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Abstract

The effective interactions which provide a wavevector and frequency
dependent restoring force for collective modes in quantum liquids are
derived for the helium liquids by means of physical arguments and sum
rule and continuity considerations. A simple model is used to take into
account mode-mode coupling between collective and multiparticle
excitations, and the results for the zero-temperature liquid *He
phonon-maxon-rotor spectrum are shown to compare favorably with
experiment and with microscopic calculation. The role played by
spin-dependent backflow in liquid °He is analyzed, and a physical
interpretation of its variation with density and spin-polarization is
presented. A progress report is given on recent work on effective
interactions and elementury excitations in nuclear matter, with
particular attention to features encountered in the latter system which

have no counterparts in the helium liquids.
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1. Introduction

In strongly coupled quantum liquids, such as the electron and
helium liquids and nuclear matter, the determination of the effective
interactions between quasiparticles and the way in which these, in turn,
determine the elementary excitation spectrum, has been a problem of
central and continuing concern. It is a problem to which Gerry Brown
has made - number of central contributions, and one which I have enjoyed
discussing with him at length during the nearly three decades that we
have known one another. While our direct interaction has been
comparatively weak, in that we have not yet written a paper together, we
have published independently on parallel lines (as in the RPA
description of excitations in nuclear matter) and have had a continuing
strong exchange interaction, which has brought Kevin Bedell, Khandker
Quader, and Jochim Wambach, all of whom first worked with Gerry in Stony
Brook., to Urbana, and which tcok Chris Pethick, who was a postdoctoral
fellow in Urbana, to Copenhagen.

In my talk today, I shall describe briefly some recent developments
in our understanding of effective inteructions and elementary
excitations in quantum liquids. The basic approach to quantum liquids I
shall be using is polarization potential theory, a minimalist,
phenomenological, post-RPA, post-Feynman, post-landau theory in which
physical arguments, constraints from static mernsuremenis, sum rules, and

continuity arguments are combined to reduce markedly (at times to zero)
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the parameters required to specifiy the effective quasiparticle
interaction and calculate the elementary excitation spectra. It
provides a unified and quantitative account of excitations and transport
in the helium liquids1 and has been extended as well to electron
1iquids2.

I shall begin by discussing the key physical effects which must be
taken into account in any quantitative description of excitation spectra
in quantum liquids, and show how these are dealt with for the helium
liquids using polarization potential theory. I shall show how an
explicit account of spin-dependent backflow thus provides new insight
into the physical origin of the quasiparticle mass in “He, and describe
the convergence of the polarization potential approach and microscopic
calculations (based on a variational ground state wavefunction) of the
phonon-maxon-roton spectruin of ‘He. I discuss briefly recent results on
spin-polarized °He, before concluding with an account of work in
progress with Khandker Quadar and Jochim Wambach on an extension of

polarization potential theory to nuclear matter.

2. Effective Interactions: Pseudopotentials and Backflow

There a) o two key physical effects which must be described in order
to obtain a ¢ 1antitative account of the wavevector and frequency
dependent re: oring forces responsible for collective behavior in

quantum liqui is.
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o Short-range correlations associated with strong particle
interaction, zero-point motion, and, for Fermi systems, the
Pauli principle
o Backflow
In polarization potential theory, the short-range correlations are
incorporated into the theory by introducing a frequency-independent
configuration spa-e pseudopotential. Backflow is described as a
frequency (and wavevector) dependent restoring force whose strength in
the long wavelength limit is determined for Bose systems hy the
quasiparticle effective mass, while for Fermi systems, it is determined
by the average quasipair energy. Let us consider these effects
separately.

