MASTER

A SPECIAL PURPOSE COMPUTER TO COMPUTER INTERFACE

Benjamin Franklin Carter III

Based in a M.S. thesis submitted to lowa State University

Ames Laboratory, USDOE
lowa State University
Ames, Iowa 50011

Date Transmitted: January 1979

NOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their

s, subc or their employees, makes
any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

PREPARED FOR THE U, S. DEPARTMENT OF ENERGY

UNDER CONTRACT NO. W=7405-eng—-82

= T
3 w719 DOCUMENT 1S UT\E,’{LYH’&)

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

ii

NOTIGE

This report was prepared as an account of work spon-—
sored by the United States Government. Neither the
United States nor the United States Department of Ener-—
gy, nor any of their employees, nor any of their contrac-—
tors, subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, complete—
ness, or usefulness of any information, apparatus,
product or process disclosed, or represents that its

use would not infringe privately owned rights.

Available from: National Technical Information Service
l). S. Department of Commerce
P.O. Box 1553
Springfield, VA 22161

Price: Microfiche $3. 00

iii

A special purpose computer to computer interface
by
Benjamin Franklin Carter III
A Thesis Submitted to the
Graduate Faculty in Partial Fulfillment of

The Requirements for the Degree of

MASTER OF SCIENCE

Major: Electrical Engineering

Approveds:

/\{/gi

7

o "diﬂ/’///—\
In Charge ofl;;fj# Work

For the Major Department

For the Graduate College

Iowa State University
Ames, Iowa

1375

TABLE OF CONTENTS

* Page
Abstract v
INTRODUCTION 1
SDS-910 COMPUTER . 4
PDP-15 COMéUTER V ' 5
DESIGN CONSIDERATIONS - 7
HARDWARE CONSTRUCTION L ' 25
CONCLUSIGNS ‘ 40
BIBLIOGRAPHY 41
ACKNOWLEDGMENTS 42
ApéENDIx Az SDS-910 ADDRESS ASSIGNMENTS 43

APPENDIX B: PDP-15 INTERFACE IOT INSTRUCTIONS 44

APPENDIX C: FLOWCHART OF TRANSFERS FROM PDP-15 45
TO SDS-910 : ‘

APPENDIX D: FLOWCHART OF TRANSFERS FROM SDS-910 47
TO PDP-15

APPENDIX E: INTERFACE BLOCK DIAGRAM 49

A.special purpose computer to computer interface

Benjamin Franklin Carter III

The specific design criterion are presented for
interfacing two dissimilar computers. The discussion also
includes hardware and software protocol for communication be-

tween the systens.

INTRODUCTION

The work reported in this thesis was the result of
upgrading the Ames Laboratory Research Reactor computer sys-
tem. The original ALRR computer system (Figure 1) was de-
siéned and installed in the mid 1960'5.' Hardware included an
SDS-910 computer interfaced to an IBM 1401 computer. Thé
SDS-910 computer controlled various experiments while the
IBM-1401 merely interfaced the SDS-910 to mass storage pe-
ripherals. The need to upgrade this system was due to the
fact that the 910 computer was core-limited to the extent
that scheduling of experiments was necessary to prevent sys-
tem overloads. Disk space was entirely committed. Failures
of the IBM peripherals vwere occurring.more and more frequent-
ly and these failures were compounded fy the fact that spare
parts were becoming scarce.

The proposed system (Figure 2) was designed around a
PDP-15 computer using an existing real time PL/1 software op-
erating system. The SDS;91O computer would be maintained due
to the remoteness of the experiments and the capital invest-
ments in existing experiment interface hardware. In the pro-
posed system the SDS-910 computer takes on the role of an in-
terrupt handler and front end processor. All users' .progranms
are written in PL/1 and execute in the PDP-15. The subject

of this thesis is the interface between the PDP-15 computer

and the SDS-910 computer.

EXPERIMENT

EXPER-
IMENT

TTY

INTER-
FACE

DUAL
DISK

/

MULTIPLE
EXPERIMENT
INTERFACE

XDS-910

910/15
INTERFACE

PDP- 15

EXPERIMENT

—

DUAL
MAG TAPE

TTY

INTERFACE

CARD
READER

Figure 1.

The original ALRR computer system

PAPER TAPE
READER/
PUNCH

EXPERIMENT

XPER-
IMENTS

INTER-
FACE

|
f
|
|
I
|
I
I
1

Figure 2,

MULTIPLE
EXPERIMENT
. INTERFACE

- XDS-910

910/140I
INTERFACE

IBM 1401

-
1
I
!
I
I
1
!
!

EXPERIMENT

TTY

CARD
READER/
PUNCH

LINE
PRINTER

DUAL
DISK

MAG
TAPE

The proposed ALRR computer systenm

SDS-910 COMPUTER
The SDS-910 computer has a word length of 24 bits, a
ﬁemory cycle time of 8 microseconds, and is constructed of
discrete DTL circuit components. The 910 computer allows a
maximum of 16K words of core memory, all directly address-
able., It contains a priority interrupt system capable of
ﬁandling 896 general purpose interrupts. The SDS-910
input/éutput system is capable of the following types of in-
teraction:
1. Buffered input/output of data wqrdé, each under
direct program control.
2. Input}output of blocks of characters (6 bits)
or words time shared with memory and multiplexed
with computation using interlaced buffers.
3. Direct parallel input/output of ub to 24 bits
of information to and from extermal registers
under program control.

4. Single bit input/output.

PDP-15 COMPUTER

The PDP-15 computer uses an 18-bit word, has a memory
cycle time of 800 nanosecohds, and contéins TTL integrated-
ciréuit construction. The computer contains three autonomous
sub-systens:

1. Central processor
2, Memory

3. Input/outpat processor
All operate concurrently in overlapping cycles under console
control. -

The'Eentral processor is the main component of the com-
puter, carrying on bidirectional communication with both menm-
ory and the I/0 processor. Provided with the capability to
" perform arithmetic and logical operations, the central proc-
essor controls and executes stored programé.

