
High-Temperature Leaching of an Actinide-Bearing, Simulated High-Level Waste Glass

**J. H. Westsik, Jr.
C. O. Harvey
W. L. Kuhn**

March 1983

**Prepared for the
Office of Nuclear Waste Isolation
under U.S. Department of Energy
Contract DE-AC06-76RLO 1830**

**Pacific Northwest Laboratory
Operated for the U.S. Department of Energy
by Battelle Memorial Institute**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC06-76RLO 1830

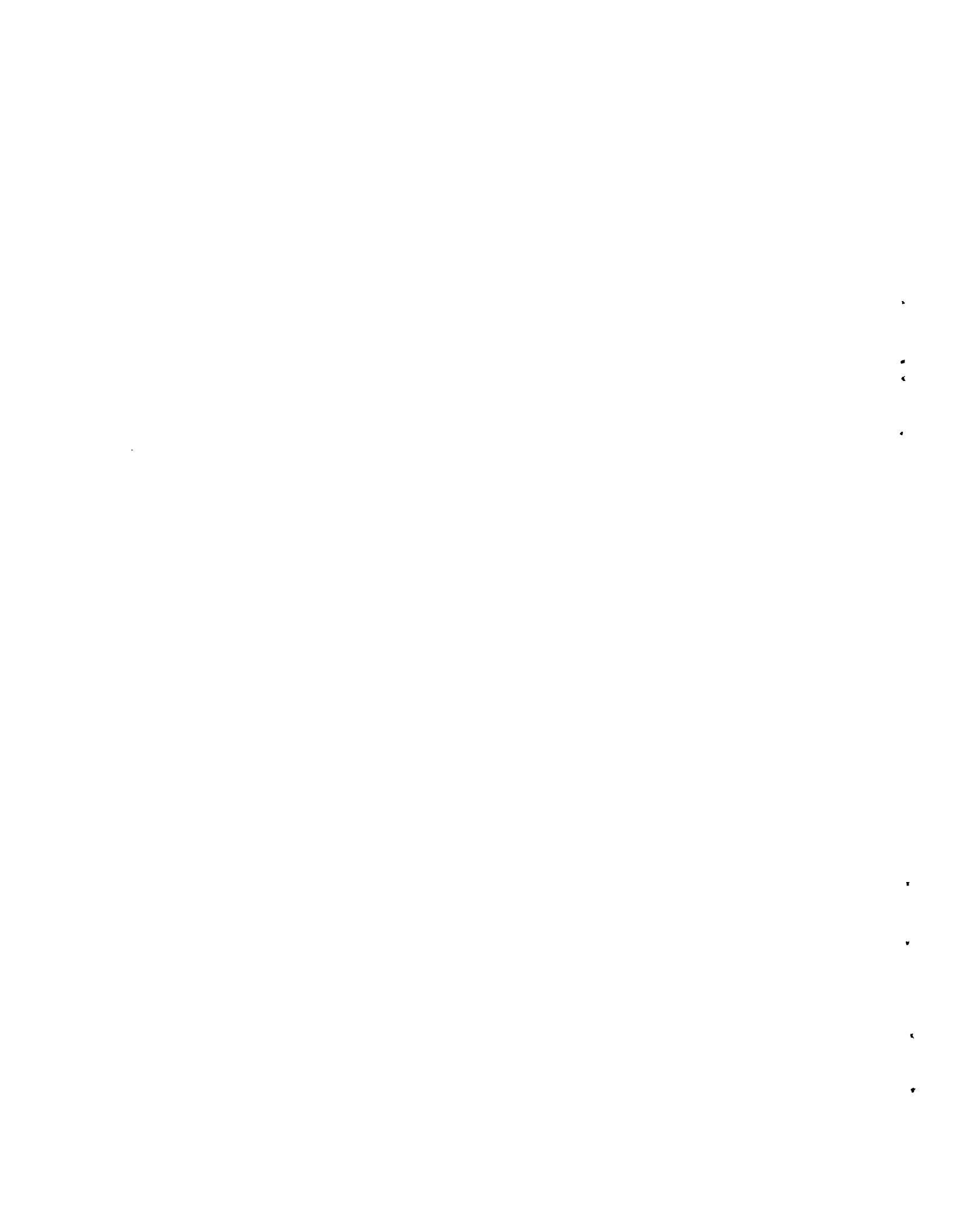
Printed in the United States of America
Available from
National Technical Information Service
United States Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151

NTIS Price Codes
Microfiche A01

Printed Copy	Price Codes
Pages	
001-025	A02
026-050	A03
051-075	A04
076-100	A05
101-125	A06
126-150	A07
151-175	A08
176-200	A09
201-225	A010
226-250	A011
251-275	A012
276-300	A013

3 3679 00053 7953

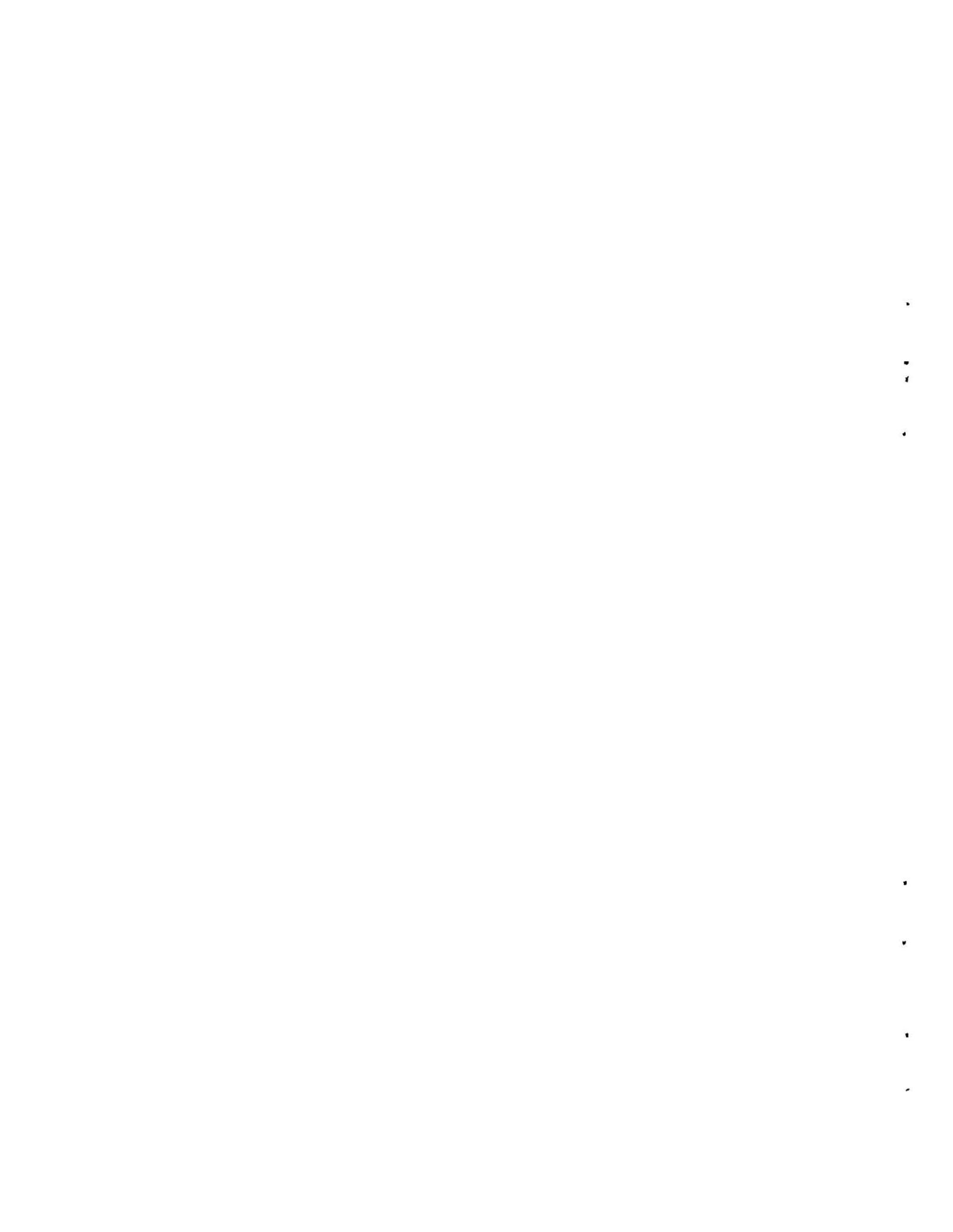
PNL-3172
UC-70


HIGH-TEMPERATURE LEACHING OF AN ACTINIDE-BEARING, SIMULATED HIGH-LEVEL WASTE GLASS

J. H. Westsik, Jr.
C. O. Harvey
W. L. Kuhn

March 1983

Prepared for the
Office of Nuclear Waste Isolation
Under U.S. Department of Energy
Contract DE-AC06-76RLO 1830


Pacific Northwest Laboratory
Richland, Washington 99352

ACKNOWLEDGMENTS

We would like to thank D. J. Bradley and R. P. Turcotte for contributing to the design of these experiments. R. C. Britton, N. D. Stice and H. Hollis provided assistance in running the tests. A. C. Leaf and F. T. Hara performed the chemical analyses on the large number of samples generated. G. B. Long and S. E. King provided editorial assistance.

This research was supported by the Waste Package Program conducted at the Pacific Northwest Laboratory. This program is sponsored by the Office of Nuclear Waste Isolation, which is managed by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC06-76RL0 1830.

SUMMARY

Researchers at the Pacific Northwest Laboratory are studying the chemical durability of a simulated high-level waste glass when exposed to high-temperature geologic solutions. In the study reported here, simulated high-level waste glass-beads (76-68 glass) doped with technetium, uranium, neptunium, plutonium, curium and americium were leached in deionized water, Waste Isolation Pilot Plant salt brine "B", and 0.03M sodium bicarbonate solution at 150 and 250°C for 2, 4, 8, 16, and 32 days. The resulting solutions were analyzed for several nonradioactive glass components and for the radioactive dopants.

The major objective of this report is to present data not previously reported in open literature. We have also included data that was discussed and interpreted in a previous report (Westsik and Peters 1982).

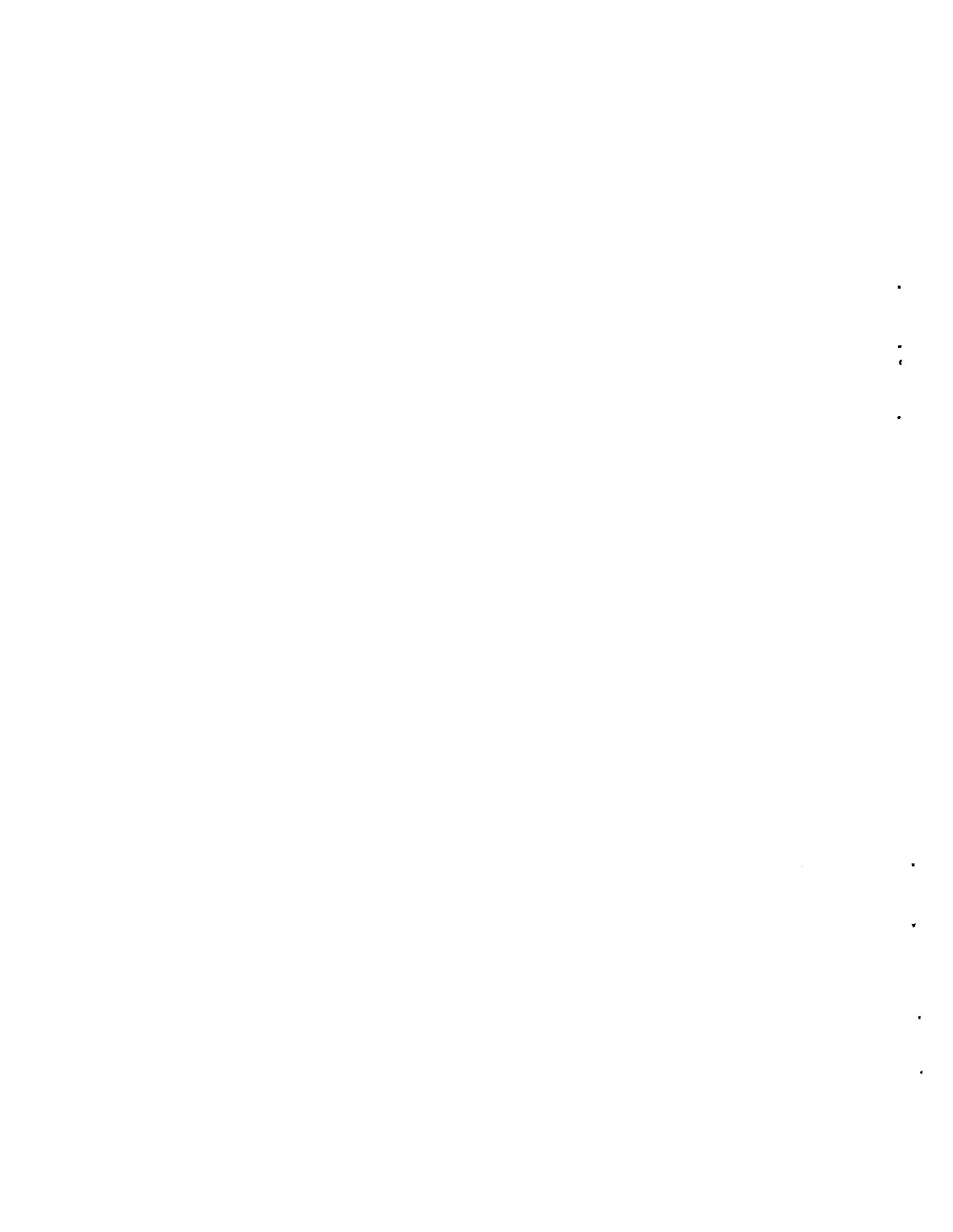
The glass exhibited "incongruent" leaching behavior, i.e., the normalized releases (g-glass/m^2) based on the different elements spanned four orders of magnitude. Normalized releases based on boron, molybdenum, sodium, cesium, silicon, and technetium were the same within a factor of three. They were also the highest normalized mass losses. Normalized mass losses based on the actinides were at least one order of magnitude lower.

Most of the nonradioactive components of the glass were released more to the salt brine than to the other two solutions. However, silicon, boron, molybdenum, technetium, and the actinides had their lowest releases in the salt brine. Reaction-layer thickness on the glass surface and weight losses of the glass beads were also smallest in the brine solution. Actinide releases were highest in the sodium bicarbonate solution. Calcium, strontium and barium releases decreased with time and temperature; the releases of most other elements increased with time and temperature.

Solubility appears to be limiting the release of most elements. The leachate pH is controlled by chemical species within the original leachant and by species released as the glass leached. In addition, carbonate ion

complexes with some elements including uranium--effectively increasing their release. The more soluble elements including sodium, boron, molybdenum and technetium provide an indication of the actual rate of reaction between the glass and water.

CONTENTS


ACKNOWLEDGMENTS	iii
SUMMARY	v
INTRODUCTION	1
EXPERIMENTAL	3
RESULTS AND DISCUSSION	7
SOLUTION ANALYSES	7
GLASS BEADS	23
CONCLUSIONS	27
REFERENCES	29
APPENDIX A--SOLUTION ANALYSES AND NORMALIZED MASS LOSS DATA	A.1
APPENDIX B--SUPPLEMENTAL LEACH TESTS AND RESULTS	B.1

FIGURES

1	Actinide and Technetium Releases into 150°C WIPP "B" Brine	9
2	Actinide and Technetium Releases into 150°C Sodium Bicarbonate Solution	10
3	Actinide and Technetium Releases into 150°C Deionized Water	11
4	Actinide and Technetium Releases into 250°C WIPP "B" Brine	12
5	Actinide and Technetium Releases into 250°C 0.03M Sodium Bicarbonate Solution	13
6	Actinide and Technetium Releases into 250°C Deionized Water	14
7	Releases of Nonradioactive Species into 150°C WIPP "B" Brine	15
8	Releases of Nonradioactive Species into 150°C 0.03M Sodium Bicarbonate Solution	16
9	Releases of Nonradioactive Species into 150°C Deionized Water	17
10	Releases of Nonradioactive Species into 250°C WIPP "B" Brine	18
11	Releases of Nonradioactive Species into 250°C 0.03M Sodium Bicarbonate Solution	19
12	Releases of Nonradioactive Species into 250°C Deionized Water	20
13	Cross Sections of Glass Beads Leached 32 Days at 250°C in the Indicated Solutions	24
14	Photomicrograph of Crystalline Phases Observed in Reaction Layer of Glass Bead Leached 32 Days in 250°C Deionized Water	25

TABLES

1	Experimental Matrix Showing Number and Conditions of Tests	4
2	Nominal Composition of 76-68 Glass	5
3	Leaching Solution Compositions	6
A.1	Normalized Releases into 150°C Deionized Water	A.1
A.2	Normalized Releases into 150°C 0.03M Sodium Bicarbonate Solution	A.2
A.3	Normalized Releases into 150°C WIPP "B" Brine	A.3
A.4	Normalized Releases into 250°C Deionized Water	A.4
A.5	Normalized Releases into 250°C 0.03M Sodium Bicarbonate Solution	A.5
A.6	Normalized Releases into 250°C WIPP "B" Brine	A.6
A.7	Elemental Concentrations (mg/L) in 150°C Deionized Water Leachate	A.7
A.8	Elemental Concentrations (mg/L) in 150°C 0.03M NaHCO ₃ Solution Leachate	A.8
A.9	Elemental Concentrations (mg/L) in 150°C WIPP "B" Brine Leachate	A.9
A.10	Elemental Concentrations (mg/L) in 250°C Deionized Water Leachate	A.10
A.11	Elemental Concentrations (mg/L) in 250°C 0.03M NaHCO ₃ Solution Leachate	A.11
A.12	Elemental Concentrations (mg/L) in 250°C WIPP "B" Brine Leachate	A.12
B.1	Analyzed Composition of 76-68 Glass Used in HLWIP Hydrothermal Studies	B.2
B.2	Specimen Data and Leachate Analyses for HLWIP Hydrothermal Studies	B.3

INTRODUCTION

The chemical durability of a simulated high-level waste (HLW) glass when exposed to high-temperature simulated geologic solutions is being studied at the Pacific Northwest Laboratory, operated by Battelle Memorial Institute for the U.S. Department of Energy. This report presents results of work conducted as part of the Waste Package Program (WPP) to evaluate the behavior of waste glass in simulated repository environments.