2.1 A Pseudopotential Description of Effective Interactions

As a particle moves in the liquid it induces density {luctuations
which act back on it, as well as on the other particles. These
fluctuations, whose mean wave--vector and frequency dependence is
described by <p(qw)>, give rise to polarization fields which both screen
external longitudinal fields and act to provide a restoring force for
collective behavior. Quite generally the fluctuating scalar potential
which gives rise to this restoring force can be written in the form

Pro1(@:0) = £7(a.0) <p(qw)>; [1]
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its coupling to the density fluctuations, p;. is p;¢pol(qw). In the
RPA, fs(q.m) = Vq. the Fourier-transform of the bare particle
interaction; in Landau theory, fs(q,w) is taken to be momentum and
frequency independent, and corresponds to the & = o component of
Landau's phenomenclogical interaction between quasiparticles on the
Fermi surface. In polarization potential theory, fs(q.w) = f:. a
phenomenological frequency-independent, but momentum-dependent,
restoring force. The latter is calculated by considering the physical
behavior of its Fourier transfofm. a non-local configuration space

pseudopotential, fs(r). vhich describes an effective interaction between

particles in the liquid,
5 = Jd3r £5(r)el?’T . [2]

At low temperatures, f:. the spatial average of fs(r). is known from
measurements of conpressibility and (for Fermi systems) the specific
heat.

How is fs(r) related to the bare atom-atom potential? The major
physical effects which distinguish liquid helium from gaseous helium are
at most three-fold:

o Short-range correlations whir-. enable the helium atoms to

avoid, insofar as possible, sampling their nutual very strong

short range (< 2.7A_1) repulsive interaction
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o Zero point motion
o Quantum statistical correlations (eg.. the Pauli principle for
3He atoms)

Since all three physical effects are predominantly short-range, it
follows that at long distances, where liquid correlations are not
important, fs(r) should be identical to the bare atom-atom potential.
For the helium liquids, Aldrich and Pine53 describe the short range
behavior of the pseudopotential fs(r) with the aid of a simple physical
argument, illustrated in Fig. 1, namely that the positional correlations
brought about by the strong shori-range repulsion between the atoms

prevent the atoms from sampling the full consequences of that
1

interaction. Hence. the almost hard-core repulsion of range “~2.68A
found in the bare interaction, must go over to a soft-core repulsion, of

range r _, vhich they characterize by an rs potential of strength a,

fs(r) =a (l—r/rc)8 r 5 T, [3]

For a given choice of r..a simple fitting function is then usgd to join
this part of the potential to the attractive long-range part, taken to
be identical to the bare interaction for r > T Because fz is known,
for a given choice of r..a is uniquely determined.

4

For liquid 'He, fs(r) describes the effective interaction between

4He quasiparticles; AP took r. to be the range of the bare atom-atom
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repulsive interaction. For liquid 3He. fs(r) is the spin-symmetric
average of the effective interaction between parallel and anti-parallel

spin quasiparticles,
£5(r) = [f”(r) + f”(r)]/z [4]

To the extent that the effects of zero point motion and the Pauli
principle are small compared to those of the short-range, "hard” core,
correlations in determining the 3He pseudopotentials, at a given density
the shape and range of f’T(r). f"(r). and fs(r) should be quite
similar. The differences in the pseudopotentials can be cnaracterized
by changes in r.. and wili arise as a result of zero point motion and
the Pauli principle. A good idea of the relative importance of the

latter is obtained by comparing. at the same density, the spatial

averages of the three pseudopotentials.

As may be seen in Table 1, the spatial average of f;‘. 46 .5K, is
some 704 larger than fz. and is, in factc, quite close to the spatial
average (42.8K) of the direct interactions between antiparallel spin 3He
quasiparticles in a background of 4He at this density; it thus reflects
primarily the increased zero point motion of 3He atoms compared to 4He
in liquids of the same density. Comparison of f;l with f;l shows that

by comparison, the Pauli principle acts to reduce f;* by some 3X. From

a fit to the transport properties of 3He calculated from the
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corresponding pseudopotentials, Bedell, Hess, Hsu, and Pines (in
preparation) find that on going from 4He to 3He the greater zero point
motion of the 3He atoms not only leads to an enhanced core radius, but
also implies that the correlation-induced screening of the short-range
repulsion interaction is somewhat less effective, since a,, is increased
to 55.7K. The combined effects of the Pauli principle and zero point
motion lead to a slighcly larger value of T and a very slightly
reduced value of Agss compared to the corresponding values for
anti-parallel spin 3He quasiparticles. These results are also given in
Table 1. The hierarchy of physical effects on the various restoring
forces is thus clearly established; short range potential-induced
correlations, which are similar for the various atom-atom interactions,
dominate, followed by the influence of zero point motion, with Pauli
principle effects coming in a distant third.