Core memory is the primary storage area for the PDP-15
computer. It is organized into pages which are paired into
memory banks. EFEach page contains 4,096 words of magnetic
core storage, and each bank is physically an asynchroaous
unit of 8,192 words. The central processor can address up to
125K (131,072) words.of core memory. Any word can be ad-
dressed by either the central processor or the I/0 processor.

The 1I/0 processor handles all peripheral communication.
This processor contains threé possible modes of input)output:

1. Program-controlled single word transfers through

the accumulator in‘the central processor.
2. Multicyéle block data transfers ?t rates up to
' 250,000 words per second input and 188,000 words
per sgcond'outpuf using three memory cycles per
word transferred.
3. Single-cycle block data transfers at rates cf up
to 1,000,000 words per second usihg one memofy
- cycle per word transferred.
The I/0 processor provides timing, control, and data lines
for information transfers between the memory of the central
processor and the peripheral device. Iﬁ also includes an au-

tomatic priority interrupt system.

DESIGN CONSIDERATIONS

The foremost ‘design consideration is to transfer the
data between'the two computers efficiently énd conveniently.
It appeared that most transfers would either be very small
(twvo or three words) or extremely large (thousands of words).
The operating system is to have/experiment-controlling pro-
gra®ms in the SDS-910 computer and "number crunching" progfams
in the PDP-15. As an example of this interaction, the exper-
iments driven by the system contain detectors that record the
nunber of neutrons present. The detectors are positioned to
a given point in space by the SDS-910 computer, The PDP-15
computer calculates the proper position and passes it to the
SDS-910. This small transfer between the two computers would
contain a user identifier and one word of data. The 910
starts the detector moving and receives reports of its
present position through interrupts, typically one every one
hundredth of a degree. When the detector reaches the ptoper
‘position the SDS-910 stops its motion.

Examples of a large transfer would be loading tﬁe $10
operating system or reading an eﬁtire spectrum of data.
These involve thousands of woras. The PDP-15 can accomplish
the three types of transfer briefiy described earlier
(program-controlled transfers; multicycle block transfers;
single-cycle block transfers). The primary distinctioan be-

tween the two modes of block transfer is that the multicycle

mode has word ccunt and current memory address pointers resi-
dent in the memory of the computer while the single cycle
node requires thét the word count and current address pointer
be ‘maintained by the peripheral device. The word count con-
tains the 2's conplement of the number of words remaining to
be transferred. The current memory address pointer records
the memory address of the word currently being transferred.
Block transfers are useful in transferring large amounts of
information because they communicate directly between memory
and the peripheral device. However, a penalty is paid in
terms of overhead required to initialize the word count and
current memory address pointer registers. 1In contrast, the
program-controlled transfers require no overhead but the
transfer usés the accumulator of the ceﬁtral processor. Thus
" there is the implication that a certain amount of care must
be taken to preserve the contents of the accumulator either
before or after the transfer has occurred. The amouht of
central processcr time required for a given length transfer
is plotted in Figure 3 for the three types of PDP-15 trans-
fers. The amount of I/0 Bus time required for a given length
transfer is plotted in Figure 4. It can be seen from the
plot of central processor time, that the program—éontrolled
transfer is by far the best method when the total transfer is
less than seven words. However, the single-cycle transfer is

obviously preferred for large transfers where the overhead .

(9
o

IS
O
!

i SINGLE CYGLE

330

m o,

=

= 20

pus] -

a

10
T A N T T T T I T O A A O
I 3 5 7 9 Il 13 15 (7 19 2l

NUMBER OF WORDS TRANSFERRED

Figure 3;A PDP-15 CPU time versus number.of words transferred

MULTICYCLE

50~ MULTICYCLE , OUTPUT
B _INPUT |QT|NPUT
a0k SINGLE
3 CYCLE OUTPUT
3 —
2 301 SINGLE
w L CYCLE INPUT.
= :
~ 20—
(g ‘ |—
@ ol
Lttt
I 3 5 .7 9 Il 13 15 17 19 2l

NUMBER OF WORDS TRANSFERRED

Figure 4. PDP-15 I/0 bus time versus number of words
transferred

10

involved in initiating the transfer is small compared to the
number of words transferred. Similar observations apply to
the plot of the time the bus is occupied (Figure 4). On this
basis prbgram—ccntrolled transfers were used in passing small
blocks, while the single-cycle block transfer method was |
chosen for transferring large blocks of data.

The SDS-910 computer offers several methods of
input/output:

1. Buffer interrupt systenm

A buffer assembles and disassenbles data Wwords
as they are transmitted between core memory and the
peripheral equipment. The buffer maintains control
of operations such as the number of charactefs per
word traansmitted.

The W buffer performs inputs/output of data
words, each under program controil. The buffer
transmits and receives 6-bit characters, and packs
t hem into 24-bit words. A second buffer, the Y
buffer, is available and is essentially identical
to the W buffer, but will allow the characfer
length to be defined to any desired length between
6 and 24 bits. Transfer rates can reach 32 micro-
seconds per word for input and 24 microseconds per
word for output.

2. Buffer interlace systen

11

Each buffer may have a hardware interlace as-

sociated with it. 1Interlace allows input/output of

blocks of data words, word transmission being com-
pletely automatic and multiplexed with computation.
The interlace supplies the memory address of data
coming from or going to memo#y and maintains the
word count determining the number of words trans-
ferred. The maximum number of words per transfer
is 4,095. The character manipulation occurs in the
buffer, consequently the memory sees only cémplete
24~bit words. Transfer rates will reach 16 micro-
seconds per word plus 16 microseconds per charac-’
ter. '
The werd parallel system

The word parallel system éllows for transfers

of 24-bit words under program control. The paral-

lel input requires 32 microseconds per word and the

parallel output requires 24 microseconds per word.

4. The pardllel interlace systen

Here again the interlace provides a word count
and current address pointer. Words are transferred
24-bits at a time, under interlace control, at a
rate of 8 microseconds per word with an upper limit
of 4,095 words per transfer. Unlike the buffered

interlace the parallel interlace prevents the cen-

12

tral processor from operatimg concurrently.
Table 1 shows the relative speeds of each of these methods of

transfers.

