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ABSTRACY

Fatigue life estimates for wind turbine components can
be extremely variable due to both inherently random and

uncertain parameters. A structural reliability analysis is’

used to quantify the probability that the fatigue life wjll
fall short of a selected target. Reliability analysis also
produces measures of the relative importance of the vari-
ous sources of uncertainty and the sensitivity of the relia-
bility to each input parameter. The process of obtaining
reliability estimates is briefly outlined. An exafnple fa-
tigue reliability calculation for a blade joint is formulated;
reliability estimates, importance factors, and sensitivities

. are produced. Guidance in selecting distribution func-
tions for the random variables used to model the random
and uncertain parameters is also provided.

INTRODUCTION

. The cost-effective production of electricity with a wind-
driven generator depends heavily on the reliability of the
entire wind turbine system. System reliability in turn de-
pends on the frequency of component failures. Because
wind turbine structures have inherently ostillatory load-
ing due to their own rotation and due to atmospheric
turbulence, cumulative fatigue damage to structural com-
ponents'is an endemic problem.

Estimating the rate of fatigue damage is complicated
by the presence of inherent randomness and ‘parameter
uncertainty. We call parameters uncertain if we don’t
know their exact value, but have estimates ‘hat could be
improved with additional information. Random quan-
tities, however, are inherently variable and can only be
described in a probabilistic or statistical manner. Struc-
tural response levels and stress concentration factors are
examples of uncertain quantities. Instantaneous wind
speeds and material fatigue properties are good examples
of random parameters. Random and uncertain parame-
ters can both be described by their probability distribu-
tions.

The typical fatigue question is: “How long will this com-
ponent last?” Unfortunately, fatigue life calculatioas are
very sensitive to small changes in the input parameters.

The answer to this question is ill-defined when there is-

1This work is supported by the U.S. Department of Energy at Sandia
. National Laboratories under contract DE-AC04-76DP00789.
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randomness or uncertainty in the parameters descrih-
ing the loading, structural response, or material prop-
erties. This aspect of the fatigue problem is illustrated .
by the paramcter study of a vertical axis wind turbine
(VAWT) blade joint in Reference 1. When varying the in-
put quantities over a reasonable range of possible values,
fatigue lives were calculated to be somewhere between six
months, in a worst case combination of conditions, and

. six hundred years, for a benign combination of parame-

ters.

Is fatigue life estimation a hopeless problem? Perhaps. if
the desired answer is the actual fatigue life of all compo-
nents. But this level of detail is not necessary. A more
useful expression of the fatigue problem might be: “Will
the compornent last long enough?” Because there is al-
most never a direct “yes” or “no” answer, the basi¢ ques-
tion should be expanded to: “How likely is it that the
component will last long enough to be safe and econom-
ically effective?” This formulation lends itself very well
to a structural reliability approach, where random and
uncertzin parameters can be included in the analysis.

STRUCTURAL RELIABILITY

Structural reliability analysis is a tool for predicting the
effect of randomness and uncertainty on the performance
of a structure. Performance is generally defined as the
ability of a structure to withstand its environment for

.-an economical period of time. The inputs to the anal-

ysis include descriptions of the probability distributions
of variable parameters, as well as fixed parameters and a
quantifiable failure criterion. The outputs include the es-
timated probability of failure (which is usually described
by a reliability index for comparison purposes), the rel-
ative i'mpoftance of each of the random variables, and
measures of the sensitivity, of the reliability to all of the
input ‘quantities.

A detailed description of the mechanics of the structural
reliability calcuiations is not possible in the limited space
provided here, but a brief overview is included. An ex-
tensive description can be found in Reference 2. The
reliability is estimated by the following four steps:

1. FORMULATION: The first part of this step is to
define a failure criterion. In most structural appli-
cations this takes the form of a failure state func-
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tion, G(X), such as the difference between strength
or resistance, R, and load, L.

