[]
=
]
a
!
=
a
2
|
|
i
:I
'l
[|
|
i

e R

o e

| T "

OAK RIDGE
NATIONAL
LABORATORY

MARTIN MARIETTA

MANAGEDBY
 MARTIN MARIETTA ENERGY SYSTEMS, INC.

EOR THE UMITED STATES

n-in 15U OIRILY

. DEPARTMENT OF ENERGY

ORNL/TM-12287

The KSR1: Experimentation and
Modeling of Poststore

E. Rosti
E. Smirni
T. D. Wagner
A. W. Apon
L. W. Dowdy

3

NHETTR BT
SUTION OF TrliE DO paep - 18 i
23N (Y HG e

ot

This report has been reproduced directly from the best available copy.

Avgilable to DOE and DOE contractors from the Office of Scientific and Techni-
cal information, P.O. Box 62, Qak Ridge, TN 37831, prices available from (615)
576-8401, FTS 626-840",

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of thelr employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any Information, apparatus, product, or process dis-
cloged, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

ORNL/TM-12287
Engineering Physics and Mathematics Division

Mathematical Sciences Section

THE KSR1: EXPERIMENTATION AND MODELING OF POSTSTORE

E. Rosti *
E. Smirni ?
T. D. Wagner *
A. W. Apon t
L. W. Dowdy t

* Dipartimento di Scienze dell’Informazione
Universita degli Studi di Milano
Via Comelico 39
20135 Milano, Italy

t Computer Science Department
Vanderbilt University
Box 1679, Station B
Nashville, TN 37235

Date Published: February 1993

This work was partially supported by sub-contract 19X-SL131V
from the Oak Ridge National Laboratory, and by grant N.
92.01615.PF69 from the Italian CNR “Progetto Finalizzato Sistemi
Informatici e Calcolo Parallelo - Sottoprogetto 3.”

Prepared by the
Oak Ridge National Laboratory
QOak Ridge, Tennessee 37831
managed by
Martin Marietta Energy Systems, Inc.
for the
U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC05-840R21400 M AS‘E’ ER

L BTN OF Tris DOCUMERN D W e

Contents

oy

-3 O Ot

Introduction e e e
Architectural Overviewof the KSR1
2.1 System Hardware e
2.2 Memory Organization o o e
2.3 System Configuration
Experimental Analysis e
31 TheWorkload e
3.2 The Experiments e e e
33 TheResults e
Modeling and Validation
4.1 Detailed Model
4.2 Approximate Load Dependent Model
4.3 Theoretical Model/Experimental Comparisons
Generalizations
Summary
References

.................................

..................
.......................................
..

..

- iii -

O JOH DO & NN

o

THE KSR1: EXPERIMENTATION AND MODELING OF POSTSTORE

E. Rosti
E. Smirni
T. D. Wagner
A. W. Apon
L. W. Dowdy

Abstract

Kendall Square Research introduced the KSR1 system in 1991. The architecture is based
on a ring of rings of 64-bit microprocessors. It is a distributed, shared memory system
and is scalable. The memory structure is unique and is the key to understanding the
system. Different levels of caching eliminates physical memory addressing and leads to the
ALLCACHETM scheme. Since requested data may be found in any of several caches, the
initial access time is variable. Once pulled into the local (sub)cache, subsequent access
times are fixed and minimal. Thus, the KSR1 is a Cache-Only Memory Architecture
(COMA) system.

This paper describes experimentation and an analytic model of the KSR1. The focus
is on the poststore programmer option. With the poststore option, the programmer can
elect to broadcast the updated value of a variable to all processors that might have a copy.
This may save time for threads on other processors, but delays the broadcasting thread
and places idditional traffic on the ring. The specific issue addressed is to determine
under what conditions poststore is beneficial. The analytic model and the experimental
observations are in good agreement. They indicate that the decision to use poststore

depends both on the application and the current system load.

1. Introduction

Traditionally, the scalability of shared memory multiprocessors has been limited due to memory
access path contention. However, the KSR1 system, recently developed by Kendall Square
Research, demonstrates that scalable shared memory multiprocessors are feasible. From a
measurement and modeling perspective, the KSR1 and its architectural paradigm deserve an
in-depth analysis.

One novel feature of the KSRI1 is its memory management scheme, ALLCACHETM . Each
processor has its own local memory that is managed as a cache, and a valid copy of a data
item must exist in the local cache of the processor in order to be accessed. Data items are
not bound to any particular memory, but migrate dynamically to a processor when they are
accessed The entire memory is shared and the memory is viewed as a hierarchy of caches. Upon
writing, a requesting processor writes the data item to its local cache and marks it as valid.
All other copies of the item in other processor caches are marked as invalid. Prior to reading, a
requesting processor must have a valid copy of the item in its local cache. If a valid copy of the
item is not in the local cache of the requesting processor, then a valid copy is migrated from
the local cache of another processor. Depending on which cache contains the requested data
item at any particular time, the time required to perform this migration may vary. However,
once a valid copy of the requested item is moved into the local cache, all subsequent accesses
are to the local copy. Thus, the KSR1 has a Cache-Only Memory Architecture (COMA) [5].

To take advantage of the architecture, programmers are provided with a poststore option.
When a variable is updated by a write, using poststore will cause a valid copy of the variable
to be sent to all caches which contain a copy of that variable. This will shorten the access time
for any future reads on those other processors, since each will have a valid copy of the item in
its local cache. Without poststore, whenever a future reader requests the variable, it must first
pull a valid copy into its cache. Clearly, a tradeoff exists since using poststore will shorten the
time for future reads, but lengthens the time for the write.

This paper presents an experimental and modeling study of the KSR1. The focus is on the

poststore option. The stated goals and outline of this work are:

e to understand and describe the KSR1 architecture,

¢ to run controlled experiments on the KSR1, using a simple readers-and-writers workload,

to observe performance with and without poststore,

e tu construct and validate an analytic model of the system which could be used for predict-
ing the general behavior of the KSR1 and for predicting the specific behavior of poststore,
and

¢ to outline generalizations and summarize our findings.

_9.

The purpose of this paper is to study the effects of poststore for a particular reader/writer
workload. The results show that relatively simple models accurately indicate the effects of
poststore. Also, results show that poststore is more effective as the number of reader threads
in one application increases, but becomes less effective as the total number of applications in-
creases. Therefore, the effective use of poststore depends on both the programmer’s application

code as well as the system load.

2. Architectural Overview of the KSR1

2.1. System Hardware

The general KSR architecture is a multiprocessor system composed of a hierarchy of rings. The
lowest level, ring:0, consists of a 34 slot backplane connecting 32 processing cells (processing
elements) and two cells responsible for routing to the next higher layer ring, ring:1. A fully
populated ring:1 is composed of the interconnecting cells from 32 ring:0 rings. A fully con-
figured KSR1 is composed of two layers containing 1024 processing cells along with two ring
interconnecting cells on each ring:0. The general KSR architecture provides for a third layer
which connects 32 ring:1 rings into a ring:2 layer. Figure 1 shows the hierarchical ring structure
of the KSR multiprocessor.

This study deals with a KSR1 multiprocessor with a single ring:0 installed. The description
that follows is of the general KSR architecture with specific attention given to the memory
structure and management of a single ring:0. -

Each processing cell is constructed from 12 custom CMOS chips:

¢ The Co-Execution Unit (CEU) fetches all instructions, controls data fetch and store,

controls instruction flow, and does arithmetic required for address calculations.
e The Integer Processing Vnit (IPU) executes integer arithmetic and logical instructions.
¢ The Floating Point Unit (FPU) executes floating point instructions.
o The eXternal Input/output Unit (XIU) performs DMA and programmed I/0.

o Four Cache Cont *ol Units (CCU) are the interface between the 0.5MB subcache and the

32MB local memory (referred to as the local cache).

e Four Cell Interconnect Units (CIU) are the interface between a processing cell and the .

ring:0 ring.

