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ABSTRACT 

Digitally generated solutions of nonlinear stochastic systems are 

not unique but depend critically on the numerical integration algorithm 

used. Some theoretical and practical implications of this dependence 

are examined. The Ito-Stratonovich controversy concerning the solution 

of nonlinear stochastic systems is shown to be more than a theoretical 

debate on maintaining Markov properties as opposed to utilizing the 

computational rules of ordinary calculus. The theoretical arguments 

give rise to practical considerations in the formation and solution of 

discrete models from continuous stochastic systems. Well-known numer­

ical integration algorithms are shown not only to provide different 

solutions for the same s~ochastic system but also to correspond to 

different stochastic integral definitions. 

These correspondences are .proved by considering first and second 

moments of solutions that result from different integration algorithms 

and then comparing the moments to those arising from various stochastic 

integral definitions. This algorithm-dependence of solutions is in 

sharp contrast to the determ.inistic and linear stochastic cases in which 

unique solutions are determined by any convergent numerical algorithm. 

Consequences of the relationship between stochastic system solutions and 

simulation procedures are presented for a nonlinear filtering example. 

Monte Carlo simulations and statistical tests are applied to the example 

to illustrate the determining role which computational procedures play 

in generating solutions. 
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DIGITAL SIMULATION AND MODELING OF 
NONLINEAR STOCHASTIC SYSTEMS 

Introduction 

Computer simulations of dynamic behavior play a vital role in the 

analysis and design of physical systems. An important area of study in 

this context is the accuracy and meaning which are to be associated with 

the output of the computer model. This is a particularly relevant 

question in the field.of nonlinear stochastic systems. For linear 

stochastic systems, the theoretical basis for ·analysis has a firm 

footing in mathematical rigor, with many of the main problems tending to 

be computational. However, when the system considered is nonlinear, 

deeper problems arise which are properly ~~udie~ th~ough the theory of 

stochastic differential equations. 

hl. 1 nlener was 

linear equations 

an integral with 

defined only for 

interested in the geneial problem of analyzing non­

with random elements. He was also the first to define 

respect to a stochastic process, but his integral is 

nonrandom integrands. 2 Ito3 ' 4 showed how to extend the 

integral definition to include iandom integrands. Ito's work was moti­

vated by the study of diffusive Markov processes and their transition 

probabilities. Stratonovich 5 ' 6 also developed a stochastic integral as 

a means for studying diffusive Markov processes. 

The Ito and Stratonovich integrals agree for linear stochastic 

differential equations. One is faced with the problem of interpretation 

of solutions, however, when nonlinear equations are studied. Both the 

Ito and Stratonovich theories are self-consistent, although in general 

they result in different solutions to the same nonlinear equation. 

Mortensen
7 

explored this Ito-Stratonovich controversy and concluded that 

the choice between the Ito calculus and the Stratonovich calculus is one 

of personal preference, with mathematicians preferring the Ito theory 

because of its elegance and generality and engineers preferring 

Stratonovich's theory because of their familiarity with its rules. 

Mortensen believes that the safest answer to the stochastic modeling 

problem is to use a Monte Carlo computer simulation, thereby dodging the 

Ito-Stratonovich controversy. 

9 
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McShane8 made contributions toward unifying the theory of a sto­

chastic calculus. He defined a stochastic integral by a modification of 

the procedure which Riemann used in defining the classical integral. 

The McShane integral exists under conditions which, in comparison with 

the Ito integral, are weaker regarding stochastic properties but 

stronger regarding continuity properties, and the Ito and McShane inte­

grals agree when the hypotheses for the existence of both are satisfied. 

McShane laid the foundation for a unified theory of stochastic integra­

tion which includes both Lipschitzian and Brownian-motion processes. 

Wrightq performed a limited experiment in numerically solving a 

specific nonlinear sto~h~stic differential egualiun. He noted heuristic 

correspondences among the various integral definitions and certain 

numerical integration algorithms, A singl.e s~mplQ solution wa~ g~n~L­

ated by several numerical methods, and the behavior of this solution at 

a single point was studied as the integration step size was changed. 

