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ABSTRACT

Radionuclide transport in the subsurface is often modeled with the aid of 
the advection-dispersion equation. A review of existing computer methods 
for the solution of this equation shows that there is need for improvement. 
To answer this need, a new adaptive numerical method is proposed based on an 
Eulerian-Lagrangian formulation. The method is based on a decomposition of 
the concentration field into two parts, one advective and one dispersive, in 
a rigorous manner that does not leave room for ambiguity. The advective 
component of steep concentration fronts is tracked forward with the aid of 
moving particles clustered around each front. Away from such fronts the 
advection problem is handled by an efficient modified method of characteris­
tics called single-step reverse particle tracking. When a front dissipates 
with time, its forward tracking stops automatically and the corresponding 
cloud of particles is eliminated. The dispersion problem is solved by an 
unconventional Lagrangian finite element formulation on a fixed grid which 
involves only symmetric and diagonal matrices. Preliminary tests against 
analytical solutions of one- and two-dimensional dispersion in a uniform 
steady state velocity field suggest that the proposed adaptive method can 
handle the entire range of Peclet numbers from 0 to 00, with Courant numbers 
well in excess of 1.
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PREFACE

Most existing computer models for the prediction of subsurface mass trans­
port are founded on the advection-dispersion equation. According to this 
equation, a tracer or contaminant is transported by means of two principal 
mechanisms: advection with the mean groundwater velocity, and hydrodynamic 
dispersion. The hydrodynamic dispersion term in the equation is said to 
account for molecular diffusion and deviations of the actual groundwater 
velocity from its mean value. In analogy to Pick's first law of molecular 
diffusion, mass flux of a given chemical species due to hydrodynamic disper­
sion is commonly assumed proportional to the gradient of its concentration. 
Other phenomena such as radioactive decay and sorption are superimposed on 
the advective-dispersive process as source or sink terms.

In recent years, many questions have been raised regarding the applicability 
of the Fickian analogy to fractured and porous rocks. One important aspect 
of our own research work, under the auspices of the Nuclear Regulatory Com­
mission, has been to determine the degree to which the traditional Fickian 
form of the advection-dispersion equation applies to fractured rocks. Our 
work as well as that of others suggest that the traditional form has serious 
shortcomings and as such, is less than a perfect predictive tool. Efforts 
are underway to modify the existing form, or develop alternative mathemati­
cal models, so as to improve our ability to predict contaminant transport. 
These efforts not withstanding, the Fickian advection-dispersion equation 
will most probably remain the chief tool of subsurface transport analysis at 
least for the immediate future.

Our recognition that the traditional equation will remain the mainstay of 
contaminant transport modeling in the coming years has prompted us to exam­
ine the numerical methods currently used to solve this equation on the com­
puter. Numerical difficulties arise due to the complex three-dimensional 
flow patterns often encountered in the subsurface, the anisotropic nature of 
hydrodynamic dispersion, and other complicating factors such as radioactive 
decay, sorption, and chemical reactions. However, a more fundamental numer­
ical difficulty stems from the very nature of the advection-dispersion equa­
tion which may be predominantly parabolic in some parts of the flow field, 
and hyperbolic in other parts, depending on the local Peclet number. Most 
numerical methods are tailored to handle one of these situations, but not 
both simultaneously. Consequently, many existing numerical models of sub­
surface transport are prone to errors that may manifest themselves in the 
form of unwarranted oscillations or the smearing of steep concentration 
gradients. One aspect of our work for the Nuclear Regulatory Commission is 
to evaluate these numerical methods and suggest possible improvements.

This report includes a critical review of existing numerical methods for 
advection-dispersion. Our review reveals fundamental weaknesses in most of 
the modeling techniques that have been described in the literature. To 
overcome some of these weaknesses, we propose a new adaptive Eulerian- 
Lagrangian method that can be used in conjunction with any well-established 
grid technique such as finite differences, integral finite differences, 
point collocation, or finite elements; we currently work with the latter.
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The proposed method is based on a formal decoupling of the concentration 
field into an "advective" part and a "dispersive" part. This makes it pos­
sible to automatically adapt the method of solution to the nature of the 
problem. When sharp concentration fronts are present, their advective com­
ponent is tracked forward with the aid of moving particles. Away from such 
fronts, the advection problem is handled by an efficient modified method of 
characteristics referred to here as "single-step reverse particle tracking." 
When a front becomes sufficiently smooth to be handled by the single-step 
reverse particle tracking method, its forward tracking stops automatically 
and the corresponding particles are eliminated. The residual dispersion 
problem is solved by finite elements in each case. Since advection is 
handled separately, the matrices arising from the finite element formulation 
are either symmetric or diagonal. Most conventional finite element schemes 
lead to nonsymmetric matrices. Preliminary tests with one- and two- 
dimensional dispersion in a uniform velocity field suggest that the method 
is capable of handling Peclet numbers from 0 to 00 without oscillations and 
numerical dispersion, while using large time steps with Courant numbers well 
in excess of 1.
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1. INTRODUCTION

The nature of the advection-dispersion equation can be conveniently charac­
terized by the dimensionless Peclet number

|v|L

where v^ is velocity vector, L is a characteristic length, and £ is disper­
sion tensor. For example, in the case where an inert chemical=species is 
spreading due to molecular diffusion in a one-dimensional velocity field, 
the governing equation can be written as

ic = ifc _ Pe ic (1_2)

31 3 3 x

where c is concentration, t is time, x is spatial coordinate defined rela­
tive to L, and Pe = vl/Dm, v being velocity and Dm molecular diffusion coef­
ficient. Clearly, when Pe is small, diffusion dominates, and the equation 
is parabolic in character. When Pe is large, advection dominates, and the 
character of the equation changes to hyperbolic. In nonuniform and non­
steady flow fields where the velocity is not constant, the character of the 
advection-dispersion equation may vary in space and time, being predominant­
ly parabolic in some regions and hyperbolic in others.