The momentum dependent pseudopotentials for the effective
interactions in 3He and 4He are compared in Fig. 2 with those calculated

4

by Hsu and Pines” for 3He—4He mixtures. Note that the major differences

occur at wavevectors < IA_I. The increase with q seen at long

~

wavelength is quite a general phenomenon, and reflects the changed

interplay between the repulsive and attractive parts of the pseudo

potentials as one goes to higher moments of fs(r). Thus if we write:
2. s

s s
fq = fo(l +q f2 + ...)
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then

s 00 2.5
£ = 4w fodr rf7(r) [5a]
5 -2m @ 4
fy = 5 Jdrr £5(r) . [5b]

In the r2 moment of fs(r). the short range repulsive part of the
pseudopotential wins out over the long range attractive part, but in the
r4 moment the situation is reversed. The physical consequence of this
behavior is anomalous dispersion of the zero sound modes in b;th 4He and
3He.

Finally, the density dependence of the various pseudopotentials is
straightforward to obtain. For 4He there are no free parameters. Since
fz increases with density, the corresponding increase in the core height
means that as the density increases the short range correlations in
liquid 4He are somewhat less effective in reducing the strength of the
repulsive part of the interaction. For pure 3He. where both the
increased zero point motion of the 3He atoms and the Pauli principle
inf luence both T, and a, the change of these parameters with density
involves some degree of arbitrariness; Bedell et al. choose the density

Tt Tl

variation of the respective a's, and of 6(= r. ~Te ). to be such that

the pseudopotentials go over, at svp for pure 3He, to those previously
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found by Aldrich and Pines to provide the best fit to neutron scattering
experiments, while at pressures greater than 21 atm, the results scale
with those found for pure 4He at similar densities. The fesulting
parameters are given in Table 2. Note that the influence of the Pauli
principle is greatest at svp, and that it becomes weaker as the system

density increases.

Backf low
In addition to inducing density fluctuations, as a particle moves

in the liquid it induces current fluctuations. which act back on it,
thereby changing its effective mass. As Feynman and Cohen first
emphasized, these backflow effects are quite important in 4He; for a
hard sphere moving in a classical liquid the induced current, or
backflow, takes a dipolar form, and acts to increase the mass of the
sphere by 50%. In polarization potential theory for liquid 4He. the

induced current fluctuations, <{J(qw)>, give rise to a vector field,

Aso1(a.0) = £ <J(qu)> 6]

which couples to the cu'rent fluctuations, Jq. by a coupling, jq .
‘™~

~r ~

Apol(qw). Since backflow is a purely longitudinal phenomenon, particle

conservaticn links the induced current and density fluctuation according
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<g . g(qw)> = w <p(qu)> . [7]

The resulting effect of backflow is to replace wpol(qw). in Eq. (1). by

a wavevector and frequency dependent quantity.
s 2,2, v
oror(@) = [£2 4 (WPra?) 7] <olaa)> . (8]

For liquid 4He. the strength of the backflow potential is imply related

to the quasiparticle effective mass,
»* v
m =m+ Nf . 9
a a (9]

For 3He. on the other hand, m: is the average single
quasiparticle-quasihole effective mass, which reduces to the usual
quasiparticle mass in the long wavelength limit. Thus one has

me = m + Nfz =m [1 + F‘l‘/s] [10]

where F? is the dimensionless spin-symmetric € = 1 component of Landau’s
interaction between quasiparticle on the Fei'mi surface.