G(X)=F-1L (1)

G(X) is positive when the structure is safe and neg-
ative when it has failed. R and L are functions of
components of the vector A. which are random vari-
ables. Figure 1'shows a two dimensional example
of a failure state function. All of the calculations
needed to determine strength and load are formu-
lated as if all of the parameters in X are known.
The second part of this step is to define the relative
likelihood of all possible values of the random vari-
ables. The probability distribution function (pdf)
supplies this information. There is more discussion
on selecting the pdf later. '

. TRANSFORMATION: A transformation between
" each of the random variables and uncorrelated, unit

variance, zero mean, normally distributed random
variables must be determined. The transformation
between a single random variable, X', and a stan-
dard mormal random variable, U, is illustrated in
Figure 2. Probability levels of the input cumulative
density function (cdf), F(X) in Figure 2, and the
standard normal cdf, ®(U) are equated. If the ran-
dom variables in the vector X are correlated, they
must be transformed by successively conditioning
on al} the previously transformed variables to pro-

duce uncorrelated standard normal variates in the .

vector U The calculations then proceed in stan-
dard normal space, which is also called U-space.

. APPROXIMATION: Because the transformation

to U'-space can be quite complicated (although it
is usually quite simple to accomplish numerically),
the failure state function in U-space,.g(l/). cannot
ordinarily- be written in closed form. The bound-
ary between the failed and safe regions is found by
selecting values for U, transforming to X, and eval-
uating G(X), which equals g(L'). Gradient search

Figure 1: Failure state function.
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methods are used to find the most likely failur

point, also known as the design point, which is the
point where g(U) = C is closest to the origin. as
shown in Figure 3. The probability of failure is
the area under the joint multi-dimensional standard
normal pdf in the failed region. A good approxima-
tion for small probabilities of failure is obtained by

fitting a tangent line to the failure state function

at the design point. This approximation is called
the first order reliability method (FORM). A sec-
ond order reliability method (SORM) is obtained
by fitting a parabola to the failure state function,
as shown in Figure 3. The direction cosines of the
vector a are measures of the importance of each
of the random variables, A small direction cosine
means that the probability of failure is relatively
unaffected by the associated random variable. The
example shown in Figure 3 illustrates two random
variables with roughly equal importance.

. COMPUTATION: Calculation of the failure prob-

ability and importance factors is made tractable
by the symmetry of standard normal space. The
distance from the origin to the design point, 8, is
sufficient information to calculate the FORM prob-
ability of failure, P; = &(-8). The SORM esti-
mate is based on § and the curvatures at the design
point. The accuracy of the computation is checked
by comparing the estimates. Because the probabil-
ity of failure is often a very small number (at least
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Figure 2: Transformation between a standard normal
variate, U, and the physical variate, X.
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for designs approaching an acceptable level of 1el

ability), a reliability index, 8-, is often used. This
index is the number of standard deviations from
the mean in an equivalent one-dimensional formu-
lation, or equivalently, Lhe inv erse normal cdf of one
minus the probability of failure: 4* = ¢¥(1 - Py).
In FORM, 8" = 0, while in SORM 3 is slightly
different than 8. Sensitivities are calculated by nu-
merically evaluating the partial derivatives of the
reliability index with respect to any or -all input

parameters, including the means and standard de-

viations of the random variables, as well as the fixed
parameters.

EXAMPLE: VAWT BLADE JOINT
1. Formulation

The fatigue life of wind turbine components can be cal-
“culated by summing the damage accumulated during all
phases of wind turbine operation. The required informa-
tion includes definitions of the wind speed distribution,
stress ) asponse levels as functions of wind speed, and ma-
terial damage as functions of stress level |3]. Focusing on
normal operation (which takes up the vast majority of
the time) and neglecting transients, a simplified fatigue
life calculation can be approximated by

D= / /“ NP(SIY )P(—ldscn' (2)
where
V. = wind speed
S = stress amplitude :
N; = total number of applied cycles
P(V) = pdf of wind speed
P(SV) = pdf of stress given wind speed"
ny(S) = cycles to fail at stress amplitude S

When the damage summation reaches one, failure is pre-
dicted and the number of applied cycles is defined to be
the number of cycles to failure; Ny = N;. The time to
failure equals the number of cycles divided by the fre-
quency of cycles; Ty = Ny/fo. Equation 2 can then be
solved for the time to failure.

