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Qucmtum Monte Carlo by Mesqe Passing

J. Bonh UIC! J. L!. Gutwmatis
Tbretid Division ud Cents for Nonlinear Studia

b Alunm NLonA bborato~, La Akmx, NM 87545, U.S.A.

Abrntrsct. We summarise raulta O( quantum Monti Culo mimulstimu of the
d~cmr~te tingl~irnpurity Anderwn model ueing the impurity algorithm of
Hirsch and Fya. UUng rutithoch of Bayrmia.n cmtutic.d infmcnce, coupled with
the principle 0{ ~urn entropy, we ertruted the si.ngkprticle spectral

density from the irnwinuy-time Grmn’s function. The ~iou o{ raulting
~tral densitia with modal pua.md.em egroe quali~tivdy with the ~trd

dunsitiapruf.icbd by NCA cslcuhtions. All the simufstioru wre performwl on

● cluster of 16 IBM R80W/5U0 works-tioru under the control of the m-e
~ ooftwue PVM. We dxribal the trivial psrdlebsstion of our quutum

Monte C.uIo code troth for the cluster ~d the CM-5 compukr. Otbar kua
for dative pudlelktion of the impurity dgorithrn ue a.lmodiscti.

Imtroductlon

Ln s@,t4 of the factthat the 8i+hpWity Anderwn mod-l (1] WM first

thmretical sad numericsl work on the morkl mmaim wry activehum it u

one of the airrrpkt puulip for ● cptam of mtrongly intemcti~ eloctrom.
Ovw the -, considerable p~ be tnmn mech in undemtendi~ tht

proputk oftha model by oeveral oignifk.ut adva.nca in um.lytic ad numerird
tidqua [2, ~. T%- tuhniqua have MM@t to cdcuhte douJ *tic and

dpun.k ctxmhtkn functions to mmd the mlcvurcc of the mcuial for ouch

~-~y Phawmiens ~ the Kondo etkt, mixed vmhnca fluctuation, md
- ~dic momont formation that m oberved in &lute ~etic a,lloys.

AItho@ the tin faturu of tha ●Putrd danmity function of tho d~on-

emte mcxie~, MUA u $h- peition of the brcrul ●ide pd.s md the ●xisbm ● of

s nkrp racmurce clme to the Fermi ener~, ue likely -11 reproducul by dif-

ferent ura.lyti~xi and nurrrericd motbocls [4, 6,6, 7, ~, rdative cputrd waighti
-——-
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snd their temperature dependence often cem to be dependent on the umier-
Iyi.ng ●pprtirrmtion. Therefore, there u a need for s methml which calcuhta

the spectral denmity function of the riqenerate Anderson model at mbitruy
i.nt.erwtion ttrerqth U, hybridisation r, degeneracy N, and temper=tu:e 2’. In

WY rempect.s, the quwturn Monk Culo method ful.fh tnis rrc.+. Ictcorpo-

r~ higher d~eraciu into the model u also neuled. One trte one tid,
it mxrld enable ● comparison of q~tum Monte Culo multi with the non-
Croming *p mxirxmtion (N CA) [7] d the numerical recorrrdintion group
(NRC) dcuhtio~ [4,5,6] and, on the otbar hand, it would bring the cdcul~
tion,s CIM to phynical oywterns. For ax.ample, s dugenuuy of N = 6 mutchu
the deganeruy of ● C-e impurity in a host with cubic cymrnetryand ~mmg
~pin-orbit tplitting.

