (IVF)

was also determined in situ (Lorenzen 1966). Dissolved nutrients,

chlorophyll a concentrations, and phytoplankton productivity were

estimated by standard automated methods (Stainton et al. 1974),
14methanol extraction (Marker et al. 1980), and C uptake (Goldman

1963, Vollenweider 1971), respectively.

Size distributions of planktonic autotrophy and microheterotrophy

were determined by Isotopic labelling and differential filtration of

natural phytoplankton-bacterioplankton assemblages (Kirnmel 1983).

Subsamples In 130-mL light and dark bottles were inoculated with 0.5 mL
14

NaH CO, solution (56.5 mC1/mmol specific activity, 5.5 y.C1/mL) and
3

0.1 mL sodium H-acetate (10 Ci/mmol, 25.0 vC1/mL; 0.5 ng/L acetate

enrichment over ambient concentration) to label autotrophs and

microheterotrophs, respectively, and Incubated in situ for 4-5 h.

Vertical series samples were Incubated at the depths from which they

were taken. Longitudinal series samples were obtained from the mixed

layer (from 1-2 m) at stations along the reservoir longitudinal

axis (F1g. 1) and incubated at a single station at the depth of

photosynthetically saturating light (150-300 v£ nf2 sec"1), usually

at 2-3 m. In September and February, samples were double-labelled
14 3

(inoculated with both C-bicarbonate and H-acetate); however,
3

because of problems in detecting adequate H activity in February

samples, all June samples were inoculated separately. Selected samples

were poisoned with 1 mL saturated HgCl- solution, inoculated, and

Incubated to provide a correction for radioisotope adsorption to

particles and filters.

Immediately after incubation, 15-mL aliquots were gently vacuum

filtered (<100 torr) 1n parallel through 47-mm Nucleopore polycarbonate

filters of 0.2, 1.0, 3.0, and 8.0 iim pore diameter. Filters and

retained particles were rinsed three times with deionized water and

placed in plastic minivials. Six milliliters of Aquasol fluor were

added to each minivial, and all samples were radioassayed using ?

Packard 4640 liquid scintillation spectrometer. Automatic external

standardization, calibrated with quenched series of C and H
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Fig. 1. Map of DeGray Reservoir, an impoundment of the Caddo River located in
sorih-central Arkansas. The submerged river channel (thalweg) and the
distance above the dam (in kilometers) are indicated by the dotted line
and interspersed numerals, respectively. Sampling stations located along
the longitudinal axis of the reservoir are also shown.



standards, was used to correct for sample quenching. Planktonic

autotrophy was estimated as the difference between light and dark bottle
14 q

C uptake and microheterotrophy as H uptake 1n the dark. All

samples were corrected for radioisotope adsorption. Size distributions

of autotrophic and m1croheterotroph1c activities were expressed as

percentages of the activity retained by the 0.2-iim filter.

RESULTS AND DISCUSSION

Vertical Patterns

Light availability restricted significant planktonic autotrophy to

the upper 5 to 6 m of the water column 1n DeGray Reservoir (F1g. 2).

Phytoplankton productivity at the depth of maximum photosynthesis was

highest 1n February and lowest 1n September (F1g. 3a); however, Integral

primary production did not vary greatly on a seasonal basis (19, 23,
-2 1

and 25 mg C m h ) in September, February, and June, respectively)

due to a progressive Increase in euphotic zone depth and, probably, 1n

algal nutrient deficiency from winter to late summer.

Vertical changes 1n the size distribution of autotrophy were not

statistically demonstrable due to the low number of samples; however,

within the euphotic zone (>1% surface light), the relative importance

of the >3-y.m size fraction appeared to decline with increasing depth

(F1g. 3b). This apparent decrease with depth 1n the activity of

"larger" cells (I.e., 3- to 8-pim and >8 jim) was more gradual 1n

September and June than in February, suggesting a direct relationship

to light intensity. However, at lower light levels (<1% surface

light), the fraction of total autotrophy associated with >3--p.m

particles Increased (at 5 m in February and at 6 m In June). In June,

all autotrophy at 6 m was associated with >3-nm organisms, with 71% of

the total in the 3- to 8--u.ni fraction and 29% >8 ixm. Cells >8 -u.m

appeared

to be somewhat more Important during the summer months than 1n

mid-winter, but in almost all cases, <50% of the total autotrophic

activity occurred 1n the >8-y.m size fraction.
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Fig. 3. (a) Vertical distributions of total planktonic autotrophy for 1 September 1982,
23 February 1983, and 23 June 1983 at lacustrine stations in DeGray Reservoir,
(b) Changes in the size distribution of autotrophic activity with water
column depth.