Table 1. 'SDS-910 I/0 transfer times (microseconds per‘word)

Without‘intgrlace Using Interlace .
W buffer - 32 input 80
) 24 output |
Y buffer 32 input. : 32
24 output
Wword Parallel 32 input 8
24 output P

The main contender for rapid communication is the parallel
interlace system but the parallel interlace system is un-
suited for use in thé proposed system'primarily because it
would lockout the central processor and all other
input/output while a transfer is taking place. This is com-
pletély intolerable in a real time environment. Also the

Ames Laboratory SDS-910 computer does not support this op-

13

tional method of transfer, nor does it support a Y buffer.

This leaves the word parallel system as the fastest
option available. The W buffer is elimigated because trans-
fers occur there as 6-bit characters and not as entire 24-bit
-words. This would greatly increase the gating circuitry in
the interface if it were used. All experiments now use the
word parallel system of communication and considerable
interfacing work has been done with it. The PDP-15 would
look much like any other experiment to the SDS-910, thereby
taking advantage of the interfacing already done to the 910
computer. With the word parallel system each device is as-
signed a unique address. Three types of instfuctions can be
executed in conmection wiih these device addresses:

1. PIN-parallel input of 24 bits of data.
2. POT-parallel output of 24 bits of data.
3. SKS-test and skip the next instruction if true.
Prior to executing any of these instructions an EOM
{Energize Output M) must be issuéd. This instruction deter-
mines which instruction will follow it and also alerts the
peripheral device that a PIN, POT, or SKS will follow.

The PDP-15 computer will communicate in two modes with
the SDS-910 computer; program-controlled transfers and
single-cycle ‘block transférs. The PDP-15 will communicate
efficiently with the SDS-910 thus freeing it for system oper-

ations and computation. The 910 on the other hand will oper-

14 .

ate more inefficiently but will be able to perform'all of its
external experiment-control functions aﬁa communicate with
the PDP-15.

The vast differences in speed require the use of sone
" type of data buffering in the interface. Along with this is
the difference in word lengths with which one must also
contend. The size of the : buffer reqhired is directly related
to the size of the transfers to be made;k The smallest trans-

fers across the interface would be one data word long.

Table 2. Comparison of transfer rates

Max Transfer Rate BRits per

(vords/sec) Word
.PDP-15 single cycle’ 1,000,000 18
block transfer
" PDP-15 program controlled 234,192/ 18
~ transfer
SDS-910 word parallel systen
input 31,250 24

output ' 40,000 24

The actual length of a one data word transfer, including all"

15

of the software key wbrds, is three 18 bit words for integer
data and four 18-bit words for floating point data. The
fifst word is a key word giving a user identifier and status
concerning the transfer. The second word is a special ad-
dress concerning that user and the PDP-15 operating systenm.
The data comprises both the third and fourth words. This
type of transfer is more common than block transferé with
many data words.

The most logical way to specify the size of the buffer
is to m&ke it the same 3ize a3 the number of wordc moct fro-
quently transferred. In this way, the sending computer could
load the entire buffer in essentially one pass and at its own
speed. The receiving computer would then be able to read the
entire transfer at its own speed. Sone ovethead will be re-
quired in acquiring the interface to make a transfer but this
would need to be done only once. By making the buffer large
enough to contain four 18-bit words (72 bits of data), which
is the equivalent of three 24 bit wofds(the interface main-
tains the integrity of the information, but the transmitting
computer is forced to pack the words properly for the receiv-
iné computer.

Large block transfers will occur in bursts of four .
18-bit words at a time. The size of the buffer need not be
affected by these block transfers because they will occur

’infrequently while the system is operating, however, the in-

16

terface can handle them. Secondly, most of the time spént
during a block transfer wil; be taken waiting for the
SDS-910. As the PDP-15 can tramnsfer data more than thirty
times faster than the 910, it would appear that the(data will
be transferred at the rate of the 910. By keeping the buffer
small, the bursts of data on the PDP—1S I/0 bus will be small
minimizing the time the I/0 bus is occupied.

The interface will be considered a peripheral device of
both machines. Both the PDP-15 and the SDS-910 must be able
to initiate transfers through it. Because of this, a scheme
for requesting the use of the interface is needed. By using
a simple flip—-flop to indicate whether the interface is busy
or not, and by providing the ‘means for both computers to
test, set, ard clear this flip-flop, the state .of the inter-
face can be determined by both computers. Due to the differ-
ences in speed, however, the SDS-910 could test BUSY and re-
ceive a signal back that the interface was not being used.
Before the SDS-910 could set the BUSY flip-fiop, the PDP-15"
could also teét BﬁSY, find the inferface is free, and set the
BUSY flip-flop. Both machines would think they had acgquired
the interface. To alleviate this problem a second flip-flop
called REQUEST was added. When the SDS-910 wants to make a
transfer it first sets the REQUEST flip-flop, then tests
BUS Y. TheNPDP—15 is required to test REQUEST prior to

testing BUSY. If it finds that the SDS-910 is waiting or in

17

the process of acquiring the interface, it is forced to wait
until REQUEST is cleared. The REQUEST flip-flop is cleared.
after the SDS-910 acquires the interface buy setting the BUSY
flip-flop. This eliminates the conflict in acquiring the in-
ter face due to the differeﬁce in speeds.

The interface needs to know what type of transfer and
which computer is sending the information in order to set up
the proper gating within the interface. An interface control
word was developed for this purp;se and is shown in Figure 5.
Prior to each transfer the initiating computer writes the
control word into the intérface. There are three bits in the
control word that directly effect the transfers in the inter-
face. The 910 INITIATE and 15 INITIATE bits indicate which
computer initiated the transfer. The DMA bit indicates in
which mode the PFDP-15 will be transferring data. If the DMA
{Direct Memory Access) bit is sei the transfer is a single
cycle block transfer, otherwise the transfer is under program
control. The 15 LOCKUP does nothing in the interface. It
was provided so that when set by the PDP-15 it would tell the
910 software that the 910 could not initiate any transfers.
This allows the software to move priority data from the 15 to
the 910. The two final bits in the control word are
unrelated to the interface. Due to the number and varied
qualifications of the experimenter operators using the com-

puter system and due to the remoteness of the experiments

910
INITIATE.

15
INITIATE

DMA

I15
LOCKUP

910
OK

15
OK

Figure S.

