

LA-8629-MS

**The Chemistry of TATB and Related Compounds
in Sulfuric Acid**

University of California

LOS ALAMOS SCIENTIFIC LABORATORY

Post Office Box 1663 Los Alamos, New Mexico 87545

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

An Affirmative Action/Equal Opportunity Employer

Edited by

Helen M. Sinoradzki

Photocomposition by

Barbara J. Velarde

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

**UNITED STATES
DEPARTMENT OF ENERGY
CONTRACT W-7405-ENG. 36**

Printed in the United States of America
 Available from
 National Technical Information Service
 US Department of Commerce
 5285 Port Royal Road
 Springfield, VA 22161
 Microfiche \$3.50 (A01)

Page Range	Domestic Price	NTIS Price Code	Page Range	Domestic Price	NTIS Price Code	Page Range	Domestic Price	NTIS Price Code	Page Range	Domestic Price	NTIS Price Code
001-025	\$ 5.00	A02	151-175	\$11.00	A08	301-325	\$17.00	A14	451-475	\$23.00	A20
026-050	6.00	A03	176-200	12.00	A09	326-350	18.00	A15	476-500	24.00	A21
051-075	7.00	A04	201-225	13.00	A10	351-375	19.00	A16	501-525	25.00	A22
076-100	8.00	A05	226-250	14.00	A11	376-400	20.00	A17	526-550	26.00	A23
101-125	9.00	A06	251-275	15.00	A12	401-425	21.00	A18	551-575	27.00	A24
126-150	10.00	A07	276-300	16.00	A13	426-450	22.00	A19	576-600	28.00	A25
									601-up	+	A99

[†]Add \$1.00 for each additional 25-page increment or portion thereof from 601 pages up

The Chemistry of TATB and Related Compounds in Sulfuric Acid

Betty W. Harris

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ACRONYMS

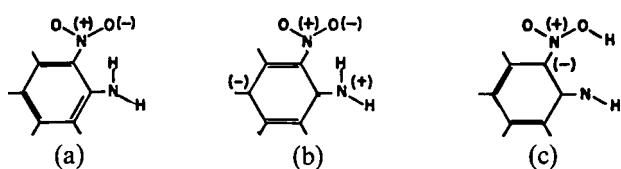
TATB	1,3,5-Triamino-2,4,6-trinitrobenzene
TADNB	1,3,5-Triamino-2,4-dinitrobenzene
TACDNB	1,3,5-Triamino-2-chloro-4,5-dinitrobenzene
DMSO	N,N-Dimethylsulfoxide
HMPA	Hexamethylphosphoric triamide
DATNB	1,3-Diamino-2,4,6-trinitrobenzene
TNA	Trinitroaniline
TMS	Tetramethylsilane

THE CHEMISTRY OF TATB AND RELATED COMPOUNDS IN SULFURIC ACID

by

Betty W. Harris

ABSTRACT


Information on the chemical properties of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) in H_2SO_4 is presented. The activation energy of the protonation process is 5.92 kcal/mole. The heat of reaction, ΔH , is approximately 0.8 kcal/mole. Cryoscopic and conductance measurements of 1,3,5-triamino-2,4-dinitrobenzene (TADNB), 1,3,5-triamino-2-chloro-4,5-dinitrobenzene (TACDNB), and TATB were compared to measurements of model compounds. The source and number of hydrogen atoms attached to basic groups and to the ring were determined. At a concentration of 0.1 M in H_2SO_4 , TATB, TADNB, and TACDNB exhibited two basic reacting sites per compound. Reacting sites are concentration dependent and protons are donated from H_2SO_4 .

I. INTRODUCTION

This report is the second part of a preliminary study to evaluate the chemical properties of TATB, its intermediate products, and its impurities in different solvent systems. These data are needed to develop an assay for TATB. Carbon-13 nuclear magnetic resonance (^{13}C NMR) spectroscopy was used in the previous study to determine how protonation and solvation were responsible for the dissolution of TATB in H_2SO_4 , the most successful solvent.¹ This study uses ^{13}C NMR spectroscopy data and cryoscopic and conductance measurements to determine the source and number of additional hydrogen atoms attached to the solute in the TATB/ H_2SO_4 system.

An analysis of the crystal structure of TATB reveals that many of its unusual properties (for example, a melting point of 450°C and insolubility in most solvents) are caused by a strong matrix of intermolecular hydrogen bonds. Resonance forms such as (b) and (c) below are important, but (a) is not an essential con-

tributor.² Methods for the analyses of solid TATB have not been suitable for assaying.

II. RESULTS AND DISCUSSION

A. Carbon-13 NMR Analyses

Carbon-13 NMR analyses of TATB and related compounds have shown that when dissolved in H_2SO_4 , TATB and TADNB assume a cyclohexadienyl structure with an additional proton at C₄ of TATB and C₆ of TADNB.¹ Other nitroaniline compounds retain this aromatic structure and become protonated at the amine group, except DATNB, which is unaffected by the solvent. Carbon-13 NMR results for TATB/ H_2SO_4 and