Specifically, this document reports the results of tests in which a simulated HLW glass (PNL 76-68 glass) doped with various radiotracers was exposed to: 1) a salt brine simulating that found near the Waste Isolation Pilot Plant (WIPP) site near Carlsbad, New Mexico; 2) a 0.03M sodium bicarbonate solution representing potential silicate rock repositories; and 3) deionized water. Tests were run at 150 and 250°C to provide kinetic information so that short-term test results may be extrapolated to longer times at lower temperatures. To achieve this goal, the tests discussed here were run under conditions similar to other WPP-sponsored tests being run at 25 and 75°C for longer times (Peters and Diamond 1981). Time and temperature dependences of leaching as determined by these tests have been reported by Westsik and Peters (1981). They emphasized the leaching behavior of boron, molybdenum, silicon and sodium.

The objective of the present document is to report the leach test results at 150 and 250°C for other components of the glass including actinides and technetium, that were not previously reported by Westsik and Peters. The experiments discussed in this report were conducted during 1979. Additional experiments on the high-temperature leaching of 76-68 glass, funded by the High-Level Waste Immobilization Program, were conducted in 1980; the data is listed in Appendix B. Both sets of data are being documented in this report in order to help complete the data base on the leaching behavior of 76-68 glass.

Because leaching is a complex reaction between the glass, the leachant, and the surrounding environment, our experimental philosophy has been to start with simple systems and then progress to more complicated systems as we gain an

understanding of the simpler ones (Bradley, McVay and Coles 1980). Therefore, work reported here addresses only the glass-solution interactions. More recent studies include the canister, backfill, and geologic media (Shade and Bradley 1980).

For ease of handling and chemical analysis, these tests used glass with nonradioactive isotopes substituted for the fission products. The same glass was also doped with technetium and these actinides: uranium, neptunium, plutonium, americium, and curium. The glass-solution interactions were studied with respect to 1) the amounts of materials released from the glass to the solutions, and 2) the changes in the glass as a result of the exposure.

EXPERIMENTAL

Undoped glass beads and glass beads doped with either ^{99}Tc , ^{244}Cm , ^{233}U and ^{243}Am , or ^{237}Np and ^{239}Pu were exposed to salt brine, 0.03M sodium bicarbonate solution and deionized water at 150 and 250°C for times ranging from 2 to 32 days. The nonradioactive simulated-HLW glass beads were used to facilitate chemical analysis of the leachates and analysis of the glass surfaces after leaching. Technetium and the actinides were included in other glass beads so that their specific leaching behavior could be studied. The test matrix is shown in Table 1. The composition including radiotracers of the glass, commonly known as 76-68, is shown in Table 2 (McElroy 1977). Preparation and characterization of the glass beads were described earlier by Bradley, Harvey, and Turcotte (1979), who found that the technetium segregated into a phase that coated small pores inside the glass beads, while the other dopants were evenly distributed throughout the glass matrix. Curium-doped beads had a geometric surface area of $\sim 1.6 \text{ cm}^2$; all other beads had geometric surface areas of $\sim 1.4 \text{ cm}^2$. The leachant compositions are shown in Table 3.

A single glass bead weighing about a third of a gram was placed in a gold capsule. Fifteen milliliters of solution were added to the gold capsules in the undoped-bead tests, and due to an error in pipetting, 22 mL were added to the doped-bead tests. The resulting specimen surface area to solution volume ratios (SA/V) therefore ranged from 0.06 to 0.09 cm^{-1} as indicated in Table 1. Each capsule was then purged with argon and sealed by tungsten-arc inert-gas welding. The capsules were placed in Hastelloy autoclaves that were then pressurized with argon to a pressure of 13.8 MPa (2000 psi) at the operating temperatures. After the tests, the capsules were cooled back to room temperature, the capsules were opened, and the solutions and beads were removed from the capsules. The solutions were not filtered but were acidified with 0.01 mL of concentrated nitric acid. In the doped-bead tests, the gold capsules were then rinsed with 30 mL of a $5\text{M HNO}_3 + 0.05\text{M HF}$ solution to remove any material that may have precipitated ("plated out") on the capsule walls. The nonradioactive solutions were analyzed using inductive-coupled

TABLE 1. Experimental Matrix Showing Number and Conditions of Tests

Dopant	Time, days	Solution					
		WIPP "B" Brine		0.03M Sodium Bicarbonate		Deionized Water	
		Temperature, °C		150	250	150	250
Undoped	2	1(a)	1	1	1	1	1
	4	1	1	1	1	1	1
	8	1	1	1	1	1	1
	16	1	1	1	1	1	1
	32	1	1	1	1	1	1
Cm ²⁴⁴	2	1(b)	1	1	1	1	1
	4	0	0	0	0	0	0
	8	1	0	1	0	1	0
	16	1	0	1	0	1	0
	32	1	1	1	1	1	1
Tc ⁹⁹	2	1(c)	1	1	1	1	1
	4	2	1	2	1	2	1
	8	1	2	1	2	1	2
	16	1	1(d)	1	1(d)	1	1(d)
	32	1	2	1	2	1	2
233U and 243Am	2	1(c)	1	1	1	1	1
	4	1	1	1	1	1	1
	8	1	1	1	1	1	1
	16	1(d)	1(d)	1(d)	1(d)	1(d)	1(d)
	32	1	0	1	0	1	0
237Np and 239Pu	2	1(c)	1	1	1	1	1
	4	1	1	1	1	1	1
	8	1	1	1	1	1	1
	16	1	1(d)	1(d)	1(d)	1(d)	1(d)
	32	1	1	1	1	1	1

(a) SA/V = 0.09 for undoped beads.

(b) SA/V = 0.07 for curium-doped beads.

(c) SA/V = 0.06 except as noted for beads doped with Tc, U, Am, Np and Pu.

(d) SA/V = 0.09.

emission spectrometry and flame-emission spectrometry. Also, the leachate and rinse solutions obtained from the tests with the curium-doped beads and some technectium-doped beads were analyzed by ICP. Actinide and technetium concentrations were measured by radiochemical techniques described by Bradley, Harvey and Turcotte (1979).

TABLE 2. Nominal Composition of 76-68 Glass

Nonradioactive Constituents			
Oxides	Weight Percent	Oxides	Weight Percent
SiO ₂	39.8	Pr ₆ O ₁₁	0.5
Na ₂ O	12.5	La ₂ O ₃	0.5
Fe ₂ O ₃	9.8	P ₂ O ₅	0.5
B ₂ O ₃	9.5	Cr ₂ O ₃	0.4
ZnO	5.0	SrO	0.4
U ₃ O ₈	4.6	Sm ₂ O ₃	0.3
TiO ₂	3.0	TeO ₂	0.3
MoO ₃	2.3	Y ₂ O ₃	0.2
CaO	2.0	NiO	0.2
ZrO ₂	1.8	Rh ₂ O ₃	0.2
Nd ₂ O ₃	1.7	Rb ₂ O	0.1
CeO ₂	1.2	Eu ₂ O ₃	<0.1
RuO ₂	1.1	Gd ₂ O ₃	<0.1
Cs ₂ O	1.0	Ag ₂ O	<0.1
BaO	0.6	CdO	<0.1
PdO	0.5		

Radioactive Tracers	
Tracer	Weight Percent
⁹⁹ Tc	0.46
²³³ U	2.5
²³⁷ Np	0.41
²³⁹ Pu	0.041
²⁴³ Am	0.086
²⁴⁴ Cm	0.012

TABLE 3. Leaching Solution Compositions

Leachant	Nominal Composition, mg/L	Analysis, mg/L ^(b)
WIPP "B" Salt, Brine ^(a)		
Na	115,000	NA ^(c)
K	15	34
Mg	10	10
Ca	900	723
Fe	2	1.3
Sr	15	28
Rb	1	NA
Cs	1	2.2
Cl ⁻	175,000	NA
SO ₄ ⁼	3,500	NA
BO ₃ ⁼	10	11.4
HCO ₃ ⁻	10	NA
Br ⁻	400	NA
I ⁻	10	NA
Ce		1.2
La		2.4
Nd		0.7
Si		3.2
U		1.5
Plus Traces of Other Elements		
Sodium Bicarbonate, 2.52 g/L		
Na	690	749
HCO ₃ ⁻	1,380	NA
Plus Traces of Other Elements		
Deionized Water, Trace Impurities		

(a) Dosch and Lynch (1978).

(b) Composition as measured by ICP and flame emission; does not include all elements.

(c) NA = not analyzed.

RESULTS AND DISCUSSION

The physical characteristics of the glass beads and leachate analyses after high-temperature leaching are discussed in this section.

SOLUTION ANALYSES

Elemental release data were obtained from 1) ICP analyses of the undoped-bead leachates, 2) ICP analyses of the curium-doped bead and some technetium-doped bead leachates, 3) radiochemical analyses of all doped-bead leachates, and 4) radiochemical analyses of the acid-rinse solution from the doped-bead leach containers. The results of this study are summarized below. Interested readers should refer to Appendix A for the complete data obtained (both solution concentrations and normalized releases are listed).

Calculations leading to the normalized releases are based on the equation

$$\text{normalized release (g-glass/m}^2) = \frac{a_n}{a_0} \cdot \frac{w}{s}$$

where

a_n = the amount of element or radionuclide released (mg or d/m)

a_0 = the initial amount of element or radionuclide in the glass (mg or d/m)

w = the weight of the sample, g

s = the geometric surface area of the bead, m^2 .

For the actinides and technetium, a_n includes both the quantity found in the leachate and the amount detected in the acid rinse of the gold capsules. The acid-rinse solutions contained at least 20% of the actinide leached from the glass beads, and in many of the tests, the rinse contained the majority of the actinide released. It is not known, however, how much of the actinide sorbed on the gold while the samples were at the test temperature and how much precipitated as the samples were cooled back to room temperature.

Nor is it known how much of the actinide sorbed on the glass bead itself. The discussions that follow are based upon the total amount released (i.e., leachate plus acid rinse), although normalized releases based only on the actinide concentration in the leachate (i.e., ignoring plateout) are also listed in Appendix A. For the technetium-doped beads, most (at least 93%) of the technetium released was found in the leachate.

Figures 1 through 6 show normalized releases based on the behavior of the actinides and Tc. The figures show that the actinides are released more to the bicarbonate solution than to either the brine or deionized water leachants. In all leachants, the normalized releases of the actinides were always lower than the normalized releases of Si (Figures 7 through 12). Bradley, Harvey and Turcotte (1979) reported similar actinide behaviors in leach tests conducted at 22°C using a modified International Atomic Energy Agency (IAEA) long-term leach test procedure. It appears that the actinides leach at a lower rate than the glass matrix so that the actinides remain in a leached layer on the glass surface. In an early study, samples of an undoped 76-68 glass leached for 2 days in 99°C deionized water exhibited a rare-earth-rich layer near the glass surface (Houser, Tsong and White 1978). We assume that the actinides remain in a similar layer in our tests.

Technetium-based releases are always higher than the normalized, Si-based releases. Releases of Tc to the WIPP "B" brine were an order of magnitude lower than those to the other two leachants.

Figures 7 through 12 show normalized releases based upon some of the nonradioactive species in the glass. These curves are included only to show the general trends in behavior of the glass components. Actual data should be taken from the tables in Appendix A. Impurities in the acid solution used to rinse the gold capsules were in high-enough concentrations to mask any nonradioactive, "plate-out" species that may have redissolved in the rinse solution. Therefore, the curves shown in Figures 7 through 12 represent only results of the analyses of the leachate and do not include any plateout. By comparing the results of the analyses of the rinse blank, the rinse solutions themselves, and the leachates; it is possible to state qualitatively that the

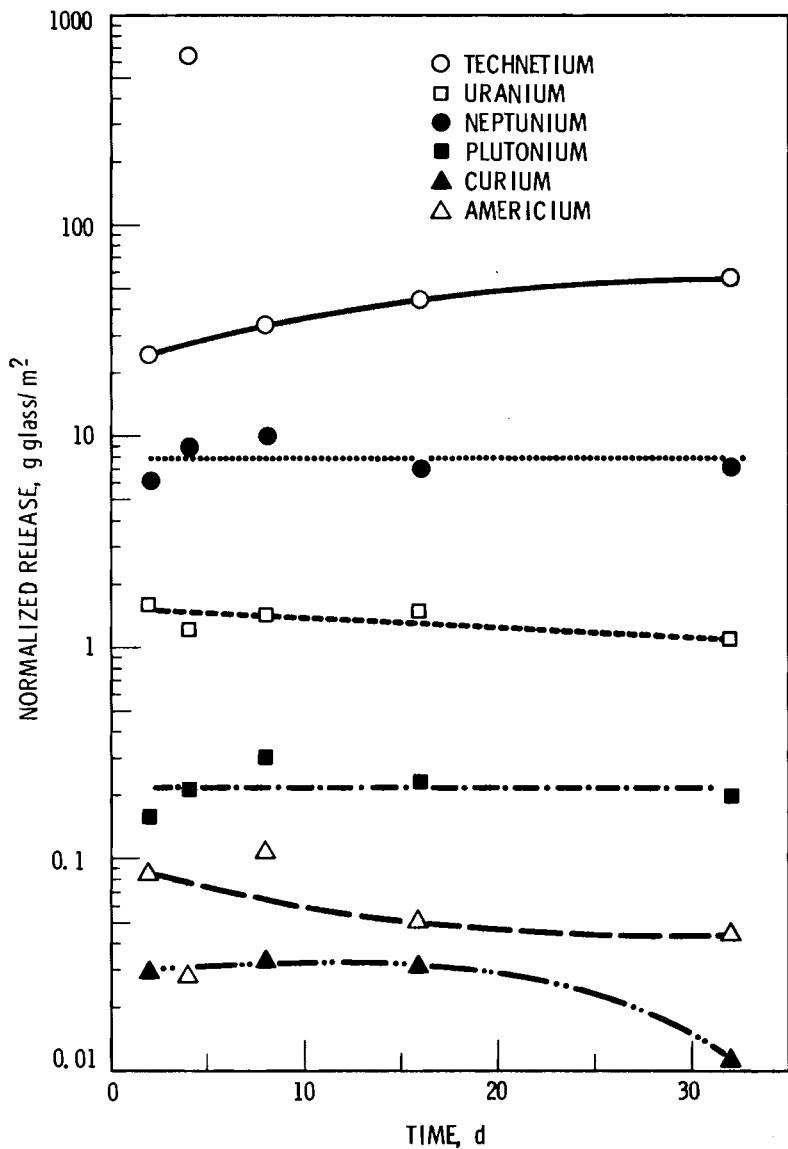


FIGURE 1. Actinide and Technetium Releases into 150°C WIPP "B" Brine

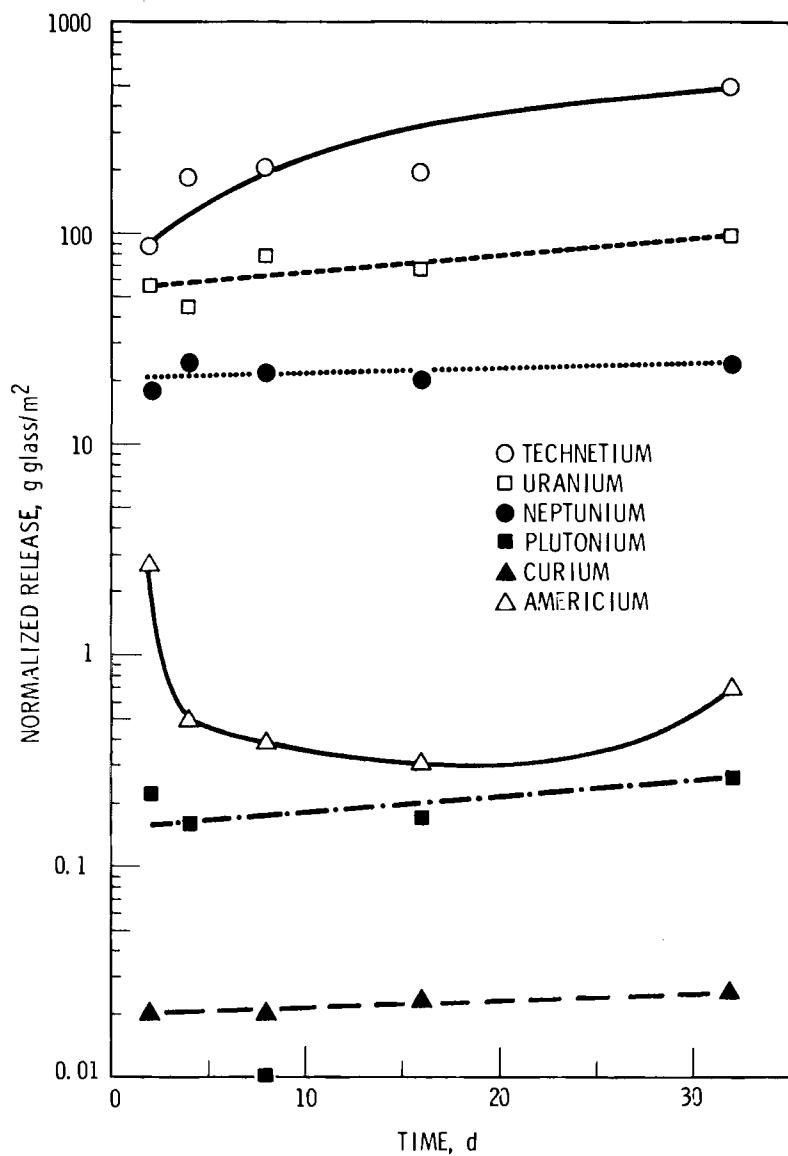


FIGURE 2. Actinide and Technetium Releases into 150°C Sodium Bicarbonate Solution

