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This paper reexamines orientations of shear bands (fault angles) predicted by a theory of shear localization as
a bifurcation from homogeneous deformation. In contrast to the Coulomb prediction, which does not depend
on deviatoric stress state, the angle between the band normal and the least (most compressive) principal stress
increases as the deviatoric stress state varies from axisymmetric compression to axisymmetric extension. This
variation is consistent with the data of Mogi (1967) on Dunham dolomite for axisymmetric compression,
extension and biaxial compression, but the predicted angles are generally less than observed. This discrepancy
may be due to anisotropy that develops due to crack growth in preferred orientations. Results from specialized
constitutive relations for axisymmetric compression and plane strain that include this anisotropy indicate that
it tends to increase the predicted angles. Measurements for a weak, porous sandstone (Castlegate) indicate
that the band angle decreases with increasing inelastic compaction that accompanies increasing mean stress.

This trend is consistent with the predictions of the theory but, for this rock, the observed angles are less than
predicted.
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INTRODUCTION

One of the most easily observable features of rock deformation tests is the angle that the failure plane (fault
surface) makes with the direction of the applied loading. This angle, when measured between the normal to
the plane and the direction of the most compressive principal stress is nearly always greater than 45°. This
inclination is typically explained in terms of the Coulomb condition (Jaeger and Cook, 1969) and given as
1

6, =45° + 3 arctan p, ¢))
where 1, is the Coulomb friction coefficient, often written as the tangent of the friction angle ¢. For typical
values of p,, 0.6 to 0.75, values of 8, range from 60.5 ° to 81.9 °, which is comparable to the range of observed
failure plane angles. Closer examination suggests, however, that the expression Eqn. (1) is an inadequate,
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or at least incomplete, 'prediction. The Coulomb prediction does not depend at all on the stress state. In
contrast, experiments on rocks (Mogi, 1967; Handin ef al., 1967) do reveal that the failure angle is different
for axisymmetric compression and axisymmetric extension, indicating a dependence on the deviatoric stress
state. Furthermore, the dependence of the Coulomb angle on material properties is limited. As emphasized
by Handin (1969), “In a cohesive material, however, internal friction is a fictitious quantity that cannot be
measured directly....[it] should be regarded as no more than the slope of the Mohr envelope for intact rock”

This paper reexamines the predictions of an approach to failure (Rudnicki and Rice, 1975) as bifurcation, or
non-uniqueness, from homogeneous deformation. In particular, conditions are sought for which the material
behavior allows a solution alternative to homogeneous deformation and corresponding to concentrated shear
deformation in a planar band. The prediction for the orientation of the band has been given by Rudnicki and
Rice (1975) but is rewritten here in a form that is comparable to that for the Coulomb prediction. In addition
we compare the predictions with those of other analyses for the specific deformation states of axisymmetric
compression and plane strain. These analyses are based on the approach of Rudnicki and Rice (1975) but use
constitutive relations that include anisotropy.

The predictions are compared with experimental results of Mogi (1967) and Handin et al.(1967) for the depen-
dence of the band angle on the deviatoric stress state. Comparison of the predictions with new measurements
on Castlegate sandstone indicate that the band angle decreases with a change from dilating to compacting
behavior that accompanies increasing compressive mean stress.

ANALYSIS OF LOCALIZATION

Band formation is subject to conditions of kinematic compatibility and continuing equilibrium. The kinematic
condition arises from the requirement that the velocity field remain continuous at the inception of band forma-
tion (though the velocity may become discontinuous as localization proceeds). This restricts the difference in
the strain-rates inside and outside the band to have the form:

&y =&+ %(nigj + n;9:) )
where the n; are components of the unit normal to the band and the g; are functions of distance across the band.
Thus, the difference field is a combination of shear and compression relative to the band and the intermediate
principal value of the difference field is zero. Since this is similar to a plane strain type of deformation, plane
strain states tend to be more favorable for localization than axisymmetric ones. If the material is to remain in
equilibrium at the inception of band formation, then traction rates across the band boundary must be equal:

