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Quantum Monte Carlc by Message Passing

J. Bonéa and J. T. Gubarmnatis
Theoretical Division and Center for Nonlinear Studies
Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.

Abstract. \We summarise results of quantum Monte Carlo simulaticns of the
degencerate single-impurity Anderson model using the impurity algorithm of
Hirsch and Fye. Using rmuvthods of Bayesian statistical inference, coupled with
the principle of maximum entropy, we extracted the singlo-particle spectral
density from the imaginary-time Green's function. The variations of resulting
spectral densities with model parametsrs agree qualitatively with the spectral
densities predicted by NCA calculations. All the simulations were performe-| on
s cluster of 16 IBM R6000/560 workstations under the control of the message-
pasning software PYM. We deacribed the trivial parallelisstion of our quantum
Monte Carlo code both for the cluster  'd the CM-5 computer. Other issues
for effective parallelisetion of the impurity algorithm are also dincuseed.

1. Introduction

In spite of the fact that the single-impurity Anderson model (1] was first
proposed 30 years ago us a model for the properties of dilute magnetic alloys,
theorstical and numerical work on the mcdel remains very active because it is
one of the simplest paradigms for & system of strongly interacting electrons.
Over the years, considerable progress has been made in uaderstanding tke
propaerties of the model by several significant advances in analytic and nurnerical
techniques (2, 3]. These techniques have sought to calculats various static end
dysamic correlation functions to reveal the relevance of the model for such
meay-body phenomena as the Kondo effect, mixed valence fluctuations, and
lotal magnetic moment formation that are observed in dilute magnetic alloys.

Although the main festures of the spectral density function of the degen-
erate model, such as the position of the broad side peaks and the existence of
& Auarp resonance close to the Farmi energy, are likely well reproduced by dif-
ferent analytical and numerical mothods (4, 5,6, 7, §, relative spectral weights
* Permanent address: J. Stefan Institute, University of Ljubijana, 81111 Ljubl-
jana, Slovenis.



and their temperature dependence often seem to be dependent on the under-
lying approximation. Therefore, there is a need for 8 method which calculates
the spectral density function of the degenerate Anderson model at arbitrary
interaction streagth U, hybridisation I, degeneracy N, and temperature T. In
many respects, the quantum Monte Carlo method fulfills tnis ncsd. Ineorpo-
rating higher degeneracies into the model is also needed. One the one hand,
it would enable a comparison of quantum Monte Carlo resulia with the non-
crossing spproximation (NCA) (7] and the pumerical recormalisation group
(NRG) calculations [4, 5, 6] and, on the other hard, it would bring the calcula-
tions closer to phywical eystems. For example, a degeneracy of N = 6 maiches
the degeneracy of a Ce impuritv in a host with cubic symmetry and wirong
spin-orbit eplitting.

In spite of numerous experimental and thcoretical works in tke field of
dilute magnetic alloys, some disagreement still exists between theory and ex-
periment, and even among different experimental groupe (8,9]. Spectroscopic
investigations are primarly done on ordere . alloys and compounids, with the
assumption that the single impurity theory can be directly applied to these
concentrated systems. The generally accepted belief is that the single impu-
rity model reproduces the main spectral features in Ce or Yb hsavy fermion
compounds [8]; however, recent studies by Joyce ei al [9] show features near
w = 0 that do not appear to scale with the Kondo temperature Ty or display
the appropriate temperature dependence. These findings remain a pussle.

In this paper, we give some examples of our recent calculations of the
properties of the degenerate Anderson model [10], obtained by m»ans of the
quantum Monte Carlo method of Tirsch and Fye {11], which we extended to
higher dogeneracies. We will discuss the sources of computationsal intensity 1n
this algorithm and the embarassingly simple way we used a cluster of work-
stations to reduce the computation time. We will also discuss othzr issues of
parallelination to reduce the computaticon time even further.