Most conventional numerical methods for solving the advection-dispersion 
equation can be classified into two major categories, Eulerian or Lagran­
gian, depending on the emphasis that they place on the parabolic or hyper­
bolic nature of the problem. In the Eulerian method, the equation is 
discretized by a finite difference or finite element grid fixed in space. 
Lagrangian methods utilize either a deforming grid, or a fixed grid in 
deforming coordinates. A review of these methods, together with a discus­
sion of their relative advantages and disadvantages, is given in the next 
chapter.

A third approach that has been gaining popularity in recent years is the 
mixed Eulerian-Lagrangian method. As will be shown below, this method com­
bines the simplicity of the fixed Eulerian grid with the computational power 
of the Lagrangian approach, both of which are essential when relatively 
sharp concentration fronts are traveling through complex geologic environ­
ments. Existing Eulerian-Lagrangian numerical schemes are reviewed in the 
next chapter. Unfortunately, the review points to several shortcomings.
In an effort to overcome these shortcomings, we proposed earlier a new tech­
nique consisting of two steps (Ref. 1): 1. Formal decomposition of the
concentration field into two parts, one controlled by pure advection, the 
other essentially by dispersion, and 2. Solution of the resulting advection 
problem by the method of characteristics on a fixed space-time grid, coupled 
with a finite element solution of the dispersion problem on another fixed 
grid. Our formal decomposition of the concentration field is rigorous and 
differs from previous such attempts in that it leaves no room for ambiguity.
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However, the particular numerical implementation of this idea described in 
Neuman's paper (Ref. 1) suffers from some artificial dispersion.

This report describes an alternative numerical scheme based on Neuman's 
theory (Ref. 1). The fundamental new idea behind the proposed scheme is 
automatic adaptation of the solution process to the nature of the problem. 
When sharp concentration fronts are present, their advective component is 
tracked forward with the aid of moving particles. Away from such fronts, 
the advection problem is handled by an efficient method called "single-step 
reverse particle tracking." When a front becomes sufficiently smooth to be 
treated by the single-step reverse particle tracking method, its forward 
tracking stops automatically and the corresponding particles are eliminated. 
The residual dispersion problem is solved by finite elements in each case. 
Since advection is considered separately, the matrices arising from the 
finite element formulation are either symmetric or diagonal. Most conven­
tional finite element schemes lead to nonsymmetric matrices. Preliminary 
tests with one- and two-dimensional dispersion in a uniform velocity field 
suggest that the method is capable of handling the entire range of Peclet 
numbers from 0 to 00 while using large time steps with Courant numbers well 
in excess of 1.

2. STATE OF THE ART

Most numerical methods for solving the advection-dispersion equation can be 
categorized as Eulerian, Lagrangian, or Eulerian-Lagrangian.

2.1 Eulerian Methods

The most common Eulerian method is that based on finite differences. Early 
experiments with this approach (Refs. 2-4) have shown that this technique 
performs well in dispersion-dominated situations at low Peclet numbers where 
the concentration function is relatively smooth. However, when the gradient 
of concentration is steep due to the prevalence of advection at high Pe, 
methods based on central difference approximations for the advection term 
may suffer from oscillations resulting in overshoot, undershoot and negative 
concentrations. Price et al. (Ref. 5) proved that such oscillations can be 
eliminated by restricting the size of the spatial grid increments; in the 
case of Eq. 1-2, the increments must satisfy Ax<2/Pe. Since this is not 
always practical, the alternative is to use upstream difference approxima­
tions (also known as upstream weighting or upwinding) that are able to 
eliminate oscillations, but also introduce large truncation errors which are 
equivalent to a numerical (as opposed to physical) dispersion term (Refs. 6, 
7). The effect of this numerical dispersion term is to smear sharp concen­
tration fronts. Lantz (Ref. 7) showed that for many practical problems, 
reducing numerical dispersion sufficiently so as to prevent masking physical 
dispersion may require an extremely fine grid. Another way to reduce numer­
ical dispersion in upstream schemes is to cancel part of the truncation 
error by using higher-order approximations in space (Refs. 8-11), time 
(Refs. 6,12-14), or both (Ref. 15). Most of these have the effect of adding 
a negative correction term to the dispersion coefficient. A similar effect
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can also be achieved by means of flux corrections (Ref. 16), variable 
upstream/downstream weighting (Ref. 17), variably timed flux updating (Refs. 
18,19), or on the basis of physical considerations (Ref. 20).

During the last decade, there has been a growing belief that an alternative 
Eulerian approach for handling sharp fronts may be provided by high order 
finite element techniques (Refs. 21-23). Price et al. (Ref. 21) showed that 
high-order Galerkin approximations using smooth and non-smooth Hermite poly­
nomials are potentially far more accurate for a given amount of computation­
al effort than standard finite difference techniques. Low-order Galerkin 
finite element schemes also appear to be more accurate than standard finite 
differences (Refs. 24-26). However, in dealing with advection-dominated 
problems (especially the translation of square waves), the former are some­
times inferior when compared to the lowest-order flux-corrected finite dif­
ference scheme of Book et al. (Refs. 16,27). Furthermore, time-centered 
finite element schemes suffer from oscillations, and backward difference 
schemes exhibit numerical dispersion (Refs. 25,26). So far, neither 
higher-order interpolations in space (Ref. 26) nor in time (Ref. 28) have 
proven capable of entirely and efficiently eliminating both problems.

The use of upstream weighting on finite elements reduces oscillations only 
at the expense of numerical smearing (Refs. 29-31). More promising is the 
idea of adding an anisotropic correction to the dispersion term as postu­
lated for steady state problems by various authors (Refs. 32-34). Both 
approaches can be cast in the more general context of Petrov-Galerkin 
methods which alter the symmetry of terms resulting from standard Galerkin 
approximations by using interpolation functions that differ from the basis 
functions. A review of the most recent advances in this area shows that the 
Petrov-Galerkin method holds promise for steady state problems (Refs. 35,36) 
but its extension to transient advection-dispersion requires further 
development (Ref. 37).