This behavior provided p~eliminary indications of the relationships 

among the stochastic integrals and the numerical integration algorithms. 

This paper examines the relationships of stochastic integrals and 

the behavior of solutions generated on the digital computer, using 

several well-known numerical integration methods. The next section dis­

cusses the general model to be used. The stochastic integral defini­

tions are presented next, followed by the numeri~al algorithmo and the 

correspondences based on equivalence of first and second moments. A 

nonlinear filtering problem is then considered in this context, and 

conclusions are presented in the last section. 

Model Development 

In modeling physical systems or analyzing equations which arise 

from scientific theory, nifferential equations u[ the rorm 

are often encountered. • Here ~(t) is the vector of state derivatives and 

f(~,t) is a vector of functions which quantitatively explains the evolu­

tion of the system states with time. If the system has random inputs, 

then the state equation may be written 



( 1) 

where ~(t) is a function denoting the sensitivity of the system to the· 

random input ~(t), usually modeled as white noise. 

The mathematical representation for a physical signal modeled as 

white noise is that of a Gaussian process with zero mean and a covari­

ance given by the Dirac 6-function, i.e., 

E{~(t)} = 0 , 

( 2) 

where E denotes expectation and Q is a constant matrix expressing how 

~(t) is correlated with itself. Thus the white noise process has 

infinite variance and independent process values at any two distinct 

times. 

In the scalar case of Eq. (1) with g(t) = 1, one is confronted with 

the integral 

--It w(t) u(s)ds • 
0 

( 3) 

Because of the pathological nature of white noise, it is difficult to 

interpret Eq. (3) rigorously. For systems which are linear in noise 

terms, that is, the noise is additive·rather than multiplicative, the 

difficulty is avoided by simply assuming the absolute convergence of the 

integral in Eq. (3) and very useful results obtain, such as covariance 

analysis (see Rowland and Holmes10 ). Nonlinear·equations require a more 

critical evaluation of Eq. (3), however. One·method proposed for deal­

ing with this problem is to define w(t) directly. 

Let w(t) be a Gaussian process with the following properties: 

w( 0) = 0 

E{w(t)} = 0 

E{w(t)w(s)} = q•min(t,s) t,s > 0 

where q is a constant. 

11 



12 

This process was studied by Wiener and is often called the Wiener pro­

cess or Brownian-motion process. Doob11 and Parzen12 proved several 

useful properties of the Wiener process. These include the facts that 

the sample functions are almost surely" continuou-s, not differentiable 

and not of bounded variation, the process has independent increments, 

and the Levy oscillation property holds; i.e., if {a= t 0 ,t1 , ••• ,tn 

= b} is a partition of the interval [a,b] and~= m~x lti- ti_ 1 1 

then 

l.i.m. 
~+0 

For the scalar nonlinear analog of Eq. (1), the Wiener process 

turns out to be much more ameQgQle to rtnAlyMiE th.:1n do~~ wl1iLt= uulse. 

The nonlinear equation, written in terms of differentials rather than 

derivatives, is then given by 

dx(t) = f(x,t)dt + g(x,t)dw(t) • 

To find a solution of Eq. (4)r if suffices to display a stochastic 

process x(t) which satisfi~s 

+ /
t t 

x(t) = x(a) f(x(s) ,s)ds + J g(x(s) ,s)dw(s) • 
a a 

( 4) 

( 5) 

If w(t) were of bounded variation~ there would be no problem in inter­

preting x(t) in Eq. (5). However, the last integral in Eq. (5) cannot 

be a Lebesgue-Stieltjes integral since the Wiener process is not of 

bounded variation. We must therefore investigate how the second inte­

gral is defined for stochastic processes g(x,t) and w(t). 

StoChastic Integral Definitions 

As was mentioned earlier, Wiener was the first to define an inte­

gral with respect to a stochastic proce~s, but his integral is defined 

only for nonrandom integrands. Ito showed how to extend the integral 

definition to include random integrands, but the integrator is less gen­

eral than in the Wiener integral in that it must be a martingale. Since 

the Wiener process is a martingale and the function g(x,t) of Eq. (5) is 

random, the Ito integral is more useful than the Wiener integral. 