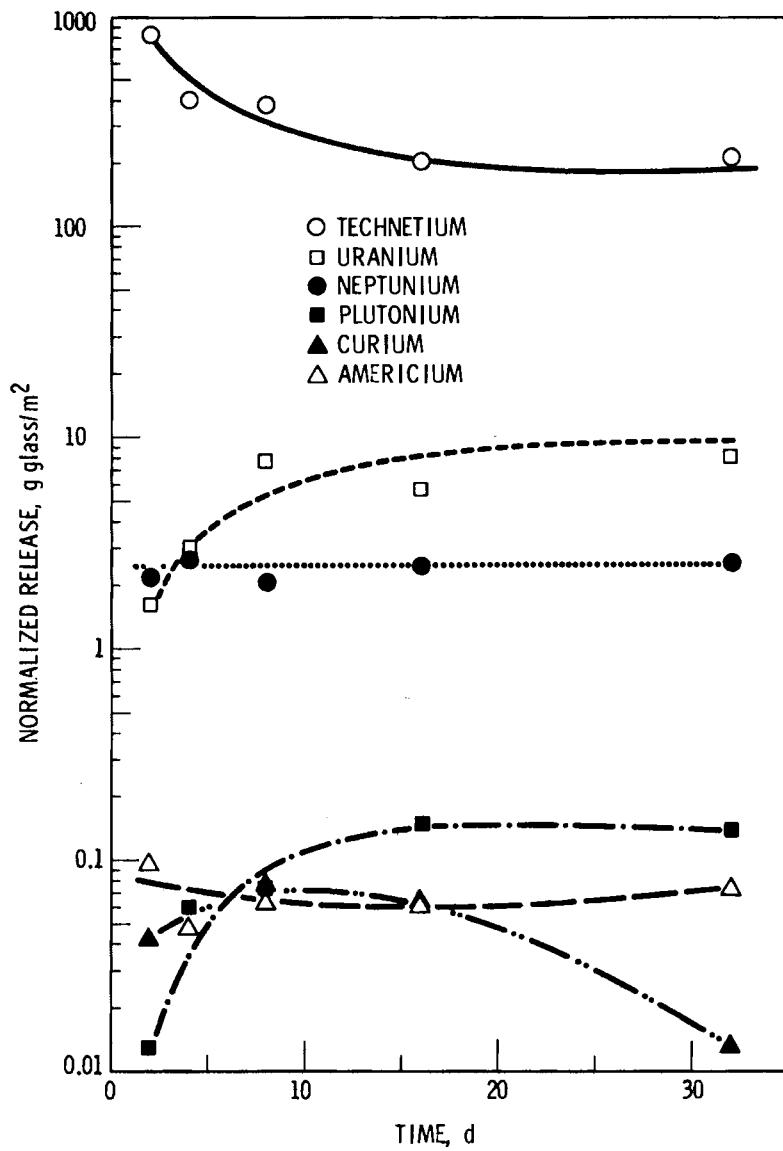


FIGURE 3. Actinide and Technetium Releases into 150°C Deionized Water

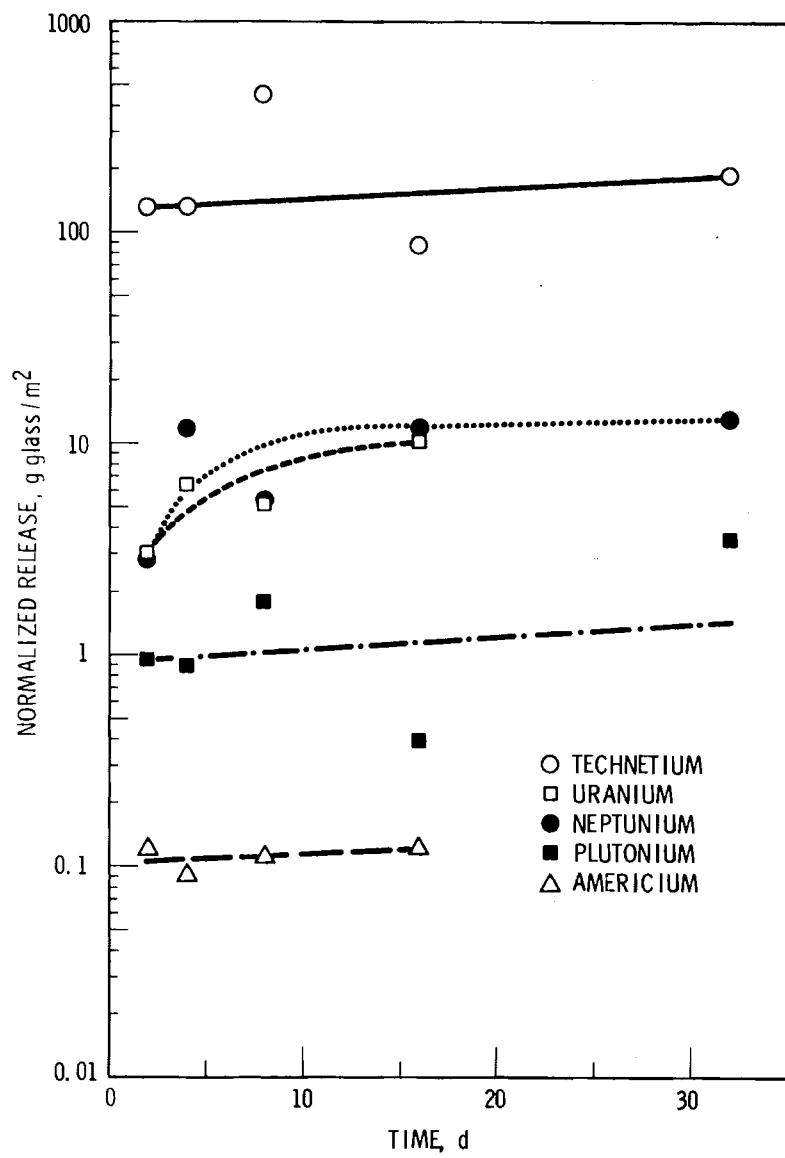


FIGURE 4. Actinide and Technetium Releases into 250°C WIPP "B" Brine

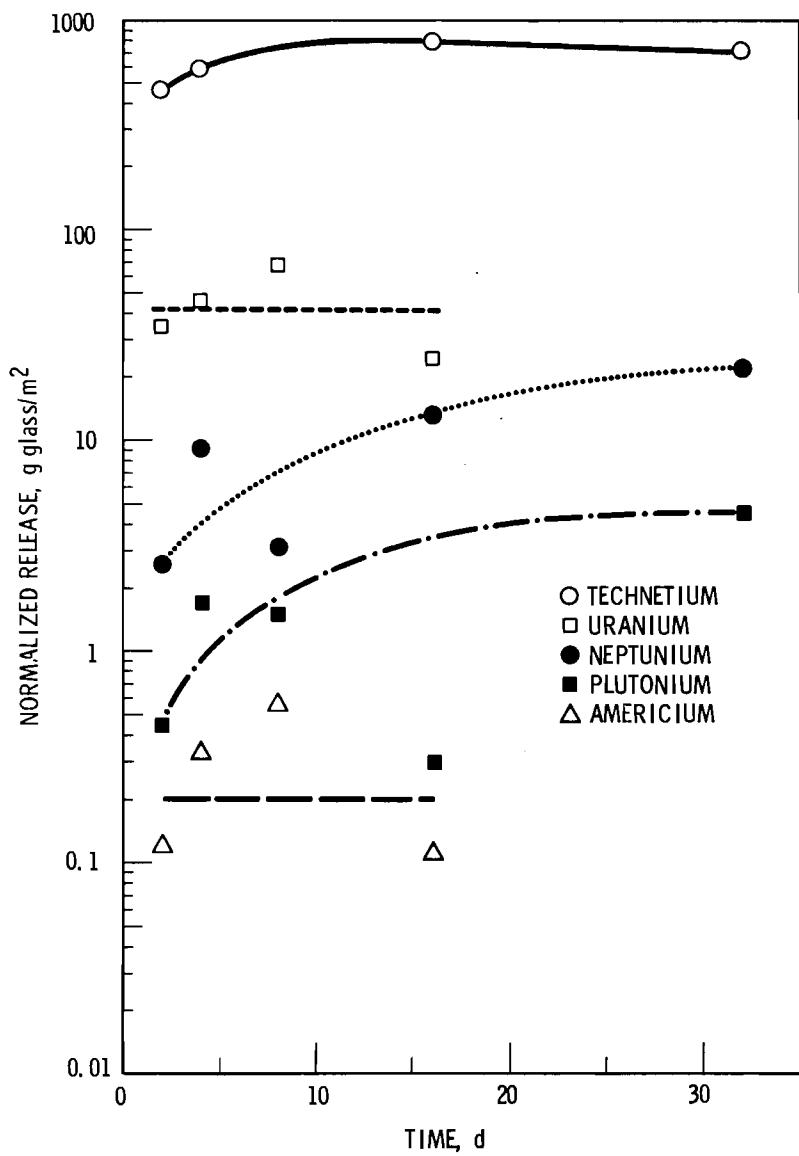
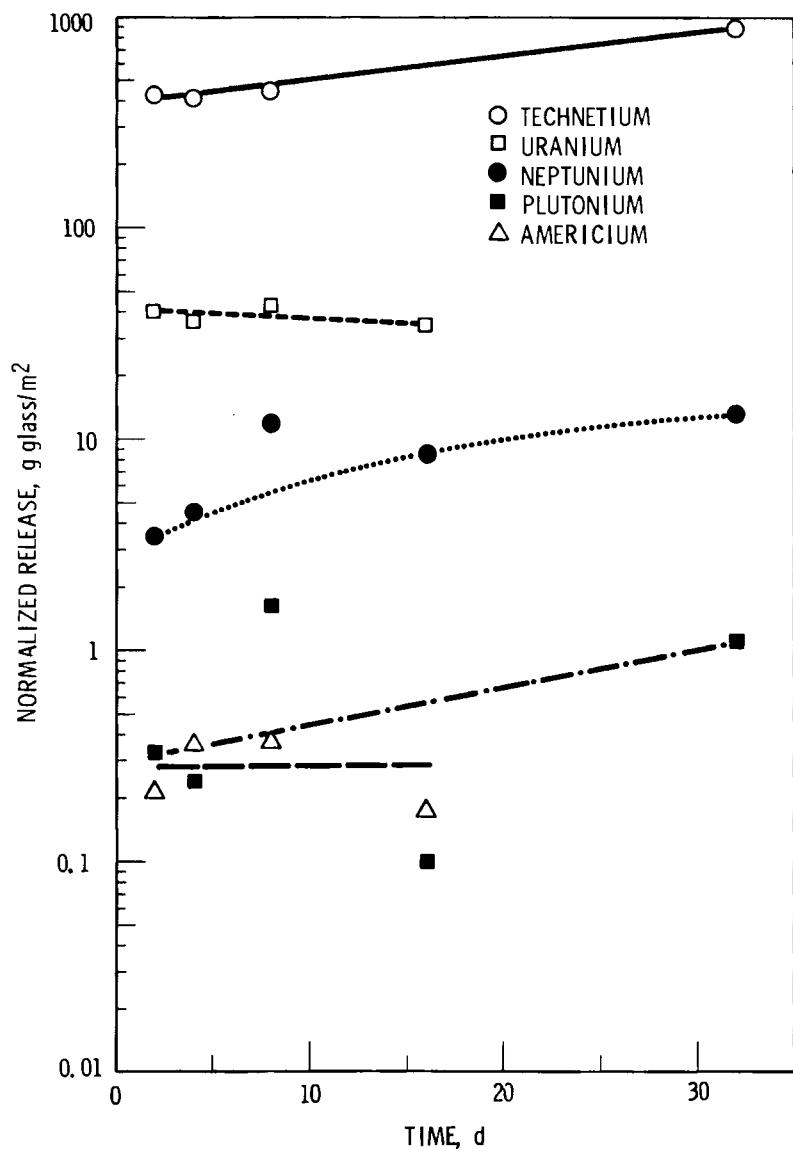
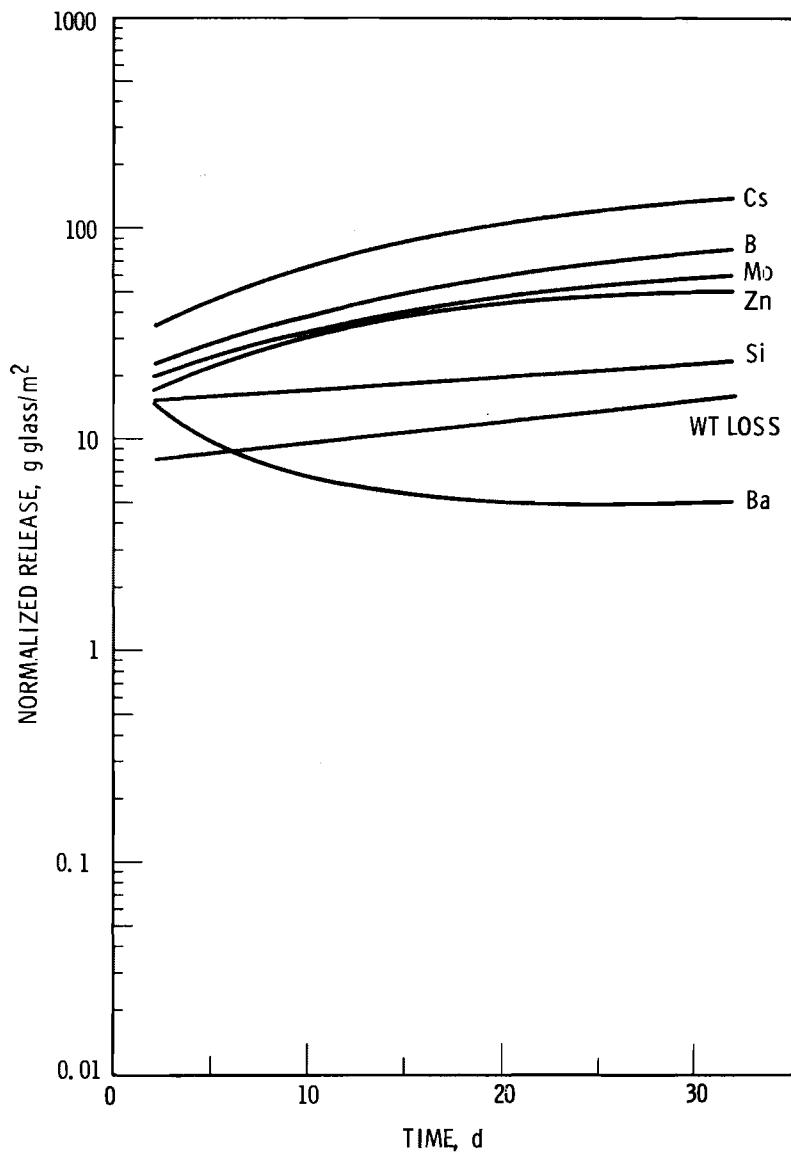
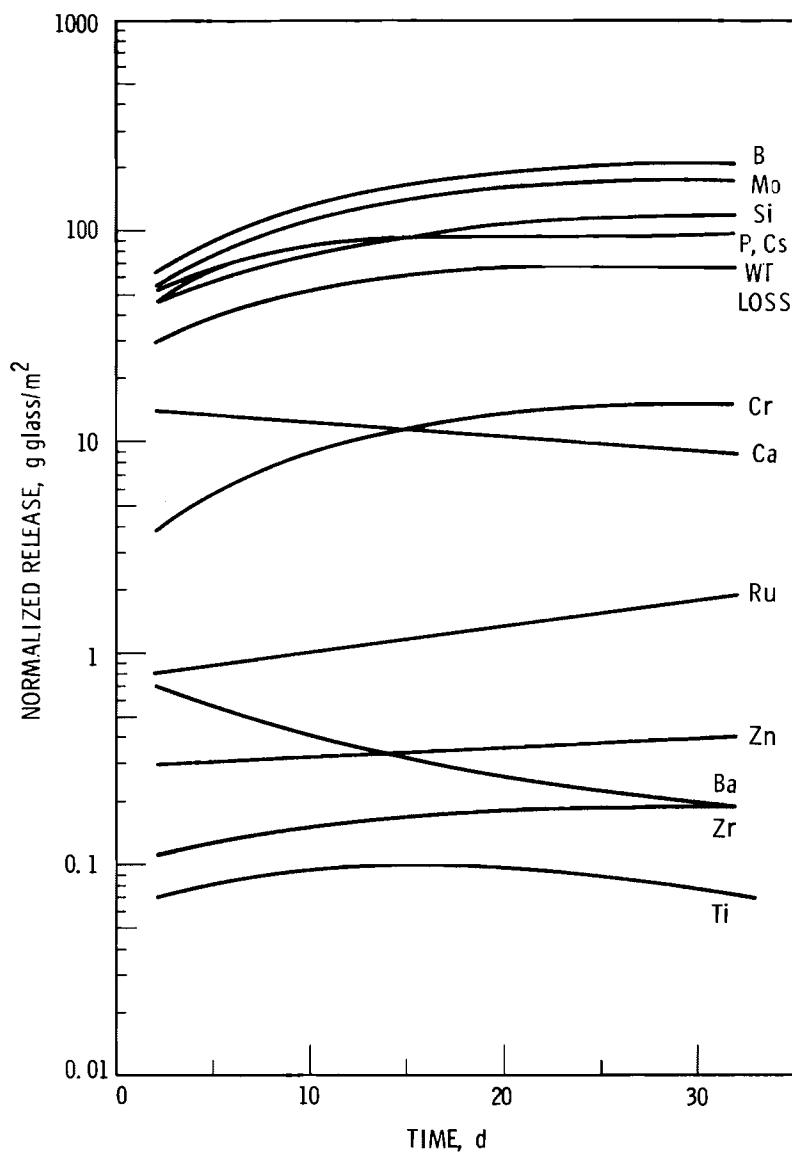