10

These results are of Interest in regard to the influences of

nutrient and light availability on size-dependent phytoplankton growth.

Much research has Indicated that small algal cells (e.g., nanoplankton)

have a competitive advantage over larger cells with respect to nutrient

uptake and cell growth in nutrient-poor environments. However, the

models of Laws (1975) and Shuter (1979) assume that both growth and

respiration rates are Inversely related to cell size and, therefore,

predict that large cells should grow faster than small cells at low

light intensity. In DeGray Reservoir, most of the autotrophic activity

occurs in smaller size fractions than those specificially considered in

algal growth models. However, the observed vertical patterns in the

size distribution of autotrophy appear to support the hypothesis that

the competitive advantage of small cells in nutrient-poor environments

1s reduced at low light intensities (Schlesinger et al. 1981).

Comparisons of microheterotrophic activity are problematic because

of the numerous organic substrates potentially available for microbial

uptake in natural waters and our lack of knowledge of the identities,

concentrations, and relative availabilities of these substrates. We
3

used H-aceta+f* as an analog of low molecular weight, dissolved
organic compounds that should be readily available for bacterial

uptake. Levels of planktonic microheterotrophy, as indicated by

H-acetate uptake, were significantly higher (ANOVA, Fr9 , , = 29.4,

P < 0.01) in September 1982 than in February and June 1983 (Fig. 4a).
3

Average turnover times of the H-labelled acetate pool for the depths
sampled were 9.6, 16.9, and 20.3 h for September, February, and June

vertical profiles, respectively. Microheterotrophic activity did not

vary significantly with depth (r = -0.40, 6 df, NS) even In September

when the vertical structure of water temperature, algal biomass, and

phytoplankton productivity was pronounced (F1g. 2).

We were unable to determine the size distribution of

microheterotrophy in February due to a misjudgement of the proportion

of C and H activities added to the samples. As a result of our
3

error, H activity in the larger size fractions was undetectable
14relative to the C activity present. However, in September and
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June samples, microheterotrophy was dominated (usually >75%) by

the <1.0-nm size fraction, indicating uptake by free-living

bacterioplankton. The September 1982 vertical profile (Fig. 4b) shows

that the importance of attached bacteria (>1 iim) was low (X = 9.8%,

range = 7.5-11.7% of the total microheterotrophic activity) 1n the mixed

layer (0 to 7 m), but Increased significantly (ANOVA, Fri _, = 37.6,

P < 0.01) 1n the metalimnion and hypolimnion (X = 24.1%, range = 18.6-

26.4%). This shift toward larger particle sizes with depth was likely

a result of decreased availability of labile DOH supplied by algal

excretion and increased concentrations of algal-derived particulate

organic detritus. However, even in metalimnetic and hypolimnetic

samples, microheterotrophic activity associated with particles

>3.0 ixm was usually <10% (X = 9.1%, range = 6.2-10.8%) of the total.

Longitudinal Patterns

Longitudinal changes 1n the magnitudes of near-surface planktonic

autotrophy and microheterotrophy were most apparent in September 1982,

although uplake to downlake reductions in both were observed on all

three sampling dates (Fig. 5). Phytoplankton productivity was high 1n

the upper portion of the Impoundment (stations 14 and 13) 1n September

1982, decreased rapidly toward midlake (stations 12A and 11), and then

declined to <10% of the uplake level 1n the lower portion of the

reservoir (stations 10, 7, and 2). Microheterotrophy showed a similar,

but less marked, longitudinal pattern. Except for a two-fold reduction

between stations 14 and 13 1n September, microheterotrophic activity

was relatively constant along the longitudinal axis of the reservoir,

decreasing only slightly from uplake to downlake stations.

Longitudinal trends in the size distributions of planktonic

autotrophy and microheterotrophy were less apparent than changes in the

magnitudes of the total autotrophic and microheterotrophic activities

within OeGray Reservoir (Fig. 6, Table 1). As 1n vertical profiles,

much (X = 54%, range = 32-77%) of the total autotrophic activity was

associated with the 1.0- to 8.0-y.m size fraction; however, autotrophy In

the >8-nm size fraction was quite Important and comprised most of the

remaining activity (X = 40%, range = 23-65%). Usually, there was
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Table 1. Size distributions of planktonic autotrophy and microheterotrophy in near-surface
samples along the longitudinal axis of DeGray Reservoir. Station numbers increase with
increasing distance from the dam; see Fig. 1 for station locations. Total autotrophic
and microheterotrophic activities are defined as ^ C and ^H activities, respectively,
in particulate matter retained by a 0.2-TJUD pore diameter Nucleopore filter.

