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ABSTRACT

Digitally generated solutions of nonlinear stochastic systems are
not unigue but depend critically on the numerical integration algorithm
used. Some theoretical and practical implications of this dependence
are examined. The Ito-Stratonovich controversy concerning the solution
of nonlinear stochastic systems is shown to be more than a theoretical
debate on maintaining Markov properties as opposed to utilizing the
computational rules of ordinary calculus. The theoretical érguments
give rise to practical considerations in the formation and solution of
discrete models from continuous stochastic systems. Well-known numer-
ical integration algorithms are shown not only to provide different
solutions for the same stochastic system but also to correspond to

different stochastic integral definitions.

These correspondences are proved by considering first and second
moments of solutions that result from different integration algorithms
and then comparing the moments to those arising from various stochastic
integral definitions. This algorithm-dependence of solutions is in
sharp contrast to the deterministic and linear stochastic cases in which
unique solutions are determined by any convergent numerical algorithm.
Consequences of the relationship between stochastic system solutions and
simulation procedures are presented for a nonlinear filtering example.
Monte Carlo simulations and statistical tests are applied to the example
to illustrate the determining role which computational procedures play

in generating solutions.
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DIGITAL SIMULATION AND MODELING OF
NONLINEAR STOCHASTIC SYSTEMS

Introduction

Computer simulations of dynamic behavior play a vital role in the
analysis and design of physical systems. An important area of study in
this context is the accuracy and meaning which are to be associated with
the output of the computer model. This is a particularly relevant
question in the field of nonlinear stochastic systems. For linear
stochastic systems, the theoretical basis for'analysis has a firm
footing in mathematical rigor, with many of the main problems tending to
be computational. However, when the system considered is nonlinear,
deeper problems arise which are properly.sfudied through the theory of

stochastic differential equations.

Wienerl was interested in the general probleﬁ of analyzing non-
linear equations with random elements. He was also the first to define
an integral with respect to a stochastic process, but his integral is
defined only for nonrandom integrands.2 Ito3'4 showed how to extend the
integral definition to include random integrands. Ito's work was moti-
vated by the study of diffusive Markov processes and their transition
probabilities., Stratonovichs’6 also developed a stochastic integral as

a means for studying diffusive Markov'processes.

The Ito and Stratonovich integrals agree for linear stochastic
differential equations. One is faced with the problem of interpretétion
of solutions, however, when nonlinear equations are studied. Both the
Ito and Stratonovich theories are self-consistent, although in general
they result in different solutions to the same nonlinear equation. '
Mortensen7 explored this Ito-Stratonovich controversy and concluded that
the choice between the Ito calculus and the Stratonovich calculus is one
of personal preference, with mathematicians preferring the Ito theory
because of its elegance and generality and engineers pfeferring
Stratonovich's theory because of their familiarity with its rules.
Mortensen believes that the safest answer to the stochastic modeling
problem is to use a Monte Carlo computer simulation, thereby dodging the
Ito-Stratonovich controversy.



10

McShane8 made contributions toward unifying the theory of a sto-
chastic calculus. He defined a stochastic integral by a modification of
the procedure which Riemann used in defining the classical integral.

The McShane integral exists under conditions which, in comparison with
the Ito integral, are weaker regarding stochastic properties but
stronger regarding continuity properties, and the Ito and McShane inte-
grals agree when the hypotheses for the existence of both are satisfied.
McShane laid the foundation for a unified theory of stochastic integra-

tion which includes both Lipschitzian and Brownian-motion processes.

Wfighﬁq performed a limited experiment in numerically solving a
specific nonlinear stachastic differcntial equaliun. He noted heuristic
correspondences among the various intcgral definitions and certailn '
numerical integration algorithms, A single sample sclution was gener=
ated by several numerical methods, and the behavior of this solution at
a single point was studied as the integration step size was changed.
This behavior provided preliminary indications of the relationships

among the stochastic integrals and the numerical integratioh algorithms.

