
MASlm IS-T-830

A SPECIAL PURPOSE COMPUTER TO COMPUTER INTERFACE

Benjamin Franklin Carter III

Based in a M.S. thesis submitted to Iowa State University

Ames Laboratory, US DOE
Iowa State U rnversity

Ames, Iowa 50011

Date Transmitted: January 1979

.-------NOTICE------,

This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their
controcton, subcontrltr.tors, or their employees, makes
any warranty, express or implied, or assumes any legal
liability or responsibility for the aecuncy, completeness
or usefulness of any information, apparatus, product or
process discloted, or represents that its ute would not
infringe privately owned rights.

PREPARED FOR THE U. S. DEPARTMENT OF ENERGY
UNDER CONTRACT NO. W-7405-eng-82

'

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

ii

......---N 0 TIC E
This report was prepared as an account of work spon­
sored by the United States Government. Neither the
United States nor the United States Department of Ener­
gy, nor any of their employees, nor any of their contrac­
tors, subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, complete­
ness, or usefulness of any information, apparatus,
product or process disclosed, or represents that its
use would not infringe privately owned rights.

Available from: National Technical Information Service
l J. S. nepartment <?f Commerce
P.o. Box 1553
Springfield, VA 22161

Price: Microfiche $3.00

iii

A special purpose computer to computer interface

by

Benjamin Franklin carter I.II

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of

The Requirements for the Degree of

MASTER OF SCIENCE

Major: Electrical Engineering

Approved:

For the Major Department

For the Graduate College

Iowa State University
Ames, Iowa

1975

e 'V
I • <"

TABLE OF CONTENTS

Abstract
INTRODUCTION

SDS-910 COMPUTER

PDP-15 COMPUTER

DESIGN CONSIDEBATIONS

HARDWARE CONSTRUCTION

CONCLUSIONS

BIBLIOGRAPHY

ACKNOWLEDGMENTS

APPENDIX A: SDS-910 ADDRESS ASSIGNMENTS

Page
v
1

4

5

7

25

40

41

42

43

APPENDIX B: PDP-15 INTERFACE IOT INSTRUCTIONS 44

APPENDIX C: FLOWCHAR~ OF TRANSFERS PROM PDP-15 45
TO SDS-910

APPENDIX D: FLOWCHART OF TRANSFERS fROM SDS-910 47
TO PDP-15

APPENDIX E: INTERFACE BLOCK DIAGRAM 49

v

.
A special purpose computer to computer interface

Benjamin Franklin Carter III

The specific design criterion are presented for

interfacing two dissimilar computers. The discussion also

includes hardware and software protocol for communication be-

tveen the systems.

1

INTRODUCTION

The ~ork reported in this thesis was the result of

upgrading the Ames Laborat~ry Research Reactor computer sys­

tem. The original ALRR computer system (Figure 1) was de­

signed and installed in the mid 1960's. Hardware included an

SDS-910 computer interfaced to an IBM 1401 computer. The

SDS-910 computer controlled various experiments while the

IBM-1401 merely interfac~d the SDS-910 to mass storage pe­

ripherals. The need to upgrade this system was due to the

fact that the 910 computer was core-limited to the extent

that scheduling of experiments was necessary to prevent sys­

tem overloads. · Disk space was entirely committed. Failures

of the IBM peripherals were occurring more and more frequent~

ly and these failures were compounded by the fact that spare

parts were becoming scarce.

The proposed system (Figure 2) was designed around a

PDP-15 computer using an existing real time Pit1 softMare op­

erating system. The SDS-910 computer would be maintained due

to the remoteness of the experiments and the capital invest­

ments in existing experiment interface hardware. In the pro­

posed system the SDS-910 computer takes on the role of an in­

terrupt handler and front end processor. All users• programs

are ~ritten in PL/1 and execute in the PDP-15. The subject

of this thesis is the interface between the PDP-15 computer

and the SDS-910 computer.

EXPERIMENT r----------,
I I
I EXPER I
I I ME NT I
I I I.

I
I TTY INTER I
I FACE I I
I I
L. -- _j

2

MULTIPLE
EXPERIMENT

INTERFACE

Figure 1. · The original ALRR computer system

EXPERIMENT r--- - - - - - -1
I I
I EXPER-

I IMENT I I
I I
I I
I TTY INTER- I
I FACE I
I I
L_ ____ _j

4

SDS-910 COMPUTER

The SDS-910 computer has a word length of 24 bits, a

memory cycle time .of 8 microseconds, and is constructEd of

discrete DTL circuit components. The 910 computer allows a

maximum of 16K words of core memory, all directly address­

able. It contains a priority interrupt system capable of

handling 896 general purpose interru~ts. The SDS-910

input;output system is capable of the following types of in­

teraction:

1. Buffered input;output of data words, each under

direct program control.

2. Input;output of blocks of characters (6 bits)

or words time shared with memory and multiplexed

with computatio~ using interlaced buffers.

3. Direct parallel input;output of up to 24 bits

of information to and from external registers

under program control.

4. Single bit input;output~

5

PDP-15 COMPUTEB

The PDP-15 computer uses an 18-bit word, has a memory

cycle time of 800 nanoseconds, and contains TTL integrated­

circuit construction. The computer contains three autonomous

sub-systems:

1. central processor

2. Memory

·3. Input;output processor

All operate concurrently in overlapping cycles under console

control.

The ·central processor is the main component of the com­

puter, carrying on bidirectional communication with both mem­

ory and the I/O processor. Provided with the capability to

perform arithmetic and logical operations, the central proc­

essor coritrols and executes stored programs.