Date and
Station

Sept. 2, 1982
Sta. 14

13
12A
11
8
2

Feb. 25, 1983
Sta. 13

12A
11
10
2

June 23, 1983
Sta. 14

12A
7
1

%

0.2-1.

0
0
0
0
0
0

0
0
11.6
15.3
0

0
0
18.0
2.9

Autotrophic

0 1.0-3.0

23.1
32.9
37.8
45.1
28.1
19.0

36.8
36.2
26.2
18.5
54.8

19.5
38.8
32.4
20.6

Activity

3.0-8.

41.4
43.8
27.7
27.2
30.3
38.7

22.6
25.8
28.4
20.4
17.7

27.1
23.7
12.2
11.6

Retained

0 >8.0

35.
23,
34.
27.
41.
42.

40.
37.
33.
45.
27.

53.
37.
37.
64.

Tim

.7

.3

.5
7
5
3

6
9
8
7
5

3
5
4
8

% Hicroheterotrophic

0.2-1.0

78.2
75.8
78.4
88.7
86.8
83.9

—
—
—
—
—

81.1
75.9
83.6
72.5

1.0-3.0

15.8
16.0
17.6
9.7
10.7
12.9

—
—
—
—
—

14.7
20.3
13.5
21.8

Activity

3.0-8.0

4.5
6.2
2.1
1.0
1.8
2.5

—
—
—

—

1.9
2.2
1.4
2.4

Retained

>8.0 ym

1.5
2.0
1.9
1.0
1.0
1.0

—
—

—

2.3
1.5
1.4
3.3
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little if any autotropMc activity detected in the <1.0--jim fraction

(Table 1). The size distribution of planktonic mlcroheterotrophy was

even more uniform. Generally, >75% (X = 80%, range = 72-89%) of the

total microheterotrophic activity was associated with the <1.0-y.m

size fraction, indicative of free-living rather than attached bacteria.

Of the mlcroheterotrophy apparently due to bacteria associated with

suspended particles, most was in the 1.0- to 3.0--u,m size fraction,

with usually <5% (X = 4.3%, range = 2.0-6.2%) of the total activity

associated with particles >3 um.

If autotrophy >3.0 ym and mlcroheterotrophy >1.0 um (those size

fractions likely to be most available to planktonic macroconsumers) are

examined, longitudinal patterns are discernible that suggest changes in

controlling mechanisms along the longitudinal axis of the reservoir

(Fig. 7). In September 1982, autotrophy >3.0 vim decreased gradually

from station 14 to 11, then increased again further downlake. In June

1983, the decrease in the relative importance of >3--u,m autotrophy

extended further downlake to station 7 before increasing again at

station 1. In contrast, autotrophy >3 y.m remained at a lower, but

relatively constant, level from uplake to midlake and then declined

downlake in February 1983. This different pattern likely resulted from

the extension of riverine conditions throughout the reservoir during

the 1982-83 winter following a record flood in December (J. Nix,

personal communication).

Settling and/or grazing losses of larger cells, reduced cell size

in response to decreasing nutrient availability downlake, or a

size-dependent growth response to a shift from a relatively fluctuating

advective nutrient supply in the most riverine portion of the

impoundment to a lower, but more constant, level of available nutrients

supplied by internal recycling further downlake could account for the

June and September declines in the relative importance of >3--jim

autotrophy 1n the upper portion of DeGray Reservoir. The experimental

results of Turpin and Harrison (1979) suggest that the growth of

larger cells may be favored by the temporal patchiness of a limiting

nutrient. The subsequent Increases in autotrophy associated with the

>3--u.m size fraction downlake are more difficult to explain. However,
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an uplake to downlake shift from diatoms and blue-greens to dominance

by green algae Is Indicated by preliminary examination of phytoplankton

analyses (Kimmel, unpublished data). Therefore, 1t appears likely that

we may be viewing the result of both size-dependent and species-specific

algal growth responses to a changing combination of environmental

controls along the reservoir longitudinal axis.

We observed similar longitudinal patterns in microheterotrophy

associated with >1.0-iim particles (Fig. 7), also suggesting the

operation of different environmental controls 1n the upper and lower

portions of DeGray Reservoir. Bacterial association with suspended

particles and detrital aggregates in nutrient-poor pelagic environments

is believed to be mediated by adsorption of dissolved organic compounds

and Inorganic nutrients to particle surfaces, thus creating an enriched

microenvironment for bacterial growth (e.g., Seki 1972, Jannasch and

Pritchard 1972, Paerl and Goldman 1972, Paerl 1973, 1978). However,

size distribution measurements made in less oligotrophic environments

have suggested that the availability of suspended particles for

bacterial attachment may be of greater Influence than nutrient

availability or trophic state (Paerl 1980, Bent and Goulder 1981,

Kimmel 1983). Our measurements of the size distribution of planktonic

microheterotrophy In DeGray Reservoir indicate that both mechanisms

operate simultaneously within a broad range of environmental

conditions, as exemplified by the superimposed gradients of nutrient

availability and suspended particle concentrations along the reservoir

longitudinal axis. In September 1982 and June 1983, attached bacteria

(>1 iim) accounted for 19-24% of the total microheterotrophic

activity 1n ths relatively nutrient-rich and particle-rich upper

portion of the reservoir, but decreased in importance toward midlake as

suspended particle levels (as reflected by increasing Secchi depth)