Another recent trend in the development of Eulerian techniques is the use of 
point collocation, often in conjunction with ADI (Refs. 38,39). While the 
combination of collocation with ADI appears to be computationally efficient, 
one must recognize that a similar effect can be achieved by combining ADI 
with finite elements (Ref. 40). There seems to be no indication in the 
literature that collocation is superior to conventional finite elements of 
comparable polynomial degree in dealing with oscillations and numerical dis­
persion.

2.2 Lagrangian Methods

Since standard Eulerian techniques are unsatisfactory while the more complex 
techniques may not always be easily adapted to difficult problems, and since 
some of the more promising new ideas are in an early stage of development, 
it is of interest to examine methods founded on the Lagrangian approach.
Such methods are based either on a deforming grid or on a fixed grid in de­
forming coordinates. Varoglu and Finn (Refs. 41-44) use space-time finite 
elements in one and two spatial dimensions with sides paralleling either
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surfaces of constant time, or surfaces defined by characteristics. In this 
manner, the finite element equations become free of advective terms, result­
ing in a relatively well-behaved diffusion-type problem. The idea is based 
on earlier uses of space-time finite elements in connection with the Stefan 
problem (Refs. 45,46) and equations representing conservation laws (Ref.
47). The method was tested by the authors on various problems ranging from 
dispersion-dominated cases to the pure advection of a rectangular wave.
Their results did not show any oscillations and exhibited only a small 
amount of numerical dispersion in the case of pure advection. Another 
closely related approach is one in which the nodal points of a one­
dimensional Hermitian finite element grid are shifted during each time step 
parallel to the characteristics (Refs. 48,49). The resulting finite ele­
ment equations, which are coupled with finite differences in time, are thus 
devoid of advective terms and can be solved without difficulty. The authors 
demonstrated that when the grid is made fine enough in the vicinity of a 
sharp front, the results can be entirely free of oscillations or numerical 
dispersion. Not only are both methods highly accurate but, when advection 
dominates, both are also able to use large time steps such that the distance 
traveled by a fluid particle, say. As, is well in excess of the distance 
between contiguous nodal points, say. Ax. The same is probably true about 
the more complex moving Petrov-Galerkin method described in a recent paper 
by Botha et al. (Ref. 50). In Eulerian schemes, stability and convergence 
often require that time step size be small enough to satisfy the Courant- 
Friedrichs-Lewy condition

As < aAx (2-1)

where a, the Courant number, is at most 1 (Ref. 51). Practical experience 
with various Eulerian schemes, including Hermitian finite elements, suggests 
that it is prudent to set a equal to 1/3 (Ref. 48).

Jensen and Finlayson (Refs. 52,53) proposed a scheme in which the advection- 
dispersion equation is written in Lagrangian coordinates with origin at the 
center of a moving front. When the velocity field is uniform, the equation 
becomes free of advective terms; otherwise, some residual first-order space 
derivatives remain. By using orthogonal collocation on finite elements, the 
authors were able to obtain good results that showed no oscillations and 
only a minute amount of numerical dispersion at high Peclet numbers.

2.3 Eulerian-Lagrangian Methods

Even though the above Lagrangian methods are more powerful than most 
Eulerian techniques, they suffer from several limitations which may become 
serious when one considers difficult problems such as groundwater contami­
nation in complex subsurface environments. Since geologic environments are 
often characterized by highly nonuniform material properties, the movement 
of nodal points across material interfaces may cause difficulties in 
the handling of equation parameters, especially if sorption and chemical 
reactions are important. Such movement may also result in severe grid
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deformations due to the refraction of streamlines across material inter­
faces, leading to numerical errors. When multiple sources exist, as in the 
case of chemical injection into the subsurface through several wells, con­
centration fronts may propagate in opposite directions and cross each other 
at various angles, causing mesh tangling. This type of transport cannot be 
handled with the aid of deforming meshes or moving coordinates of the kind 
described above. Since velocities are usually computed independently of the 
transport problem by using a fixed Eulerian grid, it would be most conve­
nient if the advection-dispersion equation could be solved on a grid com­
patible with the latter, especially when the velocity field varies with 
time. Finally, when the grid or the coordinates deform, the finite element 
matrices must be reevaluated and/or decomposed anew at every time step (in 
the case of Lagrangian coordinates, this is so because the boundary location 
varies with time); in linear problems solved on an Eulerian grid, the 
matrices remain constant, and if the time increment is fixed, a single LU- 
decomposition is enough.

The purpose of Eulerian-Lagrangian methods is to combine the simplicity of 
the fixed Eulerian grid with the computational power of the Lagrangian 
approach. Runca and Sardei (Ref. 54) proposed to do this for horizontal 
advection and vertical eddy diffusion of air pollution by discretizing the 
vertical wind profile in a stepwise fashion. They then used different time 
intervals for each step so as to translate the concentration field to posi­
tions coincident with fixed Eulerian grid points during each time increment. 
Melli (Ref. 55) solved the same problem with an irregular grid adapted to 
the wind profile so that the horizontal distance between nodes at each ele­
vation is exactly equal to the distance traveled by a particle due to advec­
tion during a time step. Although his technique yielded good results for 
relatively large eddy diffusivities, attempts to propagate a sharp front met 
only with marginal success. On the other hand, Sauty (Ref. 56) reported 
success in using a similar idea to analyze the movement of groundwater 
tracers between wells.