In one instruction cycle an instruction pair is executed. One member of the pair is an instruction
for the CEU or XIU and the other member is an instruction for the FPU or IPU. The clock

R0 0 00 P O 11040 0 O3 OO 0 000001 00 R0 1 00 0 00 50100 0) 000 A A g

-3.

speed is 20 MHz. As in other superscalar processors, the KSR processor operates in a pipelined
fashion with two pipelines, one for the FPU/IPU and one for the CEU/XIU. The pipelining
and 20 MHz clock yield a peak 40 MFLOPS for each cell. Using shared data structures and
optimized code, early implementations of a 1000 X 1000 double precision LINPACK running
on a 32 processor system resulted in over 500 MFLOPS total capacity [3].

Processing
Cells []

400000

155000\

Figure 1: KSR hierarchy of rings.

Each processing cell also contains a 256 KB data cache and a 256KB instruction cache. The
on-board data and instruction caches are referred to as subcaches. A daughter board connected
to each processing cell contains 32MB of memory referred to as local cache. The word size
of the KSR is 64 bits and all functional units are based on 64 bit operands. All execute
and control operations are register oriented. Each processor has 64 floating point registers,
32 integer registers, and 32 addressing registers. All registers are 64 bits wide. (The KSR1
implementation uses 40 bit addressing registers.)

In addition to the 32 processing cells, each ring:0 also contains 2 ALLCACHE Routing and
Directory (ARD) cells. One of the ARD cells is an uplink from the ring:0 to ring:1. The other
ARD is a downlink from the ring:1 to ring:0. The ARDs participate in the transfer of data
between ring:0s across ring:1.

All of the local caches, together with the interconnecting rings, make up the ALLCACHE
memory system. Addressing in the KSR architecture is based on the translation of a Con-
text Address (CA) into a System Virtual Address (SVA). Context addresses are composed of
a segment and offset and are translated into System Virtual Addresses via fully associative
hardware Segment Translation Tables (STTs) on each processor. There are two STTs, one for
data and one for instructions. The System Virtual Address space consists of all of the local
caches. The ALLCACHE memory system and the organization and management of System
Virtual Address (SVA) space is the major difference between the KSR architecture and other
architectures. When a processor references an SVA, a search engine, which is the collection of

CIUs and the ARD on each ring:0 along with the ring interface, locates the SVA and moves its

-4.-

contents to the local cache of the referencing processor.

2.2. Memory Organization

ALLCACHE stores data in units of pages and subpages. Pages contain 16K bytes divided into
128 subpages of 128 bytes each. Each local cache can hold 2,048 pages. The memory system
allocates storage in the local caches on the basis of pages and each page of SVA space is either
entirely allocated in the caches or not allocated at all. The local caches share data in units of
subpages. Whenever a page of SVA space is allocated in the system, there may be more than
one copy present. This would be the case when several threads running on different processors
are all referencing shared memory. It is possible that each local cache that has allocated a page
may not contain a copy of all of the subpages in that page. That is, space in the local caches is
allocated on a page basis, but data is transferred on a subpage basis. Each local cache mainiains
a cache directory in a 16-way set associative memory with 128 sets that maps physical pages
in that cache to SVA pages. All of the pages of SVA space are divided into 128 equivalence
classes, each associated with a cache directory set. Since there are 16 elements in each set in
the cache directory, a cache can contain no more than 16 pages in the same equivalence class.

The subcaches are allocated on the basis of blocks (2K bytes) and data is moved into and
out of the subcaches in subblocks of 64 bytes each. A two way set associative subcache directory
maintains the mapping between subcache blocks and SVA pages with one descriptor for each
block. The subcaches replace blocks as needed using a random replacement scheme.

In the cache directory of each cell, additional information is maintained that represents the

state of each subpage in the local cache. There are four states that a subpage can be in:

e Exclusive owner: Indicates that this is the only valid copy of the subpage in all of the

local caches (i.e., in the entire system). The contents can be read or modified.

e Atomic: Like exclusive, this is the only valid copy and the subpage can be modified. This
state also provides a flag to allow synchronization by multiple processors. Thus, this state

provides for locks.

o Read-Only: Indicates that there are two or more valid copies of this subpage among all
of the local caches. The contents of this subpage cannot be modified until its state is

changed to exclusive or atomic.

e Invalid: The contents of this subpage are not to be accessed (i.e., read or modified).
Newly allocated pages set all subpage descriptors to invalid. This state is analogous to
the setting of a “dirty bit.”

The subcaches also maintain state information at the subblock level. The instruction subcache

allows each subblock to be in either the invalid state or the read-crly state. In addition to

_5.

invalid and read-only, the data subcache allows a block to be in the exclusive owner state to
allow for modification. The data subcache also maintains modification information for each
subblock. The state of a subblock in the subcache is not allowed to be stronger than the state
of the corresponding subpage in the local cache. Thus, it is not possible for a subblock’s state
to be exclusive in the subcache while read-only in the local cache.

When a processor references an SVA address it continues execution for two cycles, which is
the latency of the subcache. If the address is not contained in the subcache, the processor is
stalled and a request is presented to the CCUs to locate the subpage containing the requested
address in the ALLCACHE memory. If the subpage containing the address is not present in
the local cache (and in the state requested by the processor), then the CCUs make a request of
the local CIUs to format a request message and place it on ring:0. The ring:0 communication
interconnect is a slotted pipelined ring with a total bandwidth of 1GB. There are 13 slots on
the ring:0 ring. Each message on the ring consists of a 16 byte header followed by one subpage
(128 bytes) of data. As a request message passes each processing cell, the cell’s CIU determines
if the request can be satisfied from its local cache. If it can be satisfied, the request message
is extracted from the ring and a response message is inserted. Also attached to each ring:0 is
an ALLCACHE Router and Directory (ARD) cell that contains a directory of the entire ring:0
cache (i.e., all of the local caches). If the ARD determines that a request message cannot be
satisfied on the local ring:0, it extracts the message and inserts a request on the next higher
ring in the hierarchy, ring:1. When the response message to the original request is inserted
on the ring, the requesting processor copies the message and fills the original request from the
local CCU. If a request message returns to the requesting processor unanswered, a hard page
fault is generated and the subpage is brought in from the disk. The latency and total capacity
of the ALLCACHE memory system hierarchy is shown ir. Table 1 [6].

Table 1: Latencies and capacities

Location of Total Latency in
| subpage capacity (MB) | cycles (5ns)
Local subcache | 0.5 2

Local cache 32 18

Ring:0 1,024 175

Ring:1 34,816 600

Disk 400,000

The hardware management of the KSR memory system assures that the ALLCACHE mem-
ory is both sequentially consistent [7) and strongly ordered [2]. The state of a subpage in local
cache or a subblock in subcache is changed in response to requests from processing cells in the

system. When a load instruction is issued, it can specify the state that the subblock should

-6-

possess, A store instruction always requires that a subpage have an exclusive ownership state.
Whenever a request for exclusive ownership is made, all copies of the subpage in other cells
are marked as invalid. One distinction between the ALLCACHE memory and NUMA shared
memory architectures is that no processor is the designated “home” of a subpage of memory.
There can be multiple local caches that have allocated space for a subpage and the ownership
travels around the rings as required, to satisfy state requests by the multiple processors.

