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Abstract

This report describes a theoretical method for the prediction of fin
forces and moments on bodies at high angle of attack in subsonic and
transonic flow. The body is assumed to be a circular cylinder with
cruciform fins (or wings) of arbitrary planform. The body can have an
arbitrary roll (or bank) angle, and each fin can have individual control
deflection. The method combines a body vortex flow model and lifting
surface theory to predict the normal force distribution over each fin
surface. Extensive comparisons are made between theory and experi-
ment for various planform fins. A description of the use of the computer
program that implements the method is given.
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Nomenclature

a Body radius

A, Aspect ratio of fins based on exposed plan-
form area, Eq (19¢)

A, Planform aspect ratio of fins based on exten-
sion.through the body b?/ Sfp

b Fin span

b, Fin semispan

B Root bending moment (Figure 29)

C, Roll moment coefficient (£ /9% Spd)

Ce Roll damping moment coefficient deriva-
tive (9C,/dp),_,

C. Pitch moment coefficient (m/q,S,d)

C, Yaw moment coefficient (n/qeSpd)

C, Local normal force coefficient of fin, Eq (14)

Cy Local normal force coefficient of fin due to
angle of attack, Eq (33)

Cx, Normal force coefficient derivative of fin
(8Cy/0a), _, .

C, Panel root bending moment coefficient

. [B/quu(b, - 2) 5] ~

C, Panel hinge moment coefficient (H/q,, c, S)

C, Panel normal force coefficient (N/q,, S;)

c, Root chord of fin

C, Side force coefficient (F,/qg, Sy)

C, Normal force coefficient (F,/q., S,)

d Body diameter '

F,, Fy, Forces in the x,y,z directions, respectively

F, (Figure 1)

H Panel hinge moment (Figure 29)

—17_]7? Unit vectors in the x,y,z directions, respec-
tively A

I, Fin deflection interference coefficient,
Eq (39)

I Rolling-motion interference coefficient,
Eq (44)

kg Interference lift ratio (Figure 51)

K, Potential flow lift coefficient, Eq (34h)

K, Vortex flow lift coefficient, Eq (34i)

L, Length of the vortex sheet, Eq (6a)

€ mn Roll, pitch, and yaw moments, respectively
(Figure 1)

M Mach number

n Unit normal vector for fin surface

A

N Normal force

N, Total number of vortices in cross-flow plane

P Dimensionless roll speed (q.s b,/U,)

q: Dynamic pressure (1/2 pU?2)

r, . Radius of vortex core

r, ¢ Polar coordinates in cross-flow plane

Iy, ¢ Coordinates of primary body vortex

s Complex position in the cross-flow plane
(y +i2)

S, Frontal area of missile body (x a?)

S Exposed planform area of fin, Eq (19d)

S, Planform area of two fins including exten-
sion through the body, Eq (40b)

u,v,w  Velocities in the x,y,z directions, respective-
ly (Figure 1)

U Magnitude of velocity

U, Freestream cross-flow velocity, U sin a,

VW, Cross-flow velocities in the y,z directions,
respectively, Eq (2) :

v Flow field velocity (uT+ VT-{- w-k.)

X,Y,Z Body Cartesian coordinates (Figure 1)

Yo, Location of primary body vortex in cross-
flow plane

a Angle of attack

a, Local angle of attack

a, Stall angle of attack of the fin, Eq (35b)

r, Strength of the primary body vortex

T, Stength of vortex sheet

5 Control deflection of the j'th fin (Figure 10)

. Geometric scaling factor for fin, Eq (20a)

A Sweep angle of fin

En Fin-oriented surface coordinates, Eq (18)

p Fluid density

¢ Roll angle (Figure 10)

&) ‘Roll rate (rad/s)

Subscripts:

b Missile body

e “Effective” value of argument

le Leading edge

te Trailing edge

(o) Freestream conditions

Superscripts:

. Derivative with respect to time
“Effective” value of argument
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Summary

The present investigation is concerned with the

theoretical prediction of fin forces and moments on
bodies at high angle of attack in subsonic and tran-
sonic flow. The body is assumed to be a circular
- cylinder with a streamlined nose and only cruciform
fins (or wings) as attached lifting surfaces. The fins
are assumed to be planar and have straight leading,
trailing and tip chord edges. The leading edge can
have arbitrary sweep back and the trailing edge can
be swept back or forward. The body can.have an
arbitrary roll (or bank) angle and each fin can have
arbitrary control deflection. The vortices shed frpm
the body are assumed to be symmetrically located
with respect to the angle of attack plane and of equal
strength but opposite rotational sense. The highest
angle of attack of the body for which the body
vortices remain symmetric depends on the nose fine-
ness ratio, body fineness ratio, and Mach number;
normally this angle is near 25°. The body flow field
model and lifting theory use some empirical data, but
the user of the method need not provide any addi-
tional data. A description of the construction and use

of the program FINLOAD, which implements the
method, is given.

Extensive comparisons are made between predict-
ed results and experimental measurements. Included
in the comparisons are: panel normal force, root
bending moment, induced roll moment, nonlinear
roll damping moment, pitch (or yaw) control forces,
and roll control moment. The force and moment
predictions are compared with experimental data for
six different fin geometies; these include delta,
clipped delta, and rectangular planforms. Predictions
for wing alone normal force characteristics are com-
pared with data for rectangular, delta, clipped delta,
diamond, arrow, clipped arrow, and trapezoidal plan-
forms. Extensive discussions are given that explain
the underlying aerodynamic causes of fin force and
moment nonlinearities and how these are related to
fin geometry. Good agreement between the present
method and experiment is obtained, except for con-

-trol force and moment where the agreement could be

characterized as “fair.”
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Prediction of Forces and‘: Moments on
Finned Bodies at High Angle of Attack

in Transonlc Flow

Introduction -~ - - - ¢

The aerodynamics of missiles and bombs at high
angle of attack has become increasingly important for
modern design requirements, Examples of this are
high maneuverability of air-to- air-missiles and toler-
ance of large disturbances at store separation. At high
angle of attack, a body of revolution sheds two sym-
metric vortices from the leeside of the body, and
these grow in strength along the length 6f the body.
The body’s attached lifting surfaces are immersed in
this vortex wake flow and, consequently, the surface
pressure distributions are significantly changed from
the potential flow case. This, in turn, causes nonlin-
earities in the forces and moments prodiced by the
lifting surfaces. These nonlinearities have been
known to cause serious flight stability and controlla-
bility problems in vehicle flight dynamics.

Attempts at predicting the forces and moments
produced by lifting surfaces in a symmetric body-
vortex wake have met ‘with moderate success. Very
early work was done by Mello and Sivier! for a
cruciform-fin missile in supersonic flow. References
2 and 3 report reasonably successful work for incom-
pressible and supersonic flow, respectively, but only
rectangular fin planforms were considered. The ap-
proach taken was to calculate the body-flow field
using a vortex-modeling technique and then use this
as input to a lifting theory.23 The most extensive
work on the subject has been achieved by Nielson
and his associates.#? They have attacked the very
difficult problem of a general canard-fin-body con-
figuration in transonic and supersonic flow with
both symmetric and asymmetic body vortices and
canard vortices. Their approach is a combination of
siender-body theory, Deffenbaugh’sé? method for the
impulse flow analogy, and data base experimental
input for fin (or wing) alone characteristics.

The present approach uses the body flow field
model developed in Reference 10 and combines it
with an approximate lifting surface theory to predict

'fin forces and moménté. The lifting surface theory

and the equations for fin forces and moments are
developed in detail. The applicability and accuracy of

. the present method is evaluated by extensive com-

parisons of theory and experiment. The purpose of
the present work is to develop a force and moment
predlctlve method that is applicable to a wide variety

_of fin planforms over the subsonic and transonic

speed range..
Aeérodynamic Analysis
. .The general approach to the aerodynamics of the

problem is to.calculate the body flow field and then
calculate the forces and moments of attached lifting

surfaces exposed to this flow field. This approach is
.clearly based on the assumption that the body flow

field is not significantly affected by the flow induced
by lifting surfaces. This assumption implies that the
present analysis is not appropriate for missile con-
figurations in which the fin-root chord is a large
portion of the length of the missile body (e.g., the
Phoenix air-to-air missile (AIM-54A)). The present
analysis also assumes that there is only one set of
lifting surfaces (wings or fins) and that it is arranged
in a cruciform configuration. The present approach
could be applied to a two- or three-fin configuration
by making appropriate modifications to the lifting
theory. '

This present approach naturally divides the anal-
ysis into two areas: the body flow field and the
prediction of lifting surface forces and moments. The
model of the body flow field was developed pre-
viously in References 2 and 10. For completeness,
however, the model and the associated computation-
al procedures are described in this report. The predic-
tion of lifting surface forces and moments is de-
scribed in two phases. First, the lifting theory for
calculating the normal force distribution and the

13



total normal force of the lifting surface in uniform

approach flow is described. Second, the model of the -

body flow field and the lifting theory are combined
to yield a method for predicting forces and moments
of attached lifting surfaces.

Body Flow Field

The flow field of a circular cylindrical body at
high angle of attack is dominated by the presence of
body vortices and their associated feeding sheets.
Figure 1 shows the coordinate system and a schematic

of the body vortex wake flow. These vortices increase:

in strength as the angle of attack or body length

increases. To model this complex separated flow, the. -
flow is divided into the cross-flow components (v, -

and w_) and the axial flow component, U, cos a,. The
local flow velocity can then be expressed as:

= U_cos a,:i-+ v3-+ w:l:. 1).

It is assumed that the steady, three-dimensional,
body flow field can be divided into (1) constant axial-

flow component and (2) the two-dimensional, poten- -

tial, flow about a circular cylinder with vortices in the
wake and their associated image vortices inside the
cylinder. Essentially all of the vorticity is located
inside the vortex cores of the primary body vortices
and the vortex feeding sheets connecting the body
boundary layer separation points and the primary
body vortices. Figure 2 shows the primary and sheet
vortices in the cross-flow plane, Using this model,
the cross-flow velocity components can be written as

Z( —22
(Y Y,)2 + (Z N Zj)z

v [ -2U a%z
‘ (y* + zz)2

- Zj - aC
vr(N —4) Z - y)2+(z z)Z][l el

ek

y - Yj
(y -y) + (z- z)*

(2a)--

z( 1y - (2b)

j=1

+ _(L_]
(y* + 227

V( 1) -

-1r(N 4)44

Y - }{1-e~c}
5 -y)F + - zp

14

Zi = Zj:H

y; = ~ysandz = z,

where

C =125y -y )2 + (z - 2] /1?2

y. .z, = {Y1'zl y=0
v YaZs y<0

U, =U, sin o, is the free-stream cross-flow
velocity
a. =body radius
I, =strength of a primary body vortex
I, =strength of a vortex sheet
yiz; =location of the j'th vartex
N, = total number of vortices in thec cross-flow
: plane
T = vortex core radius

c

~ Tha dependence of T, T, v, x, and i, on angle of

attack and body length is taken from experimental

. measurements.

The expnnential- tarm in Fqs (22) and (2b) was
included to model the solid body type rotation in the

_cores of the primary bedy vortices, Thie method of

approximating the vortex cores yields a cross-flow

“velocity field that is continuous, whereas simply
-imposing a solid body rotation onto a potential flow

field does not.

- Using the assumption of a symmetric vortex wake,
the relationship between the locations of all of the
vortices in the cross-flow plane becomes

2
=Yg 7 A Yu/ (¥4 +27 1)} forj = 2,6,10,..N,-2
=a Zi.I/(Yi.r*‘ z,—l)

(3a)

forj = 4,8,12,..N,. (3b)

With these equations the location of all of the vortices
can be related to the location of the vortices external
to the body in the positive (y,z) quadrant; i.e., j =
1,5,9,..N,-3.

The location of the right-handed vortex sheet, s;
= r,ei, is given as

= [acos(mr$/2¢,) + (1, + r)sin¥(w /2¢,)/

{14+ (0, + 1r)(s, - d)/alle?® ¢ <o=<¢,

(4)



where 1, and ¢, are the radial and angular locations,
respectively, of primary vortex number 1, and ¢ is
the angle at which the sheet separates from the body.
The vortex sheet location as given by Eq (4) yields a
slight improvement in comparison with experimen-
tal data of Reference 11 as compared with that used in
References 2 and 10. Equation (4) requires that the
vortex sheet terminates at the core radius of the
primary vortex, whereas the equations used in Refer-
ences 2 and 10 terminated the sheet at the center of
the primary vortex. :

¢, is defined as the angle at wh1ch the radial’
location of the sheet achieves a value of 1. 01a, there--

- fore, ¢, is defined by the equatlon

cos(m ¢, /2 ¢,) + (rl + r?) sm2 (w12
)l = 101. .. . (5

[a -+ (l'l + rc)(‘b]'—

Figure 1. Coordinate System and Schematic of Body Vortices

The low-strength vortices which represent the
vortex sheet are equally spaced in the arc length
along the sheet. The arc length of the vortex sheet is

‘ ¢y dr \2 |12 ’
L, = [ [rg + (-)] d (62)
| L LT \de '

where r, is the magnitude of s, from Eq (4), and

dq‘)s - Y

sin{(mw ¢/2L¢l)4cos(w 6/2¢,) 1+ (x,+r,) -

(6, - ¢)/a}l + {(r, + r)*/alsin? (x ¢/2 ¢,)1/

I+, + 1)@, - ¢)/aP . (6b)
z,w
AV
n
o, '{,;
= v,v
"
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g 2 VORTEX
b)
@ 3 SHEET
¢ )
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VORTEX 7 VORTEX sy

VORTEX 10

VORTEX 11

VORTEX Ny-1 = -\ VORTEX N,=2
VORTEX 3 VORTEX 2

4

Uc
Figure 2. Cross-Flow Plane Flow Model

The first vortex in the sheet (vortex 5) is located at
the point where the sheet leaves the body so that
r,= 1.01a and ¢;= ¢. The angular position for vorti-
ces 5,9,13,..N -3 is found from

P ® d 2 |12 .

d=35 Ls=] r§+<i) dé . (7

N, - 4 o d¢ '
Once the angular position is known from Eq (7), then
from Eq (4) one obtains the radial location:

r, = acos(m¢/2¢) + (r, + rJsin? (1r¢i/2¢1)/

)

L+ + 1) (0 - ¢)/al . 8y

The experimental inputs required by the theory -~
will now be discussed. The total strength of all the
vorticity, I, (primary vortex and feeding sheet), in

each half-plane of the wake is taken from the experi-
mental data of Grosche!?

I/(rdU,) = 0.35(x/a - 6) a2 forx/a>6 . (9)

This equation represents the data of Grosche for
7°=<@,=<20° and 5=<x/d=13 for incompressible flow.
No extensive body-vortex wake surveys have been
conducted in compressible subsonic flow.

The division of vorticity between the primary
vortex and the feeding sheet is taken from a correla-
tion of data given in Reference 11. This correlation is
represented by

= 1 - 0.15(x/a) «, + 0.008 (x/a)? o2 (10)

"JL:"J

“wherel, = T, + T, Although the data from Refer-

ence 11 are for supersonic flow, it is reasonable to
assume that the ratio of primary vortex strength to
total vorticity is the same in subsonic and supersonic
flow. ‘ .

The location of the primary vortex is taken from
the experimental data of Grosche,2 Tinling and Al-
len,'* and Fidler, Nielsen, and Schwind.!¢ The experi-

‘mental data for the location of the right-hand prima-

ry vortex (vortex 1) in polar coordinates are
approximated by ‘

¢ = 74° .. - (11)
r/a = 070 4+ 0.06 [M_ + 1(x/a + 6)a, .

These equations incorporate the moderate increase in
radial location of the vortex center with Mach num-
ber measured by Tinling and Allen.

The radius of the vortex core is taken from the

~ data of Reference 11. A fit of the data for angles of

attack of 10° and 15° and body lengths from 7 to 14
calibers is given by

r/a = 0.030 (x/a) /e, . (12)

The computational procedure for the body flow
field model will now be discussed. The order of

- calculation is as follows:

(a) aand x are set.

(b) T, is calculated from Eq (9).

() T, and T, are calculated from Eq (10).

(d) &, and r, are calculated from Eq (i1).

(e) r.is calculated from Eq (12).

(f) ¢, is computed from Eq (5) by increasing ¢,
from 0° in increments of 0.01¢, until Fq (5) s
satisfied. Recall that ¢, = ¢; and r; = 1.01a.

(g) L,iscaleulated from Eq (6) by Stmpson’s Rule
of numerical integration.

(h) ¢, forj= 9,13, .N,-3 is calculated by increas-
ing o from ., in increments of 0.01 4, until
the integral equation is satisfied. The inte-
gral is evaluated by Simpson’s Rule. In the
present work, N, is set at 44; that is, 10
vortices in each sheet.

(i) r1forj = 9,13..N,-3 is calculated from Eq (8).

() ypzforj=1,5,9,.N,-3are calculated from ¢,
r; using the polar to Cartesian transformation.

(k) y; z for all remaining vortices are calculated
from Eq (3).

() v, w, are calculated from Eq (2).



