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Abstract

The effective interactions which provide a wavevector and frequency

dependent restoring force for collective modes in quantum liquids are

derived for the helium liquids by means of physical arguments and sum

rule and continuity considerations. A simple model is used to take into

account mode-mode coupling between collective and multiparticle

excitations, and the results for the zero-temperature liquid ‘He

phonon-maxon-rotor spectrum are shown to compare favorably with

experiment and with microscopic calculation. The role played by

spin-dependent backflow in liquid ‘He is analyzed, and a physical

interpretation of its variation with density and spin-polarization is

presented, A progress report is given on recent work on effective

interactions and element~ry excitations in nuclear matter, wjth

particular attention to features encountered in the latter system which

have no counterparts in the helium li~~ids,
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1. Introduction

In strongly coupled quantum liquids. such as the electron and

helium liquids and nuclear matter, the determination of the effective

interactions between quasiparticles and the way in which these, in turn,

determi.cethe elementary excitation spectrum, has been a problem of

central and continuing concern. It is a problem to which Gerry Brcwn

has made c number of central contributions, and one which I have enjoyed

discussing with him at length during the nearly three decades that we

have known one another, While our direct interaction has been

comparatively weak, in tbt we have not yet written a paper together, we

have published independently on parallel lines (as in the RPA

description of excitations in nuclear rotter) and have had a continuing

strong exchange interaction, which has brought Kevin Bedell, Khandker

@der, nd Jochlm Wambach, all of whom first worked with Gerry in Stony

Brook, to Urbana, and which tcok Chris Pethick, who was a postdoctoral

fellow in Urbana, to C@enhagen.

In my talk today, I shall describe briefly some ?ecent developments

in our understanding of effective inter~ctions and elementary

excitations in quantum liquids, The basic npproach to quantum liquids J

shall be using is polarization potential theory, a minimalist,

phenomenological, post-RPA, post-Feynm.n, post-Landau theory in which

physical arguments, constraints from static mtmsurements, sum rules, nnd

continuity arguments nre combined to reduce mnriotd]y(at times to zero)
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the parameters required to specii’;?the effective quasiparticle

interaction and calculate the elementary excitation spectra. It

provides a unified and quantitative account of excitations and transport

in the helium liquidsl and ins been extended as veil to electron

liquids2.

I shall begin by discussing the key physical effects which must be

taken into account in any quantitative description of

in quantum liquids, and show how these are dealt with

liquids using polarization potential theory. I shall

excitation spectra

for the helium

show how an

explicit account of spin-dependent backflow thus provides new insight

into the physical origin of the quasiparticle mass in aHe, and describe

the convergence of the polarization potential approach and microscopic

calculations (based on a variational grmnd state wavefunction) of the

phonon-maxon-roton spectrum of ‘He. I discuss briefly recent results on

spin-polarized 3He, before concluding with an account of work in

progress with Khandker

polarization potential

Quadar and Jochim Wam’bathon an extension of

theory to nuclear matter.

2, Effective Interactions: Pseudopotentials and

There ale two key physical effects which must

to obtnin a c

dependent re~

quantum Iiqui

ntitative account of the wavevector

Backflow

be described in order

and frequency

.oring forces responsible for collective behavior in

{H,
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0 Short-range correlations associated with strong particle

interaction, zero-point motion, and, for Fermi systems, the

Pauli principle

o Backf10W

In polarization potential theory, the short-range correlations a,.e

incorporated into the theory by introducing a frequency-independent

configuration space pseudopotential. Backflow is described as a

frequency (and wavevector) dependent restoring force whose strength in

the long wavelength limit is determined for Bose systems by the

quasiparticle effective mass, while for Fermi systems, ic is determined

by the average quasipair energy. Let us consider these effects

separately.