decreased (Fig. 7). Microheterotrophy in the >1.0-iim size fraction

Increased again in the lower portion of the reservoir as nutrient

levels declined and, presumably, as enriched microenvironments at

particle surfaces became more important for bacterial growth.

Therefore, our data are consistent with a shift from control of the

size distribution of planlctonic microheterotrophy by suspended particle



availability uplake to control by nutrient availability downlake.
Similar patterns have been observed along longitudinal transects of
riverine estuaries (A. V. Palumbo, unpublished data). These results
should help resolve numerous, apparently contradictory, observations
regarding the relative importance of free-living versus attached
bacteria in various planktonic environments.

SUMMARY AND CONCLUSIONS

The size distributions of planktonic autotrophy and
microheterotrophy in oligotrophic DeGray Reservoir were remarkably
uniform, both spatially and temporally (Figs. 3, 4, 6; Table 1). As
previously observed in oceanic and coastal systems (Azam and Hodson
1977) and in unproductive freshwater lakes (Paerl 1977, Ross and Outhie
1981, Hunawar and Hunawar 1975), planktonic autotrophy was dominated by
small algae with usually >50% of the total carbon uptake accounted for
by the <8-iim size fraction. Similarly, free-living bacterioplankton
(<1.0 -urn) were responsible for 75-90% of the planktonic microheterotrophy.

Longitudinal changes in planktonic autotrophy and microheterotrophy
associated with particles >3 Tim and particles >1 urn, respectively,
suggest that the environmental controls on the size distributions of
algal and bacterial activities may shift along the longitudinal axis of
the reservoir (Fig. 7). Potential explanations for the observed
longitudinal patterns are necessarily speculative and, Inevitably,
produce more questions than answers. However, these results are
significant from at least three viewpoints:

(1) These data (and those presented in the following companion
paper in this volume) demonstrate that the spatial
heterogeneity characteristic of reservoir ecosystems can be
used to an advantage by Hmnologists as an experimental
tool. Superimposed gradients of flow velocity, suspended
particle levels, nutrient concentrations, and light
availability along reservoir longitudinal axes provide
research opportunities for relatins the responses of biotic
communities to a wide range of environmental conditions
within a single aquatic system.
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(2) The observed longitudinal trends 1n both the magnitudes
and the size distributions of planktonic autotrophy and
microheterotrophy are Interpretable from a conceptual view
of reservoirs as "river-lake hybrids" or transitional
environments. Reservoirs appear to combine numerous features
of river and lake environments and, to at least some degree,
a shift from more riverine to more lacustrine conditions
occurs within individual Impoundments (Thornton et al. 1982;
Kimmel et al., 1n press; Kimmel and Groeger, 1n press). The
river-lake hybrid analogy has been used 1n a qualitative
sense by numerous authors over the years, but Is now receiving
more serious attention as a potentially useful framework for
explaining the spatial and temporal heterogeneity, diversity,
and ecological structure of reservoirs as a class of aquatic
ecosystems (see papers in Thornton, in press).

(3) Although the occurrence of longitudinal gradients in physical
and chemical factors and in water quality within reservoirs
1s now becommc; relatively well documented (Thornton et al.
1982, Kennedy et al. 1982, Kennedy, this volume), biological
and ecological responses to such environmental gradients are
not well known.

Size distributions of planktonic autotrophy and microheterotrophy
in DeGray Reservoir correspond well to values previously reported for
several more productive impoundments (Kimmel 1983). Together, these
data show that, over a broad range of environmental conditions, the
predominant fractions of planktonic autotrophy and microheterotrophy
are associated with <8-y.m algae and <l-nm bacteria, respectively.
Furthermore, these results support the view that pelagic ecosystem
metabolism 1s dominated by very small organisms (Pomeroy 1974, Sieburth
et al. 1978, Williams 1981, Ducklow 1983) and demonstrate that such a
view applies not only to unproductive open ocean, coastal, and
lacustrine environments, but also extends to other more productive
lakes and reservoirs.
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