Ln ●pita of numercu exprirnental urd thcomticd works in the field of
dilute rrmgnetic allop, oome _ment still titi batwen thacmy and ax-

parinmnt,and aven among ditTemnt evrirnent.d group [8, 9]. Spectrmopic
in~igations ue primui.ly done on ordem . alloym snd compouu&, with the
~ption thst the @a impurity th~r-y can b d.imctly ●ppliu.t to thm

cortcentrati syutans. The genardly accepted belief u that the tingle impu-
rity nmial mproduca the main cputral hatura in Ck or Yb heavy farmion
compouncb [8]; however, mwnt ●tudia by Joyce atd [9]how featurw near
w = O thatdo not ●ppear to da with tha Kondo temperature TK or duplay

the appropriate temperature dupendencd. Thm findi~ mrmin ● pu.mle.
In this ppar, w gim ~ma a.mmpla of our romnt Acr.htioru of the

propurtia of the d~nerak Anderson model [10], obtained by rn~ of the

qumtum Monte CUIO method of “Iirdr snd Fye 111], which w extindec! to
higher d~ner=iu. We will discti tha murca of computational inknsity In
th.ia algorithm and the embuaingly oimple way w used a clustar of work-

a~tioru to rduce tha computation time. Wa will alm dkum othar inuu of

pum.llalin.stio~ to raluca tha cornpuhticm time wan further.

2. Mo&l and Mdhodm

Wa t+ the following form of the dagencrate Anderson model [7]

, x “--’’’’-”-’Hy=!

m,m’



renormdisd energy cm, u.rd nbm ad ~ uc the numbers opcr~tom for the
conduction M and orbi’d St the impurity tite. Vim rcpracnti hybrib
tion btween the conduction burd md the iodised impurity ctata. We will

-ume thnt the ccrnduction band is infinitely wide and structural=; there-
fore, Vkm u neither ener~ rior chuuml dependent. This -umption Ieds to
the simple relution for the impurity lewel hti.width r = xN(0)V, where N(O)
u the energy dcnuity of tits p opin ●t the Fermi ener~. The ~ymmrtric
matrix W=,, with the additional condition Umm = O, rep-nh the Coulomb

repulsion betm two ektrons occupying different orbikls ●t the impurity

site. Furthermore, we ~ti~ the channel index m with the nmgnetic quam-
tum number m > ~ tice we wut to mochl mystirru with otrong pin-orbit
Coup~, such u Cc imPuritia in . net.sl. Lo puticulu, the low-lyint multi-

plet in Cc h- ● totsl anguiar mornop.kum j = 5/2 Md therefore s degeneracy
N = 2j .+ 1 = 0, which repr~nti the highat degcner~y reachd in our Acu-
Iations.

We will b mainly concernai with the computation of the @lc-@icle
spatm.1 dcti!y ~iatal with the impurity d.sta. Several important f-
tura of this function uc known quib generally. The irr@n~-tirne Green’t
function G(r), which we will obtin using quaatum Mon~ Carlo ●imul-tion
procdura, u directly connatd to the spxtrd function A(w) through the

following relation [;2]

J
+-

G(7) = &i~GA(u)
–m

(2)

where ~ u tha iuw~ bmper~turc. In tba c- of tk~ @icla-Lole oymm~try,
the Green’s function okmyl the reldion ~(~) = C( J - r) arid thorefom A(w) u

m even function of frequency. Furthumom, A(u) obcp the following ralhtiom
[12]

/

+-
ckA(w) = I (3)

-m

(4)

‘k -htiom allow om to iutarprd the sp=Lru daui~y u a probability
fu.rwtion.

Ucin.g Eq. (2) to d~tcrmioc tbe ●putrd function u A Lnown M tha

udytic continuation prohlcm krsu- the dynuniu de!lned ou imqinuytilm

4 b ueai io d-mine mal-tima dyrwnia Them u-m sev-erml difFrultia

~iatad with this problem. th QHn’0 fuuctiori b almost inmnnlllve to

c.hm~ in A(u) mt luge fr~u~ncia due tu tha exponentidl~ small kernel. Th’u
Inmemitiviiy maka the probicm emtrwrnely 111--; thd is, ●rmll vuiationm
in the vdua of G(T) cur Id to major vmridlom in the molution A(w). With

~~(r) kinc determind by ~ Monte Culo proccd.rr, v~iat,ons in the d.ti



.

(noiec) ~e ● f-t. Furthermore, the number of dak iJ smaller thui the d4rd

numb of valua of A(u); thus we cannot mlve the problem exactly. Out of

the infinite number of pomible mlutio~ we will w the mcmt probable one [13].