1
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There is an important difference between the pdf’s in
Eqs. 2 and .3 and the pd{'s of the random variables in
X, which may include parameters of P(S|V) and P(V).
The distributions of stress amplitudes and wind speeds
describe quantities that vary continually during the life-
time of the component. Over the several years required
for an economic lifetime, all likely values of wind speed
and stress amplitudes will occur. The fatigue calculation
integrates over these pdf's. There is therefore almost no
variahility in fatigue lifetime due to the fluctuations in in-

stantaneous wind speed and stress amplitude. However,

the parameters described by random variables in X do

not vary over time, but are either uncertain or inherent|v

unknown and described statistically. The pdf’s describ-

ing these random variables are not distributions of value:

that will occur at some time. but are distributions of pos-
sible values, only one of which is actually realized. The
random variables in )" are the ones that lead to variabil-
ity in fatigue life.

The fatigue reliability of wind turbine components can be
formulated with a failure state function that is based on
the difference between Ty and a specified target lifetime,
Ti. ,

C(X)=T, - T (4)

The above limit state function can, in general, be eval-
uated by numerically integrating the erapirical functions
derived from test data that represent the pdf’s of wind
speed and stress amplitudes. The material fatigue prop-

‘erties, ny(S), are also obtained by a best fit to fatigue

test data.

Equation 4 can be integrated analytically if a few simpli-
fying assurmnptions are made:

e P(V) is a Weibull distribution with mean V and
shape parameter a,. ‘

e P(S|V)is described by a Rayleigh distribution char-
acterized by the standard deviation, or root mean
square (RMS) of the stresses at a given wind speed.

s The stress RMS increases linearly with wind speed.

e ny(S) is a straight line on a log-log plot; n(S) =

CS5-*, where C is the fatigue coefficient and b is the
fatigue exponent.

e The mean stress effect is modeled by a Goodman
correction in ny(S).

e The operating speed is constant (therefore, f; is
constant also).

e The turbine always operates (i.e., no cut-out), a
conservative assumption.

e The fatigue damage due to transients is neglected.
a nonconservative assumption.

While as much detail should be used in describing the op-
erating conditions as is available, this list of assumptions
is a good starting point for a reliability analysis early in

" the design process. These simplifications are appropri-

ate for the sake of this example and in the initial design
phase. and lead to a closed form solution for the time to
failure,
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where ‘ o
M . = the slope of RMS stress vs. wind speed
K = the stress concentration factor
Sm the mean stress
S, = the ultimate strength
()} = the factorial, which is defined by the Gamma

function, I'(- + 1), for noninteger arguments.

2. Transformation

. Of the nine parameters that appear on the right side of
Equation 5, seven are taken to be random variables and
two (b and S,) are assumed to be fixed parameters. b is
fixed because it is not necessary for both b and C to be
considered random to model variability in fatigue proper-
ties. The target lifetime, T, is also assumec to be fixed.

The random variables are all assumed to be normally
distributed, except C, which has a Weibull distribution
based on test data (Ref. 1). More discussion of pdf selec-
tion is included later.

To transform a standard normal random variable, U, to
a random variable X that is also normally distributed,
multiply by the standard deviation of X, oy, and add
the mean, my.

X = Uoy +my X = Normal (6)

The Weibull distribution has a different shape than the
. normal distribution. However, a Weibull variate, X', can
be easily created from a standard normal variate, U, in
two steps: (1) calculate the cumulative probability level
associated with U by evaluating the normal cdf, ®(U).
and (2) calculate the Weibull variate associated with that
probability level by evaluating the inverse Weibull cdf.
Le.,

X = (_]m/_? i~ In(1 - (L))
The Weibull parameters are the mean, my, and the shape
factor, a. In most cases, the available information will
include the mean and some measure of the spread, such as
the coefficient of variation (COV), which is the standard
deviation divided by the mean. The COV of a Weibull is
related to the shape factor by

[r2/a+1 172
cov - [Hzezd ] .