Interface control word

8L

19

from the computer, an indication to the experimenter of the
status of the computing system would be useful. Under the
old reactor computer system when the computers failed, the
experimenters had no indication of whether or not £he systen
was in operation. If they could elicit no response fron
their instruments via computer control they would immediately
start to indiscriminantly push buttons hoping to solve
wvhatever problem existed. Whatever state the computer failed
in was usually changed by this pushing of buttons, causing
severe maintenance problems. The 15 OK and 910 CK bits are
set only by their respective computers and are automatically
cleared eQery 1.6 seconds. The computers set these bits
every time they cycle through their respective dispatchers.
If either computer stops or gets hung in a loop, that OK bit
will not get set. It is obvious that somé failure could
leave the computer still setting the OK bit, but chances of
this are remote. The two OK bits are logically anded
together to form a SYSTEMS OK which is seht to every experi-
ment and displayed with an indicator. Even though shown as
part of the control word, the OK bits are set by their own
instructions but may be read by either computer as part of
the control word.

The various combinations of transfers across the inter-
face are flowcharted in Appendix C and D. A brief explana-

tion of these transfers follows.

20

A transfer from the SDS-910 to the PDP-15 is initiated
by the SDS—916. The 910 sets the REQUEST flip-flop, and then
tests 15 LOCKUP. If it is not set, the 910 proceeds to test
BUSY. If the interface is free BUSY is set and REQUEST is
cleared. The control word is loaded. Finally'three 24-bit
data words are writtem in the iﬁterface.buffet. If thé
transfer is not a DMA transfer, the 910 is done. The inter-
face causes an interrupt of the processing of the PDP-15 com-,
puter. Upon acknowledging the interrupt the PDP-15 reads the
control word and the 72 bits of data, clears the BUSY flip-
flop, and the transfer is complete. .

Had the transfer been a DMA transfer, the 910 would have
set up a software word‘count and a current address pointer.
It then would have testea a flip-flop which indicates whether
or not the 15 has read the data. The 15, meanwvhile, would
have received the interrupt and read the control word and the
72 bits of data. It would then'load the outboard word count
and current memory address registers and start.a DMA trans-
fer. The central processor is relieved of any duties rela-
tive to the transfer as the input/output processor takes con-
trol. After detecting that the 72 bits of dafa have been
read, the 910 lcads three more words into the interface, mod-
ifying its goftware word count and current memory address
pbihter correspondingly. The interface starts up the

PDP—-15's DHMA transfer and.the 72 bits are read. This

21

continues until the last word is read by the PDP-15 at which
time an interrupt of the central processor occurs (generated
from the word count register in the interface) and the BDP-15
clears the BUSY flip-flop.
| A transfer from the PDP-15 to the SDS-910 is initiated
by the PDP-15. The PDP-15 must first disable its interrupts.
This is required because the PDP-15 could test REQUEST and
find ii not set and proceed to test BUSY. An interrupt of
the PDP-15 could occur at this time and this interrupt would
be ‘serviced immediately if the interrupts were enabled.
During this time thg SDS-910 could. have sef REQUEST and found
that the interface was not BUSY. The 910 would set BUSY and
- at the same time it would be possible for the 15 to be
released from its interrupt routiﬁe and it also coulé set
BUSY. Both machines cbuld think that they had control of the
interface. |

The same net result can occur when the 15 LOCKUP flip-
flop is being used by the software. If the 15 LOCKUP is set
and the 15 is ready to test BUSY but gets interrupted, it is
entirely possible that the interrupt-handling routine will
clear the 15 LOCKUP, allowing ther910 access to the inter-
face. Here again both the 15 and the 910 could
simultaneously test BUSY, find it not set, and set it.
Disabling the PDP-15 interrupts for the testing of REQUEST

and BUSY guarantees that the interface can be acquired by

22

only one computer.

Once the PDP-15 has acquired the interface it loads the
control word and 72-bits of data which automatically causes
the intérface to interrupt the SDS-910. 1If the tfansfer is
not a DMA, the PDP-15 is done. In servicing the interface
interrupt the 910 reads the control word and 72-bits of data.
This generates another interrupt to the PDP-15 indicating
that the transfer is complete and the 15 clears BUSY.

If the transfer was a DMA transfer, the PDP-15 continues
to load the outboard word count and current memory address
registers and initiates a DMA transfer. The 910 is
interrupted as before and services this interrupt by reading
the control word and the 72-bits of data. The 910 sets up
its own software word count and current memory address point-
er. Once the 910 has read the 72-bits of data the 15 immedi-
ately loads anothers 72-bits of data. This transfer and all
ensuing transfers are under the control of the input/dutput
processor until the word count is exhausted. 1 flié-flop,
BUFFER FULL, is used by the 910 to test to see if the PDP-15
has loaded the next 72-bits of data. Once it has, the EBUFFER
FULL flip-flop is set and the 910 reads the next 72-bits of
data. BUFFER FULL is used exclusively by the 910 to know
when the ‘data is ready during a DMA transfer. When the hard-
ware word count of the 15 overflows and the 910 has read the

last word of the transfer (its software word count also being

23

zero) an interrupt of the 15 is generated by the interface.
This alerts the 15's central processor that the transfer is
complete, and the 15 clears the BUSY flip-flop. To generate
this interrupt, the interface hardware requires that no
matter when the 15's word count overflows, the 910 must read
the full 72-bits of data stored in the buffer even if the 15
has loaded only ohe word (of the three)., This frees the in-
ter face fiom having to knoﬁ exactly when to generate the ‘in-
terrupt of the 15 (if the 15 loaded only 36 of the 72 bits
.and the word count overflowed, the 910 would read all 72
bits. The 910 would.kﬁow which bits were valid because of
its own software word count.).