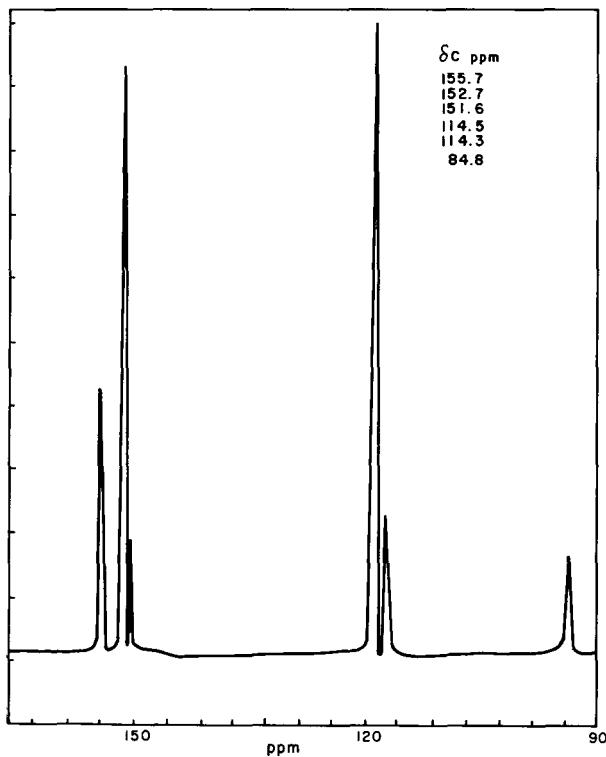
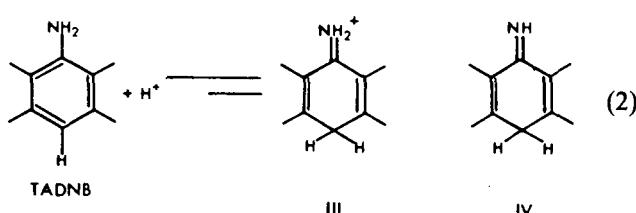
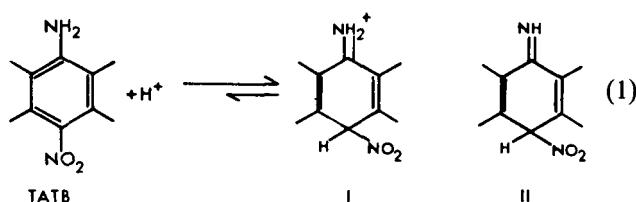




Fig. 1.

Carbon-13 NMR decoupled spectrum of TATB in concentrated H_2SO_4 .

TADNB/ H_2SO_4 are shown in Eqs. (1) and (2) and Figs. 1 and 2. The ^{13}C NMR splitting patterns of the carbons bearing the hydrogen atoms confirm the presence of the hydrogen atoms (Figs. 3 and 4). What is the origin of the protons? Are they donated from the solvents, forming

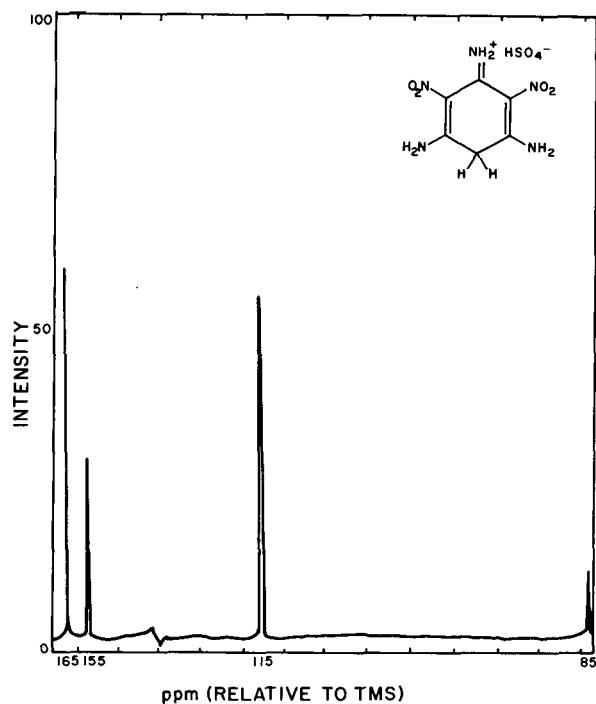


Fig. 2.
Carbon-13 NMR decoupled spectrum of TADNB in concentrated H_2SO_4 at 27°C.

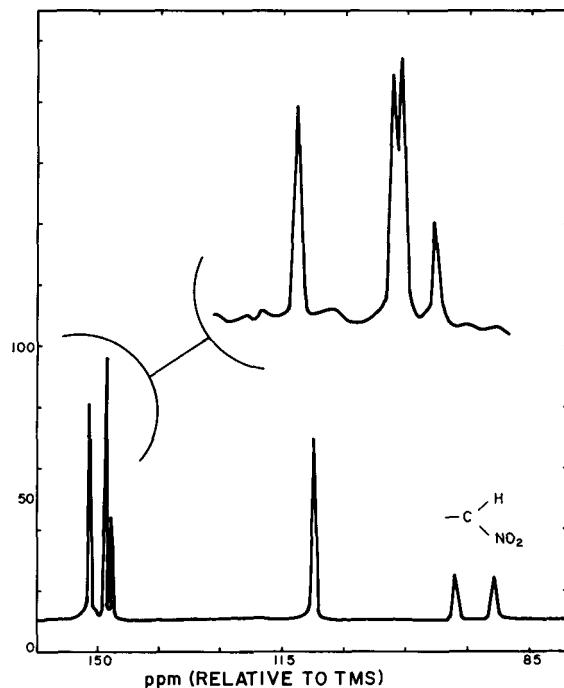


Fig. 3.
Carbon-13 NMR coupled spectrum of TATB in concentrated H_2SO_4 .

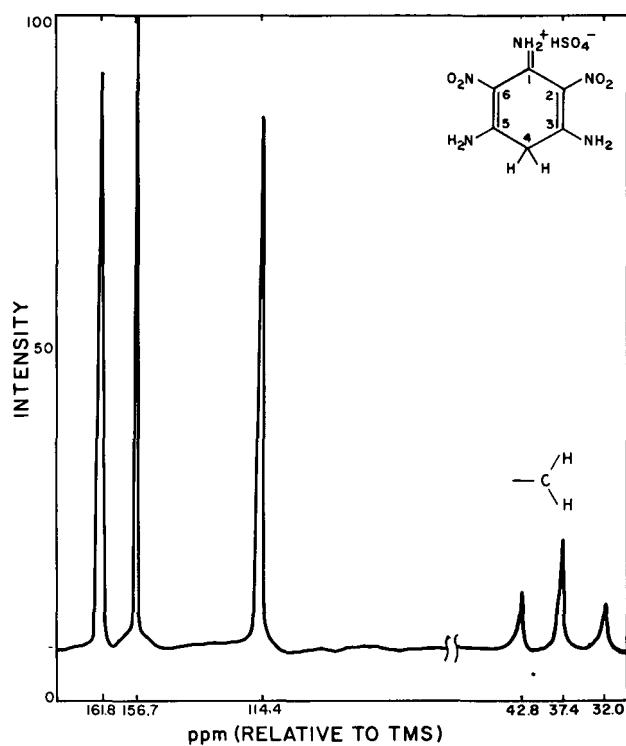


Fig. 4.