Definition 1 (Ito Integral) 

Let z(t) be a martingale proc~ss, and suppose there exists a mono­

tone nondecreasing function F such that, if s < t, then 

. 2 
E{lz(t)- z(s)l} = F(t)- F(s) 

with probability 1. Suppose g(x,t) is a measurable function and 

!"" E{lg(x,t)! 2 }dF(t) <co. 
-ao 

If {a= t 0 ,t1 , •.• ,tn = b} is a partition of .[a,b] and !J. = ~fx lti- ti_1 1, 
then the Ito integral is defined to be 

b 
(I) J g(x,t)dz(t) 

a 

n-1 
= 1. i. m. L: g: ( x ( t i ), t i) ( z ( t i + 1 ) - z ( t i ) ) 

!J.+O · ' i=l 
( 6) 

where the series converges in the mean to a random variable denoted by 

the integral on the left in Eq. (6). 

Doob has shown that the hypotheses of the theorem imply that g(x,t) 

and the increments (z(t) - z(s)) are independent. From this indepen­

dence and noting that E{z(t) - z(s)} = 0 for z(t) a martingale, it fol­

lows that the expected value of the Ito integral is zero. The integral 

is a martingale and the following equality holds: 

J
t 

E{ g 1 (x,s)dz(s) 
a J

t 
g~(x,s)dz(s)} = 

a 

These properties explain the usefulness of the Ito integral, especially 

in the study of Markov processes, since moment calculations are simpli­

fied using the above facts. 

In ~nmput~tional operations with the Ito integral, procedures from 

ordinary calculus can no longer be used. For instance, change of vari­

ables and differentiatio~ require very dif~erent tr~atmants. In par­

ticular, suppose x(t) is an Ito process determined by Eq. (4) and 

~(x(t),t) is a function of x(t) and t, with second-order partial deriv­

atives in x(t) and t. Then ~(x(t),t.) is also an Ito process, and t'he 

so-called Ito differential rule states that 

13 
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Definition 2 (Stratonovich Integral) 

Let z(t) be a Markov proces~ with 

lim E{(z(t +h)- z(t))/hlz(t) = E;} = a(~,t), 
h+O 

lim E{(z(t +h) - z(~)) 2 /hlz(t) = ~} = b(~,t) , and 
h+O 

1 im E { I z ( t + h ) - z ( t ) I > 6 I z ( t ) = E;, } = 0 
h+O 

with a(z,t) and b(z,t) continuous in both arguments and b(z,t) having a 

continuous partial derivative ab(z,t)/3z, Suppose g(z,t) is continuous 

in t hav1ng a continuous parti~l .derivative 3g(z,t)/3z, 

~~ E{g(z,t)a(z,t}}dt < m and 
-~ 

f
~ 2 

E(lg(z,t)l b(z(t)}dt < ~. 
_,.. 

Let {a= t 0 ,t1 , •.• ,tn = b} be a partition pf [a,b] and~= 

til • The Stratonovich integraL is defined as 

f
b 

(S) g(z,t)dz(t) = 
a 

1. i. m. 
~+0 

max 
i 

lti+l-

( 7 ) 

Although the Stratonovich integral is only defined for integrands 

which are functions of the integrator process, Stratonovich 5 showed how 

to extend the integral to more general situations by defining a multi­

dimensional integral. In particular, if dx(t) and dz(t) are related by 

a stochastic differential equation of the form of Eq. (4), then 



.( b g (X ( t) , t) d Z ( t) 

can be defined. If the process z(t) in Definition 2 is a Wiener pro-

cess, then the function a(z,t) = 0 and b(z,t) = q, where q is the vari­

ance parameter of the Wiener process. 

r>lcShane integrals are defined in terms of "belated" partitions. 

