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ABSTRACT

We have generated separate equations of state (EOS's) for the alpha quartz, coesite, and
stishovite phases of polycrystalline quartz (Si02), using the computer program GRIZZLY. We
also have modified the program GRIZZLY to combine two single-phase EOS's for a given
material into a single two-phase EOS via minimiziation of the Gibbs free energy.. This new ver-
sion of GRIZZLY has been used to generate a three-phase SESAME type EOS for polycrystalline
quartz using the three EOS's mentioned above. All four of the EOS’s produced for $i0, are now
available on request.

L INTRODUCTION

Polycrystalline quartz (SiQ) is a mutérial whicﬁ has been of recurring interest to many users
of the SESAME equation of state (EOS) library. This intercét is most]y‘ auc to the large abun-
dance of naturally occurring quartz in rocks. Unfortunately, the usefulness of any SESAME tvpe
EOS for quartz in hydrodynamic calculations is limited by the implicit assumption‘mat any pro-
cess considered will be reversible. in fact, it is well known that the alpha — stishovite phase tran-
sition in quartz exhibits considerable hysteresis due to metastability of the alpha phase well above
the equilibrium phase boundary.1 This effect may be of cruciél importance in hy Irodynamic cal-
culations involviﬁg shock loading through the metastable region foliowed by adiabatic release.
The only way such an irreversible phase transition could be described realistically is by construct-

ing separate EOS's for each phase of a4 given material and then switching between the single-
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phase EOS’s ‘in some thernbdynanﬁca]l y self-consistent fashion,

The task of describing irreversible phase transitions thus may be divi;]ecl into two parts: (1)
generating high quality global EOS’s for all phases involved which are compatible in form and
share a common zero of energy, and (2) developing a simple means of détermining when and
how to switch between the various phases. In general, the latter part remains an unsolved prob-
lem. (Swegle! has recently looked at this problem in great detail for several materials of geologi-
cal importance including quaﬁz‘) There is h(;wc;/er one special case in which the solution to this
problem is known, i.e. the equilibrium case. Under the constraint of thermodynamic equilibrium,
all of the phase transitions will be reversible and can be described by a multiphase EOS formed
by combining the singlc-phase ‘E‘OS‘s in su‘chfa way as to minimize the Gibbs free energy as a
function of pressure.

In this investigation, we have used the program GRIZZLY? to generate global EOS's for the
alpha quartz, coesite, and stishovite phases of $i0,. These mdividuél EOS's were then used to
form an equilibrium muldpﬁase EOS for §i0,. The parameters used to gene;ate the singlc-phése
EOS’s were adjusted to ensure that the final EOS rcproduc‘es the experimentally ;determ'med
equilibrium phase boundaries. Thus, the single-phase EOS's should provide reliable input to
more general multiphase calculations. In addition, the equilibrium EOS for quartz should provide
a good reference for émdying the nonequilibrium effects in dynamic processes via calcuiations
similar to those done by Swegle.! Hopefully, such calculations will allow us to develop sys-
tematic techniques for using the singie-phasc EOS's to describe general nonequilibrium
processes.

In the next section, wé will describe the methods used to generate single- and multiphase
EOS’s in this investigation. In Section III, the single-phase EOS calculations are discussed in

detail, The cquilibrium multiphase EOS for quartz is described in Section IV,



1L METHODOLOGY

Most of the EQS's in the SESAME library are partitioned into three terms for the pressure P,

the internal energy £, and the Helmholtz frec energy A:

P =Py(p) +P,, (P T) + % (p.T) | ‘ (1)
EpT)=E(p)+E (p.T)+ E.(p.T) ‘ (2)
AP =A;P)+A. P T)+A.(p.T) - o ‘ (3

where p is the density and T is the temperature. (In the SESAME library, discrete values of p and
T are chosen to form a mesh on which P, E, and A are stored.) The subscripts s, n, and e denote
. the contributions due to the static lattice (i.e. frozen nucleii) cold curve (zero temperature isoth-
erm), the nuclear motion, and the thermal electronic excitations. It is.thus poscible to treat cach
contribution independently using any desired model. The free energy A can 56 related. to tﬁe

energy as:
AT =E@T)-T S(p.T) ‘ | " (4)

where S is the entropy.