The same requirement is made of the 910 when the trans-
fer goes from the 910 to the 15. The 910 must always com-
pletely fill the buffer even though its word count goes to
zero in the middle of the 72-bits. This allows the interface
" to start and stop the 15's input/output proceséor more
easily. Also the interface has no way of knowing when the
210 haé transferred its last word in a DMA because thié is
recorded only in the memory of the 919; The 15, in this
case, will read only the required number of words (until its
word count ‘overflows). Since the 15's word count resides‘'in
the "interface, proper termination of transfers can occur
whenever the word count overflows because of the access to

the signals. An alternative to this might have been an in-

24

struction that was issued by the 910 to indicate that its
word count was zero. It is not p;ssible to use the 15'séword
count because it is stored in ternms of 18 bit words not 24
bit'words and is not éhanged while the 910 is accessing the

data buffer in the interface.

25

HARDWARE CONSTRUCTION

The interface is constructed, in part, with standard
Digital Equipment Corporation (DEC) Logic Modules and in part
with Scientific Data Systems (SDS) Logic Modules. The
decision to use purchased modules was forced due to the lack
of manpower to construct in-house modules, limited time
available, and a 1imited budget. Ames Laboratory already
owned a considerable stock of SDS Logic Modules and associ-
ated hardware and none needed to be'purchased. Because of
this the majority of the interface is conastructed with SDS
Logic Modules. The interface to the PDP-15's I/0 bus Qas
constructed with DEC Logic Modules. This part of the inter-
face contains some rather critical timing and DEC provides
modules that directly solve all problems. The DEC logic is
built from TTL integrated circuits and uses a 3 volt logic
_ true. On the other hand SDS logic is discrete component
logic and uses 6 volt logic true. The conversion between the
two types of logic is done with a standérd SDS Logic HModule.

In the PDP-15 program-controlled transfers occur as the
result of the IOT {input/output transfer) instruction execu-
tion. These instructions are microcoded to effect a response
of a specific device on the I,/0 bus. 'The micrécoding in-
cludes unique device selection codes and appropriate pulses
to initiate device operations such as trénsmitting data from

the device to the central processor, or from the processor to

26

the device. All program-controlled transfers are executed
through the accumulator. This portion of the I/0 processor
also contains facilities for skipping on device flags and in-
terrupts. Both of these features were used extensively in
the PDP-15/SDS-910 interface.

The format of the IOT instruction shown in Figure & comn-
sists of a 6-bit device select code and a 2-bit subdevice
select code. These codes are placed on the I/0O bus to indi-
cate with which device the processor wishes to communicate.
It also includes a clear the accumulator option if bit 14 is
.set, and three I/0 pulses, any one or all of ‘which may be
given in a_single I0T instruction. The normal use of these
pulses is as follows; Ioé 1 transmits data to the device,
"tests the device flag, and causes the program to skip the’
next sequential instruction; IOP 2 transmits data to or from
the device; I0P 4 transmits data to the device from the accu-
mulator.

The PDP-15/5DS-9210 intgrface uses three of the ICT
device selection codes including: device select 14, deQice
select 15, and device select 16. A conplete listing of the"
IOT instructions can be found in Appendix B. In gemneral,
device select 14 was used to read and write each of the four
data words in the interface; device seleqt 15 was used in
reading, writing, and testing the various controlling fiip

flops in the interface; device select 16 was used in control-

27

GENERATE AN IOP|

GENERATE AN IOP2
GENERATE AN IOP4.__—T

ol1f(2|3|a|s|e|7|8|o|wo|nliz|la|ls|le]|m
. ‘ — CLEAR
' OCTAL CODE=70 DEVICE SELECTION SUB DEVICE AC IF=1
(6 BITS) SELECTION

(2 BITS)

Figure 6. PDP-15 10T instruction format

28

ling and initiating the single-cycle block transfers.

The relative timing of the IOT instruction signals on
the.I/0 bus can be found in Figure 7. I/0 SYNCH is a syn-
chronizing signal present on the I/0 bus and every transfer
is carried out in synchronization with it. IOT REQUEST is an
internal I/0 processor signal generated when an IOT instruc-
tion is encountered by the central processor;

Comnunication between the SDS-910 and peripherals using
the word parallel system is accomplished by the execution of
a pair of instructions. The first is an EOM (Energize Output
M) which sets up the experiment address and provides édvancé
information as to what the next instruction will be.

The format of the EOM instruction is shown in Figure 8.
The W field in@icates wha; type of instruction will follow.
Axy contains the device selection code and Bz contains the
sub-device codes. The EOM instruction can be followed by a
POT (Parallel Output), PIN (Parallel Imput), or am SKS (Skip
if true) instruction. The format for each of these instruc-
tions can be found in Figure 8. ihe X field in the PIN and
POT insfructions represents the address in memory where the
data is to be placed or removed. In the SKS instruction the
X field is a mask field where a bit or combination of bits
can be logically anded with the testing signal. A single SKS
instruction may be used to test many different flags just by'

using the mask field to determine which circuit is to be
t

29

1/0 SYNCH . .

IOT REQ 4
DEVICE SELECT &

|
SUB DEVICE SELECT | -
ON 1/0 BUS - | .

IOP | .
| 750usec

IOP 2 | P
‘ 750usec :
I0P 4

500usec

Figure 7. PDP-15 IOT instruction timing

30

EOM

o) o) 2 3 W

-

Ax Ay

1

Bz

' 1 1 L]
01 23456789I10I11121314151617

WHERE W
O PIN WILL FOLLOW
2 POT WILL FOLLOW

6 SKS WILL FOLLOW

L
181920212223
IS

PIN
0 3 3 0 | ADDRESS |
POT |
o I 3 o | Ai_DDRESS
1 i 1 — | 1
SKS

0 4 0 737 MASK FIELD

Figure 8. SDS-910 I /0 instruction formats

31

tested. The PIN, POT, and SKS instructions automatically
generate their respective gating pulsesAas can be seen in
Figure 9.