When these requirements are combined with constitutive relations of the form
Gij = Lijrién 4
the result is
(n; Lijrama) g = ni(L — L%)i1EY, ®))
In the simplest case, the material inside and outside the band is assumed to be the same at the instant of band
formation, L = L9, and the problem reduces to a nonlinear eigenvalue problem for the gy
(nz‘Lijklnl)gk =0 (6)
(Rice and Rudnicki (1980) have shown that band formation based on the assumption of continued inelastic
loading outside the band at the instant of formation precedes that allowing for elastic unloading outside the
band.) Band formation corresponds to a non-trivial solution for the g; and is possible when
det(n,-L,-J-km,) =0 (7)

The predictions discussed here correspond to finding the orientation (value of ;) and values of the constitutive
parameters at which this condition is first met.
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Figure 1. Geometric interpretation of constitutive parameters.

CONSTITUTIVE RELATION

A constitutive relation describing some features of brittle rock deformation has the following form for the
simple stress state combining pure shear 7 and hydrostatic compression o

dr 1

dy = rel + —’;(d'r — pdo) 3)
de = —dfg— + %(dr — pdo) )

where dv and de are increments of shear strain and volume strain. The first terms are elastic contributions,
the second terms are inelastic. Inelastic shear strain is inhibited by hydrostatic compression and p is a friction
coefficient. The ratio of increments of inelastic volume strain to inelastic increments of shear strain is 8. Thus,
8 is a dilation coefficient, positive for dilation, negative for compaction. The geometric meaning of these
parameters is shown in Figure 1: h is related to the slope of the 7 vs. <y curve at constant mean stress (o)
as shown; p is the local slope of the yield surface in stress space, dividing regions of elastic unloading from
regions of further inelastic response. Note that the inelastic strain increment is normal to this yield surface if

p=2_p
PREDICTIONS OF BAND ORIENTATION

When Eqn. (8) and Eqn. (9) are generalized to arbitrary stress states, as in Rudnicki and Rice (1975), the
prediction for the angle between the band normal and the least (most compressive) principal stress is

m 1
= — 4 = arcsi 0
1 + 5 aresin e (10)
where
L _ QA+ )(B+ ) - N1 —2) )
' V4 — 3N?
and , .
describes the deviatoric stress state; o, is the intermediate principal deviatoric stress and 7 = 4/30},0%; is

the Mises equivalent stress. N ranges from —1/ /3 for axisymmetric extension to 1/+/3 for axisymmetric
compression. Thus, the deviation of the band angle from the maximum shear direction (45°) is proportional
to the mean of B and u and depends on the deviatoric stress state described by N. Eqn. (11) is valid for
—1 < a < 1. A conservative bound on the sum of the dilatancy factor and friction coefficient that ensures
meets this condition is —v/3 < (8 + 1) < v/3 (not v/3/2, as reported by Rudnicki and Rice. This correction
has been pointed out and discussed by Perrin and Leblond (1993)). If « exceeds 1, then 6 = 90° and if
is less than -1, # = 0°. Note that for an inelastically compacting material § < 0, and if the magnitude of 3
exceeds p, the band angle can be less than 45°.
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If the material is elastically incompressible, v = 1/2 (probably not realistic for rock), Eqn. (11) reduces to the
simpler expression
(B+p)

= i (1)

For an incompressible material and axisymmetric stress states (N = +1 /V3)

a=(+p)/V3 (14)
For an incompressible material and deviatoric pure shear (N = 0)
a=(B+p)/2 - (19)

During a plane strain test, the value of N evolves. The elastic value for plane strain is

N =2(1-2v)//3(1-v+1?)
with the positive sign pertaining for compression and the negative for tension. As v varies from 0 to 0.5,
N decreases from the value for axisymmetric compression (N = 1/4/3) to that for deviatoric pure shear
(N =0). Forv = 0.2and 0.3, N = 0.378 and 0.260. As inelastic strains become larger than elastic strains,

N approaches —2(/3 and the intermediate principal value of the deviatoric plastic strain-rate approaches zero.
In this limit, the expression for « can be rewritten as