More general than the former is the continuous forward particle tracking 
method originally suggested by Garden et al. (Ref. 57) and later used exten­
sively for subsurface transport (Refs. 58-61). In this method, advection 
is handled by the method of characteristics applied to a set of moving par­
ticles. The dispersion part of the problem is solved by explicit finite 
differences on a fixed grid. Although the method is virtually free of 
numerical dispersion, it suffers from instability when the time step size 
exceeds a certain limit. Existing theory behind this version of particle 
tracking is vague and, therefore, it cannot be shown to converge. The 
treatment of complex boundary conditions and nonlinearities is not straight­
forward, and the constant handling of numerous particles is time consuming. 
In another version of particle tracking developed by Ahlstrom et al. (Ref. 
62) and recently popularized among subsurface hydrologists by Prickett et 
al. (Ref. 63), dispersion is effected by means of a random walk process 
applied to each particle. The method is conceptually simple and relatively 
easy to program. Its main drawback is that concentrations are computed by 
sampling the mass concentration of particles, a process that is strongly 
dependent on sample size. Experience shows that many thousands of particles
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may be required for the sample size to be large enough to provide accurate 
solutions in simple two-dimensional flow fields.

To avoid the need for a large number of moving particles, Hinstrup et al. 
(Ref. 64) suggested redefining the particles at discrete time intervals so 
as to make them coincide with the nodes of a fixed finite difference grid at 
the end of each time step. The position of each particle at the beginning 
of a time step is obtained by polynomial interpolation between concentration 
values at neighboring grid points. Neuman and Sorek (Ref. 65) used a simi­
lar approach in conjunction with finite elements and referred to it as 
"single-step reverse particle tracking." The same approach was termed 
"modified method of characteristics" by Russell, Ewing, and Douglass (Refs. 
66-70) who studied some of their theoretical properties. In particular,
Ref. 70 shows that, for advection-dominated problems, the approach has much 
smaller time-truncation errors than some purely Eulerian methods. According 
to Russell (Ref. 67), the method is free of grid orientation effects, numer­
ical dispersion, and overshoot.

Our own work demonstrates that single-step reverse particle tracking indeed 
possesses some very attractive features: It is simple, numerically effi­
cient, leads to symmetric matrices, and can handle large time steps with 
Courant numbers well in excess of 1. Contrary to Russell (Ref. 67), how­
ever, our results show that at high Pe, the method is not free of numerical 
dispersion and overshoot unless the spatial grid is made very fine. When a 
reasonably coarse grid is used, the results deteriorate as the time inter­
val. At, is reduced, due to the accumulation of interpolation errors.

3. ADAPTIVE EULERIAN-LAGRANGIAN METHOD

We saw that Eulerian methods have many advantages stemming from a fixed 
grid, but they are not well suited for the handling of sharp fronts, and 
their time step size is often limited by the Courant-Friedrichs-Lewy condi­
tion. Lagrangian methods are able to deal with steep concentration gradi­
ents while utilizing relatively large time steps, but the lack of a fixed 
grid, or fixed coordinates, causes difficulties in dealing with complex sub­
surface conditions. Mixing the Eulerian and Lagrangian methods provides an 
opportunity to benefit from the best of both worlds by being able to handle 
sharp fronts while maintaining a fixed grid.

Unfortunately, none of the existing Eulerian-Lagrangian methods takes full 
advantage of this opportunity. The particle tracking method of Garden et 
al. (Refs. 57-61) lacks a firm theoretical foundation and requires excessive 
computer time. The single-step reverse particle tracking method suffers 
from numerical dispersion which becomes worse as the time discretization 
interval goes down. We propose to resolve these difficulties by supplying a 
rigorous theory in support of the Eulerian-Lagrangian approach, and by en­
hancing its computational power through an adaptive scheme.

Our theory, developed originally by Neuman (Ref. 1), is presented below.
It allows for a formal decoupling of advection from dispersion in a manner
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which, contrary to previous such attempts (Refs. 57, 64, 71) does not leave 
room for ambiguity. Since the advection and dispersion problems require 
different treatments, they are solved separately, one by a Lagrangian method 
and the other by an Eulerian method.

Our adaptive scheme rests on the recognition that many problems involve 
sharp fronts which dissipate with time. The tracking of such fronts is 
accomplished most efficiently with the aid of forward moving particles clus­
tered around each front (Ref. 72). However, there is no need to track par­
ticles away from such fronts, and there is no need to continue tracking a 
front after it has become sufficiently smooth due to dispersion, sorption, 
or decay. Instead, the solution away from sharp fronts is handled much more 
efficiently by single-step reverse particle tracking. In short, we propose 
to adapt the method of solution to the manner in which the concentration 
field evolves in space and time. Preliminary results will demonstrate that 
our proposed adaptive scheme leads to a considerable improvement in accuracy 
and computational efficiency.

4. THEORY

Consider the advection-dispersion equation

(1 + s)H- = V*(DVc - vc) - Ac + q (4-1)

where c is concentration, s is retardation coefficient (some reserve this 
term for 1 + s), t is time, V is gradient operator, _D is dispersion tensor, 
v^ is seepage velocity vector, A is radioactive decay coefficient, and q is 
source term. The parameters of Eq. 4-1 satisfy s > 0, A > 0, and £ is sym­
metric positive-semidefinite. The equation is to be solved for c, subject 
to the initial and boundary conditions

c(2<,0) = C0(x) (4-2)

(- DV c + vc)*n + a(c-C) = 0 on r (4-3)

Here x. is position vector; r is boundary; n is unit vector normal to r and 
pointing outward; Cq. C, and 0 are prescribed functions; and a controls the 
type of boundary condition prevailing on r : If a Eq. 4-3 is a pre­
scribed concentration condition; if a = 0, it is a prescribed mass flux con­
dition; otherwise, it is a mixed condition. Eq. 4-3 applies to inflow and 
noflow boundaries. Along outflow boundaries, it is common to assume that