This paper examines the relationships of stochastic integrals and
the behavior of solutions generated on the digital computer, using
several well-known numerical integration methods. The next section dis-
cusses the general model to be used. The stochastic integral defini-
tions are presented next, followed by the numerical algorithms and the
correspondences baséd on equivalence of first and second moments. A
nonlinear filtering problem is then considered in this context, and

conclusions are presented in the last section.

Model Development

In modeling physical systems or analyzing equations which arise

from scientifi¢ theory, differential cquations of the form
x(t) = £(x,t)

are uften encdduntered. Here g(t) is the vector of state derivatives and
f(x,t) is a vector of functions which quantitatively explains the evolu-
tion of the system states with time. If the system has random inputs,

then the state equation may be written



£(x,t) + g(thult) | (1)

b

e~
oy
1}

where g(t) is a function denoting the sensitivity of the system to the-

random input u(t), usually modeled as white noise.

The mathematical representation for a physical signal modeled as
white noise is that of a Gaussian process with zero mean and a covari-

ance given by the Dirac é-function, i.e.,

1}
o

E{u(t)}

E{u(t)ut(t + 1)} = Q-8(1) (2)
where E denotes expectation and Q is a constant matrix expressing how
u(t) is correlated with itself. Thus the white noise process has
infinite variance and independent process values at any two distinct
times.

In the scalar case‘of Eq. (1) with g(t) =1, one is confronted with

the integral
t
w(t) =./ u(s)ds . - (3)
0

Because of the pathological nature of white noise, it is difficult to
interpret Eq. (3) rigorously. For systems which are linear in noise
terms, that is, the noise is additive rather than multiplicative, the
difficulty is avoided by simply assuming the absolute convergence of the

integral in Eq. (3) and very useful results obtain, such as covariance

analysis (see Rowland and Holmeslo

). Nonlinear equations require a more
critical evaluation of Egq. (3), however. One'method proposed for deal-

ing with this problem is to define w(t) directly.

Let w(t) be a Gaussian process with the following properties:

w(0)
E{w(t)}
E{w(t)w(s)}

o,
o,
gemin(t,s) - t,s > 0

where q is a constant.

11
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This process was studied by Wiener and is often called the Wiener pro-

ccss or Brownian-motion process. Doobll and Parzen12

proved several
useful properties of the Wiener process. These include the facts that
the'sample functions are almost surely continuous, not differentiable
and not of bounded variation, the process has independent increments,
and the Levy oscillation property holds; i.e., if {a = tgrtyreeerty

= b} is a partition of the interval [a,b] and 4 = max Iti - ti-ll p
then 1

n
. 2

l.i.m, o(w(t.) = w(t, . ))T = qge(b = a) .

450 izl . 1-1

For the scalar nonlinear analog of‘Eq. (1), the Wiener process
turns out to be much more amenable t.o anAalysis than does while nulse.
The nonlinear equation, written in terms of differentials rather than
derivatives, is then given by

dx{t) = f(x,t)dt + g(x,t)dw(t) . (4)

To find a solution of Eq. (4), it suffices to display a stochastic

process x(t) which satisfies

t

ot
x(t) = x(a) + [ £(x(s),s)ds + [ g(x(s),8)dw(s) . (5)
. a

a

If w(t) were of bounded variation, there would be no problem in inter-
preting x(t) in Eqg. (5). However, the last integral in Eq. (5) cannot
be a Lebesque-Stieltjes integral since the Wiener process is not of
bounded variation. We must therefore investigate how the second inte-
gral is defined for stochastic processes g(x,t) and w(t).

Stochastic Integral Definitions

As was mentioned earlier, Wiener was the first to define an inte-
gral with respect to a stochastic process, but his integral is defined
only for nonrandom integrands. Ito showed how to extend the integral
definition to include random integrands, but the integrator is less gen-
eral than in the Wiener integral in that it must be a martingale. Since
the Wiener process is a martingale and the function g(x,t) of Eg. (5) is

random, the Ito integral is more useful than the Wiener integral.