2.1 A Pseudopotent~al .bscri~tion of Eff@ve Interactions

, As a particle moves in the liquid it induces density fluctuations

* which act back on It, as well as on the other particles. These

fluctuations, whose mean wave--vectorand frequency dependence is

described by <p(q@)>, give rise to polarization field~ which both screen

external longitudinal fields and act to provide a restoring force for

collective behavior. Quite generally the fluctuating scalar potential

which gives rise to this restoring force can be written in the form

“e

[1]
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+
its coupling to the density fluctuations, p . is P+W

q (JPON’J ‘n’he

RPA, fs(q,u) =Vq, the

interaction; in Landau

frequency independent,

Fourier-transform of the

theory, fs(q,o) is taken

and corresponds to the /?

bare particle

to be momentum and

= o component of

bndau”s phenomenological interaction between quasiparticles on the

Fermi surface. In polarization potential theory, fs(q,u) = f:, a

phenomenological frequency-independent, but momentum-dependent,

restoring force. The latter is calculated by considering the physical

behavior of its Fourier transform, a non-local configuration space

pseudopotential, f~(r), which describes an effective interaction between

particles in the liquid,

~ =Jd3r fs(r)eis”~ .fs [2]

At low temperatures, fs, the spatial average of f~(r), is known from
o

measurements of compressibility and (for Fermi systems) the specific

heat.

How is fs(r) related to the bare atom-atom potential? The major

physical effects which distinguish liquid helium from gaseous helium arc

at most three-fold:

o Short-range correlations whir~;enable the helium atoms to

avoid, insofar as possible, sampling their mutual very strong

short range (< 2.7A-1) repulsive interaction
.
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0 Zero point motion

o Quantum statistical correlations (eg., the Pauli principle for

%e atoms)

Since all three physical effects are predominantly short-range, it

follows that at long distances, where liquid correlations are not

important, fs(r) should be identical to the bare atom-atom potential.

For the helium liquids, Aldrich and Pines3 describe the short range

behavior of the pseudopotential fs(r) with the aid of a simple physical

argument, illustrated in Fig. 1, namely that the positional correlations

bro}~ghtabout by the strong short-range repulsion between the atoms

prevent the atoms from sampling the full consequences of that

interaction. Hence,
-1

the almost hard-core repulsion of range “’2.68A ,

found in the bare interaction, must go over to a soft-core repulsion, of

range rc, which they characterize by an rs potential of strength a,

fs(r) = a (1-r/rc)8 r<r
. c

[3]

For a given choice of rc, a simple fitting function is then used to join

this prt of the potential to the attractive long-range part, taken to

be identical to the bare interaction for r > r Because f: is known,c“

for a glveu choice of rc, a is uniquely determined.

For liquid 4He, fs(r) describes the effective interaction between

4
He quasiparticles; AP took rc to be the range of the bare atom-atom
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repulsive interaction. For liquid 3He, fs(r) is the spin-symmetric

average of the effective interaction between parallel and anti-parallel

spin quasiparticles,

f:(r) =
[ 1ftt(r) + ftl(r) /2 [4]

To the extent that the effects of zero point motion and the Pauli

principle are small compared to those of the short-range, “hard” core,

correlations in determining the %e pseudopotentials, at a given density

the shape and range of ftt(r), ftl(r), and fs(r) should be quite

similar. The differences in the pseudopotentials can be c,xaracterized

by changes in r and
c’

the Pauli principle.

latter is obtained by

averages of the three

Wili arise as a result of zero point motion and

A good idea of the relative importance of the

comparing, at the same density, the spatial

pseudopotentials.

As may be seen in Table 1, the spatial average of f~$, 46.5K, iS

some 70A larger than f:, and is, in fact, quite close to the spatial

average (42.8K) of the direct interactions between antlparallel spin 3He

quasiparticles i],a background of ‘#4e at this density: It thus reflects

primarily the increased zero point motion of % e atoms compared to ‘%e

in liquids of the same density. Comparison of f11 with f~$ shows that

by comparison, the Pauli principle acts to reduce f~l by some 3%. From

a fit to the transport properties of % calculated from the
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corresponding pseudopotentials, Bedell, Hess, Hsu, and Pines (in