DVc* n_ =0 on r (4-4)
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Using the hydrodynamic derivative

Dt 31 + 1+s

we can rewrite Eq. 4-1 in Lagrangian form as 

(1+5)]]! = V* (D7c) - fc + q

(4-5)

(4-6)

where f = V«v + X. Here c no longer represents concentration at a point in 
space-time^ TJut rather the concentration of a fluid particle moving at the 
velocity v^ = v/(l+s). The pathline of this particle is described by the 
hydrodynamic derivative of which leads to the characteristic equation

Ox

Dt
*v (4-7)

Neuman (Ref. 1) has shown that Eqs. 4-6 and 4-7 subject to Eqs. 4-2 through 
4-4 can be replaced by two sets of equations, one in terms of c, the other 
in terms of c, where

- O
c = c + c (4-8)

One way to perform such a decomposition is to let c satisfy the homogeneous 
first-order partial differential equation

Dc
Dt V *V C 0 (4-9)

subject to the initial condition

c(x,0) = Co(x), (4-10)

and the Cauchy condition along inflow boundaries

v_c.jn + a(c-C) = Q on r (4-11)

and along noflow boundaries

vc» n = 0 on r (4-12)
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Conditions along outflow boundaries have no effect on c and are thus irrele­
vant. Clearly, the c value of a given fluid particle remains constant as 
the latter is advected through the flow field. Thus, the "advection 
problem" defined by Eqs. 4-9 through 4-12 can be solved independently of c.

The residual concentration, c, must satisfy

(l+s){j£ = V-(nyc) - fc + q + g (4-13)

where

g = V • (Wc) - fc

subject to the homogeneous initial condition

c(x.,0) = 0 (4-14)

and the conditions along inflow boundaries

(-Dye + vc) . jn + ac = h on r (4-15)

where h = Dyc.n., along noflow boundaries

- Dyc.jn + a(c-C) = u on r (4-16)

where u = Q - ac + h, and along outflow boundaries

- Wc.n = h on r (4-17)

Note that g, h, and u play the role of prescribed source functions when c 
is known. We will refer to Eqs. 4-13 through 4-17 as the residual "disper­
sion problem."

We see that the hyperbolic-parabolic advection-dispersion problem defined 
by Eqs. 4-1 through 4-4 can be formally decoupled into a purely hyperbolic 
"advection problem" defined in terms of c, and another predominantly para­
bolic residual "dispersion problem" defined in terms of c. The approach
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is to first solve the advection problem for c, as the latter is independent 
of c, and then solve the residual dispersion problem for c. Another alter­
native is to solve Eq. 4-6 in its Lagrangian form without decomposing c into 
c and c; this is what the single-step reverse particle tracking method does. 
Our proposed numerical method utilizes both of these alternatives jointly in 
an adaptive manner.

5. NUMERICAL APPROACH

In Neuman's original paper on this subject (Ref. 1), the one-dimensional 
advection problem was solved on a fixed space-time grid by the method of 
characteristics, and the residual one-dimensional dispersion problem was 
solved on a different fixed space-time grid by finite elements. The use of 
such conjugate space-time grids required projecting results from one grid to 
another, which led to some numerical dispersion. Neuman and Sorek (Ref. 65) 
investigated the possibility of eliminating such numerical dispersion by 
solving the advection problem with moving particles instead of a fixed grid. 
Their results were encouraging, but showed slight oscillations. We now know 
how to eliminate such oscillations, and we have also developed an adaptive 
scheme that is much more efficient than conventional particle tracking.

Our adaptive method can be described briefly as follows. Suppose that c is 
known at time t^, and we wish to compute it at t^+j = t^ + At. First, we 
set

c(x,tk) = c(x,tk) 

c(x,tk) = 0
(5-1)

We then solve the advection problem for c(x.,tk+i) by using continuous for- 
particle tracking in the vicinity of steep fronts, and single-step reverse 
particle tracking away from such fronts. The residual dispersion problem 
is solved for c, or c, by finite elements.

In this report, we develop the finite element equations in terms of c (for 
a development in terms of c, see Ref. 65). Thus, c(x_,t) is approximated by 
a finite element function, cN(x,t), defined as

c(x.,t) « c^(x_,t)

N
= I cn(t) Cn(2i) 

n=l
(5-2)

Here N is number of grid points or nodes, cn is concentration at node n, and 
5n is a basis function satisfying
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£ nOibn) " 6 nm (5-3)

being x. at node m, and 6nm being the kronecker delta (i.e., 6nm = 1 if 
n = m and 6 nm = 0 i f n * m).

5.1 Continuous Forward Particle Tracking

If there is a steep concentration front, the approach is to introduce moving 
particles at strategic points around the front and continuously track their 
positions along the pathlines. Any existing particle, p, located at point 
Xp at time t^, is assigned a c value equal to cK = c(xp,t|<) for the dura­
tion of the time interval (t^.t^+i). By virtue of Eqs. 5-1 and 5-2, we 
have

$ - c(jSp>tk)

S3 ^m(iip) (5-4)

Any new particle, r, introduced at is assigned a c value equal to
ck = c(Xj.,t^). A new particle introcTuced along an inflow boundary is 
assigned the c value

aC + Q
v • n + a

Ir^k

(5-5)

according to Eq. 4-11 for the duration of the time interval.

At the end of the time step, each particle, p, reaches a new position

k
-P

tk+l 
/ v* Dt 

tk

(5-6)

At this stage, there is a need to project c onto the nodes, n, of the finite 
element grid. In the examples shown later, we use bilinear interpolation 
between particles arranged in a rectangular pattern.

The projected values of c are designated by ^cn such that

11



(5-7)k c(iin»^k+l)

Clearly, kcn can be viewed as c at of a fictitious moving particle which 
reaches node n at time t^+j.