Absent the efrects of zero point motion and the Pauli principle, we



Page 13

would expect the backflow coefficients, f:. to be essentially the same

3He and 4He at the same density:; to the extent that the

in liquid
short-range correlations are mainly responsible for backflow (as they
are for f;). one can then get fz for 4He from the corresponding quantity
for 3He at the same density, and one would expect a rather similar
fall-off of the backflow field strength, f:. with increasing momentur
transfer. For 3He. specific heat experiments tell us what Nfz is as a
function of density; AP assumed that at the same density, Nfz would be
the same for 4He; they determined the q dependence of m: in
phenomenoiogical fashion, from their best fit to the phonon-maxon-rotoa
spectrum of 4He, and then further assumed that the q dependence of the
average quasipair mass in 3He would be similar. Typical expressions for
Nf; for 4He are shown in Fig. 3.

It is instructive, and indeed necessary for spin-polarized 3He. to

separate out the spin-dependence of the backflow terms in 3He. To do

so, one simply replaces Jq . Apol(qw) by the expression:
) dge b g(a) U j(qu)> [113
oo oo g

in wvhich case we could write:

”
Mgt =M + Nthtt(q) + N*hr‘(q) [12]
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with a similar expression for m:l. For an unpolarized system, one then

v -
has NT = N¢ = N/2, and fq = (h1t+ th)/2. on the other hand, for a fully

spin polarized system, one has NT = N, and

32
1

= m + Nh, (a) [13a]

= m + Nh,,(a) [13b]

3
¥

so that by using microscopic calculations or physical models, one can
proceed to follow the spin polarization dependence of the backflow
potentials. Note, further, that for the unpolarized system, hTT(o) and
hTi(o) can be determined directly from a knowledge of FT and the

spin-antisymmetric Landau parameter, F?. Representative results, which

are exiremely sensitive to the value of F?. at two pressures are given
in Table 3. There one sees that the backflow potential for antiparallcl
spin particles is considerably larger than that for those i ith parallel
spin: the former reflects the combined influence of the short-range,
potential-induced correlations ari zero point motion, and increases
rapidly with density: the latter takes into account the Pauli principle
as well, and is much smaller because the Pauli principle causes
particles of paralle]l spin to spend more time in the attractive region

of the effective particle - particle interaction. Indeed, the wenk

density dependence of the latter suggests that under pressure the



Page 15

particles of parallel spin experience backflow effects which are nearly
the same as those applicable at svp; in other words, the Pauli principle
prevents particles of parallel spin from sampling the rapid rise in
backflow potential brought on by the comparatively ineffective
screening.

The influence of the Pauli principle on backflow is even more
striking in spin-polarized 3He. For the fully polarized system at svp,
both microscopic calculations and sum rule arguments yield an up-spin
effective mass, m: Z 0.84m; thus, at a [ixed density the backflow
potential, htt(Q)' docreases with increasing spin polarization, to the
point that it vanishes, and then becomes negaiive in the limit of
complete spin polarization, as the Pauli principle causes the up spin
quasiparticles to sample more of the attractive interaction between

quasiparticles than the repulsive interaction.

3. Dens{ty-density Response Function
The density fluctuation excitation spectrum is specified by the
densi ty-density response functiun, x(q.w) defined as the linear response

of the system to an external field, ¢__ (q.w), coupled to its density

ext
fluctuations, p:. If we consider instead the linear response of the
system to the sum of Poxt and the polarization poteantial, wpol(q.w).

specified by Eq. [8]., we obtain
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xc(qw) = szc(qw) [14]
1~lf: + (02/4%) fg] X, ()

where xsc(qw) is the system response to an external potential plus
¢pol(q,w). The poles of xc(qw) yield the dispersion relation for the

density fluctuation excitation modes; one has therefore
5 2,2,
1 = [£° + (0S/q°)f ] : 15
[ q t (07a) | Xgolanwy) [(15]
where wq is the collective mode excitation energy. The identification

of m: with the average quasipair mass follows from the sum rule

definition of the latter,

[+ ¢}
fo dw S pair (qu) w i Nq2 [16]
J dw S (quw) om
o pair 9 q

where S pair is the single cuasiparticle-quasihole pair contribution to
the dynamic form factor, Sc(qw) m -(1/1) Im xc(q.w).