Core memory is the primary-storage area for the PDP-15

computer. It is organized into pages which are paired into

memory banks. Each page contains 4,096 words of magnetic

core storage, and each bank is physically an asynchronous

unit of 8,192 words. The central processor can address up to

128K (131,072) words of core memory. Any word can be ad­

dressed by either the central protessor or the I/O processor.

The I/O processor handles all peripheral communication.

This processor contains thre~ possible modes pf input;output:

1. Program-controlled sirigle word transfers through

\

6

the accumulator in the central processor.

2. Multicycle block data transfers at rates up to
(

250,000 words per second inpQt and 188,000 words

per s~cond·output using three memory cycles per

word transferred.

3. SinglE-cycle block data transfers at rates of up

to 1,000 6 000 words per second using one memory

cycle per word transferred.

The I/O processor provides timing, control, and data lines

for information transfers between the memory of the central

processor and the peripheral device. It also includes an au­

tomatic priority interrupt system ...

7

DESIGN CONSIDERATIONS

The foremost ·design consideration is to transfer the

data between the two comput~rs efficiently and conveniently.

It· appeared that most transfers would either be very small

(two or three words) or extremely large (thousands of words).
/

The operating system is to have experiment-controlling pro-

grams in the SDS-910 computer and "numbi:!r crunching" programs

in the PDP-15. As an example of this interaction, the exper-

iments driven by the system contain detectors that record the

number of neutrons present. The detectors are positioned to

a given point in space by the SDS-910 computer. The PDP-15

computer calculates the proper position and passes it to the

SDS-910. This small transfer between the two co~puters would

contain a user identifier and one word of data. The 916

starts the detector moving and receives reports of its

present position through interrupts, typically one every one

hundredth of a degree. When the detector reaches the proper

position the SDS-910 stops its motion.

Examples of a large transfer would be loading the 910

operating system or reading an entire spectrum of data.

These involve thousands of words. The PDP-15 can accomplish

the three types of transfer briefly described earlier

(program-controlled transfers; multicycle block transfers;

single-cycle block transfers). The primary distinction be-

tween the two modes of block transfer is that the multicycle

8

mode has word ccunt and current memory address-pointers resi­

dent in the memory of the computer while the single cycle

mode requires that the word count and current address pointer

be·maintained by the peripheral device. The word count con­

tains the 2 1 s complement of the number of words remaining to

be transferred. The current memory address pointer records

the memory address of the word currently being transferred.

Block transfers are useful in transferring large amounts of

information because they communicate directly between memory

and the peripheral device. However, a penalty is paid in

terms of overh~ad required to initialize the word count and

current memory address pointer registers. In contrast, the

program-controlled transfers require no overhead but th•

transfer uses the accumulator of the central processor. Thus

there is the implication that a certain amount of care must

be taken to preserve the contents of the accumulator either

before or after the transfer has occurred. The amount of

central processcr time required for a given length transfer

is plotted in Figure 3 for the three types of PDP-15 trans­

fers~ The amount of I/O Bus time required for a given length

transfer is plotted in Figure 4. It can be seen from the

plot of central processor time, that the program-controlled

transfer is by far the best method when the total transfer is

less than seven words. However, the single-cycle transfer is

obviously preferred for large transfers where the overhead

9

lOT
OUTPUT

3 5. 7 9 11. 13 15 17 '19
NUMBER OF WORDS TRANSFERRED

Figure J. PDP-15 CPU time versus number of votd~ transferred

MULTICYCLE
INPUT

3 5 . 7 9 II
NUMBER OF WORDS

Figure 9· PDP-15 I/O bus time versus number of words
transferred

10

involved in initiating the transfer is small compared to the

number of words transferred. Similar observations apply to

the pl~t of the time the bus is occupied (Figure 4) • on this

basis program-controlled transfers vere used in passing sm~ll

blocks, while the single-cycle block transfer method was

chosen for transferring large blocks of data.

The SDS-910 computer offers several methods of

inp ut;ou tpu t:

1. Buffer interrupt system

A buffer assembles and disassembles data words

as they are transmitted between core memory and the

peripheral equipment. The buffer maintains control

of operations such as the number of characters per

word transmitted.

The W buffer performs input;output of data

words, each under program control. The buffer·

transmits and receives 6-bit characters, and packs

them into 24-bi t words. A second buf.fer, the Y '

buffer, is available and is essentially identical

to the w buffer, but will allow the character

length to be defined to any desired length between

6 and 24 bits. Transfer rates can reach 32 micro­

seconds per word for input and 24 micrciseconds per

word for output.

2. Buffer interlace system

11

Each buffer may have a hardware interlace as­

sociated with it. Interlace allows input;output ·of

blocks of data words, word transmission being com­

pletely automatic and multiplexed with computation.

The interlace supplies the memory address of data

coming from or going to memory and maintains the

word count determining the number of words trans­

ferred. The. maximum number of words per transfer

is 4,095. The character manipulation occurs in the

buffer, consequently the memory sees only complete

24-bit words. Transfer rates vill reach 16 micro­

seconds per ~ord plus 16 microseconds per charac­

ter.

3. The wcrd parallel system

The word parallel system allows for transfers

of 24-bit words under program control. The paral­

lel input requires 32 microseconds per word and the

parallel output requires 24 microseconds per word.

4. The pdtdl.lel interlace system

Here again the interlace provides a word courit

and current address pointer. words are transferred

24-bits at a time, under interlace control, at a

rate of 8 microseconds per word with an upper limit

of 4,095 ~ords per transfer. Unlike the buffered

interlace the parallel interlace prevents the cen-

12

tral processor from operating concurrently.