_BR-v)+ 1+
9 - p*

(a7

Figures 2-4 plot the predicted band angle against v/3N for various combinations of parameters. Figure 2
shows the results for 8 + ¢ = 0.9 and three values of Poisson’s ratio v : 0.1,0.3 and 0.5. Figure 3 shows
results for v = 0.2 and five values for the sum £ + p, 0.0, 0.3, 0.6, 0.9 and 1.2. Figure 4 compares the results
for 4+ p = 0.9 and v = 0.2,0.5 with predictions of the Coulomb angle. Note that the Coulomb prediction
depends only on the friction coefficient and not at all on the stress state. Although the ranges of numerical
values of u and p, are similar, in general, there is no direct relation between them. If, however, the stress state
is assumed to be axisymmetric and to satisfy simultaneously the yield condition and the Coulomb condition,
the two friction coefficients are related by

3p
— 16
NP (16)
where p, = tan¢ and the (+) sign is for compression and the (=) sign for extension. If u = 0.6, the
corresponding values of p, for compression and extension are 0.474 and 0.727.

sing =
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PREDICTIONS FOR SPECIAL DEFORMATION STATES

The constitutive relation upon which the prediction Eqn. (10), with Eqn. (11), is based is valid for arbitrary
deformation states, but it assumes isotropic elasticity and isotropic hardening of the yield surface. In this
section, the results are compared with predictions based on constitutive relations that include anisotropy but
are limited to special deformation states.

Axisymmetric Compression

Rudnicki (1977) has analyzed localization in axisymmetric compression for a constitutive relation intended to
include the anisotropy that develops due to preferential microcrack growth in the axial direction. Although the
parameters are expressed in a form that differs from that of Rudnicki and Rice (1975), the principal difference
in the constitutive relation used by Rudnicki (1977) is the appearance of two shear moduli. The modulus G,
governs increments of shearing in the longitudinal direction (parallel to the axis of symmetry); G, governs
shearing transverse to the symmetry axis. The prediction for the band angle can be expressed in the form of
Eqn. (10) but with « given by

\/(r+G, )2v+G) — 1+ G+ G

\/('r +G)w+G)+(1-Gi+Gy)

where G, = Gi/(9K/4), G, = G/(9K/4), K is an in-plane, incremental bulk modulus (not necessarily elas-
tic), r is a parameter expressing the pressure dependence, and v is not Poisson’s ratio but another incremental
parameter expressing the dilation. Rudnicki (1977) has given a more detailed discussion of the meaning of
these parameters and their relation to the parameters used by Rudnicki and Rice (1975).

(17)

Because the parameters of this relation do not correspond directly to those of Rudnicki and Rice (1975), it is
worthwhile to consider a number of special cases. If both G; and G are much less than unity, then Eqn. (17)

reduces to
V2ry -1

= il (18)

Note that in order for band angles to be greater than 45°, 2rv > 1. If the material is completely incompressible
then v = 0.5 and Eqn. (18) reduces further to
Vr—1

BRVGES (19)

In this case, a = p/+/3 for the constitutive relation used by Rudnicki and Rice (1975) and, consequently, it is
possible to derive the relation
V3 + ©

V3-p
For example, if u = 0.6, 7 = 4.25 and for u = 0.75, r = 6.39. If normality is satisfied (flow rule is associated),
r = 2v and Eqn. (17) reduces to

=T~(1+ét)

. (20)

r+(1+G)
In order to examine the effects of differences between G, and G,, first choose r, v, and G, = G, so that the
predicted band angle is same as for values of the constitutive parameters of the Rudnicki and Rice (1975)
relation. If 7 = 6.5, v = 0.77, and G, = G, = 1.19, the band angle predicted from Eqn. (17) is 51.2°, the
same as that predicted from Eqn. (11) with 8 = 0.3, 4 = 0.6, and v = 0.2. If G, is reduced to 75%, 50%, and
25% of Gy, then the band angles increase to 53.2°, 55.6°, and 58.3°, respectively. If G; = 0, then the band
angle is 61.5°.