The expression, [14]. provides a formal basis for a unified theory
of elementary excitations in superfluid 4He and normal 3He. In it, the
role played by frequency and wavevector dependent restoring forces is
essentinlly decoupled from the effects of statistics or temperature;

since we have argued that at the same density the corresponding values
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of f: and f: will be quite similar, the effects of statistics or
temperature come in only through xsc(qw). Te the extent that we have
described all the consequences of particle interaction by‘f: and fv.
then one has Xge = x:. where x: is the non-interacting single

quasiparticle or quasipair response; thus AP take for

. o
4He: X (qw) = x*(qw) = Nq /mq [17]
sC o 5 5%
- - (q°/2m )
q
et x, (a0) ¥ x{ (q0) [18]

where the expression, [17), represents the excitation of single
quasiparticles from the condensate, vhile in [18], x:(qw) is the
Lindhard response function for quasipairs of mass m*. To the extent
that the collective modes in 3He possess a frequency large compared to
the single pair energies eppearing in x:(q.w). this expression is well

2/m: w2. and the differences

approximated by its high frequency limit, Nq
in the collective mode energies for 3He and 4He are determined by their
mass differencr, (including the influence of zero point motion on f:).
The expressions [17] and [18] are, in fact, exact only in the long
wavelength limM¢ (where, for example, [15] and [16] yield the usual

lLandau result); at finite wavevectors, multiparticle excitations begin

to play a significant role, and their influence must be taken into
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account if one hoies to obtain a quantitative account of the excitation

spectrum. We cunsider these now.

4, The Two-Brenc!. Spectrum, and Mode-Mode Coupling

Quite generaliy, for both Bose and Fermi systems, one has two modes
of excitation out of the ground state, and hence two branches to the
excitation spectrum. For Bose systems, the multiparticle branch
corresponds to states characterized by the excitation of two or more
quasiparticles from the condensatc.5 while for Fermi systems it
corresponds to states in which two or more quasipairs are excited from

the filled Fermi sea ground state.6

The branches can easily be
distinguished in the long wavelength limit, since in this limit the
frequency of the single quasiparticle or quasipair branch vanishes,
while the frequency of the multiparticle or multipair branch is finite.
In polarization potential theory, we describe the presence of the two

branches by letting xsc(qw) contain contributions from both; thus we

write

Xgo(90) = ag X(aw) + (1 = a ) x,(4w) [19]

where the strength of the single quasiparticle or quasipair response
function contribution to L is now measured by vertex renormnlization

function, aq(gl). and xm(qm) is the multiparticle or multipair responsc.
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Sum rule considerations, show that at long wavelengths,

2

Lima =1-«a + ..
q

o4
q-0

while to the extent that the characteristic frequencies which enter into

xm(qw). GE(q). are large compared to those of the collective modes we
seek to calculate, we can write:

2

x,(a.@) = x (q.0) = - Nq /m; [20]

2
<wm(q)>

For 4He. one can obtain <wi(q}> directly from neutron scattering
experiments, while for 3He. cne can estimate it from Raman scattering
experiments. To the extent one knows <wﬁ(q)> the influence of the
second, multiparticle or multipair, branch on the coilective mode
energies is contained in the phenomenological parameter, aq. Since in
all cases Eh(q) > wq. the effect of mode-mode coupling will be to

depress the collective mode energy, wq.