Table 1 shows the relative speeds of each of these method~ of

transfers.

Table 1. ·sns-910 I/O transfer times (microseconds per word)

.
Without Interlace Using Interlace .

w buffer 32 inpu't 80

24 output

Y buffer 32 input 32

24 output

word Parallel 32 input 8

24 output

The main contender for rapid communication is the parallel

interlace system but the parallel interlace system is un-

suited for use in the proposed system primarily because it

would lockout the central processor and all other

input;output while a transfer is taking place. This is com-

pletely intolerable in a real time environment. Also the

Ames Laboratory SDS-910 computer does not support this op-

13

tional method of transfer, nor does it support a Y buffer.

This leaves the word parallel system as the fastest

option available. The w buffer is eliminated because trans­

fers occur therE as 6-bit characters and not as entire 24-bit

·words. This would greatly increase the gating circuitry in

the interface if it were used. All experiments no~ use the

word parallel system of communication and considerable

interfacing work has been done with it. The PDP-15 would

look much like any other ·experiment to the SDS-910, thereby

taking advantage of the interfacing already done to the 910

computer.. ,with the word par~llel system each device is as­

signed a unigue address. Three types of instructions can·be

executed in connection with these device addresses:

1. PIN-parallel input of 24 bits of data.

2. POT-parallel output of 24 bits of data.

3. SKS-test and skip the next instruction if true.

Prior to executing any of these instructions an EOM

(Energize output M) must be issued. This instruction deter­

mines which instruction will follow it and also alerts the

peripheral device that a PIN, POT, or SKS will follow.

The PDP-15 computer will communicate in two modes with

the SDS-910 computer; program-controlled transfers and

single-cycle'block transfers. The PDP-15 will communicate

efficiently with the SDS-910 thus freeing it for~system oper­

ations and computation. The 910 on the other hand will oper-

14 '

ate more inefficiently but will be able to perform all of its

external experiment-control functions and communicate with

the PDP-15.

The vast differences in speed require the use of some

type of data buffering in the interface.. Along with this is

the difference in word lengths with which one must also

con tend. The size of the: buffer required is directly related

to the size of the transfers to he made~ The smallest trans-

fers across the inberface would be one data word l9ng.

Table· 2. comparison of transfer rates

--------~--

.PDP-15 single cycle'
block transfer

· PDP-15 program controlled
transfer

SDS-910 word parallel system

input
output

Max Transfer Bate
(wordS/SEC)

1,000,000

234,192

311250
40,000

Bits per
Word

18

18

24
24

The actual length of a one data word transfer, including all

15

of the software key w6rds, is three 18 bit words for integer

data and four 18-hit words for floating point data. The

first word is a key word giving a user identifier and status

concerning the transfer. The second word is a special ad­

dress concerning that user and the PDP-15 operating system.

The data comprises both the third and fourth words. This

type of transfer is more common than block transfers with

many data words.

The most logical way to specify the size of the buffer

i~ to make it the snme size a3 th€ number of vordc moct fre­

quently transferred. In.this way, the sending computer could

load the entire buffer in essentially one pass and at its own

speed. The receiving computer would then be able to read the

entire transfer at its own speed. Some overhead will be re­

quired in acquiring the interface to make a transfer but this

would need to be done only once. By making the buffer large

enough to contain four 18-bit words {72 bits of data), which

is th~ equivalent of three 24 bit words, the interface main­

tains the integrity of the information, but the transmitting

computer ~s forced to pack the words properly for the receiv­

ing computer.

Large block transfers will occur in bursts of four

18-bit words at a time. The size of the buffer need not be

affected by these block transfers because they will occur

infrequently ~hile the system is operating, however, the in-

16

terface can handle them. secondly, most of the time spent

during a block transfer will be taken waiting for the

SDS-910. As the PDP-15 can ttansfer data ~ore than thirty

times faster than the 910, it would appear that the data will

be-transferred at the rate of the 910. By keeping the buffer

small, the bursts of data on the PDP-15 I/O bus will be small

minimizing the time the I/O bus is occupied.

The interface will be considered a peripheral device of

both machines. Both the PDP-15 and the SDS-910 must be able

to initiate transfers through it. Because of this, a scheme

for regues~ing the use of the interface is needed. By using

a simple flip-flop to indicate whether the interface is busy

or not, and by providing the·means for both computers to

test, set, and clear this flip-flop, the state .of the inter-

face can be determined by both computers. Due .to the differ-

ences in speed, however, the SDS-910 could test BUSY and re-

ceive a signal back that the interface was not being used.

Before the SDS-910 could set the BUSY flip-flop, the PDP-15'

could also test BUSY, find the interface is free, and set the

BUSY flip-flop. Both machines would think they had acquired

the interface. To alleviate this problem a second flip-flop
.

called REQUEST Mas added. When the SDS-910 wants to make a

transfer it first sets the BEQUEST flip-flop, then tests

BUSY. The PDP-15 is required to test BEQUEST prior to

testing BUSY. If it finds that the SDS-910 is :waiting or in

17

the process of acquiring the interface, it is forced to wait

until REQUEST is cleared. ~he BEQUEST flip-flop is cleared.

after the SDS-910 acquires the interface buy setting the BUSY

fli~flop. This eliminates the conflict in ac~uiring the in-

terface due to the difference in speeds.

The interface needs to know what type o~ transfer and

which computer is sending the informati9n in order to set up

the proper gating within the interface. An interface control

word was developed for this purpose and is· shown in Figure 5.