Lifting Theory . -

Various lifting theories were con51dered for use
with the present flow model for the prediction of
forces and moments produced by fins. The criteria by
which a lifting theory was chosen was that the theory
must be able to consider-very nonuniform, rotational,
approach flow and it .must.include fin stall and
poststall characteristics. These criteria quickly limit-
ed the possible theories to strip theory. In strip theory
it is assumed that the normal force on a chordwise
strip of fin can be calculated by using the local
dynamic pressure and.angle of attack of the strip,
independent of adjacent chordwise strips. Significant
elements included in the present lifting theory are
the following: normal force .distribution.over the
lifting surface depends upon fin -aspect ratio and
leading and trailing edge sweep; individual control
deflection of each fin is allowed; fin-fin interference
due to both control deflection and rolling rate is
included; normal force depends upoen free-steam
Mach number; and nonuniform approach flow alters
the effective leading edge sweep.

a. Local Normal Force

The local normal force on a differential element of
the fin surface is written as (see Figure 3)

dN = C,qdxdr (13)

where C, is the local normal-force coefficient and’q is
the local dynamic pressure (including.that due to
missile rolling speed). The local-normal force coeffi-
cient C, is composed of three separate- functions: (1)
the normal force due to thelocal angle of attack of the
differential element, (2) the local chordwise distribu-
tion, and (3) the local spanwise distribution. Assum-
ing a product torm ot the function, one has

Cy = 0 Cyla) Clxt) S = = (14)

where o is a geometric scaling factor, Cy(a,) is the
local normal force coefficient due to local angle of
attack, and C(x,r) and S(r) are the chordwise and
spanwise normal force distributions, respectively, for
uniform approach flow.

For arbitrary planform fins, it greatly simplifies
matters if C and S are written in terms of appropriate
fin-oriented coordinates. To determine the appropri-
ate fin-oriented variables, the x coordinate of the
leading and trailing edges of the fin is written as

Xpe = X, + (x; - x) (r - 3)/(b° - a)
= x; + (x, - %)) (r - a)/(b, - a) (15)

xte

where x,, x,, X3, and x, are defined in Figure 3, and b,
is the semispan of the fin. x,, x;, and x, can be related
to the leading edge sweep A,,, and the root chord of
the fin ¢, as

X, = %, + (b, - a) tan A,
X3 = X + <

X, = X + (b, - a) tan A, . (16)

_ .Sdbstituting these equations into Eq (15), one obtains

‘X, =-% + (r - atanAa,
D xe = x, ¥ ¢, + (- altanA, . (17)
!
dx
/"/\e - . Odr Ate
: b,
1
i L B ) l i l )
Xy X2 X3 Xq

Pigure 3. General Planform Fin

Using the boundaries of the fin planform (i.e., x,,,
X @, and b,) as scaling variables, a convenient set of
fin-oriented coordinates are

£ = (x -
(r - a)/(b, - a) (18)

xte)/(xle - xte)

n

where £ is the chordwise variable and 75 is the span-
wise variable (Figure 4).

b. Normal-Force Distribution

Experimental data'>!* for normal-force distribu-
tion over the surface of a number of fin planforms
was studied in order to arrive at general expressions
for C(¢),and S(n). After devising and testing a consid-
erable number of expressions for the chordwise and
spanwise distributions, the following equations were
adopted

C(#) = JE exp[#/cos k] (19a)
S(n) = (1 + 4®) J1T -2 (19b)
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where

A, = 2 (b, - 2)4/8, (19¢)
S, = %(ba - a) [2¢,/(b, - a)
- tanA,, + tanA] . (19d)

A, is the exposed aspect ratio; that is, the aspect ratio
of the lifting surface formed by eliminating the body
and placing the root chords of two adjacent fins
together. S, is the planform area of a single fin.
Equations (19a) and (19b) have been shown to give
valid results for exposed aspect ratios from 0,5 to 5,

leading edge sweep from 0° to 80°, and trailing edge

sweep from -60° to 80°.

Figure 4. Fin-Oriented Coodinates £, n

The normal force distribution over the surface of

the fin for uniform approach flow is then provided.

by the product of Eqs (19a) and (19b). This expression
was compared qualitatively with experimental data
by means of a three-dimensional computer graphics
routine, DISSPLA.* This routine provided a means of
visualizing the normal force distribution over the
surface of the fin. Shown in Figures 5 through 9 are
sets of three-dimensional perspective plots of typical
planforms that were examined. Figure 5 shows a

*DISSPLA is a graphics of software package available from Inte-
grated Software Systems Corporation, San Diego, CA.
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" sequence of untappered fins with A,, = A,, = 60° for

A, = 0.5, 1, and 3. The view in the perspective plot is .
from behind and above the fin surface, looking up-
stream and slightly inboard. The graphics routine
uses a rectangular area over which the surface func-
tion is defined. Consequently, the regions that show
a surface value of zero are not part of the fin plan-
form. For example, on Figure 5 the trailing edge of
the fin is located at the junction of the nonzero and
zero surface values. Another point to note on the
perspective plots is a “spike” character at the leading

‘edge of the planform. This characteristic is not inher-

ent in the equations but simply is a result of the mesh
size on the surface and the zero value of the surface
just ahead of the leading edge.

Figure 6 shows a sequence of fins with A,, — 60°,
A, = 20° for A, = 0.5, 1, and 2.92. In Figure 6 the
taper rativ decreases until in Figure 6¢ an arrow wing
is achieved. Note in this sequence of figures that as

" the leading edge becomes longer the normal force

loading reflects the very high loading near the lead-
ing edge caused by the increasing strength of the
leading edge vortex.

Figure 7 shows a rectangular planform for A, =
0.5, 1., and 3. For the low aspect ratio planform
(Figure 7a), note the increase in normal force near the
tip chord due to the tip vortex increasing in strength

" along the tip chord. For the high aspect ratio plan-

form (Figure 7c¢), it can be seen that the spanwise load
distribution nears the classical elliptic loading.

Figure 8 presents the loading for A,, = 60°, A,
0°,and A, = 0.5,1,, and 2.31. Figures 8a and 8b show
clipped deltas, and Figure 8c shows a delta planform.
When the distribution for the delta planform is com-
pared with experimental data,!® it is seen that the
empirical equation models the data except near the
leading edge.

Figure 9 shows a trapezoid planform with de-
creasing taper ratio, A, = -A,, = 40°and A, = 0.5, 1.,
and 2.38. The planform with A, = 2.38 (Figure 8c) has
a taper ratio of zero and is, therefore, a diamond
planform. '

The geometric scaling factor in Eq (14) can now be
determined. ¢ is evaluated by the requirement that
the integrated average of the assumed normal force
distribution over the surface of the fin must be unity;
i.e., the assumed normal force loading must be nor-
malized. Therefore, one may write

.qcojjcndA=qcoCst'
fin



Substituting C, from Eq (14), one has

by e
o e f f Clx1) S(r)dxdr = §, .
a xl

e

Transforming to the fin coordinates {75 (Eq 18) and
solving for ¢, one obtains

i ] (202)
(b, - a) ] [ Q(n) C(¢) S(n) dE d

o o

where
Qn) = ¢, - (b, - a) (tan A,, - tanA,) 7 (20b)
and C(£¢) and S(n) are given by Eq (19).

c. Local Angle of Attack

Referring back to Eq (14), Cy depends on the local
angle of attack of the chordwise strip. The local angle
of attack is calculated by using the unit normal vector
of the fin surface, 71, and the total velocity, V(Figure
10). The geometric local angle of attack can be shown
to be

a, = sin [0 - V/(R V)] . (21)

The surface normal vector of the fin depends on the
roll angle ¢ and the control deflection of each fin §;, j
= 1, 2, 3, 4. Let the sign convention of the control
deflection of each fin be as follows: positive control
deflection of Fins 1 and 3 produces a positive normal
force, i.e., a pitch down maneuver; positive control
deflection of Fins 2 and 4 produces a positive side
force, i.e., a yaw left maneuver (see Figure 10). The
sign convention for the surface normal vector, how-
ever, is such that the vector always points in the
counterclockwise direction. Referring to Figure 10,
the surface-normal vector is

N = sin(A6) T-cos(3)sing ] + cos (8) cos ¢ k (22)
where

A = cos¢/|cos ¢| ;

A simply provides the sign of §; which is consistent
with the above-mentioned sign convention.

The local total velocity (i.e., the velocity of the
fluid relative to the chordwise strip) is composed of
two types of terms: the fluid velocity relative to the
fixed coordinate system and the velocity of the fixed
coordinate system relative to the spinning chordwise
strip. Therefore, using Eq (1) it can be written

- —

V=U_cosapi+ (v, + <;>rsin qb)T

+ (w_- <;>r cos ¢).l-<’ (23)

where v_and w, are given by Eq (2) and ¢ is the roll
rate of the missile.

The axial location at which the flow model is
evaluated is calculated from the pin planform charac-
teristics. The axial location is chosen as the average
quarter chord location of the root and tip chords; i.e.,

X, = xg o 002500, SR, H-R0:25 ¢l D

where x, is the axial location of the vortex model and
¢, is the length of the tip chord. Rewriting this
equation, one has

X, =X + (0.25¢c, 4+ 0.25¢, + (b,-a)tan A,)/2 .

This axial location is used in Eqgs (9) through (12).

The geometric local angle of attack can now be
calculated by substituting Eqs (22) and (23) into Eq
(21). Interference between fins, however, will alter «,
for control deflection and a rolling missile. These
interference effects are considered in the paragraph
entitled Roll Moment.

d. Effective Aspect Ratio

Consider an aerodynamic effect that occurs when
the lifting surface is attached to the missile body. If
the body is at high angle of attack, the angle in the
plane of the fin between the approach flow and the
fin leading edge can vary significantly, depending
on the roll angle of the body; that is, the fin is yawed
with respect to the approach flow for various roll
angles around the body. This yaw angle results in an
effective change in the leading and trailing edge
sweep and effective aspect ratio of the fin. A simple
example of this is to consider Fin 4 ata roll angle of 0°
with the body at angle of attack «, (see Figure 10).
The effective leading edge sweep of Fin 4 at ¢ = 0°
then is approximately A, -a,. If A,, = 0°, then the fin
at this roll angle would actually be swept forward.

19
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Figure 10. Surface Normal Vector and Sign Convention for Fin Control Deflection

The effective leading edge sweep, f\,e, and effec-
tive trailing edge sweep A, are derived by relating
the average flow velocity along the fin to the leading
and trailing edge unit vectors, respectively. The most
convenient coordinate system to use is cylindrical
coordinates with the orthogonal unit vectors located
in the plane of the tin (see Figure 11). Let V. and w_be
e average cross-tlow velocity components along
the exposed semispan of the fin at a given roll angle;
then,

bO
Vo= ] v(r, ¢) dr
a a

o
and

1 %o
W, — — ] w_ (1. ¢) dr
b, - a J,

where v_and w,_ are given by Eq (2). Rewriting these
equations in terms of fin-oriented coordinates, one
has

1
i ] v.(n, ¢) dn (242)

26

and
1
w, = [ w.(n, ) dn. (24b)

Using the cylindrical coordinate unit vectors &, C,,
shown in Figure 11, the average velocity alang the
leading edge is

—

e -
V = te + Ve,
where
0 = U_cosa,
VvV, — Vcos¢ | wsing .

Since the sweep angle is measured from a line per-
pendicular to the approach velocity, the unit vector
perpendicular to the average velocity is

-

Vi= v/ F VS +a/f&@ + & . (25
The leading edge unit vector is
?,e = sinA,e, + cos A€, . (26)



Figure 11. Fin Surface Cylindrical Coordinates

The effective leadig’g edge sweep angle is the
angle between V| and e,,. Using the scalar product,
one obtains

A, = cos’? ({/l- .g,e) .

e

Substituting in Eqgs (25) and (26),

A,, = cos™ [ (dcos A, -¥, sinA,)/\/a®+ vir] .(27)

This expression presents difficulties in evaluation
because the arc cosine function is double valued. This
problem can be nicely circumvented by noting that

the argument of the arc cosine function suggests A,,

might be split into two angles. Let

A, = A, + ¢, ‘ (28)

- where ¢, is the deviation of the effective leading

edge sweep from the geometric leading edge sweep.

. Now Eq (27) can be written as

cos (A, +¢,) = — —cos A,
yu+ v2
v .
-————sinAj,, .

Using the trigonometric identity for the cosine of a
sum, one has

COS ¢, COS A, -sine, sin A, =

a v .
cos A,, -—————sinA,, .
72 o2 {12 2
as + v a2+ 2

In matching terms, one notes that two mathematical-
ly equivalent expressions can be written for ¢,.. The
one involving the cosine function,-however, suffers
from the same difficulty mentioned above; therefore
use

sine,, = v,/ @& + v .

Substituting this into Eq (28), one finally obtains

A, = A, + sin™! (\7,/‘/ a? + Vf) . (29a)

Using exactly the same procedure, the effective
trailing edge sweep is given by

Ao = A, +sin (9,//& +77) . | (29b)

The effective leading and trailing edge sweep
caused by high angle of attack results in an effective
aspect ratio of the fin. This is significant since the
local normal force coefficient due to angle of attack,
Cy (), will now reflect effective changes in fin
geometry due to apparent yaw of the fin. To derive an
expression for A,, begin with the definition of A,

A, = 2(b.- a)?/S,
where S; is the exposed planform area of a fin.

Writing this in terms of fin semispan, root chord, and
leading and trailing edge sweep, one has

€

A, = 4/[2c,/(b, - a) - tanA,, + tanA.}.  (30)

27



Referring to Figure 12, it can be seen that the exposed
fin semispan and root chord also effectively change.
It can be shown that

'{}a = (b, - a) cosA,/cos A, ; (31a)
¢, = ¢, cos Ag/cos(A,, - A + A (31b)
¢
——
Voo

Figure 12. Geometry for Determining Effective Aspect Ratio

Using Egs (30) and (31), the effective aspect ratio is
written as ‘
. 4
A=
¢ 2ccos A, cos A,
(b,-a)cos A,.cos (A,.- A+ A,)

tan A, + tan A,

(32)

e. Expression for CN (a,)

The functional dependence of Cy on the local
angle of attack is given by an empirical expression
based on lifting surfaces in uniform approach flow.
Other investigators (for example, Reference 6) have
used experimental data for Cy («,) directly in their
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analysis. This is rarely an appealing approach be-
cause it requires vast amounts of data to construct a
data base sufficiently general to address general plan-
forms over a large range of Mach numbers. Also, this
is not possible in the present approach because the
effective geometry of the fin (discussed earlier)
changes with the character of the nonuniform ap-
proach flow.

As the local angle of attack on a missile fin can be

‘approximately 40° to 50° when the angle of attack of

the body is 25°, the expression for Cy (@,) must
include prestall, stall, and poststall characteristics.
The prestall expression for Cy (a,) is takén from the
work of Lecat and Rietschlin.?0 Their analysis is based
on Polhamus suction analogy.2t They extended the
original work of Polhamus un delta wings to include
arbitrary planforms and transonic flow. Their analy-
sis is not repeated here, but their equations are gwen
in the present nomenclature.
Their expression for Cy (a) is

Cula) = I(P sinacosa + K, sin? «. (33)

Note that this equation shows Cy continually increas-
ing with « and, as a result, is not appropriate for
angles near or greater than the stall angle. Although
Lecat and Reitschlin state their method is applicable
to subsonic and supersonic flow, the present analysis
is considercd appropriate for subsonic flow and only

‘supersonic flow with subsonic leading edges.

The calculation procedure for K, and K, is as
follows:

(1) Caleulate b/-\a L,, and A, from Bqs (31) and
(32).

(2) Calculate the distance from x, to the aftmost
point of maximum span, c;

¢;= ¢+ (b-a)tan k, (34a)
(3) Calculate the sweep of the semispan diag-

onal, v.

v = tan-! [¢,/(b,- a) + tan A ] (34b)

(4) Calculate the ratio of planform area to rectan-
gular reference area, S,/S;

S,/S;= 2/[A, tan 7] ‘ (34¢)

(5) If M, > 1, calculate the complement of the
Mach angle, vy

Yu= cos™ (1/M,) (34d)



(6) Calculate the planform parameter, p*.

. Sil¢ S /5 forM_=<1
P = /Sy for M_>1
1 - [tany,/(2tany)] '
(34e)
(7) Calculate the planform angle, ¢.
M =1

_ tan’! (2p* tan v)
V= tan-![2p* (tan v - tan v,)] M > 1
(34f)

(8) Calculate the compressibility factor, 5.

JI-MZ M =<1 ﬁ
B = (34g)

ML -1 M_>1

(9) Calculate the potential flow lift coefficient,

K,

4
tany + [tan?¥ T Gin?y/pD + 4B7
o : (34h)

P

(10) Calculate the vortex flow lift coefficient, K,.

K, = [K, - (K tan )/ 4]y T @n?¥ -

(34i)

An empirical expression was devised for the nor-
mal force coefficient, Cy(«,), based on the expression
of Lecat and Rietschlin, Eq (33). The new expression
is more general since it applies both at stall and
beyond stall. This expression was constructed after
examining and comparing a large number of trial
expressions with experimental data!®15-2 for a wide
variety of planforms. This expression is

f<A, A,>Cy<a,> + [Ac05 A Cy<ara>] /10 a,<a,<2a
<A, Ap> <> + [A054,C<q,>]/10 - 2a,<a,

(35a)

(K,sin agcos a, + K, sint,) [1 - (1-p) (ay/e,P] 0 <a,<a, -
Culap =

where the symbol < > is used to denote functional
dependence in situations where the standard symbol,
which is a set of parentheses, would be confusing.
Also,

u = 09-02A5in24,,
o, = 38[1 + 0.02 (A= 2)4][1 + 1.1 (A,- 1)**cos?A, ] -

1+ [6(A,- I)ZSiﬂ‘A,e]/eAf}/[cos A+ 1]2A)
(35b)

» o , L
" f(ALA,)=1-035 {1 + %e“*sinAeA,e :

sin [(A,- 2.1)A,e]}‘/(1 +05(A,-10]  (35¢)

and K, and K, are given by Eq (33).