Let D denote a set of real numbers with the interval [a ,b] contained in 

D. A belated partition of the interval [a ,b) is a co.llection of real 

numbers {t 0 ,t1 , ••. ,tn; r 1 ,r 2 , ••• ,rn} where a= t 0 < t 1 .<···< tn =band 

r. is in D for each i and r. < t .. 
1 1 - 1. 

Definition 3 (McShane Integral) 

Let D be a set of real numbers and [a,b) a closed interval con­

t··ained in D. Let {t0 ,t1 , ••• ,tn; r 1 ,r 2 , •• ,.,rn} be a belated partition of 

D with t:; =max lti+l- til Let z(t) be a stochastic process on [a,b)··, 

satisfying, for some constant K, 

IE{z(t)- z(s)lz(T), r < s < t}l < K(t- s) 

and 

E { I z ( t ) - z ( s ) I 2 I z ( T ) , T < . s < 0 t } ~ :K ( t - s ) , 

both with probability 1. If g(x,t) is a measurable process on D which 

is L2-bounded and L2-continuous with probability 1, then the McShane 

integral is definea to hA 

(M) rb g(x,t)dz(t) 
a 

n-1 
=lim \ g(x(ri)'ri)(z(ti+l)-:- z(ti)) 

t:;+O i=O 

whArP the convergence ic in probability. 

It is seen from the definitions that the integrator process is more 

general for the McShane integral than for the Ito integral; in particu­

lar, the McShane integrator does not have to be a martingale. The inte­

grand for McShane's integral is not as general, however, since it is 

required to be L2-bounded and L2-continuous and the Ito definition only 

requires mean-square integrability. McShane unified the theory of ordi­

nary and stochastic integrals in the sense that his integral exists and 

15 
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is equal to the ordinary integral when the system inputs are well­

behaved time functions. This situation is not true for the Ito inte­

gral. When the regions of definition overlap, McShane's integral is the 

same as whichever of Ito's or the orqinary integral exists. 

Stochastic Integrals and Numerical Algorithms 

Studying the stochastic integral definitions in the previous sec­

tion, one notices a rather profound conceptual difference in these def­

initions and in the definition of the Riemann integral. This technical 

difference arises because of the irregularity of stochastic processes as 

compared with deterministic functions. The point of evaluation of the 

integrand of a Riemann integral, defined as the limit of Riemann sums, 

~s determin~d ~Y tfi~ values of tne integrand within each subinterval 

arising from a p~rtition. The boupqs of the function within each sub­

interval determine the point of functional evaluation. This approach is 

not true of stochastic integrals. _Instead, the evaluation point of the 

integrand within each subinterval is specified by the definition. The 

fixed point of evaluation also differs among the various definitions of 

stochastic integrals. This circumstance gives rise to many interesting 

features of these integrals. 

The necessary properties for the integrand and integrator processes 

vary somewhat in the definitions. Also, the properties which the inte­

grals themselves enjoy are diffe~ent, in some cases profoundly so. Hut 

perhaps the most fundamental difference distinguishing the stochastic 

from the deterministic is that the value of the integral is affected by 

the evaluation point. The extremely erratic behavior of the stochastic 

integrator processes involved, along with the rather surprising fact 

that second-order terms do not vanish in the limit as they do in the 

deterministic case, helps to explain this phenomenon. 

Because of the discrepancies within the theory of stochastic inte­

grals and the differences between it ~nd the deterministic theory, one 

is thus led to the possibility that numerical solutions of stochastic 

integrals may not provide consistent results. With the increasing util­

ity of digital computers and the greater understanding of stochastic 

phenomena at all levels, a deeper understanding of these relationships 

becomes necessary. 



From familiarity with the integral definitions and some numerical 

integration schemes, one can make intuitive corresponderices among defi­

nitions and digital integration.procedure~. The purpose of this section 

is to investigate more thoroughly some of these corr~sponde~ces and to 

determine if there is justification for the supposed corr~l~tion between 

these widely divergent areas. 