Plane Strain Compression

Chau and Rudnicki (1990) have studied bifurcations, including localization in plane strain. Their analysis
extends to compressible materials previous studies by Hill and Hutchinson (1975), Young (1976), and Needle-
man (1979). Again the prediction for the band angle can be written in the form of Eqn. (10) but « is given
by

_V1+8+(1+a)/e—4/1-6+(1-0a)/k

Qp = . . (1)
VI+é+(1+a)/c+/1-6+(1—-0a)/k |
If the material is incompressible, K — oo and, in this case, oy, is equal to the value given by Eqn. (11) (with
‘B=0andv =0.5)if

7
§ = - 22
1+ p?/4 22)
EXPERIMENTAL OBSERVATIONS

Most of the existing data on shear band orientations in rocks is for low porosity rock types such as granite and
limestone. Because of their importance in oil and gas reservoirs, weak, porous rocks are of interest. A suite of
samples from an axisymmetric testing program (unpublished data from D. H. Zeuch) of the weak Castlegate
sandstone with a porosity of about 25% was available for examination. The specimens were right circular
cylinders 50 mm in diameter by 100 mm in length. They were deformed in axisymmetric compression at 5
different confining pressures from 3.45 to 69 MPa (Table 1). The specimens were air-dry and vented to the
atmosphere. Axial deformation was measured with a pair of linear variable differential transducers (LVDT)
from endcap to endcap. Specimen diameter was monitored with an additional LVDT mounted at the midheight.
Axial strain rate was 3 X 107° /sec.

TABLE 1. SHEAR BAND ANGLES FOR CASTLEGATE SANDSTONE

TestID Conf. Press. u v B 0 0
eqn. (10) measured

CGl10 345 087 050 1.13 90 60
CGl1 345 087 050 128 90 61
CG3 6.9 0.87 037 083 72 50
CG6 6.9 087 037 076 70 60
CGl12 69 087 044 1.08 90 61
CG2 17.2 087 036 080 71 60
CG7 17.2 087 043 083 76 55
CG13 172 0.87 033 072 67 57
CG4 345 030 029 079 57 54
CG8 345 030 048 0.85 65 44
CGl4 345 030 035 0.74 58 46
CG5 69 030 023 -029 40 none
CGo 69 030 0.18 045 49 none
CGl5 69 030 0.18 -039 38 none

Computation of theoretical shear band (fault) orientation, 6, requires knowledge of v, 3 and . Because [ and
v vary throughout the straining of a given specimen, numerous partial unload cycles were imposed during each
test, which allowed the values of 3 and v near the point of localization to be evaluated for input to Eqn. (10)
and Eqn. (11). A plot of 7 against o for peak stress gave an estimate of y.

All specimens deformed at confining pressures below 69 MPa developed one or more shear bands; several
showed conjugate relationships. Specimens deformed at 69 MPa barreled but did not develop shear bands.
Using a machinist’s protractor, the angles between the maximum compression direction and the shear bands
were measured near the center of the specimen to within approximately + 1 degree. In half the cases the angles
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were taken off the impression left on the inside of the polyolefin jackets.

DISCUSSION

Detailed comparison of the predictions with observations is difficult for several reasons. There have been
few precise measurements of the values of the friction coefficient 4 and the dilatancy factor 3 entering the
predictions. As mentioned in the preceding section, these parameters (and possibly Poisson’s ratio ) generally
evolve with inelastic shear strain and with mean stress. The values entering the predictions should be those
just prior to localization An additional problem is the paucity of studies on the effects of the deviatoric stress
state. Two of the very few studies of the dependence of the failure angle on deviatoric stress state (/V) are those
of Mogi (1967) and of Handin et al. (1967).