preparation) find that on going from %e to 3He the greater zero point

motion of the %e atoms not only leads to an enhanced core radius, but

also implies that the correlation-induced screening of the short-range

repulsion interaction is somewhat less effective, since a
T1

is increased

to 55.7K. The combined effects of the Pauli principle and zero point

motion lead to a slighily larger value of rc, and a very slightly

‘educed ‘alue ‘f att’
compared to the corresponding values for

anti-parallel spin %e quasiparticles. These results are also given in

Table 1. The hierarchy of physical

forces is thus clearly established;

correlations, which are similar for

dominate, followed by the influence

effects on the various restoring

short range potential-induced

the various atom-atom interactions,

of zero point motion, with Pauli

principle effects coming in a distant third.

The momentum dependent pseudopotentials for the effective

interactions in %e and %ie are compared in Fig. 2 with those calculated

by Hsu and Pines4 for 3He-%e mixtures. Note that the major differences

-1
occur at wavevectors < 1A . The increase with q seen at long

-

wavelength is quite a general phenomenon, and reflects the changed

interplay between the repulsive and attractive parts of the pseudo

potentials as one goes to higher moments of fs(r). Thus if we write:

fs = f:(l+clzf; + ...)
q
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then

f: =

,:

‘2 =

n

[5a]4m.f~dr r2fs(r)

‘~ .f~r r4fs(r) . [5b]

In the r~moment of fs(r), the short range repulsive part of the

pseudopotential wins out over the long range attractive part, but in the

r4
moment the situation is reversed. The physical

behavior is anomalous dispersion of the zero sound

consequence of this
.

modes in both 4He and

3He.

Finally, the density dependence of the various pseudopotentials is

straightforward to obtain. For %’s there are no free parameters. Since

f: increases with density, the corresponding inc~ease in the core height

means that as the density increases the short range correlations in

liquid 4He are somewhat less effective in reducing the strength of the

repulsive part of the interaction. For pure

increased zero point motion of the % e atoms

influence both rc and a, the clxmge of these

%Ie, where both the

and the Pauli principle

parameters with density

involves some degree of arbitrariness; Bedell et al. choose the density

t?
variation of the respective a’s, and of 5(= rc - r~l), to be such that

‘3
the pseudopotentials go over, at svp for pure He, to those previously
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found by Aldrich and Pines to provide the best fit to neutron scattering

experiments, while at pressures greater than 21 atm, the results scale

4with those found for pure He at similar densities. The resulting

parameters are given in Table 2. Note that the influence of the Pauli

principle is greatest at svp, and that it becomes weaker as the system

density increases.

Backflow

In addition tG inducing density fluctuations, as a particle moves

in the liquid it induces current fluctuations, which act back on it,

thereby changing its effective mass. As Feynman and Cohen first

4emphasized, these bckflow effects are quite important in He; for a

hard sphere moving in a classical liquid the induced currerlt,or

backflow, takes

sphere by .50%.

induced current

a dipolar form, and acts to increase the mass of the

4In polarization potentiai theory for liq~id He, the

fluctuations, <J(qu)>, give rise to a vector field,
.

~pol(q,u) = f; <J(qu)> [6]

which couples to the cu.’rentfluctuations, jq, by a coupling, j ●

‘* a, m,q

~pol(qu). Since backflow is a purely longitudinal phenomenon, particle

conservation links the induced current and density fluctuation according
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<q~ ● J(w)) = (II<p(q@)> . [7]

The resulting effect of backflow is to replace WWl(qL~), in ti. (1). by

a wavevector and frequency dependent quantity.

Wpol(w) =
[ 1
f; + (u2/q2) f; <p(qU)> . [8]

For liquid ~e, the strength of the backflow potential is ~imply related

to the quasiparticle effective mhss,

*
= m + Nfv.