Carbon-13 NMR coupled spectrum of TADNB in concentrated H_2SO_4 at 25°C.

structures I and III, or do they migrate from the amine group, forming structures II and IV?

Neither ^{13}C NMR nor ^{15}N NMR spectroscopy completely characterized the $\text{C} = \text{NH}$ group. However, assignments of 155.7 ppm and 161.8 ppm for the imino carbon in TATB and TADNB, respectively, were in agreement with the assignments of the imino carbons in 1-nitroguanyl-1,3,5-dimethylpyrazole (158.7 ppm) and arginine hydrochloride (157.7 ppm). We assumed that the rapid exchange between the proton of the imino group and those of the solvent caused the imino ^{15}N resonance in TATB and TADNB to appear as singlets.

Carbon-13 NMR linewidth data from C_4 structure I [Eq. (1)] were used to determine the activation energy of the TATB/ H_2SO_4 system. If the rate of exchange of the proton at C_4 obeys first-order kinetics, an activation energy of 5.92 kcal/mole can be calculated from the slope of the semilogarithmic plot of the rate constants vs the reciprocal of the absolute temperature. Rate constants at various temperatures were calculated from linewidth data using published procedures.³ The relationship between the change in linewidth (at half height)

of the C_4 absorption of TATB in H_2SO_4 and the rate of exchange (k) of the proton at this position with temperature (T) is shown in Table I. The graph of these data (Fig. 5) is consistent with observations from ^{13}C NMR chemical shift data. At approximately 304.15 K, a change in mechanism is evident.

Activation energies of 5-6 kcal/mole imply that the rate-determining step in the reaction shown in Eq. (1) is the diffusion of reactant or product molecules.⁴

Peak ratios from the TATB spectrum were determined from peak height changes with temperature. We calculated an average heat of reaction, ΔH , of 0.8 kcal/mole

TABLE I
LINEWIDTHS^a AND RATE CONSTANTS
AS FUNCTIONS OF TEMPERATURE

1000/T (K^{-1})	1000/ $\pi_{1/2}$ (s)	(100) k (s^{-1})	(ln K)
3.69	2.20	5.5	6.3099
3.60	2.53	6.3	6.4457
3.56	2.97	7.4	6.6067
3.48	3.77	9.4	6.8459
3.44	3.89	9.7	6.8773
3.38	4.73	11.8	7.0733
3.22	5.06	12.7	7.1468
3.14	5.62	14.0	7.2442
2.99	0.253	---	---

^aLinewidth at half height, $\nu_{1/2} = 1/\pi \cdot T_2'$, where T_2' = effective transverse relaxation time.

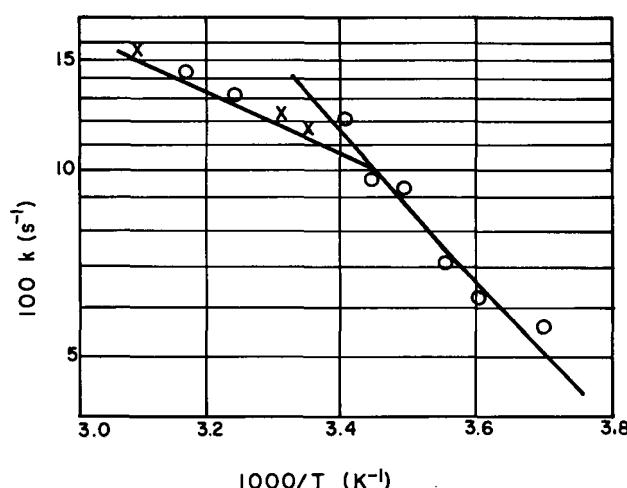


Fig. 5.
Rate constants vs temperature.

(Tables II-IV). These data suggest little difference in the stability of the reactants and products.

B. Conductance and Cryoscopic Measurements

We attempted to use a simple conductivity experiment to distinguish between structures I and II [Eq. (1)]. A conductivity cell was constructed by R. Rowher, Los Alamos National Laboratory Group WX-2. The cross section of the cell was 1.0 cm^2 and its length was 11.5 cm. The cell constant was 12.3 cm^{-1} when measured in 0.01 M KCl and was 2.2 cm^{-1} when measured in concentrated H_2SO_4 (96-98%). Several solutions were prepared with varying amounts of TATB dissolved in 25 cm^3 of concentrated H_2SO_4 . The equivalent conductance Ω was measured using a YSI* Model 31 conductivity bridge. The values obtained immediately after mixing were slightly higher than those obtained after 2 wk (Table V and Fig. 6). The conductance tended to decrease as the concentration increased. Both the formation of aggregates of ions and an increase in viscosity of the solution would cause the mobility of the ions to be reduced and the conductance to be less. Another factor

*Yellow Springs Instrument Co., Yellow Springs, Ohio.

TABLE II

CHANGE IN RATIO OF UNPROTONATED TO PROTONATED FORMS OF TATB^a AT VARYING TEMPERATURES^b

1000/T (K^{-1})	Unprotonated TATB	Protonated TATB
3.55	0.1972	
3.50	0.2480	
3.42	0.2854	
3.35	0.2230	
3.32	0.2520	
3.22	0.1312	
3.19	0.2307	
3.10	0.2824	

^aLos Alamos Group WX-3 Cordova Blend No. 7712.

^b $\Delta H = -0.773 \text{ kcal/mole}$.