Definition 1 (Ito Integral)

Let z(t) be a martingale process, and supéose there exists a mono-

tone nondecreasing function F such that, if s < t, then
E{lz(t) - z(s)1%} = F(t) - F(s)
with probability 1. Suppose g(x,t) is a measurable function and

[ E{lg(x,t) |2}aF(t) < = .

- 00

If {a = Egrtyreeert, = b} is a partition of .[a,b] and 8 = max |t, - ti—ll'

. i
then the Ito integral is defined to be 1
b A : n-1 :
(I)] g(x,t)dz(t) = l.i.m. > g(x(t;), t )(z(tl+l) - 2(ty)) (6)
a A+0 - fi=1

where the series converges in the mean to a random variable denoted by

the integral on the left in Eq. (6).

Doob has shown that the hypotheses of the theorem imply that g(x,t)
" and the increments (z(t) - z(s)) are independent. From this indepen-
dence and noting that E{z(t) - z(s)} = 0 for z(t)ma martingale, it fol-
lows that the expected value of the Ito integral is zero. The integral
is a martingale and the following equality holds:

t t . t
E{.é gl(x,s)dz(s) .L gz(x,s)dz(s)} = .L R{gl(x,s)gz(xns)}ds N

These properties explain the usefulness of the Ito integral, especially
in the study of Markov processes, since moment calculations are simpli-

fied using the above facts.

In computational operations with the Ito integral, procedures from
ordlnary calculus can no longer be used. ‘For instance, change of vari-
ables and differentiation require very different tréatments. In par-
ticular, suppose x(t) is an Ito process determined by Eg. (4) and
(x(t),t) is a function of x(t) and t, with second-order parﬁial deriv-
atives in x(t) and t, Then ¥(x(t),t) is also an Ito procesas3, and the
so-called Ito differential rule states that

13
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_lae 3¢, 1 3% 2 30
de = {EE + —;f + iq——ig }dt + qgggdw .

Definition 2 (Stratonovich Integral)

Let z(t) be a Markov process with

lim E{(2(t + h) = z(t))/hlz(t) = g} = a(g,t)
h+0 :

[4

lim E{(z(¢t + h) - z('t)_)z/hlz(t). = g} = b(g,t) , and
h+0 . '

lim E{lz(t + h) - z(t)| > 8lz(t) = £} = 0
h0

with a(z,t) and b(z,t) continuous in both arguments and b(z,t) having a
continuous partial derivative 3b(z,t)/dz, Suppose g(z,t) is continuous
in t having a continuous partial .derivative 3g(z,t)/dz,

o«

_/ E{g(z,t)a(z,t)}dt < » and

[ ECg(z,0)1%b(z,t)}aE < = .

Let {a = to,tl,...,tn = b} be a partition of [a,b] and 4 = max Iti+l -
t;l . The Stratonovich integral is defined as 1

n- ] 1

b
(s) [ g(z,t)dz(t) = l.i.m. S 9(glalE ) * 2E))E):

a A>0 i
(z(ti+l) = z(ti)) . (7)

Although the Stfatonovich integral is only defined for integrands
which are functions of the infegrator process, Stratonovich5 showed how
to extend the integral to more general situations by defining a multi-
dimensional integral. 1In particular, if dx(t) and dz(t) are related by
a stochastic differential equation of the form of Eq. (4), then



-b
[ gix(t),e)az(t) -
“a

can be defined. 1If the process z(t) in Definition 2 is a Wiener pro-
cess, then the function a(z,t) = 0 and b(z,t) = q, where q is the vari-

ance parameter of the Wiener process.

McShane integrals are defined in terms of "belated" partitions.
Let D denote a set of real numbers with the interval [a,b] contained in
D. A belated partition of the interval [a,b] is a collection of real
numbers {to,tl,...,tn; rl,rz,...,rn} where a = ;O < tl»<"'< tn = b and

T, is in D for each 1 and 1., < t. .,
1 1 — _1.