~ As can be seen, Cy(«,) is composed of three angle
of attack ranges: zero angle up to the stall angle, stall
up to twice the stall angle, and angles larger than
twice the stall angle. For angles less than a, the
expression of Lecat and Reitschlin? (Eq (33)) has been
modified for @, near a,. Equation (35a) for a, < a,
shows that as @, approaches @, the normal force

coefficient increases more slowly. This characteristic

is consistent with experimental measurements. The

_parameter u represents the portion of Cy predicted by

Lecat andiReitschlin which remains at a, = ;. The
expression for q,, although rather lengthy, gives a

~ good estimate .of the stall angle (in degrees) for

planfofms with aspect ratios from 1 to 5 and leading
edge sweep from 0° to 70°.

f(A,, A,,) represents the portion of Cy(e,) existing
for a, = af. Note that u, o, and f(A,, A,.) show no
dependence on free-stream Mach number. This is not
riecessarily a reflection of the physics, but simply an
admission of-lack of data.

Cyu(e,) as predicted by Eq (35) was compared with
data for a very wide variety of planform geometries
in order to determine its range of applicability. Fig-

“ures 13 through 22 show typical comparisons of Eq
" (35) with experimental data for incompressible flow.
. The figures are placed in order of increasing aspect
“ratio from 1 to 4, The leading edge sweep angle varies
from 0° to 70°; planform geometries include: rectan-

gular, diamond, clipped delta, delta, arrow, clipped
arrow, and trapezoidal. The comparisons are good for
all planforms except that for the aspect ratio 3 trape-
zoid (Figure 21) and rectangular planforms of A, = 3
(comparisons not shown). For these types of plan--
forms (i.e., high aspect ratio with small leading edge
sweep), the normal force past stall is significantly
overestimated by the present expression.

f. TFin = Fin Interference

Two types of fin - fin interference are included in
the present lifting theory. The first type is caused by
control deflection of the fins, and the second type by
the rolling motion of the missile. When a control
deflection is input to a fin, the lifting flow field of
that fin induces an angle of attack on the adjacent
fins. This induced angle of attack causes the adjacent
fins to generate forces and moments which depend
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on the magnitude and direction of the control input.
Rolling motion interference occurs for a similar rea-
son except that the angle of attack of a fin is generat-
ed by the angular velocity of the fin relative to the
oncoming stream. Control deflection interference
will be considered first and then rolling motion
interference will be analyzed. Results of slender-
body theory are used to evaluate both types of inter-
ference considered here.

Figure 23 (taken from Reference 24) shows the
interference flow fields and pressures induced on
adjacent fins for two types of control input: positive
pitch control and positive roll control with horizon-
tal fins. For the pitch control, it is seen that a negative
pressure coefficient is produced on both sides of the
top fin and a positive pressure coefficient is generat-

ed on both sides of the bottom fin. For roll contol (i.e.,

differential deflection), a negative pressure is gener-

ated on the top right and bottom left sides of the

vertical fins, and a positive pressure is generated on
the top left and bottom right sides of the vertical fins.
In the present analysis these induced pressures are
included by considering the adjacent fins to be at an
effective deflection angle.
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. Consider the induced pressures on adjacent fins
for individual deflection of each fin. Shown in Figure
24 is the induced pressure and effective deflection
force for positive deflection of each fin. If we let I, be
the deflection interference coefficiént, the following
equations describe the interference depicted in Fig-
ure 24.

e, = lddy ' 5e,. = 16,
for$,>0 {6, = 0 - for$,>0 8, = -1,
b, = -1, 5, = 0
691 =0 6e, = ,'1454
fors,>0 { 8, = -, for$,>0 {0, = 0
b, = 1, b, = 18
A (36)

Summing all of the effective control deflections giv-

en in Eq (36) and mcludmg the actual control deflec-

tion, one obtains-

)

€

[

51 + Id(az - 64)
o = & + LG, - 8)

=8, + 1,5, - &)

= b, + L, - 8). (37)

€3

€y

a) Panel 1 beflection b) Panel 2 Deflection

c¢) Panel 3 Deflection d) Panel 4 Deflection

Figure 24. Control Interference for Individual Panel Deflection

Iy is evaluated by using the slender body theory
results of Adams and Dugan.?® They derived results

‘ from the roll moment coefficient derivative, C,, vs

'a/ba for differential deflection of two fins. They
-~ further showed results for the roll moment coeffi-

cient induced on the vertical fins because of differen-
tial deflection of the horizontal fins. Assuming the
induced angle of attack of the upwash and downwash

"of the deflected fin on the undeflected fin is constant
"along the span, one can write

] [Cla‘]‘induced = 6; : (38)

[C’a] deflected

This equation can be proven, given the stated as-

. sumption, by writing the roll moment of the induced

and deflected fin in double integral form. Noting
that the ratio shown in Eq (38) is for differential
deflection of two fins, one has

Id _ l [ e:s]mduced . (39)
2 . [C‘-’a]deﬁected ’

Figure 25 plots I vs a/b,, using the results of
Adams and Dugan for [C,] . and [C,} . it

should be noted that they use the planform aspect
ratio of the fins, A,. In the present nomenclature

- bZ/Sfp (40a)

where Sf is the planform area of two fins, mcludmg

their i imaginary extension through the body. It can be
shown that

S;, = 25+ a[2¢,+ a(tan A~ tan A . (40b)

I, as given in Figure 25, is used in Eq (37) to calculate

. the effective control deflection of each fin.

. Now'consider the case of fin - fin interference due
to rolling motion. The strategy of this derivation is to
determine the interference coefficient by matching
the present roll moment formulation for zero angle
of attack of the body to that obtained by slender bod.y
theory. Assuming «, = 0 and the rolling speed is ¢,
the differential roll moment can be written (Figure
26)

de = 4rC“%pw[U°°+ (3r))%dx dr .
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Assuming the rolling speed is small compared to U,

and substituting in C, from Eq (14), one has
dé=4q_roC|(a,) C(x, 1) S(r) dx dr (41a)

where q, is the effective local angle of attack along
the span. Adams and Dugan?® showed that the span-
wise loading induced on one fin by the other fins was
roughly quadratic along the span. In the present
analysis, this induced loading will be simply approxi-
mated by a linear spanwise function; therefore,

- _ir_ Iir_v | (41b)

where I is the rolling motion interferenée coeffi-
cient. The first term in Eq (41b) is the local angle of

attack caused by rolling speed and the second is the

reduction in local angle of attack caused by fin - fin
interference. ‘

Figure 26. Induced Angle of Attack Due to Rolling Speed
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Figure 25. Deflection Interference Coefficient vs a/bg




Integrating over the surface of the fin, Eq (41a)
becomes

by (e
¢ = 4aqm[ ] rCy (a) COor) S(r) dr dx. (42)
a xl

e

Assuming o, is small and using Eq (41b), Eq (42) can
be written

«©

b bo xte
¢=-40q,Cy(1-1) Ui j j 12C(x, r) S(r) dx dr.
a Jx, )

e

Transforming coordinates (x,r) to fin coordinates (£,1)
and nondimensionalizing with respect to q.S,d, one
obtains

2 bo - bo
Cl = - ; ag CN" -(—Waz d) .
| j j R2(n) Qn) C() S(n) dE dn (43a)
where
") =a + (b, - ). (43b)

Taking the partial derivative of Eq (43) with re-
spect to p, where p = ¢b,/U,, and solving for I, one
finally obtains

L=1+ =
P b - 1r1 X '
o B L OCCEOETEY

T o

(44)

C,, is computed from the results of Adams and Dugan
(see Figure 27). C_is obtained by numerically differ-

encing Eq (35) for o, — 0.

Roll Moment

The above described body flow field and lifting
theory will now be applied to the prediction of the
roll moment produced by cruciform fins. If one de-
sired, the present analysis could be applied in a
straightforward manner to two or three fin configu-
rations. Consider the missile at angle of attack ay, roll
angle ¢, and roll rate ¢. The roll moment produced by
a differential surface element on each of the four fins
is

de¢ = q,r Zc (U/U_)? dx dr

i=1

where j refers to the j'th fin and U; is the magnitude of
the velocity on the j'th fin. Substltutmg C, from Eq
(14) and integrating over the fin surfaces, one has

b, (xpe 4
¢ = oq, ] ] r C(x, r) S(r)ZCNi(Ui/Um)Z dx dr.
a X,

e j=1

Transforming to fin coordinates (£,7) and nondimen-
sionalizing by q.s,d, one obtams the roll moment
coefficient

c, = ﬁh_i)] j R(n) Q) C(E) St) -

> C(Uj/ U ) dn (45)

j=1

* .where }i(n) is given by Eq (43b), Q(») is giveh by Eq

(20b), C(¢) is given by Eq (19a), and S() is given by Eq
(19b).

U; is found by taking the magnitude of the local
veloc1ty given in Eq (23):

= VU2 costa, + (vq + ¢ rsin ¢)? + (Wg - ¢ r cos ¢)2.
(46)

- Note that if ¢ appears without the subscript j (as in
.the above equation), the angle ¢ is measured from the

y axis for the particular fin under consideration.

.00 L — T v
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2
r
2
g
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a/bo

Figure 27. Roll Damping Moment Coefficient vs a/bg
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CN’ depends upon the local effective angle of
attack . To determine this angle, the effective sur-

face normal vector must be found taking into account

control deflection and rolling motion interference.
Using T from Eq (22), the effective fin deflection
angle 6 from Eq (37), and notlng that the rolling

motion 1nterference affects the 1. component of the
normal vector, one can write*

= [sin(A3,) + Lé1/U T
- cos (6ei)sin ¢T+ cos (6ej) cos o k.

Substituting ?1: and V into the equation for a,, Eq
(21), one obtains the local effective angle of attack.

]

a, = sin[{U,cos a[sin (43,) + [ $1/U,]
- (v,._i + «2>r51n ¢)cos (6“i) sin ¢ (47)
+ (w, - ¢ r cos ¢)cos (éei)cos ¢}/(|ﬁ:i|Uj)]

where

| = 1 + 2sin(4 6ei)IpJ>r/Um + (Lp /U2

Normal Force and Pitch Moment

The equations for the normal force and pitch
moment produced by the fins will now be consid-
ered. I'he ditterential fin force in the z direction
produced by the four fins is (see Figure 28)**

dF, = dN,cos 8,cos ¢, ~ dN,cos d,sin §,

- dNjcos d,cos ¢, + dNcos §,sin ¢,

Writing the right side of this equation as a sum-
mation and substituting dN, from Eq (13), one obtains

4
= qmz:C,\i(Ui /U)*cos §cos ¢ dx dr.

J=1

*Reference 10 accounted for rolling motion interference by way of
j and k components of the velocity. That approach is not consid-
ered correct because it also changes the magnitude of the velocity.
In fin - fin intetference the magnitude of the approach velocity to
the fin is not changed, but only the angle with which it approaches
the fin.

**Note that the sign of dNj is determined by its angular relation-
ship to the surface normal vector; that is, positive dNj is in the
counterclockwise sense,
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~Substituting in C,, from Eq (14) and integrating over

the surface of each fin, one has

a

by (X .
F, = aqmj j C(x, r) S(r) .
Xe

4
ZCN:'(UJ'/ U,,)*cos écos ¢ dx dr.
j=1

Transforming to fin coordinates (¢,7) and nondimen-
sionalizing by q.S,, one obtains the normal force
coefficient due to the fins:

a(b_ '~

1,1
c, = ——Z—a)j [aen corsin -

Ta A

4
.ZCHi(U,/Uw)zCﬂs Acos ¢ dE dn. (48)

=1

The pitch moment produced by the fins is com-
posed of two types of terms: the first term is caused by
the normal force just derived and the second by the
sin §; component of the normal force on the fins
(Figure 28). The second term produces a pure mo-

- ment (i.e., a couple) on the missile body and is usually

much smaller in magnitude than the first term. The
differential pitch moment due to both terms from all
four fins is

dm = -xdNcos §,cos ¢,+ r dNsin (A §,)sin ¢,
+ x dN,cos Aysin ¢, + r AN sin (A 6,)cos ¢,
+ x dM4cos 45008 ¢, - ¢ AN sin (A §,)sin ¢,

-x dNcos §,sin ¢, - r dN sin (& §,)cos ¢,.

Writing the right side of this equation as a summa-

tion and substituting dN; from Eq (13), one obtains

4
dijii = -qmzcn’('Ui/ U_)[x cos scos ¢ - rsin(A 8) sin ¢Jdx dr.

Substituting in C, from Eq (14) and integrating over |
the surface of each fin, one has

M= —aqmjboj C(x, 1) S(r)ZC (U/U,)? -

Xte jm=1

[x cos 4 cos¢ - rsin(A4)sin ]dx dr.



Transforming to fin coordinates (£,7) and nondimen-
sionalizing by q.S,d, one obtains the pitch moment
coefficient due to the fins:

-olb, - &) C\(U,/U,)?
e j [ Q(n) C(E) son; (U,/U,)
[X(&, 1) cos él.cos ¢ - N(n) sin (A 6}.) sin ¢]d¢ dn
) (49a)

where

X(Em) =x+c +(b-a)tan A, n-Qm)E  (49b)

Side Force and Yaw Moment -

. The derivation of the side force and yaw moment
-is very similar to that of the normal force and pitch
moment and, consequently, is not given. The side
force coefficient and the yaw moment coefficient are
given by: :

c = i(b—i)] j A C&) S(r)-

y J A

4 o . .
D'C\(U/U,)? cosd; sin ¢ d dn (50)

i=1

N cos §

N sin 8+ %
= f

Figure 28. Components of the Fin Normal Force

Cn'= —Kal[ 1 f lﬂ(n)zC (UJU? [XE ) -

j=1

cos 6; sin ¢ + “R(n) sin (Aéj) cos ¢] d¢ dn. (51)

Pahel Loads

The panel loads on the fin surfaces are essentially
the same forces and moments derived previously
(Roll Moment, Normal Force and Pitch Moment, and

~ Side Force and Yaw Moment) except that they are

oriented in a fin coordinate system. Figure 29 shows
the coordinate system and sign convention for the
panel normal force (N), the panel hinge moment (H),
and the panel root bending moment (B). The calcula-
tion of panel loads is useful for two reasons: first,
they provide the most physically meaningful force

“and moments with which to compare theoretical

predictions and experiment because they do not con-
tain the geometry components of the roll angle and
the fin-deflection angle. Second, they directly pro-
vide the loads needed by the structural designer and
the actuator torques needed by the guidance and-
control designer.
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Figure 29. Sign Convention for Panel Normal Force, Hinge Moment, and Root Bending Moment -

As the derivation of the panel loads is very similar
to the previous derivations, it will only be sketched
very briefly. Using Eq (13), the normal force on a fin
panel caused by a differential surface element is

dN = q_C (U/U_)¥dxdr.

Proceeding as before, one obtains the panel normal
force coefficient, N/q,S¢

b - 1,1
c, = X2 [ [am @ s cuwruapagan.
f o
(52)
Recall that positive normal force points in the direc-
tion of the counterclockwise rotational sense.

[
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The panel hinge moment due to a differential
surface element is

dH = -q,(x - x,)C,(U/U,)? dx dr

where x,, is the axial location of the reference line for
the hinge moment. Proceeding as before, one obtains
the panel hinge moment coefficient, H/qc,S;:

G, = ﬂf—a)ff[&‘(s,m -]

¢S, o Jo

Qn) C(§) S(n) C(U/U,,)’dE dn . (53)



The panel root bending moment due to a differen-
tial surface element is

dB = q_(r-a)C (U/U_)%dx dr.

Proceeding as before, one obtains the panel root
bending moment coefficient, B/q.(b, - a)S¢:

c, = 1‘18—3’] f 2.9(n) C() S(n)-
f oJo

Cu(U/U_ ) dE d . (54)

Results and Discussion

The results computed and presented in this inves-
tigation were dictated solely by the requirement to
validate and determine the bounds of the present
theory. Consequently, no results are given without
experimental measurements. The theory is evaluated
by comparing predictions and measurements for six
different fin planforms. The detailed geometry and
reference from which the data were taken is given in
Table 1. The planforms are shown in Figure 30. It can

be seen that the aspect ratios range from 1.0to 2.0 and

the leading edge sweep angles range from 0° to 67.4°.

The results and comparison with experiment are
discussed in three sections: panel loads, roll mo-
ments, and control forces and moments. The panel
loads presented are panel normal force, panel bend-
ing moment, and panel hinge moment. Normal force,
pitch moment, side force, and yaw moment predic-
tions could have been compared with experimental
measurements, but it is felt that the individual panel
loads permit more physical insight into the aerody-
namic generation of the forces and moments. Roll
moment characteristics presented are the induced
roll moment, roll damping moment, and steady-state
roll rate. These roll characteristics are of great impor-
tance in the dynamic flight stability of finned mis-
siles. Control deflection forces and moments present-
ed are pitch (or yaw) control and roll control for
various control deflections and roll angles.