‘q q
[93

For $ie, on the other hand, m: is the average single

quasiparticle-quasihole effective mass, which reduces to the usual

quasiparticle mass in the long wavelength limit. Thus one has

.

w= m+‘f:=m[1+‘?31 [10]

where F; is

interaction

Absent

the dimensionless spin-synmnetric4 = 1 component of Landau’s

between quasiparticle on the Feitmisurface.

the efiects of zero point motion and the Pauli prlncfple, wc
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would expect the backflow coefficients, f
v

to be essentially the same
q’

in liquid 3He and ‘$Ieat the same density; to the extent thzt the

short-range correlations are mainly responsible for backflow (as they

are for f~), one can then get f: for ~e from the corresponding quantity

for ye at the same density, and one would expect a rather similar

fall-off of the backflow field strength, fv, with increasing momentum

transfer. For~e, specific heat experime~ts tell us what Nf~ is asa

function of density; AP assumed that at the same density, Nf~ would be

the same for ye; they determined theqdependence ofm*in
q

phenomenoiagical fashion,

spectrum of ~e, and then

average quasipair mass in

from their best fit to the phonon-maxon-roto.l

further assumed that the q dependence of the

ye would be similar. Typical expressions for

Nf~ for 4He are shown in ~ig. 3.

It is instructive, and indeed necessary for spin-po!arized

separate out the spin-dependence of the backflow terms in $-Ie.

~pol(qu) by the expression:so, one simply replaces j ● A
-q

in which case we could write:

*
= m + Nthtt(q) + N4hT1(q)

‘qt

[11]

[12]

3
He, to

To do
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with a similar expression for w For an unpolarized system, one then
ql”

has Nt = NJ =N/2, and f“ = (h~~+ h~$)/2; on the other hand, for a fully
q

spin polarized system, one has N? = N, and

.

‘t
= m + IRtt(q)

.

‘1 . m + tit~(q)

[13a]

[13b]

so that by using microscopic calculations or physical models, one can

proceed to follow the spin polarization dependence of the backflow

potentials, Note, further, that for the unpolarized system, htt(o) and

htJ(oj can be determined directly from a knowledge of F; and the

spin-antisymmetrlc Landau parameter, ~. Representative results, which

are extremely sensitive to the value of ~, at two preosures are given
1

in Table 3, There one sees that the backflow potential for antiparallcl

spin particles is considerably larger than that for thoso \ith parnllcl

spin: the former reflects the combined influence of the short-range,

potential-induced correlations ar~ zero point motion, and increases

rapidly with density; the latter takes into account the Pauli principle

as well, and is much smaller because the Pauli principle causes

particles of parallel spin to spend more time in the attractive region

of the effective particle - particle interaction, Indeed, the wcnk

density dependence of the latter suggests that under pressure the
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~rticles of parallel spin experience backflow effects which are nearly

the same as those applicable at SVP; in other words, the Pauli principle

prevents particles of parallel spin from sampling the rapid ~ise in

backflow potential brought on by the comparatively ineffective

screening.

The influence of the Pauli principle on backflow is even more

striking in spin-polarized ye. For the fully polarized system at svp,

both microscopic calculations and sum rule arguments yield an up-spin
.

effective mass, m
t
% 0.84M; thus, at a fixed density the backflow

wte~t~al. htt(q)s decreases with increasing spin polarization, to the

point that it vanishes, and then becomes negative in the limit of

complete spin polarization, as the Pauli principle causes the up spin

quasiparticles to sample more of the attractive interaction between

quasiparticles than the repulsive interaction.

3. Density-density Response Function

The density fluctuation excitation spectrum is specified by the

density-density response function, X(q,u) defined as the linear response

of the system to an external field, Wext(q,u), coupled to its density

fluctuations, p~. If we consider instead the linear response of the

system to the sum of qext n.ndthe polarization potential, Wpol(q,@)t

specified by Eq, [8], we obtain
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)(C(qu)= x#l@

~’s.(’”)

where ~~c(qu) is the system response to an external potential ~

W’PO1(WJ).The poles of Xc(qu) yield the

density fluctuation excitation modes; one

1
[

= f; + (u~’z)fv 1‘ Xsc(wq)

dispersion relation for the

has therefore

[15]

where Uq IS the collective mode excitation energy. The identification

of m: with the average quasipair mass follows from the sum rule

definition of the latter,

. Nq2
-w
2m
q

[16]

where S ~,r is the single quasiparticle-quasihole pair contribution to

the dynamic form factor, SC(qu) m -(1/fl)Imxc(q,u).