Prior to each transfer the initiating computer writes the

control Mord in·to the interface. There are three bits in the

control word that directly effect the transfers in the inter-

face. The 910 INITIATE and 15 INITIATE bits indicate which

computer initiated the transfer. The DMA bit indicates in

which mode the PDP-15 will be transferring data. If t~e DMA

l{Direct Memory Access) bit is set the transfer is a single

cycle block transfer, otherwise the transfer is under program

control. The 15 LOCKUP does nothing in the interface. Xt

was provided so that when set by the PDP-15 it would tell the

910 software.that the 910 could not initiate any transfers~

This allows the software to m6ve priority data from the 15 to

the 910. The two final bits in the control word are

unrelatEd to the interface. Due to the number and varied

qualifications of the experimenter operators using the com-

puter system and due to the remoteness of the experiments

. 910- 15 15 910 15
INITIATE- INITIATE DMA LOCKUP OK OK

I .

Figure 5. Interface control word

19

from the computer, an indication to the experimenter of the

status of the computing system would be useful. Under the

old reactor computer system when the computers failed, the

experimenters had no indication of whether or not the system

was in operation. If they could elicit no response from

their instruments via computer control they would immediately

start to indiscriminantly push buttons hoping to solve

whatever problem existed$ Whatever state the computer failed

in was usually changed by this pushing of buttons, causing

:::H:!Vt!J.:t! maintenance problems. The 15 OK and 910 OK bits are

set only by their respective computers and are ~utomatically

cleared every 1.6 seconds. The computers set these bits,

every time they cycle through their respective dispatche~s.

If either computer stops or gets hung in a loop, that OK bit

will not get set~ It is obvious that some failure could

leave the co~puter still setting the OK bit, hut chances of

this are remote. The two OK bits are logicallj anded

together to form a SYSTEMS OK which is sent to every experi­

ment and displayed with an indicator. Even though shown as

part of the control word, the OK bits are set by their own

instructions but may be read by either computer as part of

the ·control word.

The various combinations of transfers across the inter­

face are flowcharted in Appendix c and D. A brief explana­

tion of these transfers follows.

20

A transfer from the SDS-910 to the PDP-15 is initiated

by the SDS-910. The 910 sets the REQUEST flip-flop, and then

tests 15 LOCKUP. If it is not set, the 910 proceeds to test

BUSY. If the interface is free BUSY is set and BEQUEST is

cleared. The control word is loaded. Finally three 24-bit

data words are written in the interface .buffer. If the

transfer is not a DMA transfer, the 910 is done. The inter-

face causes an interrupt of the processing of the PDP-15 com-.

puter. Upon acknowledging the interrupt the PDP-15 reads the

control word and the 72 bits of data, clears t~e BUSY flip-. .

flop, and the transfer is complete.

Had the transfer been a DMA transfer, the 910 would have

set up a software word count and a current address pointer.

It then would have tested a flip-flop which indicates whether

or not the .15 has read the data. The 15~ meanwhile, would

have received the interrupt and read the control word and the

72 bits of data. It would then load the outboard word count

and current memory address registers and start a DMA trans­

fer. The central processor is relieved df any duties rela-

tive to the transfer as the input;output processor takes cbn­

trol. After detecting that the 72 bits of data have been

read, the 910 loads three more words into the interface, mod-

ifying its software word count and current memory address

pointer correspondingly. The interface starts up the

PDP-15 1 s DMA transfer and the 72 bits are read. This

21

continues .until the last word is read by the PDP-15 at which

time an interrupt of the central processor occurs (generated

from the word count register in the interface) and the PDP-15

clears the BUSY flip-flop.

A transfer from the PDP-15 to the SDS-910 is initiated

by the PDP-15. The PDP-15 must first disable its interrupts.

This is required because the PDP-15 could test REQUEST and

find it not set and proceed to test BUSY. An interrupt of

the PDP-15 could occur at this time and this interrupt would

be ·serviced immediately if the interrupts were enabled.

During this time the SDS-910 could-have set REQUEST and found

that the interface was not BUSY. The 910 would set BUSY and

at the same time it would be possible for the 15·to be

released from its interrupt routine and it also could set

BUSL Both machines could think that they had control of the

interface.

The sa~e n~t result can occMr when the 15 LOCKUP flip­

flop is being used by the software. If the 15 LOCKUP is set

and the 15 is ready to test BUSY but gets interrupted, it is

entirely possibl• that th~ interrupt-handling routine will

clear the 15 LOCKUP, allowing the 910 access to the inter­

face. Here again both the 15 and the 910 could

simultaneously test BUSY, find it not set, and set it.

Disabling the PDP-15 interrupts for the testing of BEQUEST

and BUSY guarantees that the interface can be acquired by

22

only one comput~r.

Once the PDP-15 has acguired the interface it loads the

control word and 72-bits of data which automatically causes

the interface to interrupt the SDS-910. If the transfer is

not a DMA, th~ PDP-15 is done. In servicing the interface·

interrupt the 910 reads the control word and 72-bits o.f data.

This generates another interrupt to the PDP-15 indicating

that the transfer is complete and the 15 clears BUSY.

If the transfer was a DMA transfer, the PDP-15 continues

to load the outboard word count and current memory address

registers and initiates a DMA transfer. The 910 is

interrupted as .before and services this interrupt by reading

the control word and the 72-bits of data. The 910 sets up

its own software word count and current memory address point­

er. Once the 910 has read the 72-bits of data the 15 immedi­

ately lo~ds anoth~rs 72-bits of data. This transfer and all

ensuing transfers are under the control of the inputtoutput

processor until the word count is exhausted. A flip-flop,

BUFFER FULL, is used by the 910 to test to see if the PDP-15

has loaded the next 72-bits of data. Once it has, the EUFFER

FULL flip-flop is set and the 910 read~ the next 72-bits of

data. BUFFEB FULL is used exclusively by the 910 to know

when the·data is ready during a DMA transfer. When the hard­

ware word count of the 15 overflows and the 910 has read the

last word of the transfer (its software word count also being

23

zero) an interrupt of the 15 is generat·ed by the interface.