FIGURE 5. Actinide and Technetium Releases into 250°C 0.03M Sodium Bicarbonate Solution

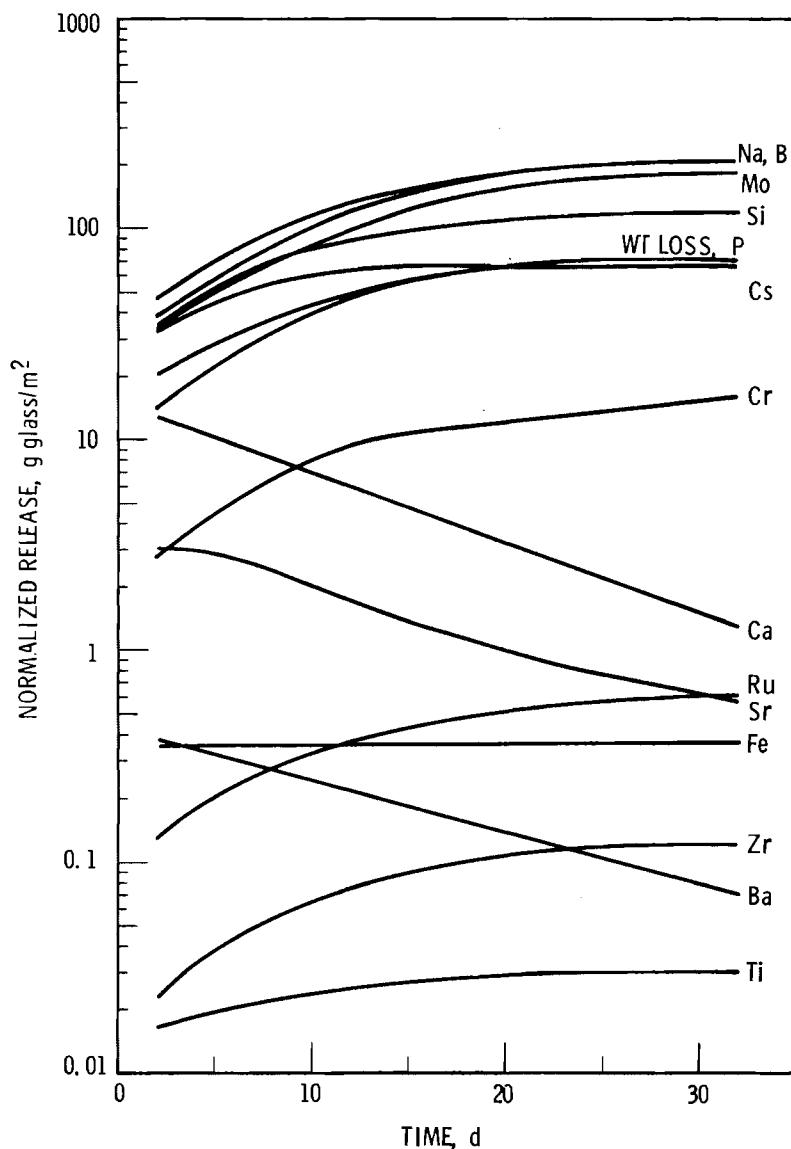

FIGURE 6. Actinide and Technetium Releases into 250°C Deionized Water

FIGURE 7. Releases of Nonradioactive Species into 150°C WIPP "B" Brine.
(Refer to Appendix A for actual data points.)

FIGURE 8. Releases of Nonradioactive Species into 150°C Sodium Bicarbonate Solution. (Refer to Appendix A for actual data points.)

FIGURE 9. Releases of Nonradioactive Species into 150°C Deionized Water.
(Refer to Appendix A for actual data points.)

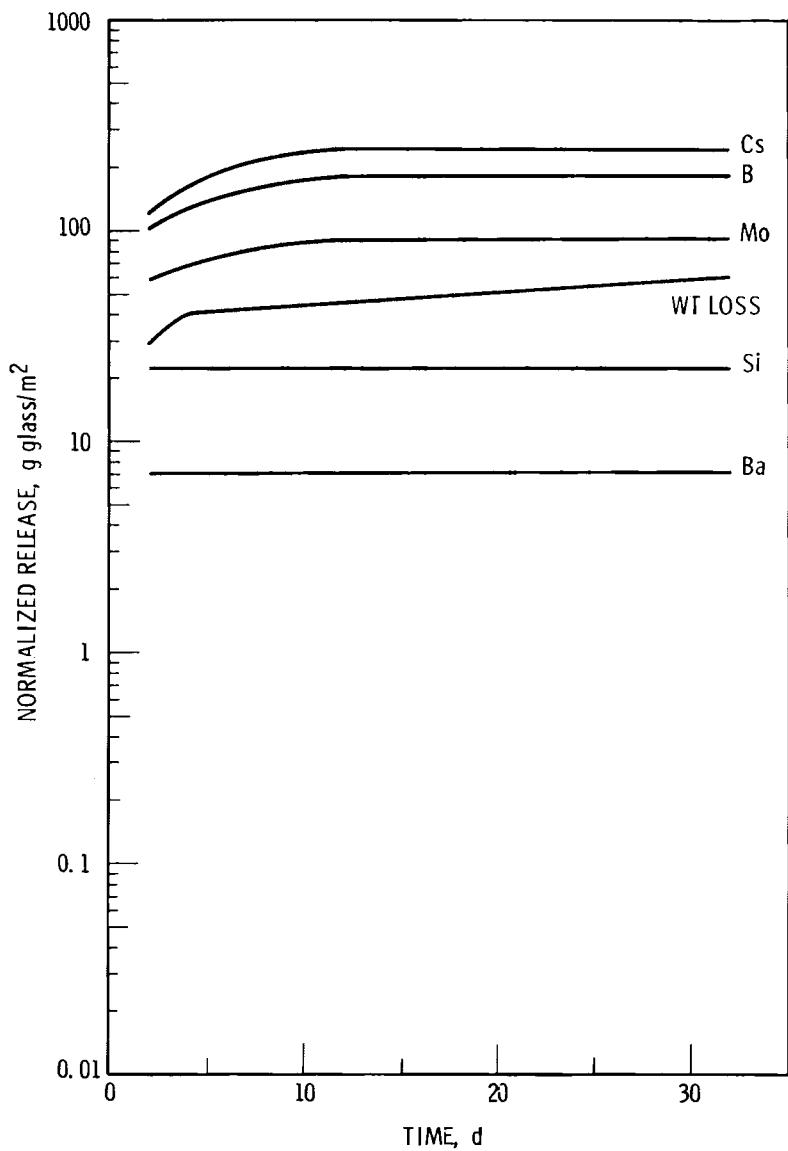
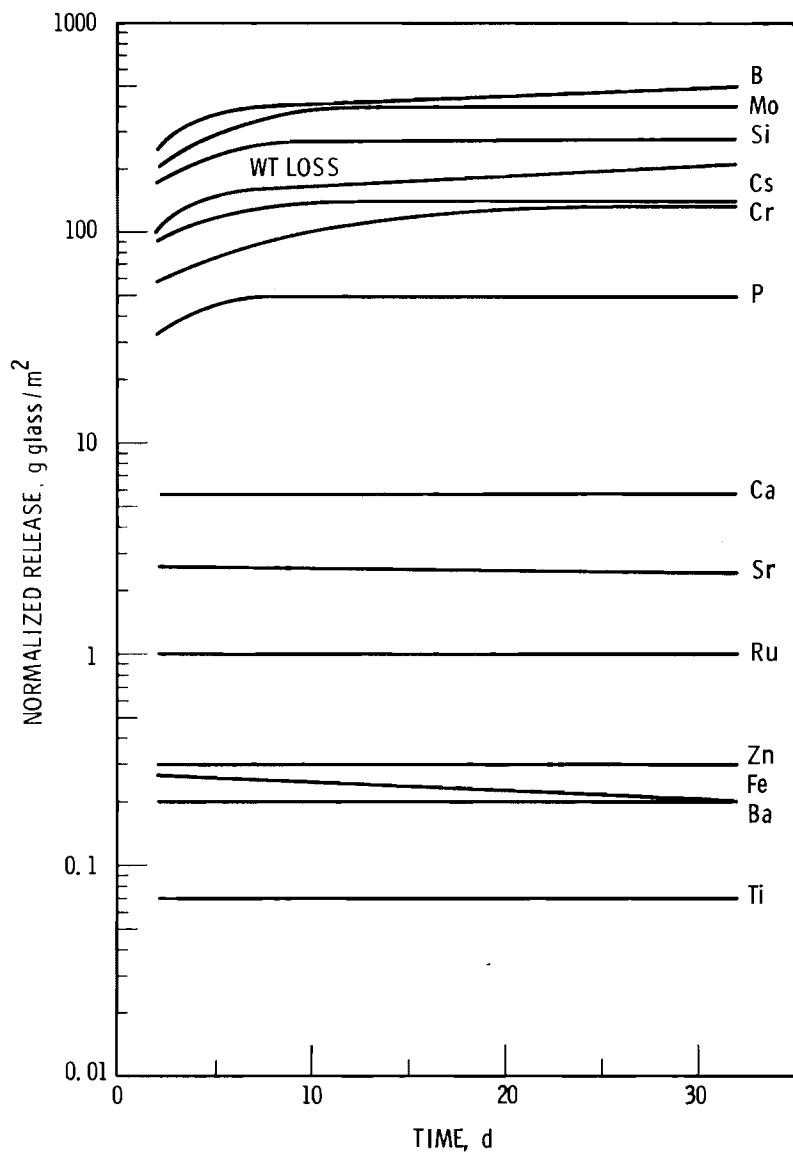
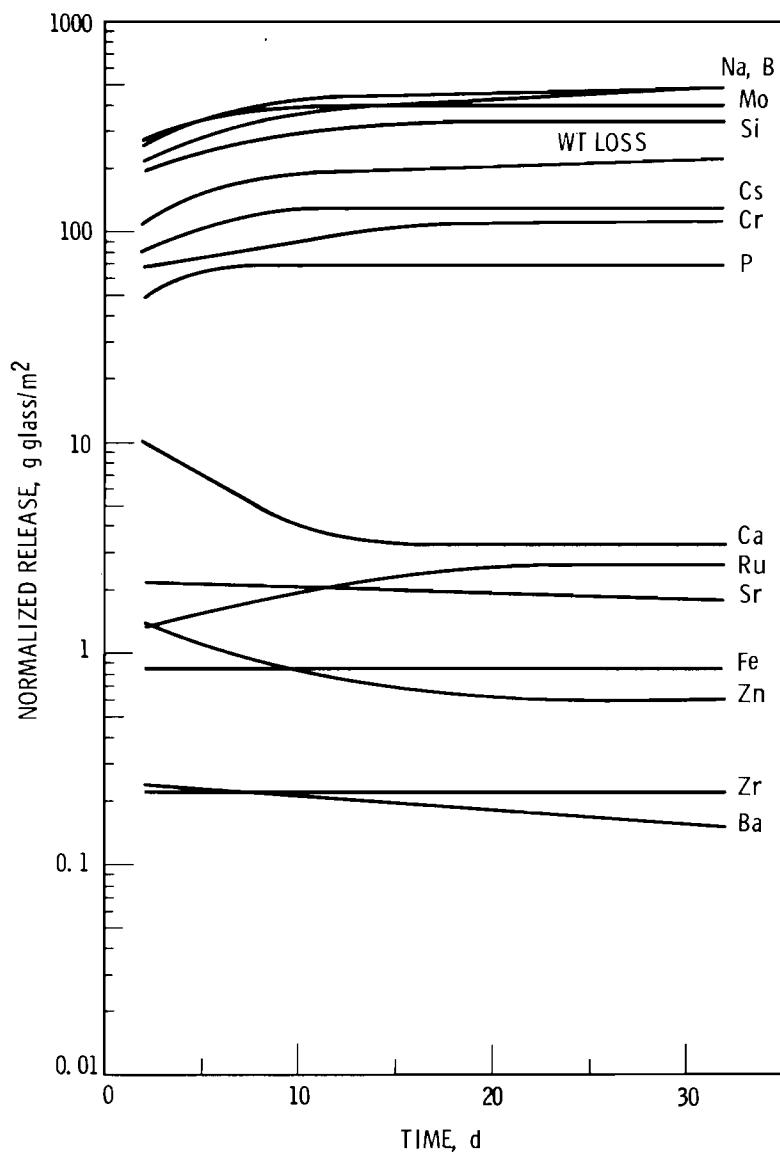




FIGURE 10. Releases of Nonradioactive Species into 250°C WIPP "B" Brine.
(Refer to Appendix A for actual data points.)

FIGURE 11. Releases of Nonradioactive Species into 250°C Sodium Bicarbonate Solution. (Refer to Appendix A for actual data points.)

FIGURE 12. Releases of Nonradioactive Species into 250°C Deionized Water.
(Refer to Appendix A for actual data points.)

rinse of the gold capsules did not remove significant quantities of most of the nonradioactive species. However, there may be sufficient quantities of Fe, Ti, Zn, Ba, Ca, and Sr in the rinse solutions to increase the calculated release of these elements above the releases calculated from the leachate analyses alone.

