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ABSTRACT

Radionuclide transport in the subsurface is often modeled with the aid of
the advection-dispersion equation. A review of existing computer methods
for the solution of this equation shows that there is need for improvement.
To answer this need, a new adaptive numerical method is proposed based on an
Eulerian-Lagrangian formulation. The method is based on a decomposition of
the concentration field into two parts, one advective and one dispersive, in
a rigorous manner that does not leave room for ambiguity. The advective
component of steep concentration fronts is tracked forward with the aid of
moving particles clustered around each front. Away from such fronts the
advection problem is handled by an efficient modified method of characteris-
tics called single-step reverse particle tracking. When a front dissipates
with time, its forward tracking stops automatically and the corresponding
cloud of particles is eliminated. The dispersion problem is solved by an
unconventional Lagrangian finite element formulation on a fixed grid which
involves only symmetric and diagonal matrices. Preliminary tests against
analytical solutions of one- and two-dimensional dispersion in a uniform
steady state velocity field suggest that the proposed adaptive method can
handle the entire range of Peclet numbers from 0 to <, with Courant numbers
well in excess of 1.
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PREFACE

Most existing computer models for the prediction of subsurface mass trans-
port are founded on the advection-dispersion equation. According to this
equation, a tracer or contaminant is transported by means of two principal
mechanisms: advection with the mean groundwater velocity, and hydrodynamic
dispersion. The hydrodynamic dispersion term in the equation is said to
account for molecular diffusion and deviations of the actual groundwater
velocity from its mean value. In analogy to Fick's first law of molecular
diffusion, mass flux of a given chemical species due to hydrodynamic disper-
sion is commonly assumed proportional to the gradient of its concentration.
Other phenomena such as radioactive decay and sorption are superimposed on
the advective-dispersive process as source or sink terms.

In recent years, many questions have been raised regarding the applicability
of the Fickian analogy to fractured and porous rocks. One important aspect
of our own research work, under the auspices of the Nuclear Regulatory Com-
mission, has been to determine the degree to which the traditional Fickian
form of the advection-dispersion equation applies to fractured rocks. Our
work as well as that of others suggest that the traditional form has serious
shortcomings and as such, is less than a perfect predictive tool. Efforts
are underway to modify the existing form, or develop alternative mathemati-
cal models, so as to improve our ability to predict contaminant transport.
These efforts not withstanding, the Fickian advection-dispersion equation
will most probably remain the chief tool of subsurface transport analysis at
least for the immediate future.

Our recognition that the traditional equation will remain the mainstay of
contaminant transport modeling in the coming years has prompted us to exam-
ine the numerical methods currently used to solve this equation on the com-
puter. Numerical difficulties arise due to the complex three-dimensional
flow patterns often encountered in the subsurface, the anisotropic nature of
hydrodynamic dispersion, and other complicating factors such as radioactive
decay, sorption, and chemical reactions. However, a more fundamental numer-
ical difficulty stems from the very nature of the advection-dispersion equa-
tion which may be predominantly parabolic in some parts of the flow field,
and hyperbolic in other parts, depending on the local Peclet number. Most
numerical methods are tailored to handle one of these situations, but not
both simultaneously. Consequently, many existing numerical models of sub-
surface transport are prone to errors that may manifest themselves in the
form of unwarranted oscillations or the smearing of steep concentration
gradients. One aspect of our work for the Nuclear Regulatory Commission is
to evaluate these numerical methods and suggest possible improvements.

This report includes a critical review of existing numerical methods for
advection-dispersion. Our review reveals fundamental weaknesses in most of
the modeling techniques that have been described in the literature. To
overcome some of these weaknesses, we propose a new adaptive Eulerian-
Lagrangian method that can be used in conjunction with any well-established
grid technique such as finite differences, integral finite differences,
point collocation, or finite elements; we currently work with the latter.
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The proposed method is based on a formal decoupling of the concentration
field into an "advective" part and a "dispersive" part. This makes it pos-
sible to automatically adapt the method of solution to the nature of the
problem. When sharp concentration fronts are present, their advective com-
ponent is tracked forward with the aid of moving particles. Away from such
fronts, the advection problem is handled by an efficient modified method of
characteristics referred to here as "single-step reverse particle tracking.”
When a front becomes sufficiently smooth to be handled by the single-step
reverse particle tracking method, its forward tracking stops automatically
and the corresponding particles are eliminated. The residual dispersion
problem is solved by finite elements in each case. Since advection is
handled separately, the matrices arising from the finite element formulation
are either symmetric or diagonal. Most conventional finite element schemes
lead to nonsymmetric matrices. Preliminary tests with one- and two-
dimensional dispersion in a uniform velocity field suggest that the method
is capable of handling Peclet numbers from O to « without oscillations and
numerical dispersion, while using large time steps with Courant numbers well
in excess of 1.



1. INTRODUCTION

The nature of the advection-dispersion equation can be conveniently charac-
terized by the dimensionless Peclet number

lv|L

Pe D

(1-1)

where v is velocity vector, L is a characteristic length, and D is disper-
sion tensor. For example, in the case where an inert chemical species is
spreading due to molecular diffusion in a one-dimensional velocity field,

the governing equation can be written as

2
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where ¢ is concentration, t is time, x is spatial coordinate defined rela-
tive to L, and Pe = vL/Dm, v being velocity and Dm molecular diffusion coef-
ficient. Clearly, when Pe is small, diffusion dominates, and the equation
is parabolic in character. When Pe is large, advection dominates, and the
character of the equation changes to hyperbolic. In nonuniform and non-
steady flow fields where the velocity is not constant, the character of the
advection-dispersion equation may vary in space and time, being predominant-
ly parabolic in some regions and hyperbolic in others.