This alerts the 15's central proces~or that the transfer is

complete, and the 15 clears the BUSY flip-flop. To generate

this interrupt, the interface hardware requires that no

matter when the 15's word count overflows, the 910 must read

the full 72-bits of data stored in the buffer even if the 15

has loaded only one word (of the three). This frees the in­

terface from having to know exactly when to generate the ·in­

terrupt of the 15 (if the '5 loaded only 36 of the 72 bits

and the word count overflowed, the 910 would read all 72

bits. The 910 would .know which bits were valid because of

its own software ~ord count.).

The same requirement is made of the 910 when the trans­

fer goes from the 910 to the 15. The 910 must always com­

pletely fill the buffer even though its.~ord count goes to

zero in the middle of the·72-bits. This allows the interface

to start and stop the 15 1 s input;output processor more

easily. Also the interface has no way of knowing when the

910 has transferred its last word in a DMA because this is

recorded only in the memory of the 910. The 15, in this

case, will read only the required number of words (until its

word count·overflows). Since the 15's word count resides··in

the·interface, proper termination of transfers can occur

whenever the word count overflows because of the access to

the signals. An alternative to this might have been an in-

24

struction that was issued by the 910 to indicate that its

word count was zero. It is not possible to use the 15's word
/

count because it is stored in terms of 18 bit words not 24

bit words and is ·not 6hanged while the 910 is accessing the

data buffer in the interface.

25

HARDWARE CONSTRUCTION

The interface is constructed, in part, with standard

Digital Equipment corporation (DEC) Logic Modules and in part

with Scientific Data Systems (SDS) Logic Modules. The

decision to use purchased modules was forced due to the lack

of .manpower to construct in-house modules, limited time

available, and a limited budget. Ames Laboratory already

owned a considerable stock of SDS Logic Modules and associ­

ated hardware and none needed to be purchased. Because of

this the majority of the interface is constructed with SDS

Logic Modules.· The interface to the PDP-15's I/O bus was

constructed with DEC Logic Modules. This part of t~e inter­

face .contains some rather critical timing and DEC provides

modules that directly solve all problems. The DEC logic is

built from TTL integrated circuits and uses a 3 volt logic

true. On the other hand SDS logic is discrete component

logic and uses 6 volt logic true. The conversion between the

two types of logic is done with a standard SDS Logic Module.

In the PDP-15 program-controlled t:r:ansfers occur as the

result of the IOT {input;output transfer) instruction execu­

tion. These instructions are microcoded to 'effect a response

of a specific device on the I/O bus. The microcoding in­

cludes unique device selection codes and appropriate pulses

to initiate device operations such as transmitting data from

the device to the central processor, or from the processor to

26

the d·evice. All program-controllEd transfers are executed

through the accumulator. This portion of the I/O processor

also contains facilities for skipping on devic~ flag~ and in­

terrupts. Both of these features were used extensively in

the PDP-15/SDS-910 interface.

The format of the·IOT instruction shown in Figure 6 con-

sists of a 6-bit device select code and a 2-bit subdevice

select code. These codes are placed on the I/O bus to indi-

cate with which device the processor wishes to communicate.

It also include~ a clear the accumulator option if bit 14 is

set, and three I/O pulses, any one or all of 'which may be

~iven in a single IOT instruction. The normal use of these

pulses is as follows; IOP 1 transmits data to the device,

tests the device flag, and causes the program to skip the

next sequential instruction; IOP 2 transmits data to or from

the device; IOP 4 transmits data to the d€vice from the accu-

mulator.

The PDP-15/SDS-910 interface uses three of the IOT

device selection codes· including: device select 14 1 device

select 15, and device select 16. A complete listing of the·

IOT instructions can be found in Appendix B. In general,

device select 14 was used to read and write each of the four

data words in the interface; device sel·ect 15 was used in

reading, writing, and testing the various controlling flip
,.

flops in the interface; device select 16 was used in control-

27

. OCTAL CODE =70 DEVICE SELECTION SUB DEVICE
(6. BITS) SELECTION

(2 BITS)

Figure 6. PDP-15 IOT instruction format

28

ling and initiating the single-cycle block transfers.

The relative timing of the IOT instruction signals on

the.I/0 bus can be found in Figure 7. I/O SYNCH is a syn­

chronizing signal present on the I/O bus and every transfer

is carried out in synchronization with it. IOT REQUEST is an

internal I/O processor signal generated when an IOT instruc­

tion is encountered by the central processor.

Communication between the SDS-910 and peripherals using

the·word parallel system is accomplished by the execution of

a pair of instructions. The first is an EOM (Energize Output

M) which sets up the experiment address and provides advanc~

information as to what the next instruction will be.

The format of the EOM instruction is shown in Figure 8.

The w field indicates what type of instruction will follow.