One problem that floating ownership can cause is that as fetch requests are made, it is
possible that the local cache of the processor issuing the request may have an invalid copy.
There are two methods by which the inefficiencies created by this approach are moderated.
First, whenever a copy of a subpage is sent across the ring to satisfy a request, any local cache
that has a descriptor for the subpage (i.e., has allocated space) but does not have a valid copy,
can pick up a read-only copy of the subpage if the cell is not too busy. This automatic prefetching
is a function of the hardware. Second, there are two instructions, pcsp (prefetch subpage to
cache) and pstsp (poststore subpage), that provide the programmer with some control over
the locality of specific subpages. The prefetch instruction allows for the specification of the
state that should be acquired when a subpage is fetched. The poststore instruction simply
relinquishes exclusive ownership and broadcasts the contents of a subpage on the ring. All cells
that have a descriptor for the subpage will take a copy from the ring if they are not too busy.
If no advance copy is obtained by a cell, then a new request is issued whenever the cell requires

a valid copy.

2.3. System Configuration

The KSR operating system is an implementation of OSF-1 and provides a standard UNIX
interface. Built on top of the Mach threads of OSF-1 is a pthreads interface based on the IEEE
POSIX draft standard, P1003.4a. The KSR pthreads interface includes extensions to enable
an application to manage ring traffic and the geometry of thread placement for optimizing the
performance of cooperating threads. The experiments described here were run using version
R1.0.5 of the KSR OS. The system includes a fully configured ring:0 with 32 processing cells.
The timings reported in the experimental section were collected using the two sub-microsecond

timers on each cell, one which reports user time, the other system time.

3. Experimental Analysis

3.1. The Workload

In order to study the advantages and disadvantages of using poststore after an update, various

workloads consisting of a parallel version of a readers/writers workload are constructed. Each

workload performs the following steps:

o Initialization Phase

1.

2.

A number of reader and writer threads are spawned, each bound to a specific pr>-

cessor..

Each reader and writer reads a predetermined portion of a given data set. This
ensures that a copy of the shared data set is in the local cache of each participating

thread, and that no disk accesses will be required during the measurement phase.

¢ Measurement Phase

e o o

. Timing begins for each writer.

. Each writer updates its portion of the data set. Writing is done with or without

poststore, depending on the experiment.

Timing ends for each writer.

Timing begins for each reader.

Each reader sequentially reads its portion of the data set one time.

Timing ends for each reader.

The emphasis of the experiments is to determine under which conditions the use of poststore

is an advantage. If the writers broadcast their updates with poststore, then each reader should

find a valid copy of the data in its local cache during the reading phase. If the updates are done

without poststore, then no valid copy is available in the reader’s local cache during the reading

phase. In this case, every read is a cache miss and generates a request on the ring. Readers

are allowed to read only afier all the writers have finished. In all the experiments, readers and

writers are implemented by distinct threads, and are mapped onto distinct processing cells, so

that no two threads in the same application access the same local cache.

3.2. The Experiments

The parameters to be varied in the experiments are:

1. the amount of data requested per subpage access,

2.

3.

the amount of delay between accesses,
the read access pattern,
. the number of writers,

. the amount of data set sharing among readers, and

-8-

6. the number of concurrent reader/writer workloads.

Several experiments were run using different values for each of these parameters. Table 2 lists
the experiments reported here with their parameter values. Three data set sizes were used:
small (13K subpages), medium (52K subpages), and large (100K subpages). Different sizes
test the effect of processing for longer periods of time. Each experiment was run for a varying

number of readers.

Table 2: Experiment parameter values

LExperiment_] Granularity | Delay | Access Pattern | Writer | Sharing | Workloads |

A 1 per subpage N same single global single
B entire subpage N same single global single
C 1 per subpage Y same single global single
D entire subpage N different single global single
E 1 per subblock N same multiple | global single
F 1 per subblock N same | multiple | private single
G 1 per subpage Y same single global multiple

Different access granularity levels affect the rate at which read requests are made to the
ring. The access granularity may be one access per subpage, one access per subblock (i.e, two
accesses per subpage), or the entire subpage. In the experiments reported, each read is a 64
bit word. Each subpage contains 16 words. When one word per subpage is read, without
intervening processing, the rate at which requests for invalid pages are made is maximized.
When one word per subblock is read, then the rate of ring requests decreases, since every other
read is a local cache hit. When an entire subpage is read there will be one request to the ring
(to acquire the subpage initially), one hit to the local -ache (to get the first word of the second
subblock), and fourteen hits to the subcache (to get the remaining 14 words of the subpage).
The subcache and local cache latencies of 2 and 18 processor cycles, respectively, increase the
time between requests to the ring. Experiments A and B show the effect of different access
granularities.

When no additional time is used for processing (i.e., pure read requests), the single request
to the ring outweighs the other delays since it is an order of magnitude greater than the local
cache latency. The rate at which read requests are made to the ring may be slowed further by
introducing a variable delay between read accesses to simulate data processing. Experiment C
shows the effect of introducing delay between read accesses.

In Experiment D the access pattern is varied in order to study the effect of automatic
prefetching. If many subpages are copied from the ring before they are requested, then the

number of ring requests will be reduced. This has the effect of reducing total execution time.

-0.

Experiments E and F show the effects of multiple writers. With multiple writers, the data
set is divided equally among the writers so that each writer has the valid copy of a distinct
(private) portion of the data set. When multiple writers own different parts of a shared data
set and multiple readers read different p 'rts as well, the composition of read requests being
placed on the ring changes and the read time per subpage changes. Readers may or not may

not be allowed to share data sets. Two extremes are considered:
1. Full sharing, where each reader rcads the entire data set. This is termed global readers.

2. No sharing, where the data set is divided equally into distinct portions among the readers,

and each reader accesses only its portion. This is termed private readers.

Experiment E investigates the effects of multiple global readers. It is possible that a single
writer could become the system bottleneck. Multiple writers can reduce this bottleneck effect.
Also, it is possible for a reader to obtain a valid copy of a subpage through automatic prefetching
because of a request made by another reader. :

Experiment F shows the effect of multiple writers and private readers. With private readers,
readers cannot take advantage of automatic prefetching since each reader is the only thread
accessing the data for which it has put a request on the ring. With multiple writers and
private readers, read requests are served by different writers at the same time, which reduces
the demands on the writer process.

Since poststore reduces the execution time of the reader threads while increasing the execu-
tion time of writer threads, both thread types should be considered when making the decision
of when to use poststore. It is expected that for a low reader-to-writer ratio the expense to
the writers would dominate, indicating that poststore should not be used. Conversely, for a
high reader-to-writer ratio, it is expected that the benefits to the readers would dominate, in-
dicating that poststore should be used. Also, as the number of reader/writer workloads (i.e.,
heavyweight threads, multiprogramming level) changes, the relative benefit of poststore can be

affected. Experiment G examines these issues.

3.3. The Results

The results of the 7 experiments are presented here. Except for Experiment G the performance
metric used is the average access time per subpage by an average reader thread.