The notion of probability enters the problem through 13aya’n theorem.
Given two cven~ a ad b, EAyu’c theorem My- [14]

Pr[a, b] = Pr[alb] Pr[b] = Pr[bla] Pr[a] (5)

where Pr[a] u the probability of c uld Pr[alb] u the conditional probability of a
given b, ud Pr[~ b] u the joint probability function for a aad b. Our even~ Lrc
tbr functicme C?(7) -d A(w), where ~(r) u our estimated (meuurmd) value of

G(T). Our idd criterion for ● bat mlution will k the function A(w) that

rnuimbea Pr[Al@. We tie

Pr[Alq = Pr[~[A] Pr[A]/ Pr[@ (6)

Pr[Alq u canal the pataior probabihty, Pr[~l A], the Likelihood function,
ud Pr[A], the prior proba.bi!iiy. Pr[q u ● norrrmhsatimr con-tit [15], cdhd
the evidence.

Equation (6) trudars the problcm of m~ifying the patirior probability
to the problem of apaifying tho Ukelihocd function and tbe prior probabil-

ity. Tha Iattar fuoctione uc gcrreralJy onu A-out which wa u either make

ranablc asmumptiotu or ham n~ific knowledga.
The principie of maximum entropy w the ● praati knowledge that the

•~trai dermity MLida (3) and (4), and it ontme the proc~ by ●pecifYiW the
prior probability of tha sputral dansityr ❑unoly

Pr[A] a 8-*’ (7)

where

The function rm u cdlad the dcfaull
Our raulh sm ca.!culaled from [16, lil

(,4’ = /da Pr[alO, m]~(a) (9)

wh~re the conditional probability function Pr[al~, ml u found by uing Baya’c

theoranl. ~%,dm (7), ●n Important in~raticn( u the choice of th~ lik~lihnod

function

Pr[(21A] m c “(1 (10)



where X2 iq the Ieut-qum function

with X,j being the kernel from the Eq. (2) and C,, the ccrvariancc matrix [16]

for the difTerent T Au- of G(T). In (9), i(a) mttia

W.—=
8A

(12)

where Q = cbS – Xa/2. IXtib - givwn elsewhere [16].
The choice ( 10) of the likelihood function ~urnm that the data are statk

tidy independent and Gaumian-dhtributi. Thae a.aurnptiom, which ut

urrplicit in a leut-quua procalurw, are not naturally Mtidied. Promoting the
consistency of the data with them wu achieved by t.uing large biu to reduce
the correlations btwaen binned meuu.rwm anti and ● l~e nurmLmr of bins to
generak the Gmaian behavior. The hrga number of bin.rd masuremen~
dm wx.iucm the statistia.1 error ~iatul with the measurrmenti. The num-

ber of bti CAIcukeci wu found empirically to k the number needed m the
remrlh did not bge if this number WRJ incraaad.

The Monta Culo mutlwi m d to calculate G(T) wu or@rally dawl-
opai to treat tba si~+impurity, optiagmmrate (N=2) Am-lemon rndcl [1 1]

and waa later genera.lkd to trsd the doubly ~pin-degtnermta Andamon model
[18]. It has ● number of outsbding ulv-u~. 11 embech the impurity iit UI
infhitc mdiurn, DOthaa am no flni-iM eibcts, u -table ●t low temperatures,
f3 <200, m th~ aimulatioru can he ~rformacl below the Kondo tempera~ure,
h~ almnot no ~ problem for N{- < 2, m ●ver- without large vuhnca

ue obtairmbla at low tanperdw, and p.mduca the Gran’m func!ion C(T) u
the natural product. Unfortunately, tho opation count d= u N(N - 1)/2

co we pay quih ● price in going from N = 2 to N = 6. To equilibr~k the
mychrn ud d~orrelati the meamrrwments, we unfortunately foimd that u N u
incr+, it WM na~y to HX.ICup tbe quilibration Mci dmorrelation tirnm
A for N = 2 by ● futor of F?. When combimd th~ ~alinga m= that
nimtitiom for N = 2 thst &k WYOTd houm of Cray time WOUM taka mvwrd
daym for N .0. TIM N = 6 cimulationo ue bayrmcl what in rraaonabla ou our
‘caIirA computing f-ility” b- of this, w turnwd to prdlel computing
h boat tho ualingx