Definition 3 (McShane Integral)

Let D be a set of real numbers and [a,b] a closed interval con-
tained in D, Let {to,tl,...,tn; 11,12,..n,rn} be a belated partition of
D with & = max Iti+l - til
satisfying, for some constant K,

lE{z(t) - z(s)lz(t), T < s < t}| < K(t - s)
and
E(lz(t) - 2(s)1%1z(t), t <.s < t} < K(t - s) ,

both with probability 1. If g(x,t) is a measurable process on D which
is L,-bounded and Lo-continuous with probability 1, then the McShane
integral is defined to he

.b n-1

M) [ g(x,t)dz(t) = Lim S g(x(t;), 1) (2(ty ) - z(t;))
‘a ’ A+0 i=0

where the convergence is in probability.

It is seen from the definitions that the iﬁtegrator process is more
general for the McShane integral than for the Ito integral; in particu-
lar, the McShane integrator does not have to be a martingéle. The inte-
grand for McShane's integral is not as general, however, since it is
required to be L2-bounded and L2-continuous and the Ito definition anly
requires mean-square integrability. McShane unified the theory of ordi-
nary and stochastic integrals in the sense that his integral exists and

. -Let z(t) be a stochastic process on [a,b]”

15
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is equal to the ordinary integral when the system inputs are well-
behaved time functions. This situation is not true for the Ito inte-
gral. When the regions of definition overlap, McShane's integral is the

same as whichever of Ito's or the ordinary integral exists.

Stochastic Integrals and Numerical Algorithms

Studying the stochastic integral definitions in the previous sec-
tion, one notices a rather profound conceptual difference in these def-
initions and in the definition of the Riemann integral. This technical
difference arises because of the irregularity of stochastic processes as
compared with deterministic functions. The point of evaluation of the
integrand of a Riemann integral, defined as the limit of Riemann sums,
is determined by the values of tnhe integrand within each subinterval
arising from a partition. The bounds of the function within each sub-
interval determine the point of functional evaluation. This approach is
not true of stochastic integrals. Instead, the evaluation point of the
integrand within each subinterval 1is specified by the definition. The
fixed point of evaluation also differs among the various definitions of
stochastic integrals. This circumstance gives rise to many interesting
features of these integrals.

The necessary properties for the integrand and integrator processes
vary somewhat in the definitions. Also, the properties which the inte-
grals themselves enjoy are different, in some cases profoundly so. But
perhaps the most fundamental difference distinguishing the stochastic
from the deterministic is that the value of the integral is affected by
the evaluation point. The extremely erratic behavior of the stochastic
integrator processes involved, along with the rather surprising fact
that second-order terms do not vanish in the limit as they do in the

deterministic case, helps to explain this phenomenon,

Because of the discrepancies within the theory of stochastic inte-
grals and the differences between it and the deterministic theory, one
is thus led to the possibility that numerical solutions of stochastic
integrals may not provide consistent results. With the increasing util-
ity of digital computers and the greater understanding of stochastic
phenomena at all levels, a deeper understanding of these relationships

becomes necessary.



From familiarity with the integral definitions and some numerical
integration schemes, one can make intuitive correspondences among defi-
nitions and digital integration procedures. The purpose of this section
is to investigate more thorOughlylsome.of these correspondences and to
determine if there is justification for the supposed correlation between

these widely divergent areas.

Since this report is concerned with stochastic integrals, attention
will be restricted to equations of the form dx(t) = g(x,t)dw(t), with
the stochastic process w(t) a Wiener process and g(x,t) a random func-
tion. The deterministic analog of this equa;ion is x(t) = g(x,t), with

g(x,t) no longer random. Solving this-equation involves computing
/g(k,t)dt ,

and, in a similar manner, one can investigate the results of employing
numerical integration procedures in the evaluation of the stochastic

integral
Jatx, erauce)
arising from the above stochastic differential equation.

The Euler method of numerical integration. approximates the differ-
ential equation with a step function:and evaluates the integral of that
‘step function; that is, the equation is assumed constant over each
integration step length, with the constant value over a step length
determined by the functional value at the 'initial point of each sub-
interval. The approximalion is given by

Xi41 = X5 F 9(x35) (Wi = wWy) (8)

where
]

X; = x(ti) .