TABLE III

CHANGE IN RATIO OF UNPROTONATED TO PROTONATED FORMS OF TATB^a AT VARYING TEMPERATURES^b

1000/T (K^{-1})	Unprotonated TATB	Protonated TATB
3.61	0.2558	
3.46	0.2883	
3.88	0.3197	
3.26	0.2133	
3.13	0.2700	
3.14	0.3233	
3.04	0.3068	

^aLos Alamos Group WX-3 Cordova Blend No. 7705.

^b $\Delta H = -0.758 \text{ kcal/mole}$.

TABLE IV

CHANGE IN RATIO OF UNPROTONATED TO PROTONATED FORMS OF TATB^a AT VARYING TEMPERATURES^b

1000/T (K^{-1})	Unprotonated TATB	Protonated TATB
3.59	0.2581	
3.52	0.2521	
3.47	0.2269	
3.34	0.3230	
3.27	0.3045	
3.12	0.2626	
3.04	0.2857	

^aThis is a laboratory sample prepared by Donald Ott of Los Alamos Group WX-2.

^b $\Delta H = -0.773 \text{ kcal/mole}$.

affecting conductance is the increase in hydrogen bonding with concentration, which can reduce the number of molecules of H_2SO_4 available to be ionized. The only significant ionization of the solvent is shown in Eq. (5). It

TABLE V

THE EFFECT OF CONCENTRATION ON THE EQUIVALENT
CONDUCTANCE OF TATB IN CONCENTRATED
 H_2SO_4 AT 25°C

TATB/25 cm ³ H_2SO_4	Conductance ^a ($\Omega^{-1}\text{cm}^{-1}$)	Conductance After 2 wk ^a ($\Omega^{-1}\text{cm}^{-1}$)
0.0	1.98	1.82
0.5	1.94	1.80
1.0	1.71	1.78
1.5	1.86	1.74
2.0	1.85	1.72
2.5	1.71	1.68
3.0	1.68	1.73
4.0	1.52	1.54
5.0	1.50	1.47
5.3	1.51	1.48

^aNumbers to be multiplied by 10^{-2} ; Ω = ohms⁻¹.

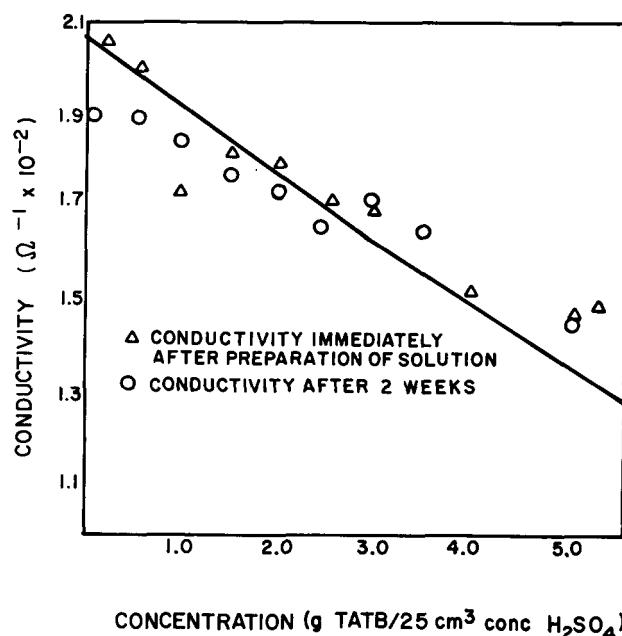
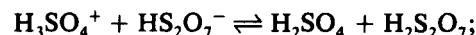


Fig. 6.
Conductivity of TATB in H_2SO_4 .


was not necessary to make corrections for self-ionization by self-dehydration and autoprotolysis [Eqs. (3) and (5)].

$$K_b = \frac{1 \text{ mole}}{\text{kg}} . \quad (3)$$

$$K_a = 1.4 \times 10^{-2} \frac{\text{mole}}{\text{kg}} . \quad (4)$$

$$K_{ap} = 1.7 \times 10^{-4} \frac{\text{mole}^2}{\text{kg}^2} . \quad (5)$$

$$K_{id} = 3.5 \times 10^{-5} \frac{\text{mole}^2}{\text{kg}^2} . \quad (6)$$

In a more detailed cryoscopic and conductance study, TATB, TACDNB, and TADNB were compared to model compounds, and the extent of protonation as a function of concentration was determined.⁵

The dissociation products from the reactions illustrated in Eqs. (3)-(6) lower the freezing point of 100% H_2SO_4 from 10.625°C to 10.365°C.⁶ The self-dissociation products and the effect of the dissolved solute on the equilibria expressed in Eqs. (3)-(6) were taken into consideration in determining V , the number of moles of particles (molecules or ions) produced in solution by 1 mole of solute. This relationship is expressed as

$$V = \frac{\theta}{km} , \quad (7)$$

where k is the molal freezing point depression constant, m is the molality of the solution, and θ is the freezing point depression.

A more accurate expression of V is

$$V = \frac{\theta(1 + 0.002\theta)}{6.12 [m - (m/m_d)]}, \quad (8)$$

where m_d is the total molality of solution containing dissociation products, m/m_d is a correction factor for the dissociation products, and θ is the actual freezing point depression calculated from T_0 (10.625°C) and the corrected freezing point of the solution, T . The corrected freezing points of solvents and solutions are obtained by adding ΔT to the observed freezing points.

The experimentally determined freezing point, T_e ; the corresponding freezing point depression, θ_e ; and the amount of supercooling, S , were used to calculate T .

$$\Delta T = 0.03S\theta_e. \quad (9)$$

The stoichiometric concentration of HSO_4^- obtained from conductance measurements was plotted vs the concentration of each self-dissociation product. Values for m_d were obtained from these plots (Table VI).⁶ Approximate V values for TATB, TACDNB, and TADNB, for concentrations of approximately 0.1 M, are 4, 5, and 4, respectively. As the concentration decreases, the V values increase.