Mogi (1967) reported results of axisymmetric compression and extension tests on three rocks, Westerly granite,
Dunham dolomite, and Solenhofen limestone. In addition, he performed biaxial compression tests on the
dolomite. If the third principal stress is zero, as in these tests, the value of N depends as follows on s, the
ratio of the lesser to greater applied compressive stress:

N——l- 1—2s
V3V1—s+ s

(Mogi (1971) further investigated the effect of the intermediate principal stress on failure using a true triaxial
apparatus, but, unfortunately, did not report failure angles.)

Figure 5 plots Mogi’s (1967) results for the Dunham dolomite against the deviatoric stress state parameter
v/3N. Shown for comparison are the predictions of Eqn. (10) for v = 0.3 and three values of the sum
B+ p, 1.5,1.6,and 1.7. The data, in agreement with the theoretical predictions, indicates that the band angle
increases as the deviatoric stress state varies from axisymmetric compression to extension (decreasing V) The
predictions lie within the variation of the data for axisymmetric extension (V3N = —1) and compression,
(V3N = 1) but for the biaxial compression tests at intermediate values of N, the predicted angles are consid-
erably below those observed. Possibly, this could reflect larger values of the sum  + 3 than those for which
the predictions are plotted (Figure 3). Recall, however, that if 2 + 3 exceeds /3, o will exceed unity for some
values of N and in these cases, the predicted angle will be § = 90°. Another possible reason for the predicted
angles being smaller than observed is the development of anisotropy due to preferential microcrack growth in
the axial direction. The calculations for axisymmetric compression that include anisotropy (Rudnicki (1977);
see above) indicate that this would increase the fault angle.

Results for the two other rocks tested by Mogi (1967) were similar. For Westerly granite, the observed fault
angles ranged from 68 to 71° for axisymmetric compression and from 78 to 83° for axisymmetric extension.
For Solenhofen limestone, the values were from 58 to 64° for axisymmetric compression and from 66 to




72° for extension. For both axisymmetric compression and extension, the measured angles tend to decrease
slightly with increasing mean stress. This trend is consistent with a decrease in u + 8 with mean stress (see
Figure 3), as found by Holcomb and Rudnicki (1998) for Tennessee marble.

Handin ef al.(1967) tested Solenhofen limestone and Blair dolomite (and a brittle glass). Band angles for
Solenhofen limestone in axisymmetric compression at room temperature and a strain rate of 10~4/sec ranged
from 58 to 74°. Values at higher temperatures (200 to 400 °C) and a slower strain rate (10~ 7/sec) ranged from
59 to 64°. For the Blair dolomite, the angles ranged from 53 to 72° at room temperature and a strain rate of
107%/sec and from 50 to 69° at higher temperatures and the lower strain rate.

Values for extension for both the dolomite and limestone were generally higher than for compression, consis-
tent with the trend of the predictions. Many of the fractures (six of nine at room temperature and the higher
strain rate for the limestone and all four for the dolomite) were, however, observed to occur perpendicular to
the least compressive stress (8 = 90 °). Although the expression (Eqn. (11)) does predict § = 90 ° in extension
for sufficiently large B+ p, fracture perpendicular to the least compressive stress suggests a failure mechanism
of discrete fracture propagation rather than shear localization.

Handin et al.(1967) also conducted combined compression and torsion tests on solid and hollow cylinders.
Because of the radial variation in stress in the solid cylinders, it is not possible to compare the results with the
theory for homogeneous deformation outlined here. The tests on hollow cylinders achieved a range of N values
but many of the fractures appear to be the result of discrete crack propagation (band angles perpendicular to
least compressive stress). A plot of the results of the torsion tests against N exhibited considerable scatter and
no consistent trend.

In contrast to the other rock types, the shear band angles for Castlegate sandstone are systematically smaller
than predicted by the theory. Compactive deformation indicated by decreasing B with increasing confining
pressure may explain some of the difference for this porous rock. Ongoing analysis of the data from the
experiments suggests that the experimental determination of 4 may also be a factor in the over-prediction of
0. The yield surface for Castlegate is characterized by a cap and therefore the local value of u, when the stress
path intersects the cap before overall shear yielding, may have a relatively large negative value. This would
cause the predicted 6 to be smaller. Further investigation of this issue is currently underway.
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