Panel Loads

a. Panel Normal Force

The panel normal force on the windward fin (Fin
4) as a function of roll angle for a;, = 20° for Configu-
ration A at M = 0.8 is shown in Figure 31.* Also

*All panel loads calculated and compared with experimental data
are for missile Configuration A.
Configuration A (Mgo = 0.8)

shown in Figure 31 is the prediction of Nielsen,
Hemsch, and Smith.7 As Fin 4 sweeps from ¢ = 0 to
90°, it moves on the windward side of the body from
the angle of attack plane to the (x;y) plane. As can be
seen by comparing the present result with experi-
ment, the present method predicts very accurately
the loadup of the fin. Above ¢ = 60°, the present
method predicts an increasing normal force, whereas
experiment shows a slight drop in normal force.
Examining the computer output for spanwise angle
of attack and loading reveals that as ¢ increases from
zero, the loading increases due to increase in local
angle of attack across the span. At ¢ = 40°, the body
upwash near the fin root has increased to the extent
that the root chord stalls. As the roll angle increases
further, the stall location moves outboard, but the
inboard sections begin to add lift as they progress
further into poststall. Noting the experimental trend
for ¢ > 40° and the rise in normal force near ¢ = 80°
suggests the following explanation of the actual fin
loading. The root chord stall is washed outboard due
to the spanwise velocity component of the leading
edge vortex. This, in turn, decreases the loading
along the span such that the total loading decreases;
however, as the roll angle increases further and the
spanwise location of stall moves outboard, the por-
tion of unstalled span that could be affected steadily
decreases. At ¢ = 90° it is seen from the present
computer results that stall occurs at the very tip of the
fin; that is, the entire fin is in poststall. Once this
occurs, the fin loading will begin to increase as the
angle of attack increases. This hypothesis could be
tested quantitatively by examining experimental
spanwise pressure distributions on a fin. It could be
tested qualitatively by comparing predictions of the
present method with experimental data for unswept
fins and noting that this phenomenon probably
would not occur for unswept geometries.

The panel normal force on the windward fin vs
roll angle for o, = 20° at M_, = 1.22 is shown in
Figure 32. Good agreement between the present
method and experiment is demonstrated in the fig-
ure. The trend in panel normal force for ¢<<50° is the
same for supersonic flow as the the previous subsonic
case. For ¢>50°, however, the experimental data
show that stall is delayed to a higher roll angle (i.e.,
angle of attack) as compared to M, = 0.8. Figure 32
shows the experimental data still dropping at ¢ = 90°
which implies, from the previous discussion, that the
stall angle of attack has not reached the trip chord. As
the present method does not include any dependence -
of stall angle of attack on Mach number (Eq (35)), this
characteristic is not demonstrated by theory.
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Table 1. Geometry of Missiles Used for Comparison of Theory and Experiment

Configuration bg/a cr/a

A 24 2.8

B 2 1.2

C 2 1.6

D 2 2.4

E 3 2

F 2 2.66

CONFIG. A
¢

CONFIG. D

Figure 30. Fin Plantorms Used for Comparnison of Theory and Experiment

x1/a

17.2
18.1
17.7
16.9
18.0
17.34

77

Age

45°
0°
38.7°
67 4°
00
53.1°

Ate

00
00
00
00
00
00

CONFIG. B

€

A

CONFIG. E

Xh/a

18.4

Ae Reference
1.33 27
1.67 28
1.67 28
1.67 28
2.00 10,29
1.00 30

¢
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CONFIG. C

€
o
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CONFIG. F
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Figure 31. Windward Panel Normal Force vs Roll Angle for
Configuration A (Mg, = 0.8) . . . .
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Figure 32. Windward Panel Normal Force vs Roll Angle for
‘Configuration A (Mg = 1.22)

-The panel normal force on the leeward fin vs roll
angle for o, at M, = 0.8 is given in Figure 33. Very
good agreement between theory and experiment is
demonstrated except near ¢ = 0°. As Fin 1 rolls from

¢ = 0°, it begins to unload not only because of closer

proximity to the angle of attack plane, but also im-
mersion in the body vortex. The inboard portion of

.the fin unloads much more rapidly than the outboard

portion because it is strongly influenced by the vor-
tex feeding sheet. As the fin nears the center of the
body vortex it produces essentially no net normal
force. The portion inboard of the vortex produces
negative force (i.e., in the negative roll moment
direction) and the outboard portion produces an al-

" most balancing positive force. This balance is highly

dependent on the relation between the radial vortex
location and the fin semispan. For example, if the fin
had a smaller semispan, the zero load roll angle
would be less than that shown in Figure 33.
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Figure 33. Leeward Panel Normal Force vs Roll Angle for Con-
figuration A (Mg = 0.8)
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Figure 34 shows the same type of comparison as
Figure 33, except for M, = 1.22. The agreement
between theory and experiment is not as good as in
the previous comparisons. Note that the experimen-
tal roll angle for zero cross-over loading decreased
from ¢ = 75° for M, = 0.8 to ¢ = 60° for M =1.22.
This could be caused by the body vortex becoming
stronger or the radial location of the vortex increas-
ing, or both. Recalling that the radial location of the
vortex increases with Mach number (Eq (11)), one
could infer that vortex strength increases significant-
ly with Mach number. This has been suggested by
Nielsen in Reference 26.

1.8 T Y T T
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— —— METHOU UF REF. 7
o  EXP. (REF. 27)
16 F 4

1.2¢

Cp, 0.8

-04 1 L 1 1 J
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Figure 34. Leeward Panel Normal Force vs Roll Angle for Con-

figuration A (M, = 1.22)

b. Panel Bending Moment

Figures 35 and 36 show the panel bending mo-
ment for the windward fin vs roll angle for a, = 20°
at M, = 0.8 and 1.22, respectively. Generally good
agreement is demonstrated between theory and ex-
periment. Good agreement between theory and ex-
periment on the bending moment requires that both
the magnitude of the total normal force, C.., and
spanwise pressure distribution are correct. Recall that
the theory for panel normal force is in essentially

42

perfect agreement with experiment (Figures 31 and
32) for ¢ < 40°. Figures 35 and 36, however, show
that the theory slightly underpredicts the bending
moment for the same roll angle range. This implies
that there is slightly more loading outboard and
slightly less loading inboard than predicted by the
present method. If bending moment data for other
planforms indicated the same trend, the spanwise
normal force distribution, S(5), given by Eq (19Db)
could be modified slightly.

The root bending moment for the leeward fin vs
roll angle for o, = 20° at M_, = 0.8 and 1.22 is shown
in Figures 37 and 38, respectively. Excellent agree-
ment between theory and experiment is demonstrat-
ed for the subsonic case, and fair agreement is shown
for the supersonic case, It is interesting that for M, =
0.8 near ¢ = 80°, the panel normal force is negative
{Figure 33) while the bending moment remains near
zero (Figure 37). The reason for this is that the reverse
flow under the vortex is strong enough to generate a
net negative panel force, but the bending moment
produced by the outboard positive normal force over-
comes the negative bending moment produced by
the inboard sections. '

o

PRESENT METHOD A

EXP. (REF. 27)

[o]
-1 1 L 1 1
0 20 40 60 80 100
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. Figure 35. Windward Fin Root Bending Moment vs Roll Angle

for Configuration A (Mgo = 0.8)
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Figure 38 Leeward Fin Root Bending Moment vs Roll Angle for
Configuration A (Mo = 1. 22)

.Panel Hinge Moment

The panel hinge moment for the windward fin vs
roll angle for o, = 20° at M, = 0.8 and 1.22 is shown
in Figures 39 and 40, respectively. The agreement
between theory and experiment appears to be poor,
particularly for M = 1.22. One must be aware,
however, of the sensitivity of the hinge moment to
the location of the hinge line. A better indication of
the accuracy of the present method is obtained by a
sample comparison of the theoretical and experimen-
tal axial location of the fin center of pressure. Using
the hinge line, x,, as the moment reference, one can
write

XG5 = H.

Solving for the location of the center of pressure,
nondimensionalized by the root chord, one has

xplc, = C,/C,. (55)
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Applying this equation to both the experimental and
theoretical data at ¢ = ‘90° for Fin 4, one has

For M, = 0.8

(ix) = 0113 and (12> = 0.023
< exp <, theory

For M, = 1.22

("J) — 0129 and (52) — 0.024
< exp < theory
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Figure 39. Windward Fin Hinge Moment vs Roll Angle for
Configuration & (Moo = 0.8)
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Figure 40. Windward Fin Hinge Moment vs Roll Angle for

Configuration A (Mg = 1.22)
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As can be seen by this calculation, the experimen-

" tal center of pressure is slightly farther aft of the

hinge line than predicted by theory. Taking the
difference between each pair of ratios, the predicted
axial center of pressure is in error only 9.0% and
10.5% of the root chord for M, = 0.8 and 1.22,
respectively, for the worst agreement between theory
and experiment in Figures 39 and 40.

A second point should be made from the axial
center of pressure calculation just presented. Note
that the experimental data show that the center of
pressure moves slightly rearward as the Mach num-
ber changes from subsonic to supersonic. This fol-
lows the usual trend of lifting surfaces in transonic
flow. The predicted center of pressure, however,
stays essentially constant with the Mach number; the
reason is that the assumed normal force distribution
for uniform appenach flow (Fq (19)) daes not depend
upon the Mach number. A slight improvement to the
present theory would be to insert Mach number
dependence in the chordwise distribution function, -
C(®).

Figures 4l and 42 give the hinge moment for the
‘leeward fin vs roll angle for o, = 20° at M, = 0.8 and
1.22, respectively. Better agreement between theory
and experiment is shown for the leeward fin than for
the windward fin. This might be somewhat surpris-
ing because of the complexity of predicting fin load-
ing for such a nonuniform approach flow. The reason
is that for ¢ > 50° the panel normal force is small for
the leeward fin; therefore, the hinge moment is aleo
small.
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Figure 41. Leeward Fin Hinge Moment vs Roll Angle for Con-
figuration A (Mo = 0.8)
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Figure 42. Leeward Fin Hinge Moment vs Roll Angle for Con-
figuration A (M = 1.22)

Roll Moments

a. Induced Roll Moment

Figures 43 and 44 show the induced roll moment
vs angle of attack of the body for missile Configura-
tion A for ¢ = 20° at M, = 0.8 and M, = 1.22,
respectively. Also shown in the figures is the predic-
tion of Nielsen, Hemsch, and Smith.” Fairly good
agreement is observed.between the present method
and experiment for M, = 0.8, but for M = 1.22, the
agreement is poor. Note that the induced roll mo-
ment is one of the mast difficult nonlinear moments
to predict because it is composed of the sum and
difference of the first moment of four spanwise pres-
sure distributions. The physical explanation of the
slightly negative then rapidly increasing positive
trend of the induced roll moment with angle of attack
is very difficult to delineate because of the many
complex aerodynamic phenomena embedded in the
present theory. From numerical experiments with
the theory, however, certain important elements can
be identified: radial location of the body vortex, size
of the vortex core, and local stall and poststall along
the span of the fin.

To understand the trends plotted in Figures 43
and 44, one must examine the spanwise loading of all
the fins. Figure 45 shows the spanwise loading for
each fin for M, = 0.8. The loading at a given span-

wise location shown in Figure 45 is the integrated

value over the local chord. The loading caused by the
primary body vortex is clearly seen on Fin 2. The
spanwise location of the stall angle of attack can be
recognized as a slight drop in the normal force along
Fin 3. The loading on Fins 1, 3, and 4 increases
steadily as the root chord is approached because of
body upwash and the increasing length of the chord.
On Fin 1 the loading drops sharply near the root
chord because it passes inside the vortex feeding

“sheet. The roll moment produced by each fin loading

shown is: Fin 1, 0.794; Fin 2, -0.031; Fin 3, -G.751; and
Fin 4, 0.313. It can be seen that the roll moments
produced by Fin 1 and Fin 3 roughly balance. Fin 2
and Fin 4, however, do not balance because the
reverse flow loading between the primary body vor-
tex and the root chord on Fin 2 drop (in magnitude)
the roll moment on Fin 2 to roughly zero. This results
in a large net positive roll moment from Fin 4. By
similar reasoning, the small negative induced roll
moment for small angles of attack is due to the
increased outboard loading on Fin 2 when the vortex
is near the body surface.
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Figure 43. Induced Roll Moment vs ap, for Configuration A (Mg
= 0.8) .
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25

Induced Roll Moment vs ap, for Configuration A (Moo

Figure 46 gives the induced roll moment vs angle
of attack for Configuration B for ¢ = 22.5° and M, =
0.7. Theory and experiment are in very good agree-
ment for the rectangular fin planform. Comparing
the induced roll moment coefficient for the clipped
delta and rectangular planform (Figures 43 and 46)

for a, = 20°, it is seen that* C, = 0.325 and 0.186,

respectively. Recalling the previous explanation giv-
en concerning the origin of the large positive in-
duced roll moment, one could ask why C, for the
shorter span rectangular planform is not larger than
that for the clipped delta. The reason for the question
would be that the reverse flow loading on Fin 2 for
the short span fin should produce a relatively larger
pasitive roll moment than would the clipped delta.
Tle reasoning is correct; the paradox, however, is
created by the nondimensionalization used in the
preaent analysis and in nlmanat all ather analyaea The
roll moment coefficient is based on the body cross-
sectional area, not on the fin planform area. If one
converts the two previous coefficients to coefficients
based on fin planform area, one has [C,]; = 0.347
and 0.487, respectively. Now it is clear that the short
span rectangular planform is much more efficient at

producing an induced roll moment than the longer
span clipped delta.
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Figure 46. Induced Roll Moment vs ay, for Configuration B

*This comparison ignores the fact that the roll angle and Mach
number are not exactly the same.



The induced roll moment vs angle of attack for

Configuration D for ¢ = 22.5° and M, = 0.7 and 1.2
is shown in Figure 47. The theory reproduces the
experimental data fairly well, but the change in
induced roll moment with Mach number is not pre-

dicted accurately for this planfbrm geometry. The

reason is probably the effect of Mach number on the

spanwise and chordwise pressure distributions, S(n)

and C(¢), as mentioned earlier. Concerning the mag-
nitude of the induced roll moment coefficient, a
direct comparison can be made between the rectan-
gular planform (Figure 46) and the delta planform
(Figure 47) because they both have the same missile
body and planform area. The delta planform pro-
duces a slightly smaller induced roll moment because
of the greatly different spanwise loading and stall
angle of attack (compare, for example, Figures 17 and
19).
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Figure 47. Induced Roll Moment vs ap, for Configuration D

b. Roll Damping Moment

Figure 48 shows the roll damping moment vs
angle of attack for Configuration E for M, = 0.22.
There is excellent agreement between theory and
experiment for angles of attack up to 12°, but above
that the theory agrees well with one set of experi-
mental data and not the other. The only comment
that can be made is that the experimental techniques

of the two investigators differ greatly. Clare! used a
roll oscillation technique; Regan? used the standard
rolling-speed decay method.
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Figure 48. Roll Damping Moment vs ap for Configuration E.

A comment should be made concerning the pre-
sent numerical method of calculating dynamic de-

" rivatives, such as C,. As the missile fins rotate
P

through a 90° roll cycle, the forces and moments
continually change for nonzero angle of attack of the
body. Therefore, one method of computing rolling
motion derivatives is to numerically difference the
average value of the force or moment coefficient over
a roll cycle; that is,

2 .rIZ xf2 X
c, -2 U Clymsy 40 - j Clyos d¢]/Ap (56)

=]

where C; represents any force or moment coefficient.
This computation of C; is appropriate for large values
P

of rolling speed. The method described by Eq (56) is
one used in the present analysis. It should be men-
tioned, however, that another method could be used.
This method computes the difference between two
values of the coefficient at different rolling speeds,
but at the same roll angle; that is

Coloms, = [ci C

¢=¢, i
p=4p

¢=¢1:| /Ap. (57)

p=o
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This method could be used for very low rolling
speeds, such as roll oscillations about a roll trim
angle; it would yield, for example, the roll angle
variation of the roll damping moment while a missile
is oscillating in roll lock-in.

Figure 49 gives the roll damping moment vs angle
of attack for Configuration F for M_, = 0.6 and 1.3.
Although the slight drop in C‘,P near o, = 17° is not

predicted, the agreement between theory and experi-
ment is generally good over the angle of attack range.
Comparing Figures 48 and 49, it is seen that the trend
of C,P with o, is very different between the two

planforms. One might suspect, based on the earlier
discussion of induced roll moment, that this different
character would be due primarily to the difference in
semispan between the two configurations. The roll
damping moment for several fin planforms and se-
mispans was computed in order to identify the domi-
nant parameter causing the rapid decrease in C‘,P for
a, near 20°; it was the stall angle of attack of the
planform and not fin span. For example, consider the
case of holding the planform and span constant (say a
rectangular planform of a given span), and varying
the aspect ratio so that the stall angle of attack varies.
The aspect ratio decreases (and the stall angle of
attack increases) as the drop in Clp at large angle of

attack disappears.
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Figure 49. Roll Damping Moment vs a}, for Configuration F.
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c. Steady-State Rolling Speed

The steady-state roll rate of a missile whose fins
are canted is calculated in a manner similar to C,P.

The steady-state roll rate is defined as the rolling
speed at which the roll driving moment balances
with the roll damping moment. Therefore, the non-
dimensional steady-state roll rate, p is the roll rate
such that

[ ® [Clpop,dé = 0.