As shown in Eq. (3), the bisulfate ion is produced from the self-dissociation of H_2SO_4 . In solutions of any base, the contribution to the conductivity of all other ions, compared to HSO_4^- , is negligibly small, affording a means of determining the number γ of HSO_4^- ions produced per molecule of solute. At low concentrations, the reaction illustrated by Eq. (3) is not suppressed, and solutions of equal concentration will have equal conductance. Binary electrolytes such as KHSO_4 were used as standards. The quantity γ will be the ratio $[\text{HSO}_4^-]/m_s$, where m_s is the stoichiometric molality of the solute in a solution whose conductance corresponds to a known stoichiometric molality of the hydrogen sulfate ion, HSO_4^- . Using data from Table VI, we plotted $[\text{HSO}_4^-]$, vs the specific conductance of standard KHSO_4 solutions.⁷ Then we plotted the specific conductance of solutions of TNA, TATB, TADNB, and TACDNB and obtained the corresponding $[\text{HSO}_4^-]$, values. Table VII gives the solute; the molality of the solution, m_s ; the specific conductance of the solution, L ; the corresponding molality of the HSO_4^- ; and γ .

In addition to finding the γ values for solutions of TNA, TATB, TADNB, and TACDNB, we obtained molar conductances μ at 25°C for each solute for comparison with molar conductances of dibasic, tribasic, and tetrabasic solutes, 1,2-benzenediamine, N_2O_4 , and hexamethylenetetramine, respectively.⁸ The molar conductance is calculated using the relationship,

TABLE VI

V VALUES FOR TNA, TATB, TADNB, AND TACDNB SOLUTIONS

Solute	m	$(\text{HSO}_4^-)_s$	m_d	θ	V
TNA	0.2096	0.2325	0.01440	3.137	2.38
TNA	0.1023	0.151	0.01559	2.093	3.20
TATB ^a	0.1026	0.171	0.01513	2.375	3.65
TATB ^a	0.0506	0.128	0.01607	1.765	5.40
TATB ^b	0.0126	0.170	0.01518	2.159	3.31
TATB ^b	0.0506	0.104	0.01696	1.338	4.00
TATB ^b	0.0252	0.061	0.01992	0.842	4.68
TADNB	0.1018	0.223	0.01446	2.651	4.14
TADNB	0.0505	0.154	0.01555	1.586	4.84
TADNB	0.0251	0.096	0.01733	1.052	6.15
TACDNB	0.1025	0.258	0.01422	3.197	4.99
TACDNB	0.0506	1.151	0.01559	1.638	4.99
TACDNB	0.0262	0.100	0.01718	0.974	5.43

^aSolvent fp of 10.288°C and L of $0.01015 \Omega^{-1}\text{cm}^{-1}$.

^bSolvent fp of 10.342°C and L of $0.01030 \Omega^{-1}\text{cm}^{-1}$.

TABLE VII

GAMMA VALUES FOR TNA, TATB, TADNB, AND TACDNB SOLUTIONS

Solute	m_s	L	$[HSO_4^-]_s$	γ
TNA	0.2096	0.03761	0.2325	1.11
TNA	0.1023	0.02754	0.151	1.48
TATB ^a	0.1026	0.03080	0.171	1.67
TATB ^a	0.0506	0.02555	0.128	2.53
TATB ^b	0.1026	0.03068	0.170	1.66
TATB ^b	0.0506	0.02225	0.104	2.05
TATB ^b	0.0252	0.01636	0.061	2.42
TADNB	0.1018	0.03665	0.223	2.19
TADNB	0.0505	0.02774	0.154	3.05
TADNB	0.0251	0.02115	0.096	3.82
TACDNB	0.1025	0.04050	0.258	2.52
TACDNB	0.0506	0.02746	0.151	2.98
TACDNB	0.0262	0.02177	0.100	3.82

^aSolvent fp of 10.288°C and L of 0.01015 $\Omega^{-1} \text{cm}^{-1}$.^bSolvent fp of 10.342°C and L of 0.01030 $\Omega^{-1} \text{cm}^{-1}$.

$$\mu = \frac{1000L}{wp} , \quad (10)$$

where L is the specific conductance, w is moles of solute per kilogram of solution, and ρ is the density of the solution. The product, wp , is equal to the concentration of the solute expressed in molarity. Where density measurements were not made, we assumed the densities of the solutions were the same as the density of pure H_2SO_4 (1.8271 g/cm³). Values of molar conductances for solutions of bases with a HSO_4^- ion concentration less than 0.1 M are unreliable unless a correction is made for the incomplete repression of the self-dissociation of the solvent. However, in this instance, all solutions had a HSO_4^- molarity greater than or equal to 0.1 M. Table VIII gives the solute and w, ρ , M, and μ values. The molar conductance decreases rapidly as concentration increases. Table IX lists the molalities and corresponding molar conductances for solutions of aniline, 1,2-benzenediamine, N_2O_4 , and hexamethylenetetramine.⁸

We performed a careful study of the freezing point and specific conductance of H_2SO_4 to determine its purity. Table X gives the freezing points, and Table XI (data taken from Ref. 7) gives the specific conductances

of solutions of $\text{H}_3\text{O}^+\text{HSO}_4^-$ and $\text{H}_2\text{S}_2\text{O}_7$ in 100% H_2SO_4 over the concentration ranges pertinent to our study. From these data, we can estimate that the molality of the solvents used in our studies ranged from less than 0.01 molal concentrations of either H_2O or SO_3 , to 0.040 molal concentration of H_2O or 0.050 molal concentration of SO_3 . In three instances our specific conductances are 1-2% lower than the minimum value for 100% H_2SO_4 , which suggests that 1-2% is a more realistic precision range for our conductance measurements than the relative precision range of 0.1-0.5% given in Sec. IV.

Table XII gives V values and γ values for the solutions and upper limit estimates on the molality of impurities. We assumed the main impurity was H_2O , the most likely candidate.