In the computer progrdm GRIZZLY,? the only model available for calculating the electronic
contributions is the Thomas-Fermi-Dirac (TFD) model.? In our calculations, we first generated
electronic EQS's for each constituent atorﬁ. These monatomic electronic EO§'s were then com-
bineé‘ via additive volume mixing? to form the electronic EOS of $i0-. This part of the calcula-
tion requires the atomic numbers (Si - 14, O - §) and the atomic masses (Si - 28.086, O - 15.999)
for the constituent atoms.*

| The nuclear contributions were obtained using the CHARTJD nuclear model® (a modified ver-
sion of the CHARTD model)® with a Gruneisen function of the CHARTD form.® In this model,

the material is treated as a Debye solid at low temperatures and as an ideal gas at high



ten;peratures. The nuclear contribution switches smoothly between these two 1inﬁts for tempera-
tures near the melt, In addition to the data aircady specified, the nuclear calculation requires the
reference density (po), the Debye temperature (€4, ), the reference Gruneisen con.sumt {(y0), and the
melt temperature (T,,). |

The cold cutves used here were obtained in the compressed region by removing thermal con-

tributions from an input Hugoniot at modest compressions (< 1.5) and then extrapolating to a

mixed TFD cold curve at large compressions. This procedure ensures that the total EOS will

reproduce the input Hugoniot and will have the correct large p behavior., In the expanded region

(p < po), the cold curves were forced to have a generalized Lennard-Jones form? constrained to

smoothly connect with the compressed cold curve and to have the correct cohesive energy (£ ).

Besides the data already mentioned, this part of the calculation requires an input Hugoniot in the

form df shock velocity (u,) vs particle velocity (u,) (here in the form u, = ¢ +5 u,) and a parame-
ter FACLJ (here 1.0) which determines the shape of the cold curve in the expanded region.

For this investigation, we have modified JRIZZLY to allow two EOS'S to be combined in
such a way as to minimize the Gibbs free 1 ergy as a function of pressure. The Gibbs free energy

may be expressed as

G Ty=A.T) + Plp. , 5)

Given two EOS tables for a low pressure phase (table 1) and a high pressure phase (table 2), the
new command (PHASE 1 2 3 pcut /) directs GRIZZLY to search cach isotherm (using the tem-
perature grid of table 1) for the pressure P((7T) at which the Gibbs free energies of the two EOS's
are identical. The densities py and p2 at which the pressures for the two EOS's equal P, form the
boundaries of the mixed phase region in (p,7) space. The combined EOS is then formed and
stored in table 3 using the T and p gnds from table 1. Table 3 is identical to table 1 for p < p; and
is obtained dircctly from table 2 for p > pa. In the mixed phase region, table 3 is obtained by set-

ting P =P, and assuming that for a given density the fractional amounts of the two phases (w,



and w») are given by

wi= [ (p=p) 7 (p2—p1) T (pr/p) o (6)
~and '

wa=[{p-p)/ (pi=p2) 1 (pYp). ‘ | (7)

To ensure that the phase boundary is described correctly, wc used an enriched density grid in
the mixed phase region. For high densities, it is possible to obtain spurious transitions due to the
relaﬁve]y sparse grid used in that region. To avoid that difficulty, we restricted the scarch on the
zero temperature isotherm to pressures less than PCUT (a ncW inpuf variable with a default value
of 10 Mbar). For each higher temperature isotherm, the upper density for the search on table 1 is
set at 5 grid points above the p obtained for the previous isotherm, For cach isotherm,
GRIZZLY begins its search at the high density limit‘and searches down for the first transition,
This procedure ensures that GRIZZLY will ﬁot find spurious transitions or switch from one phase

boundary to another,

1. SINGLE-PHASE EOS

The various parameters used as input to GRIZZLY for the alpha, coesite, and stishovite phases
of quartz are given in Tablvc 1. The input data for the alpha phase was chosen to be consisient
with that used in generating SESAME EOS 7383 (polycrystalline quartz),” except for T,, which is
taken from a standard reference source.® The values of po, 0, and co (as deduced from the bulk

(

modulus) for the coesite and stishovite phases are taken from Davies.” The slope of the Hugoniot
for the stishovite phase is that derived by McQueen, et al.'” from Hugoniot data for polycrystal-
line quartz and fused quartz. That value was also used for coesite in the absense of any empirical

data, The values of T, for the high pressure phases were constrained to be twice the value of 65,



(Our results are relatively insensitive to the choice of s for coesite and T, for both coesite and

stishovite.)

Table 1: Single Phase EOS Parameters

. alpha coesite stishovite
Po (gm/ce) 265 291 4.29
Yo 0.65 0.40 1.22
bp (K) 1 950 986 | 1210
E. (kcal/mole) | 146.000 | 145338 141.960
Co (km/s) 3.71 577 9.03
S ‘ 1.93 1.00 1.00
Ty (K) 1900 1972 2420

The remaining parameters for the coesite and stishovite phases (6 and £ ) were used as adju-
stable parameters to match the experimental alpha — coesite!! and coesite — stishovite'? phasc
boundaries (see Fig. 1). We began by generating the EOS for the alpha phase using the data
given in Table 1. The EOS for the coesite phase was then generated for various values of 8p and
L. For cach set of values used, the EOS of coesite was combined with that of the alpha phase to
obtain the phase boundary, We were quickly able té match the experimental boundary in P vs T
space. We then repeated that procedure with the stishovite phase.