Axy contains the device selection code and Bz contains the

sub-device codes. The EOM instruction can be followed by a

POT (Parallel output) 1 PIN (Parallel Input) 1 or an SKS (Skip

if true) instruction. The format for each of these instruc­

tions can be found in Figure 8. The X field in the PIN and

POT instructions represents the address in memory where the

data is to be placed or removed. In the SKS instruction the

X field is a mask field where a bit or combination of bits

can be logically anded with the testing signal. A single SKS

instruction may be used to test many different flags just by

using the mask field to determine which circuit is to be

29

I/0 SYNCH

lOT REQ J I

DEVICE SELECT 8
SUB DEVICE SELECT ,..----------.
ON 1/0 BUS _j

lOP I

IOP 2 --------~'4 ·I~-----
75o~sec

lOP 4 F ~L.---
500~sec

FiguLe 7. PDP-15 IOT instruction timing

I

\

30

EOM

0 0 2 3 .. w Ax Ay Bz
I I I - I I I

0 I .2 3 4 5 6 7 8 9 10 II 12 13 14 151617 181920212223

0 3 3

0 3
1

I 0 4 0

PIN

0

POT

o I
SKS

WHERE W IS
0 PIN WILL FOLLOW
2 POT WILL FOLLOW
6 SKS WILL FOLLOW

ADDRESS
I I

-·.ADDRESS

· 3 1 MASK FIELD

Figure 8. SDS-910 I/0 instruction formats

31

tested~ The PIN, POT, and SKS instructions automatically

generate their respective gating pulses as can he seen in

Figure 9.

The interface was assigned a d€vice address (Axy) of 30.

A complete listing of the instructions used by the SDS-910

to communicate with the interface can be found in Appendix A.

The instructions of both the PDP-15 and the SDS-910 as

mentioned above and listed in the Appendix are relatively

simple in implementaton. The PDP-15's block mode of transfer

requires a more subtle hard~are·implementation, since it is

automatic once initiated. several IOT instructions are used

jn conjunction ~ith t~e single cycle block transfer (DMA).

These instr uctioris are used to load the word count and cur­

rent memory address pointers in the peripheral's hardware.

Also an I01 is used to initiate the transfer~

Assuming that a program has written a word count, cur­

rent memory address, and initiated a DMA, the interface posts

a single-cycle request to the I/O processor. The I/O proces­

sor, as soon as it becomes available, acknowledges the

request by returning a DATA CHANNEL GRANT. The interface

then places the current memory address on the I/O bus. If

data is ·being transferred to the processor from the interface

it is also placed on the I/O bus lines at this time. The

d~ta channel c~ntroller requests a memory cycle and the cur­

rent memory a4dress sent by the interface is the address

AXY _j

BZ

32

DATA READY -..... __ ..JI----s,.sec ---·IL-___ _

PIN*

. PIN

POT*

POT I

POT 2

SKS*

---8~sec ---

I . .._I __

-----4r."':"'4p.---se~o-.4.6 ~sec-+

Figure 9. SDS-910 I/O instruction timing

33

where the data is stored. If the transfer is from the memory

to the interface, data is read from the memory location spec­

ified by the currenf memory address from the interface and

the data is placed on the ·I;o bus lines. During this time

the interface is incrementing both the -word count and current

memory address in preparation for the next transfer. If the

word count overflows, the interface disables itse_lf and posts

an interrupt to the 15. If the word count did not overflow

the second of the four interface words is transferred and

this continues until all four have been transferred. The

data channel is freed until the 910 ~e~ponds appropriately by

either writing out or reading the 72-bits of data.

Due to the apparent automatic nature of the data

chann~l, timing and control become critical. As the words

are transferred to and from Because of this a four bit ring

counter was used to gate each word to its proper destination.

The ring counter is initialized when the initiate DMA IOT is

issued by the 15 and the ring counter is cleared when

overf lo·w occurs.

The single-cycle transfers can operate in one of two

modes: burst mode, and normal mode. In normal mode one word

is transferred for each request of th~ data channel. In

burst mode transfers, once started, continue until the data

channel is returned to normal mode, usually just prior to the

last word to be transferred. The burs~ mode transfers pro-

34

ceed much faster than those in normal mode due to the fact

that there is only one request of the data channel for each

burst of data to be transferred, whereas in normal mode the

peripheral must synchronize with the data channel after every

word that is transferred. The interface operates in burst

mode for·this reason.

DATA CHANN~ GRANT is an extremely important signal to

the interface. One GRANT occurs with every word transferred.

DATA CHANNEL GRANT indicates that the interf~ce now has con­

trol of the data channel and that the transter will occur

during the time this signal is present. The interface use~

the trailing edge of the DATA CHANNEL GRANT signal to gener­

ate a pulse called ADDRESS ACCEPTED. ADDRESS ACCEPTED clocks

the ring counte~ during a DMA transfer.

For transfers from the PDP-15 computer to the interface

the ring counter is clocked once prior to receiving the data

due to the wait time for the current memory address pointer

to get from the interface to the memory and also due to the

time it takes to get the data out of memory and to the inter­

face. The I/O Frocessor generates a signal called IOP 4

which is used to used by the interface to gate the data into

the interface buffer as shown in Figure 10. In Fi~ure 10 the

outputs of the ring counter are indicated by DMA1, DMA2,

DMA3, AND DMA4. For transfers from the interface to the

PDP-15 the data is placed on the I/O bus prior to clocking

DCH. GRANT

DCH ENA

BURST MODE

u u U.

ADDRESS ACCEPTED IOO"sec-n- n ·n nL---
.IOP4 ·2ooesec n- n n n
DMAI

DMA 2

DMA 3

DMA4

C.LEAR BU.RST

DATA ON I /0 BUS ___ ___.IWoRo 1 lwoRD 2lwoRo 3 lwoRo 4 L

Figure 10. Data channel .timing for transfers from the PDP-15

w
U'l

36

'
the ring countei. This can be seen in Figure 11.