X = Weibull (7)

A useful approximation is given by
COV=x1l/a 0<COV<2 (9)

The approximation is exact when the COV is both zero
and one,.and covers the range of most likely COV values.

The method for transforming other distributions is the
same; first calculate the probability level associated with
U by evaluating ®(1’), and then substitute the result into
the inverse cdf of the desired distribution. For empirical
distributions (not described by a closed form function),
the operation is easily done numerically by the same pro-
cess of matching probability levels, as illustrated in Fig-

‘ure 2.

' 3. Approximation

Searching for the design point and calculating the prob-
ability of failure and importance factors is a difficult task,
besi accomplished by using existing computer codes. Some
of these computer codes even perform the transformation
process as well, For this example, a code developed by
Rackwitz [4) has been used to approximate the failure
region as described &bove.

4. Computation and Results

The values selected for the mean and COV of the seven.
random variables are listed in Table 1. The values of th
COV are representative of a case where a prototype ha
already been built and tested, reflecting relatively small
uncertainties in structural response parameters. Also,
subsiantial material fatigue testing has been done, re-
sulting in a .cell characterized S-n curve with relatively
little variability.

The three fixed parameters have the following values: T,
= 20 years; b= 1.3 S, = 245 MPa.

By substituting the mean values for all the random vari-
ables into Equation 5, the median lifetime is estimated
to be 370 years, which seems like a relatively safe buffer
for a 20-year design life.

There are, however, combinations of possible valucs of
the randomn variables that lead to failure in less than the
target lifetime. The fatigue reliability of the component
is evaluated by estimating the probability that the failure
state function (Eq. 4) is negative. For this example, the
probability of failure with a target lifetime of 20 years
is approximately 2% (1.8% with FORM and 2.2% with
SORM), with an associated reliability index of about 2.0
(2.1 for FORM and 2.0 for SORM), i.e., two standard
deviations from the mean.

The direction cosines of a (see Figure 3), are calculated
by the reliability analysis program as a byproduct of the

Table 1: Example Random Variable Parameters

_Symbol | Definition Mean CcOV
C S-n Coeflicient 982. ; 0.10
fo Cycle Rate 2.0 Hz 1 0.20
M RMS Slope .45 MPa/(m/’s) 0.05
K Stress Concen‘ration | 3.5 0.10
Sm Mean Stress 25. MPa i 0.20
1% Mean Wind Speed 6.3 m/s - 0.05

ay, Wind Speed Shape | 2.0 1 0.10 |




solution method. The squares of the direction cosines,
which must sum to unity, are a good measure of the
percentage of the variability due to each random vari-
able., The importance factors displayed in the pie chart
in Figure 4 are the squares of these direction cosines. The
fatigue coefficient, C, a material property, is by far the
most important source of variability supplying about 55%
in this example. The stress concentration factor, K, and
the wind speed distribution shape parameter, a,, have
roughly the same importance with about 15% each. The
rémaining 15% is divided among the other four random
variables with the mean stress, S, and cycle frequency,
fo, contributing minimally to the overall variability.

Sensitivities are calculated by varying each input param-
eter slightly and estimating the partial derivative by di-
viding the change in the reliability index by the change in
the parameter. All input parameters can be varied in this

manner, including the fixed parameters, as well as the
parameters of the distributions of the random variables

(i.e., means and COV's). Sensitivities may be normalized
in a number of ways; here the derivative is divided by
the value of the parameter. With this normalization, the
change in the reliability index is estimated by multiplying
the fraction that a parameter changes by the normalized
sensitivity.