In Experiments A, B and C there is a single writer and progressively longer times between
read requests. In each of these, the average read time per subpage is shown as the number of
readers varies from 1 to 30. The results of Experiment A are shown in Figure 2. Experiment
A has the highest rate of ring requests (one per subpage). Results are shown for the three data

set sizes. When poststore is used, read time per subpage is constant, since every read is a hit in

-10 -

60 1 Data Set Size 60 1 Data Set Size
— small — small
8 504 — — -medium 2 504 — - -medium
r e === large
(%] [V
8 3
g |4
L} L}
- -~
; g
S 8
[[
g g
Q. .
£ L
2 2
0 T L] T A 1 T
0 5 10 15 20 25 30
number of readers number of readers
Figure 2: Granularity: 1 per subpage, Ex- Figure 3: Granularity: entire subpage,
periment A. Experiment B.

the local cache. With a larger data set, the average time to read a subpage increases because
of the extra overhead incurred due to more subcache turnover. When no poststore is used,
the average time to read a subpage increases as the number of readers increases. Regardless
of the size of the data set, when more than six readers are executing, the time to read a
subpage increases linearly due to delays at the cell of the writer thread which must handle all
requests. Larger data sizes yield better performance because they allow for better exploitation
of the pipelined execution, and the subcache turnover overhead is overlapped with the time
the processor is waiting for the requested subpage. Furthermore, a longer global execution
time favors automatic prefetching. This is because the longer readers execute, the more their
executions are staggered from the initial synchronized start, increasing the probability that one
reader will request a subpage that will be needed in the future by another reader.

In Experiment B every word in each subpage is read. The results are similar to those of
Experiment A, as shown in Figure 3. Again, when no poststore is used, the average time to
read a subpage increases as the number of readers increases. The increase becomes linear with
the same slope as before but begins with a higher number of readers, since the request rate is
smaller. The point where the curve reaches the asymptote is 11 readers, as Figure 3 shows.
The absolute value of the average read time per subpage is larger than with Experiment A
due to the extra accesses performed per subpage. However, when the system is not saturated,
the difference between the average read time with poststore and the average read time without
poststore is the same, and is equal to the measured ring latency.

Experiment C shows the effect of including a variable delay to represent processing time
between each read, which further reduces the ring request rate. In this experiment, one word

per subpage is read, so that with no poststore, every read generates a ring request. The curves

gy SRR . i A e R

-11-

60 60

Delay Data Set small 7 Access Pattern Data set small
— — different
2 5 504 — — -same

40 -

4 E P 4
L} 1] /
g g 30 4 P 4 no PS
'S P 7
g é 20 s ’ ’
]] — e
& &
o -] - P UL 5| N
_2- 2. 104 w e
3 3
"]

0 T T L] L) T 1 0 L] T L] T L] L)

0 5 10 15 20 25 30 0 5 10 15 20 25 30
number of readers rumber of readers

Figure 4: Readers with extra processing Figure 5: Access patterns, Experiment D.

delay, Experiment C.

in Figure 4 show the average read time per subpage for different delays between reads, as the
number of readers increases from 1 to 30. The basc case for a delay of 6us yields the same
performance as when an entire subpage is read and there is no delay between reads, as in
Experiment B with the small data set. As the delay increases, the number of readers that it
takes to saturate the system is larger. At saturation, the slope of the asymptote is the same
as before for all curves, but the location of the saturation point is a function of the delay.
Again, when the system is not saturated, the difference between the average read times with
and without poststore is the same, and is equal to the measured ring latency. Experiment C
shows that as the delay between reads increases, the ring latency and writer response time have
less effect on total execution time.

Experiment D shows that performance improves if readers use different access patterns,
as illustrated in Figure 5. In this experiment there is one writer, readers are global, and
the number of readers is varied from 1 to 30. Half of the readers read the entire data set
sequentially forward, and half of the readers read the entire data set sequentially backward.
Figure 5 shows that the slope of the saturation asymptote for the average read time without
poststore is about 50% of the slope for the corresponding experiment where all readers use the
same access pattern (Experiment B). The performance improvement is due to the automatic
prefetching of subpages that have not yet been requested as they pass by on the ring. This
effect of prefetching is noticeable from one to two readers. The read time drops because there is
a high probability that subpages requested by the second reader are copied by the first reader
also, and vice versa. This is an instance of “anomalous” behavior where performance improves
as the workload increases. When both readers have read half of the data set, the probability of

generating ring requests is very low. Additional readers do not give any advantage, since their

<.12-

read pattern is the same as one of the first two. As more reader threads are added, performance
degrades less severely than in the other cases because during the second half of the execution
the number of ring requests is reduced.

In Experiments E and F the number of readers varies from 1 to 29, and the number of
writers varies from 29 down to 1, with the number of active threads fixed at 30. The results of
Experiment E are showi in Figure 6. In this experiment, every reader reads the entire shared
data set with the same reference pattern, and requests are satisfied by one writer at a time.
At different times during execution, different writers supply the requested subpages. Because
all readers tend to access similar parts of the data set at the same time, the trend is for a
single writer at a time to be responding to reader requests. Thus, the expected improvement
in execution time by spreading the requests among multiple writers is not realized. Figure 6
shows that average read time per subpage follows the same trend as in Experiment A, where
there is a single writer and multiple global readers reading one word per subblock.

The results of Experiment F are shown in Figure 7. In this experiment, no two readers
read the same piece of data, so no duplicated requests for the same subpage are seen on the
ring. The data is distributed evenly among the writers. Thus, the readers segregate their read
requests. Each reader will read data from a different set of writers, unlike Experiment E where
each reader makes requests of each writer. When readers access distinct parts of the data set,
the saturation behavior and the low load behavior are different. The slope of the asymptote
is much steeper and occurs at a much higher number of readers due to the load balancing
which occurs at the writers. The effect of many writers using poststore to a very few readers
is also shown in this graph. With 29 writers and 1 reader the time to access a subpage is
higher because not all poststore instructions were effective. The single reader was saturated
with poststores from 29 writers and could not process all of the poststores.

The effectiveness of poststore is a tradeoff between the total time it takes the writer to
update and poststore the data, and the reduction in read time for the readers. Figure 8 shows
the sum of average access time per subpage for readers and the average time to write a subpage
for the writer as a function of the number of readers, for the medium data set. The data is
taken from the Experiment B runs for both with and without poststore. When the number
of readers is small, the additional time it takes the writer to poststore is not offset by the
savings in average access time for the readers. However, as the number of readers increases, the
average access time of ‘he readers in the without poststore case increases, while the write time
is always constant. After approximately 15 readers the savings in access time for the readers
with poststore is greater than the extra time required for the writer to perform the poststore.

Experiment G illustrates a similar tradeoff as the number of workloads (i.e., reader/writer

sets, heavyweight threads, multiprogramming level) increases. The data was collected by si-

oy

- 13-

—_ 601 Data Set Size - 60 -1 Data Set Size
5 small =2 small
2 50 4 =— — - medium P 504 — — - medium
< —--e-— large] ——-e-— large
3 3 |
4 g
. . ;
L] v
£ | |
- e
1] 1 ,
b 8
[[
2 e
a o
))
2 2
o T L] T T T ¥ 0 ¥ T L] L T T
0 5 10 15 20 25 30 0 & 10 15 20 25 30
number of readers number of readers
Figure 6: N global readers, 30— N writers, Figure 7: N private readers, 30 — N writ-
Experiment E. ers, Experiment F.

multaneously executing multiple copies of the workload from Experiment C with 29 readers
with a processing delay of 9us, and 1 writer. Figure 9 graphs the average over all workloads of
the combined access time for the readers and writers as the number of concurrently executing
workloads increases. As the number of workloads increases (i.e., as the system load increases),
the advantage of using poststore decreases. With 4 or more workloads, the average response
time is lower without poststore. One possible reason is that retrieval of subpages from the
ring can occur during the time that a thread is suspended due to context switching between
workloads. When poststore is used, the time a thread is suspended (because it has been context
switched with threads of other workloads) cannot be overlapped with data fetching. This tends
to nullify the advantage of broadcasted updates. The higher the number of workloads, the more
evident this effect becomes. In Figure 8 the advantage of poststore is more significant when
there are more reader threads. The tradeoffs shown in Figure 8 and in Figure 9 explain why
the decision of when to use poststore should be shared by the programmer and the system. As
the system load increases, programmed poststores should be ignored by the system.