Most conventional numerical methods for solving the advection-dispersion
equation can be classified into two major categories, Eulerian or Lagran-
gian, depending on the emphasis that they place on the parabolic or hyper-
bolic nature of the problem. In the Eulerian method, the equation is
discretized by a finite difference or finite element grid fixed in space.
Lagrangian methods utilize either a deforming grid, or a fixed grid in
deforming coordinates. A review of these methods, together with a discus-
sion of their relative advantages and disadvantages, is given in the next
chapter.

A third approach that has been gaining popularity in recent years is the
mixed Eulerian-Lagrangian method. As will be shown below, this method com-
bines the simplicity of the fixed Eulerian grid with the computational power
of the Lagrangian approach, both of which are essential when relatively
sharp concentration fronts are traveling through complex geologic environ-
ments. Existing Eulerian-Lagrangian numerical schemes are reviewed in the
next chapter. Unfortunately, the review points to several shortcomings.

In an effort to overcome these shortcomings, we proposed earlier a new tech-
nique consisting of two steps (Ref. 1): 1. Formal decomposition of the
concentration field into two parts, one controlled by pure advection, the
other essentially by dispersion, and 2. Solution of the resulting advection
problem by the method of characteristics on a fixed space-time grid, coupled
with a finite element solution of the dispersion problem on another fixed
grid. Our formal decomposition of the concentration field is rigorous and
differs from previous such attempts in that it leaves no room for ambiguity.
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However, the particular numerical implementation of this idea described in
Neuman's paper (Ref. 1) suffers from some artificial dispersion.

This report describes an alternative numerical scheme based on Neuman's
theory (Ref. 1). The fundamental new idea behind the proposed scheme is
automatic adaptation of the solution process to the nature of the problem.
When sharp concentration fronts are present, their advective component is
tracked forward with the aid of moving particles. Away from such fronts,
the advection problem is handled by an efficient method called "single-step
reverse particle tracking." When a front becomes sufficiently smooth to be
treated by the single-step reverse particle tracking method, its forward
tracking stops automatically and the corresponding particles are eliminated.
The residual dispersion problem is solved by finite elements in each case.
Since advection is considered separately, the matrices arising from the
finite element formulation are either symmetric or diagonal. Most conven-
tional finite element schemes lead to nonsymmetric matrices. Preliminary
tests with one- and two-dimensional dispersion in a uniform velocity field
suggest that the method is capable of handling the entire range of Peclet
numbers from 0 to » while using large time steps with Courant numbers well
in excess of 1.

2. STATE OF THE ART

Most numerical methods for solving the advection-dispersion equation can be
categorized as Eulerian, Lagrangian, or Eulerian-Lagrangian.

2.1 Eulerian Methods

The most common Eulerian method is that based on finite differences. Early
experiments with this approach (Refs. 2-4) have shown that this technique
performs well in dispersion-dominated situations at low Peclet numbers where
the concentration function is relatively smooth. However, when the gradient
of concentration is steep due to the prevalence of advection at high Pe,
methods based on central difference approximations for the advection term
may suffer from oscillations resulting in overshoot, undershoot and negative
concentrations. Price et al. (Ref. 5) proved that such oscillations can be
eliminated by restricting the size of the spatial grid increments; in the
case of Eq. 1-2, the increments must satisfy Ax<2/Pe. Since this is not
always practical, the alternative is to use upstream difference approxima-
tions (also known as upstream weighting or upwinding) that are able to
eliminate oscillations, but also introduce large truncation errors which are
equivalent to a numerical (as opposed to physical) dispersion term (Refs. 6,
7). The effect of this numerical dispersion term is to smear sharp concen-
tration fronts. Lantz (Ref. 7) showed that for many practical problems,
reducing numerical dispersion sufficiently so as to prevent masking physical
dispersion may require an extremely fine grid. Another way to reduce numer-
ical dispersion in upstream schemes is to cancel part of the truncation
error by using higher-order approximations in space (Refs. 8-11), time
(Refs. 6,12-14), or both (Ref. 15). Most of these have the effect of adding
a negative correction term to the dispersion coefficient. A similar effect



can also be achieved by means of flux corrections (Ref. 16), variable

upstream/downstream weighting (Ref. 17), variably timed flux updating (Refs.
18,19), or on the basis of physical considerations (Ref. 20).

During the last decade, there has been a growing belief that an alternative
Eulerian approach for handling sharp fronts may be provided by high order
finite element techniques (Refs. 21-23). Price et al. (Ref. 21) showed that
high-order Galerkin approximations using smooth and non-smooth Hermite poly-
nomials are potentially far more accurate for a given amount of computation-
al effort than standard finite difference techniques. Low-order Galerkin
finite element schemes also appear to be more accurate than standard finite
differences (Refs. 24-26). However, in dealing with advection-dominated
problems (especially the translation of square waves), the former are some-
times inferior when compared to the lowest-order flux-corrected finite dif-
ference scheme of Book et al. (Refs. 16,27). Furthermore, time-centered
finite element schemes suffer from oscillations, and backward difference
schemes exhibit numerical dispersion (Refs. 25,26). So far, neither
higher-order interpolations in space (Ref. 26) nor in time (Ref. 28) have
proven capable of entirely and efficiently eliminating both problems.

The use of upstream weighting on finite elements reduces oscillations only
at the expense of numerical smearing (Refs. 2%-31). More promising is the
idea of adding an anisotropic correction to the dispersion term as postu-
lated for steady state problems by various authors (Refs. 32-34). Both
approaches can be cast in the more general context of Petrov-Galerkin
methods which alter the symmetry of terms resulting from standard Galerkin
approximations by using interpolation functions that differ from the basis
functions. A review of the most recent advances in this area shows that the
Petrov-Galerkin method holds promise for steady state problems (Refs. 35,36)
but its extension to transient advection-dispersion requires further
development (Ref. 37).