2. Model and Methods

Wa trated the following form of the degencrete Anderson model (7]
H = Ho+ H,

Ho = Z‘h"in t z: V.W\(clm/m A foncam) + E‘m"m )
Mem Am m 1
l ~

H! = 5 L Unm’“mnm’

mom’

where ':Lm creates a state in the conduction band with the energy ¢, in the
channel m, f! creatas an orbital state m at the impurity site with the un



renormalised energy ¢m, and nym and n,, are the numbers operators for the
conduction band and crbiials at the impurity site. Vin represents hybridisa-
tion between the conduction band and the iocalised impurity states. Ve will
assume that the conduction band is infinitely wide and structureless; there-
fore, Vim is Deither energy cor channel dependent. This assumption leads to
the simple relation for the impurity level half width I' = * N(0)V, where N(0)
is the energy density of states per spin at the Fermi energy. The symmetric
matrix Upmm, with the additional condition Umem = 0, represents the Coulomnb
repulsion betwesn two electrons occupying different orbitals at the impurity
mite. Furthermore, we associate the channel index m with the magnetic quan-
tum number m = n, since we want to model systems with strong epin-orbit
coupling, such as Ce impurities in . netal. In particular, the low-lying multi-
plet in Ce has & total angular momerium j = 5/2 and therefore a degeneracy
N =25 +1 = 6, which represents the highest degeneracy reached in our calcu-
lationa.

We will be mainly concerned with the computation of the single-particle
spectral densily amscciated with the impunty state. Several important fea-
tures of this function are known quite generally. The imaginary-titne Groen’s
function G(r), which we will obtain using quantum Monte Carle simulation
procedures, is directly connected to the speciral function A(w) through the
following relaticn [12]

+oe .
G(v)=/_ do-t " A(w) (2)

o 1 4 ¢

where § u the inverse tamperature. In the case of the particle-Licle symmetry,
the Green's function obeys the relation G(v) = G(J - 7) and therefore A(w) s
an even function of frequency. Furthermore, A(w) obeys the fullowing relations
(12]
+ 00
dwA(w) =1 (3)

A(w)>0 (4)

Thess rslaticos allow ons to iuterpret the speclrai dwnsity ss a probability
function.

Using Eq. (1) to determine the spectral function is aie. hnown aa the
analytic continustion problem because the dynarnica defined on imaginary-tiine
aris is used \c determine real-time dynamics. There are several diffruitien
associated with this problern: the Green's fuuction s almoe! insensitive to
changes in A(w) at large frequencies due to the exponentially small kernel. This
inpensitivity makes the problem extremely (ll-posed; that ie, smiall variations
in the valuos of G(r) can lead to major variations in the solution A(w). With
G(7) baing determined by a Monte Carlo procedure, variations in the data



(noise) are & fact. Furthermore, the number of data is smaller than the desired
number of values of A(w); thus we cannot solve the problem exactly. Out of
the infinite numbez of possible solutions we will use the most probable one [13].
The notion of probability enters the problem through Bayes’s theorem.

Given two events a and b, Bayes's theorem says [14]

Pr(a, b] = Pr{a|8] Px[3] = Pr[bla] Pt[a] (s)

where Pt[a] is the probability of ¢ and Pr{a|}] is the conditional probability of o
given b, and Pr{a, }] is the joint probability function for ¢ and b. Our events i re
thz functions G(r) and A(w), where G(7) is our estimated (measured) value of
G(r). Our imstial criterion for a best solution will be the function A(w) that
maximises Pr[A|G]. We take

Pr[AIC] = Pr(G]A} Pr{A]/ Pr(G] (8)

Pr[A|G) is called the posterior probability, Pr[G|A], the likelihood function,
and Pr{A), the prior probability. Pr[(}] is a normalisation constant [15], called
the evidence.

Equation (68) transfers the problem of apecifying the pusterior probability
to the problem of specifying the likelihood function and the prior probabil-
ity. These latter functions arc generally ones about which ww can either make
reasonable assumptions or have spacific knowledge.