The trends of normalized releases of the nonradioactive species to deionized water and to the sodium bicarbonate solution are similar. Releases increase with increasing temperature and increasing time of leaching. However, the alkaline earth (Ca, Sr, and Ba) concentrations decrease as the length of the test increases. As the glass undergoes hydrothermal alterations, these elements are probably incorporated into newly formed crystalline phases. Nickel, iron and zinc behaved erratically and their releases are not shown. They also may be involved in the formation of new phases. Iron in particular has been shown to recrystallize, forming an acmite phase, $\text{NaFeSi}_2\text{O}_6$, under hydrothermal conditions (Westsik and Turcotte 1978). Most of the nonradioactive species were released more to the WIPP "B" salt brine than to either of the other two solutions. Silicon, boron and molybdenum were the only nonradioactive elements with lower concentrations in the salt brine than in the deionized water or sodium bicarbonate solutions.

It is apparent from Figures 6 through 11 that for many cases the releases of radionuclides do not increase with time after a few days, and from Figures 7 through 12 that the same is true for many nonradioactive elements. In some cases, there is an obvious decrease in the release of an element. Hence, it appears that for many elements the releases are controlled by solubilities, as has been shown recently by Grambow (1982) for other experiments. From one leachant to another, the solubilities could be affected both by pH and the concentration of complexing ligands, such as CO_3^{2-} .

After 2 days at 250°C, the pH (measured at room temperature) of the solutions increased from the initial values as follows: deionized water, 7.0 to 9.7; bicarbonate, 8.6 to 9.3; WIPP "B" brine, 7.0 to 7.3. The rise of pH in deionized water can be attributed to the release of alkali from the glass and the buffering effect of silicic and boric acid also released from

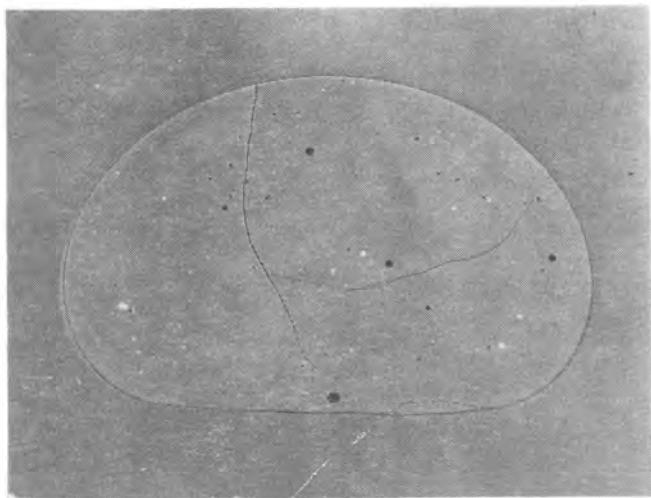
the glass. The buffering effect of bicarbonate is responsible for the alkaline and relatively constant pH for that leachant. We would speculate that in the case of the WIPP "B" brine, the pH rise may be suppressed by the precipitation of magnesium or calcium compounds.

The pH values reported in the paragraph above are only pH values collected in these tests. Additional pH data are available from the work reported by Westsik and Peters (1981). In their work, glass cylinders of 76-68 glass were leached for 3 days in deionized water at 25, 50, 100, 150, 200, 250, 300, and 350°C. Additional experiments were conducted for 1, 12, 27, 48, and 64 days in deionized water at 100 and 250°C. In all these tests the SA/V was maintained at 0.099 cm⁻¹. Experimental details and leachate analyses for these tests are presented in Appendix B. For all times and temperatures except 25 and 50°C for 3 days the pHs were in the range 9.4 to 10.0. The pHs at 25 and 50°C were measured to be 8.9 and 7.7, respectively. It is expected, therefore, that in the doped-bead tests in deionized water reported here, the final pH fell in this same range of 9.4 to 10.0.

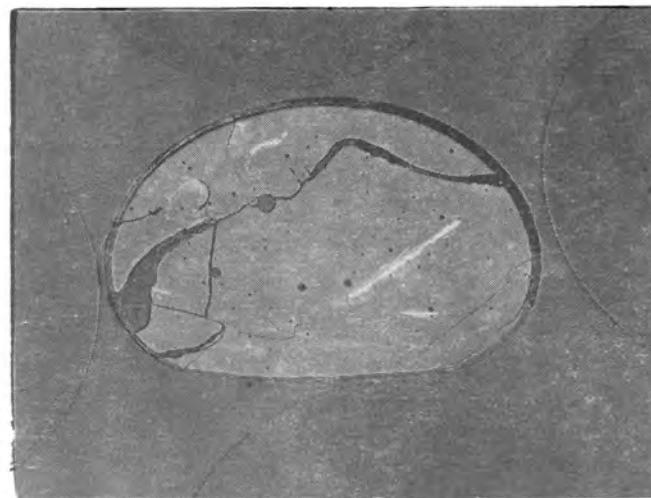
The scatter in the actinide data is great enough to obscure subtle effects of pH; however, the increased release of uranium at 150°C in deionized water compared to WIPP "B" brine may be due to a higher solubility at the higher pH attained in the deionized water, due to the formation of anionic uranium species. The effect of carbonate complexation is evident in the still greater release of uranium in the bicarbonate solution at 150°C. The same trend appears at 250°C but is weaker. In the case of neptunium at 150°C, the lower pH of the brine compared to that of deionized water results in a greater release, perhaps corresponding to a greater solubility (e.g., involving only cationic or neutral species). Similar arguments regarding pH and CO₃²⁻ concentration can be offered regarding plutonium and the other actinides, but the scatter in the data is rather large.

The more soluble elements, such as sodium, boron, and molybdenum (presumably in anionic form), would appear in solution in proportion to the amount of glass reacted with water. With the exception of the data for

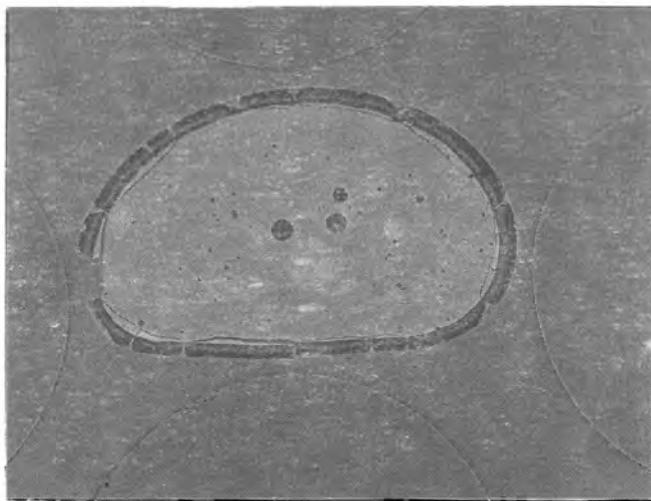
deionized water at 150°C, the normalized technetium release closely follows that of sodium or boron, and hence can be regarded as another soluble element. The scatter in the technetium release data may be attributable to the inhomogeneous distribution of technetium in the glass.

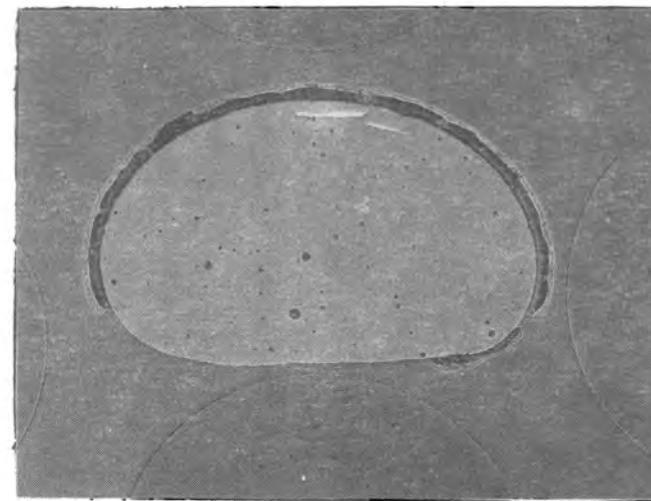

GLASS BEADS

Time, temperature, and solution composition all affected the physical appearance of the glass beads. Very little change was observed among the beads tested at 150°C. Those beads exposed to the salt brine showed some signs of pitting, and the beads leached in the sodium bicarbonate and deionized-water systems showed, at most, a slight loss of surface shine.


Among the beads tested at 250°C, it was much easier to differentiate the beads by their appearance. As at 150°C, the beads exposed to 250°C salt brine appeared to have pitted surfaces. The surface shine of the beads leached in the bicarbonate solution decreased as the length of the test increased. The color change of the beads leached in deionized water was very dramatic; after exposure for 2 days the beads had a metallic, gold sheen. With increasing test length, the sheen turned to a dull orange finish. Examination of the surface of the orange beads using Auger spectrometry revealed that these beads had a high iron concentration on the surface.

The undoped beads leached 32 days at 250°C were later sectioned and mounted for microscopic examination. Figure 13 shows an unleached bead and the beads leached in the three solutions. The reaction layer thicknesses were estimated to be 0.17 mm for the bicarbonate-leached bead, 0.21 mm for the deionized-water-leached bead, and 0.09 mm for the brine-leached bead.


Part of the reaction layer on the bead leached in the sodium bicarbonate solution was removed and examined with the scanning electron microscope with an energy dispersive x-ray (SEM-EDX) attachment. Figure 14 shows some of the crystalline phases found in this reaction layer and their associated x-ray fluorescence traces. The phase rich in silicon and iron may be an acmite and


UNLEACHED

WIPP "B" SALT BRINE

SODIUM BICARBONATE SOLUTION

DEIONIZED WATER

FIGURE 13. Cross Sections of Glass Beads Leached 32 Days at 250°C in the Indicated Solutions

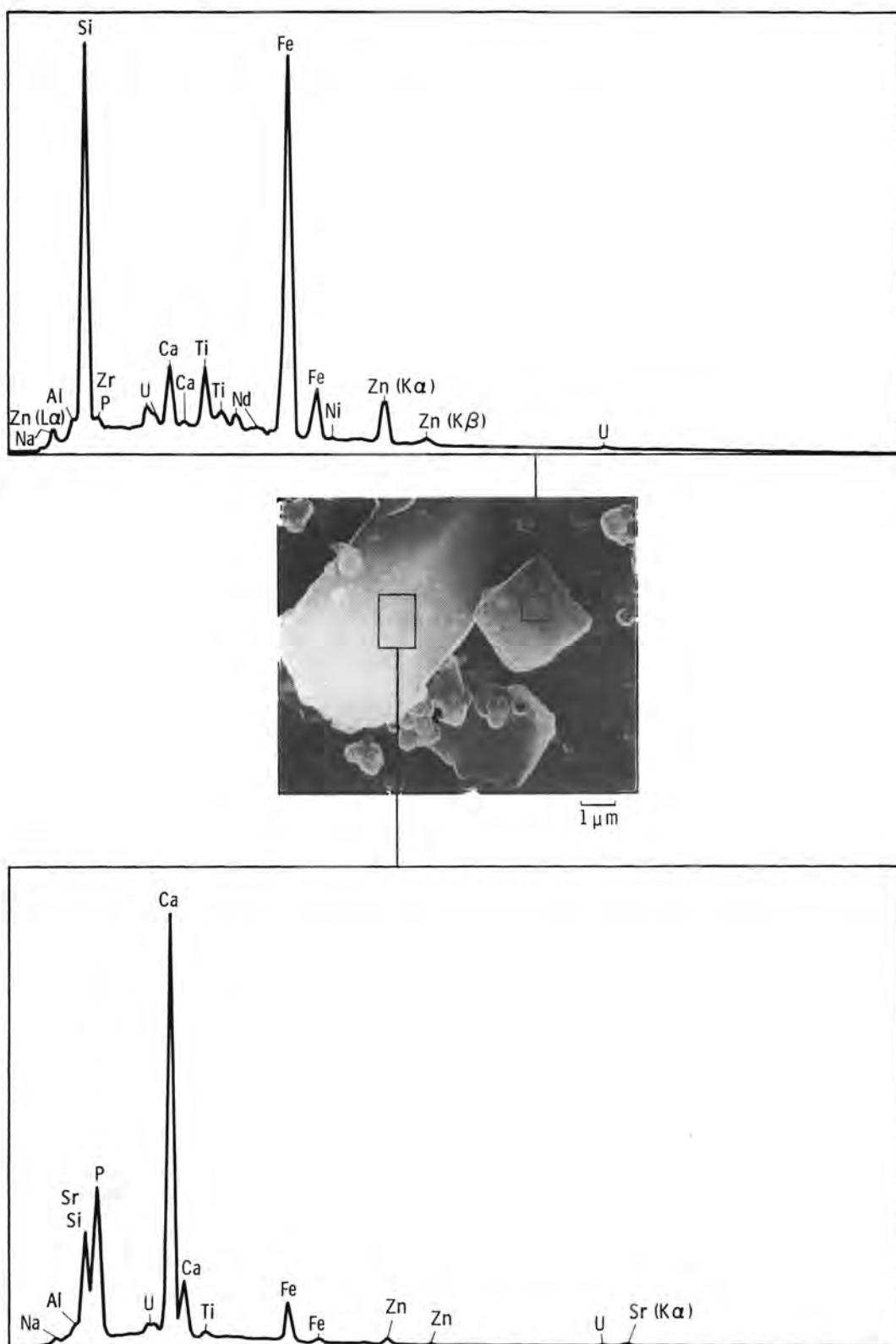


FIGURE 14. Photomicrograph of Crystalline Phases Observed in Reaction Layer of Glass Bead Leached 32 Days in 250°C Deionized Water

the calcium-rich phase may be an apatite similar to the acmite and apatite phases identified by McCarthy et al. (1978) in their studies of the hydrothermal reactions of 76-68 glass in deionized water and in an artificial basaltic ground water.

CONCLUSIONS

A simulated high-level waste glass which contained tracer quantities of Tc, U, Np, Pu, Am, and Cm was leached in deionized water, a sodium bicarbonate solution and the WIPP "B" salt brine, all at 150 or 250°C. Normalized releases of the actinides tended to be higher in the sodium bicarbonate solution than in the other two leachants. Increasing the temperature from 150 to 250°C increased the releases of the actinides. Technetium releases were highest in the deionized water and bicarbonate leachants. Increasing the test temperature also increased the release of Tc. As a group the actinides all leached less than silicon but the technetium releases were always higher than silicon.

Many of the nonradioactive components of the glass were released more to the WIPP "B" brine than to either of the other two leachants. Silicon, boron, and molybdenum did not follow this trend but behaved more like Tc in that their releases were lowest in the salt brine. Except for the alkaline earths, the normalized releases based on the nonradioactive species increased with temperature and with increasing time of leaching.

Solubility constraints dictated by the leachate pH and species such as $\text{CO}_2^=$, which can complex with species leached from the glass, appear to control the release of many species from the glass.

REFERENCES

Bradley, D. J., C. O. Harvey and R. P. Turcotte. 1979. Leaching of Actinides and Technetium from Simulated High-Level Waste Glass. PNL-3152, Pacific Northwest Laboratory, Richland, Washington.

Bradley, D. J., G. L. McVay and D. G. Coles. 1980. Leach Test Methodology for the Waste/Rock Interactions Technology Program. PNL-3326, Pacific Northwest Laboratory, Richland, Washington 99352.

Dosch R. G. and A. W. Lynch. 1978. Interaction of Radionuclides with Geomedia Associated with the Waste Isolation Pilot Plant (WIPP) Site in New Mexico. SAND-78-0297, Sandia Laboratories, Albuquerque, New Mexico.

Grambow, B. 1982. "The Role of Metal Ion Solubility in Leaching of Nuclear Waste Glasses." Presented at the Symposium on the Scientific Basis for Nuclear Waste Management in Berlin, June 1982.

Houser, C., I. S. T. Tsong and W. B. White. 1978. "Characterization of Leached Surface Layers on Simulated High-Level Waste Glasses by Sputter-Induced Optical Emission." In Scientific Basis for Nuclear Waste Management, Volume 1, Plenum Press, New York.

McCarthy, G. J. et al. 1978. "Hydrothermal Reactivity of Simulated Nuclear Waste Forms and Water-Catalyzed Waste-Rock Interactions." In Scientific Basis for Nuclear Waste Management, Volume 1, Plenum Press, New York.

McElroy, J. L. 1977. Quarterly Progress Report, Research and Development Activities, Waste Fixation Program, October through December 1976. PNL-2264, Pacific Northwest Laboratory, Richland, Washington.

Shade, J. W. and D. J. Bradley. 1980. Initial Waste Package Interaction Tests: Status Report. PNL-3559, Pacific Northwest Laboratory, Richland, Washington.

Westsik, J. H., Jr. and R. P. Turcotte. 1978. Hydrothermal Reactions of Nuclear Waste Solids—A Preliminary Study. PNL-2759, Pacific Northwest Laboratory, Richland, Washington.

Peters, R. D. and H. Diamond. 1981. Actinide Leaching from Waste Glass: Air Equilibrated Versus Deaerated Conditions. PNL-3971, Pacific Northwest Laboratory, Richland, Washington.

Westsik, J. H., Jr. and R. D. Peters. 1981. "Time and Temperature Dependence of the Leaching of a Simulated High-Level Waste Glass." In Scientific Basis for Nuclear Waste Management, Volume 3, Plenum Press, New York.