III. CONCLUSIONS

Tables XIII and XIV summarize the cryoscopic and conductance experimental results. Table XIV has been corrected for H_2O impurity. Even though very dilute solutions seem to give the best results, these cannot be compared with the ¹³C NMR data obtained from the Varian CFT-20 NMR spectrometer for assay purposes because of concentration constraints. We chose to

TABLE VIII
MOLAR CONDUCTANCES OF TNA, TATB, TADNB, AND
TACDNB AT 25°C

Solute	w	ρ	M	μ
TNA	0.2000	1.8311	0.3662	102.7
TNA	0.1000	1.8297	0.1830	150.5
TATB	0.1000	1.8361	0.1836	167.7
TATB	0.1000	1.8361	0.1836	167.1
TATB	0.0500	1.8302	0.0915	279.2
TATB	0.0500	1.8302	0.0915	243.2
TATB	0.0250	1.8271	0.457	358.0
TADNB	0.0996	1.8271	0.1820	201.3
TADNB	0.0500	1.8271	0.0914	303.5
TADNB	0.0250	1.8271	0.0457	462.8
TACDNB	0.1000	1.8271	0.1827	221.7
TACDNB	0.0500	1.8271	0.0914	300.4
TACDNB	0.0260	1.8271	0.0475	458.2

TABLE X
FREEZING POINTS OF H_2SO_4 SOLUTIONS
OF $H_3O^+HSO_4^-$ AND $H_2S_2O_7$

TABLE IX
MOLAR CONDUCTANCE OF ANILINE,
1,2-BENZENEDIAMINE, N_2O_4 , AND
HEXAMETHYLENETETRAMINE AT 25°C

Solute	M	μ
Aniline	0.1	155
Aniline	0.2	120
Aniline	0.3	102
Aniline	0.4	91.5
1,2-Benzenediamine	0.05	306
1,2-Benzenediamine	0.10	236
1,2-Benzenediamine	0.15	201
1,2-Benzenediamine	0.20	187
1,2-Benzenediamine	0.30	153
1,2-Benzenediamine	0.40	130
N_2O_4	0.033	453
N_2O_4	0.066	336
N_2O_4	0.100	296
N_2O_4	0.133	268
Hexamethylenetetramine	0.025	616
Hexamethylenetetramine	0.050	454
Hexamethylenetetramine	0.075	388
Hexamethylenetetramine	0.100	349

Molality	fp, $H_3O^+HSO_4^-$	fp, $H_2S_2O_7$
0.000	10.371	10.371
0.005	10.364	10.366
0.010	10.346	10.351
0.015	10.316	10.329
0.020	10.280	10.305
0.025	10.237	10.276
0.030	10.194	10.248
0.035	10.146	10.214
0.040	10.094	10.182
0.050	9.993	10.118

TABLE XI
SPECIFIC CONDUCTANCES AT
25°C OF H_2SO_4 SOLUTIONS
OF $H_3O^+HSO_4^-$ AND $H_2S_2O_7$

Molality	L, $H_3O^+HSO_4^-$	L, $H_2S_2O_7$
0.000	0.01044	0.01044
0.01	0.01058	0.01064
0.02	0.01117	0.01105
0.03	0.01209	0.01154

TABLE XII
RESULTS OF CRYOSCOPIC AND CONDUCTANCE EXPERIMENTS

Molality of Solute	Upper Limit of Molality of H ₂ O Impurity	V	γ
0.2096 m TNA	0.02 m	2.38	1.11
0.1023 m TNA	0.02 m	3.20	1.48
0.1026 m TATB ^a	0.02 m	3.65	1.67
0.0506 m TATB ^a	0.02 m	5.40	2.53
0.1026 m TATB ^b	0.01 m	3.31	1.66
0.0506 m TATB ^b	0.01 m	4.00	2.05
0.0252 m TATB ^b	0.01 m	4.68	2.42
0.1018 m TADNB	0.04 m	4.14	2.19
0.0505 m TADNB	0.04 m	4.84	3.05
0.0251 m TADNB	0.04 m	6.16	3.82
0.1025 m T ₄ A	0.01 m	4.99	2.52
0.0506 m T ₄ A	0.01 m	4.99	2.98
0.0262 m T ₄ A	0.01 m	5.43	3.82

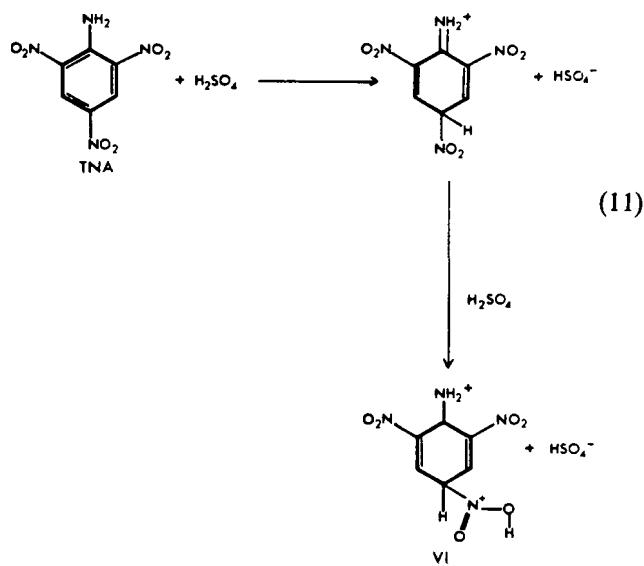
^aSolvent fp of 10.288°C and L of 0.01015 $\Omega^{-1} \text{cm}^{-1}$.

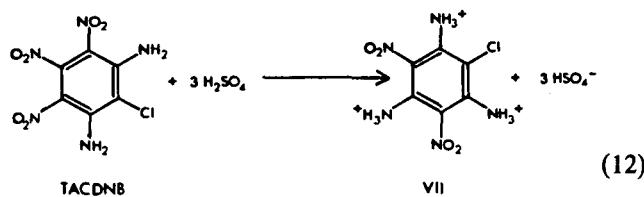
^bSolvent fp of 10.342°C and L of 0.01030 $\Omega^{-1} \text{cm}^{-1}$.