5. The Phonon-Maxon-Roton Spectrum of 4He
The first major success of polarization potential theory came in
its quantitative account of the phonon-maxon--rnton spectrum of 4He. AP

showed that {f the momentum dependence of f; wvas fixed by requiring that
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Nf; ~ 1.8m in the vicinity of the roton minimum, and aq and xm(q.o) were
chosen to provide a fit to the excitation spectrum at svp, and were
further assumed not to vary with density, then with no free parameters
one could get an excellent fit to the measured excitation spectrum for

q<2.1 A-l at pressures up to 25 atm. (Recall that f: is fixed by the

pressure 'ependence of the first sound velocity.) A striking
verification of the correctness of their pseudopotential was provided by
measurements of anomalous dispersion as a function of pressure. At long

wavelengths, the phonon dispersion relation takes the form:

Lim v =sq (1 + v q2 +w q3 + ... [21]
q 2 3 ‘
q-o
where
1 s m " * 2, -1
Wy = 5 [f2 ~ Q=+ (4mmos ) ] . [22]

is given by Eq. [19] and Wy = (w2/24f:) Lim {fs(r)rs]. One sees in
gq-o

Eq. [22] that the positive values of f;. characteristic of the AP

a

2

pseudopotential, bring about anomalous dispersion (a positive value of
w2) while mode-mode coupling. here represented by ag (>0), acts to
oppose it. As the density increases above its svp value, f; must
decrease in a directly calculable way, s.nce the repulsive part of fs(r)

increases [in a fashion fixed by s(p)]. while the attractive part is

unchanged; hence, since AP find a2(p) X az(svp). anomalous dispersion



Page 21

decreases with increasing pressure. Calculation of the wavevector, 9.
at which anomalous dispersion ends, requires only a knowledge of f: and
aq; AP found excellent agreement with the direct determination of this
quantity (as a function of pressure) by Dynes ai.d Narayanamurthi.7

In recent wovk, Coffey and 1 (manuszript in preparation) have
examined anew the polarization potential calculation of the
phonon-maxon-roton spectrum. Our reexszmination was prompted by two
recent developments: Stirling’'s extraordinarily accurate measurements
of the excitation spectrum in the vicinity of the roton minimum.8 and
improved microscopic calculations of the excitation spectrum by
Manousakis and Pandharipande.9 By making use of the experimentally
determined values of <wi(q)> in Eq. [20], we reduced the number of free
phenomenological parameters to one, thet wmultiparticle vertex correction,
aq. (Recall that f: is set by the physicel arguments presented above,
f: by the effective mass in 3He at the same density, and f; by its
fall-of f in the vicinity of the roton minimum.) As shown in Fig. 4, we
were able to obtain an excellent account (™0.1X accuracy) cf Stirling's
experimental results for the rotor. excitation spectrum, thereby
confirming the AP description of & roton as a 4He quasiparticle, of
effective mass ~2.8m°. moving in a weakly mcmentum-dependent attractive
self-consistent field, Nf:. of strength ~~2K, produced by the other
quasiparticles.

In our calculations we neglezted the ¢ynamic consequences of
mode-mode coupling (since we replace xm(q.w) by xm(q.o) in Eq. [20]:

this approximntion should work very well for rotons, and for long



Page 22

wavelength phonons (q < 0.5 A_l). but for shorter wavelength phonons and

maxons, whose energies lie closer to the multiparticle spectrum, it
might be expected to be less accurate. A comparison of our results with
experiment, given in Fig. 5, shows that this is the case. Also shown in
that Figure is the variational calculation of Manousakis and
Pandhanpande9 in which the same physical effects (short-range

correlati ack-flow, and static mode-mode coupling) are taken into
account. [} ~savevectors up to ~1.3 A_l. the two theories give nearly
identical results; it may therefore be plausibly argued that the
Manousakis/Pandharipande calculations provide a microscopic
justification for the polarization potential approach. It is likely
that the reason we do considerably better than Manousakis and
Pandharipande is that our calculations incorporate a significant
reduction in the strength of the backflow potential for