The interfgce‘was assigned a device address (Axy) of 30.
A complete listing of the instructions used by the SDS-910
to communicate withAthe interface can be found in Appendix A.

The instructions of both the PDP-15 and the SDS-910 as
mentioned above and listed im the Appendix are relatively
'simpleAin implement;ton. The PDP-15's block mode of transfer
requires a more subtle hardware "implementation, since it is
automatic once initiatéd. Several IOT instructions are used
jn conjunction wmith the single cycle block transfer (DMA).
These instructions are used to load the word count and cur-
rent memory address pointers in the peripheral's hardware.
'Also an IOT is used to initiate the transfer. '

Assuming that a program has written a word count, cur-
rent memory address, and initiated a DMA, the interface poéts
a‘single—cycle request té the I/0 processor. The I/0 proces-
sor, as sdon as it becomes available, acknowledges the
request by returning a DATA CHANNEL GRANT. The interface
then plac;s the current memory address on the I/0 bus. 1If
data is being transferred to the processor from the interface
it is also pléced on the I/0 bus lines at this time. The
data channel controller requests a memory cycle and the cur-

reant mémory address sent by the interface is the address

32

AXY ,
BZ |
DATA READY_,_ | gusec——]
PIN * | I -
"PIN | J i

' *24useC4=4.6 usec—

- POT* | _ |
POT | ' ‘ | L
: 1 : -———8useC ——«
POT 2 . |

— <24 usec-+4.6 usec—
SKS* [

Figure 9. SDS-910 I,0 instruction timing

33

where the data is stored. 1If the transfer is from the memory
to the interface, data is read from the memory location spec-
ified by the current memory address from the interface and
the data is placed on the I/0 bus lines. During this time
the interface is incrementing both the word count and current
memory address in preparation for the next transfer. If the
word count overflows, ihe interface disables itself and posts
an interrupt to the 15. If the word count did not overflow
the second of the four interface words is £tansferred and
this continues until all four have been transferred. The
data channel is freed until the 910 regpbnds appropriately by
either writing out or reading thé 72-bits of data.

Due to the apparent automatic nature of the data
channel, timing and control become critical. As the words
are transferred to and from Because of this a four bit ring
counter was used to gate each word to its proper destination.
The ring counter is initialized when the initiate DMA IOT is
issued by the 15 and the ring counter is cleared when
overflow occurs. '

The sinéle—cycle transfers can operate in one of two
modes: burst mode, and normal mode. In normal mode one word
is transferred for each reguest of the data Chaﬁnél. In
burst mode transfers, once started, continue until the data
channel is returned to normal mode, usually just prior to the

last word to be transferred. The burst mode transfers pro-

34

ceed much faster than those in normal que due to the fact
that there is only one reguest of the data channel for each
burst of data to be transferred, whereas in normal mode the
peripheral must synchronize with the data channel after eQery
word that is transferred. The interface operates in burst
node for -this reason.

DATA CHANNEL GRANT is an extremely important signal to
the interface. One GRANT occurs with every word transferred.
DATA CHANNEL GRANT indicates that the interface now has con-
trol of the data channel and that the transtef wWill oc¢c¢ur
during the time this signal is present. The interface uses
the trailing edge of the DATA CHANNEL GRANT signal to gener-
ate a pulse called ADDRESS ACCEPTED. ADDRESS ACCEPTED clocks
" the ring counter during a DMA transfer.

For transfers from the PDP-15 computer to the interface
the ring counter is clocked once prior to receiving the data
" due to the wait time for the current memory address pointer
to get from the interface to the memory and also due to the
time it takes to get the data out of memory and to the inter-
face. The I/O0 rrocessor generates a signal called IOP 4
which is used to used by the interface to gate the data into
the interface buffer as shown in Figure 10. In Figure 10 the
outputs of the ring counter are indicated by DMA1, DMAZ2,
DMA3, AND DNMA4., For transfers from the interface to the

PDP-15 the data is placed on the I/O bus prior to clocking

DCH GRANT ity

DCH ENA ~ __ | ~ L
BURST MODE — | L

ADDRESS ACCEPTED_100wsec=fl= [l [||

I0P4 __200usec=[=[] [[
DMA| — '

DMA 2 | [1

"DMA 3 | L
 DMA4 L I
CLEAR BURST I

DATA ON I/0 BUS _

Fiqgure 10. ‘Data channel

___worp 1 lworD 2 [wORD 3 |WORD 4 L

timing for transfers from the PDP-15

S¢g

36

the ring counter. This can be seen in Figure 11.

The 910 is interrupted once at the start of the trans-
fer, and from then on it must test BUFFER FULL to determine
when the data is ready. The 910 must also keep track of its
own word count and current‘memory address pointer in soft-
ware. During transfers from the PDP-15 to the SDS-910 BUFFER
FULL is set when the 15 has loaded fouk words and they are
ready to be read by the 910. The 910 software would be

‘ waiting for this in a loop as follows:

LOOP EGHM ' /SKS FOLLOWS
SKS BUFFER FULL /SKIP NEXT INSTRUCTION IF BUFFER FULL
BRU LOCP /BRANCH TO LOOP

XXX /READ BUFFER

Transfers from the SDS-910 to the PDP-15 leave the BUFFER
!
FULL flip flop cleared when the 15 has read the data. The

910 software ' wait loop would now be:

DCH GRANT ol L] L1
DCH ENA N
BURST MODE T L
| ADDRESS ACCEPTED N M il }
DMA | T L
ojoma 2 i
oMA 3 _ B
~ DMA 4 S ‘ T 1
~ CLEAR BURST ‘ [

Figure 11.. Data channel timiﬁg for transfers to the PDP-15

38

LOOP EOHM /SKS FOLLOWUS

SKS BUFFER FULL /SKIP NEXT INSTRUCTION IF BUFFER FULL

BRU EMPTY /BUFFER IS EMPTY BRANCH TO EMPTY
BRU LOOP /BUFFER IS FULL BRANCH TO LOOP
- EMPTY XXX /HRITE TO BUFFER

The EOM SKS pa}r of instructions require a minimum of 16 mi-
croseconds to be executed. It will take the data channel
only four microseconds to transfer the words to or ffom the
interface once the interface has acquired the data channel.
It is expected that the 910 will not have to wait in this
loop for any extended length of time due to the speed of the
15.