Another recent trend in the development of Eulerian techniques is the use of
point collocation, often in conjunction with ADI (Refs. 38,39). While the
combination of collocation with ADI appears to be computationally efficient,
one must recognize that a similar effect can be achieved by combining ADI
with finite elements (Ref. 40). There seems to be no indication in the
literature that collocation is superior to conventional finite elements of
comparable polynomial degree in dealing with oscillations and numerical dis-
persion.

2.2 Llagrangian Methods

Since standard Eulerian techniques are unsatisfactory while the more complex
techniques may not always be easily adapted to difficult problems, and since
some of the more promising new ideas are in an early stage of development,
it is of interest to examine methods founded on the Lagrangian approach.
Such methods are based either on a deforming grid or on a fixed grid in de-
forming coordinates. Varoglu and Finn (Refs. 41-44) use space-time finite
elements in one and two spatial dimensions with sides paralleling either



surfaces of constant time, or surfaces defined by characteristics. In this
manner, the finite element equations become free of advective terms, result-
ing in a relatively well-behaved diffusion-type problem. The idea is based
on earlier uses of space-time finite elements in connection with the Stefan
problem (Refs. 45,46) and equations representing conservation laws (Ref.
47). The method was tested by the authors on various problems ranging from
dispersion-dominated cases to the pure advection of a rectangular wave.
Their results did not show any oscillations and exhibited only a small
amount of numerical dispersion in the case of pure advection. Another
closely related approach is one in which the nodal points of a one-
dimensional Hermitian finite element grid are shifted during each time step
parallel to the characteristics (Refs. 48,49). The resulting finite ele-
ment equations, which are coupled with finite differences in time, are thus
devoid of advective terms and can be solved without difficulty. The authors
demonstrated that when the grid is made fine enough in the vicinity of a
sharp front, the results can be entirely free of oscillations or numerical
dispersion. Not only are both methods highly accurate but, when advection
dominates, both are also able to use large time steps such that the distance
traveled by a fluid particle, say, As, is well in excess of the distance
between contiguous nodal points, say, Ax. The same is probably true about
the more complex moving Petrov-Galerkin method described in a recent paper
by Botha et al. (Ref. 50). In Eulerian schemes, stability and convergence
often require that time step size be small enough to satisfy the Courant-
Friedrichs-Lewy condition

As < adX (2-1)

where o, the Courant number, is at most 1 (Ref. 51). Practical experience
with various Eulerian schemes, including Hermitian finite elements, suggests
that it is prudent to set a equal to 1/3 (Ref. 48).

Jensen and Finlayson (Refs. 52,53) proposed a scheme in which the advection-
dispersion equation is written in Lagrangian coordinates with origin at the
center of a moving front. When the velocity field is uniform, the equation
becomes free of advective terms; otherwise, some residual first-order space
derivatives remain. By using orthogonal collocation on finite elements, the
authors were able to obtain good results that showed no oscillations and
only a minute amount of numerical dispersion at high Peclet numbers.

2.3 Eulerian-Lagrangian Methods

Even though the above Lagrangian methods are more powerful than most
Eulerian techniques, they suffer from several limitations which may become
serious when one considers difficult problems such as groundwater contami-
nation in complex subsurface environments. Since geologic environments are
often characterized by highly nonuniform material properties, the movement
of nodal points across material interfaces may cause difficulties in

the handling of equation parameters, especially if sorption and chemical
reactions are important. Such movement may also result in severe grid



deformations due to the refraction of streamlines across material inter-
faces, leading to numerical errors. When multiple sources exist, as in the
case of chemical injection into the subsurface through several wells, con-
centration fronts may propagate in opposite directions and cross each other
at various angles, causing mesh tangling. This type of transport cannot be
handled with the aid of deforming meshes or moving coordinates of the kind
described above. Since velocities are usually computed independently of the
transport problem by using a fixed Eulerian grid, it would be most conve-
nient if the advection-dispersion equation could be solved on a grid com-
patible with the latter, especially when the velocity field varies with
time. Finally, when the grid or the coordinates deform, the finite element
matrices must be reevaluated and/or decomposed anew at every time step (in
the case of Lagrangian coordinates, this is so because the boundary location
varies with time); in linear problems solved on an Eulerian grid, the
matrices remain constant, and if the time increment is fixed, a single LU-
decomposition is enough.

The purpose of Eulerian-Lagrangian methods is to combine the simplicity of
the fixed Eulerian grid with the computational power of the Lagrangian
approach. Runca and Sardei (Ref. 54) proposed to do this for horizontal
advection and vertical eddy diffusion of air pollution by discretizing the
vertical wind profile in a stepwise fashion. They then used different time
intervals for each step so as to translate the concentration field to posi-
tions coincident with fixed Eulerian grid points during each time increment.
Melli (Ref. 55) solved the same problem with an irregular grid adapted to
the wind profile so that the horizontal distance between nodes at each ele-
vation is exactly equal to the distance traveled by a particle due to advec-
tion during a time step. Although his technique yielded good results for
relatively large eddy diffusivities, attempts to propagate a sharp front met
only with marginal success. On the other hand, Sauty (Ref. 56) reported
success in using a similar idea to analyze the movement of groundwater
tracers between wells.