3. Pmd1911satkm

‘rhe detailm of th- Himcl-Fym Agorithm fiord ~veral ctiffrmnt rntrategim
for Pudlclimstion, dl of which, howmvcr, ~uire rlimtributing prta of the cal-
culations over dl the proc-m md pdng data (m~ti) on m r~gulu hU



km prc-cmr to proccnor. For mme strategies, m-e -g is frquent
and only ● unsll amount of tloating point operatiom uc done after thfi me
~a ue ~, To ●void the communiuticm overkd, we decided to exploit
the inherently ~dlel nature of And all Monte Carlo calculations. Sixe
our cede can run on s single procar, we gtve ad prca~r a copy and m

wste rmdom number +, had it run tba c~e, and then collatd data
born all prtimm. To me some of the imu- involved in this strategy, w will
first consider tha gcnerd upects of doing A Monte hlo simulation [19].

Ln Monte Culo, we wmt thermcdynunic avernge such u

where

z=
/

dada) (14)

ia the partition function (S normalisation constant). The buic proprty of a

Monte Carlo method u Lo replace the thercrd ●veruc by ● mph mveragm

W hdM

.4=@
,=1

(16)

and M u the numbm of m~urements L of A. If M u Iarga enough and the
& ua •tatwti.cd~ idependtd at~mcta of A, then error cgtiumta uw taken

to IM irrru/fi whera m u ● errrall intogm, usually qud to I and

(17)

With our prallelh.stion ntrategy, the buic Monta Culo relation (16) be-

M/. auln M

howumr, proper error intimation precluda collecting from A proceaor only
Lh- -urn of its measurement. To & abla ta tat for crmml.ationa batuwn Juc-

ctiva me~ummenta, one nod to collect the meuumrnenb from ● givtn

pmcmr wqucntidly ~d combin@ thm mcasummentn with th- from the



other procam into a single file (or btier), Then, after a- node ~roc~
ue finished, proper error eatimst= ue ●ttempted. If succ~ivc m~ummenh
from a given p~ r ue correlated and tbe meuuremcnts from the pnx~
mm are interspard, than, in the combined -t of masuremenb the d~~tuice
betw=n decofited m-urcrnenti is inc~. By grouping me-am.werntnts
by proc~rs, one can bt ifnucctivc m~urementa uc correlated, mnd if
they ue, then one cm euily “rebi.n” -uccemive @m, triplcti, etc. to produce

sLati.stiuJ bdcpendence.
All the dmiations rcportd here were done on tha LANL/IBM worksk

tion cluster which hu 16 IBM FUSC/SOO@WO works~tions, A with 128 MB
memory, connated ethernet urd FDDI networh. For our m- ~
wftwnre, we A ?VM [20] bum it hu the functionality m necckl and it
is frwudeuytaum.

-W of cluster -e, the time d p~ r da to do M/n me
mmements r- vary widely. To U Jaknu, we SM the tir.dation on each

node in an infinite loop and whenevm ● node completes ● meuurcmcnt, the
measurement u unt to the hat p~~ which writeu the rault ~uentially u ●

-oral in ● dtit-ace= file and recnti in ● index uray which pwmr WTote
to that record. When the hmt reco~ the duired uu.mbur of m-urernenti,
it t.ermindu s.11node proc~ and then u the indax to rcwrita the data

into mother file in propar pr ~r wquance. The number of mtmmrcmento
mde vuia from ncdc to node hut 4 node ci- the bd it can u.ndar the
comtrtints of the time abaring ~tam.

with th omwd strategy virtudy all i.nkr-prtx~r communication iJ

eli.mirmted. Our code NM 3/2 to S tknm IL8akr on the cluster tbsn on one
procwr of ● Cray-YM P computer, depending on whet ha the inner loop vec-
tor lengths ue long (low tampcraturu) or c.bort (h@ t.empcrstures), For long

loop lengths, the cmie runs ●t 250 Mtlop SLU4DWI on one prcumr of Cray

Y.MP computir. On the cluster, tho code b run m long u threa days.