TABLE XIII

MOLAR CONDUCTANCE OF TATB,
TADNB, AND TACDNB
IN H₂SO₄ AT 25°C

Solute	Molarity	Conductance
TACDNB	0.0914	300.4
	0.1827	221.7
TADNB	0.0914	303.5
	0.1820	201.3
TATB	0.0915	279.2
	0.1836	167.1

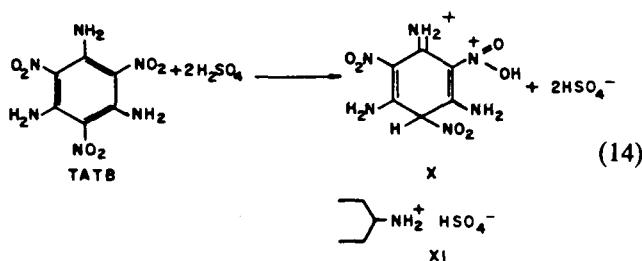
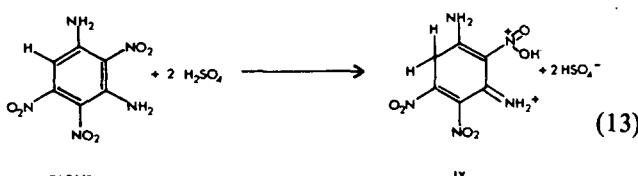

TABLE XIV


CRYOSCOPIC AND CONDUCTANCE
EXPERIMENTS CORRECTED FOR THE
IMPURITY H₂O^a

Compound	m _s	m _{H₂O}	V	γ
TNA	0.1023	0.02	2.8	1.0
TACDNB	0.1025	0.01	5.0	2.4
TADNB	0.1018	0.02/0.04	4.1	1.9
TATB	0.01026	0.02	3.3	1.5

^aConcentrations approximately 0.1 M and temperature 25°C.

compare the 0.1 molal solutions of the model compounds with the aminonitrobenzene derivatives of interest. With the exception of the model compound TNA, other compounds seem to generate at least two HSO₄⁻ ions per mole of solute. The strong evidence that TACDNB generates three bisulfate ions per mole of solute also corroborates the ¹³C NMR data. The numbers of moles of particles in solution (molecules and/or ions) for TNA, TACDNB, TADNB, and TATB are 3, 5, 4, and 3, respectively. The following equations illustrate these results.



conductivity studies: Sargent-Welch mineral oil (inhibited), Cat. No. SC13639

TNA, TATB, TADNB, and TACDNB

B. Procedures

Figures 7 and 8 show views of the conductivity cell. When the cell within the air jacket is filled to 6 cm, the volume of the solution equals approximately 50 ml. Two pairs of platinum electrodes are incorporated into the cell. The upper pair (No. 1) and the lower pair (No. 2) are each 2.5 cm apart. Each No. 1 electrode has a radius of about 0.28 cm; each No. 2 electrode has a radius of about 0.16 cm. Platinum wire leads (insulated with glass inside the cell) extend from the electrodes to the glass tubes along the outside of the air jacket, where contact to external leads is made with mercury. By setting the cell on either an electric-powered or water-powered magnetic stirrer, we can stir the solution with a Teflon-coated magnetic-stir bar.

The cell constant for both pairs of electrodes was determined using standard KCl solutions (7.4194 g KCl/kg of solution with $L = 0.012856 \Omega^{-1} \text{ cm}^{-1}$ at

We concluded that H_2SO_4 provides the protons attached at the amino and nitro groups and also at the ring in Eqs. (11)-(14). The extent of protonation depends upon the concentration of the solvent. Acid solutions with H_2SO_4 concentrations of 96-98% are better proton donors than 100% H_2SO_4 , and structures VIII and XI are not strong contributors. Therefore, in H_2SO_4 , TATB and TADNB exist as structures I and III, respectively.

IV. CONDUCTANCE MEASUREMENTS

A. Reagents

Sulfuric Acid: VWR reagent grade, A.C.S., 96-98% H_2SO_4

Sulfur Trioxide: Sargent-Welch ampules (Cat. No. SC15137-00/2LB)

Potassium Chloride: Mallinckrodt, U.S.P.

White mineral oil for constant temperature bath for

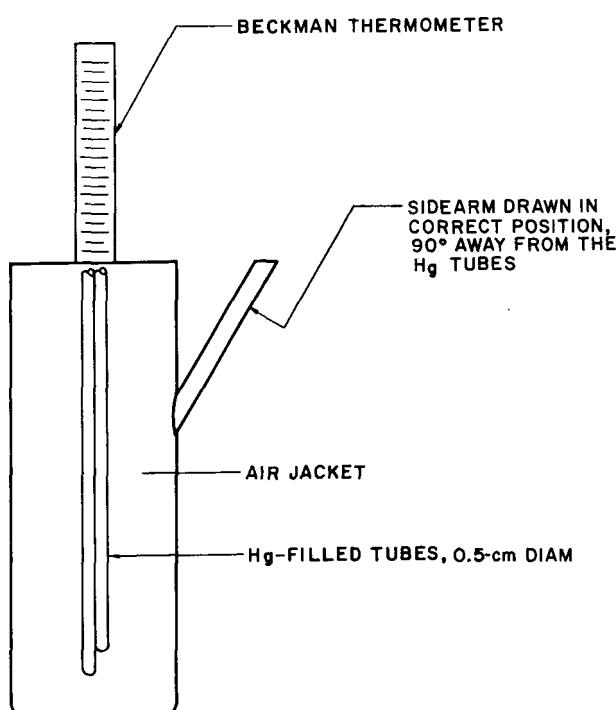


Fig. 7.
View 1 of conductivity cell.