From Eq. (8), one can calculate the statistics of the solution of a
stochastic equation which has been solved by Euler's method. Specifi-
cally,

17
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E{xi+l} = E{xi} + E{g(xi,ti)]E[wi+l - W,

) = Bix;) (9)

since g(xi,ti) is independent of the Wiener process increment and the

Wiener process has a mean value of zero. It follows that
E{xi} = E{xo} : (10)
for every 1i.
The mean square value is g;ven by

2
i+l

i

E{x } E{xi},+ 2E{xig(xi’ti)(wi+l - wi)}

+ E{gz(xi,ti)(wi+l - wi)z}

2
41 7 W) )

E{x2} + E{g%(xy,t;) JE{(u

E(x3) + aE(g®(x,t;) )ty ~ £;) (11)

which follows from the indepehdence of the noise increment and the in-

tegrand and from the properties of the Wiener process, Recalling the
identity

Var{x} = E{x?} - E%{x} (12)

we obtain, using Eg. (10),

Var{xi+l} = Var{xi} + qE{gz(xi,ti)}(ti+l -ty . (13)

Numerically, Eg. (13) behaves as the integral of E{gz(xi,ti)} .

Calculating the mean and variahce of a stochastic process arising
from an Ito iﬁtegral may be accomplished by using properties resulting
from the Ito definition of a stochastic integral (see Doobll). These
properties are the following:



-t

E(r [ g(s)aw(s)} =0 - (14)
A |
t : t t .
B(I[ gy(s)aw(s) I [ g,(s)aw(s)} = q Elg (s)gy(s)kds  (15)
a a - a

where the "I" indicates the integral is to be interpreted in the sense
of Ito. ; '

Given the stoéhaétic diﬁférengigl equatién
é;(ti = g(x;t)dw(td',A » (16)
we have the equivaient‘inﬁeérai equation
S c ‘»'t o
Cx(e) = x(a) + 1] g(x,s)du(s) . (17)
From Egs. (14) and'(li), the mgan‘valuerf #(t) is

E(x(t)} = E(x(a)} . . (18)

The variance of x(t) may be computed by noting that the initial condi-

tion x(a) is independentroﬁ'

t
'I./ g(x,s)dw(s)
a

and by using Egs. (14) and (15) and the Identity (12). Thus

2 . t
E{x“(a)} + 2E{x(a) I./ g(x,s)dw(s)}
: a

E{x2(t)}

t .
+ BUI [ g(x,5)au(s)]°)
a :
2 v_o2,
= etx’(a)} + qf Efg?(x,s)}ds (19)
a

19



and the variance is then

t

Var{x(t)} = var{x(a)l}l + q.[ E{gz(xrs)}ds . (20)

a

The mean value of Euler's method, given by Eg. (10), is the same as
the mean value of the Ito integral in Eq. (18). Similarly, Egs. (13)
and (20) indicate that the variances agree also. It thus is concluded
that numerical integration by Euler's method corresponds to the Ito
integration of stochastic differential equations in .the sense that the

first two moments coincide.

Runge-Kutta integration methods are somewhat more sophisticated
than Euler's method in that they use more than .a simple slope for their
calculations. They are often used to generate preliminary values for
other types of algorithms which are not self-starting. Rather than
using the first point in each subinterval of interest as the point of
evaluation, as in the Euler method, Runge-Kutta methods use points
within a subinterval to generate the solution at the end of the inter-
val. A typical second-order Runge-Kutta method'(RRZ) is '

X. 1 = X + 2(g(xs,t:) + g(x, + A%, t:))(Wsrq = Wi) (21)
i+l i 2 i’-i i i i+l i

From Eq. (21), we can determine the statistics of "a éoiution geti~

erated by this Runge-Kutta method. The expected value is

E{xi“"l} = E{xl} + %E{(g(xlltl) + g(xl + dx'ti))(wi+l - wl)}

E{xi} + %Efg(xi + dx,ti)(wi+l - wi)} . (22)