1.5 ¢qe2.4al,

~

5. Fully Spin-Polarized 3He
Hess, Pines, and Quader (in preparation) have studied effective
interactions and elementary excitations in 3He. spin-polarized 3He in

the fully polarized limit, and I should like to comment briefly on their

results. In constructing the polarization potential, th(r). in this
limit, they mnke use of & simple ansatz for its spatial average, f;?.

namely that at a given density the upper limit to the physical effect of

spin polarization on f;t is given by ttre magnitude of Pauli principle

changes on going from f;l to f;t for the unpolarized system. Thus
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Tttt

~
o)
o
I
-
i

2f [23]

(Recall that Pauli principle effects are small compared to those of
short-range potential induced correlations or zero point motion, and are
typically ~2NF3 ~2K.) By combining this ansatz with the forward
scattering rum rule, énd on assuming that only the € = o and € =1
moments play a role in-determining quasiparticle interaction at the
Fermi surface, they obtain values for m /m and the compressibility which
are close to the microscopic calculations of Manousakis et al.lo

The resulting density fluctuation excitation spectrum depends on
the assumed form of the wavevector dependence of the backflew potential.
HPQ consider two limits; one in which the effects of spin puvlarizatiun
on m: is assumed to be wavevector independent; one in which this effect
is assumed to operate predominantly at long wavelengths, so that by the
time one reaches, say, q ~ 1.8 A_l, there would be little difference
between ;: and m:. In the first case the reduction of ;: leads to a
substantial qualitative change in the spectrum: the onset of Landau
damping is much earlier, and no maxon regime is found. In the second,
the spectrum is qualitatively the same; the wavevector which
characterizes the onset of Landau damping is only slightly reduced.

»

7. Nuclear Matter

Khandker Quader, Jochim Wambach, and I have been developing a

polarization potential theory for nuclear matter, and given Gerry's keen

interest in this problem, I should like to give you a progress report on
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our efforts. Our aim has been the development of a systematic theory of
excitation spectra which extends Landau theory by incorporating
finite-range e¢ffects in the effective quasiparticle interactions which
provide the resulting forces for collective modes, and which allows for
the likely momentum-dependence of the average single quasipair effective
mass.

The basir for the theory is the resemblance between the bare hadron
interactions and those between helium atoms. In both cases one has a
long range attractive interaction plus an exceedingly strong short range
repulsive interaction; in both systems short range correlations in the
liquid prevent its constituents from sampling the full consequences of
the latter. The construction of the theory follows along the lines of
the 3He work of Aldrich and Pines, with, however, certain important
modifications made necessary by the more complicated nature of the
nuclear problem. First. on the nuclear distance scale the pion-induced
interactiqn betweer nucleus is not short-ranged, and exchange effects
associated with it need to be described explicitly. Second, tensor
forces and significant three-body interactions give rise to effects
which go beyond allowing for the influence of short-range correlations
on the bare two-body interaction. Finally, zeruv point motion effects
are significantly larger in nuclear matter than in 3He. vhile experiment
alone does not serve to fix the six lowest order Landau paramete.s (four
associated with proton-proton and proton-neutron interactions, two from
the tensor force contributions) so that a judicious combination of

theory and experiment is required to determine these.
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The results of our calculations based on the Reid V. potential are

6

given in Figures 6-9. and I comment briefly on them,

(o]

The six regularized configuration space pseudopotentials are
shown in Fig. 6, where the substantial influence of zero point
motion on the range of the repulsion part of the interaction
is shown explicitly.

The corresponding gq-dependent pseudopotentials are shown in
Fig. 7. while their non-negligible influence on response
functions is illustrated by our results for the density-
density response function at four different momentum transfers
(Fig. 8). Correspondingly large, albeit different, eftects
are found in the other spin-isospin channels.

The calculated wavevector dependent static polarizabilities,
shown in Fig. 9, display significant structure at wavevectors
~2pF in ali but the density channel, reflecting the strong
tendency of nuclear matter to form a correlated spin-isospin
state.