The principie of maximum entropy uses the & pricm knowledge that the
spectrai density eatisfies (3) and (4), and it enters the process by specifying the
prior probability of the spectral density, namely

Pr{A] o « =7 (7

whers
§=3 (A - m - Aln(a,/m)] (%)
The function my is called the defaull
Our results are calculated from [186,17]

(A = /da Pr(a|B, m|A(a) (9)

whare the conditional probsbility function Pr(a|(, m| is found by using Bayes's
theoteni. Besides (7), an important ingrediant is the choice of the likelihood
function

Pr[(?]A](xa '/ (10)



where x? i3 the least-squares function
1 -
x’:EE(G.—ZK.,A,)C‘,‘(G.—ZK.,A,) (11)
V] )] J

with K; being the kernel from the Eq. (2) and C,, the covariance matrix [18]
for the different T values of G(7). In (9), A(a) satisfies

8Q
A 0 (12)
where Q = 0S5 — x?/2. Details are given elsewhere [186].

The choice (10) of the likelihood function sssumes that the data are statis-
tically independent and Gaussian-distributed. These assumptions, which are
implicit in a least-squares procedure, are not naturally satisfied. Promoting the
consistency of the data with them was achieved by using large bins to reduce
the correlations between binned measurements and a large number of bins to
generate the Gaussian behavior. The large aumber of binned measurements
also reduces the statistical error associated with the measurements. The num-
ber of bins calculated was found empirically to be the number needed so the
results did not change if this numbet was increased.

The Monte Carlo method we used to calculate G(r) was originally devel-
oped to treat the single-impvurity, spin-degenerate (N=2) Anderson model [11]
and wac later generalised to treat the doubly spin-degenerate Anderson model
{18]. Tt has a number of outstanding advantages. It embeds the impurity io an
iafinite medium, so there are no finite-sise effects, is stable at low temperatures,
B < 200, so the simulations can be performed below the Kondo temperature,
has almost no sign problem for Niey, < 2, 0 averages without large variances
are obtainable at low temperatursa, and produces the Green'’s function G(7) as
the natural product. Unfortunateiy, the operation count scales as N(N — 1)/2
50 We pay quite a price in going from N = 2 to N = 6. To equilibrate the
eystern and decorrelate the measurements, we unfortunately forind that as N is
increased, it was necemsary to scale up the equilibration and decorrelation iimeo
used for N = 2 by a factor of N. When combined these scalings mean that
simuiations for ¥ :: 2 that took saveral hours of Cray time would take several
days for N = 6. The N = 68 simulations are beyond what in reasonable on our
“ceniral computing facility.” Because of this, we turned to paralle] computing
to beat the scalings.

3. Parallelization

The details of th. Hirsch-Fye algorithm aflord several different atrategies
for parallzlisation, all of which, however, require distributing parts of the cal-
culations over all the processors and passing data (meesages) on a regular baais



from processor to processor. For some strategies, message passing is frequent
and only a small amount of floating point operations are done after the mes-
nages are passed. To avoid the communication overhead, we decided to exploit
the inherently parallel nature of almost all Monte Carlo calculations. Siuce
our code can run on a single processor, we gave each processor & copy and a
separate random numbrer seed, had it run the code, and then collected data
from all processors. To see gome of the imsues involved in this strategy, we will
first consider the general sspects of doing a Monte Carlo mmulation [19).
In Monte Carlo, we want thermodynamic average such as

(4) = L‘L;’)F_‘(i) (13)
Z= /dap(a) (14)

is the partition function (a normalisation constant). The basic property of a
Monte Carlo method is to replace the therrmal average by a sample average

(A) ~ A (15)
where
-
A= ; A (18)

and M is the nuinber of measurements A, of A. If M is lerge enough and the
A¢ are siatistically independent estimates of A then error estimates are taken
to be tmo/v/ M where m is a small integer, usually equai to 1 and

02 = Flj E(A-q - A)’ (17)

With our parallelisation strategy, the basic Monte Carlo relation (18) be-
comes
Min IM/n o