While the final value of 8 used for the stishovite phase (1210 K) is in reasonable agreement
with the value quoted by Davies (1120 K),? the value found here for coesite (986 K) differs
significantly (16%) from the experimental value (1170 K).” The poorer agreement found for the
coesite phase may be duc in part to the relative imprecision of the experimental determination of
the alpha — coesite phase boundary.!* However, this disagrccx‘ncm may also simply reflect the
difficulties in rigorously defining a single temperaturc-independent 6, for any given material. (In

general, 8y is merely a parameter uscd to fit data over some temperature range.) Assessing the



values of £, used here for the hlgh temperature phases is best done by comparison with the exper-
imental (I=0,pP :05 cnergy differences between the various phases.'® The alpha - stishovite energy
difference obtained hcré is 12,120 keal/mole (note that the values in Table 1 are for average atom
moles and must be mult.iplicd by 3) compared to an experimental value of 12.1 kcal/mole, ™
| Again,‘thc agreement with experiment is substantially p()()rcr‘f()r the coesite phase. Here we
obtain an alpha - coesite energy difference of 1.986 kcal/mole compared with the experimental
value of 1.2 kcal/mole, This rc’suit suggests that there may in fact be some difficulty with the
‘cxpcrimental alpha — coesite phase boundary used to determine 85 and £,

To summarize, both the alpha and stishovite single-phase EOS's were generated using parame-
ters which are either well determined experimentally or were selected to fcproduce the experi-
mental phase boundaries. Therefore, these two EOS's should be quite good. For the coesite
| phase, the parameters used aré not as well determined experimentally as for the other phases.
Hence, the quality of the coesite EOS is questionable. Fortunately, the coesite phase is believed
to be of little importance for processes involving shock loading' and the questionable nature of

the parameters used should not seriously effect our work.

IV. EQUILIBRIUM MULTIPHASE EOS FOR QUARTZ

The best means available for evaluating the quality of the three single-phase EOS's generated
here is via the resulting equilibrium multiphase EOS for quartz. In Fig. 1, the equilibrium phase

10 and coesite —

boundaries obtained here are compared with the experimental alpha — coesite
stishovite!! boundaries used in generating the single-phase EOS's. The high quality of the fit to
the data is clearly evident. Figure 1 also includes the alpha — stishovite phase boundary which

would exist if the coesite phase were ignored. This hypothetical boundary is of great importance

since it has been suggested that under shock conditions quartz transforms directly from a
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Fig. 1, The theoretical phase diagram for SO, (dashéd lines) compared with the

experimental alpha — coesite (Ref. 10) and coesite — stishovite (Ref, 11) boundaries
(solid lines), Also shown are the hypothetical alpha — stishovite boundary obtained here

(dotted line) and that used by Swegle (Ref, 1),



metastable alpha phase to the stish()vi‘tc phase.! In his investigation of the effects of metastability
on dynamic processes in quurfx, Swegle! assumed that the coesite phusé Is irrelevant, The alpha
— stishovite phase boundury used by SW'cglc' is included in Fig, 1. (He only reports the position
and slope of the bmlndary at onc point,) It is intriguing that the phase boundary used in that
investigation differs from that obtained here by nearly 2 GPa (more than 20%) at room iempera-
ture, Whether or not that difference will substantially alter the estimated impact of metastability
on dynamic processes in quartz remains to be :sccn.

~Another important consideration f(>r our purposes is the quality of the Hugoniot generated

from the equilibrium muitiphase EOS. In Figs. 2 and 3, the theoretical u; vs u, curve is com-

pared with cxperimental data from a variety of sources.'*!7 Naturally, the portion of the curve
prior to the first phase transition matches the input Hugon‘i‘ot‘for the alpha phase and is guaranteed
to be in good agreement with experiment. This is not true for the portions of the Hugoniot which
involve the coesite or stishovite phases sirce the initial conditions differ from those of the input
Hugoniots used to construct the EOS's for those phases. For u, > 2.5 ktﬁ/s, the theoretical
Hugoniot is in excellent agreemeni with the experimental data, demonstrating the high quality of
the stishovite EOS used in generating the multiphase EOS. In fact, the large u, portion of the
curve is substantially better than that produced by SESAME EOS 7383, since that EOS was gen-
erated by inputting a us vs u, curve constructed out of struighbline segments and thus cannot
reproduce the curvature of the experimental data.