Since this report is concerned with stochastic integrals, attention 

will be restricted to equations of the form dx(t) = g(x,t)dw(t), with 

the stochastic process w(t) a Wiener process and g(x,t) a random func­

tion. The deterministic analog of this equation is x(t) = g(x,t), with 

g(x,t) no longer random. Solving this equation involves computing 

Jg(~,t)dt , 

and, in a similar manner, one can investigate the .results of employing 

numerical integration procedures in the evaluation of the stochastic 

integral 

Jg(x,t)dw(t) 

arising from the above stochastic differential equation. 

The Euler method of numerical integration approximates the differ­

ential equation with a step function and evaluat~s the integral of that 

step function; that is, the equation is assumed constant over each 

integration step length, with the constant val~e over a step length 

determined by the functional value at the initial point of each sub­

.iul:.~Lvdl. Th~ dfifii:OXimaLion is given by 

( 8) 

where 

From Eq. (8), one can calculate the statistics of the so~ution of a 

stochastic equation which has been solved by Euler's method. Specifi­

cally, 

17 
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E{xi+l} = E{x.} + E{g(x. ,t.) )E{w.+l - w.} 
l . l l· l l 

= E {X. } 
l 

( 9) 

since g(x. ,t.) is inde~endent of tne wiener process increment and the 
l l 

wiener proce$S has a mean value of zero. It follows that 

( 10) 

for every i. 

The me~n square value is given by 

2 2 
+ E{g (x. ,t. )(w.+l - w.) } 

l l l l 

( 11) 

which follows from the indep~ndence of the noise increment and the in­

tegrand and from the properties of the wiener proces$, Recalling thP. 

identity 

we obtain, using Eq. (10), 

Var{xi+l} 

2 Numerically, Eq. (13) behaves as the integral of E {g (x. ,t.)} • 
l l 

(12) 

(13) 

Calculating the mean and variance of a stochastic proceRR ~rising 

from an Ito integral may be a~complished by using properties resulting 

from the Ito definition of a stochastic integral (see Doob
11

). These 

properties are the following: 



E{I J 
a 

t 

' . t 

EUJ g(s)qw(s)} = 0 
a 

t 
= q J . E{g 1 (s)g 2 (s) }ds 

a 

( 14) 

( 15) 

where the ~I~ indicates the integr~l is to be interpreted in the sense 

of Ito. 

Given the stochaatic Cli~f~reniial equatioq 

dx(t) = g(x,t)dw(t) , 

we have the equivalent integral equation 

. t 
X ( t) = X (a) + I J g (X 1 S) dw ( S) • 

a 

From Eqs. (14) and (i7~ 1 the mean value of x(t) is 

E{x(t)} = E{x(a)} . 

(16) 

(17) 

(18) 

The variance of x(t) may qe comput;.ed by noting that the initial condi­

tion x(a) is independent ot 

I f
t 

g(x,s)dw(s) 
a 

and by using Eqs. (14) and (15) and the Identity (12). Thus 

2 2 I Jt E{x (t)} = E{x (~)} + 2E{x(a) g(x,s)dw(s)} 
a 

i t 2 
+ E{[I g(x,s)dw(s)] } 

a . 

= E {X 2 ( a) } + q J t. E { g 2 (x ,s) } d s 
a 

(19) 

19 
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and the variance is then 

l
t 2 

Var{x(t)} = Var{x(a)} + q E{g (x,s)}ds • 
a . 

(20) 

The mean value of Euler•s method, given by Eq. (10), is the same as 

the mean value of the Ito integral in Eq. (18)r Similarly, Eqs. (13) 

and (20) indicate that the variances agree also. It thus is concluded 

that numerical integration by Euler•s method corresponds to the Ito 

integration of stochastic differential equations in .the sense that the 

first two moments coincide. 