Only one comparison of theory and experiment is
made for steady-state rolling speed.because of the
lack of data for other planforms. Figure 50 shows the
steady-state rolling speed vs angle of attack for Con-
figuration E for a fin cant of 4° (differential fin
deflection) and M., = 0.23. The theory slightly over-
predicts p,, for angles of attack less than 12°, but for
a, > 12° the theory agrees perfectly with one set of
data and underpredicts p,, for the other set. The
reason the theory predicts roll slowdown is rather
difficult to determine. From numerical experiments
with the present method it was found that roll siow-
down was predicted for each of the planforms shown
in Figure 30. One qualitative comment that can be
made, hawever, is that even though the roll damping
moment decreases at large angle of attack (Figure 48),
the roll driving moment (i.e., tin cant) decreases at a
faster rate on every planform investigated.
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Figure 50. Steady-State Roll Rate vs ap for Configuration E (4° fin
cant) ' '



Control Deflections

a. Pitch (or Yaw) Control

Pitch control force coefficient is defined as the
normal force coefficient of the entire missile configu-
ration (body plus fins) with the fins deflected minus
the normal force coefficient of the entire missile
without the fins deflected; that is,

ac, = [Czs+,]ai¢o - [Cza+,]6i-0'

Using slender body theory notation, one can write

ACz = [Czw)]lii#O + I;(;z,(s)]bjaéﬂ

- [sz]si=o' [Cz;’(m]bi-on . (55)

The second and fourth terms are computed in the
present analysis, but the first and third are not. The
first term can be segregated into two terms:

[CzBm]bi#O = [Czam]6i=0 + CZB<A;>’ (56)
where the second term on“the right side of _fhe
equation is the normal force coefficient of the body
due to control deflection of the fins. Substituting Eq
(56) into Eq (55), one has’ "~

Acz = CZB<bi> + [CZI(B)]V‘SFO - [Cz,(B)]blfxO T (57)

A simple result of slender body thedry is used to

estimate C . Using the definition of the interfer-’
zB<bi> g :

ence lift ratio, kg (see Ref. 24, pp 213-218), one has
Cz,,<6i> = kB[Cz“B)]bi#O'
Substituting this into Eq (57), one has

AC, = [1 + kg [Cz,(s,]oi;eo - [Cz,(ﬂ)]biam (58)

The term kg is calculated from slender body the-
ory assuming that the angle of attack of the body is
zero. One could use Eq (58) to calculate AC, for any
angle of attack and neglect the inconsistency be-
tween this and the derivation of ks The present
analysis, however, chooses the approach of segregat-
ing the a, = 0 fin deflection interference and then
using this constant value for nonzero a,. Rewriting
Eq (58) according to this approach, we have

ACZ = [Cz“u)]hisﬁo - [sz(s)]51=0 + kB[Czr(B)]6i¢0 . (59)

ayp=0

Equation (59) was used in the present analysis for
computing pitch control forces with fin-body inter-
ference. kg is a simple function of a/b, and is plotted
in Figure 5.
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Figure 51. Interference Lift Ratio vs a/bg (from Ref. 24)

Figures 52, 53, and 54 show the pitch control force
versus angle of attack for M, = 0.7 and 1.2 for fin
configurations B, C, and D, respectively. The control
force shown in these figures is for ¢ = 0° and the
horizontal panels deflected 10°; that is, 8, = 8, = 10°
and §, = 6, = 0°. The agreement between theory and
experiment is generally fair for the three fin plan-
forms and the angle of attack range. It can be seen
from these three figures that the control force for a,
= 0° for the three planforms is almost identical.
Although the leading edge sweep angles are 0°,
38.7°, and 67.4°, respectively, all three planforms
have the same aspect ratio: 1.67. The trend with angle
of attack is significantly different for the three plan-
forms. For A,, = 0° (Figure 52), the control force
drops off sharply with angle of attack to the extent
that for 15° < o, < 20° a positive control input
produces a negative control force. Note that this
phenomenon is not caused by the body vortex wake,
but by the interaction of the nonlinear normal force
curve (i.e., fin stall and body upwash). For A,, = 38.7°
(Figure 53), AC, is nearly constant for low o, and then
drops off with angle of attack. The experimental data
for M, = 0.7 show a region of control force reversal
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near o, = 17°. For A,, = 67.4° (Figure 54), AC, is
almost constant out to a, = 14° and then shows a
slight decrease with angle of attack. Also note the
insensitivity of AC, to Mach number. This is due to
the low Mach number normal to the leading edge of
the planform.
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Figure 52. Pitch Control Force vs ap for Configuration B (¢ = 0°,
§) = 83 = 10°, 82 = 84 =0°)

1.2 . r r y
=== PRESENT METHOD, M_=.7
1.0} == PRESENT METHOD, M_= 1.2 4

EXP., M_=.7 (REF. 28)
8F O  EXP, M_=1.2 (REF. 28) S

o 5 10 15 20 25
a L, (DEG)

Figure 53. Pitch Control Force vs ap, for Configuration C (¢ = 0°,
81 = 83 = 10°, 62 = 864 =0°)
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Figure 54. Pitch Control Force vs ap for Configuration D (¢ = 0°,
81 = 63 =-10°, 63 = &4 =0°)

Figures 55, 56, and 57 show the pitch control force
vs angle of attack for all panels deflected 10° (¢ =

 45°) for fin planforms B, C, and D, respectively. The

agreement between theory and experiment is gener-
ally fair for the three planforms over the angle of
attack range. Similar trends of AC, vs angle of attack
are seen in Figures 55. 56, and 57 as compared to
Figures 52, 53, and 54, respectively. For ¢ = 45° and §;
= 10°, however, no control reversals are seen over
the angle of attack range. Also, the delta planform
(Figure 57) shows that the control elfectiveness in-
creases slightly with angle of attack up to a, == 12° for

-both Mach numbers.
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Figure 55. Pitch Control Force vs ap for Configuration B (¢ =
45°, 81 = 87 =63 = 84 = 10°)
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Figure 56. Pitch Control Force vs ap for Configuration C (¢ =
45°,61 = 83 =03 = 84 = 10°)
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Figure 57. Pitch Control Force vs ap for Configuration D (¢ =
45°, 8] = 8y =683 = 64 = 10°)

b. Roll Control

Figures 58, 5§, and 60 show the roll control mo-
ment vs angle of attack for M, = 0.7 and 1.2 for fin
Configurations B, C, and D, respectively. These roll
control moments are for ¢ = 0° and 6, = -§, = 10°
and §, = 6, = 0°. The theory generally predicts larger
roll control moments than experiment, but the theo-
retical trends with angle of attack are valid. For the
rectangular and clipped delta planform (Figure 58
and 59), a large region of roll control reversal occurs
for o, > 15°. This region is fairly well predicted by
the present analysis. For the delta planform (Figure
60), the theory substantially overpredicts the roll
control moment up to @, = 20° and then-a control
reversal is predicted. The overprediction near o, =
0° could be due to an inaccurate spanwise loading or
it could be due to a physical characteristic of control
deflection not included in the present theory (for
example, root chord gap). When a fin panel is de-
flected for control, a spanwise gap is created at the
root chord of the-fin. The gap size increases as the fin
deflection and root chord length increases. For Con-
figuration D the root chord length is 100% longer and
50% longer, respectively, than configurations B and
C. This characteristic would decrease the predicted
value of the roll control moment if it were included
in the theory.
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Figure 58. Roll Control Moment vs ab for Configuration B (¢ =
0°, 61 = -3 = 10°, 62 =64 = 0°)
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Conclusions and Recommenda-

-tions

The following conclusions and recommendations
are drawn from the present investigation.

1.

The spanwise and chordwise pressure distri-
butions are of sufficient accuracy to be used
as an aid in estimating root bending and
hinge moment structural loads. The hinge
moment predictions can also be used as a
design aid in sizing control deflection actu-
ators.

Evidence was found o suggest that slall near
the root chord on highly swept fins washes
outboard and, consequently, decreases the
outboard loading on the fin. Although this
element is not included in the present the-
ory, one might conceive of a method of ap-

" proximating this phenomenon in the analy-

sis.

Certain comparisons between theory and ex-
periment suggest that the stall angle of at-
tack increases with Mach number. If suffi-
cient data could be gathered on this trend, it
should be added to the analysis.

The results of the present method could be
enhanced by improving the empirical data
for the body flow field model or by using a
more accurate body flow field model. An
improved flow model should contain more
compressibility cffects.

In general, short span fins produce larger
nonlinear forces and moments (such as in-
duced sidc forec and induccd roll moment)
than larger span fins. This typically occurs
even though the exposed fin area is smallcr.
The present method could be improved by
requiring the basic chordwise and spanwise
pressure distributions to be dependent on
free stream Mach number. This should be
done after sufficient pressure distribution
data on wings alone planforms becomes
available for various Mach numbers.

The nonlinear decrease in roll damping for
large angles of attack was found to be due to
the stall angle of attack of the fin. The stall
angle is primarily determined by the aspect
ratio and leading edge sweep.

The present method should be coupled to a
body force and moment predictive method



so that complete vehicle force and moment
predictions are available.

9. The rapid decrease in pitch control force at
large angles of attack is predicted by the
method.

10. Predicted roll control reversal at large angles
of attack generally agrees with experimental
data. :

11. The present method should prove a valuable
tool for flight vehicle designers because of
its ability to address general fin planforms.
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APPENDIX A

Structure and Listing of Computer

Program

The computer program which implements the
theoretical method is constructed in a modular fash-
ion. This design was chosen so that a user could more
easily identify any difficulties one might have with
the program and make changes. A large number of
COMMENT cards also are included in the program to
aid the user. The main program and subprogram
names, card image lengths, and computer memory
lengths are shown in Table A-1.

The structure of the program is depicted in the
overview flow chart (Figure A-1). The flow chart
shows the main program and every subprogram
along with the communication between each of
them. However, the flow chart does not show any

data transfer by way of COMMON statements. All

input and essentially all output is accomplished from
the main program.-

A complete listing of the computer program is
given in Table A-2. '

A user could rather easily reduce the computer
memory requirements needed to run the program.
The majority of memory (88%) is used in two triply
dimensioned arrays: VVEL (6, 73, 51) and WVEL (6,
73,51). These arrays are used to story v and w velocity
components calculated in FLOW and transferred to
FINLOAD. These arrays store v and w in the cross-
flow plane at the axial location of the fins for a given
angle of attack of the body. The first subscript sets the
maximum number of a,’s that can be calculated in a

Table A-1. Description of Quantity of Computer Code

Program Element Type Name Card Len‘gth

Main Program FINLOAD 562
Subroutine Subprogram IDSUB | 22
Subroutine Subprogram IPSUB 37
Function Subprogram CN 25
Subroutine Subprogram CNPREP ., . 53
Subroutine Subprogram FLOW 134
Function Subprogram TBLOOK 29
Subroutine Subprogram SIM 26
Blank Common - --

Labelled Common -- -

Total 888 .

given computer run, the second subscript sets the
number of roll angles used to calculate fin loads, and
the third subscript sets the number of spanwise loca-
tions along the exposed semispan used to calculate
fin loads. By changing the program such that only
three a’s are permitted in one run, a user can reduce
computer memory by 22,338 words. The second and
third subscripts should not be changed in the pro-
gram for purposés of conserving memory.

Although the computer run time is discussed in
Appendix B, a short discussion is given here concern-
ing a simple modification of the code that, for certain
cases, would significantly reduce the run time. The
majority of computation time in the execution of the
program is consumed in calculating the body flow
field in subroutine FLOW. As discussed in the pre-
vious paragraph, the v and w velocity components

-are calculated in a polar grid pattern for an axial

location at the fins and for a given a,. If a user plans
to make a number of computer runs for fin planforms
with the same semispan and located at the same axial
station along the body, the modification should be
made. For this case the body flow field calculated in
FLOW would be exactly the same for each computer
run. Therefore, the flow field stored in arrays U (I),
VVEL (1, J, K), and WVEL (J, J, K) should be stored on
disc or tape and recalled for later computer runs. In
this way the subroutine FLOW will not have to be
called each time a computer run is made.

Memory Length
(Words)

48 349
81
182
118
. 302
903
82
82
16
. 233
50 348
(142 254)
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SUBROUTINE
IDSUB
CALCULATES FIN-FIN
INTERFERENCE DUE TO
CONTROL DEFLECTION

SUBROUTINE
IPSUB

MAIN PROGRAM
FINLOAD
INPUT
CENTRAL CALCULATION
OUTPUT

CALCULATES FIN-FIN
INTERFERENCE DUE TO

FUNCTION
: CN
CALCULATES THE LOCAL
NORMAL FORCE
COEFFICIENT

SUBROUTINE
CNPREP

CALCULATES VARIOUS
CONSTANTS NEEDED
IN SLIRROQLITINE CN

ROLLING MOTION

Vi

SUBROUTINE SUBROUTINE
1A FLOW - SIM -
" “ CALCULATES THE FLOW -t NUMERICAL INTEGRATION o
FIELD ABOUT THE BODY ROUTINE

TABLE LQOK-LIP

FUNCTION 1A

TBLOOK

Y

ROUTINE

Figure A-1.

Overview Flow Chart for Computer Program

Table A-2. Computer Program Listing

s NN NaNeNel

PROGRAM FINLOADCINPUT»OUTPUToTAPIS=INPUT) FIN

FIN

THIS PROGRAM CALCULATES THE FORCES ANO MOMINTS PROQUCZD FIN

BY CRUCIFORM FINS ATTACHED TO A MISSILE IN SUBSONIC AND FIN

TRANSONIC FLOW. T FIN

PROGRAMMED BY We Le OBERKAMPF (NOVe 1379 - APRIL 1380) FIN

FIN

COMMON AsBIAWCRyAE+PIyDETA9COSLETANLE o TANTE 9ACH 9 ALPHA FIN

COMMON /A/ BO9sSF ¢SIGMA9CNAGINT1,INT2 : FIN

COMMON /B/ RADwXVy.IALPHA FIN

COMMON /C/ UVEL 9 VSTO9WSTOsSINP 4COSPeSINLE9[ABySINTE9CISTE s FIN

CBETAsTANGM 9 GAMLE yGANTE FIN
REAL MACHe IPs INT1 9 INT29 INT3oINTO9INTS oy INTS+INT79INTS s +FIN

1[NT90[NT1)'INTlloINT12oIN713'INTIQQINT159INTISQIVT170INT18 FIN
DIMENSION FCOTRL(Q)oALPHA(E)oROLLR(S)QINTL(SI)OINTZ(Sl)QZETAS(Sl)o FIN

IETAS(SI)oINTS(Sl)oINTQ(Sl),INTS(Sl)cVVEL(607305139HVEL(6.73'51)' FIN
1VST0(51)9HST0(51)oINTS(Sl),IN77(51)'IVTB(51)01‘79(51)oINTla(Sl)o FIN
IINTII(SL)QINTIZ(SI)'CSUBL(73)QCSUBZ(73)oCSJBH(YS).C5037(73)oCSUBN( FIN
173),UVEL(6)9!NT13(51)oINTlO(Sl).[NTlS(51)9INTLS(51)vINTl?(Sl)o FIN
IINTIB(SI)oCSUBP(73)oCSUBH(73)oCSUBB(73)oFCfRLE(O)'CZAV(G)oCHAV(S)o FIN
ICYAV(G)OCVAV(G)oCLAV(S).CZTOT(19)pCHTDT(19)oCYTOT(19)oCNTOT(19)p FIN
1CLTOT(19)oTITLE(L0) FIN
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Table A-2. Computer Program Listing (Cont)

BEGIN INPUT OF MISSILE ANO FIN GEOMETRY (USE METRIC UNITS)
INPUT TITLE FOR MISSILE GEOMETRY (MAXIMUM OF 5) CHARACTERS)

OoOnNnoOo0n

READ (5+120) (TITLEC(I)eI=1410)

A=B800Y RADIUS (METER)

BC =SEMI-SPAN (METER)

CR=ROOT CHORD (METER)

X1=X LOCATION OF LEADING EDGE ROOT CHORD (METER)
GAMLE=LEAJDING EOGE SWEEP (DE6)

GAMTE=TRAILING EDGE SWEEP (DEG)

XH=X LOCATION OF PANEL HINGE MOMENT RIFERENCE

OO0OO000O00O0OO0O0

READ (594) A9BOsCRoXL yGAMLE ¢ GAMTE o XH
END INPUT OF MISSILE AND FIN GEOMETRY

BEGIN INPUT FOR DESIRED FORCES AND MOMENTS

ENTER 1 IF QUANTITY DESIREDS ENTER ZERO IF NOT DESIRED
ICZCM=FIN NORMAL FORCE AND PITCH MOMZINT

ICYCN=FIN SIDE FORCE AND YAW MOMINT

ICL=FIN ROLL MOMENT T
IPANEL=PANEL NORMAL FORCEy HINGE MOMENT ANJD ROOT BENDING MOMENT

OO0OO0OO0ONO0OO0O0

READ (See) ICZCMyICYCNsICLyIPANEL

ENTER ANGULAR PARAMETERS OF FINS AND BOODY

FCOTRL(I)=CONTROL OEFLECTION OF TACH FIN (JEG): FOUR VALUES
IALPHA=NUNMBER OF BOOY ANGLES OF ATTACK (MAXe. OF SIX)
ALPHA(I)=BODY ANGLES OF ATTACK (DEG)

IROLLR=NUMBER OF BODY ROLL RATES (MAX. OF SIX)
ROLLR(I)=BOOY ROLL RATES (PHIDOTeB)/Uy DIMENSIINLESS)

OO0 OOO0O0

READ (Se*) (FCOTRL(I)»I=1¢4) :
READ (See) TALPHA9CALPHACI) ¢I=19IALPHA)
READ (Se*) IROLLRe(ROLLR(I)+I=1+IROLLR)

ENTER FREZISTREAM MACH NUMBER: FIN LEADING E£D06Z MUST BE SUBSONIC

(s NeNgl

READ (See) MACH

END INPUT FOR FORCES AND MOMENTS

OO0 O

BEGIN CALCULATION NF NEEQED CONSTANTS

PI=ACOS(=1le)

RAD=180./PI

DETA=1e/5).