In general, the higher the rate at which non-local shared data is read, the greater the
advantage of poststoring, especially when many other threads share that data. However, the
number of threads which access the same data, and their access patterns, are other important
factors to consider. When strict serialization of writes and reads cannot be ensured a priori,
the use of poststore should be limited. When there are pending requests for a subpage for
which a poststore has been issued, the poststore ingtruction is started but not completed, so

no update broadcast is performed. This results in pure overhead for the writer.

- 14 -

80 Data Set medium 375 1

ey P < Data Set medium
% no P§, ~ ‘%

g -7 g 300 -

‘& 60 1 P ‘B

3 - PS 5

e -——— e 225

[Y] (Y]

B 404 3

2 5

) v 150 4

L] L

E E

- ed

20 A

g g 75

3]

[} [

g o g2 o0

(-9 L} L} AJ ¥ L] L [-% L] T] L] L] L] L]
) 0 5 10 15 20 25 30 2 01 2 3 4 5 7 10
] o

number of readers number of workloads

Figure 8: Combined reader and writer ac- Figure 9: Combined reader and writer
cess time, single reader/writer workload. access time, multiple reader/writer work-

loads, Experiment G.

4. Modeling and Validation
4.1. Detailed Model

In this section, analytical models of the system and the workloads presented in Section 3.2 are
presented. The workloads madeled are the various applications of readers and writers with and
without the use of poststore. The analytic model illustrates the processing which occurs in the

subcaches, local caches, and the ring under the selected workloads. The following modeling

assumptions are made:

1. Initial modeling will include only the effects of subcaches, local caches, and ring:0 traffic.

However, the models could be extended to include disk accesses and ring:1 traffic.

2. No cache inconsistencies or synchronization occur among the reader/writer threads. Specif-
ically, all writing completes before any reading occurs. The hardware guarantees cache

consistency and the modeled workloads have no synchronization.

3. Access times for the subcache, local cache, and ring are exponentially distributed, with a

mean given by the hardware specifications of the KSR1 (see Table 1).

4. Each processor may make a memory request to the subcache, local cache, or ring:0 based

on probabilities which are determined by the specific workload running on the processor.

5. A request placed on the ring and the removal of a request may be effectively modeled
probabilistically. That is, it is not necessary to track the exact path of every request on

the ring and that modeling average path behavior is sufficient.

m

-15-

For the workloads modeled, each cell does some processing, followed by a memory request.
When a memory request is made from a processor, the item may be located in either the
subcache, the local cache, or the local cache of another processor. If the item is in the subcache,
then it is transferred directly to the processor. If the item is found in the local cache, then it
is transferred to the subcache, and then to the processor. If the item is not found locally in
either the subcache or local cache of the processor, then a request is issued on ring:0 for the
data item. When the response arrives, the data item is placed first in the local cache, then the
subcache, then sent to the processor.

A Generalized Stochastic Petri Net (GSPN) [9,8] was selected to model the system. The
detailed GSPN model includes a subnet for each of the 32 processing cells and subnets for the
two ARDs which model the ring propagation only. Each subnet models the cell’s processing
time, and subcache (sc), local cache (l¢), and ring interactions. The subnets are connected

together to form the complete ring:0.

— 14 7%_

from previous cell to next cell

Figure 10: A subnet of one cell of the KSR1.

Figure 10 illustrates the detailed model of the subnet of one cell of the system. Places in
each processor are labeled A through I. Transitions are numbered to through t1¢ at each cell.
The traffic on the ring is expressed by the number of occupied slots. Each cell has access to
one slot, and this single slot is represented by the three places G, H, and I, in Figure 10.
Inhibitor arcs on transition fs ensure that a cell can only place a message into an empty ring

slot. Inhibitor arcs on transition tg from each of the places G, H, and I of the next cell ensure

.16 -

that a message on the ring will only be passed to the next cell if the slot for that cell is empty.
Throughput on the ring at a processor can be measured as the throughput of transition tg at
that processor. Throughput of a processor can be measured as the throughput of transition ¢,
since all transactions at the processor must pass through that transition.

The subnet of a reader (i.e., a cell where the executing thread is a reader) operates as
follows: Place A represents processing that occurs between memory requests. Transition g is
a timed transition which represents this processing time, and its rate depends on the volume of
computation/processor cycles the reader is executing between two consecutive read requests. If
a token is in place B, a memory request has been issued. After the memory request is issued,
one of the immediate transitions t;, ¢z, or 3 is fired with probability p;, p2, or ps, respectively.
If the requested item resides in the cell’s subcache, t; fires. If the subpage containing the item
resides in the cell’s local cache, transition t; fires. 77 the subpage containing the item resides
in the local cache of another celi, t3 is fired. The firing probabilities of transitions ¢;, t5, and
ta depend on the workload type. The modeling of automatic prefetching is approximated by
adjusting the probabilities p;, p2, and pa.

A token in place E represents a pending request to the ring. As soon as a slot becomes
available, transition t¢ will fire, representing a request which is propagated on the ring. At the
same time, the processor will go into a wait state, represented by place F', until the request
is satisfied. Upon arrival of the response to place G, transition ¢;q is fired and the packet
(i.e., the requested subpage) is received from the ring. The probabilities that a reader acquires
the subpage from the ring or not are q and 1 — ¢, respectively. Transitions t4, ts5, and tg are
timed transitions with firing times equal to the hardware latencies given by the manufacturer
for the subcache, local cache, and the rate of ring propagation, respecti\‘/ely. Reader cells are
initialized by placing a token in place A of each cell which represents an active reader process.
This indicates that a read request is about to be made.

The subnet of a writer (i.e., a cell where the executing thread is a writer) operates similarly,
except that the probabilities and transition rates are different. In each writer cell, ¢ and ¢ -1
represent the probabilities that a writer does or does not own the subpage requested from the
ring. Transitions g, t4, and {5 represent the total time for a writer to respond to a request.
The probabilities p; and p2 are zero for a writer thread, since no additional processing takes
place, and the writer immediately issues a response on the ring as soon as a slot is available.
Writer cells are initialized by placing a token in place F of each active writer thread, indicating
that the writer is waiting to respond to a request.

The detailed model is a description of the interactions between threads and ring:0 of the
KSR1. However, the detailed model contains 294 places and 358 transitions. Even a simple

workload of 1 reader and 1 writer generates a reachability set containing over 800 states. Since

-17 -

the addition of each new active thread causes the number of states to increase exponensially,
the model quickly becomes intractable with just a few active threads. Since this detailed model

cannot be solved easily, simulation or an approximate model must be used. The latter option

is chosen.

4.2. Approximate Load Dependent Model

Figure 11: Load dependent GSPN model of ring:0.

The readers are modeled with the approximate load dependent model illustrated in Fig-
ure 11. In this model, transitions ¢; through ts, and places A through F are as described for
the detailed model. However, the ring delay (i.e., ring and writer activity) is modeled as a
single load dependent server, and all processes interact through this single resource. Figure 12
illustrates the experimentally measured service rate of the ring and a single writer thread. Since
the access rate increases linearly up through six readers, and flattens thereafter, an M/M/6
server is used in the approximate model.
If the assumption is made that a single thread executes at a time on each processing cell
. and each cell is statistically identical (i.e., single class), then the model can be reduced. The
equivalent model shown in Figure 13 results after collapsing all subnets that represent the
. readers of the approximate load dependent model into a single subnet. This model is initialized
by placing a number of tokens in place A equal to the number of readers. This model gives

the same global performance metrics for the reader threads as the model in Figure 11. The

PR 40 PR B OOAAR 10O O 900 B0 N Y50 S AP A A1 0 S0 0 P R 0 A A ”ll”‘ﬂ""” I B £ e NM\H[U AR

- 18 -

1.4~
g 124 Data Set large
g 1
O
3 P Data Set medium
w0 -
E 6 Data Set small
E
B
o 4
W
g
® 24

0 Y

T T T T T

0 5 10 15 20 25 30
number of readers

Figure 12: Service rate of the ring versus the number of active readers/threads.

response time measured with this model is the access time of a word.