From the differentiability of g{x,t), assumed in Definition 2, we have

. dx,t.) - g(x.,t.)
3g(x') _ g(xl + 'y i’”i
X Ix r X3 SxT <Xy 0

(23)

and, consequently,

- (99(x") -
glxy + ax,t;) (w0 = wy) = (SR gl e ) (W - W)



ag(x') 2
(xgrt (W30 = wy)

ax i
gt ) (Wi - W) . (24)
Thus
E{xi 1 = E'{x-i'} + %qE{g(xi'ti)ig;—il}(tiﬂ - t) (25)
since X, is independentiof (wi+i - wi), and this is the nuﬁerical equiv-
alent of %q times the integral of E{g(xi,ti)a (:')} .

To find the varianqe, we‘first calculate from Egs. (22) and (24)

2 2
E (x4 % - w7

gl Cagixt)
} -'E {xi} f E{xi}Efg(xi,ti)——————(wi+l

S | ' S oag(x'), -2 X
+ g ey e 2T ey - wi) %) (26)
To find the mean.square-Valderf xi+l,,we make use of Egs. (21) and (24)

to obtain ‘ ‘ ’

xfy = (xp 4 %9<X§'ti’33%§Ll‘wi+1 = u)? gt (= W
= %} ; %gz‘xi'tj’(iﬂgéll’z(wi+1 - Wi)4-+ g% (%3, t5) Wy - W)
+ xgxg e LB w0 - w)? e 2xgg e e ) (g - W)
v gt ey e Iy -y (27)

from which it follows that

2, _ .2y L1l 2 3g(x') 2 o4
E{xi+l} = E{xi} + ZE{g (xifti)(—g3;__) (Wi wi) }

)

+ QBlgP(xy 80k ) = ty) + Elx g(xg,t;

21



igiﬁll(w.

2
7% } . (28)

Eqs. (26) and (28) then combine to provide the variance of Xi,1 as

var{x; ,} = Var{x;} + qE{g (xi,t) M08 = £))

1 ag(x') 2
+ zVar{g(xi,ti)%r(wi+l - wi) b . (29)

Noting that Lhe Runge-Kutta algorithms employ functional evalua-
tions within each integration step and that this is alse the case for
the Stratonovich integral, we now determine the relationship between the
moments of these methods and the moments of the Stratonovich intqual.
Stratonovich5 introduced the stochastic integral bearing his name and
proved the fundamental equality

t t .
s [ g(x(s),s)dw(s). = I [ g(x(s),s)du(s)
a a o

t
a(x(s),s) AAEELSle - (30)

+
rﬂh

)

Exploiting this relationship between the Stratcnov1oh and Ito inteyrals
allows the computation of the mean resulting from the dlfferentlal
equation, Eq. (16), when the equation is solved in the Stratonovich

sense. Thus

t

E{x(t)} = E{x(a)} + E{S [ g(x(s),s)dw(s)}
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In a similar manner, the variance of the Stratonovich solution may
be found. '
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After subtracting the square of the mean and performing some algebraic

manipulation, we obtain -

var(x(t)} = E{x*(a)} - B2(x(a)} + a | E{g?(x(s),s)}ds
: - a

. t » .
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The last term vanishes, however, since the integrals are independent.

We now have the result

t 2
Var{x(t)} = Var{x(a)}l + q_[ vE{g (x(s),s)lds
: a
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t L - , . .
+ %qZVar{yé g(x(s),s)agéﬁ—)ds} . (33)

The mean value of the Runge-Kutta method, given by Eq. (25), is now
seen to be the numerical equivalent of the mean value of the Stratono-
vich integral, given by Eq. (31). Comparison of Egs. (29) and (33)
indicates that the variances of the Runge-Kutta method and the Straton-
ovich integral also éoincide. It thus is concluded that numerical
integration by this Runge-Kutta method corresponds to Stratonovich
integration of stochastic differential equations'in the sense that the

first two moments are identical.