4. Raoultm

We calculakl lb magnetic muceptibility and the aingbputicle spectral

tity of tb dqmada, oingkimpurity Andemn modal for d~neracia
N = 2, 4 Wd 6 in the particle-hole cyrrmwtric caae -ad for the mingle degeneracy

N = 4 in ttM asymrmotric - [IO]. Our twulk in general agree well wi~h them
-ad by tho N(!A and NRC matbmh.

ti Awn if Fig. I, in the puticl+hole -ymmetric ~ th~ rnqnetic sus-
ceptibilitim follow the univerd Kondo m.sceptibility curve [3] at low temper-

tuw. The lod ~nomant in the intermcdiata kmperatura r+me is ■upp-
in compa.ri.rwm to the N = z M, which u mainly ● consequence of thq higher

dageneruy. Thu Kondo tem~rstura, extrapolated from the cusm?tibility
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Flgruw 1. The sweptibility Tx for N = 6 u a functkn of in(T) in units of

ih high temperature value 4 3/8. The Monte CUIO Iwults U -~ 2, 3, and 4 ue

marked by ● A, o, and O. The solid lines am the universal curva from [3]. 7’K
u the Kondo tempars!ure, ‘i’+e estimated statistical errmw ue under than

the height of tbe mukem.

curva, follow within 10% the atimatt9 Erom the generti mmi-empirical

q~tion IMA on the high-tempcratu~ ,mrtutmtional thaory of Halcl.ue [21].
in the N = 4 cua we found good ~ment with TX CAIcuktcxl by Lin Md
Etimch [18].

Tho ovwdl hahavior of the oin~~i~icle opectrd functiou follow the

prdcticm of NCA and NRG. The h:igh. of the cen!rd Kondo puk inc~
with incrmAng of d~naracy oince the Kondo tem~ratum & inc~ With
d~aruy when the other puamelem remain comtant. The height of the

C& - dea with degeneracy M l/N ~ pralictal by Zhmg and k [22].
TIM paition of tho aide pcAs depends dightly upon d~rrer~y when tho

unrsnotiisal enqy difference Imtween underlying ntata rerrkm comte.nt,

We ~de this dagencrmy-i~duced incr~ renormdtition with the in-
cl~ of the eff~tivc hybridisation, Within the computatiorml error, we found
univemd behavior in the s~tr~ (unctiom ●t low fmwquancia when N = 4,

For N n 2, cuch univemolity had been pmvio~ly shown by Silver ai d. [13].

[n Lhe asymmetric cue, the mqnetic w.aceptibility ah follow- the uni-
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Figure 2. The spectral density xrA in the myrnmutric ~ as functioo.n of the
frmquency w calcrdatd for N = 4, U = 4, r = 0.5, T = 0.125, and c} = –5.5.
The fiymmetnc caae would corrupnd to ef = -6.

WA cm at low tampard~. Becaum of the hi.ghe d~erxy and strong

hybndisat ion, we did not O- ● pmnoumxd kd moment or mid v-dence

regime. The paition of the Kondo pd in the tpctraldtity movu towti
@tin ~uanci~ as the impurity an- inc~ from ib va.iue ●t the cym-

metnc a. T’h.is ah.i.ft A- with tho Kondo tompratum and with the ●verqe
impurity occupcacy u d. The aide ~ alao &.ift aa tho impurity energy
inc~. Morallmr, as the lowed cnqy da% on the impurity ute chqu
from ~ to jk the paak on the BIS tide (w > O) groin while the peak on the
PE3 do (U < O) diminish bcauaa of ddkmmt phaw spaca for trarmitioru

f’ ~ ~ and ~i + ~. An example of an asymmetric spectral detity u showi

in Fig. 2.
We ue just _ng to in~tigat.e the cf%ct of the cryvtal-flald and ~pin-

orbit splittin~ on the s~trd functionm for the cam of N = 6. Spachl focus

is on the clbt of the rplittinga gn the Kcmdo peak.