DZETA=DETA

AA=AsA

BCA=B0-A

GAMLE=GAMLE/RAD

GAMTE=GAMTE/RAD

SINLE=SIN(GAMLE)

COSLE=COS(GAMLE)

TANLE=TANCGAMLC).

SINTE=SIN(GAMTE)

COSTE=COS(GAMTE)

TANTE=TAN(GAMTE)
SF=.5*BUA*«2+4(2,+CR/BOA-TANLE+TANTE)
AE=2,*BCA#«2/SF
CT=CR=8B7 A« (TANLE-TANTE)
XV=X1+e5% (e 25«CR+o25«CT+BNA*TANLE)
GAMMAM=" ,

IF(MACH«GTele) GAMMAM=ACOS(le/MACH)
TANGM=TAN(GAMMANM)
IF(GAMLE.GE.GAMMAM) 60 TO 9

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

- FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
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Table A-2. Computer Program Listing (Cont)

PRINT 220 FIN 92

STOP . FIN 93

9 IF(MACHeLZele) BETA=SQRT(1e=MACH#e2) FIN 94
IF(MACHeGTole) BETA=SQRT(MACHea2~1,) FIN 95
HC2CM=2HND FIN 96
HCYCN=2HND . FIN 97
HCL=2HNO o FIN 38
HPANEL=Z2HNO . FIN 99
IFC(ICZCMeZQel) HCZCM=3HYES . . . ) . FIN 100
IFCICYCNeZQel) HCYCN=3IHYES . FIN 171
IFCICL.EQel) HCL=3HYES T ) FIN 132
IFCIPANEL.EQel ) HPANEL=3HYES . FIN 103

c FIN 134
c ENO CALCULATION OF NEELDEDQ CONSTANTS . FIN 105
c FIN 126
c BEGIN CALCULATION OF SIGMA ’ FIN 197
C ' FIN 108
ETA=0. FIN 139

00 11 J=1,51 ) : . FIN 110
ZETA=D . . o FIN 1
ETAF=(1e¢ZTA%2(2,2AE))oSART(1s=CTA®s2) FIN 112
TEMP=CR=-BJA~(TANLE-TANTE)*ETA FIN 113

DO 10 I=1,51 - FIN 114
ZETAF=SQRT(ZETA) *EXP(ZETA»*2/SART(COSLE)) FIN 115
INTIC(I)=TEMP«ZETAF«ETAF . FIN 116
ZETAS(I)=ZETA , FIN 117

10 ZETA=ZETA*DZETA FIN 118
CALL SIMC(INTL.DZETA+S1sINT2CJI) : ' " FIN 119
ETAS(J)=ETA FIN 120

11 ETA=ETA+DZTA i - ) FIN 121
CALL SIM(INT2y0ETA¢S19SIGMA) : , " FIN 122
SIGMA=SF/3)A/SIGMA _ _ > . FIN 123

C . " .. ' FIN 124
c END CALCULATION OF SIGMA B L FIN 125
o . L ' FIN 1256
c BEGIN CALCULATION OF CNA . - FIN 127
(s v ] : FIN 128
UVEL(1)=1. : FIN 129

D0 12 J=1,51 S0 : FIN 130
VSTOCJ)I =0, . FIN 131

12 WSTO(J) =T, . ’ FIN 132
1a8=1 . . . . FIN 133
SINP=D . o FIN 134
COSP=1. S . FIN 135

CALL CNPREZP : T FIN 136
CNA=CN(1./RAD)*RAD ' FIN 137

c FIN 138
c ENDO CALCULATION OF GNA : FIN 139
c , T FIN 14)
c CALL FIN-FIN INTERFERENCE SUBROUTINE FIN 141
C o . FIN 142
FCTRLEC1)SFCOTRL (1) - . FIN 143
FCTRLEC2)=FCOTRL(2) FIN 144
FCTRLE(3)=FCOTRL(3) - ‘ FIN 145
FCTRLECA)=FCOTRL(4) FIN 185
IF((FCOTR_(1)eEQe0e) e ANDe(FCOTRL(2)4sZ QoJo).AND.(FCOTRL(S).EO.D.) FIN 187

CoANDe (FCOTRL(4).EQeCo)d) GO TO 1 FIN 148

CALL IDSUB(FCOTRLyFCTRLE) : ) FIN 149

C A . FIN 159
o CALL ROLL DAMPING INTERFERENCE SUBROUTINE FIN 151
c . : FIN 152
18 IP=Ce. FIN 153

00 1S I=1,IROLLR FIN 154

15 IF(ROLLR(I)«NEeGe) GO TO 16 FIN 155

GO TO 17 . FIN - 156

16 CALL IPSUB(IP) FIN. 157

17 GAMLE=GAMLEZ*RAD ) FIN 158
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Table A-2. Computer Program Listing (Cont)

o000

o000

o0

Oo0n

18

19

35

4C

45

GAMTE=GAMTE~RAD

CNA=zCNA/RAD .
PRINT 1ol o(TITLECI}oI=191C)sAsBIyCRoXL +GAMLE ¢GAMTE9XHoSF9AEWCT,
1SIGMAsCNAoIPIyHCZCM yHCYCNoHCL o HPANEL o (I yFCOTRL(ID 9 I=14}) .

PRINT 1029 CALPHACI) oI=14IALPHA)

00 19 I=1ys1ALPHA

ALPHACI)=ALPHA(CI)/RAD

PRINT 13

PRINT 1089 CROLLRCI)+I=19IROLLR)

PRINT 1124MACH

GAMLE=GAMLE/RAD

GAMTE=GAMTE/RAD

D0 19 I=1y4

FCOTRLCID=FCOTRL(I)/RAD

FCTRLECI)=FCTRLE(I)/RAD ' o

CALL FLOW FIELD CALCULATION SUBROUTINZ

CALL FLOWCUVEL y VVELyWVEL)
I1AB=}

BEGIN ANGLE OF ATTACK LOOP

AB=ALPHA(IAB)
COSAB=CO0S(AB)

BEGIN ROLL RATE LOOP

IRR=1
PHID=ROLLR( IRR) /80
PHI=O.

IPHI=1

DPHI=S</RAD
DIPHI=]

ISKTCH=1

ISAV=0

BEGIN ROLL ANGLE LOOP

SINP=SIN(PHI)

COSP=COS(PHI)

ITEMP=1

IF(CIPHIeGEe20) e ANDe (IPHISLES3T7)) ITEMP=2
IFC(IPHIe6E«38) s ANDeC(IPHIeLECSS)) ITENP=3

IFC(IPHI.GE«56) ITENP=#

IFCITEMP+ISAV.EQeS) ISAV=D
TEMP2=FCTRLE(ITEMP+ISAV)eSI6GN(149COS(PHI-ISMTC42(14E=5)))
SINOE=SIN(TENP2)

COSDE=COS(TEMP2)
TEMP=FCOTRLCITEMP+ISAV)*SIGN(l ¢ 9COSC(PHI-ISHNTCHe (L E=S)))
SIND=SIN(TEMP)

COSD=COS(TEMP)

DO 45 I=1,51

VSTOCI)=VVEL(IABIPHI+I)

WSTOCID=WVEL(IABYIPHI»I)

CALL SUBROUTINE WHICH PREPARES CONSTANTS NIZIEDED IN SU3PROGRAM CN

CALL CNPREZP
ETA=0,

BEGIN ETA(R) LOOP

DO 69 J=1,51

ZETA=0.

RTEMP=A4BASETA
XTEMP=CR~-BOA~(TANLE-TANTE) «ETA
XTE=X1oCReBOA*TANTE«ETA

FIN
FIN
FIN

FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

159
160
151
162
163
154
165
166
157
168
169
170
171
172
173
174
175
176
177
173
179
189
181
182
183
184

. 185

186
187
188
189
139
191
132
193
194
195
136
197
198
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Table A-2. Computer Program Listing (Cont)

o000

o000

OO

60

57

59

59

65

87

58

69

72

73

74

ETAFS(1e*ZTAN(2.4AE) )2SART(L1e=ZTA2e2)
PHIOR=PHID*RTEMP

UL= SGRT(UVEL(IAB)G'ZO(VSTO(J)OPHIOR'SINP)"ZO(HSTO(J)-
LPHIDR2COSP) #e2)

TEMPL=COSAB*(SINOE+IP+PHIDR)

TEMP2=(VSTO(J) +PHIDR*SINP)«COSDE«SINP
TEMP3=(WSTO(J)=-PHIOR*COSP)*COSDE«COS?
VECN=1e4242SINDECIP«PHIOR* (IP*PHIDR)#e2
ALSASIN((TEMPL=-TEMP2+TEMP3) /VECN/UL)

CNN=CNC(AL)

BEGIN ZETA(X) LOOP

D0 59 T=1,61

ZETAF=SART(ZETA) sEXP(ZETA*+2/SQRT(COSLE))
TEMP=XTEMP e ZETAF «ETAF aCNN#UL**2

IFCICL.EQe3) GO TO 55

INT3CI)=RTEMP+«TEMP

IF(ICZCM«ZQe0) GO TO 57

INTA(I)=TEMP4COSD*COSP

INTSCI)=TEMP*( (XTE=-XTEMP«2ETA) #COSO#COSP-RTEMP#SIND «SINP)
IFC(ICYCNeZQel) GO TO S8

INTE(L)=TEMPeCOSO«SINP

INTTCI)=TEMP2( (XTE~XTEMP*ZETA) «COSO+SINP+RTEMPeSINO~COSP)
IFCIPANELEQeD?) GO TO S9

INT13C(ID=TEMP

INTLI4CI)STEMPs ((XTE-XTEMPsZETA) -KH)

INT1S5CI)=ZTA«TEMP

ZETASZETA+DZETA

END ZETA(X) LOOP

IF(ICL.EQe3) GO TO 65

CALL SIMC(INT3I,DZETA9S1eINTB(JI)
IFC(ICZCMeEQeD) 60 TO 67

CALL SIMCINT4,0ZETA(S19INTI(J))
CALL SIMCINTSyDZETA$S1+INTLIO(J))
IFC(ICYCNFAN) GD TO 68

CALL SIMUINT6yDZETA9512INTI1CID)
CALL SIM{INTY7,DZEYA9S19INT12(J))
IFCIPANEL.EQeD) 60 TO 69

CALL SIMUINTiIS o 0ZETA9S14INT16CJ))
CALL SIMCINT14,DZETA»S1+INT1TCUD)
CALL SIMCINT1590ZETAsS14INT18¢CJ))
ETAZETA+DETA

ENC ETACR) LOOP-

IFCICL.EQeS) GO TO 706

CALL SIMCINT8¢0ETA 51 9CSUBLCIPHI))
IFC(ICZCMeSQe0) GO TO 72

CALL SIMCINTI9DETA 51 +CSUBZCIPHIN)
CALL SIMUINILOUETA+51CSUBMCIPHID)
IFCICYCNeZQel) GO TO 73

CALL SIMCINT1140ETA4S1,CSUBY(IPHI))
CALL SIM(INT129DETA4S1yCSUBNCIPHI))
IFC(IPANEL.EGeD) GO TO 74

CALL SIMCINT164¢DETA$S51,,CSUBP(IPHI))
CALL STIMCINT1T7¢DETA$S1oCSUBH(IPHID)
CALL SIMCINT1890ETA+S1+CSUBB(IPHI))
PHI=PHI+DPHI

IPHI=IPHI+DIPHI

IFC(IPHISLEL73) GO TO 40

IFCCCFCOTRL(1)eEQeDe) e ANDaC(FCOTRL(2)2EQede)esANI«(FCOTRL(3)EQels)

1eANDe (FCOTRL(4)eEQeOe))eOR (ISWTCHsEQe=1)) GO TO 79

BEGIN PREPARATIONS FOR DOUBLE VALUEZD CONTROL FIRCES AND MOMENTS

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN

FIN

FIN
FIN
FIN

- FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN

227
228
229
230
231
232
233

235
236
237
238
239
240
261
242
243
244
243
246
247
248
249
250
251
252
253
254
255
256

257

258
259

261
262
263

264



Table A-2. Computer Program Listing (Cont)

o

OO0

[aNeNeNeNal

o000

15

76

77

78

79

PHI=PI/2e

IPHI=19

DPHI=PI/2.

DIPHI=18

ISWTCH=-1

ISAV=1

IF(ICL«EQeD) GO TO 75
SAVL19=CSUBL(19)
SAVL3I7=CSUBLI(3T)
SAVL35=CSUBL(S5)
IFCICZCMeZQe0) GO TO 76
SAVZ19=CS5UBZ(19)
SAVML9=CSUBM(19)
SAVZ3IT=CSUBZ(37)
SAVM37=CSUBM(37)
SAVZ55=CSuUBZ(55)
SAVM55=CSUBM(55)
IFC(ICYCNeZQe0) GO TO 77
SAVY19=CSUBY(19)
SAVNL9=CSUBN(19)
SAVY3T=CSUBY(37)
SAVN3IT=CSUBN(37)
SAVYS55=CSUBY(59)
SAVNSS=CSUBN(55)
IFCIPANEL.EQed) GO TO 78
SAVPL19=CSUBP(19)
SAVHL 9=CSUBH(19)
SAVB19=CSuBB(19)
SAVP3T7=CSUBP(3T7)
SAVH3IT=CSUBH(3T)
SAVB3IT=CSuUBB(37)
SAVP35=CSUBP(55)
SAVH55=CSUBH(S5S)
SAVBS55=CSuBB(55)

GO TO 4y

‘END PREPARATIONS FOR DOUBLE VALUED CONTROL FORCIS AND MOMENTS

CONTINUE
END OF ROLL ANGLE LOOP
BEGIN PRIMARY OUTPUT

TEMPM=SIGMA®BOA/2e/PI/A®*3
TEMPF=SIGYA*BOA/PI/AA
TEMPP=SIGMA*BJ A/SF
ATEMP=ALPHA(IAB) *RAD
IF(ICZCMeEQ@eU) GO TO 82

BEGIN QUTPUT FOR CZ AND CM

PRINT 135 ¢ROLLRCIRR)GATEMNP
PRINT 105

DO 80 I=1,19

PHI=S.*(I-1)
TEMP1=TEMPFeCSUBZ(I)
TEMP2=TEMPF«CSUBZ(I+18)
TEMPI=TEMPF *CSUBZ(I+36)
TEMPY=TEMPFaCSUBZ(T+54)

IF((IoNEe1l9)eOR(ISUTCHeERQSL))

TEMPL= TEMPFeSAVZ19
TEMP2= TEMPFeSAVZ3T
TEMP3I= TEMPFeSAVZSS

5) T0 795

CZTOTC(I)STEMPL +TEMP2+TEMP3I+TEMPY

PRINT 1DToPHIoCZTOT(I)oTEHPloTEHPZgTEHPS’TEHRO

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN
FIN

294

35

350

61
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OO0

000

oon

o000

62

815
81

82

825
83

835
84

835

855
86

PRINT 1C8

00 81 I=1,19

PHI=Se*(I-1)

TEMPL==TEMPMsCSUBM(I)
TEMP2==TEMPM«CSUBM(I+18)
TEMP3I==TEMYPMeCSUBM(I*36)
TEMP4=~TEMPM«CSUBM(I*54)
IFCCIeNEe19)s0Re (ISHTCHeEQS 1)) GO TO B80S
TEMPL=~TEMPMe«SAVM1Y

TEMP2==TEMPM«SAVM37

TEMP3I=-TEMPMeSAVMSS
CMTOTC(I)=TEMP1+TEMP2+TEMP3I+TEMPS

PRINT 137 ¢PHLoCMTOTC(I) s TEMPLoTEMP2TEMPIZTZNPS

END OUTPUT FOR CZ AND CHM
IFCICYCN.EQ.0) GO TO 85
BEGIN OUTPUT FOR CY AND CN

PRINT 105;A0LLARCIRRIZATEMP

PRINT 149

DO 83 I=1,19

PHI=Se*(I~-1)

TEMPL==-TEMPF«CSUBY(I)
TEMP2=-TEMPF«CSUBY(I+18)
TEMP3I==-TEMPF+CSUBY(I+36)
TEMPA=-TEMPF«CSUBY(I+54)
IFC(IeNEe19)eORe (ISWTCHsEQel)) 60 TO 8325
TEMPL==-TEMPF«SAVY19

TEMP2=-TEMPF+SAVY3T

TEMP3I=-TEMPF«SAVYSS
CYTOTC(I)=TEMP1+TEMP2+TEMP3I+TEMPS )
PRINT 1UToPHIoCYTOT(I) o TEMPLITEMP24TIMP3IZTIMP
PRINT 110

DO 84 I=1,19

PHI-Je=(1-1)

TEMPL=-TEMPM=CSUBN(I)
TEMP2==TEUPM+CSUBN(I+18)

TEMPI =TEMPM-CSUBN(I+J36)
TEMPA=-TEMPM*CSUBN(I*S54)
IFC(IeNEe19)eOR(ISUTCHeEQW.1)) GO TO 835
TEMP1=-TEMPM*SAVNLY

TEMP2==-TEMPM+S AVN3T

TEMP3=-TEMPM«SAVNSS
CNTOTC(I)=TEMPL+TEMP2+TEMP3+TEMPSY

PRINT L1iT7oPHIsCNTOT(I) s TEMPLITENP29TZNP3IoTZMP

END OUTPUT FOR CY AND CN
IF(ICLeEQ.D) GO TO 87
BEGIN OUTPUT FOR CL

PRINT 105,ROLLRCIRRIATEMP

PRINT 111

DO 86 I=1,19

PHI=Se*(I-1)

TEMPL=TEMPM+CSUBL(I)
TEMP2=TEMPM+CSUBL(I+18)
TEMP3I=TEMPM«CSUBL(I+36)
TEMP4=TCMPMCSUBL(I+54)
IFC((IeNEel 9)eORe (ISWTCHeEQs1)) 60 TO 855
TEMPL= TEMPMaSAVL19

TEMP2= TEMPMeSAVL3?