Predictor methods are another type of numerical integration algo-
rithm. A k-th order predictor estimates the value of x, , from the
previous values RKirXg_qreeerXi i Predictor methods are thus multi-
step and require starting values. These methods do not introduce cor-
relation between the integrand and the noise process because different
noise increments are used for“each calculated value of X Functional
evaluations prior to the current interval are required for these
methods. This fact suggests the correspondence.of predictor methods

with the McShane definition of the stochastic integral.

The rationale behind the development of the McShane integral was
the construction of a theéory of stochastic systeﬁs which would also
provide results consistent with deterministic systems. This objective
was achieved without introducing profound differences in the existing
stochastic theories. Consequently, solutiohs of McShane integrals
arising from practical applications agree with results obtained from
Ito's theory. More precisely, if the integrator process is a martingale
and the integrand is bounded and continuous in the L, sense, then the
Ito and McShane integrals agree. The Wiener processais a martingale and
the class of Lz—bounded and L2—continuous functions is general enough to
include systems of practical interest. Thus, the McShane and Ito
theoretical solutions for those systems agreée. More generally, the
McShane integral agrees with the Ito integral when the hypotheses for
the existence of both are satisfied, and the McShane integral agrees
with the Riémann integral in the case of ﬂipschitzian ihputs. These
facts lead to the conclusion that the predictor methods should cor-
respond to the Ito stochastic integral.



The Adams-Bashforth second-order predictor method 1is givén by the

formula

<«

_ 1 o
xi+l = xi +. '2‘(39()(1) - g(xl_l))(wl+l = wl) . (34)

The mean value of x

i+1 f:om:Eq. (34) is giyen by

- wl)}

CBixgyp) = Bl 4 3Bl (W

- %g{g(giﬁi)(wi+lv5 wi)} = Elx} . (35)

and the mean value equivalence with the Ito integral holds.

To analyze the variance of Xip1r We first calculate

x$o1 = X} + %3 Ga(x) LTS RRAS TS U SR
+ 303a(x) - g(xy_ 12wy = w;)? (36)
and then obtain
E{X§+l} = E{xf} 4‘%E{[3g(xi) - g(xi_l)]z(wi+l - wi)z} (37)

and, from the independence of the noise increment and the other expres-

sions in the second term on the right in Eq. (37), we find
2 .20 1 . 2
E{xiy b = Blxj} + qaB{39(x;) - g(x;_;)17Hde . (38)
Noting that

ag(x') _ 9(%y) = g(x;_q)

; = . < x' < X, ‘ (39)
X X:. - X, r X -
i T1=-1
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we find that

[3g(x;) - g(x;_)12 = (3L Dx, = %, )+ 29(x; 1))
3 (x )
i + lzg(x1 l) (xi - xi-l)
., ‘
+4g7(x; ) . (40)

Equation ('38) then becomes

2}4¢

' 2 _ 2 9 2 y (99(x") -
E(x{,,} = B{x}) + qaBla® (x; ) (ALEDL) 2w, - w, )

] (x )

+ 3qE{g? (x5_7) (w, - w;_q)lat

+ qE{gz(xi_l)}dt . ' (41)

It is easy to see that the second and third terms on the right vanish
since they are of order higher than one in dt. We thus have the result
that

Var{xi+l} = Var{x 1+ qE{g (X l)}dt : (42)

which is ot the same form as Ey. (20), Lhe variance of the Ituv iutegral,

These results show that the correspondences améng stochastic inte-
gral definitions and numerical integration algorithms are not merely
intuitive concepts. 1Instead, the Ito-Euler-predictor association and
the Stratonovich-Runge-Kutta association are valid classifications based
on the equivalence of first and second moments. In light of these
results, it is not surprising that the digital simulation of a nonlinear
stochastic system should dive rise to different solutions based on the
method of numerical integration. Indeed, this difference of solutions
will appear digitally whenever the Ito and Stratonovich integrals pro-
vide different solutions theoretically.13 The next section illustrates

these results through the simulation of a nonlinear filter.