APPENDIX A

SOLUTION ANALYSES AND NORMALIZED MASS LOSS DATA

TABLE A.1. Normalized Releases to 150°C Deionized Water

Element	g/m ²														
	2 d			4 d			8 d			16 d			32 d		
Element	Undoped	Doped	Doped & Plateout	Undoped	Doped	Doped & Plateout	Undoped	Doped	Doped & Plateout	Undoped	Doped	Doped & Plateout	Undoped	Doped	Doped & Plateout
B	37	47		52	36		39	120		140	170		180	230	
Ba	0.46	0.16		0.19	0.59		0.53	0.11		0.086	0.25		0.087	0.055	
Ca	16	2.4		7.7	22		14	2.0		9.1	2.5		1.2	1.3	
Cd	(a)	0.47		1.1	1.0		1.1	1.4		1.4	1.4		1.8	2.8	
Ce				0.27											
Cr	2.7	2.9		4.0	3.6		3.4	9.9		9.3	13		15	17	
Cs	32			42			31			66			66		
Eu							0.23			0.23			0.23		
Fe		0.58		0.21	0.45		0.10	0.42		0.56	1.0		0.33	0.34	
Gd				3.7				1.4			1.0			1.4	
La				1.3	0.07			0.092			0.061			0.061	
Mo	29	40		45	34		31	100		110	150		150	210	
Na	39	56		55	67		58	140		140	180		170	240	
Nd			0.15											0.019	
Ni	1.7	0.96		3.7	1.6		0.80	2.1		3.2	10		2.6	2.6	
P	9.3	18		15	4.5		4.1	60		49	67		70	71	
Ru	0.13	0.12		0.35	0.17		0.16	0.42		0.39	0.50		0.54	0.67	
Si	29	38		40	56		48	73		86	110		100	140	
Sr	2.7	1.7		1.2	5.3		3.9	0.94		0.56	1.3		0.61	0.55	
Te	3.4			4.7			4.4			1.1			11		
Ti	0.018	0.016		0.018	0.027		0.012	0.031		0.012	0.031			0.031	
U	1.1			3			0.46	3.9		2.7	3.9		3.1	3.7	
Zn	1.6	0.10		0.77	0.31		0.22	0.63		1.3	4.2		1.5	1.1	
Zr	0.024	0.021		0.057	0.059		0.016	0.094		0.049	0.14		0.056	0.19	
Tc	720	810		400	400		380	380		200	200		200	210	
U	0.70	1.6		1.2	3.0		5.0	7.7		3.0	5.7		5.3	8.2	
Np	1.7	2.2		2.3	2.7		1.7	2.1		1.8	2.5		2.1	2.6	
Pu	0.010	0.013		0.007	0.060		0.010	0.072		0.011	0.15		0.031	0.14	
Am	0.007	0.095		0.013	0.047		0.024	0.064		0.016	0.062		0.035	0.072	
Cm	0.007	0.042					0.022	0.071		0.017	0.061		0.005	0.013	

(a) Blanks indicate not detected or a component of the leachate.

TABLE A.2. Normalized Releases to 150°C 0.03M Sodium Bicarbonate Solution

Element	g/m ²														
	2 d			4 d			8 d			16 d			32 d		
	Undoped	Doped	Doped Plateout	Undoped	Doped	Doped Plateout	Undoped	Doped	Doped Plateout	Undoped	Doped	Doped Plateout	Undoped	Doped	Doped Plateout
B	57	68		75	91		110	130		150	190		190	230	
Ba	1.1	3.9E-1		8.5E-1	4.8E-1		3.1E-1	3.9E-1		4.3E-1	2.7E-1		1.9E-1	1.9E-1	
Ca	19	8.8		22	16		12	14		10	11		8.4	9.2	
Cd	(a)	1.8			2.1			2.3			2.7			8.7	
Ce	3.4E-1	1.4		1.9E-1	1.1			2.0			2.3			1.5	
Cr	2.6	4.9		4.2	6.3		5.3	5.9		7.6	18		11	18	
Cs	47			60			79			94			96		
Eu	3.6E-1	1.4		3.5E-1	1.3			1.8			2.3			2.6	
Fe	1.4E-1	1.6E-1		2.7E-1	3.0E-1		1.2E-1	1.8E-1		1.7E-1	4.3E-1		7.1E-2	2.9E-1	
Gd	7.3	27		6.2	22			37			43			31	
La		1.0			9.3E-1			1.5			1.7			1.4	
Mo	49	61		62	81		84	110		120	170		150	200	
Na															
Nd	1.3E-1	6.3E-1		6.0E-2	5.0E-1			9.1E-1			1.1			7.3E-1	
Ni	9.3E-1	1.6		6.0E-1	2.3			1.9			2.1			2.1	
P	39	63		52	86		81	78		86	150		76	120	
Ru	3.1E-1	1.2		3.0E-1	1.2		1.2E-1	1.7			2.2			1.9	
Si	44	46		52	73		69	69		81	110		98	140	
Sr	11	4.9		6.7	5.5		4.8	6.9		6.3	4.1		3.7	3.1	
Te	4.1	4.6E-1		3.5			5.0	1.6		5.6	1.3E-1		6.2		
Ti	4.1E-2	1.0E-1		6.0E-2	9.8E-2		3.1E-2	1.4E-1		3.0E-2	1.7E-1		1.8E-2	1.2E-1	
U	31	46		35	40		36	69		56	81		39	63	
Zn	4.7E-1	1.3E-1		6.2E-1	3.0E-1		2.0E-1	2.9E-1		2.4E-1	4.6E-1		2.4E-1	5.8E-1	
Zr	4.1E-2	1.9E-1		5.0E-2	1.9E-1		1.6E-2	2.7E-1		1.6E-2	3.5E-1		4.2E-2	3.1E-1	
Tc		82	85		180	180		200	200		190	190		480	480
U		52	55		43	43		76	76		64	66		94	97
Np		16	18		24	24		21	22		19	20		23	24
Pu		5.9E-2	2.2E-1		1.0E-1	1.6E-1		8.9E-3	9.8E-3		6.2E-2	1.7E-1		6.9E-2	2.6E-1
Am		3.9E-1	2.6		3.5E-1	4.8E-1		2.8E-1	3.8E-1		2.0E-1	3.0E-1		5.4E-1	6.8E-1
Cm		4.6E-3	2.0E-2					2.9E-3	2.0E-2		1.7E-3	2.3E-2		1.2E-3	2.5E-2

(a) Blanks indicate not detected or a component of the leachate.

TABLE A.3. Normalized Releases to 150°C WIPP "B" Brine

Element	g/m ²														
	2 d			4 d			8 d			16 d			32 d		
Element	Undoped	Doped	Doped & Plateout	Undoped	Doped	Doped & Plateout	Undoped	Doped	Doped & Plateout	Undoped	Doped	Doped & Plateout	Undoped	Doped	Doped & Plateout
B	18	27		18	39		26	42		41	58		80	76	
Ba	16	14		17	6.6		7.7	5.8		5.3	5.8		5.7	4.5	
Ca	(a)														
Cd															
Ce															
Cr															
Cs	40			33			58			89			140		
Eu															
Fe	4.0	2.0		12	2.1		1.4	2.3		1.2			5.7		
Gd															
La															
Mo	15	24		15	39		22	37		31	51		54	65	
Na															
Nd															
Ni															
P															
Ru															
Si	18	12		18	17		18	14		19	15		22	25	
Sr															
Te															
Ti															
U															
Zn	15	19		18	26		16	28		29	31		57	45	
Zr															
Tc	24	24		640	640		36	36		44	44		56	56	
U	1.0	1.6		4.1E-1	1.2		5.5E-1	1.4		0.49	1.5		2.9E-1	1.1	
Np	5.9	6.2		8.3	8.9		9.4	9.9		6.3	7.1		6.4	7.2	
Pu	9.8E-2	1.6E-1		4.6E-1	2.1E-1		1.1E-1	3.0E-1		3.8E-2	2.3E-1		5.0E-2	2.0E-1	
Am	3.3E-2	8.6E-2		1.3E-2	2.8E-2		9.1E-2	1.1E-1		2.7E-2	4.9E-2		1.1E-2	4.4E-2	
Cm	1.6E-2	2.9E-2					1.6E-2	3.3E-2		1.2E-2	3.1E-2		2.5E-3	1.1E-2	

(a) Blanks indicate not detected or a component of the leachate.

TABLE A.4. Normalized Releases to 250°C Deionized Water

Element	g/m ²															
	2 d			4 d			8 d			16 d			32 d			
Element	Undoped	Doped	Doped Plateout	Undoped	Doped	Doped Plateout	Undoped	Doped	Doped Plateout	Undoped	Doped	Doped Plateout	Undoped	Doped	Doped Plateout	
B	230	280		310			320	420		410			460	500		
Ba	0.17	0.31		0.22			0.22	0.22		0.15			0.13	0.16		
Ca	16	4.0		7.2			4.9	5.0		2.8			2.6	4.3		
Cd	1.4	3.7		3.3			3.9	5.7		4.6			4.6	5.9		
Ce	(a)	0.51						0.42					0.10	0.55		
Cr	63	71		64			95	72		110			130	100		
Cs	83			97			130			120			130			
Eu		0.68						1.0					0.36	1.1		
Fe	0.45	1.4		0.59			1.1	0.77		1.2			0.46	0.86		
Gd		10		1.3				9.4		1.6			3.1	12		
La		0.43						0.42						0.40		
Mo	180	250		240			270	400		330			360	450		
Na	220	310		310			320	470		380			430	520		
Nd		0.25						0.21						0.29		
Ni	2.2	2.0		2.8			2.9	2.7		3.3			3.3	2.6		
P	45	51		62			61	74		72			67	71		
Ru	1.2	1.7		1.3			1.5	1.9		2.4			2.6	2.6		
Si	160	230		220			230	320		260			310	360		
Sr	1.6	2.3		2.4			1.9	2.7		1.7			1.7	1.8		
Te	15			19			23			26			28	8.3		
Ti	0.035	0.14		0.018			0.061	0.072		0.061			0.031	0.076		
U	9.1	19		11			12	20		14			14	20		
Zn	1.8	1.0		1.9			0.86	0.89		0.61			0.38	0.86		
Zr	0.10	0.31		0.13			0.15	0.37		0.19			0.22	0.43		
Tc		410	420		400	400		440	440		2600	2600		810	870	
U		33	39		27	36		35	43		27	34				
Np		2.0	3.5		3.7	4.5		5.6	12		2.0	8.5		2.2	13	
Pu		0.090	0.32		0.085	0.24		0.045	1.6		0.027	0.10		0.026	1.1	
Am		0.13	0.21		0.27	0.36		0.25	0.38		0.086	0.17				
Cm		0.018	0.071										0.005	0.015		

(a) Blanks indicate not detected or a component of the leachate.

TABLE A.5. Normalized Releases to 250°C 0.03M Sodium Bicarbonate Solution

Element	g/in ²														
	2 d			4 d			8 d			16 d			32 d		
Element	Undoped	Doped	Doped & Plateout	Undoped	Doped	Doped & Plateout	Undoped	Doped	Doped & Plateout	Undoped	Doped	Doped & Plateout	Undoped	Doped	Doped & Plateout
B	220	270		340			370	440		390			440	520	
Ba	0.19	0.11		0.31			0.086	0.41		0.27			0.13	0.17	
Ca	7.1	3.5		9.0			3.7	9.2		3.9			5.5	4.1	
Cd	(a)	5.0		1.1			1.1	5.1		1.1			0.73	6.0	
Ce		0.77						1.2						0.76	
Cr	57	57		62			91	95		110			110	160	
Cs	90			110			170			140			140		
Eu		1.1						1.6						1.4	
Fe	0.14	0.40		0.13			0.13	0.36		0.11			0.24	0.16	
Gd		17						25						17	
La		0.70						0.95						0.60	
Mo	170	240		260			300	410		320			340	460	
Na															
Nd		0.40						0.62						0.41	
Ni		1.8		0.46				2.8		0.61				2.7	
P	21	45		43			64	64		47			39	57	
Ru		1.6		0.31			0.62	2.5		0.39			0.36	2.7	
Si	140	200		190			230	310		120			220	330	
Sr	2.1	1.6		3.0			2.0	3.8		2.7			2.9	1.9	
Te	6.1			13			15			15			14	8.4	
Ti		0.070		0.012			0.037	0.12						0.076	
U	11	24		17			18	36		15			5.5	23	
Zn	0.20	0.47		0.90			0.27	0.28		0.21			0.10	0.52	
Zr	0.016	0.27		0.080			0.15	0.46		0.056			0.073	0.49	
Tc	460	460		580	580		1400	1500		750	770		670	700	
U	32	35		43	46		65	67		19	24				
Np	1.6	2.6		3.3	9.2		2.0	3.1		2.1	13		1.4	22	
Pu	0.049	0.44		0.058	1.7		0.49	1.5		0.10	0.29		0.10	4.5	
Am	0.086	0.12		0.25	0.33		0.47	0.55		0.050	0.11				
Cm	0.003	0.023											0.002	0.027	

(a) Blanks indicate not detected or a component of the leachate.

TABLE A.6. Normalized Releases to 250°C WIPP "B" Brine

Element	g Glass/in ²														
	2 d			4 d			8 d			16 d			32 d		
Element	Undoped	Doped	Doped Plateout	Undoped	Doped	Doped Plateout	Undoped	Doped	Doped Plateout	Undoped	Doped	Doped Plateout	Undoped	Doped	Doped Plateout
B	89	110		99			120	180		170			180	190	
Ba	11	5.4		17			3.5	7.8		15			8.6	4.1	
Ca	(a)														
Cd	140			140			140			240			250		
Ce				5.6			32			4.3					
Cr	26			34			37			70			58		
Cs	120			190			220			310			170		
Eu				5.3			3.5			3.6			3.7		
Fe															
Gd				95			40			94			68	93	
La				39			30			50			31		
Mo	37	80		61			70	120		84			92		
Na															
Nd				2.0			1.3			2.0			2.0		
Ni							6.7			13			6.8		
P															
Ru				5.3			2.7			5.5			5.5		
Si	31	17		20			22	21		23			20	26	
Sr															
Te				20			20			31			20		
Ti				0.24			0.24			0.24			0.24		
U				8.2						5.5			37		
Zn	37	66		21			22	26		65			58	10	
Zr				0.97						0.58			0.99		
Tc		130	130		130	130		440	440		83	85		180	180
U		0.55	3.0		0.88	6.3		0.39	5.1		0.25	10			
Np		0.71	2.8		0.90	12		0.41	5.4		0.61	12		0.53	13
Pu		0.33	0.96		0.066	0.88		0.093	1.8		0.18	0.39		0.35	3.5
Am		0.10	0.12		0.021	0.090		0.021	0.11		0.026	0.12			
Cm		0.017	0.037										0.006	0.077	

(a) Blanks indicate not detected or a component of the leachate.

TABLE A.7. Elemental Concentrations (mg/L) in 150°C Deionized Water Leachate^(a)

Element	Time									
	2 d		4 d		8 d		16 d		32 d	
	Undoped	Doped ^(b)	Undoped	Doped ^(c)	Undoped	Doped ^(b)	Undoped	Doped ^(b)	Undoped	Doped ^(b)
B	9.99	9.84	14.4	6.92	10.8	25.5	39	35.5	50	48.7
Ba	0.02	0.01	0.01	0.01	0.03			0.01		
Ca	2.16	0.26	1.04	1.95	1.82	0.20	1.2	0.26	0.16	0.13
Cd	(d)									0.01
Ce			0.02							
Cr	0.71	0.06	0.11	0.06	0.09	0.20	0.24	0.26	0.40	0.35
Cs	2.89		3.76		2.81		5.92		6.01	
Eu										
Fe	0.24	0.29	0.14	0.20	0.06	0.21	0.36	0.50	0.21	0.16
Gd			0.01							
La			0.06							
Mo	4.01	4.54	6.39	3.22	4.59	11.7	16	16.2	21	22.8
Na	33.2	36.8	47.0	39.9	49.6	91.5	119	122	149	164
Nd			0.02							
Ni	0.03	0.01	0.05	0.02	0.01	0.02	0.48	0.12		0.03
P	0.18	0.27	0.30	0.06	0.08	0.91	0.94	1.03	1.4	1.1
Ru	0.01	0.01	0.03	0.01	0.01	0.02	0.03	0.03	0.04	0.04
Si	51.9	51.3	68.9	65.9	84.1	100	150	151	175	197
Sr	0.08	0.04	0.04	0.11	0.11	0.02	0.02	0.03	0.02	0.01
Te	0.07		0.09		0.08		0.21			0.22
Ti										
U	0.04		1.05		0.17	1.1	1	1.1	1.1	1
Zn	0.59	0.03	0.29	0.08	0.08	0.18	0.48	1.21	0.55	0.33
Zr			0.01	0.01		0.01	0.01	0.01	0.01	0.02
Tc		23		12		11		5.7		6.0
U		1.1E-1		1.8E-1		7.6E-1		6.9E-1		8.1E-1
Np		0.04		0.06		0.04		0.07		0.05
Pu		2.6E-5		1.8E-5		2.6E-5		4.4E-5		7.9E-5
Am		3.9E-5		7.3E-5		1.3E-4		1.3E-4		2.0E-4
Cm		6.0E-6		---		1.9E-5		1.5E-5		4.6E-6

(a) Concentrations of acidified, unfiltered samples measured at room temperature.