The 910 is interrupted once at the start of the trans-

fer, and from then on it must test BUFFER FULL to determine

when the data is ready. The 910 must also keep track of its

own word count and current memory address pointer in soft-

ware. During transfers froiD the PDP-15 to the SDS-910 BUFFEB

FULL is set when the 15 has loaded fou~ words and they are

ready to be read by the 910. The 910 software would be

waiting for this in a loop as follows:

LOOP EOM /SKS FOLLOWS

SKS BUFFER FULL /SKIP NEXT INSTRUCTION IF BUFFER FULL

BRU LOOP /BRANCH TO LOOP

XXX /READ BUFFER

Transfers from the SDS-910 to the PDP-15 leave the BUFFER
I

FULL flip flop cleared when the 15 has r,ead the data. The

910 software·wait loop vould now be:

DCH GRANT I· ·U u u
750JLS8C

DCH ENA

BURST MODE

ADDRESS ACCEPTED n n n n
DMA

w
...,J

DMA 2

ioMA 3

DMA 4

CLEAR BURST

Figure 11 •. Oat~ channel timing for transfers to the PDP-15

~\

LOOP E0£1

SKS

BRU

BRU

EMPTY XXX

38

/SKS FOLLOWS

BUFfER FULL /SKIP NEXT INSTRUCTION IF BUFFEB FULL

EMPTY /BUFFER IS EMPTY BRANCH TO EMPTY

LOOP /BUFFER IS FULL BRANCH TO LOOP

/WRITE TO_BUFFER

The EOM SKS pair of instructions require a minimum of 16 mi­

croseconds to be executed. It vill take the data channel

only four microseconds to transfer the words to or from the

interface once the interface has acquired the data channel.

It is ~xpected that the 910 will not have to wait in this

loop for any extended length of time due to-the speed of the ,

15.

The interface maintains a flip flop named DMA CONTINUE

for the PDP-15. DMA CONTINUE acts much like BUFFER FULL in

that it indicates to the 15 when the 15 should transfer data.

DMA CONTINUE is used to request.th~ data channel when the

interface is ready to send or receive more data during a DMA

transfer. This flip flop is inhibited by the overflow of the

word count in the interface. The initial data channel

request is triggered by the issuing of the IOT that initiates

the DMA and this is logically anded with the DMA CONTINUE

signal. If the transfer is from the 15 to the 910 the DMA

39

CONTINUE is set after the 910 has read the 72-bits of· data.

con~rsely, if the transfer is from the 910 to the 1·5 DMA

CONTINUE is set after the 910 has written the 72-bits of

data.

40
I

CONCLUSIONS

The major stumbling block of this interface was centered

around the use of SDS Logic Modules for much of the design.

Not only is this discrete logic cumbersome to design with but

it causes severe mechanical problems due to hand-soldered

wiring. The manhours used in actually constructing the in­

terface more than offset the cost of using all newly

purchased TTL integrated circuit technology. As in the case

of many government intallations there is a large supply of

manpower but little money. Because of Arne~ Lnboratory'o

large· stock of SDS LOGIC MODULES they were used in the imple­

mentation of this design.

Two interfaces were.cons~ructed, and were in operation

in September of 1974. The interface not previously mentioned

was constructed as a prototype, to be installed on a PDP-15

experiment controlling system on the ISU campus. It was con­

nected to an unused Ames Laiboratory-owned SDS-910 computer.

This protoype was· to be used by the software group to test

their operating system, thus allowing the reactorts experi­

ments to be performed using the old computer until the oper­

ating system was almost completely debugged. · It was intended

that the prototype system would remain in operation after the

initial checkout expanding the capabilities of the existing

PDP-15 system.

41

BIBLIOGRAPHY

Anderson, R. D~ nAcqusition Proposal for a PDP-15;77A Com­
puter to Replace the IBM 1401." Personal communication.
Ames, Iol4a: u.s.A.E.c., 1973.

Anderson, R. D. "Interface." Personal communication. Ames,
.Iowa: u.s.A.E.c., 1968.

Ander son, R. D. ; Campbell, Jerry H. ; carter 11 Ben ja:min F. ;
conley, MarshaK.; Helland, Barbara J.; Thomas, William D.
"PDP-15/SDS 910 Systems configuration." Personal communica­
tion. Ames, Iowa: U.S.A.E.c., September 27, 1973.

Digital Equipment Corp. fQP-12~~in1§n~g~ang~1· Maynard,
Massachusetts: Digital Equipment Corp., 1970.

Digital Equipment corp.
Maynard, Massachusetts:

RQ£=12~Y~~~~§_lnte~f~£§_Manu~1·
Digital Equipment Corp., 1971.

Holland, Ed. "Minicomputer I/O and Peripherals." IEEE_co~­
pute.;:_Si!:.Q!!E_lig:!.§, 3 (July/August, 1970) , 10-14.

Kintner, P. M. "Interfacing a Control Computer with control
Devices." Co~i.!:Ql Eng_!nggiing, 16{November, 1969), 97-101.

Korn, G. A. "Digita.l-Computer Interface Systems." 2im_!!la-
!ion, 11 (December, 1968), 285-298. ·

Rind-8r, R.
]~i~.matj,Qn_,

"I/O A rchi teet ure of Minicomputers."
16(May, 1970), 119-124.

Scientific Data Systems.
santa Monica, California:

2~S-21Q_~Q.!!!EUter Reference Manual.
Scientific Data Systems, 1963.

SDS Standard Module Data Sheets. Santa Monica, California:
Scientific Data Systems, 1965.

soucer, B. fl!~i£Q.!!!E.!!!grs_i~Da1~_f.!:Q£~ssing_~n£_Sim.!!lat_!on.
New York: John Wiley and sons, 1972.