More general than the former is the continuous forward particle tracking
method originally suggested by Garder et al. (Ref. 57) and later used exten-
sively for subsurface transport (Refs. 58-61). In this method, advection

is handled by the method of characteristics applied to a set of moving par-
ticles. The dispersion part of the problem is solved by explicit finite
differences on a fixed grid. Although the method is virtually free of
numerical dispersion, it suffers from instability when the time step size
exceeds a certain limit. Existing theory behind this version of particle
tracking is vague and, therefore, it cannot be shown to converge. The
treatment of complex boundary conditions and nonlinearities is not straight-
forward, and the constant handling of numerous particles is time consuming.
In another version of particle tracking developed by Ahlstrom et al. (Ref.
62) and recently popularized among subsurface hydrologists by Prickett et
al. (Ref. 63), dispersion is effected by means of a random walk process
applied to each particle. The method is conceptually simple and relatively
easy to program. Its main drawback is that concentrations are computed by
sampling the mass concentration of particles, a process that is strongly
dependent on sample size. Experience shows that many thousands of particles



may be required for the sample size to be large enough to provide accurate
solutions in simple two-dimensional flow fields.

To avoid the need for a large number of moving particles, Hinstrup et al.
(Ref. 64) suggested redefining the particles at discrete time intervals so
as to make them coincide with the nodes of a fixed finite difference grid at
the end of each time step. The position of each particle at the beginning
of a time step is obtained by polynomial interpolation between concentration
values at neighboring.grid points. Neuman and Sorek (Ref. 65) used a simi-
lar approach in conjunction with finite elements and referred to it as
"single-step reverse particle tracking." The same approach was termed
“modified method of characteristics" by Russell, Ewing, and Douglass (Refs.
66-70) who studied some of their theoretical properties. In particular,
Ref. 70 shows that, for advection-dominated problems, the approach has much
smaller time-truncation errors than some purely Eulerian methods. According
to Russell (Ref. 67), the method is free of grid orientation effects, numer-
jcal dispersion, and overshoot.

Our own work demonstrates that single-step reverse particle tracking indeed
possesses some very attractive features: It is simple, numerically effi-
cient, leads to symmetric matrices, and can handle large time steps with
Courant numbers well in excess of 1. Contrary to Russell (Ref. 67), how-
ever, our results show that at high Pe, the method is not free of numerical
dispersion and overshoot unless the spatial grid is made very fine. When a
reasonably coarse grid is used, the results deteriorate as the time inter-
val, At, is reduced, due to the accumulation of interpolation errors.

3. ADAPTIVE EULERIAN-LAGRANGIAN METHOD

We saw that Eulerian methods have many advantages stemming from a fixed
grid, but they are not well suited for the handling of sharp fronts, and
their time step size is often limited by the Courant-Friedrichs-Lewy condi-
tion. Lagrangian methods are able to deal with steep concentration gradi-
ents while utilizing relatively large time steps, but the lack of a fixed
grid, or fixed coordinates, causes difficulties in dealing with complex sub-
surface conditions. Mixing the Eulerian and Lagrangian methods provides an
opportunity to benefit from the best of both worlds by being able to handle
sharp fronts while maintaining a fixed grid.

Unfortunately, none of the existing Eulerian-Lagrangian methods takes full
advantage of this opportunity. The particle tracking method of Garder et
al. (Refs. 57-61) lacks a firm theoretical foundation and requires excessive
computer time. The single-step reverse particle tracking method suffers
from numerical dispersion which becomes worse as the time discretization
interval goes down. We propose to resolve these difficulties by supplying a
rigorous theory in support of the Eulerian-Lagrangian approach, and by en-
hancing its computational power through an adaptive scheme.

Our theory, developed originally by Neuman (Ref. 1), is presented below.
It allows for a formal decoupling of advection from dispersion in a manner



which, contrary to previous such attempts (Refs. 57, 64, 71) does not leave
room for ambiguity. Since the advection and dispersion problems require
different treatments, they are solved separately, one by a Lagrangian method
and the other by an Eulerian method.

Our adaptive scheme rests on the recognition that many problems involve
sharp fronts which dissipate with time. The tracking of such fronts is
accomplished most efficiently with the aid of forward moving particles clus-
tered around each front (Ref. 72). However, there is no need to track par-
ticles away from such fronts, and there is no need to continue tracking a
front after it has become sufficiently smooth due to dispersion, sorption,
or decay. Instead, the solution away from sharp fronts is handled much more
efficiently by single-step reverse particle tracking. In short, we propose
to adapt the method of solution to the manner in which the concentration
field evolves in space and time. Preliminary results will demonstrate that
our proposed adaptive scheme leads to a considerable improvement in accuracy
and computational efficiency.

4. THEORY

Consider the advection-dispersion equation

[+%)

(1 +s) 5%-= Ve(DVc - vc) - xc + q (4-1)

where ¢ is concentration, s is retardation coefficient (some reserve this
term for 1 + s), t is time, V is gradient operator, D is dispersion tensor,
v is seepage velocity vector, A is radioactive decay coefficient, and q is
source term. The parameters of Eq. 4-1 satisfy s > 0, A > 0, and D is sym-
metric positive-semidefinite. The equation is to be solved for c, subject
to the initial and boundary conditions

c(x,0) = Co(x) (4-2)
(-ve + ve)en + afc-C) = 0 onT (4-3)

Here x is position vector; I' is boundary: n is unit vector normal to I and
pointing outward; Cp, C, and Q are prescribed functions; and o controls the
type of boundary condition prevailing onT: If o + =, Eq. 4-3 is a pre-
scribed concentration condition; if o« = 0, it is a prescribed mass flux con-
dition; otherwise, it is a mixed condition. Eq. 4-3 applies to inflow and

noflow boundaries. Along outflow boundaries, it is common to assume that

DVeen = 0 onT (4-4)