Runge-Kutta integration methods are somewhat more sophisticated 

than Euler•s method in that they use more than .a simple slope for their 

calculations. They are often used to generate preliminary values for 

other types of algorithms which are not s~lf-starting. Rather than 

using the first point in each subinterval of interest as the point of 

evaluation, as in the Euler method, Runge-Kutta methods use points 

within a subinterval to generate the solution. at the end of the inter­

val. A typical second-order Runge-Kutta method (RK2) is 

( 21) 

From Eq. (21), ~e can determine the stdtistics of~~ sorution gen­

erated by this Runge-Kutta method. The expected value is 

(22) 

From the differentiability of g(x,t), assumed in Definition.2, we have 

ag (X 1 
) = 

ax 

and, consequently, 

g(x. + dx,t.) - g(x. ,t.) 
~ 1x 1 1 , xi< x• < xi+l , 

( +d t)( ) =(ag(x•)dx+ ( t))( ) g. xi x, i wi+l - wi ax g xi' i wi+l - wi 

(23) 



( 24) 

Thus 

( 2 5) 

since X. is independent of (wi+l w. ) , and this is the numerical equiv-
1 

~ 1 ag (X I ) 
alent of times.the int~gral of E{g(xi,ti) 3x } . 2 

To find the variance, we first calculate from Eqs. (22) and (24) 

E2 { } E2 {xi}. . . E.· {. } E { . (. t ) ag (xI ) ( -. w. ) 2} 
Xi+ 1 = + Xi · g x.i' i . a X W i + 1 1 

( 26) 

To find the mean. square valu~ of ;xi+l, we make use of Eqs. ( 21) and ( 24) 
to obtain 

. )a<J(x')( )2 2 ( t )( ) + X. g (X. 1 t. a W. +.l - W. + X. 9 X. , . W. +l - W. 
·1 1 1 X 1 1 1 1 1 1 1 

(27) 

from which it follows that 

21 
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ag(x')(w 
ax i+l (28) 

Eqs. (26) and (28) then combine to provide the variance of xi+l as 

Var{xi:+-1} 

1 { ag(x') 2} + -4Var g(x. ,t.) a (w.+l ..,. w.) 
~ ~- . X ~ ~ 

(29) 

Noting that Ll1~ Runge-Ku~~a algorithms employ functional evalua­

tions within each integration step and that thiR i~ also t~e caBe for 

the Stratonovich integral, we now determine the relationship between the 

moments of these methods and the moments of the Stratonovich inteqral. 

Stratonovich5 introduced the stochastic int~gr~l bearing hi~ name and 

proved the fundamental equality 

t 
S 1 g(x(s),s)dw(s). 

a 
I i

t 
= g(x(s),s)dw(s} 

a 

+ 1 It , , > > ag(x(s} ,s)n~ 2<I a q ~ S r S dX . ( 30) 

Exploiting this relationship between the Str.atqnoviah and Ito integrals 

allows the computation of the mean resulting from the differential 

equation, Eq. (16), when the equation is solved in the Stratonovich 

sense. Thus 

t 
E{x(t)}, = E{x(a)} + E{S L g(x(s),s)nw(s)} 

a 

t 
= E{x(a)} + E{I 1 g(x(s),s)dw(s)} 

a 

= E{x(a)} + ~E{[t g(x(s),s)ag~:')ds} (31) 
a 



In a similar mann~r, the variance of the Stratonovich solution may 

be found. 

E{x 2 (t)} = E{[x(a.) +sit g(x(s),s)dw(s)) 2 } 
a 

t 
= E{x~(a)} + 2E{x(a)[I J g(x(s),s)dw(s) 

a 

+ -kjt g(x(::>),s)ag(x' )dsl} 
2 . . ·· ax 

a 

.. . ~ 

+·'Eurj .·· g(x(s),s)dw(s) 
. . a 

1 Jt ag(x') 2 + zq g(x(s),slax ds) } 
a 

( 3 2) 

After subtracting th~ ~quar~ of the mean and performing some algebraic 

manipulation, we obtai~ 

2 2 q f t 2 
Var{x(t)} = E{x .(a)}.- E {x(a~} + E{g (x(s),s)}ds 

a 

. t 
1 2 f ag (X 1 

) 2 + 4<1 E { [ . g (X ( s) , S) a X . d S) } 
a 

+ qE{rJt q(x(s),s)dw(s) Jt g(x(s),s)ag~~')ds} 
a a 

The last term vanishes, however, since the integrals are independent. 