42

ACKNOWLEDGMENTS

I woul~ first like to express my appreciation to my wife

Jan and my son Jason for their many sacrifices and to my

parents for their constant support an~ help in editing this

thesis. I also wish to ex~end my appreciation to Dr. Terry

Smay, my major Frofessor, for hi~ guidance and to Bill

Thomas, Dale Anderson, Barb Helland, and Jerry Campbell for

making this project possible. I would also like to thank

John Erickson fer his patience,· support, and never ending

smile in helping debug t.he int~r:fat:'Q.

-

43

APPENDIX A: SDS-910 ADDRESS ASSIGNMENTS

FLIP FLOP (S) Axy Bz INSTRUCTIONS THAT APPLY

CLEAR 910 INTERRUPT 30 0 POT

BUFFER FULL 30 0 SKS

DATA WORD 1 30 1 PIN POT

DATA WOBD 2 30 2 PIN POT

DATA WOBD 3 ' 30 3 PIN POT

SEQ UEST 30 4 POT

BUSY 30 5 POT SKS

15 INTERRUPT 30 5 PIN

910 OK 30 6 POT

CONTROL WORD 30 7 PIN POT

44

APPENDIX B: PDP-15 INTERFACE IOT INSTRUCTIONS

DATA. WORD 1 READ 701412

DATA WORD 1 WRITE 701404

DATA WORD 2 READ 701432

DATA WORD 2 WRITE 701424

DATA WORD 3 READ 701452

DATA WORD 3 WRITE 701444

DATA WORD 4 READ 701472

nA'T' 11 WORD 4 WRITE 7 0 1'16 !I

REQUEST TEST 701541

BUSY WRITE 7-01524

BUSY TEST AND WIUTE 701525

15 OK WRITE 701544

CONTROL WORD READ 701572

CONTROL WORD WRITE 701564

CURRENT MEMORY ADDRESS POINTER ElUTE 701604

WORD COUNT WRITE· 701624

CLEAR INTERRUPT FLAG 701601

INITIATE DMA TRANSFER TO THE SDS-91 0 701664

INITIATE DMA TRANSFER TO THE PDP-15 701662

4 5'

APPENDIX C: FLOWCHART OF TRANSFERS FROM THE PDP-15 TO THE SDS-910

.r

ENABLE
INTERRUPTS

s

YIES

YES

SET BUSY s
(DON'T

CLEAR REGH) .

YES

INTERRUPT 15 H
TRANSFER
COMPLETE

SET UP WORDs
C:)UNT AND

ADDRESS

RE.~D DATA I
CEC. WORD

COUNT
IMCREMENT
ADDRESS

READ DATA 22~
DEC. WORD

COUNT
INCREMENT
t.DDRESS

READ DATA 3
2
!

DEC. WORD
COUNT

INCREMENT
t.DDRESS

YES

REQUES"TED
BY 910 --

YES

YES

YES

YES

LOAD
ADDRESS

LOAD
WORD COUNT

s

s

H

LOAD WORD I 1 ~
INCREMENT H

WORD COUNT

INCREMENT H
ADDRESS

REQUEST H

WORD

LOAD WORD 2 1~
INCREMENT H

WORD COUNT,
ADDRESS

REQUEST
WORD

H

H
LOAD WORD 318

INCREMENT H
WORD COUNT,

ADDRESS

REQUEST
WORD

LOAD WORD 4 1 ~
INCREMENT H

WORD COUNT,
ADDRESS

WAIT FOR
910 TO <;ENERATE

NEXT DATA REQ

47

APPENDIX D: FLOWCHART OF TRANSFERS FFOM THE SDS-910 TO THE PDP-15

YES

YES

NO

SET BUSY 5

(CLEAR REQ- S)

LOAD DATA s
WORD I 24

SET
BUFFER FULL

H

LOAD DATA 5

WORD 2 24

LOAD DATA s
WORD 3

REQUESTED~----~----
BY 910 REQUEST DATA H

---- WORD TO
BE READ

READ DATA H

WORD I
18

INCREMENT H

WORD COUNT

INCREMENT H

ADDRESS

YES

NO

SET UP 5

WORD COUNT
AND ADDRESS

YES

YES

YES

REQUEST READ H_

READ DATA H

WORD 2 r8

INCREMENT H

WORD -COUNT­
INCREMENT
ADDRESS

REQUEST REAif

READ DATA
WORD 3 IE

INCREMENT ~
WORD COUNT
INCREMENT
ADDRESS

REQUEST READ -i

READ DATA -i

WORD 4 liB.

INCREMENT
WORD COUNT

INCREMENT
ADDRESS

LOAD DATA s
WORD I 24

DEC WORD s
COUNT

INCREMENT
ADDRESS

SET BUFFER H

FULL

LOAD DATA s
WORD 2

DEC WORD s
COUNT

INCREMENT
ADDRESS

LOAD DATA S

WORD 3
24

DEC WORD 5

COUNT
INCREMENT
ADDRESS

YES

END OF
TRANSFER

NO

WAIT FOR
910 TO

GENERATE
READ REQUEST

INTERRUPT 15 H

TRANSFER
COMPLETE

SDS-910

24
BITS

0

49

APPENDIX E: INTERFACE. BLOCK DIAGRAM

r-8~-:r-- ---xos-910 -~a- -~9- -zo-- 2i- 22--23------------..,
I POSITION PDP-15 0 I 2 3 4 5
I
I
I
I
I
I
r
I

~

71

72 bit
DATA

BUFFER 3~

71

POP-15

··,':.;·~~ '

'Yr{;:·