Using the hydrodynamic derivative

D s ¥V
0t -5t * Tes (4-5)
we can rewrite Eq. 4-1 in Lagrangian form as
Dc _
(1+s ) = Ve (DvVc) - fc + q (4-6)

Dt

where f = Vev + A, Here c no longer represents concentration at a point in
space-time, but rather the concentration of a fluid particle moving at the
velocity v- = v/(1+s). The pathline of this particle is described by the
hydrodynamic derivative of x, which leads to the characteristic equation

Dx
—_ *
A (4-7)

Neuman (Ref. 1) has shown that Eqs. 4-6 and 4-7 subject to Egs. 4-2 through
4-4 can be rgp]aced by two sets of equations, one in terms of c, the other
in terms of c, where

c=C+¢C (4-8)

One way to perform such a decomposition is to let c satisfy the homogeneous
first-order partial differential equation

(gl
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De -3¢ 4 y* g = 0 (4-9)
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subject to the initial condition

c(x,0) = Co(x), (4-10)
and the Cauchy condition along inflow boundaries

vé.n +a(c-C) = Q onT (4-11)
and along noflow boundaries

véen = 0 onT (4-12)



Conditions along outflow boundaries have no effect on ¢ and are thus irrele-

vant. Clearly, the ¢ value of a given fluid particle remains constant as
the latter is advected through the flow field. Thus, the "advection
problem" defined by Eqs. 4-9 through 4-12 can be solved independently of c.

The residual concentration, c, must satisfy

o

(1+5)D = vo (W8) - & + q + § (4-13)

where

g =Vve(Dvc) - fc
subject to the homogeneous initial condition

&(x,0) = 0 (4-14)
and the conditions along inflow boundaries

(-DVE +ve) . n+ac = h onT (4-15)

- wé.n + a(@-C) =4 on T (4-16)

- £§2.g_= h onT (4-17)

Note that g, E, and u play the role of prescribed source functions when ¢
is known. We will refer to Eqs. 4-13 through 4-17 as the residual "disper-
sion problem."

We see that the hyperbolic-parabolic advection-dispersion problem defined
by Egs. 4-1 through 4-4 can be formally decoupled into a purely hyperbolic
"advection problem" defined in terms of c, and another predominantly para-
bolic residual "dispersion problem" defined in terms of c. The approach



is to first solve the advection problem for c, as the 1atter is independent

of ¢, and then solve the residual dispersion problem for ¢. Another alter-
native is to solve Eq. 4-6 in its Lagrangian form without decomposing c into
¢ and ¢; this is what the single-step reverse particle tracking method does.
Our proposed numerical method utilizes both of these alternatives jointly in
an adaptive manner.

5. NUMERICAL APPROACH

In Neuman's original paper on this subject (Ref. 1), the one-dimensional
advection problem was solved on a fixed space-time grid by the method of
characteristics, and the residual one-dimensional dispersion problem was
solved on a different fixed space-time grid by finite elements. The use of
such conjugate space-time grids required projecting results from one grid to
another, which led to some numerical dispersion. Neuman and Sorek (Ref. 65)
investigated the possibility of eliminating such numerical dispersion by
solving the advection problem with moving particles instead of a fixed grid.
Their results were encouraging, but showed slight oscillations. We now know
how to eliminate such oscillations, and we have also developed an adaptive
scheme that is much more efficient than conventional particle tracking.

Our adaptive method can be described briefly as follows. Suppose that c is
known at time t,, and we wish to compute it at ty,q = ty + At. First, we

set

(5-1)

We then solve the advection problem for €(x,ty4+1) by using continuous for-
particle tracking in the vicinity of steep fronts, and single-step reverse
partlcle tracking away from such fronts. The residual dispersion problem
is solved for c, or ¢, by finite elements.

In this report, we develop the finite element equations in terms of ¢ (for
a development in terms of ¢, see Ref. 65). Thus, c(x,t) is approximated by
a finite element function, c"(x,t), defined as

c(x,t) » cM(x,t)

cnlt) Enlx) (5-2)

"
W=

n

Here N is number of grid points or nodes, c, is concentration at node n, and
En is a basis function satisfying

10



gn(_)sm) =6nm (5’3)

xm being x at node m, and ., being the kronecker delta (i.e., &

nm
n=mand 8, = 0 if n# m).

5.1 Continuous Forward Particle Tracking

If there is a steep concentration front, the approach is to introduce moving
particles at strategic points around the front and continuously track their
positions along the pathlines. Any existing particle, p, located at point
xp at time ty, is assigned a c value equal to cf = c(xp,tx) for the dura-
tion of the time interval (ty,tx41). By virtue of Eqs. 5 1 and 5-2, we
have

EE = c(xpstk)

Nk
~ 1 Enlxp) (5-4)

Any new particle, r, introduced at (é ,th) is assigned a C value equal to
= c(_5r ty). A new particle introduced along an inflow boundary is
ags1gned the ¢ value

-k _ aC+Q
T (5-5)

Xpoty

+
n

according to Eq. 4-11 for the duration of the time interval.

At the end of the time step, each particle, p, reaches a new position
= xK+ [ v¥pt (5-6)
P —

At this stage, there is a need to project c onto the nodes, n, of the finite
element grid. In the examples shown later, we use bilinear interpolation
between particles arranged in a rectangular pattern.

The projected values of ¢ are designated by kcn such that

11



k

¢, = C(Xpstygs1) (5-7)

Clearly, kcn can be viewed as ¢ at ty of a fictitious moving particle which
reaches node n at time ty,;.