The interface maintains a flip flop named DMA CONTINUE
for the PDP-15. DMA CONTINQE acts much like BUFFER FULL in
that it indicates to the 15 when the 15 should transfer data.
DMA CONTINUE is used to request.the data channel when the
interfaée is ready to send or receive more data during a DMA
transfer. This flip flop is inhibited by the overflow of the
word count in the interface. The initial data channel
request is'triggered byAthe‘issuing of the IOT that initiates
the DMA and this is logically anded with the DMA CONTINUE

signal. If the transfer is from the 15 to the 910 the DMA

39

CONTINUE is set after the 910 has read the 72-bits of data.
Conversely, if the transfer is from the 910 to the 15 DHMA
CONTINUE is set after the 910 has written the 72-bits of

data.

490

CONCLUSIONS

The major stumbling block of this interface was centered
around the use of SDS Logic Modules for much of the design.
Not only is this discrete logic cumbersome to desigm with but
it causes severe mechanical problems due to hand-soldered
wiring. The manhours used in éctﬁally constructing the in-
terface more than offset the cost of using all newly
purchased TTL integrated circuit techmnology. As in the case
of many government intallations there is a large supply of
manpower buat little money. Because 6f‘Ames Laboratery's
large ‘stock of SDS LOGIC MODULES they were used in the inmple-
mentation of this design.

Two interfaces were constructed, and were in operation
in September of 1é7a. The interface not previously mentioned
was constructed as a prototype, to be installed on a PDP-15
experiment controlling system on the ISU campus. It was con-
nected to an unused Ames Laboratory-owned SDS-910 computer.
This protoype was to be used by the software group to test
their operating system, thus allowing the reactor's experi-
ments to be performed using the o0l1ld computer until the oper-
ating system was almost completely debugged. It was intended
that the prototype system would remain in operation after the
initial checkout expanding the capabilities of the existing

PDP-15 systen.

41
BIBLIOGRAPHY

Andersen, R. D. ™MAcqusition Proposal for a PDP-15/77A Con-
puter to Replace the IBM 1401." Personal communication.
Ames, Yfowa: U.S.A.E.C., 1973.

Anderson, R. D. "Interface." Personal communication. Anmes,
. Iowa: U.S.A.E.C., 1968.

Anderson, R. D.; Campbell, Jerry H.; Carter, Benjamin F.;
Conley, Marsha K.; Helland, Barbara J.; Thomas, William D.
"PDP-15/SDS 910 Systems Configuration." Personal communica-
- tion. Ames, Iowa: U.S.A.E.C., September 27, 1973.

Digital Equipment Corp. PDP—-15_Maintenance Manual. Maynard,
Massachusetts: Digital Equipment Corp., 1970. ‘

Digital Equipment Corp. PDP-15 Systems_Interface Manual.
Maynard, Massachusetts: Digital Equipment Corp., 1971.

Holland, Ed. "Minicomputer I/0 and Peripherals." IEEE Com-
puter Group News, 3(July/Aagust, 1970), 10-14.

Kintner, P. M. "Interfacing a Control Computer with Control
Devices." Control Engineering, 16{November, 1969), 97-101.

Korn, G. A. "Digital—Computer Interface Systems." Simula-
tion, 11(December, 1968), 2€5-298. ‘

Rinder, R. "I/C Architecture of Minmiccmputers."
Datamation, 16(May, 1970), 119-124.

Scientific Data Systems. SDS-910 Computer Reference Manual.
Santa Monica, California: Scientific Data Systems, 1963.

SDS Standard Module Data Sheets. Santa Monica, californias
Scientific Data Systems, 1965.

Soucer, B. DlMinicomputers in Data Processing and Simulation.
New York: Jobhn Wiley and Sons, 1972.

42

ACKNOWLEDGMENTS

I would first like to express my appreciation to my wife

Jan and my son Jason for their many sacrifices
parents for their constant support and help in
thesis. I also wish to extend my appreciation
Smay, my major professor, for his guidance and

Thomas, Dale Anderson, Barb Helland, and Jerry

apd to my
editing this
to Dr. Terry
to Bill

Campbeli for

making this project possible. I would also like to thank

John Erickson for his patience, support, and never ending

smile in helping debug the interface.

43

APPENDIX A: SDS-910 ADDRESS ASSIGNMENTS

FLIP FLOP(S) 'Axy Bz INSTRUCTIONS THAT APPLY
CLEAR 910 INTERRUPT 30 0 ‘ POT
BUFFER FULL 30 O SKS
DATA WORD 1 30 1 PIN EOT

DATA WORD 2 30 2 PIN POT

DATA WORD 3° 30 3 PIN POT
REQUEST) 30 4 POT

BUSY 30 5 | POT SKS
15 INTERRUPT 30 5 PIN

510 OK 30 6 POT
CONTROL WORD 30 7 PIN POT

4y

APPENDIX Bz PDP-15 INTERFACE IOT INSTRUCTIONS

DATA, WORD 1 READ ’ 701412
DATA WORD 1 WRITE | ’ 701404
DATA WORD 2 READ , 701432
DATA WORD 2 WRITE 701424
DATA WORD 3 READ - 701452
DATA WORD 3 WRITE ' 701444
DATA WORD 4 READ 701472
NATA HORD 4 WRITE | S 70146
REQUEST TEST 701541 -
BUSY WRITE \ 701524
BUSY TEST AND WRITE | 701525
15 OK WRITE 701544
CONTROL WORD READ | | 701572
CONTROL WORD WRITE 701564
CURRENT HEMORY ADDRESS POINTER HRITE 701604
WORD COUNT WRITE 701624
CLEAR INTERRUPT FLAG ’ 701601
' INITIATE DMA TRANSFER TO THE SDS-910 701664