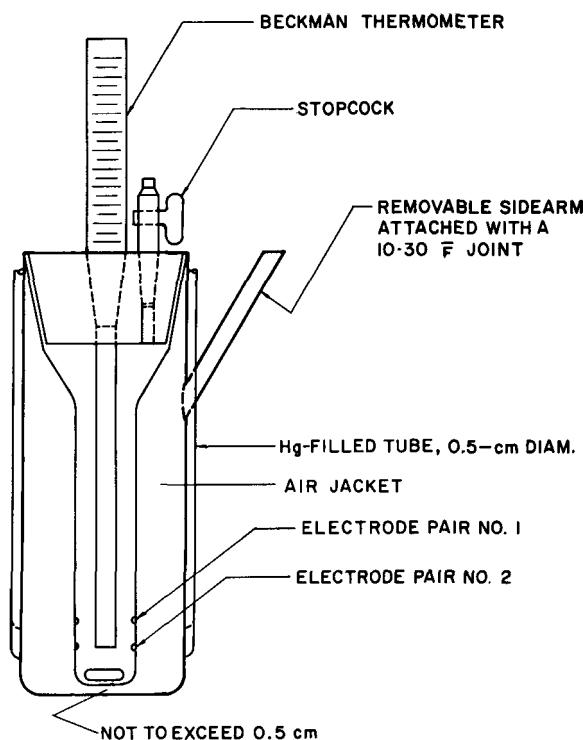


Fig. 8.
View 2 of the conductivity cell.

25°C). For the study of TNA, we used a cell constant (for the No. 1 electrodes) of 0.812 cm⁻¹. For the studies of TATB, TADNB, and TACDNB, we used a cell constant (for the No. 1 electrodes again) of 0.810 cm⁻¹.

An attempt was made to prepare 100% H₂SO₄ by adding SO₃ by drops to a glass container of 96-98% reagent-grade H₂SO₄ in a glove box flushed with dry nitrogen. The SO₃ was added in successive steps until the specific conductance and freezing point of the resulting liquid closely approximated that of 100% H₂SO₄ (L = 0.010439, fp = 10.365°C).⁶

By mixing the appropriate weighed amounts of solute and solvent, we made up solutions of TNA, TATB,* TADNB, and TACDNB in separate batches of 100% H₂SO₄ in a glove box flushed with dry nitrogen. We determined the freezing points of the solvent and solu-

*Two different batches, a and b.

tions using the conductivity-cryoscopic cell fitted with a Beckmann thermometer. The closed cell was placed in a 4-6°C water bath, and the solvent or solution contained within the cell was super-cooled to 0.5-1.5° below its freezing point. After we inserted a platinum wire previously cooled in solid CO₂ into the super-cooled liquid to initiate solidification, we took the resulting freezing point.

A platinum resistance thermometer, calibrated by the National Bureau of Standards, was used to calibrate the Beckmann thermometer. We determined the true temperature using the following formula, $T_{\text{true}} = T_{\text{Beckmann}} + 6.214^{\circ}\text{C}$. The resulting temperature had a standard deviation of 0.0092°C root.

We did not actually achieve 100% H₂SO₄ for our solvent using the freezing point of the solvent as our criterion (Table X). The impurity was probably either H₂O (which would be protonated to give H₃O⁺ and HSO₄⁻) or SO₃ (which would react with H₂SO₄ to give H₂S₂O₇). Table X gives the freezing points of solutions of H₃O⁺ HSO₄⁻ and H₂S₂O₇ in 100% H₂SO₄ over the concentration range pertinent to our study.

To measure conductivity, we placed the closed cell in a mineral oil bath at 25.0°C and measured the resistance using the No. 1 electrodes (Fig. 8) in the cell. An ac Wheatstone bridge circuit, assembled from components available in the Laboratory, was used to measure the cell resistance. The components included a Leeds & Northrup Co. ac/dc decade resistor, an audio oscillator, standard resistors, a variable capacitor, and a pair of earphones and a Telequipment D66 oscilloscope as null detectors. With this circuit, we measured conductivity cell resistances with an absolute precision of 0.1 Ω and a relative precision range of 0.13-0.5%. The specific conductance of the solution in the cell, L, is equal to the cell constant (referred to above) divided by the measured resistance.

ACKNOWLEDGMENTS

The author thanks Thomas Whaley of Los Alamos Group LS-5 for the use of the CFT-20 NMR spectrometer, Robert Rohwer of Los Alamos Group WX-2

for the design and construction of the conductivity cell for the preliminary experiment, and the Analytical Chemistry Department of Colorado College for work on the conductivity problem.

REFERENCES

1. Betty W. Harris, "Carbon-13 NMR Analyses of TATB and Related Compounds in Sulfuric Acid," Los Alamos National Laboratory report LA-7572 (1979).
2. H. H. Cady and A. C. Larson, "The Crystal Structure of 1,3,5-Triamino-2,4,6-trinitrobenzene," *Acta Crystallogr.* **18**, 485-489 (1965).
3. J. A. Pople, W. G. Schneider, and H. J. Bernstein, *High Resolution Nuclear Magnetic Resonance* (McGraw Hill Book Co., Inc., New York, 1959), chap. 10, pp. 218-230.
4. S. Gladston, K. J. Laidler, and H. Eyring, *The Theory of Rate Processes* (McGraw Hill Book Co., Inc., New York, 1941) chap. 8.
5. E. Hitchcock, K. Kester, and D. Neuhaus, Department of Chemistry, Colorado College, unpublished data, 1979.
6. S. J. Bass, R. J. Gillespie, and E. A. Robinson, "Solutions in Sulfuric Acid. Part XXVII. The Self-Dissociation Equilibria of Sulfuric Acid. Values of the Equilibrium Constants at 10°C," *J. Chem. Soc.*, 821-838 (1960).
7. S. J. Bass, R. H. Flowers, R. J. Gillespie, E. A. Robinson, and C. Solomons, "Solutions in Sulfuric Acid. Part XXX. Conductivities of Some Electrolyte Solutions: Metal Sulfates, Ketones, and Tetra(hydrogen sulfatol) Broic Acid," *J. Chem. Soc.*, 4315-4320 (1960).
8. R. J. Gillespie and R. H. Wasif, "Solutions in Sulfuric Acid. Part XII. Electrical Conductivity Measurements," *J. Chem. Soc.*, 221-231 (1953).