5.2 Single-Step Reverse Particle Tracking

In areas where the concentration gradients are mild, kcn is computed by
sending a fictitious particle from each node, n, backward to the point

t
k-)_(-n = Z(_n -f k+] l* Dt (5—8)
Y

during each time step. This means that a particle leaving kxn at tp will
reach the grid point location, x,, exactly at t . If the velocity field
does not change with time and At is fixed, then Kﬁn remains constant for
each n and needs to be computed only once.

By virtue of Eqs. 5-1 and 5-2, we can express kcn as

ke = T(*xn,ty)

C(kin ’tk)

Nk 5-9
~ 1 cCp Em(k.ln) (5-9)
m=1

This requires much less computer time and storage than continuous forward
particle tracking. However, the method cannot be used near sharp fronts
because it exhibits numerical dispersion near such fronts.

5.3 Dispersion by Finite Elements

Applying the Galerkin orthogonalization procedure to Eq. 4-6 leads to

fra+s) 2 Cvevc™y + fcN - gl R =0 n=1,2,..l0N (5-10)
R Dt = n

where R is the flow region bounded by I (for the moment, we will treat the
time derivatives as known functions). Application of Green's first identity
gives
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f[(1+s)%% + ch'- q] En dR + é chN-vgn dR

R

f e, dr =00 ns1,2,000N (5-11)
r

In what follows, we treat each node of the fixed finite element grid as a
moving particle having reached x, at ty;y. This unconventional approach
renders the problem purely parabolic. It has been shown by Neuman and
Narasimhan (Ref. 73) that for such parabolic problems, there is often an
advantage in using a lumped-mass finite element approach which is eqivalent
to approximating the first term in Eq. 5-11 by

Dc
 (1+s) g, dr - -D—tﬂ{z (1+s)e, dR (5-12)

Note that this is analogous to what one does in most conventional finite
difference schemes. To approximate the time derivative by finite differ-
ences we write

k+1 k
Dcn o -,

Dt~ 4t (5-13)

Since n is viewed as a particle reaching x, at ty;y, we must use a backward
difference scheme.

From Eqs. 4-3 and 4-4, along inflow and noflow boundaries

Iz

|
T

cNon g dr = [[vencMa(cN-)-QJ, dr
T

and along outflow boundaries

Substituting these together with Egs. 5-2, 5-12, and 5-13 into Eq. 5-11
leads to the matrix equation

[A+B+E+qp W+ 9] =0+ 1 ke (5-14)
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Here A is a symmetric positive-semidefinite "dispersion matrix" of order N

defined as
R

B is a symmetric "boundary matrix" of order N, whose terms are
2 Y Y

Bnm "f (_\_l_'_ﬂ_"’u)EnEm dar; a { o
T

if n and m are both on an inflow or noflow boundary, and

Bnm B

(5-15)

(5-16)

(5-17)

otherwise. When o » = at xp, ¢, is known, and B, is not needed. F is a

symmetric matrix of order N defined as
Fom =/ fEnép dR
R
W is a diagonal "capacity matrix" of order N,
Wom = Snm [ &n dR
R
S is a diagonal "retardation matrix" whose terms are
R

Q is an N-dimensional “source vector" defined as

R
where
vn=-/ LC+Qeg,d; o<
T

if N is on an inflow or noflow boundary, and

14

(5-18)

(5-19)

(5-20)

(5-21)



an-'-O

otherwise. As before, Y, is not needed if a + = at n. gF*‘ is the N-
dimensional vector of cX*' values, and Kg is the corresponding vector of
c, values.

Eq. 5-14 differs from most other finite element, finite difference, or col-
location schemes for the advection-dispersion equation in two important
ways: 1) It is based on a LagrangiaE formulation of the governing equation,
involving the unconventional vector "¢ that is obtained (independently) from
a solution of the advection problem, and 2) it invo{ves a symmetric matrix
(bracketed term) in front of the unknown vector 5F+ . Clearly, the symmet-
ric nature of the matrix stems from the Lagrangian formulation which has
eliminated advection from Eq. 5-14. It provides the advantage of reduced
computer storage and time.

Eq. 5-14 can be solved for ck+1 by point iterative, block iterative (includ-
ing ADI), or direct methods. We use either Cholesky decomposition or a
direct solver due to Duff (Ref. 74). This solver permutes the matrix into
block-diagonal form, decomposes it into factors, and solves the problem by a
compact variant of Gaussian elimination. The solver decomposes a new matrix
having the same sparsity pattern as a previous one by using the same pivotal
sequence, which takes much less processing time than the original factori-
zation. This is extremely useful when At varies from one step to another,
or in nonlinear problems where the matrix components A, B, F, and S can also
vary.

The final step is to project ck*1 onto moving particles if suﬁh particles
exist in the flow field. Let p be such a particle. Then ck+1l s computed
according to P
k+1 _ =k , oN
cp = cp + C (5p’tk+1)
N
_ =k k+1 k
=cy + m2=] (cn = Cp) Emlxp) (5-22)

where ck*l - ke is equivalent to ck*1 by virtue of Eq. 5-7. Eq. 5-22
utilize® a finTte element interpoldtion scheme for c_which is similar to
that used for ¢ in Eq. 5-2. For the next time step, p is set equal to the
above value of cp in accordance with Eq. 5-1; this supercedes the use of Eq.
5-4,

5.4 Adaptive Mechanism

In our proposed scheme, forward moving particles are introduced only in the
vicinity of sharp fronts and time-varying sources. The term “c, is computed
by continuous forward particle tracking if node n is covered by a cloud of
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such particles, and by single-step reverse particle tracking otherwise.
When a particular front, covered by a cloud of particles, becomes smooth
enough due to dispersion, retardation, or decay, the corresponding cloud is
eliminated. This results in significant savings of computer time and
storage.