5.2 Single-Step Reverse Particle Tracking

In areas where the concentration gradients are mild, kcn is computed by 
sending a fictitious particle from each node, n, backward to the point

-hi iin Dt (5-8)

during each time step. This means that a particle leaving k_Xn at ^k W1^ 
reach the grid point location, jCp, exactly at tk+-|. If the velocity field 
does not change with time and At is fixed, then ^Xj) remains constant for 

each n and needs to be computed only once.

By virtue of Eqs. 5-1 and 5-2, we can express kcn as

kCn - c(kx.n»tk)

= c(kXn,tk)

N k (5-9)
” 1 cm £m( An)

m=l

This requires much less computer time and storage than continuous forward 
particle tracking. However, the method cannot be used near sharp fronts 
because it exhibits numerical dispersion near such fronts.

5.3 Dispersion by Finite Elements

Applying the Galerkin orthogonalization procedure to Eq. 4-6 leads to

/[(l+s) - v* (DycN) + fcN - q^n dR = 0 n=l,2,...,N (5-10)

where R is the flow region bounded by r (for the moment, we will treat the 
time derivatives as known functions). Application of Green's first identity 
gives

12



J[(1+s)t£ + fcN' - q] dR + / WcN.V5n dR 
R ut R

- / WcN*ii 5n dr = 0 n=l ,2,... ,N (5-11)

r

In what follows, we treat each node of the fixed finite element grid as a 
moving particle having reached Xp at t^+i. This unconventional approach 
renders the problem purely paraoolic. It has been shown by Neuman and 
Narasimhan (Ref. 73) that for such parabolic problems, there is often an 
advantage in using a lumped-mass finite element approach which is eqivalent 
to approximating the first term in Eq. 5-11 by

nr Dc
/(l+s)^|£n dR--,^; (Hs)?n dR (5-12)
R R

Note that this is analogous to what one does in most conventional finite 
difference schemes. To approximate the time derivative by finite differ­
ences we write

Dcn
Dt it (5-13)

Since n is viewed as a particle reaching X/i at t^+i, we must use a backward 
difference scheme.

From Eqs. 4-3 and 4-4, along inflow and noflow boundaries

/ jycN.n. Cn dr = /Cl,HcN+a(cN-C)-Q]?n dr 
r r

and along outflow boundaries

/ IVcN*_n £n dr =0
r ”

Substituting these together with Eqs. 5-2, 5-12, and 5-13 into Eq. 5-11 
leads to the matrix equation

+ I + £ + sr (w + I)] ck+1 = Q + ^ (£+£)k£ (5-14)
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Here A is a symmetric positive-semidefinite "dispersion matrix" of 
defined as

Anm ~ / IFSn’^m 
R

B_ is a symmetric "boundary matrix" of order N, whose terms are

Bnm = - / (rJl+a) ^n ^m ^5 a <00
r

if n and m are both on an inflow or noflow boundary, and

Bnm = 0

otherwise. When a ->■ ® at x.n, cn known» anCl Bnm not needed, 
symmetric matrix of order N defined as

^nm ” / ^^n^m0*^
R

W is a diagonal "capacity matrix" of order N,

^nm ' 5 nm / ^n 
R

£ is a diagonal "retardation matrix" whose terms are

Snm = 5 nm / s £ n dR 
R

is an N-dimensional "source vector" defined as

Qn = ^n + / <1 Sn dR 
R

where

i|)n = -/(aC + Q)5ndT; a<»
r

if N is on an inflow or noflow boundary, and

order N

(5-15)

(5-16)

(5-17) 

£ is a

(5-18)

(5-19)

(5-20)

(5-21)
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'J'n = 0

otherwise. 
dimensional 

values.

As before, i|;n is not needed if a 00 at n. c_^+^ is the N- 
vector of c^+' values, and is the corresponding vector of

Eq. 5-14 differs from most other finite element, finite difference, or col­
location schemes for the advection-dispersion equation in two important 
ways: 1) It is based on a Lagrangian formulation of the governing equation, 
involving the unconventional vector k£ that is obtained (independently) from 
a solution of the advection problem, and 2) it involves a symmetric matrix 
(bracketed term) in front of the unknown vector . Clearly, the symmet­
ric nature of the matrix stems from the Lagrangian formulation which has 
eliminated advection from Eq. 5-14. It provides the advantage of reduced 
computer storage and time.

Eq. 5-14 can be solved for c^ by point iterative, block iterative (includ­
ing ADI), or direct methods. We use either Cholesky decomposition or a 
direct solver due to Duff (Ref. 74). This solver permutes the matrix into 
block-diagonal form, decomposes it into factors, and solves the problem by a 
compact variant of Gaussian elimination. The solver decomposes a new matrix 
having the same sparsity pattern as a previous one by using the same pivotal 
sequence, which takes much less processing time than the original factori­
zation. This is extremely useful when At varies from one step to another, 
or in nonlinear problems where the matrix components A, j|, £, and jS can also 
vary. ~ =

The final step is to project c*c+^ onto moving particles if such particles 
exist in the flow field. Let p be such a particle. Then c£+' is computed 
according to p

c k+1
P

Jkp+

” (cw - 

p mK m=l
cni) ^m(iip) (5-22)

where c^+^ - ^c is equivalent to c*<+^ by virtue of Eq. 5-7. Eq. 5-22 
utilizes a finite element interpolation scheme for c_which is similar to 
that used for c in Eq. 5-2. For the next time step, Cp is set equal to the 
above value of c in accordance with Eq. 5-1; this supercedes the use of Eq. 
5-4. p

5.4 Adaptive Mechanism

In our proposed scheme, forward moving particles are introduced only in the 
vicinity of sharp fronts and time-varying sources. The term ^Cp is computed 

by continuous forward particle tracking if node n is covered by a cloud of
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such particles, and by single-step reverse particle tracking otherwise.
When a particular front, covered by a cloud of particles, becomes smooth 
enough due to dispersion, retardation, or decay, the corresponding cloud is 
eliminated. This results in significant savings of computer time and 
storage.