5. Concluding Remarks

By uArq pmallel computing, in an emb.r~ingly tiple but ●ffective way,

M performed ● Hrid of aimulatiom of the degenerate, aingleirnpurity Ander-
ron model [10]. Then, by U@ methods of Bayai= s~tistical inference, cou-

ple- with the principle of bum entropy, wc extruted from the _uy -
time G-n’s function the single-putide t~tral densitia of the mdel. With
the spectral dcnsitia, we uhddimkrai the qualihtin cotitency of NCA cal-
culations. We studied the ImhAvior of the mpectral densities u ● function of
temperature and degeneracy for ● variety of r,mclel pu~etem. With N = 6
we hAvc ● situation that be@ru to modal tha utual degeneracy of a Ce impu-

rity. We have begun m mimic -M efkta by -pi. itting the degeneracy of the

impurity Ievcl.

While our palleli.sation scheme exploiti one fe.dure cammon to ~onte
Cmlo simuhtiom, such tiuhtiom Imve other common fe4tura: an initiali-
tion, equilibration, and a m~umment pk. WhA we have done imto reduce
the computation the by fuming out the measu.mm ant pke to a Iuge num-
ber of pr ~m. Normally, the computing time for the mwumment phase
domi~ the combined comput~ time for the othar two ph. With the
currant pudlelhation strs~, A proc~r init;~ Md apil.ibrata and

hence thae pb am tied omrheuls to tha tiulations. AJ the numbe~ of

prncmr inc~, a point is radied where th- two p- domir.mt.e the
mauurement one w that inc~ the num’ber of p~ m decreasa the
computation time o~y dightly. &nproving performance nds to adti the

pslleliaation.s of th~ pb if ● kge numlm of yoc~m uc to be @.
We mw currently mov~ OVWaimtitiono to the CM-5 computer where we can

expect to have 64 to 25U proc~m for pduction um.
For the impurity ~onthm, the in.itidi.mtion pk performs ● sum like

~n F(n). Hance, it u @y ~ralla~ by ● proadum (18) sicailu to the one
d for tha m euuremant phz. The computational com of the equlibrhtion
(and mwuremant) pb iJ the upiating of mmtrix by ur outer product of two
vectors. How M tm do ~bti is mom ddicak P~aMi.ei~ the quibriation

pk q- to have d led two options:
1. Pwrforrn the initialisation and cqdibriation on ● futer computer mud feed

the ruults to the c.]ustir or CM-5. A Cray-YMP should per-form the
~nitislisation ~d quilibration by ●t l-t ● fxtor of 10 faster thu one

Rrsc/aOOf3.MO.
2 Distribute tha cslcu~tion ova d] the proc-rm in c~ grtined piecc9.

Imti of euh pmc~r providing ● wprm~ ini~ialktion, the procmra
combine to provide just one. While this calcubtion may have a~nitlcant

interproc-r communication, the UM of mmy proc~m will b faster
than just using one.

With el~her of th~ optiom, AII proccuom then perform mpNate Monte C-lo



.

runs, but now after ● much chorter equilibra~ion ph= and with separate rm-

dom number uuln, they while become independent proc~.
With the CM-5, the vectors units on b proc~r have just become ac-

crnble in the m~e wing mc.de. How to exploit them u b being stud-
ied. It ●ppeam that non-= mbley lanuge w of th- uni~ will require one’s
computer code be written in the pudlel kgu~m CM Fo.Rru or C“. I%ced
with code rewriting, ● natural quation to ask, “M a programming model be
implemented in CM Fortran or C“ that u just u efktive but svoicb the me

~ ~ti sdw-e althogether~ We n * currently invatigatmg this

~bility. Basically, our thinking u stillevolvingon how to tiher ~dlclise
ou code.
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