(b) Nonradioactive components measured in leachate from curium-doped beads.

(c) Nonradioactive components measured in leachate from technetium-doped beads.

(d) Blanks indicate not detected or a component of the leachate.

TABLE A.8. Elemental Concentrations (mg/L) in 150°C 0.03M NaHCO₃ Solution Leachate^(a)

Element	Time									
	2 d		4 d		8 d		16 d		32 d	
	Undoped	Doped ^(b)	Undoped	Doped ^(c)	Undoped	Doped ^(b)	Undoped	Doped ^(b)	Undoped	Doped ^(b)
B	15.8	14.5	2.06	17	28.8	27.1	42	40.9	51	49.5
Ba	0.05	0.01	0.04	0.02	0.01	0.01	0.02	0.01	0.01	0.01
Ca	2.53	0.92	2.99	1.44	1.61	1.45	1.35	1.19	1.1	0.96
Cd	(d)					0.01		0.01		0.02
Ce	0.03	0.1	0.02	0.7		0.14		0.16		0.11
Cr	0.07	0.1	0.11	0.11	0.14	0.12	0.20	0.37	0.28	0.36
Cs	4.22		5.30		7.07		8.54		8.64	
Eu		0.01		0.01		0.01		0.01		0.01
Fe	0.09	0.08	0.17	0.14	0.08	0.09	0.11	0.21	0.05	0.14
Gd	0.03	0.08	0.02	0.06		0.10		0.12		0.09
La	0.03		0.03		0.05		0.06		0.05	
Mo	6.8	6.7	8.7	7.88	12.0	12.4	17.7	18.8	21.6	22.6
Na	690	703	728	712	745	748	770	827	808	892
Nd	0.02	0.07	0.01	0.05		0.09		0.11		0.08
Ni	0.01	0.02	0.01	0.02		0.02		0.02		0.02
P	0.75	0.98	1	1.14	1.6	1.20	1.7	2.34	1.5	1.83
Ru	0.02	0.07	0.02	0.06	0.01	0.10		0.13		0.11
Si	77	63.2	92	85.8	120	93	141	155	170	188
Sr	0.32	0.11	0.2	0.11	0.14	0.16	0.19	0.09	0.11	0.07
Te	0.08	0.01	0.07		0.10	0.02	0.11		0.12	
Ti	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.02		0.02
U	11	13.1	13	10	13	19.2	20	23	14	17.8
Zn	0.17	0.04	0.23	0.08	0.64	0.08	0.09	0.13	0.09	0.17
Zr	0.01	0.02	0.01	0.02		0.03		0.03	0.01	0.03
Tc		2.4		5.3		5.9		5.5		14
U		8.3		6.5		1.2		1.5		1.5
Np		0.43		0.62		0.54		0.74		0.60
Pu		1.5E-4		2.7E-4		2.4E-5		2.4E-4		1.8E-4
Am		2.1E-3		1.9E-3		1.5E-3		1.6E-3		2.9E-3
Cm		4.0E-6		---		2.6E-6		1.5E-6		1.0E-6

(a) Concentrations of acidified, unfiltered samples measured at room temperature.

(b) Nonradioactive components measured in leachate from curium-doped beads.

(c) Nonradioactive components measured in leachate from technetium-doped beads.

(d) Blanks indicate not detected or a component of the leachate.

TABLE A.9. Elemental Concentrations (mg/L) in 150°C WIPP "B" Brine Leachate^(a)

Element	Time									
	2 d		4 d		8 d		16 d		32 d	
	Undoped	Doped ^(b)	Undoped	Doped ^(c)	Undoped	Doped ^(b)	Undoped	Doped ^(b)	Undoped	Doped ^(b)
B	7.1	7.65	7.1	9.65	9.1	11.1	14	14.3	25	18.2
Ba	0.8	0.55	0.82	0.25	0.4	0.25		0.25	0.3	0.20
Ca	723	745	750	735	680	790	690	720	670	710
Cd	0.1									
Ce	(d)						1.3			
Cr										
Cs	5.95		5.2		8.49		10.7		14.9	
Eu									0.05	
Fe	3.79	2.3	9.2	2.2	2.2	2.5	1.1	1.9	5.0	0.65
Gd					0.6					
La					3		3.5			
Mo	2.2	2.8	2.1	3.7	3.1	4.2	4.8	5.6	7.6	7.25
Na		86000		95000		110000		98000		89000
Nd									0.7	
Ni			0.4							
P										
Ru										
Si	34	19	34	23	35	22	38	24	42	36
Sr	28	28	30	28	27	30	28	29	29	27
Te										
Ti										
U	9		7		13		14		11	
Zn	5.7	5.4	6.8	6.6	6	8.3	11	9.1	21	13
Zr						0.1				
Tc		0.69		19		1.0		1.3		1.6
U		1.6E-1		6.4E-2		8.8E-2		1.1E-1		4.4E-2
Np		0.15		0.22		0.24		0.24		0.17
Pu		2.6E-4		1.2E-4		2.8E-4		1.5E-4		1.3E-4
Am		1.8E-3		7.1E-5		5.0E-4		2.2E-4		5.8E-5
Cm		1.4E-5		---		1.4E-5		1.0E-5		2.1E-6

(a) Concentrations of acidified, unfiltered samples measured at room temperature.

(b) Nonradioactive components measured in leachate from curium-doped beads.

(c) Nonradioactive components measured in leachate from technetium-doped beads.

(d) Blanks indicate not detected or a component of the leachate.

TABLE A.10. Elemental Concentrations (mg/L) in 250°C Deionized Water Leachate(a)

Element	Time								
	2 d		4 d		8 d		16 d		32 d
Undoped	Doped(b)	Undoped	Doped(c)	Undoped	Doped(b)	Undoped	Doped(b)	Undoped	Doped(b)
B	63	60.8	84		88	79.6	111	126	108
Ba	0.01	0.01	0.01		0.01	0.01	0.01	0.01	0.01
Ca	2.12	0.43	0.96		0.65	0.45	0.38	0.34	0.45
Cd	(d)	0.01	0.01		0.01	0.01	0.01	0.01	0.01
Ce		0.04				0.03		0.01	0.04
Cr	1.65	1.43	1.70		2.50	1.27	2.89	3.37	2.09
Cs	7.6		8.8		11.6		10.3	11.7	
Eu									0.01
Fe	0.29	0.71	0.37		0.68	0.33	0.73	0.29	0.43
Gd		0.03	0.01			0.02	0.01	0.01	0.04
La		0.01				0.01			0.01
Mo	24.8	28.1	33.9		37	37.5	46	52	50.3
Na	190	202	270		276	272	340	372	349
Nd		0.03				0.02			0.03
Ni	0.03	0.02	0.04		0.04	0.03	0.05	0.05	0.03
P	0.88	0.80	1.2		1.19	0.98	1.4	1.29	1.08
Ru	0.09	0.10	0.10		0.11	0.10	0.18	0.20	0.15
Si	284	307	376		392	386	454	524	473
Sr	0.05	0.05	0.07		0.06	0.06	0.05	0.05	0.04
Te	0.03		0.38		0.44		0.52	0.53	0.13
Ti	0.01	0.02			0.01	0.01	0.01	0.01	0.01
U	3.3	5.4	4		4.4	4.9	5	5	5.6
Zn	0.66	0.30	0.70		0.32	0.23	0.23	0.14	0.25
Zr	0.01	0.03	0.02		0.02	0.03	0.02	0.03	0.04
Tc		10		13		12		110	24
U		5.2		5.3		4.2		6.3	
Np		0.05		0.15		0.10		0.08	0.06
Pu		2.4E-4		1.2E-4		2.2E-4		1.7E-4	6.7E-5
Am		6.9E-4		1.4E-3		1.5E-3		6.9E-4	
Cm		1.6E-5							4.2E-6

(a) Concentrations of acidified, unfiltered samples measured at room temperature.

(b) Nonradioactive components measured in leachate from curium-doped beads.

(c) Nonradioactive components measured in leachate from technetium-doped beads.

(d) Blanks indicate not detected or a component of the leachate.

TABLE A.11. Elemental Concentrations (mg/L) in 250°C 0.03M NaHCO₃ Solution Leachate(a)

Element	Time									
	2 d		4 d		8 d		16 d		32 d	
Element	Undoped	Doped(b)	Undoped	Doped(c)	Undoped	Doped(b)	Undoped	Doped(b)	Undoped	Doped(b)
B	60	58.3	91		99.3	83.8	106		118	113
Ba	0.01		0.02			0.01	0.01		0.01	0.01
Ca	0.94	0.36	1.19		0.5	0.85	0.52		0.72	0.42
Cd	(d)	0.01				0.01				0.01
Ce		0.06				0.07				0.05
Cr	1.5	1.16	1.61		2.42	1.69	2.73		2.9	3.28
Cs	8.05		9.75		15.4		13.1		12.2	
Eu		0.01				0.01				0.01
Fe	0.09	0.20	0.08		0.08	0.16	0.07		0.15	0.08
Gd		0.05				0.06				0.05
La		0.02				0.03				0.02
Mo	24.6	26.6	37.3		41.9	38.8	44.7		48.8	51.9
Na	840	904	954		936	1010	928		1028	1110
Nd		0.04				0.06				0.04
Ni		0.02	0.01			0.03	0.01			0.03
P	0.42	0.69	0.85		0.96	0.85	0.90		0.75	0.89
Ru		0.09	0.02		0.05	0.13	0.03		0.03	0.16
Si	242	268	330		408	350	213		388	456
Sr	0.06	0.04	0.09		0.06	0.08	0.08		0.08	0.04
Te	0.12		0.25		0.29		0.29		0.27	0.13
Ti		0.01			0.01	0.01				0.01
U	3.8	6.74	6		6.7	8.67	5.5		2	6.44
Zn	0.07	0.13	0.33		0.10	0.07	0.08		0.04	0.15
Zr		0.03	0.01		0.02	0.04	0.01		0.01	0.05
Tc		12		17		4.2		32		20
U		5.0		10		6.6		4.3		
Np		0.04		0.05		0.09		0.08		0.04
Pu		1.2E-4		1.3E-3		1.5E-4		4.0E-4		2.6E-4
Am		4.7E-4		2.7E-3		1.3E-3		3.9E-4		
Cm		2.9E-6								1.9E-6

(a) Concentrations of acidified, unfiltered samples, measured at room temperature.

(b) Nonradioactive components measured in leachate from curium-doped beads.

(c) Nonradioactive components measured in leachate from technetium-doped beads.

(d) Blanks indicate not detected or a component of the leachate.

TABLE A.12. Elemental Concentrations (mg/L) in 250°C WIPP "B" Brine Leachate^(a)

Element	Time									
	2 d		4 d		8 d		16 d		32 d	
	Undoped	Doped ^(b)	Undoped	Doped ^(c)	Undoped	Doped ^(b)	Undoped	Doped ^(b)	Undoped	Doped ^(b)
B	24	26.6	27		32	35.3	46		49	42
Ba	0.5	0.2	0.8		0.25	0.25	0.7		0.4	0.15
Ca	697	735	650		660	690	640		590	605
Cd	0.4		0.4		0.4		0.7		0.7	
Ce	0.8		1.7		1.5		1.6		1.1	
Cr	0.7	0.08	0.9		1.0		1.8		1.5	
Cs	13.2		19.8		21.8		27.4		17.9	
Eu	(d)		0.08		0.07		0.07		0.07	
Fe	0.5	0.9	0.4		0.5		0.8		0.9	
Gd	0.3		0.8		0.6		0.8		0.7	
La	2		4		3.6		4.5		3.7	
Mo	5.2	8.8	8.6		10	11.6	12		13	10.4
Na	99,000				97,000				103,000	
Nd	0.5		1		0.9		1		1	
Ni					0.1		0.2		0.1	
P										
Ru			0.8		0.6		0.8		0.8	
Si	56	27	34		38	28	40		35	38
Sr	30	29	17		29	30	30		30	30
Te			0.4				0.6		0.4	
Ti			0.1				0.1		0.1	
U	8		18		15		17		26	
Zn	14	19	7.8		8.1	6.6	24		21	3.0
Zr			0.2				0.15		0.2	
Tc		3.2		13		3.8		3.1		5.3
U		8.5E-2		6.0E-2		1.4E-1		5.6E-2		
Np		0.02		0.01		0.02		0.02		0.01
Pu		8.8E-4		2.4E-4		1.7E-4		7.1E-4		9.0E-4
Am		5.6E-4		1.2E-4		1.1E-4		2.1E-4		
Cm		1.5E-5								5.E-6

(a) Concentrations of acidified unfiltered samples, measured at room temperature.

(b) Nonradioactive components measured in leachate from curium-doped beads.

(c) Nonradioactive components measured in leachate from technetium-doped beads.

(d) Blanks indicate not detected or a component of the leachate.

APPENDIX B
SUPPLEMENTAL LEACH TESTS AND RESULTS

APPENDIX B

SUPPLEMENTAL LEACH TESTS AND RESULTS

At the same time that the Waste Package Program was supporting the research presented in the body of this report, the High-Level Waste Immobilization Program (HLWIP) at PNL was also studying the hydrothermal reactions of 76-68 glass. The experiments were designed so that the results obtained from tests funded by one program supplemented and complemented the results obtained through the other program. The work reported by Westsik and Peters (1981) included data from both programs. To complete the data base of the studies on the hydrothermal reactions of 76-68 glass, a brief experimental description and the raw leachate analyses from the tests sponsored by the HLWIP are provided in this appendix.

EXPERIMENTAL DESCRIPTION

Right circular cylinders of 76-68 glass were leached for 3 days in 190 mL of deionized water at 25, 50, 100, 1560, 200, 250, 300 and 350°C. Additional tests were conducted for 1, 12, 27, 48, and 64 days in deionized water at 100 and 250°C. The glass specimens weighed about 18.5 g and had a geometric surface area of 18.8 cm². The sample surface area to leachate volume ratio was then 0.099 cm⁻¹. Table B.1 lists the composition of the glass as determined by ICP analyses of glass samples fused in sodium peroxide and in potassium hydroxide.

The leach vessels were Inconel and Hastelloy autoclaves fitted with valves, tubing and a cooler to permit taking samples of the leachate while the system was at the operating temperature. All tests were run at 2000 psi using argon as a cover gas except for the tests at 350°C, which were run at 2750 psi.

At the conclusion of a leaching period, approximately 10 mL of leachate were bled off to flush the sampling system. A 100-mL sample was then taken. Dilutions of 10X and 100X were immediately made. The autoclave system was then allowed to cool to room temperature. During cooling, the glass specimens were supported above the remaining leachate. Finally, the specimen was

TABLE B.1. Analyzed Composition of 76-68 Glass Used in HLWIP Hydrothermal Studies

<u>Oxide</u>	<u>Weight Percent</u>	<u>Oxide</u>	<u>Weight Percent</u>
SiO ₂	38.5	RuO ₂	0.8
Na ₂ O	13.4	Cr ₂ O ₃	0.7
Fe ₂ O ₃	11.6	Al ₂ O ₃	0.6
B ₂ O ₃	9.6	P ₂ O ₅	0.5
U ₃ O ₈	4.7	La ₂ O ₃	0.5
ZnO	4.6	BaO	0.4
TiO ₂	2.8	SrO	0.3
CaO	2.0	TeO ₂	0.3
MoO ₃	1.8	NiO	0.3
ZrO ₂	1.5	MgO	0.3
Nd ₂ O ₃	1.4	Gd ₂ O ₃	0.1
Ce ₂ O ₃	1.0	MnO ₂	0.1
Cs ₂ O	0.8		

removed and cross sectioned to determine the reaction layer thickness. The remaining leachate was sampled, the pH was measured, and the leachate and dilutions were analyzed by ICP. The results are listed in Table B.2.