Figure 5 shows the calculated sensitivities for the three
fixed parameters and the means and COVs of the five
most important random variables in this example. The
clearly dominant parameter is the fatigue exponent, b,
which should come as no surprise to fatigue analysts.
The reason is seen by examining Equation 5 where b ap-
pears as an exponent on most of the other variables. The
other significant result is that the means of the random
variables exhibit at least four times as much sensitivity
as the COVs. This is especially important because the
mean value is usually much easier to estimate than the
spread quantified by the COV. One need not despair,
therefore, at obtaining a reasonable estimate of the com-
ponent reliability when there is only limited information

| Mean Stress
| Cycle Frequency

Wind Dist Mean

Stress Concentration g

Figure 4: Importance factors from the example reliability
analysis.

on the spread in the poss»ble values of the randois and -
uncertain parameterq

Although the assumptions made to simplify the calcu-
lations for this example are much more restrictive than
using the actual data, ds in Reference 1. the results are
consistent. Both the mean lifetime and probability of
lives below 20 years agree with the range of values ob-
tained in the Reference 1 parameter study.

DEFINING THE RANDOM VARIABLES

Perhaps the greatest impediment to more popular use
of reliability and other probabilistic methods in every-
day engineering practice lies in the difficulty of selecting
the distributions of random variables, In structural reli-
ability analysis, the selection of random variable pdf’s is
most iniportant in applications where very low probabil-
ities of failure are required, such as off-shore platforms,
dams, bridges, and other very expensive, one-of-a-kind,
life-critical structures. Much higher probabilitjes of fail-
ure are likely to be economically ‘acceptable in wind tur-
bine apphcatlons where hundreds and perhaps thousands
of individual machines are involved. The shape of the pdf
becomes less important as the random variables are eval-
uated at higher probability levels.

The selection of the pdf is somewhat different for ran-
dom variables that are inherently random than for ran-
dom variables that describe parameter uncertainty, In-
herently random parameters can often be measured and.
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Figure 5. Sensitivities from the example reliability anal-
ysi:
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over time, data can be gathered and collected into his-
tograms describing the frequency of occurrence of differ-
ent parameter values, With sufficient data, the histogram
can be normalized and used directly as an empirical de-
scription of the pdf. With less data, the histogram is
useful in describing the overall shape of the pdf, but a
better description is obtained by selecting an analytical
pdf and using the data to determine the parameters of
the analytical function. Without any data, engineering

judgment must suffice to describe the range of possible

values.

A lack of data is often the case when describing uncer- -
tain parameters. The best that can often be obtained

are measures of the mean and the spread in the possible

values, '

A few of the simplest and therefore most useful distribu-
tions are listed here:

e Uniform: This distribution requires only mini-
mum and maximum values to describe the pdf. All
values between these limits are equally likely. Un-
fortunately, equally likely outcomes with fixed lim-

jts are very rare in engineering applications.

e Triangular: A slight improvement on uniform, lhe‘
triangular distribution concentrates more probabil-
ity near a most likely value and gradually reduces

. the probability as values increase or decrease, as

shown in Figure 6. While easy to define, the trian- -

gular distribution is also rarely found in engineering
applications.

Normal: The normal, or Gaussian, distribution'is
the most common pdf found in nature. Its char-
acteristic bell shape is described by only two pa-
rameters, the mean and the standard deviation,
or equivalently the mean and COV. The normal
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Figure 6: Triahgu]ar probability density function (pdf).
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is symmetric about the mean and is unbounded in
either direction. While it may appear unrealistic to
allow values of the random variable to go to plus
and minus infinity, the normal distribution usually
describes extreme values well because the proba-
bility of occnrrence decays rapidly. Truncation of
the distribution is not advised unless there is some
rigid constraint. Even then, it may not matter if
the probability of exceeding the constraint is lower
than the overall probability of failure.

o Weibull: The general class of one-sided distribu-
tions described by the Weibull pdf covers a wide
range and includes some very useful distributions

" as special cases. The exponential distribution is a
. Weibull with a COV of unity. The Rayleigh is a
Weibull with a COV of just over one half. Figure 7
illustrates the diverse shapes taken by Weibull dis-
tributions with COVs ranging from 0.1 to 1.0. As
the COV decreases, it begins to resemble a normal
distribution, as shown in Figure 8. ‘

) Log»normal: . The log-normal distribution results
when the logarithm of the random variable is nor-
mally distributed. The distribution is especially
popular in multi-variate applications; the product
of log-normal variates is another log-normal vari-
ate. Its distribution is skewed toward higher values,
which makes it conservative whon used for param-
eters that are more dangerous when large.