Example

A broad area of general interest in the field of stochastic systems
is filtering theory. The form of the optimal filter in the case of
linear stochastic systems with white Gaussian noise inputs is widely
known, but, in the nonlinear case, no such generally applicable optimal
results have been found. The estimation of the state of a physical
system, based upon data corrupted by noise, is easily accomplished if
the probability distribution of the syStem state, conditioned on the
measurement data, is known for all times. The problem thus becomes that
of describing the time history of this distribution and the specifica-
tion of the structure of the filter whose output is this distribution
when the input is the given input measurement function.

Stochastic differential equations have been used in the analysis of
this optimal nonlinear filtering problem. The study of the evolution of
the probability distribution of the system state by means of stochastic
differential equation$ was initiated by Strat‘ononvich.6 In these equa-
tions, the'observed‘noisy input time function is the forcing term. The
result of these studles has been the spec1f1cat10n of the probability

distribution in terms. of a nonllnear stochastic d1fferent1a1 equation.
Consider the observation process defined by

dy(t) = 25 dt
. B4

w(t) (43)

mA‘l—‘

where o and B8 are constants. The optimal estimate for the posterior
probability distribution of the observed process was derived by Wonham14

and is given by the stochastic equatlon
= 2 2 2,
dx(t) = - g"x(t) (1 - x7(t))dt - a(l - x"(t))dt

+ B(1 - x2(t))dw : (44)

Equation (44) defines the structure of an ideal filter which generates
the optimal estimate of the posterior distribution from the observed

input function,
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The simulation of this example was performed with initial condition
x(0) = 0.0. The integration step size was chosen to be approximately
0.002 second, and 100 sample runs were ensemble-a?eraged to provide the
results. The parameters a and 8 were'given the same value, a = B8 = =-2.0,
and the variance parameter was chosen to be unify.‘ The solid lines of
Figures 1 and 2 give the simulation results for the RK4 and Euler
numerical integration methbds, respectively. The AB2 method resulted in
the same mean and variance as the Euler method. The mean value geher-
ated by the RK4 method is different, however. There is about a 30%
difference in the mean value after 1 second. VThe variance estimates for-
all the methods appear to achieve a steady—stété value of approximately
one-fourth., The Euler method 6vershoots this value somewhat and damps
out rather slowly, while the RK4 method achieves the value quickly and
then exhibits small random perturbations.
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Figure 1. Ensemble-Averaged Mean and Variance (RK4)

Confidence intervals at a significance level of 95% are shown for
the simulation results by dashed lines. From approximately t = 0.4
second to t = 1 second, the mean generated by the Runge-Kutta method
lies outside the confidence interval for the Euler method and the Euler
mean value lies outside the Runge-Kutta confidence interval for the same
time period. For times near 1 second, the confidence intervals do not
overlap. These results show that the generated mean values are in fact
different time functions and not merely different approximations to the
same one. The variance estimates and associated confidence intervals
exhibit the same type behavior, although not to the same exéent. About
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Figure 2. Ensemble-Averaged Mean and Variance (Euler)

40% to 50% of the variance trajéctories lies outside the confidence
intervals associated.with the different type of numerical method.

Hence, in evaluat;ng the performance of the filter, the effect of
the numerical integration glgorithm must be accounted for. The results,
and conclusions, of an analysis of the filter dynamics would seem to be
somewhat arbitrary, to the extent that they ignore this algorithm de-

pendence.

Conclusions

It has been shown that digitally generated solutions of nonlinear
stochastic systems are not unique. Correspondences among stochastic
integral definitions and numerical integration algorithms based on the
point of evaluation of the integrand have been validated in the sense of
equivalence of first and second moments. Thus digital simulations of
the same system result in different solutions whenever there is a dif-
ference in the Ito and Stratonovich solutions. This divergence has been
illustrated through the simulation of an optimal nonlinear filter.
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