In Fig. 4, we show part of the calculated vs experimental Hugoniot in P vs p space. This figure
clearly reveals the large difference between real shock processes in quartz as opposed to a
hypothetical equilibrium process. For the experimental Hugoniot, the transiticn from the alpha
phase begins at a pressure of about 14 GPa and the quartz has completely transformed to the
stishovite phasc at about 45 GPa.'* Throughout the experimental trunsitiuvn, the pressure rises

monatonically as a function of density. In contrast, the theoretical transifion is composed of two
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distinct ‘transitions at constant pressure. The alpha -» coesite transition occurs at about 2.2 GPa
and fhe coesite - stishovite transition occurs at about 7.0 GPa.

Although the differences between the two curves in Fig. 4 are dramatic,‘no unambiguous
interpretation of those differences can be given at this tixﬁc, except that it is guite obviqus that the
alpha phase exhibits metastability for pressures betWeeh 2.2 GPa and 14 GPa. The prob]clﬁ in
interpreting the remaindcr of the differences is that it is not clear that in the mixed phase region
oné can directly relate tﬁe measured values of u; and u, to P and p as is assumed in Fig. 4. Thus
the experimental curve is questionable for pressures between 14 GPa and 45 GPa. A further
difficulty in interpretation is the problem of determining what effects are due to metastability and
which are due to strength. To resc;lve these questions, it will be necessary to complete the ne:t
phase of this investigation,; pérf()rming calculations similar to those done by Swegel' using the

single-phase EOS's produced here to match experimental data via nonequilibrium mixing.

REFERENCES

1. J. W. Swegle, "Trreversible Phase Transitions and Wave Propagation in Silicate Geologic Materials,"

Sandia National Laboratories report SAND89-1443 (August 1989).

2. J. Abdallah, Jr,, "User’'s Manual for GRIZZLY," Los Alamos National Laboratory report LA-

10244-M (September 1984),

3. R.D. Cowan and J. Ashkin, "Extension of the Thomas-Fermi-Dirac Statistical Theory of the Atom to

Finite Temperatures," Phys. Rev. 105,' 144 (1957).
4. N.W. Ashcroft and N, D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, 1976).
5. J. D.Johnson, Los Alamos National Laboratory, unpublished notes, 1986-1987.

6. S. L. Thompson and H. S. Lauson, "Improvements in the Chart D Radiation-Hydrodynamic Code 111:

Revised Analytic Equations of State," Sandia National Laboratories report SC-RR-71 0714 (March

13



10,

11

12,

13.

14,

15.

16.

17,

1972).

J. D. Johnson and S. P. Lyon, "EOS for Polycrystalline Quartz," Los Alamos National Lah()rat()ry

report LA-10397 MS (May 1985).

CRC Handbook of Chemistry and Physics, 691h Ed., R. C. Weast, Ed. (CRC Press, Inc., Boca

Raton, 1988).

G. F. Davies, "Equation of State and Phase Equilibria of Stishovite and a Cocsitelike Phase from

Shock-Wave and Other Data," J. Geophys. Res. 77,4920 (1972).

R. G. McQueen, J. N, Fritz, and S. P, Marsh, "On the Equation of State of Stishovite,"

J. ‘Geophys.‘ Res. 68, 2319 (1963).
F.R. Boyd and J. L. England, "The Quartz-Coesite Transition," J. Geophys. Res, 68, 749 (1960}.
S. Akimoto and Y. Syono, "Coesite-Stishovite Transition," J. Geophys. Res. 74, 1653 (1969).

J. L. Holm, O. J. Kleppa, and E. F. Westrum, ""Thermodynamics of Polymorphic Transformations in

Silica,'" Geo. Cosmo. Acta 31, 2289 (1967).

J. Wackerle, ""Shock-Wave Compression of Quartz,"J. Appl. Phys. 33,922 (1962).

"R.G. McQueen, J.N. Fritz, and J. W. Hopson, Los Alamos National Laboratory, unpublished work

(1985).

L. V. Al'tshuler, N. N. Kalitkin, .. V. Kuz'mina, and B. S. Chekin, "Shock Adiabats for Ultrahigh
Pressures," Sov. Phys. JETP 45, 167 (1977) and L. V. Al'tshuler, R. F. Trunin, and G. V. Simakov,

NASA translation TT F-10, 101,

C. E. Ragan, 111, Los Alamos National Laboratory, unpublished work (1985),

14

+.8. GOVERNMENT PRINTING OFFICE 1990-0-773-034/20102

o



4

-



I

aon