Reference 5 provides an extensive table of probability dis-
tributicns, including most of the above.

It is often tempting to szt fixed limits on distributions
of random variables. Limits are in general not a good
idea because knowledge of the limit implies very specific
information, which is usually available only after copious
data collection.

Figure 7: Weibull pdf's with a mean value of one.
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Figure 8: Normal and Weibull pdf's with a mean of one
and COV = 0.1. S

This list of possible ajternatives may make it seem im-

possible to ever choose an appropriate distribution. How- .

ever, the desire to use the “right” pdf should be tempered
by the fact that you can only supply as much detai as is
supported by data. The only available information is of-
ten some measure of the central tendency (mean) and the
spread (COV). Constraints, such as non-negative values.
may also apply. With limited information, it is usually

~ best to use a normal distribution for most parameters

and perhaps a Weibull distribution for non-negative pa-
rameters. These two distributions cover a wide range of
possible behaviors, all of which are defined by supplying
just two parameters, mean and COV. Because the nor-
mal and Weibull are distributions that appear cornmonly,
they are as likely as any other distributions to be “right.”
If more information is available, the analyst can seek out
the best fit from the long list of candidate pdf’s.

Example: Weibull vs Normal

The above example used normally distributed random
variables wherever possible for the sake of simplicity, Be-
cause some of these parameters are meaningless at neg-
ative values (e.g., V), and the normal pdf aliows values
from positive 1o negative infinity, it can be argued that
one-sided distributions need to be used. The reliability
was aguin calculated using Weibull distributed random
variables for all non-negative parameters. The means and
COVs were kept the same as shown in Table 1.

The FORM results are almost identical. The SORM
probability of failure changed only slightly, rising from
2.2% to 2.6%, while the reliability index dropped from
2.0 10 1.9. The importance factors are shown in Figure 9
for both the normal and Weitull cases. Again there is
little difference except that, the importance of the wind
speed shape parameter has increased slightly over that of
the and stress concentration factor.

The difference between normal and Weibiill distributions
at relatively low COV levels is not very pronounced, as
shown in Figure 8. The main difference is that the normal
is symmetric while the Weibull is slightly skewed to lower
values, Another popular distribution, the log-normal, is
skewed toward higher values. The reason for the increase
in importance of the wind speed shape over the stress
concentration is due to this slight skewing: a large stress
concentration produces more damage while a small wind
speed shape parameter predicts more high winds,

The eflect of changing pdf’s is relatively small when COV's
are small and probabilities of failure are relatively high.
To be safe, a conservative reliabllity estimate can be cre-
ated by selecting pdf's that are skewed in the direction
of more damaging values,

SUMMARY

Structural reliability analysis is a tool for use at all stages ,
of the design and development process. Complete infor-
mation is not needed to estimate the probability of pre-
mature failure or Lo assess the most important factors in
improving component reliability. As more data is gath-
ered, the reliability estimates can be updated and the
direction of further data aquisition can be refined. Once
the problem is formulated, and the transformations are
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Figure 9: Importance factors using normal distributions"
and Weibull distributions for all non-negative random
variables.
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coded, the approximation and computation can be done
with updated parameter estimates relatively quickly and
easily. .
The reliability format adds meaning to fatigue life esti-
mates where small changes in parameter values usually
lead to large differences in predicted lives. By supply-
ing relative measures of goodness, the reliability analysis
provides a tool for evaluation of competing design alter-
natives. The additional information provided by impor-
tance factors and sensitivities allows wind turbine design-
ers and manufacturers to identily areas where focused ef-
fort and design improvement can have the greatest pay-off
-on enhanced component reliability, These results are also
ipplicable to the larger issue of system economic anulysis,
when each’ component reliability estimate is folded into
the wind turbine system,
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