We now have the result 

q f
t 2 

Var(x(t)} = Var{x(a)} + E{g (x(s),s)}ds 
a 

,,·., 
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12 Jt ag(x') + 4q Var{ g(x(s),s) ax ds} • 
a 

(33) 

The mean value of the Runge-Kutta metho,c;l, given by Eq. (25), is now 

seen to be the numerical equivalent of the mean value of the Stratono­

vich integral, given by Eq. (31). Comparison of Eqs. (29) and (33) 

indicates that the variances of the Runge-Kutta method and the Straton­

ovich integral also coincide. It thus is concluded that numerical 

integration by this Runge-Kutta method corresponds to Stratonovich 

integration of stochastic differential equations in the sense that the 

first two moments are identical. 

Predictor methods are another type of numerical integration algo­

rithm. A k-th order predictor estimates th~ value of xi+l from the 

previous values xi,xi_ 1 , ••. ,xi-k+l' Predictor methods are thus multi­

step and require starting values. These methods do not introduce cor­

relation between the integrand and the noise process because different 

noise increments are used for each calculated value of xi. Functional 

evaluations prior to the current interval are required for these 

methods. This fact suggests the correspondence of predictor methods 

with the McShane definition of the stochastic integral. 

'I'he rationale behind the development of the McShane integral ~as 

the construction of a th~ory of stoch~stic syste~s which would also 

provide results consistent with deterministic systems. This objective 

was achieved without introducing profound differences in the existing 

stochastic theories. Consequently, solutions of McShane integrals 

arising from practical applications agree with results obtained from 

Ito's theory. More precisely, if the integrator process is a martingale 

and the integrand is bounded and continuous in the L2 sense, then the 

Ito and McShane integrals agree. The Wiener proces~ is a martingale and 

the 6lass of L2-bounded and L2-continuous functions is gensral enough to 

include systems of practical interest. Thus, the McShane and Ito 

theoretical solutions for those systems agr~e. More generally, the 

McShane integral agrees with the Ito integral when the hypotheses for 

the existence of both are satisfied, and ~he McSha~e integral agrees 

with the Riemann integral in the case of Lipschitzian inputs. These 

facts lead to the conclusion that the predictor methods should cor­

respond to the Ito stochastic integral. 



The Adams-Bashforth second-order predictor method is given by the 

formula 

(34) 

The mean value of xi++ f~om Eq. (34~ is g~ven by 

(35) 

and the mean value equivalence with the Ito integral holds. 

To analyze the vaiiante of xi+l' we first calculate 

(36) 

and then obtain 

and, from the independence of the noise increment and the other expres­

sions in the second ter.mon the r~ght in Eq. (37), we find 

Noting that 

ag(x') = 
ax 

g(xi) - g(xi-1) 

xi - xi-1 

( 38) 

(39) 
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we find that 

Equation ('3 8) then becomes 

2 
E{xi+l} 

2 + 4g (X. l) • l-

2 + qE{g (xi-l)}dt • 

(10) 

(41) 

It is easy to see that the second and third terms on the right vanish 

since they are of order higher than one in dt. We thus have the result 
that 

Var{x. 1 } = Var{x.} + qE{g 2 (x. 1 )}dt 
l+ l l-

(42) 

which is ot the same rorm as Ey. (20), the variance or the ItY .i.uL~·JHtl. 

These results show that the correspondences among stochastic inte­
gral definitions and numerical integration algorithms are not merely 

intuitive concepts. Instead, the Ito-Euler-predictor association and 
the Stratonovich-Runge-Kutta association are valid classifications based 

on the equivalence of first and second moments. In light of these 
results, it is not surprising that the digital simulation of a nonlinear 

stochastic system should give rise to different solutions based on the 
method of numerical integration. Indeed, this difference of solutions 

will appear digitally whenever the Ito and Stratonovich integrals pro­

vide different soiutions theoretically. 13 The next section illustrates 

these results through the simulation of a nonlinear filter. 