INITIATE DMA TRANSFER TO THE PDP-15 701662

45

~ APPENDIX C: FLOWCHART OF TRANSFERS FROM THE PDP-15 TO THE SDS-910

'

5 !
START LOAD S
ADDRESS
DISABLE S| Loap °
INTERRUPTS WORD COUNT
I
10T T0 S
ENABLE s INITIATE DMA
_ INTERRUPTS [
SOFTWARE
DISCONNECT
T
|
|
RequesTen _ | pan SioRy "
BY 910 FROM 15
| Loap worD 1 #
. INCREMENT 'g)
WORD COUNT .
: INCREMENT H
SET BUSY S :
AN _ ADDRESS
CLEAR REG")
1
ENABLE S
INTERRUPTS
|
LOAD CONTROL $
WORD
T : . " REQUEST M
LOAD DATA S WORD
WORD | 8 LOAD WORD 2;
|
H
LDAD DATA S wlggg Ec%%hr{}
WOR? 2 ADDRESS
LOAD DATA S
WORD 3 18
|
LJAD DATA S
WORD 4 |g YES
]
INTERRUPT H|
812 TO READ REQUEST W
T WORD
x0s 810} | NO LOAD WORD 3%
e T SRR - END- OF — -\ - ~ S Feiy - - .18 e i S e i T it el 2 2 £
| TRANSFER INCREMENT H
! : WORD COUNT,
—
ADDRESS
READ CONTROL S SET UP WORD $
WORD COUNT AND
I ADDRESS
READ DATA S , —
WORD | ,, REQ 15 H
I MORE DATA
READ CATA S
WORD 2 ,, S
[: BUFFER REQUEST "
READ CATA S FULL? WORD
woios 24 LOAD WORD 4,1
INCREMENT "
CLEAR M READ DATA | .5 ‘ WORD coEuNNT.
BUFFER FULL CEC. WORD ADDRESS
COUNT
INCREMENT
‘ YES ADDRESS
NO
INTERRUPT H
. m WAIT FOR
IS COMFLETE SETFEEEFER L 910 TO GENERATE
READ DATA 2;§ NEXT DATA REQ
(RETURN) D RO '
END OF
TRANSFER INCREMENT
ADDRESS
SET BUFFER H
FULL
INTERRUPT 151 ‘ [
TRANSFER READ DATA 3 23 WAIT FOR
COMPLETE DEC. WORD INTERRUPT
COUNT
4
(RETURN) 'tsgggégT [CLEAR BUSY ﬂ
END OF
TRANSFER
CLEAR BUFFER

FULL

47

APPENDIX D: FLOWCHART OF TRANSFERS FROM THE SDS-910 TC THE PDP-15

(910 START)

SET REQ S ' e

BUFFER
FULL

!
&‘ |
NO : LOAD DATA S
! ' WORD | ,,
L YES ' DEC WORD S
COUNT
NO

INCREMENT
ADDRESS

SET BUSY SET BUFFER ¥
(CLEAR REQ-S) ' FUﬁL
|
_ LOAD DATA S
L0A2~gggTR0LS WORD 2
[DE% WORD S
- COUNT
LOAD DATA S : INCREMENT
WORD | 4 ADDRESS
SET H . [
BUFFER FULL LOAD DATA S
LOAD DATA S SET 0P WORD 3, |.
WORD 2 s
o el
S .
| v ells INCREMENT
24 ADDRESS

2 l
' REQ I5
7 NO TO READ
:gT§?§¥§B YES [\NTERRUPT 15 °
s .
' WORD

END OF 15
TRANSFER GOUNT=0

READ CONTROLS B
WOTD REQUEST READ"
‘ READ WORD 1 3 READ 0ATA "
1) 18
S
.. ___|Femowomrp 2, | | JNCREMENT "I EwooF)
‘ INCREMENT T‘RANSFER
| READ wORD 3 | ' ADDRESS

| READ WORD 43

CLEAR BUFFERH
FULL

REQUEST REAOD'

NO . READ DATA
WORD 3

INCREMENT *+
YES WORD COUNT
LOAD WORD S INCREMENT
COUNT _ ADDRESS
T
|LoaD ADDRESS §|

I

[omator |

SOFTWARE
DISCONNECT

REQUEST READ
: 4
R%ﬁPiﬁBED REQUEST DATA " READ DATA
——=| WORD TO WORD ¢ 5
BE READ INCREMENT
I WORD COUNT
m INCREMENT
Raﬁo DATA ADDRESS ‘
ORD I .
1 WAIT FOR
INCREMENT " CLEAR BUFFERH 910 TO
WORD COUNT "~ FULL GENERATE
- READ REQUEST
INCREMENT \
ADDRESS

CLEAR BUSY S

|
INTERRUPT 15"

CLEAR BUSY $ YES (TRANSFER
I COMPLETE
END OF
TRANSFER

8h

49

RPPENDIX E: INTERFACE BLOCK DIAGRAH

F =BT T Xpsei0 18 B 20 2 2 3 T~ ~~70
$bs-810 POSITION POP-15 O 1| 2 3 4 & POP-I5
910 | I8 5 | s10 | 18
i | Nt~ | oMa |k
TIATE | TIATE fockuy oK | OK

|
[
|
: . : CONTROL WORD
[
[
|
|
|

|
)
|
|
1
|
. |
]] [o] |)
|
WORD, | |
WORD,) |
u ' 18
23 . ' eITs
24 23
BITS 72 bit WORD, 2 f
DATA '
BUFFER 33| {
. |
1
WORDISB | 17
|
23 | 83| I
| {
I
| WORD, 4 ,
|
| 71
| |
! |
' R]
! £ 1
| Q I
u |
! E WORD i
! s COUNT |
[} T I
1 =
1 B |
v ADDRESS
| N o) |
] Y |
! |
l BUFFER i
P FuLL 1
O S S 4