Figure 13: Reduced load dependent GSPN model for ring:0.

The number of tokens in this model indicates the number of readers. As before, tokens in
place A represent internal cell processing. Tokens pass to place B when processing is complete
and a memory request is issued. Transitions {;, {2, and ¢3 are immediate transitions, with
the same functionality as that of the detailed model. A token in place C indicat.s that the
requested word is in the subcache. A token in place D indicates that the word is in the local
cache. A token in place FE indicates that a fault to ring:0 has occurred. Transitions t4, t5, and
te are timed transitions. Transitions t4 and s are infinite servers, representing the subcache

and local cache of each reader thread, again with rates equal to the hardware rates specified by

W

oSSR | i b i)

-19 -

the manufacturer for subcache and local cache access, respectively. Transition tg is an M/M/6
gerver, with a rete equal to the hardware rate specified by the manufacturer for ring:0 access.
As more processes attempt to place messages on the ring, the server becomes saturated and
processes requests at a fixed maximum rate. As before, p;, p2, and pa depend on the modeled

workload.

4.3. Theoretical Model/Experimental Comparisons

In this section, comparisons between the theoretical response time curves (dashed lines) and the
experimentally observed response time curves (solid lines) of various workloads are presented.
The theoretical results are based upon the reduced load dependent GSPN model. The model
was programmed and solved using SPNP [1], an analytic GSPN solver. The service rate of
to is workload dependent and depends on the amount of delay or computation performed
after each read. The granularity of access of the experimental workload is reflected in the
transition probabilities p;, pa2, and ps. The size of the experimental workload affects both the
amount of overlap of subcache overhead with processing and the effectiveness of pipelining.
Experiments with different data sets yield different response time curves. However, the model
does not incorporate any information about these types of overhead. The analytically predicted
response times apply to the workload, regardless of the size of the data set. The medium data
set is selected as representative and is used for comparisons to the theoretical model. The
performance metric of interest is the average read time per subpage.

Figure 14 shows comparisons for Experiment A. For the average read time without poststore,
the transition probabilities p;, p2, and ps are set to 0.0, 0.0, and 1.0, respectively (i.e., all reads
generate a ring request). For the average read time with poststore, the transition probabilities
are set to 0.0, 1.0, and 0.0 (i.e., all reads are a subcache miss, but a hit to the local cache). The
model prediction is quite good. The analytical model overestimates performance by at most
by 5us (12.5%). In this case, the writer (i.e., the load dependent server) becomes the system
bottleneck.

Figure 15 shows comparisons for Experiment B, where the global readers read the entire
subpage. For the without poststore curve, the transition probabilities ¢y, 2, and 3 are set to
B -1%, and &, since each subpage consists of two subblocks of 8 words each and as soon as a
request is made to the ring, the subpage is moved to the local cache. For the with poststore
curve, the transition probabilities are set to 14, %, and Z, since all read requests are satisfied
in either the subcache or local cache. The theoretically predicted response time overestimates
the experimental results by about 15%.

Similar comparisons between the analytic model and the experiments can be observed for

Experiment C, as shown in Figure 16. (In the remaining figures, the with poststore curves do

60 1 Data Set medium

Actual
80 4 =— = - Analytical Model

subpage access time - readers {us]

number of readers

Figure 14: Model prediction for Experi-
ment A.

0
607 Data Set medium
iy Actual
2 504 -- = - Analytical Model
B
3
L
v
£
-
o
g
a
)
=2
]
o L] 1] L] ¥ L} L
0 5 10 15 20 25 30

number of readers

Figure 15: Model prediction for Experi-
ment B.

not provide any additional insight and have been deleted for clarity.) In Experiment C, delays
of 8us, 12us, and 21us are added after each read to simulate processing time. The rate for the
timed transition ¢o is adjusted to account for this in the model. In this experiment, the rate of
ring requests is the slowest (in contrast to Experiment A where the relative rate of generating

a ring request is the highest possible). As before, the model predictions follow the trend of the

experimental response time curves.

0 -
6 Data Set medium
E Actual
504 <= < - Analytical Model

E w/Dejay 70
3 w0l

L]

o
£ 30

-

g 20 4
g 10 -

3

]

o L) L] L] L) T 1

number of readers

Figure 16: Model prediction for the “no
poststore” case, Experiment C.

601 Data Set medium

Actual w/unknown pref. %

50 eeemeeee Model w/ 50% prefetching
= = =Model w/ 80% prefetching
~es+== Model w/100% prefetching

40 1

subpage access time - readers [us]

number of readers

Figure 17: Model prediction for the “no
poststore” case, Experiment D.

Figure 17 shows the predicted performance of the model along with the actual performance

of Experiment D. For Experiment D (i.e., in the single writer/multiple reader case where half

of the readers read sequentially forward, from the beginning to the end, the other half read

sequentially backwards), the performance improves (i.e., compared against Experiment B where

.91 -

all readers read in the same direction). Improvement results due to readers collecting subpages
that they have not yet referenced but for which they have subpage descriptors. By adjusting
the probabilities p;, pa, and pj it is possible to capture the effect of automatic prefetching of
some percentage of the circulating subpages. The model indicates that the actual system is

prefetching roughly 75% of the circv’ating subpages.

5. Generalizations

The model presented here may be generalized in a number of ways. These generalizations
include such features as a more accurate load dependent server, a multiclass model, and less
extremne workloads.

In Experiments A through D there is only one writer, with multiple readers which all
behave similarly. This makes it possible to build a simple load dependent model of the readers
on ring:0. The model reflects the readers’ interactions with the “system”, which is viewed as the
combination of the ring and single writer, and is modeled as an M/M/6 server. The parameters
of each model reflect the different behavior of the readers in each of the Experiments A through
D. However, the simple load dependent model is not as accurate for Experiments E and F.
Experiments E and F are different from the first four because there is more than one writer.
In particular, when the readers are private, as in Experiment F, each reader is accessing data
from a different writer at any one time.

Figure 18 shows the predicted performance using two different analytical models along with
the actual performance for Experiment F. The first model is the one used in the previous section
and uses a single M/M/6 server to model the ring/writer behavior. As seen, the model is a
poor predictor for the case of multiple writers and private readers. The second model uses
multiple M/M/6 servers, one for each writer. The behavior of this model is very close to that
of the actual system. When there are 29 writers and 1 reader, the large number of writers
(M/M/6 servers) can easily handle the number of requests from the single reader. Both the
actual system curve and that from the analytic model are flat up to 25 readers (and 5 writers).
If each writer behaves as an M/M/6 server, then thete are equivalently 30 servers to handle
the requests of the 25 readers. The system is behaving 4s an infinite server up until that point,
since the number of readers is smaller than the total number of servers. For 26 readers there
are 4 writers, with the number of iotal servers equal to 24. At that point, the read time per
subpage begins to increase dramatically, since the number of readers is greater than the number
of servers. With 29 readers and 1 writer, the writer is saturated, as in the earlier experiments.

The current model approximates the effect of automatic prefetching by adjusting the prob-
abilities p;, p2, and ps. A multiclass model could be used to show this effect more accurately

by modeling each request as a separate class. Each reader would issue a ring request for a class

-922.