1 .
“:‘E[Z A+ Z A+ 4 X: A4} (18)
il irM/ntl ivx(m—1)M /41
N ————— |
prov- 1 proc 2 proc n

however, proper error estimation precludes collecting from each processor only
the sum of ita measurements. To be able to test for coirelations between suc-
cemsive measurements, one needs to collect the measurements from a given
proceseor sequentielly and combine these measurements with Lhose from the



other processors into a single file (or buffer). Then, after a.’' node nrocesses
are finished, proper error estimates are attempted. If successive measurements
from a given processor are correlated and the measurements from the proces
sors are interspersed, thern in the combined set of measurements the Jistance
between decorrelated measuremnents is increased. By grouping measurements
by processors, one can test if successive measurements are correlated, and if
they are, then one can esasily “rebin” successive pairs, triplets, etc. to produce
statistical independence.

All the calculations reported here were done on the LANL/IBM worksta-
tion cluster which has 16 IBM RISC/6000-580 workstations, each with 128 MB
memory, connected ethernet and FDDI networks. For our message passing
software, we used PVM (20| because it haa the functionality we needed and it
is free and essy to use.

Because of cluster usage, the time each processor takes to do M/n mea-
surements can vary widely. To loed bdalance, we start the simulation on each
node in an iofinite loop and whenever a node completes 8 measurement, the
measurement is sent to the host proceas which writes the result sequentially as a
record in a direct-access file and records in a index array which procemsor wrote
to that record. When the host records the desired uumber of measurements,
it terminates all node processes and then uses the index to rcwrite the data
into another file in proper processor sequence. The number of measurements
made varies from node to node but each node does the best it can under the
constraints of the time sharing system.

With this overall strategy virtually all inter-processor communication is
eliminated. Qur code runs 3/2 to 3 times faster on the cluster than on one
processor of a Cray-YMP computer, depending on whether the inner loop vec-
tor lengths are long (low temperatures) or short (high temperatures). For long
loop lengths, the code runs at 250 Mflops sustained on one processor of Cray
Y-MP computer. On the cluster, the code has run as long ss three days.

4. Results

Wa calculated the magnetic susceptibility and the single-particie spectral
deusity of tha degenerate, single-impurity Anderscn model for degeneracies
N = 1,4ar1 6in the particle-hole symmuetric case and for the single degeneracy
N = 4 in the asymmetric case [10]. Our results in general agree well with those
obtained by the NCA and NRG methods.

As shown if Pig. 1, in the particle-hole symmetric case the magnetic sus-
ceptibilitios follow the universal Kondo susceptibility curve (3] at low tempers-
tures. The local rnoment in the intermediate temperature regirne is suppressed
in compariron to the N = 2 came, which is mainly a consequence of the higher
degeneracy. The Kondo temperatures, extrapolated from the suacentibility
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Figure 1. The susceptibility Tx for N = 6 as a functicn of In(T) in units of
its high temperature value 4 3/8. The Monte Carlo results U -- 2, 3, and 4 are
marked by a A, o, and o. The solid lines are the universal curves from [3]. Ty

is the Kondo temperature. ‘Ihe estimated statistical errors are smaller than
the height of the markers.

curves, follow within 10% the estimatev from the generalised semi-empirical
equation based on the high-temperature serturbational theory of Haldane [21].
In the N = 4 case we found good agre.ment with Tx calculeted by Lin and
Hirech (18]

The cverall behavior of the single- iarticle spectral functions follows the
predictiops of NCA and NRG. The Lkaigh. of the central Kondo peak increascs
with increasing of degeneracy since the Kondo temperature also increases with
degeneracy when the other parameters remain constant. The height of the
tide peaks scales with degeneracy as | /N as predicied by Zhang and Lee [22].
The position of the side peaks deperds slightly upon degeneracy when the
unrenormalised energy difference between underlying states remains constant.
We amsociate this degeneracy-induced increased renormalisation with the in-
creass of the effective hybridisation. Within the computational error, we found
universal hehavior in the spectral functions at low frequencies when N = 4.
For N = 2, such universolity had been previously shown by Silver ot ol [13].