The expression, [14], provides a forml basis for a unified theory

of element~ry excitations in superfluid we and norrml 3He. In it, the

role played by frequency and wavevector dependent restori~~ forces is

essentially decoupled from the effects of statistics or temperature;

since we have argued that at the same density the corresponding vnlucs
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of f; and f; will be quite similar. the effects of statistics or

temperature come in only through X~c(qu). To the extent that we have

described all the conseq~ences of particle interaction by-fs and f~,
q

then one has Xsc

quasiparticle or

~ x:* where X: is the non-interacting single

quasipair response; thus AP take for

‘%e: ~5c(qu)~X~(qu)= ‘q2’m~

u2- (q2/2m~)2

[17]

[18]

where the wrpression, [17], represents the excitation of single

quasiparticles from the condensate, while in [1S], X;(qu) is the

Lindhard response function for quasipalrs of mass m:. To the extent

that the collective modes in 3He possess a frequency large compared to

the single pair energies appearing in ~~(q,u), this expression is well

approximated by its high frequency limit, Nq2/m~ U2, and the differences

in the collective mode energies for %e and %e are determined by their

mss dlfferencp, (including the influence of zero point motion on fj).

The expressions [17] and [18] are, in fact, exact only in the long

wavelength Iin?lt(where, for example, [15] and [16] yield the usual

Landau result): at finite mvevectors, multiparticle excitations begin

to plny n significant role, and their influence must be taken into
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account if one hly,~esto obtain a quantitative account of the excitation

spectrum. We consider these now.

4. The Two-Bramc~,Spectrum, and Mode-Mode Coupling

Quite generally, for both Bose and Fermi systems, one has two modes

of excitation out of the ground state, and hence two branches to the

excitation spectrum, For Bose systems, the multiparticle branch

corresponds to states characterized by the excitation of two or more

~
quasiparticles from the condensate, while for Fermi systems it

corresponds to states in which two or mors quasipairs are excited from

the filled Fermi sea ground state.
6

The branches can easily be

distinguished In the long wavelength limit, since in this limit the

frequency of the single quasiparticle or quasipair branch vanishes,

while the frequency of the multiparticle or multipair branch is finite.

In polarization potential theory, we describe the presence of the two

braaches by letting ~sc(q~) contain contributions from both; thus we

write

xsc(w) =a ~ x:(w) + (1 - aq) X#-P) [19]

where the strength of the single quasiparticle or quasipair response

function contribution to Ksc is now measured by vertex renormalization

function, aq({l), and Xm(qu) in the multiparticle or multipeir response
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Sum rule considerations,
5,6

show that at long wavelengths,

Lim(x_=l-aOq2+ ... :
q+o q

while to the extent that

~(q~)~ ~m(q). are large

seek to calculate, we can write:

the characteristic frequencies which enter into

compared to those of the collective modes we

x#@ -(#@) =- M2/m:
<(d:(q)>

[20]

For$ie, one can obtain <u2(qj> directly from neutron scattering

experiments, while for ~ern Gne can estimate it from Raman scattering

experiments, To the extent one knowc <u:(q)>

second, multiparticle or multipair, branch on

energies is contained in the phenomenologlcal

all cases =m(q) > Uq, the effect of mode-mode

depress the collective mode energy, u .
~

Spectrum of $le5. The Phonon-Maxon-Roton

The first mjor success of polarization potential theory came in

its quantitative account of the phonon-mxon--roton spectrum of $4,. AP

showed that if the momentum dependence of f: wns fixed by requiring thnt

the influence of the

the collective mode

parameter, a . Since in
q

coupling will be to
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Nfv ‘“1.8m in the vicinity of the roton minimum, and aq and yJq, o) were
q

chosen to provide a fit to the excitation spectrum at svp, and were

further assumed not to vary with density, then with no free txmmneters

one could get en excellent fit to the measured excitation spectrum for

-1
q < 2.1 A at pressures up to 25 atm. (Rccal.1 that fs is fixed by the

q

pressurr ‘ependence of the first sound velocity,) A striking

verification of the correctness of their psehdopotential was provided by

measurements of anomalous dispersion as a function of pressure. At long

wavelengths, the phonon dispersion relation takes the form:

Lim u
2 3

= Sq (1 + u2q + u3q + ... ;
q-m q

where

1

[

*

‘Jq=~ ‘: 1
- a2# + (4nnn~s2)-1 ,

[21]

[22]

rs 1a2 ~s given by Eq, [19] and Q3 = (r2/24f~) Lim Lf (r)r6 . One sees in
q-m

Eq. [22] that the positive values of f;, characteristic of the AP

pseudopotcntial, bring about anomalous dispersion (a positive value of

U2) while mode-mode coupling, here represented by a2 (>0), acts to

oppose it. As the density increases above its svp value, f; must

decrease ina directly calculable way, since the repulsive part of fs(r)

increases [in a fashion fixed by s(p)], while the attractive part is

unchanged; hence, since AP find a2(p) = a (svp), anomlous dispersion
2
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decreases with increasing pressure. Calculation of the wavevector, q
c’

at which anomalous dispersion ends, requires only a knowledge of f: and

a; AP found excellent agreeme:ltwith the direct determination of this
q

7
quantity (as a function of pressure) by Dynes ~.d Narayanamurthi.

In recent woi”k,Coffey and I (ma.mszript in preparation) have

examined anew the polarization potential calculation of the

phonon-maxon-roton spectrum. Our reexamination was prompted by two

recent developments: Stirling’s extraordinarily accurate measurements

8
of the excitation spectrum in the vicinity of the roton minimum, and

improved microscopic calculations of ~he excitation spectrum by

Manousakis and Pandharipande.g BJ-making use of the experimentally

determined values of <w:(q)> in Eq. [20], we reduced the number of free

phenomenological parameters to one, the muitiparticle vertex correction,

‘q“
(Recall that fs is set by ths physirxalarguments presented above,

~

f: by the effec$lve mass in % e at the same density, and f: by its

fall-off in the vicinity of the roton minimum.) As shown in Fig. 4, we

were able to obtain an excellent account (’”O.1% accuracy) rf Stirling’s

experimental results for the rotoriexcitation spectrum, thereby

confirming the AP description of a roton as a % e quasiparticle, of

effective mass ‘“2.8mo,moving in a weekly m,mentum-dependent attractive

self-consistent field, Nfs, of strem:th ‘“-2K,produced by the other
q

quasiparticles.

In our calculations we neglest.edthe d:!rmmicconsequences of

mode-mode coupling (since we replace km(q,u) by Km(q,o) in Eq. [20]:

this approximation should work very well for rotons, and for long



Page 22

wavelength phcmons (q < 0.5 A-l), but for shorter wavelength phonons and

maxons, whose energies lie closer to the multiparticle spectrum, it

might be expected to be less accurate. A comparison of our results with

experiment, given in Fig. 5, shows that this js the case. Also shown in

that Figure is the variational calculation of Manousakis and

Pandharlpande9 in which the same physical effects (short-range

correlati ~ck-flow, and static mode-mode coupling) are taken into

account. k ~avevectors up to ‘“1.3A-l, the two theories give nearly

identical results; it may therefore be plausibly argued that the

Manousakis/Pandharipande calculations provide a microscopic

justification for the polarization potential approach. It is like!y

that the reason we do considerably better than Manousakis and

Pandharipande is that our calculations incorporate a significant

reduction in the strength of the backflow potential for

1,5 A-l < q < 2.4A-1.
-.-U

5. Fully Spin-Polarized 3He

Hess, Pines, and C@der (in preparation) have studied effective

3’”
interactions and elementary excitations in He, spin-polarized 3He in

the fully polarized limit, and I

results. In constructing the po

limit, they make use of a simple

should like to comment briefly on their

mrization potential, ~tf(r), in this

ansatz for Its spatial average, ;~t,

namely that at a given density the upper

spin polarization on f~t is given by rt.e

changes on going from f~l to f~t for the

limit to the physical effect of

-ftude of Pauli principle

unpolarized system. Thus
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p
- f:f < f;? - f;l =2f:

o .
[23]