60 1 Data Set medium
= Actual
S 504 = = -Anal. Model, single M/M/6
g | eeeeeee- Anal. Model, mult. M/M/6
&
<
B 404
@
E 30
-
g 204
v
S
8 10 -
F]
o

0 . A L] L] 1 v

number of readers

Figure 18: Model prediction for Experiment F.

of data not previously seen on the ring. Each reader would access future data on the ring with
some probability dependent on other processor activity. The Petri net model would have a
place for each class of data in the local cache and subcache. A more general model could also
take into consideration subcache overhead and pipelining effects.

The current experimental workload was selected with the goal of illustrating the worst case
behavior with and without the use of poststore. This workload is extreme in that all writing is
completed before any reading starts, and the workload ensures that either all data is available
in the local cache for each individual reader, or no data is available in the local cache for each
individual reader at the time the reading occurs. Further work includes monitoring actual codes
to acquire model parameters for the processing rates and the probabilities of memory requests

of less extreme workloads.

6. Summary

The primary contributions of this paper are listed below, relative to the stated goals in the
introduction.

o A description of the basic KSR1 architecture has been given. The key elements are: the
ring of rings structure, the hierarchical (ALLCACHE) caching scheme, and the address
resolution search engine. Attention is focused on the poststore option.

¢ Results from a suite of sensitivity analysis experiments have been reported. A simple
readers/writers workload was used. Each experiment was run both with and without

the poststore option. Performance sensitivity results were given with respect to: data

-93.

granularity, reader delay, data access patterns, reader/writerlratio, data sharing, total

system load, data set size, and number of readers.

o Analytic models, both a detailed model and an approximate model, have been con-
structed. Validation experiments indicate that the basic trends are accurately captured

using relatively simple models.

The experimental results indicate where poststore is most effective. Figure 8 shows that
as the number of reader threads increases, poststore is more advantageous. However, if the
number of reader threads is small, poststore should not be used since the benefit to the readers
does not offset the extra incurred overhead of the writers. Thus, the number of reader threads
influences the decision of whether or not to use poststore, and this number is a parameter of the
programmer’s application code. Figure 9 shows that as the number of application workloads
(i e., the number of sets of reader/writer codes) increases, poststore becomes less advantageous.
That is, as contention increases at the processing cells, poststore is not beneficial and should not
be used. The system load is controlled by the operating system scheduler. Therefore, neither
allowing a programmer to use poststore without knowledge of the system load, nor allowing
the operating system to determine the use of poststore without knowledge of the application
code, is advisable.

Using poststore is analogous to a sender-initiated transfer. Sender-initiated transfers are
most beneficial under light load [4]. Using prefetch (i.e., another programmer option not ad-
dressed in this paper), or allowing the readers to pull in subpages as requested when poststore
is not used, is analogous to a receiver-initiated transfer. Receiver-initiated transfers are most
beneficial when the system load is heavy. Although applied here in a different context, the
results in Figure 9 confirm these general findings.

As mentioned in Section 5, several improvements to the model are possible and other features
of the KSR architecture warrant further study. The intent here was not to model all aspects
of the KSR’s memory or ring hardware. However, building on the basic understanding of the
architecture, such a modeling effort would be useful. These modeling and experimentation

efforts are continuing.

-25-

Acknowledgements

The helpful informatior, criticisms, and suggestions provided by Tom Dunigan, Rich Stir-

ling, and Jim Rothnie have significantly improved this paper.

7. References

[1] G. CiarDO AND J. K. MUPPALA, Manual for the SPNP Package, Version 3.1, Department
of Electrical Engineering, Duke University, Sept. 1991.

[2] M. DuBois, C. SCHEURICH, AND F. GRIGGS, Memory access buffering in multiprocessors,
in 13th International Symposium on Computer Architecture, 1986, pp. 434-442.

[3] T. H. DuNIGAN, Kendall Square multiprocessor: Early experiences and performance, Tech.
Report ORNL/TM-12065, Oak Ridge National Laboratory, Apr. 1992.

[4) D. L. EAGER, E. D. LAZOWSKA, AND J. ZAHORJAN, A comparison of receiver-initiated
and sender-initiated adaptive load sharing, Performance Evaluation, 6 (1986), pp. 53-68.

[5] E. HAGERSTEN, A. LANDIN, AND S. HARIDI, DDM- a cache-only memory architecture,
IEEE Computer, 25 (1992), pp. 45-54.

[6] KENDALL SQUARE RESEARCH, KSR! Principles of Operation, Revision 5.5, Waltham, Ma.,
Oct. 1991.

[7] L. LAMPORT, How to make a multiprocessor computer that correcily ezecutes mulliprocess
programs, IEEE Transactions on Computers, C-28 (1979), pp. 690-691.

[8] M. A. MARsAN, G. CoNTE, AND G. BALBO, A class of generalized stochastic Petri nets

for the performance evaluation of multiprocessor systems, ACM Transactions on Computer
Systems, 2 (1984), pp. 93-122.

[9] M. K. MoLLoY, Performance analysis using stochastic Petri nets, IEEE Transactions on
Computers, C-31 (1982), pp. 913-917.

36-40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

wn

ORNL/TM-12287
INTERNAL DISTRIBUTION
B. R. Appleton 17. T. H. Rowan
A.S. Bland 18-22. R. F. Sincovec
T. S. Darland 23-27. R. C. Ward
J. J. Dongarra 28. P. H. Worley
T. H. Dunigan 29. Central Research Library
G. A. Geist 30. ORNL Patent Office
K. L. Kliewer 31. K-25 Applied Technology Li-
M. R. Leuze brary
R. A. Manning 32. Y-12 Technical Library
C. E. Oliver 33. Laboratory Records - RC
. A. Raby 34-35. Laboratory Records Department

EXTERNAL DISTRIBUTION

Amy W. Apon, Computer Science Department, Vanderbilt University, Nashville,
TN 37235

Donald M. Austin, 6196 EECS Building, University of Minnesota, 200 Union
Street, S.E., Minneapolis, MN 55455

Clive Baillie, Physics Department, Campus Box 390, University of Colorado, Boul-
der, CO 80309

Edward H. Barsis, Computer Science and Mathematics, P. O. Box 5800, Sandia
National Laboratory, Albuquerque, NM 87185

Robert E. Benner, Parallel Processing Division 1413, Sandia National Laborato-
ries, P. O. Box 5800, Albuquerque, NM 87185

Donna Bergmark, 745 E & TC Building, Hoy Road, Cornell University, Ithaca,
NY 14853

Roger W. Brockett, Harvard University, Pierce Hall, 29 Oxford Street Cambridge,
MA 02138

Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P. O. Box 3000, Boulder, CO 80307

Maria Calzarossa, Dipartimento di Informatica e Sistemistica, Universita Degli
Studi di Pavia, Via Abbiategrasso 209, 1-27100 Pavia, Italy

Brian M. Carlson, Computer Systems Research Institute, University of Toronto,
Toronto, Ontario M5S 1A1, Canada

. Jagdish Chandra, Army Research Office, P. O. Box 12211, Research Triangle Park,

NC 27709

51.

52.

53-57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.
69.

70.

71.

72.
73.