One important consideration in developing an adaptive mechanism of this kind 
is an appropriate criterion for particle elimination. How sharp is sharp, 
and how flat is flat? How should one decide at what point in time a front 
becomes smooth enough to justify eliminating the particles?

Our current answer to this question is empirical. We found that the oscil­
lations reported by Neuman and Sorek (Ref. 65) can be eliminated by adopting 
the following smoothing criterion. Consider a moving particle, p, inside a 
particular element. Eq. 5-22 provides a ck+1 value for p. If this value 
satisfies the criterion P

mi n 
n

< max c 
n

k+1
n (5-23)

where min ck+^ is the minimum ck+^ value of all nodes n in the element, and 
n n n

max ck+lis the corresponding maximum value, then we adopt the ck+l value 

from Eq. 5-22. On the other hand, if Eq. 5-23 is violated, then ck+^ is 

redefined according to

c
k+1
P

k+1 r 
c C m m

n=l

(5-24)

Our experience shows that as long as Eq. 5-23 is violated by any particle in 
a cloud, the front covered by that cloud is too steep to allow elimination 
of the particles. On the other hand, when Eq. 5-23 is satisfied by all the 
particles in a cloud during two or three consecutive time steps, the cloud 
can be safely eliminated.

6. EXAMPLES

The following five examples show preliminary results obtained with linear 
chapeau basis functions for one- and two-dimensional dispersion in a uniform 
steady state velocity field. One-dimensional versions of similar examples 
were used earlier by Lam (Ref. 27) to show how poorly methods existing at 
the time worked when there were sharp fronts and high rates of advection.

Example 1 concerns the one-dimensional problem of solving
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(6-1)— = D iis. - v
31 X 3x2 X 3x

on 0 x _< xR

subject to

c(x,0) = 0

c(0,t) = 1 (6-2)

c(xR»t) = 0

The physical and grid parameters, in an arbitrary system of consistent 
units, are Dx = 0.01, vx = 0.05, xp = 2.5, and Ax = 0.05, Ax being the dis­
tance between neighboring grid points. The problem is strongly dispersion- 
dominated with a Peclet number Pex = vxAx/Dx = 0.25. One would therefore 
expect to obtain good results without continuous forward particle tracking, 
merely by using the single-step reverse particle tracking method. To test 
this, we introduced a cloud of 20 particles, 2 per element of length Ax, 
centered about x = 0 at t = 0 (the cloud initially consisted of 10 particles 
to the right of x = 0, but additional particles were added gradually as the 
front advanced to the right). Fig. 1 shows the results at t = 10 when At = 
t/100 (Courant number ax = vx At/Ax = 0.10) and At = t/11 (ax = 0.91). In 
the first case, the particle cloud was automatically eliminated after 23 
time steps, in the second case after 5 time steps. In both cases, the 
results agree very well with the analytical solution

c(x,t) = i erfc(--------— - ) + 4 exp ( ) erfc ( X ) (6-3)
* /4D t x /40 t

x x

which is valid for xp-► However, we were able to obtain similar results 
by not using any forward moving particles at all. This suggests that our 
empirical criterion for the elimination of particles may be too conserva­
tive.

Example 2 is similar to the previous one except that now Dx = 1.0, vx = 10^, 
xp = 1.0, Ax = 0.02, and t = 5 x 10"^. The problem is strongly advection- 
dominated with Pex = vx Ax/Dx = 200. Fig. 2 shows the results when At = 
t/50 (Courant number ax = 0.5) and At = t/11 (ax = 2.27). When there are 
no moving particles, the single-step reverse particle tracking method suf­
fers from numerical dispersion. The amount of this dispersion diminishes as 
At increases. This is expected because numerical smearing occurs due to 
the smoothing effect of the interpolation formula Eq. 5-9. The smaller the 
number of time steps, the fewer times this formula is applied, and thus 
cumulative interpolation error is smaller. This leads to the paradoxical 
result that instead of converging to the true solution as At decreases, the 
numerical scheme appears to diverge. The scheme is clearly deficient.
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Particles Eliminated at Step 23 

Time = 10

— Analytical 
• Numerical
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— Analytical 
• Numerical

Fig. 1. Results of Example 1.
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Fig. 2. Results of Example 2.
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The picture changes drastically when the front is tracked with a cloud of 50 
particles with a density of one particle per element, Ax. As shown in Fig. 
2, here the solution is excellent whether the Courant number is less than 1 
(ax = 0.5 for 50 time steps) or greater than 1 (ax = 2.27 for 11 time 
steps). The ability to work with Courant numbers in excess of 1 is an ex­
tremely important feature of our proposed method. The reader may do well 
to compare our results with those of other methods as shown by Lam (Ref. 27) 
and Varoglu and Finn (Ref. 42).

The size of the cloud in Example 2 appears to be much larger than necessary; 
we suspect that 10-20 particles would probably perform as well as 50. 
Clearly, the question of the relationship between the number of particles in 
a cloud, their density, and the quality of the solution requires further 
study.

Note that since the front in Example 2 remains steep at all times of inter­
est, the cloud of particles is not eliminated by the adaptive mechanism.