In the asymmetric case, the magnetic susceptibility also follows the uni-
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Figure 2. The spectral density ¥’ A in the asymmetric case as functions of the
frequency w calculated for N = 4,0 =4, T =05 T =0.125, and ¢, = -5.5.
The symmetric case would correspond to ¢, = ~8.

versal curve at low temperatures. Because of the highe degeneracy and strong
hybridisation, we did not observe a pronounced local .aoment or mixed valence
regime. The position of the Kondo peak in the spectral density moves towards
positive {requencies as the impurity energy increases from its value at the sym-
metric case. This shift ocales with the Kondo tamperature and with the average
impurity occupency as well. The side peaks also shift as the impurity energy
increases. Moreover, as the lowest energy state on the impurity site changes
from f? to f' the peak on the BIS side (w > 0) grows while the peak on the
PES sde {w < 0) diminishes because of different phase spaces for transitions
' — f%and f' — f2. An example of an asymmetric spectral density is shown
in Fig. 2.

We are just beginning to investigate the effect of the crystal-field and spin-
orbit splittings on the spectral functions for the case of N = 6. Special focus
in on the effect of the splittings on the Kundo peak.



8. Concluding Remarks

By using parallel computing, in an embarassingly simple but effective way,
/¢ performed a series of simulations of the degenerate, single-impurity Ander-
ton model [10]. Then, by using methods of Bayesian statistical inference, cou-
ple with the principle of maximum entropy, we extracted from the imaginary-
time Green’s function the single-particle spectral densities of the model. With
these spectral densities, we established the qualitative consistency of NCA cal-
culations. We studied the behavior of the spectral densities aa a function of
temperature and degeneracy for a variety of ranodel parameters. With ¥ = 6
we have a situation that begins to model the actusal degeneracy of a Ce impu-
rity. We have begua to mimic crystal effects by splitting the degeneracy of the
impurity level.

While our parallelisation scheme exploits one feature common to Monte
Carlo simulations, such simulations have other common features: an initializa-
tion, equilibration, and & messurement phase. What we have done is to reduce
the computation time by farming out the measurement phase to a large num-
ber of processors. Normally, the computing time for the messurement phase
dominates the combined computing time for the other two phases. With the
current parallelisation strategy, cach processor initialises and equilibrates and
hence these phases are fixed overheads to the simulations. As the number of
procemsor increases, s point is reached where these two phases dominate the
measurement one so that increaging the numoer of processors decreases the
computation time only sligktly. Improving performance needs to address the
parallelisations of these phases if a large number of ~rocessors are to be used.
We are currently moving over simulations to the CM-5 computer where we can
expect to have 64 to 258 processors for pioduction use.

For the impurity algorithm, the initialisation phase performs a sum like
2.+ F(n). Hence, it is casily perallelised by a procedure (18) similar to the one
used for the measurement phase. The computational core of the equlibriation
(and measurement) phase is the updating of matrix by an outer product of two
vectors. How best to do this is more delicate. Parallelising the equibriation
pbase appears to have at least two options:

1. Perform the initialisation and equilibriation on a {aster computer and feed
the results to the cluster or CM-5. A Cray-YMP should perform the
initislisation and equilibration by at leaat s factor of 10 faster than one
RISC/68000-380.

2. Distributa the calculation over all the procesaors in coacwe-grained pieces.
Instead of each processor providing & scparate initialisation, the processors
combine to provide just one. While this calculation may have significant
interprocessor communication, the use of many processcrs will be f{aster
than just using one.

With either of these options, all processors then perform separate Monte Carlo



runs, but now after a much shorter equilibration phase and with separate ran-
dom number seeds, they while become independent processes.

With the CM-5, the vectors unitsa on each processor have just become ac-
cessible in the measage passing mode. How to exploit them is also being stud-
ied. It appearn that non-assembley lanuage use of these units will require one’s
computer code be written in the parallel languages CMFortran or C*. Faced
with code rewriting, a natural question to ask,"Can a programming model be
implemented in CMFortran or C* that is just as effective but avoids the mes-
sage passing sofiware althogether? We are also currently investigating this
possibility. Basically, our thinking is still evolving on how to further parallelise
our code.
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