- 28 -

Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

John J. Dorning, Department of Nuclear Engineering Physics, University of Vir-
ginia Reactor Facility, Charlottesville, VA 22901

Lawrence Dowdy, Computer Science Departiment, Vanderbilt University, Nashville,
TN 37235

Derek Eager, Department of Computer Science and Engineering, Sieg Hall, FR-35,
University of Washington, Seattle, WA 98195

Edward Felten, Department of Computer Science, University of Washington, Seat-
tle, WA 98195

Geoffrey C. Fox, NPAC, 111 College Place, Syracuse University, Syracuse, NY
13244-4100

Offir Frieder, George Mason University, Science and Technology Building, Com-
puter Science Department, 4400 University Drive, Fairfax, Va 22030-4444

Dennis B. Gannon, Computer Science Department, Indiana University, Blooming-
ton, IN 47401

C. William Gear, NEC Research Institute, 4 Independence Way, Princeton, NJ
08540

W. Morven Gentleman, Division of Electrical Engineering, National Research
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
K1A ORB

Alan George, Vice President, Academic and Provost, Needles Hall, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1

Gene Golub, Computer Science Department, Stanford University, Stanford, CA
94305

Andy Grant, Computer Graphics Unit, Manchester Computing Centre, University
of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom

Eric Grosse, AT&T Bell Labs 2T-504, Murray Hill, NJ 07974

John L. Gustafson, Ames Laboratory, 236 Wilhelm Hall, Iowa State University,
Ames, 1A 50011-3020

Robert M. Haralick, Department of Electrical Engineering, Director, Intelligent
Systems Lab, University of Washington, 402 Electrical Engineering Building, FT-
10, Seattle, WA 98195

Michael T. Heath, National Center for Supercomputing Applications, 4157 Beck-
man Institute University of Illinois, 405 North Mathews Avenue, Urbana, IL
61801-2300

John L. Hennessy, CIS 208, Stanford University, Stanford, CA 94305

Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

74.

75.

76.

7.

8.

79.

80.

81.

82.

83.

84,

85.

86.

87.

88.

89.

90.

91.

92.

- 99.

Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P. O. Box 808, Livermore, CA 94550

Gary Johnson, Office of Scientific Computing, ER-7, Applied Mathematical Sci-
ences, Office of Energy Research, U.S. Department of Energy, Washington, DC
20585

Lennart Johnssen, Thinking Machines Corporation, 245 First Street, Cambridge,
MA 02142-1214

Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

Malvyn Kalos, Cornell Theory Center, Engincering and Theory Center Building,
Cornell University, Ithaca, NY 14853-3901

Kenneth Kenuedy, Department of Computer Science, Rice University, P.O. Box 1892,
Houston, TX 77001

Michael Langston, Department of Computer Science, University of Tennessee,
Knoxville, TN 37996-1301

Richard Lau, Office of Naval Research, Code 111MA 800 Quincy Street, Boston
Tower 1, Arlington, VA 22217-5000

Robert L. Launer, Army Research Office, P. O. Box 12211, Research Triangle
Park, NC 27709

E. D. Lazowska, Department of Computer Science and Engineering, Sieg Hall,
FR-35, University of Washington, Seattle, WA 98195

Tom Leighton, Lab for Computer Science, Massachusetts Institute of Technology,
545 ‘Technology Square, Cambridge, MA 02139

James E. Leiss, Rt. 2, Box 142C, Broadway, VA 22815

Heather M. Liddell, Center for Parallel Computing, Department of Computer
Science and Statistics, Queen Mary College, University of London, Mile End Road,
London E1 4NS, England

Rik Littlefield, Pacific Northwest Laboratory, MS K1-87, P.O.Box 999, Richland,
WA 99352

Ivo de Lotto, Dipartimento di Informatica e Sistemistica, Universita Degli Studi
di Pavia, Via Abbiategrasso 209, 1-27100 Pavia, Italy

Allen D. Malony, Department of Computer and Information Science, University
of Oregon, Eugene, OR 97403

Oliver McBryan, University of Colorado at Boulder, Department of Computer
Science, Campus Box 425, Boulder, CO 80309-0425

James McGraw, Lawrence Livermore National Laboratory, L-306, P. O. Box 808,
Livermore, CA 94550

Neville Moray, Department of Mechanical and Industrial Engineering, University
of Illinois, 1206 West Green Street, Urbana, IL 61801

93.

94.

95.

96.

97.

98.

99.

100-104.

105.

106.

108.

109.

110.

111.

112.

113.

114.

115.

- 30 -

Richard Muntz. Computer Science Department, University of California at Los
Angeles, Los Angeles, CA 90024

David Nelson, Director, Office of Scientific Computing, ER-7, Applied Mathemat-

ical Sciences, Office of Energy Research, U.S. Department of Energy, Washington,
DC 20585

Randolph Nelson, IBM, P.O. Box 704, Room H2-D26, Yorktown Heights, NY
10598

James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

David A. Poplawski, Department of Computer Science, Michigan Technological
University, Houghton, MI 49931

Daniel A. Reed, Computer Science Department, University of Illinois, Urbana, IL
61801

Emilia Rosti, Dipartimento di Scienze dell’Informazione, Universita degli Studi di
Milano, Via Comelico 39, 20135 Milano, Italy

Diane T. Rover, 155 Engineering Building, Department of Electrical Engineering,
Michigan State University, East Lansing M1 48824

Ahmed H. Samel, Department of Computer Science, University of Minnesota, 200
Union Street S.E., Minneapolis, MN 55455

. Robert B. Schnabel, Department of Computer Science, University of Colorado at

Beulder, ECOT 7-7 Engineering Center, Campus Box 430, Boulder, CO 80309-
0430

Robert Schreiber, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field,
CA 94035

Martin H. Schultz, Department of Computer Science, Yale University, P. O. Box
2158 Yale Station, New Haven, CT 06520

David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

The Secretary, Department of Computer Science and Statistics, The University of
Rhode Island, Kingston, RI 02881

Charles L. Seitz, Department of Computer Science, California Institute of Tech-
nology, Pasadena, CA 91125

Giuseppe Serazzi, Politecnico di Milano, Dipartimento di Elettronica e Infor-
mazione, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Kenneth C. Sevcik, Computer Systems Research Institute, 10 King’s College Road,
University of Toronto, Toronto, Ontario M5S 1A1, Canada

Horst D. Simon, NASA Ames Research Center, Mail Stop T045-1, Moflett Field,
CA 94035

116-120.

121.

122.

123.

124.

125.

126.

127.

128- 132.

133.

134.

135.

136.

137-146.

.31 -

Evignia Smirni. Computer Science Department. Vanderbilt University, Nashville,
TN 37235

Burton Smith, Tera Computer Company, 400 North 34th Street, Suite 300, Seattle,
WA 98103

Marc Snir, IBM T.J. Watson Research Center, Department 420/36-241, P. O.
Box 218, Yorktown Heights, NY 10598

Rick Stevens, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

Paul N, Swarztrauber, National Center for Atmospheric Research, P. O. Box 3000,
Boulder, CO 80307

Anne Trefethen, Engineering & Theory Center, Cornell University, Ithaca, NY
14853

Mary Vernon, Computer Sciences Department, University of Wisconsin, 1210 W.
Dayton Street, Madison, WI 53706

Robert G. Voigt, National Science Foundation, Room 417, 1800 G Street N.W.,
Washington, DC 20550

Thomas Wagner, Computer Science Department, Vanderbilt University, Nashville,
TN 37235

Mary F. Wheeler, Department of Mathematical Sciences, Rice University, P. O. Box
1892, Houston, TX 77251

Andrew B. White, Computing Division, Los Alamos National Laboratory, Los
Alamos, NM 87545

John Zahorjan, Department of Computer Science and Engineering, Sieg Hall, FR-
35, University of Washington, Seattle, WA 98195

Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P. O. Box 2001, Oak Ridge, TN
37831-8600

Office of Scientific & Technical Information, P. O. Box 62, Oak Ridge, TN 37831

L L N l-. ——— s -
e
_ ' [
"o r sl]‘lsx w -