One important consideration in developing an adaptive mechanism of this kind
is an appropriate criterion for particle elimination. How sharp is sharp,
and how flat is flat? How should one decide at what point in time a front
becomes smooth enough to justify eliminating the particles?

OQur current answer to this question is empirical. We found that the oscil-
lations reported by Neuman and Sorek (Ref. 65) can be eliminated by adopting
the following smoothing criterion. Considﬁr a moving particle, p, inside a
particular element. Eq. 5-22 provides a ¢ *1 value for p. If this value
satisfies the criterion P

min ck+1 < ck+1 < max ck+1 (5-23)
n NP — P = p N

where min cﬁ+] is the minimum ch+1 value of all nodes n in the element, and
n

max c§+1is the corresponding maximum value, then we adopt the ck*1 value
n
from Eq. 5-22. On the other hand, if Eq. 5-23 is violated, then ck+l 45

p
redefined according to
Kl g L (5-24)
P m m —p )

Our experience shows that as Tong as Eq. 5-23 is violated by any particle in
a cloud, the front covered by that cloud is too steep to allow elimination
of the particles. On the other hand, when Eq. 5-23 is satisfied by all the
particles in a cloud during two or three consecutive time steps, the cloud
can be safely eliminated.

6. EXAMPLES

The following five examples show preliminary results obtained with linear
chapeau basis functions for one- and two-dimensional dispersion in a uniform
steady state velocity field. One-dimensional versions of similar examples

were used earlier by Lam (Ref. 27) to show how poorly methods existing at
the time worked when there were sharp fronts and high rates of advection.

Example 1 concerns the one-dimensional problem of solving
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ac c aC
—==p L :X_y &= on 0 < x <x (6-1)
at X ax2 X ax - =R

subject to
c(x,0) =0
c(0,t) =1 (6-2)
C(XR9t)=0

The physical and grid parameters, in an arbitrary system of consistent
units, are D, = 0.01, v, = 0.05, xg = 2.5, and Ax = 0.05, Ax being the dis-
tance between neighboring grid points. The problem is strongly dispersion-
dominated with a Peclet number Pey = vyax/Dy = 0.25. One would therefore
expect to obtain good results without continuous forward particle tracking,
merely by using the single-step reverse particle tracking method. To test
this, we introduced a cloud of 20 particles, 2 per element of length Ax,
centered about x = 0 at t = 0 (the cloud initially consisted of 10 particles
to the right of x = 0, but additional particles were added gradually as the
front advanced to the right). Fig. 1 shows the results at t = 10 when At =
t/100 (Courant number ay = Vy at/ax = 0.10) and At = t/11 (ax = 0.91). 1In
the first case, the particle cloud was automatically eliminated after 23
time steps, in the second case after 5 time steps. In both cases, the
results agree very well with the analytical solution

1 X - vxt 1 VX X + vxt
c(x,t) = E-erfc( —_ ) + 7 exp ( ﬁ——-) erfc ( ———— ) (6-3)
/4Dxt X ¢4Dxt

which is valid for xgp > . However, we were able to obtain similar results
by not using any forward moving particles at all. This suggests that our
empirical criterion for the elimination of particles may be too conserva-
tive.

Example 2 is similar to the previous_one except that now D, = 1.0, v, = 104,
xg = 1.0, Ax = 0.02, and t = 5 x 1075, The problem is strongly advection-
dominated with Pey = vy Ax/Dy = 200. Fig. 2 shows the results when At =
t/50 (Courant number ay = 0.5) and At = t/11 (a, = 2.27). When there are
no moving particles, the single-step reverse particle tracking method suf-
fers from numerical dispersion. The amount of this dispersion diminishes as
At increases. This is expected because numerical smearing occurs due to
the smoothing effect of the interpolation formula Eq. 5-9. The smaller the
number of time steps, the fewer times this formula is applied, and thus
cumulative interpolation error is smaller. This leads to the paradoxical
result that instead of converging to the true solution as At decreases, the
numerical scheme appears to diverge. The scheme is clearly deficient.
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The picture changes drastically when the front is tracked with a cloud of 50
particles with a density of one particle per element, Ax. As shown in Fig.
2, here the solution is excellent whether the Courant number is less than 1
(ay = 0.5 for 50 time steps) or greater than 1 (ay, = 2.27 for 11 time
steps). The ability to work with Courant numbers in excess of 1 is an ex-
tremely important feature of our proposed method. The reader may do well

to compare our results with those of other methods as shown by Lam (Ref. 27)
and Varoglu and Finn (Ref. 42).

The size of the cloud in Example 2 appears to be much larger than necessary;
we suspect that 10-20 particles would probably perform as well as 50.
Clearly, the question of the relationship between the number of particles in
a cloud, their density, and the quality of the solution requires further
study.

Note that since the front in Example 2 remains steep at all times of inter-
est, the cloud of particles is not eliminated by the adaptive mechanism.