(Recall that Pauli principle effects are small compared to those of

short-range potential induced correlations or zero point motion, and are

typically 2N~ ‘2K.) By combining this ansatz with the forward

scattering rum rule, and on assuming that only the 4 = o and 4 = 1

moments play a role in determining quasiparticle interaction at the

Fermi surface, they obtain values for m*/”mand the compressibility which

are close to the microscopic calculations of Manousakis et al.
10

The resulting density fluctuation excitation spectrum depends on

the assumed form of the wavevector dependence of the backflcw potential.

HPQ consider two limits: one in which the effects of spin polarizatim

on m; is assumed to be wavevector Independent; one in which this effect

is assumed to operate predominantly at long wavelengths, so that by the

time one reaches, say, q ‘“1.8 A
-1

. there would be little difference

between ~~ and m;. In the first case the reduction of ~~ leads to a

substantial qualitative change in the spectrum: the onset of Landau

damping is much earlier, and no m.xon regime is found. In the second,

the spectrum is qualitatively the same: the wavevector which

characterizes the onset of hxiau damping Is only slightly reduced.

‘a

7. Nuclear Matter

Khandker Quader, Jochim Wambach, and I have been

polarization potential theory for nuclear matter, ~d

interest in this problem, I should like to give you a

developing a

given Gerry’s keen

progress report on
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our efforts. Our aim has been the development of a systematic theory of

excitation spectra which extends Iandau theory by incorporating

finite-range effects in the effective quasiparticle interactions which

provide the resulting forces for collective modes, and which allows for

the likely momentum-dependence of the average single quasipair effective

mass.

The basir for the theory is the resemblance between the kre hadron

interactions and those between helium atoms. In both cases one has a

long range attractive interaction plus an exceedingly strong short range

repulsive interaction: in both systems short range correlations in the

liquid prevent its constituents from sampling the full consequences of

the latter. The construction of the theory follows along the lines of

the ~e work of Aldrich and Pines, with, however, certain important

modifications made necessary by the more complicated nature of the

nuclear problem. First, on the nuclear distance scale the pion-induced

interaction betwee~,nucleus is not short-ranged, and exchange effects

associated with it need to be described explicitly. Second, tensor

forces and significant three-body interactions give rise to effects

wh~.chgo beyond allowing for the influence of short-range correlations

on the bare two-body interaction. Finally, zeru point motion effects

are significantly larger in nuclear matter thw in ye, while experiment

alone does

associated

the tensor

theory and

not serve to fix the six lowest order Landau paramcte:s (four

with proton-proton and proton-neutron interactions, two from

force contributions) so that a judicious combination of

experiment is required to determine these.
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The results of our calculations based on the Reid V6 potential are

given in Figures 6-9, and I comnent briefly on them.

o The six regularized configuration space pseudopotentials are

shown in Fig. 6. where the substantial influence of zero point

motion on the range of the repulsion part of the interaction

is shown explicitly.

o The corresponding q-dependent pseudopotentials are shown in

Fig. 7, while their non-negligible influence on response

functions is illustrated by our results for the density-

densl,tyresponse function at four different momentum transfers

(Fig. 8). Chrrespcmdingly large, albeit different, efiects

are found in the other spin-isospin channels.

o The calculated wavevector dependent static polarizabilities,

shown in Fig. 9, display si~ificant structure at wavcvectors

A2pF in all but the density channel, reflecting the strong

tendency of nuclear matter to form a correlated spin-isospin

state.

o A comparison of these calculations with the recent microscopic

calculations of Fantoni and Pandharip.nde (preprint) and

Schiavilla et al. (preprint) based on a variational theory of

the ground state, shows that when many-body effects are

neglected, the two calculations are in rather good agreement.