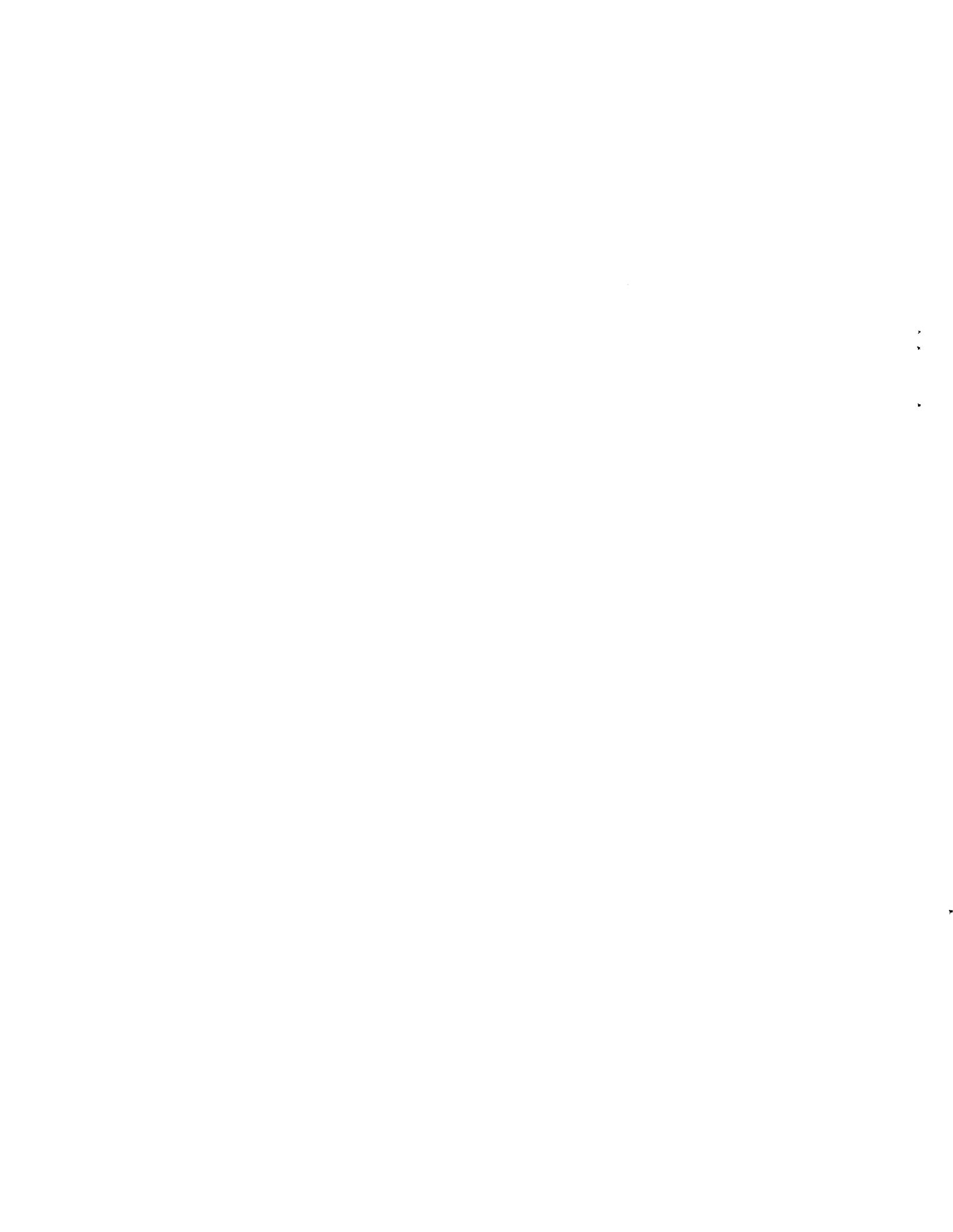
TABLE B.2. Specimen Data and Leachate Analyses for HLWIP Hydrothermal Studies

Temperature (°C)	25	50	100	150	200	250	300	350	350	100	100	100	100	100	250	250	250	250	250	
Time (days)	3	3	3	3	3	3	3	3	1	12	27	27	48	64	1	12	27	48	64	
Initial Weight (g)	18.3551	18.5952	18.5692	18.4584	18.5426	18.6097	18.5328	18.4966	18.4503	18.6086	18.3927	18.5525	18.5525	18.7191	18.7313	18.6133	18.5421	18.5035	18.2960	18.7307
Weight Lost (g)	0.0004	0.0006	0.0098	0.0607	0.1405	0.2478	0.7009	3.6675	2.3757	0.0073	0.0290	0.0501	0.0501	0.0720	0.0146	0.1908	0.3566	0.3917	0.4619	0.4959
Final pH	8.9	7.7	9.4	9.4	9.6	10.3	9.6	9.1	9.8	9.4	9.6	9.6	9.6	9.7	9.2	9.7	9.9	10.0	10.0	9.9
Reacted Glass Thickness (nm)				0.024	0.067	0.10	0.19	2.8	3.0						0.07	0.12	0.096	0.12	0.13	
Leachate Concentrations (mg/L)																				
Si	0.081	0.387	17.8	89.1	203	351	638	440	926	11.5	42.6	76.1	76.1	94.8	29.1	262	455	511	557	587
Na	0.40	9.33	60.2	134	236	679	2680	2630		7.95	31.7	64.8	64.8	87.2	16.8	183	346	375	429	485
Fe				1.72		2.02	1.32													
B	0.011	0.044	3.39	21.3	47.7	95.7	383	2300	2520	1.81	8.96	20.6	20.6	28.2	3.74	54.2	110	126	144	157
U				0.82	2.1	1.9	2.8	3.9						5.2	3.6	2.8	2.7	1.9	3.3	
Zn	0.072	0.078		1.53		0.30	0.24							0.42						
Ti						0.026	0.03		0.003						0.004	0.009	0.01			
Mo	0.040	0.161	1.58	8.78	18.9	32.4	142	1050	1040	1.2	4.19	8.47								
Zr				0.004		0.015	0.06	0.45	0.42	0.003			8.47	11.5	2.09	23.3	45.1	50.9	61.2	65.2
Ce					0.026		0.11	0.40	0.53		0.03				0.019	0.036	0.042		0.044	
Cs	0.025	0.013	0.87	5.13	10.4	17.4	29	292	342	0.69	2.6	4.32								
Ru				0.042		0.20		0.93	1.0		0.018			0.03						
Cr				0.143	0.93	0.10		1.67				0.026	4.32	3.9	2.6	13.5	15.5	15.7	18.2	13.8
P												0.06		0.06	0.05				0.13	
Ba	0.014	0.009	0.021	0.006				0.008	0.009			0.026		0.020	0.044	0.062	0.058	0.064	0.078	
Sr	0.006	0.007	0.15	0.015		0.032				0.06	0.006	0.016		0.85	0.27	0.63	0.90	1.1	1.2	1.56
Te				0.16	0.38	0.48	0.99		0.065					0.004	0.004	0.007		0.006	0.006	
												0.016		0.007	0.013		0.13	0.127	0.46	

DISTRIBUTION

<u>No. of Copies</u>	<u>No. of Copies</u>
<u>OFFSITE</u>	
27	<u>DOE Technical Information Center</u>
	Don Alexander U.S. Nuclear Regulatory Commission MS 1130-SS Washington, DC 20555
	Allied Chemical Corporation File Copy 505 2nd Street Idaho Falls, ID 83401
	Argonne National Laboratory Reference Library 9800 South Cass Avenue Argonne, IL 60439
10	Battelle Memorial Institute Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201 ATTN: Beverly Rawles
	W. W. Ballard DOE Division of Waste Repository Deployment Washington, DC 20545
	F. Bazan Lawrence Livermore Laboratory P.O. Box 808 Livermore, CA 94550
	J. O. Blomeke Union Carbide Corporation (ORNL) Chemical Technology Division P.O. Box Y Oak Ridge, TN 37830
	Ernest Bondiotti Environmental Sciences Division Oak Ridge National Laboratory Bldg. 1505 Oak Ridge, TN 37830
	S. J. Basham Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201
	A. Brandstetter Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201
	A. Brecher Arthur D. Little, Inc. Acorn Park Cambridge, MA 02104
	Brookhaven National Laboratory Reference Section Information Division, Upton Long Island, NY 11973
	J. L. Burnett DOE Office of Basic Energy Sciences Washington, DC 20545
	Wayne Carbienier Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201

<u>No. of Copies</u>	<u>No. of Copies</u>
J. A. Carr Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201	Jim O. Duguid Office of NWTS Integration Battelle Memorial Institute 505 King Avenue Columbus, OH 43201
D. E. Clark Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201	Environmental Protection Agency Office of Radiation Programs Technical Assessment Division AW559 Washington, DC 20460
H. Clyde Claiborne Oak Ridge National Laboratory P.O. Box X Oak Ridge, TN 37830	Warren Eister DOE Division of Waste Isolation Washington, DC 20545
Peter Columbo Brookhaven National Laboratory Nuclear Waste Management Group Upton, NY 11973	Bruce R. Erdal Los Alamos Scientific Laboratory CNC-11, MS-514 Los Alamos, NM 87545
Carl R. Cooley DOE Division of Waste Depository Deployment Washington, DC 20545	Robert G. Garvin E. I. duPont de Nemours and Co. Savannah River Laboratory Aiken, SC 29801
R. W. Cote Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201	H. W. Godbee Union Carbide Corporation (ORNL) Chemical Technology Division P.O. Box Y Oak Ridge, TN 37830
J. L. Crandall, Director E. I. duPont de Nemours and Co. Savannah River Laboratory Aiken, SC 29801	E. S. Goldberg DOE Savannah River Operations Office P.O. Box A Aiken, SC 29801
R. E. Cunningham Deputy Director for Fuels and Materials Nuclear Regulatory Commission Silver Springs, MD 20910	R. J. Hall Office of NWTS Integration Battelle Memorial Institute 505 King Avenue Columbus, OH 43201
Jared Davis U.S. Nuclear Regulatory Commission Washington, DC 20555	


<u>No. of Copies</u>	<u>No. of Copies</u>
<p>Larry L. Hench Department of Materials Science and Engineering University of Florida Gainesville, FL 32611</p>	<p>I. A. Kilinic Department of Geology University of Cincinnati Cincinnati, OH 45221</p>
<p>W. M. Hewitt Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201</p>	<p>John F. Kircher Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201</p>
<p>Peter Hofmann Office of NWTS Integration Battelle Memorial Institute 505 King Avenue Columbus, OH 43201</p>	<p>D. A. Knecht Exxon Nuclear P.O. Box 2800 Idaho Falls, ID 83401</p>
<p>J. Holloway Department of Chemistry Arizona State University Tempe, AZ 85281</p>	<p>E. H. Kobish Solid State Division Oak Ridge National Laboratory Oak Ridge, TN 37830</p>
<p>Norman Hubbard Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201</p>	<p>Lawrence Berkeley Laboratory Reference Library University of California Berkeley, CA 94720</p>
<p>D. Isherwood Lawrence Livermore National Laboratory, L-205 P.O. Box 808 Livermore, CA 94550</p>	<p>Lawrence Livermore Laboratory Reference Library P.O. Box 808 Livermore, CA 94550</p>
<p>L. H. Johnson Fuel Waste Technology Branch Atomic Energy of Canada, Ltd. WNRE Pinawa, Manitoba Canada ROE 1L0</p>	<p>A. Lerman Department of Geological Sciences Northwestern University Evanston, IL 60201</p>
<p>J. K. Johnstone Sandia Laboratories Albuquerque, NM 87185</p>	<p>W. L. Lindsay Centennial Professor Colorado State University Fort Collins, CO 80523</p>
	<p>Tom Longo DOE Division of Waste Depository Deployment Washington, DC 20545</p>

<u>No. of Copies</u>	<u>No. of Copies</u>
Los Alamos Scientific Laboratory Reference Library P.O. Box 1663 Los Alamos, NM 87544	Jim P. Murray Harvard University Pierce Hall Cambridge, MA 02138
R. Y. Lowrey DOE Albuquerque Operations Office Albuquerque, NM 87115	Jeff O. Neff DOE Columbus Program Office 505 King Avenue Columbus, OH 43201
Richard W. Lynch, Manager Department 4530 Sandia Laboratories P.O. Box 5800 Albuquerque, NM 87185	E. J. Nowak Sandia Laboratory Division 5824 Albuquerque, NM 87131
R. D. McCright Lawrence Livermore National Laboratory P.O. Box 808 Livermore, CA 94550	Oak Ridge National Laboratory Central Research Library Document Reference Section Oak Ridge, TN 37830
S. A. Mann DOE Chicago Operations and Regional Office Argonne, IL 60439	G. Oertel DOE Office of Defense Waste and Byproducts DP-12, GTN Washington, DC 20545
Don Moak Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201	J. D. Osnes RE/SPEC P.O. Box 725 One Concourse Drive Rapid City, SC 57709
Martin A. Molecke Nuclear Waste Experimental Programs Division 4512 Sandia Laboratories Albuquerque, NM 87185	V. M. Oversby Lawrence Livermore National Laboratory P.O. Box 808 Livermore, CA 94550
Judith Moody Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201	W. M. Pardue Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201

<u>No. of Copies</u>	<u>No. of Copies</u>
F. Parker Department of Environmental Engineering Vanderbilt University Nashville, TN 37235	Gil Raines Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201
George A. Parks Department of Applied Earth Sciences Stanford University Stanford, CA 94305	L. D. Ramspott Lawrence Livermore Laboratory P.O. Box 808 Livermore, CA 94550
A. F. Perge DOE Office of Terminal Waste Disposal and Remedial Action Washington, DC 20545	R. A. Robinson Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201
T. H. Pigford University of California Berkeley, CA 94720	A. J. Rothman Lawrence Livermore National Laboratory, L-207 P.O. Box 808 Livermore, CA 94550
G. F. Pinder Department of Civil Engineering Princeton University Princeton, NJ 08540	Savannah River Laboratory Reference Library Aiken, SC 29801
M. S. Plodinec E. I. du Pont de Nemours and Co. Savannah River Laboratory Aiken, SC 29801	J. A. Ruppen Sandia National Laboratory P.O. Box 5800 Albuquerque, NM 87185
John Pomeroy, Tech. Sec. National Academy of Sciences Committee of Radioactive Waste Management National Research Council 2101 Constitution Avenue Washington, DC 20418	T. T. Scott Ames Laboratory Iowa State University Ames, IA 50011
R. G. Post College of Engineering University of Arizona Tucson, AZ 85721	J. Schornhorst Westinghouse Electric Corporation AESD P.O. Box 10864 Pittsburgh, PA 15326
	Martin Seitz Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439

<u>No. of Copies</u>	<u>No. of Copies</u>
Robert Silva Lawrence Berkeley Laboratory University of California One Cyclotron Road Building 70A/1160 Berkeley, CA 94720	R. E. Wilems INTERA, Environmental Consultants, Inc. 11999 Caty Freeway Suite 610 Houston, TX 77079
M. J. Steindler Chemical Engineering Divison Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439	Wilste Library U.S. Nuclear Regulatory Commission Washington, DC 20555
David B. Stewart National Center 959 U.S. Geological Survey Reston, VA 22092	T. J. Wolery Lawrence Livermore Laboratory P.O. Box 808 Livermore, CA 94550
T. T. Vandergraaf Atomic Energy of Canada, Ltd. WNRE, Pinawa, Manitoba Canada ROE 1L0	<u>ONSITE</u>
R. D. Walton DOE Nuclear Waste Management and Fuel Cycle Programs NE-30, GTN Washington, DC 20545	6 <u>DOE Richland Operations Office</u> E. A. Bracken P. A. Craig H. E. Ransom J. J. Schreiber F. R. Standerfer M. W. Shupe
William B. White Materials Research Laboratory Pennsylvania State University University Park, PA 16802	8 <u>Rockwell Hanford Operations</u> M. J. Apted G. S. Barney M. Bensky M. J. Kupfer P. F. Salter W. W. Schulz M. J. Smith M. I. Wood
J. B. Whitsett DOE Operations Office 550 2nd Street Idaho Falls, ID 83401	<u>Exxon Nuclear Company</u> S. J. Beard
R. F. Williams Electric Power Research Institute 3412 Hillview Avenue P.O. Box 104112 Palo Alto, CA 94303	<u>Joint Center for Graduate Study</u> J. Cooper

<u>No. of Copies</u>	<u>No. of Copies</u>
2 <u>UNC Nuclear Industries, Inc.</u>	Y. B. Katayama M. R. Kreiter K. M. Krupka W. L. Kuhn R. E. Nightingale
T. E. Dabrowski A. A. Engler	J. L. McElroy G. L. McVay G. B. Mellinger J. E. Mendel W. R. Nelson L. R. Pederson R. D. Peters D. Rai
3 <u>Westinghouse Hanford Company</u>	J. F. Relyea W. A. Ross J. L. Ryan R. J. Serne J. W. Shade D. M. Strachan R. G. Strickert J. L. Swanson R. P. Turcotte H. H. Van Tuyl R. W. Westerman
69 <u>Pacific Northwest Laboratory</u>	J. H. Westsik, Jr. (25) Technical Information Library (5) Publishing Coordination (BG)(2)
W. F. Bonner D. J. Bradley H. C. Burkholder D. B. Cearlock L. A. Chick T. D. Chikalla M. O. Cloninger D. G. Coles F. H. Dove J. H. Jarrett E. A. Jenne C. O. Harvey F. N. Hedges	