TEMP3= TEMPM*SAVLSS

CLTOTCID)=TCMPLl ¢+TEMP2+TEMP3I+TEMPS

PRINT 107 4PHIsCLTOTCI) 9 TEMPLYTEMP2yTIMP3IoTZMP#

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN °

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN
FIN
FIN
FIN
rin
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

Jel
362
363
3se
3a8S
356
387
368
3589
3713

372
373
374
3715
378
rr
378
3719
380
381
382
383
384
385
386
387

389
390
331
392
393
394
335

3986
397

399
430
491
4)2
833
a0
40s
%16
"7
408
4)9
410
sl1
412
413
414
415
816
417
418
419
620
421
422
423
24
425
926
427
428



Table A-2. Computer Program Listing (Cont)

END QUTPUT FOR CL

s NaNel

87 IF(IPANEL+EGe?) GO TO 89

BEGIN OUTPUT FOR PANEL LOADS

o000

IFCICLeEQel Y PRINT 10S9eROLLRCIRRI9ATINP
PRINT 113

00 88 I=1,19

PHI=Se([-1)

TEMPL=TEMPP+CSUBP(I)
TEMP2=TEMPP«CSUBP(I+18)
TEMPI=TEMPP«CSUBPC(I +36)
TEMPA=TEMPP+CSUBP(L +54)
TEMPS=~-TEMPP«CSUBHC(I)/CR
TEMPS=~-TEMPPeCSUBH(I+18)/CR
TEMPT==TEMPP+«CSUBH(I+36)/CR
TEMPB==TEMPP«CSUBH(I+54)/CR
TEMPI=TEMPP=CSUBB(I)
TEMPL1O=TEMPP«CSUBB(I+18)
TEMPLL=TEMPP2LSUBB(I+36)
TEMPL2=TEMPP+CSUBB(I+54)

LFCC(leNEol I)eOR(ISWTCHeEQe1)) GO TO 88
TEMPL=TEMPP«SAVP19 '
TEMP2=TEMPP«SAVP3T7
TEMPI=TENPP*SAVPSS
TEMPS=<TEMPPeSAVH19/CR
TEMPS=-~TEMPP+SAVH3IT/CR
TEMPT=-TEMPP+SAVHSS/CR
TEMPI=TEMPPs+SAVB19
TEMPLO=TEMPP+SAVB37
TEMPLL=TEMPP«SAVBSS

88 PRINT 11843PHIoTEMPLoTEMP2yTEMPIoTEMPEy TEMPSHTENPEsTEMPT »TEMPS
CTEMPI+TEMPLOTEMPLL,,TEMPL2

END OUTPUT FOR PANEL LOADS

OO0

89 DPHI=S5+/RAD
IF(ICZCMeZQe0) GO TO 92
CALL SIM(CZTOT4DPHIs199CZAV(IRR))
CALL SIM(CMTOT ¢yOPHI 91 9¢CMAVC(IRR))
CZAV(IRR)=CZAV(IRR)*2./PI
CMAV(IRR)=CMAV(IRR) *2,/PI

93 LFULCYCNeZUe? GO TO 91
CALL SIM(CYTOT sDPHI 91 39CYAV(IRR))
CALL SIM(CNTOT,DPHI+199CNAV(IRR))
CYAVCIRR)=CYAV(IRR)*#24/P1
CNAVCIRR)=CNAV(IRR)*2,.,/PI

91 IF(ICL.EQesD) GO TO 92
CALL SIM(CLTOT,,0PHI¢19+CLAV(IRR))
CLAVCIRR)=CLAV(IRR)*2,.,/P1]

92 IRR=IRRe+1
IFC(IRReLE+IROLLRY GO TO 3%

END ROLL RATE LOOP

OO0

IFC(ROLLR(1)eEGQeNe)eANDS(IROLLRsZQel)) GO TO 33
IFCCICZCHeEQeD Ve ANDC(ICYCNeEQeB)sANDo(ICLaEQeD)) GO TO 99

BEGIN OUTPUT FOR AVERAGE FORCES AND MOMENTS -OVIR A CVYCLE OF ROLL

(s NeKg]

PRINT 115,ATEMP

IF(ICZCMoEQsC) GO TO 94

PRINT 115

D0 93 I=1,IROLLR
93 PRINT 117oROLLRCID oCZAV(I)CMAVID)
94 IFC(ICYCNeZQeD) GO TO 96

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN,

FIN
FIN
FIN

FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

429

461
452

487
488
439
493
491
492
493
894
495
496

63
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PRINT 118

D0 935 I=14IROLLR
95 PRINT 117,ROLLRCID¢CYAV(I)CNAV(I)
96 IF(ICL«EQed) GO TO 99

PRINT 1193
00 97 I=1+IROLLR - ‘
57 PRINT 117,ROLLRCI)sCLAVC(])
c ) o
c END OUTPUT FOR AVERAGE FORCES AND MOMENTS OVER A CYCLZ OF ROLL
c
C END PRIMARY QUTPUT
o
99 IAB=IAB+l
IF(IABeLEZ«IALPHA) GO TO 30
c
o END ANGLE OF ATTACK LOOP
c

100 FORMAT(1H1)

131 FORMAT (141 ¢/7460XeoF I N L O A Deg//7942X9sPREJICTION OF FORCES AN
10 MOMENTS PRODUCED BY FINS~y//79SNel3AS59//5X9¢330Y RADIUS =%,
LF6e392 Mug//SX 9#FIN SEMI=SPAN =#gF6¢3 9% Mayg//3X 9*ROOT CHORD =9,
1FR6e39% Mway//SX 92« AXIAL LOCATION OF FIN LEADING EOGE AT THE BODY =+,
1FTe39s May//SX 9« LEADING EDGE SWEIP =%9FGe292r DIG*e//5K,
1«TRAILING EDGE SWEEP =#gF6e229* DEGey//5X,
1«AXIAL LOCATION OF HINGE LINE =#gFTe39% M2y //5K,
1«EXPOSZD SURFACE AREA OF A FIN =2¢FTe39r SQe Mo y//5X,
1+EXPOSED ASPECT RATIOQ =wyFha39//5XpeTIP CHORD =2¢F6e39gr Maog//SXy
1«NORMAL FORCE SCALING COEFFICIENT =#yF6e397//5X9*NORMAL FORCE COEFF

. LICIENT SLOPE (FIN ALONE Y N/Q SFIN) =eygFGebov (L/DEG)INy//5Xy
1 «ROLL DAMPING INTERFERENCE CO
LEFFICIENT =#3F5e39/7/5X9%CZ AND CH DESIREDe ®Al1)4//7/5Xy
1+CY AND CN DESIREDy #Al09/7/SXeeCL DESIREDe ¢Al)e//5Xy
" 1*CPy CH AND CB OESIREODy *9A1098(//5X9*CONTIOL DEFLECTION FIN®,12,
1o =egFbe29% DEG*)9//SXe*ANGLES OF ATTACK DZSIRID (DEG)®)

102 FORMAT (1IXy6FT7e1)

193 FORMAT (/5X¢*ROLL RATES DESIRED (DIMENSIONLESS)®)

104 FORMAT (1)Xs6FT- D)

105 FORMAT(1HL ¢/7/5X 9#ROLL RATE =e9Fb6e3o* (DIMENSIONLESS)*9SXe
L1~ANGLE OF ATTACK =e¢,FSelee DEG*)

106 FORMAT(///7/75X9*PHI %41 0XeaCZ FINSHyl]XyeC2 FINl'olUX"CZ FIN2+,
110Xe2CZ FIN3®310X2CZ FINGe,y/)

107 FORMAT(ISs1eF16a394F17:3)

108 FORMAT(///7/5X 92PHI® 910X ooCM FINSsoLlOXKogeCM FINL*plOX9oo*CR FIN2#2,
110X9eCM FIN32y10GX9eCH FINGw,y/)

109 FORMAT(//7/7/75X9*PHI* 910X ooCY FINS*9Ll0Xe*CY FINLeolOX9ooCY FIN2»,
110XesCY FIN3*ylOXNyp«CY FINGs,/) '

110 FORMAT(//7775% ¢y¢PHI« 910X 9#CN FINS*#9L0XooCN FINLopLOX9*CN FIN2#%,
110Xe=CN FIN3I*y10X9oCN FINGe,y/)

111 FORMATC//7 /775X ooPHI* 910X 9eCL FINSe)1IXpoCL “INL*9lOXoosCL FIN2e,
11CX9eCL FIN3*91GX9oCL FINNs,/)

112 FORMAT (/353X ¢9oMACH NUMBER == ,yF542)

113 FORMAT (//7/7/75X 9ePHI*o3X 9#CP FINL1eo3X9oCP FIN2'03K!'CP FIN3I*e3Xy
14CP FING#¢3X9#CH FINLo93XooCH FIN2¢ 93X goCH FINS*#o3XooC4 FINGw* 3K,y
1+CB FIN1®¢y3Xy2CB FIN2#93IX92CB FINIe93IX9eCB FINYe/)

119 FORMAT (FBelo9FFe3911F1Ce3)

115 FORMAT (1H19//S5Xe~AVERAGE VALUE OF FORCES AND MOMENTS OVER ONE ROL
1L CYCLE#*9//S5Xs¢ANGLE OF ATTACK =teFS5ul g DIGe)

116 FORMAT (//77/5X+%ROLL RATE*910X9eCZ AVERAGE®91IX9*CH AVERAGE*/)

117 FORMAT (F12a3yF20.8,F2043)

118 FORMAT (//7//5X9*ROLL RATE#* 310X s2CY AVERAGZ ®*913X9oCN AVEIRAGE+/)

119 FORMAT (//7/7/5X ¢*ROLL RATE*910XoeCL AVERAGEZ®/)

12C FORMAT (1)Aé)

200 FORMAT (1H110(7)910Xy
1388333335588 35533S55333E$33TSSESETSL$S535333555$53588388588+//710X
1+«MACH NUMBER TOO LARGEe SUPERSONIC LEAODING EDGZ WILL RESULT.#//10X
I EE 3331333233333 3333333333312 3333 2333333333333 23373332232]

END
SUBROUTINE IDSUB(FFE)

64

FIN

FIN

FIN
FIN

FIN
FIN
FIN
FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
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534
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537
528
599
510
511
512
313
514

564
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[sNaXeNel

s NeNaNel

nOooon

THIS SUBROUTINE CALCULATES FIN-FIN INTERFERENCZI JUE TJO CONTROL

DEFLECTION

COMMON ﬂtB]AOCR'AEOPIlDET"COSL o TANLE ¢y TANTEoMACH ALPHA

REAL IOTsMACHeID )

DIMENSION F(Q)’[07(11)ODOBT(II)QALPNA(G)'F 8)

DATA CIOTCIDol=1911)/ 0275902499021 %901719e12890)900e057940289
Ce0CO9el30 o000/

DOB=A/(BMA+A)

X=Co
00 S I=1l,ll
00BY(I) =X

S X=Xeel

19

11

ID=TBLOOK(DOBsDOBT+IDTy11)
FECL)=F(1)+ID*(F(2)=F(4))
FE(2)=F(2)+ID* (F(1)=-F(3))
FEC3I)=F(3)+10*(F(4)=F(2))
FECA)=F(4)+ID=«(F(3)=F(1))
RETURN

END

SUBROUTINE IPSUB(IP)

THIS SUBROUTINE CALCULATES THE ROLL DAMPING MOMINT INTERFEREN
COEFFICIENT

COMMON A9BIA9CRIAE9PI2OETA9COSLZ 9 TANLE 9y TANTEoMACHoALPHA
COMMON /A/ BO +SFeSIGMAyCNAy INT1,INT2

REAL IPJINT1+sINT29yMACH

DIMENSION 008T(11)4CLPT(11)INTLCSL)¢idT2¢(31)9A_PHA(G)
DATA (CLPT(I)elI=1, 11)/-.1590--1590'01619 «al639- olGD.'olQSo‘ol
1-40869=e0839-00134.000/
SFP=2¢*SF+A*(2 ¢*CR+A= (TANLE=-TANTE))

AP=(2.%B0) «22/SFP

TEMP=SFP#2,+B0/(PI2sAsA*240A)

DoB=A/BC

X=0, -

DO 5 I=1s11

DOBT(I)=X

X=X+el

CLP=TBLOOS(DOByDOBTsCLPT911)TENP AP’

DZETA=1e/50e ’

ODETA=DZETA

ETA=).

00 11 J=1.51

ZETA=0.

00 19 I=1,51

ZETAF= SQRY(ZETA)'EKP(ZETA"Z/SQRT(COSLE))
ETAF=(1le®ZTA**(2,2AE) )+ SQRT(1e~ETARe2) :
INTICI)=CA+BOA*ETA) e+ 2+ (CR~BOA*(TANLZ~TANTZ)*ETA) «ZETAF*ETAF
ZETA=ZETA+DZETA

CALL SIMCINTL10ZETAWS19INT2(J))

ETASETA+DITA

CALL SIMCINT29DETA¢S1TEMP)
IP=14¢CLP/(24/PI+SIGMA«BOA/BO/Axe3aCNA~IENF)
IF(IPeLTele) IP=0C,

RETURN '

END

FUNCTION CN(A)

THIS SUBPROGRAM CALCULATES THE LJCAL NORMAL FOCE COEFFICIENT
GIVEN THE LOCAL ANGLE OF ATTACK

COMMON /D/ KPoKV9ASeSAV19SAV2ySAV3
REAL KPsKV

CN=C,

IF(AsEQede) RETURN

ASAVE=A

CE

-

21y

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN'

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
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624
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626
627
628
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SO0 0

66

o N

SIGN=A/ABS(A)

A=ABS(A)

IFC(A«GT.AS) 60 TO 1
CN‘(KP'SIN(A)-COS(A)OKVtSIN(A)'tZ)t(lo-SAVl'A'tl)

GO 10 3
CNAS=(KPeSINCAS)*COS(AS)+KVeSIN(AS)#e2)+(l,=SAVL*ASee3)
IF(AeGTe24+AS) GO TO 2 V

CNAMAS=(KP«SIN(A~AS)*COS(A~AS)+KV*SINC(A=AS)*a2)2(1~SAVI2(A=AS)ee3)

CN=SAV2eCNAS+SAV3I«CNAMAS
G0 T0 3
CN=(SAV2+SAV3) «CNAS
CN=SIGN+CN

A=ASAVE

RETURN

END

SUBROUTINZ CNPREP

THIS SUBPROGRAM CALCULATES VARIOUS CONSTANTS NIZZDED IN THE
SUBPROGRAM CN

COMMON Ay30AyCRyACyPIoyOCTAyCOSLEy TANLL 4 TANTC,HACH y ALPIIA
COMMON /C/ UVELsVSTOsMSTO9SINP¢COSPySINLEsIABySINTESCISTE,
CBETA9TANGM s GAMLE o6AMTE

COMMON /0/ XKP 9K VoASTL 9SAV]19SAV24SAV3

REAL MACHoeMUsKP oKV

DIMENSION VSTO(S1)pHSTOC(S1)UVELC(E) sALPHA(S)

UAVZUVEL(IAB) _

CALL SIM(VSTOsDETA9S1 oVAV)

CALL SIM(WSTOsDETAsS1 sWAV)

VRAV=VAVeCOSP+WAV+SINP

GAMLEE= GA'LE’ASIN(VRAV/SORT(UAV"20VRAV"Z))

GAMTEE =GAMTE+ASIN(VRAV/SQRT(UAVes2+VRAVee2))
IF(ABSCGAMLEE) «O8Te1e57) GAMLEE=SIGN(LeST9y6AMLED)
IF(GAMLEE«LTe0 o) GAMLEE=O0.