Example 3 deals with two-dimensional dispersion of a rectangular wave in a 
uniform velocity field. The governing equation is

2 2
n 2-Ji + D 2-!i - v c - v c = H- ; -»<x<»;-“<y<“ (6-4)
x3x2 y » y 8*

subject to

c(x,y,0) = 1 when 0.1 ^ x ^ 0.2
-0.01 < y <. 0.01

c(x,y,0) = 0 otherwise (6-5)

c(x|_,y,t) = c(xR,y,t) = c(x,yB,t) = c(x,yT,t) = 0

When xl = yg = - “ and xR = yy = °°, the analytical solution is

a-x+vxt
c(x,y,t) = x [erf(--------------) + erf(

4 /Tr\ jT

a+x—vxt

/TfD^t
)]

.[erf(^l^)+erf(^i)]
(6-6)

/ 4Dyt /4nyt

where a = 0.05 (half the length of the rectangle in the x direction) and b =
0.01 (half its length in the y direction). The results at t = 6 x 10"^ with
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Dx = 1, Dy = 0.1 , vx = 103J vv = 0, Ax = 0.01, Ay = 0.004, Xi = 0, xR = 1, 
yB = -0.04, yT = 0.04, are^shown in Fig. 3 for 100 time steps (ax = 0.6) 
and in Fig. 4 for 11 time steps (ax = 5.45). The left hand side of each 
figure corresponds to y = 0, the right hand side to x = 0.75, the position 
of the peak. The Peclet numbers are Pex = vxAx/Dx = 10 and Pe^ = VyAy/Dy 

0.

A comparison of Figs. 3 and 4 shows that if there are no moving particles, 
the solution suffers from numerical dispersion when At is small (100 time 
steps), but such dispersion disappears when At becomes large (11 time 
steps). This paradoxical phenomenon is similar to that observed in Example
2. Here, however, the solution is further afflicted by a clipping of the 
peak which does not disappear entirely even when At is large.

When the propagating rectangular wave is covered by a cloud of 80 x 60 
moving particles, numerical dispersion disappears completely. Clipping 
occurs when At is large, but tends to disappear as At diminishes. This may 
show that the current numerical solution (with moving particles) has a con­
vergence property which was lacking in the previous solution (without such 
particles).

Since there exists a sharp peak, the particle cloud was not eliminated by 
the program but persisted throughout the time of interest. Results obtained 
for an identical one-dimensional problem by other methods can be found in 
Lam (Ref. 27) and Varoglu and Finn (Ref. 41).

Example 4 differs from Example 3 in that the velocity in the y-directi on 
is no longer zero. Instead, Vy = 33.33 so that Pey = VyAy/Dy =1.33 and 
advection takes place at an angle to the grid lines. In addition, the unit 
step of concentration is now placed at 0.01 _< y <. 0.03 instead of -0.01 y 

_< 0.01 as in Example 3.

The results at t = 6 x 10"^ are shown in Fig. 5 for 30 time steps (ax = 
v^t/Ax = 2 and Oy = VyAt/Ay = 0.17) and in Fig. 6 for 11 time steps (ax = 
5.45 and = 0^.45). The left-hand side of each figure corresponds to y =
0.04, the right-hand side to x = 0.75, the position of the peak. As before, 
the solution suffers from inaccuracies in the absence of moving particles. 
Contrary to the previous example, however, there is no improvement as At 
increases from 0.0006/30 to 0.0006/11.

When the propagating rectangular wave is covered by a cloud of 80 x 60 mov­
ing particles, the solution remains unsatisfactory if At is large (11 time 
steps), but becomes virtually perfect as At diminishes (30 time steps).

Example 5 deals with the pure advection of a rectangular wave identical to 
that in Example 4. The problem is described by Eqs. 6-4 and 6-5 (except 
that c(x,y,0) = 1 when 0.01 _< y j< 0.03 instead of -0.01 < y <_ 0.01) with Dx 
= Dy = 0 so that Pex = Pey = «. All other parameters are as in Example 4. 
Fig. 7 shows the results at t = 0.0006 using 11 time steps (ax = 5.45 and 
ay = 0.45), and Fig. 8 shows what happens at t = 0.0006 when 100 time steps 
are used (ax = 0.6 and ay = 0.05). As expected, the single-step reverse
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Fig. 3. Results of Example 3 with 100 time steps.
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particle tracking method without moving particles suffers from numerical 
dispersion and clipping. When a cloud of 80 x 60 moving particles is 
allowed to hover over the front, the solution is virtually perfect whether 
the Courant number is less than 1 (ax = 0.6 with 100 time steps) or greater 
than 1 (ax = 5.45 with 11 time steps). The Reader is urged to compare our 
results with those of Lam (Ref. 27) and Varoglu and Finn (Refs. 41,42) for 
the equivalent one-dimensional case.

7. CONCLUSIONS

The following conclusions can be drawn from our study:

1. The advection-dispersion equation, together with the associated 
initial and boundary conditions, can be formally decomposed into 
two problems, one involving pure advection, the other involving 
primarily dispersion, in a manner which does not leave room for 
ambiguity. The advection problem can be solved independently at 
each time step by an adaptive combination of two methods: contin­
uous forward particle tracking and single-step reverse particle 
tracking. The residual dispersion problem can be treated by a 
Lagrangian version of finite elements on a fixed grid.

2. Our adaptive method consists of tracking steep concentration fronts 
with the aid of forward-moving particles, while using the more 
economical single-step reverse particle tracking method away from 
such fronts. When the front flattens, the moving particles are 
eliminated. The use of moving particles around steep fronts is 
necessary to avoid numerical dispersion and clipping or exaggera­
tion of concentration peaks. However, such particles may consume 
significant computer storage and time. The proposed adaptive 
scheme maximizes computational efficiency by eliminating moving 
particles when and where these are not needed.

3. Our unconventional Lagrangian formulation of the finite element 
equations eliminates advective terms so that these equations take 
on a purely parabolic appearance. This has two advantages: First, 
all finite element matrices are symmetric, and second, one is jus­
tified in using mass-lumping which further reduces matrices in 
front of time derivatives to a diagonal form. The result is an 
increase in accuracy and computational efficiency. 4

4. Preliminary results for two-dimensional dispersion in a uniform 
velocity field suggest that our adaptive method is capable of 
handling the entire range of Peclet numbers from zero to infinity, 
and large time steps with Courant numbers well in excess of 1.
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