Example 

A broad area of general interest in the field of stochastic systems 

is filtering theory. The form of the'optimal filter in the case of 

linear stochastic systems wit.h white Gaussian noise inputs is widely 

known, but, in the non~inear case, no such generally applicable optimal 

results have been found. The estimation of the state of a physical 

system, based upon data qorrupted by noise, is easily accomplished if 

the probability distribution of the system state, conditioned on the 

measurement data, is known for all times. The problem thus becomes that 

of describing the tim~ history of this distribution and the specifica­

tion of the structure of the filter whose output is this distribution 

when the input is the given input measurement function. 

Stochastic differential equations have been used in the analysis of 

this optimal nonlinear filtering problem. The study of the evolution of 

the probability distribution of the system state by means of stochastic 
. 6 

differential equation~ was in~tiated by Stratbnonvich. In these equa-

tions, the observed ·noisy input time ~unction is the forcing term. The 

result of these studies has been the specification of the probability 

distribution in t~~ms of a nonlinear Stochastic differential equation. 

Consider the obs~rvation process defined by 

dy(t) 
Cl 1 = - d t + 7dw ( t ) 
132 I> 

(43) 

where a and 13 are constants.. The optimal estimate for the posterior 

probability distribution of·the observed process was derived by Wonham
14 

and is given by the stochastic equation 

( 4 4) 

Equation (44) defines the struqture of an ideal filter which generates 

the optimal estimate of the posterior distribution from the observed 

input function. 
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The simulation of this example was performed with initial condition 

x(O) = 0.0. The integration step size was chosen to be approximately 

0.002 second, and 100 sample runs were ensemble-averaged to provide the 

results. The parameters a and a were given the same value, a= a = -2.0, 

and the variance parameter was chosen to be unity. The solid lines of 

Figures 1 and 2 give the simulation results for the RK4 and Euler 

numerical integration methods, respectively. The AB2 method resulted in 

the same mean and variance as the Euler method~ The mean value gener­

ated by the RK4 method is different, however. There is about a 30% 

difference in the mean value after 1 second. The variance estimates for· 

all the methods appear to achieve a steady-state value of approximately 

one-fourth. The Euler method overshoots this·value somewhat and damps 

out rather slowly, while the RK4 method achleve~ the value quickly and 

then exhibits small random perturbations • 

. ~ 

~ .so 
~ 
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~ 
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0 .2S .s .7S 

TIME (s) 

Figure 1. Ensemble-Averaged Mean and Variance (RK4) 

1.0 

Confidence intervals at a significance level of 95% are shown for 

the simulation results by dashed lines. From approximately t = 0.4 

second to t = 1 second, the mean generated by the Runge-Kutta method 

lies outside the confidence interval for the Euler method and the Euler 

mean value lies outside the Runge~Kutta confidence interval for the same 

time period. For times near 1 second, the confidence intervals do not 

overlap. These results show that the generated mean values are in fact 

different time functions and not merely different approximations to the 

same one. The variance estimates and associated confidence intervals 

exhibit the same type behavior, although not to the same extent. About 
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Figure 2. Ensemble~Averaged Mean and Variance (Euler) 

40% to 50% ~f the variance traj~ctories lies outside the confiden~e 

intervals associqted.with the different type of numerical method. 

Hence, in ~vaiuat~ng the performance of the filter, the effect of 

the numerical integration jilgorithlf\ must be accounted for. The results, 

and conclusions, of an ~nalysis of ~he filter dynamics would seem to be 

somewhat arbitrary, to the extent that they ignore this algorithfTI de­

pendence. 

Conclusions 

It has been shown that digitally generated solutions of nonlinear 

stochastic systems are not unique. Correspondences among stochastic 

integral definitions and numerical integration algorithms based on the 

point of evaluation of the integrand have been validated in the sense of 

equivalence of first and second moments. Thus digital simulations of 

the same system result in different solutions whenever there is a dif­

ference in the Ito and Stratonovich solutions. This divergence has been 

illustrated through the simulation of an optimal nonlinear filter. 
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