IFC(ASS(GAMTEE) «6Tele57) GAMTEE=SIGN(Ll+57y6GANMTED)
COSLEE=COS(GAMLEE)

SINLEE=SIN(GAMLEE)

TANTEE=TAN(GAMTEE)

CRE=CR*COSTE/COS(GAMTE=BAMLE+BAMLEE)

BOAE=BO0A+~COSLEE/COSLE
AEE=4¢/(2e*CR*COSTE«COSLE/(BOA*CISLEE~COS(GAMTZ~-GAMLE*GAMLEE) )+
LTANTEE=TAN(GAMLEE))

CRS=CRE+BJAE+TANTEE

GAMMA=ATAN(CRS/80AE)

TANG=TAN(GAMMA)

PS=2,/7AEE/TANG

IF(MACHeGTele) PS= PS/(I.‘TANGH/Z./TANG)
PSI=ATAN(2.+PS*TANG)

IF(MACHeGTole) PSI=ATAN(2.*PSs(TANG~-TANGM))
TANPSI=TAN(PSI)

SINPSI=SIN(PSI)
KP=3+8PI/(TANPSI*SQRT(TANPSIes2+eSINPSI#a2/7Sredebo2BELAC+2))
KVE(KP~KP««2aTANPSI /4. /PI )+ SART(L . +TANPS[*2)

AETEMP=AEE

IFC(AETEMP LTele) AETEMP=1.
ASTL=e66326(1e+e02¢(AETEMP~2c)228) 2 (1o*1eln(AETINP =1o) e22,5¢

CCOSLEE®#2) 2 (1o *b e (AETEMP -1 o) ¢22«SINLIZEsed/EXP(AZTEMP) )/ (COSLEE+L)

Cee(242(AETEMP=14))
MU=e9=e22SQRTCAETEMP) #SIN(2+*GAMLEE)
SAV1I=(1e=-MU)/ASTLes] :
SINLEE=ABS(SINLEE)

SAV2=1e=e35%(1l e *EXP(AETEMP) /8¢ sSINLEES # (Lo /AETZMP ) *SINC(AETEMP=-2,1

CI*GAMLEE) ) /(1o +eS*(AETEMP=14)2¢3)
IF(SAV2eLTee65) SAV2=465
SAV3I=COSLEE~*2+AEE/10¢
RETURN
END

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
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674
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678
579
583
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532
6583
6849
685 .

730
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O0O00O0O0O00OO00

o000

[z NeNaNeNel

10

20
21

"2

SUBROUTINZ FLONW (UsVVELWVEL)

THI3 SUBROUTINE CALCULATES THE FLOW FIELD ABOUT THE 800Y
FOR UP TO SIX ANGLES OF ATTACKy ZVERY FIVE DEGRZIES IN ROLL
ANGLEs AND AT S1 EQUALLY SPACED RADIAL LOCATIONS ALONG THE
FIN SEMI-SPANe A DIFFERENT 80DY FLOW FIELD CALCULATION
TECHNIQUE CAN BE USED IF THE RESULT IS PROPERLY STORE) IN
Us VVELs AND WVELe

COMMON A¢yBOAyCRoAEWPI9yDETA9COSLEsTANLE g TANTEJMACH o ALPHA
COMMON /87 RADX19oIALPHA

REAL LS¢LSHEET yMACH )
DIMENSION YV(A4) 9ZV(Q4) yPHIV(A4)yRVC44)4LS(L02)9PHISSC(LO2),
LVVELC(S 973951 ) e WVELCE9T3I9S1)9ALPHALS) yU(6)

NV=a4&

DR=BIAZ/A*DETA

XV=X1/A

I1A8=1

AB=ALPHA(IAB)

UCIAB)=COS (AB)

SINAB=SINCAB)

BEGIN CONCENTRATED VORTEX CALCULATION

PHIV(1)=7%./RAD
RV(1)=e70¢4060 *SQRT(MACH*L e )*(XVe6.)*SQRT(AB)
GT=e352PIe(XV=64)sABee2
GCO6T=1e=elSoAB*XV*,0082(AB XNV )*e2
GC=6CO6T+6T

6S=67~-6C

RC=e030 #XVeSQRT(AB)

IF(RCeLToleE~10) RC=l.E-10
YV(1)=RV(1)*COS(PHIV(1))
ZVC(1)=RV(L ) +SINC(PHIV(1))

" END CONCENTRATED VORTEX CALCULATION

BEGIN VORTEX SHEET CALCULATION

PHISS(1)=13,

OPHIV=PHIV(1)/7100.

D0 21 N=1.101
COSOUM=COS(PI«PHISS(N)I/(2.+PHIV(L1)))
SINDUM=SINCPI*PHISS(N) /(2. *PHIV(L)))
BLANK=1e*(RV(1 )*RC) *(PHIV(]I )=PHISS(N))}
RSHEET=COSOUM+(RV(1)*RC)*SINDUM*»2 /BLANK

DRSOPH==PI/ (24 «PHIV(1)) «SINDUM+(C(RV(L)+*RCI=*PIeSINDUMSCOSDUM

1BLANK/PHIV(1)+(RV(1)+RC)I*#2eSINDUMe«2) /BLANKS#2
LS(N)=SQRT(RSHEET*22+DRSOPHe*2)

" IF(RSHEET+LTele01 ) 60 TO 20

G0 7O 21

LS(N)=0.

PHIV(S5)=PHISS(N)
PHISS(N+L)=PHISS(N)+OPHTY

CALL SIMCLSoDPHIVe101l4LSHEET)
YV(5)=1.01 +COS(PHIV(S))

ZV(S) =101 +SIN(PHIV(S))

NOUM=NV-3

N=1

DO 23 NN=9¢NOUMs4
BLANK2=(NN=5)*LSHEET/(NV=4)

N=N¥L -

CALL SIM(LSyOPHIVoNeBLANKL)
IF(BLANK2.6T«BLANKL) GO TO 22
PHIVINNIZ(PHISS(N)«PHISS(N=1)) /2,
COSDUM=COS(PI«PHIVINN)/(2,2PHIV(L)))
SINOUM=SINCPI«PHIVINN)} /(2. *PHIVI1)))
BLANK=1¢¢(RV(1)*RC) «(PHIV(1)~PHIVINN))

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN

- FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN
FIN
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Table A-2. Computer Program Listing (Cont)

RVINN)=COSOUM+(RV(1)+*RCI*SINDUMe«2 /8L ANK
YV(NN)=SRV(NN)*COS(PHIV(NN))
23 ZVINN)=RV(NN)*SIN(PHIV(NN))

NOUM=NV =2

DO 24 N=24NDUMy# .

YVINI=  YV(N=1)/(YV(N=1)ea24ZV(N-1)se2

ZVINI=  ZVAN=1)/CYV(N=1)a224ZV(N=1)e02)

YV(N*1)==YV(N)

ZV(Nel ) =ZVIN)

YV(Ne2)==YV(N-1)
24 ZV(Ne2)=2V(N-1)

ENO VORTEX SHEET CALCULATION

BEGIN VELOCITY COMPONENT CALCULATION

0OO0OO0

PHI=De
IPHI=1
3) PHI=PHI/RAD
COSP=COS(PHI)
SINREGINIRUID
R=1s
IR=1
31 Y=R#+COSP
Z=R«SINP
IFCABSCY-YV(1))eLTABS(Y-YV(4))) 60 TO 32
Y14=YV(4)
Z14=ZV (&)
GO TO 33
32 vie=vYv(l)
Z14=2V(1)
33 C=14254¢(C(Y~Y14)2024(2=-214)a22)/RCes2
Vv=C.
W=Ce
00 34 J=1,4
CONL=C(Y=YV(J))2a2e(2=-2VCJ))ne2
V=Ve(=1)reaJa(Z=-2V(J)) /CON1
34 W=We(=1)aaJe(Y~-YV(J))/CONL
V=0,
WS=0,
DO 35 N=34NV
CONLI=(Y-YVIN)) #22¢(2=ZV{N)) an2
VS=VS+(=1)*eN#(Z=-ZVIN)) /CONL
35 WS=WS+(=1)+aNe (Y-YV(N))/CON1

V= (~2a *Y'Z‘SINABI(Y"E*Zﬁﬁz).420SC'V/(2-'Pi)0

12e2GS/(PI*(NV=-4))eVS)s(Lle=-EXP(=C))

¥= (SINAB#(le+ - (V8e2=7022)/(Ye02¢70e2)aa?2)~

1GC'U/(2.'PI)'2o'GS'HS/(?I'(NV-Q)))'(lg'EXP"Cl)
IFCABSC(V)IeGT22e) V=26 ¢V/ABS(V)
IFCABS(W)e6Te20) W=2e*W/ABS(MW)
VVEL(IABsIPHIyIR)=V
WVEL(LIABe [PHI[RI=N
R=R+OR
IR=IR*1
IF(IReLEe51) GO TO 31
PHI=PHI «RAD
PHIZPHI*+S5.
IPHI=IPHI ]
IF(IPHILLES73) 60 TO 30
IAB=I1AB+}
IFC(IAB.LE.IALPHA) GO TO 10

ENDO VELOCITY COMPONENT CALCULATION

00

RETURN
END
FUNCTION TBLOOK(XsAByORDyN)
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FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN:

FIN
FIN
FIN
FIN
FIN
FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

81
8)2
833
8)s
335
836
8)7
838
839
310
811
812
813
8ls
815
816
817
818
819
82J
821
822
823
824
825
825
827
823
829
830
a3
832
833
834
835
836
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Table A-2. Computer Program Listing (Cont)

[z NN e RoNgl

OoO0OMO0

3

'y

3

1

N

LINEAR INTERPOLATION SUBPROGRAM. ABSCISSA MUST BE IN

INCREASING VALUESe LETS YDU KNOW [F VALUE IS JUT OF THE
RANGE OF THE TABLEy AND THEN CONTINUES ASSUMING SINTER=1.
N IS THE NUMBER OF ENTRIES I[N THE TABLE.

OIMENSION AB(1),0RD(1) i
IF(XeLTeABC(1)eOReXeGToAB(N)) GO TO S
NN=N/2

IF(XeLToAB(NN)) 60 TO 3

I=NN

NN=NNeNN/2

EF(XeGTeAB(NN)) I=NN

GO T0 &

I=1

NN=NN/2

IF(Xe6T<A3(NN)) I=NN

I=I+l

IF(Xs6T.A3(I)) GO TO &

TBLOOK=0RD(I-1)+(X=-AB(I=1))/CABCI)=ABC(I~L))#(0RD(CI)-0RD(I~1))

RETURN v
PRINT 1,X

TBLOOK=1e
FORMAT( //30X

152HABSCISSA WAS NOT IN THE RANGE D7 THE TABLE.ABSCISSA=
1F10e5¢77 )

RETURN
END
SUBROUTINE SIM(YsHsNNyANS)

SIMPSON RULE INTEGRATIONe INTEGRAND MUST BE EVINLY SPACEOD.

NN IS THE NUMBER OF INTEGRAND POINTSe.

ODIMENSION Y(1)

ANS=0.

IFI(NN=2) 293¢5

RETURN

ANS=eSsH2(Y (1) ¢Y(2))

RETURN

II=NN/Z2

II=IIe2

IF(NN-1II)69896

II=NN=-2 -

DO 7 J=1elle2

ANS=ANS+ (Y(J)*Q et Y(Jel)eY(U+2))
ANS=ANS®H/ 3.

RETURN

II=NN-3

D0 9 J=1,9l1+2

ANS=ANS+ (Y(U)*4 o2 Y(Jel)eY(U+2))
ANS=ANS+H/3.
ANS=ANS*+eSeHe(Y(II¢2)eY([I+3))
RETURN

END

FIN
FIN
FIN
FIN
FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

837

as7
858

889
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APPENDIX B

Use of the Computer Program
The input for the program is very simple. Seven
data cards are needed to execute the program.

Card 1: Input the title of the missile and fin geometry. The title can be any combination of letters and numbers
and must be located in columns 1 through 60. Sample card:
MRAAM COMNFIGURATION

000000 00 00000DO0000000000000000000000000000000000000¢0

0000000
123465678 9100123161516 1718192020 222324 2526 27 282930 31 32 33 34 35 36 37 38 39 40 4142 €3 43 4546 47 48 49 50 51 52 53 54 55 56 57 50 59 60
11 IR R AR R R R R R R R R R R R R R R ERRR R R R

Card 2: Input missile and fin geometry. The order of input variables is: body radius (meter), fin semispan
(meter), fin root chord (meter), axial location of where the fin leading edge intersects the body (meter),
fin leading edge sweep (degree), fin trailing edge sweep (degree), and axial location of panel hinge
moment reference (meter). All data (cards 2 through 7) are input in free format; that is, any format you
like. Sample card:

165y .375+.32553.8+30,-20.+3.955

0 0000 000 0 00 O 0000000060000000000000000000000000

0
8 910 11 121314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 31 34 35 36 37 38 I3 40 41 42 4 44 45 45 47 48 49 50 51 52 53 54 55 56 57 58 59 €0
t

0o
12
1 | R R R R R R R R R AR ER R RREREREE|

00 00
34567
IRERE!

Card 3: Input the forces and moments that the user desires. Enter 1 if quantity is desired and enter 0 if quantity
is not desired. The order of input variables is: fin normal force and pitch moment, fin side force and yaw
moment, fin roll moment, panel normal force, hinge moment, and root bending moment. Sample card:

1915091

¢ 0 6000000000000CO000000GO00000000C000C0000000000000006000000¢00
1 3

78 9101123314 1516 17 181320 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 33 33 40 41 42 43 44 4546 47 48 4350 51 52 53 54 55 56 57 58 59 60

2 456

R R R R R R R R R R R R R R R AR R R R AR ERRRE!

Card 4: Ihput the control deflection angle of each fin. The order of input variables is: control deflection Fin 1
(degree), control deflection Fin 2 (degree), control deflection Fin 3 (degree), and control deflection Fin 4
(degree). Use the sign convention shown in Figure 10 of this document. Sample card.

Ser=8.1=5.1 -8,

00 000 000 9060000000200000000000000C0OGUUUOOVULUUVLUOOLOODODDBD
123456 78 9101233161516 1715192021 222324 2526 2 282930 31 32 23 3¢ 35 36 37 33 35 40 4142 43 44 45 45 47 48 49 50 5§ 52 53 54 55 56 57 58 53 60
|RE R R R R R R R R R R R R R R RN N B
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Card 5: Input the number of angles of attack desired and the angles of attack of the body desired. The maximum
number of angles of attack allowed is six. The order of input variables is: number of body angles of
attack desired, first angle of attack of the body desired (degree), second angle of attack of the body
desired (degree), third angle of attack of the body desired (degree), fourth angle of attack of the body
desired (degree), fifth angle of attack of the body desired (degree), and sixth angle of attack of the body

desired (degree). Sample card:

Ss2.595.98.00+ 10,420,

00 g 6 0 9000000000000000000000000000000000000000

1992 12 14 15 36 17 13 19 20 21 2223 24 25 26 27 28 29 30 31 32 33 34 35 35 3738 39 40 41 42 43 44 45 46 47 48 49 50 51 52 §3 54 55 56 57 58 53 60

0
IR R R AR R R AR R AR R R R RN R R R R R

Card 6: Input the number of roll rates desired and the specific roll rates desired. The maximum number of roll
rates allowed is six. The input roll rate must be nondimensionlized as ¢ b,/U,,. The order of input
variables is: number of roll rates desired, first roll rate desired, second roll rate desired, third roll rate
desired, fourth roll rate desired, fifth roll rate desired, and sixth roll rate desired. Sample card:

39 0.0s .01y, 2

Ol][]UU000I]IJOU00000U000000000UOUObUUOUUUOUUOﬂUOBOOU

101213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 24 35 36 37 38 39 40 1 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

IBERERRERER AR R AR R AR AR R R R R R R AR R R AR RR R DR RN

Card 7: Input the free stream Mach number. Sample card:

A.15

000000000000000000000000000000000300060000000000000060060000000
PO 45 7T 0 OOV IEI0IS IG5 01000 CIRR0IRI 0L AN 202000 209202300530 32202040 42 42 444546 42 a0 40RO KT BACICABEEC EINAFOCO

(N RRER AR R AR R R R R R R R R R R AR R AR R AR AR RRRRERRRERE

The output from the program is divided into six
parts. The first part contains a description’and listing
of all input data and several other values related to
the fin geometry. Part two contains the normal force
coefficient and pitch moment coefficient of each fin
and the fins summed together; if these forces and
moments are not requested, this part is eliminated.
Part three contains the side force coefficient and yaw
moment coeficient of each fin and the fins summed
together; if these force and moments are not request-
ed, this part is eliminated. Part four contains the roll
moment coefficient of each fin and the fins summed
together; if this moment is not requested, this part is
eliminated. Part five contains the panel normal force
coefficient, hinge moment coefficient, and root bend-
ing moment coefficient of each fin; if these forces and
moments are not requested, this part is eliminated.
Part six contains the normal force coefficient, pitch

72

moment coefficient, side force coefficient, yaw mo-
ment coefficient, and roll moment coefficient aver-
aged over one YU" roll cycle; it the roll rate is speci-
fied as zero, this part is eliminated.

Parts two through five list the forces and mo-
ments as a function of roll angle for each angle of
attack of the body and each roll rate. Part six lists the
torces and moments as a function of rull rate fur each
angle of attack of the body. The output in part six is
used to calculated quantities such as C,p and steady-
state roll raise rate.

- The computer run time depends on certain op-
tions chosen in the input variables. Two examples of
run time on a CDC 7600 are as follows: Example 1,
calculate all forces and moments (3 forces and 5
moments), six angles of attack of the body, and one
roll rate: 39 s. Example 2, calculate all forces and
moments, six angles of attack of the body, and six roll
rates: 184 s, '
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