A comparison of these calculations with the recent microscopic
calculations of Fantoni and Pandharipande (preprint)-and
Schiavillu et al. (preprint) based on a variational theory of
the ground state, shows that when many-body effects are
neglected, the two calculations are in rather good agreement.
Comparable agreement is found for the pair distribution

functions.
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8. Concluding Remarks

It is encouraging that where the predictions of polarization
potential theory for the excitation spectra uf the helium liquids can be
compared with experiment, or with the best vailable microscopic
theories, good agreement is found. There was not time in the talk, or
space in this written account, to describe its application to
excitations and transport properties in 3He. nor to compare its
connections with the induced-interaction approach of Babu, Bedell,
Brown, Quader, Pfitzner, and W;lfle. and the recent "Gutzwiller”
calculation of effective interactions by Anderson, Vollhardt, and W;lfle
(preprint). The progress to date on effective interaction and
excitations in nuclear matter is likewise encouraging, and Quader,
Wambach and I now plan to extend this work to neutron matter and to
neutron stars, in the hope that observations of the latter will provide
further constraints on the Landau parameters and scattei ing amplitudes

of the theory.
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Table 1. Comparison of the spatial average, core radius, and core
height of the pseudopotentials which describe effective interactions

between quasiparticles in helium liquids at a density of 0.0218 A—3 (svp

for 4He) (from Hsu and Pines).4

System Interaction Spatial Core Radius Core Height
Average (K) (A) (K)
‘e Ye-He £% = 27.3 2.68 49.3
e e T-30e? f;‘ = 46.5 2.773 55.7
e e 1-3ge ! f;T = 45.2 2.780 54.2



Table 2.

average, core radius, and core height of the pseudopotentials

A comparison, at various densities, of the spatial
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vhich describe the effective interactions between quasiparticles

responsible for the restoring forces for zero sound and spin

density fluctuation excitations in 3He (Bedell et al., in

preparation).

ure

svp

10

15

21

34.36

bar

f;‘ ® ' w

11.8 10.1 3..0
22.4 20.8 2.936
31.0 29.6 2.878
38.7 37.3 2.826
46.5 45.2 2.773
58.8 57.6 2.705

3.03

2.9583
2.890
2.833
2.780
2.712

32.0
39.9
47.4
556.7
68.8

20.9
30.1
38.2
45.9
54.2

67.2
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Table 3. Spin-dependent backflow potential parameters for

unpolarized 3He.

P (bar) F‘; F Nh,./m Nh,,/m

svp -0.5 5.3 1.2 2.3

27 -1.0 12.5 1.€ 6.8
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Legends for Illustrations

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure G.

Schematic drawing of liquid helium pseudopotentials:
a) configuration space, . . . bare interaction,
pseudopotential; b) momentum space.
Momentum dependent pseudopotentials which describe the
effective interaction between He atoms in very dilute
(x—0) mixtures of 3He in 4He. compared with the
corresponding potentials for pure 3He and pure 4He at
the same density [from Ref. (4)].
Backflow potertials in liquid 4He as a function of
pressure [from Ref. (3)].
Comparison of the calculated excitation spectrum in
the vicinity of the roton minimum with experiment.8
Comparison with experiment of the polarization
potential and variational [(Ref. 9), shown by
triangles] results for the phonon-maxon-roton
excitation spectrum; in both theoretical calculations,
dynamic mode-mode coupling corrections are neglectéd.
Nuclear matter configuration space pseudopotentials
wvhich describe the effective interaction between

protons and protons and protons and neutrons; also

t
o (1)

The dashed lines depict results when zero point motion

shown are the tonsor force terms, f;p (r) and f

is neglected. (From Pines, Quader and Wambach (PQW).

in preparation).



Figure 7.

Figure 8.

Figure 9.
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Nuclear matter momentum space pseudopotentials in
various spin-isospin channels (from PQW).

A comparison of the polarization potential results for
the density-density response function with those
obtained for free particles, and using Landau theory
(si;o) (from PQW).

The calculated wavevector depencent static response

functions in four spin-isospin channels (from PQW).
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