Comparable agreement Is found for the pair distribution

functions,
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8. Concluding Remarks

It is encouraging that where the predictions of polarization

potential theory for the excitation spectra uf the helium liquids can be

compared with experiment, or with the best vailable microscopic

theories, good agreement is found. There was not time in the talk, or

space in this written account, to describe its application to

3
excitations and transport properties in He, nor to compare its

connections with the induced-interaction approach of Babu, Bedell,
,!

Brown, Quader, Pfitzner, and Wolfle, and the recent “Gutzwiller”
.,

calculation of effective interactions by Anderson, Vollhardt, and Wolfle

(preprint). The progress to date on effective interaction and

excitations in nuclear matter is likewise encouraging, and Quader,

Wambach and I now plan to extend this work to neutron matter and to

neutron stars, in the hope that observations of the latter will provide

further constraints on the Landau parameters and scattering amplitudes

of the theory.
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Table 1. Comparison of the spatial average, core radius, and core

height of the pseudopotentials which describe effective interactions

between quasiparticles in helium liquids at a density of 0.0218 A-3 (svp

for~e) (from Hsuand Pines),4

Svstem Interaction Spatial Core Radius Core Height
Average (K\ ---L&-_ (K)

+e +e-’$Ie fs.27.3 2.68 49.3

3He ~eT-$4e1
f:J

= 46,5 2,773 55.7

3He
f;7~e~-3Het o =452. 2.780 54.2
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,

*

Table 2. A comparison, at various densities, of the spatial

average, core radius, and core height of thn pseudopotentials

which describe the effective interactions between quasiparticles

responsible for the restoring forces for zero sound and spin

density fluctuation excitations in ${e (Bedell et al., in

preparation).

Pressure {barl

Svp

5

10

15

21

34.36

11.8 10,1 3,,0 3.03

22.4 20,8 2.936 2.953

31,0 29.6 2,878 2.890

38.7 37,3 2,82G 2.833

46.5 45,2 2.773 2,780

58.8 57.6 2,70!5 2.712

tt
a

23.2

32.0

39,9

47,4

55,7

68,8

20,9

30,1

38,2

45.9

54,2

67.2

n
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Table 3. Spin-dependent backflow potential parameters for

unpolarized 3He.

P (bar) q

Svp -0.5

27 -1.0

5,3

12.5

mt$’m
2.3

6.8
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Legends for

Figure 1.

Figure 2,

Figure 3.

Figure 4,

Figure 5,

Figure 6.

Illustrations

Schematic drawing of liquid helium pseudopotentials:

a] conff,gurationspace, . . . bare interaction,

pseudopotential; b) momentum space.

Momentum dependent pseudopotentials which describe the

effective interaction between He atoms in very dilute

(x+o) mixtures of ye in4He, compared with the

corresponding potentials for pure ye and pure ‘$leat

the same

Backf 10W

pressure

density [from Ref. (4)].

potentials in liquid ~e as a function of

[from Ref. (3)].

Comparison of the calculated excitation spectrum in

the vicinity of the roton minimum with experiment,
8

Gnparison with experiment of the polarization

potentinl and variational [(Ref. 9), shown by

triangles] results for the phonon-nmxon-roton

excitation spectrum; in both theoretical calculations,

dynamic mode-mode coupling corrections are neglacted,

Nuclear mitter configuration spnce psoudopotentjnls

w})ich describe the effective interaction between

protons and protons and protons and neutrons; also

shown are the t~nsor force terms, f1P (r) and f~n (r).

The dashed lines depict results when zero point motion

is l]eglected, (From Pjnes, Quadcr and Wombch ( KIW),

in prepnrntjon),



Figure 7.

Figure 8,

Figure 9.

Nuclear matter
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momentumspace

various spin-isospin channels

pseudopotentials in

(from PQW).

A comparison of the polarization potential results for

the density-density response function with those

obtained for free particles, and using Landau theory

(5~o) (from F?JW).

The calculated wavevector dependent static response

functions in four spin-isospin channels (from PQW),
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