Example 3 deals with two-dimensional dispersion of a rectangular wave in a
uniform velocity field. The governing equation is

2 2
a C 3 °C acC
D —+D, — -vCc-VvVC=s=; =-2<x<w; -o <y <o (6-4)
X o2 Y 5y2 X y X
subject to
c(x,y,0) =1 when 0.1 < x < 0.2
-0.01 X<y 2 0.01
c(x,y,0) =0 otherwise (6-5)

cxpsyst) = clxgsyst) = c(x,yg,t) = c(x,yy,t) =0

When x| =yg = -« and xg = y1 ==, the analytical solution is

1 a_x+vxt a+x-vxt
c(x,y,t) = 5 [erf(————) + erf(————)]
2
zm3 /I,T
b-y+v,t bty-v t (6-6)
clerf (YY) 4 err (2 VY0)g
/4Dyt /4Dyt

where a = 0.05 (half the length of the rectangle in the x direction) and b =
0.01 (half its length in the y direction). The results at t = 6 x 10-% with
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Dy =1, Dy = 0.1, vy =103, v, = 0, ax = 0.01, Ay = 0,004, x =0, xg =1,
yp = -0.04, yr =0.04, are”shown in Fig. 3 for 100 time s%eps (ax = 0.6)
and in Fig. 4 for 11 time steps (o, = 5.45). The left hand side of each
figure corresponds to y = 0, the right hand side to x = 0.75, the position
of the peak. The Peclet numbers are Pey = v,Ax/Dy, = 10 and Pey = vyAy/Dy

= 0.

A comparison of Figs. 3 and 4 shows that if there are no moving particles,
the solution suffers from numerical dispersion when At is small (100 time
steps), but such dispersion disappears when At becomes large (11 time
steps). This paradoxical phenomenon is similar to that observed in Example
2. Here, however, the solution is further afflicted by a clipping of the
peak which does not disappear entirely even when At is large.

When the propagating rectangular wave is covered by a cloud of 80 x 60
moving particles, numerical dispersion disappears completely. Clipping
occurs when At is large, but tends to disappear as At diminishes. This may
show that the current numerical solution (with moving particles) has a con-
vergence property which was lacking in the previous solution (without such
particles).

Since there exists a sharp peak, the particle cloud was not eliminated by
the program but persisted throughout the time of interest. Results obtained
for an identical one-dimensional problem by other methods can be found in
Lam (Ref. 27) and Varoglu and Finn (Ref. 41).

Example 4 differs from Example 3 in that the velocity in the y-direction

is no longer zero. Instead, v, = 33.33 so that Pe, = vyAy/D = 1,33 and
advection takes place at an angle to the grid lines. In addition, the unit
step of concentration is now placed at 0.01 {y < 0.03 instead of -0.01 <y
€ 0.01 as in Example 3.

The results at t = 6 x 104 are shown in Fig. 5 for 30 time steps (ay =
vaAt/Ax = 2 and ay = WAt/ay = 0.17) and in Fig. 6 for 11 time steps (ay =
5.45 and ay = 0¥45). The left-hand side of each figure corresponds to y =
0.04, the right-hand side to x = 0.75, the position of the peak. As before,
the solution suffers from inaccuracies in the absence of moving particles.
Contrary to the previous example, however, there is no improvement as At
increases from 0.0006/30 to 0.0006/11.

When the propagating rectangular wave is covered by a cloud of 80 x 60 mov-
ing particles, the solution remains unsatisfactory if At is large (11 time
steps), but becomes virtually perfect as At diminishes (30 time steps).

Example 5 deals with the pure advection of a rectangular wave identical to
that in Example 4. The problem is described by Egs. 6-4 and 6-5 (except
that c(x,y,0) = 1 when 0.01 <y < 0.03 instead of -0,01 <y < 0.01) with Dy
= Dy, = 0 so that Pey = Pey, ==, A1l other parameters are as in Example 4.
Fig. 7 shows the results at t = 0.0006 using 11 time steps (ay = 5.45 and
ay = 0.45), and Fig. 8 shows what happens at t = 0.0006 when 100 time steps
are used (ay = 0.6 and ay = 0.05). As expected, the single-step reverse
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particle tracking method without moving particles suffers from numerical
dispersion and clipping. When a cloud of 80 x 60 moving particles is
allowed to hover over the front, the solution is virtually perfect whether
the Courant number is less than 1 (ay = 0.6 with 100 time steps) or greater
than 1 (ay = 5.45 with 11 time steps). The reader is urged to compare our
results with those of Lam (Ref. 27) and Varoglu and Finn (Refs. 41,42) for
the equivalent one-dimensional case.

7. CONCLUSIONS
The following conclusions can be drawn from our study:

1. The advection-dispersion equation, together with the associated
initial and boundary conditions, can be formally decomposed into
two problems, one involving pure advection, the other involving
primarily dispersion, in a manner which does not leave room for
ambiguity. The advection problem can be solved independently at
each time step by an adaptive combination of two methods: contin-
uous forward particle tracking and single-step reverse particle
tracking. The residual dispersion problem can be treated by a
Lagrangian version of finite elements on a fixed grid.

2. Our adaptive method consists of tracking steep concentration fronts
with the aid of forward-moving particles, while using the more
economical single-step reverse particle tracking method away from
such fronts. When the front flattens, the moving particles are
eliminated. The use of moving particles around steep fronts is
necessary to avoid numerical dispersion and clipping or exaggera-
tion of concentration peaks. However, such particles may consume
significant computer storage and time. The proposed adaptive
scheme maximizes computational efficiency by eliminating moving
particles when and where these are not needed.

3. Our unconventional Lagrangian formulation of the finite element
equations eliminates advective terms so that these equations take
on a purely parabolic appearance. This has two advantages: First,
all finite element matrices are symmetric, and second, one is jus-
tified in using mass-lumping which further reduces matrices in
front of time derivatives to a diagonal form. The result is an
increase in accuracy and computational efficiency.

4, Preliminary results for two-dimensional dispersion in a uniform
velocity field suggest that our adaptive method is capable of
handling the entire range of Peclet numbers from zero to infinity,
and large time steps with Courant numbers well in excess of 1.
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Fig. 8. Results of Example 5 with 11 time steps.
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