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SUMMARY

A calorimeter system was developed to measure decay heat generation rates
of unmodified spent fuel assemblies from conmercial nuclear reactors. The
system was designed, fabricated, and successfully tested using the following
criteria:

e Capacity: one boiling water or one pressurized water reactor spent
fuel assembly

e Decay Heat Generation Range: 0.1 to 2.5 kW
e Measurement Time: <12 hr |
® Accuracy: +10% or better.

The system was installed and tested in the engine, maintenance, and dissassembly
hot bay facility located on the Nevada Test Site and operated by Westinghouse
Advanced Energy Systems Division. The decay heat generation rate was measured
for a spent fuel assembly from the Turkey Point pressurized water reactor oper-
ated by Florida Power and Light.

The calorimeter system uses a water boil-off principle to permit measure-
ments of heat generation rates. Before a spent fuel assembly is inserted in
the calorimeter, an internal reference heater 1is used to boil water and produce
steam. The vaporizaton rate in this initial step is determined by condensing
the steam and measuring the condensate mass accumulation rate. The product of
the mass accumulation rate and the latent heat of vaporizaton of the water is
equal to the heat generated in the heater minus heat losses. This procedure
is repeated at the same heater power with a spent fuel assembly inserted in the
calorimeter. In the final step, the product of the mass accumulated rate and
latent heat is a measure of the unknown heat generated in the spent fuel assem-
bly, plus the heat generated in the reference heater, minus system heat losses.
The decay heat generation rate of spent fuel assemblies is determined by dif-
ferencing the final and initial products of mass accumulation rates and latent
heats.



The calorimeter system consists of five major subsystems. These subsys-
tems are the calorimeter vessel and support structure, the water supply/storage
tank and fill pump, the steam condenser, the condensate collection apparatus,
and the control and data acquisition instrumentation. The 20-in.-dia, 18-ft-
long stainless steel calorimeter vessel contains an inner pipe which supports
lead rings required to absorb radiated gamma energy associated with spent fuel
assemblies. The vessel also contains four heaters required to boil water and
a 1id fitted with a hook to support spent fuel assemblies during calorimetry.
The calorimeter weighs approximately five tons when filled with ~200 gal of
water. The water supply/storage tank is located directly below the vessel to
provide make-up water and to permit the vessel to be completely drained. The
condenser and condensate collection apparatus are used to condense steam gener-
ated in the calorimeter vessel, to collect subcooled condensate over a recorded
period of time, and to measure both the volume and the weight of the conden-
sate. The collection time and condensate measurements result in determinations
of mass accumulation rates. Instrumentation required to control the system and
record necessary data from sensors is located in an operating gallery adjacent
to the hot bay.

The system was acceptance tested using a dc reference heater to simulate
spent fuel assembly heat generation rates. Results of these tests indicated
that the system could be used to measure heat generation rates between 0.5 and
2.5 kW within %5%. Measurements of heat generation rates of ~0.1 kW were
obtained within £15%. Other significant results obtained during acceptance
testing were:

e The water boil-off spent fuel calorimeter concept was verified.

e A procedure was developed to obtain acceptable mass accumulation rate
data critical in the determination of heat generation rates.

e The calorimeter system has excellent stability, and the system time
constant is sufficiently short to permit completion of calorimetry
of a spent fuel assembly in one eight hour period.

e The calorimeter system has the potential to permit measurements of
heat generation rates of spent fuel assemblies and other devices in
the 12- to 14-kW range.
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e The system design is compatible with hot cell operations and should be
used as a prototype for future spent fuel packaging facilities.

Results of calorimetry of a Turkey Point spent fuel assembly indicated
that the assembly was generating ~1.55 kW. Once the fuel assembly had been
immersed in the calorimeter and a steady-state condition had been obtained
(~4-1/2 hr), four consecutive data runs resulted in an average measured heat
generation rate of 1.55 kW. The data scatter of these runs was i%é. A pre-
diction of the spent fuel assembly heat generation rate obtained with the
ORIGEN2 computer program compared within 6% to this measured value. It was
conc luded that the calorimeter system performance satisfied the intent of the

design criteria.
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DEVELOPMENT OF A WATER BOIL-OFF
SPENT FUEL CALORIMETER SYSTEM

1.0 INTRODUCTION

One objective of the National Waste Terminal Storage Program is to deter-
mine the potential geologic disposal integrity of unreprocessed spent fuel
assemblies from light water reactors (LWRs). As part of this effort, heat
transfer analyses are required to support assessments of spent fuel assembly
isolation integrity. An important input parameter required for detailed heat
transfer predictions is the decay heat generation rates of individual spent
fuel assemblies. Because analytical predictions cannot be completely relied
upon, experimentally determined decay heat generation rates of spent fuel
assemblies dedicated to the program were needed.

Up to this time small calorimeters have been used to measure heat genera-
tion rates of sections of spent fuel rods, and computer codes such as ORIGIN
(Bel11 1973) have been used to estimate the heat generation rates of complete
spent fuel assemblies. It is important that the accuracy of extrapolating par-
tial rod heat generation measurements to total assembly heat generation values
be evaluated. Likewise, computer codes should be evaluated using experimental
data and improved to provide accurate predictive capabilities for design and
analysis. Therefore, a spent fuel calorimeter was developed to provide decay
heat generation rates of complete pressurized water reactor (PWR) and boiling
water reactor (BWR) spent fuel assemblies.

The objectives of this Spent Fuel Calorimeter Development Project were to
select a concept, evaluate the concept, design a complete system, fabricate
components, and test the system. This report documents the project and the
experimental effort conducted by the Pacific Northwest'Laboratory (PNL) under
contract to the Hanford Engineering Development Laboratory (HEDL). The selec-
tion and evaluation process, the experimental method, the results, and the

conclusions and recommendations are discussed.
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2.0 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE SYSTEMS

This spent fuel calorimeter development project resulted in a number
of conclusions and recommendations. The following sections identify the
major conclusions and important recommendations for future calorimeter
systems.

2.1 CONCLUSIONS

e The water boil-off spent fuel calorimeter concept was verified. The
existing calorimeter should continue to be used to obtain decay heat gen-
eration rate measurements of spent fuel assemblies when desired, but its
use need not be limited to this application. Heat generation rates of
other devices that can be positioned inside a 14-in. (inner diameter),
16-ft-long pipe can also be measured with the calorimeter system.

o The calorimeter system has excellent stability and the system time con-
stant is sufficiently short to permit calorimetry during an eight-hour
period. The system is compatible with hot cell operations and should be
used as a prototype for future packaging facilities.

e A procedure was developed to obtain acceptable mass accumulation rate data
critical to the determination of spent fuel heat generation rate values.
The condensate head accumulation measurements should be used as primary
data, and the condensate weight accumulation measurements should be used
as secondary (back-up) measurements. Before weight measurements are used
as primary data, the collection tube mounting design should be modified
to provide better support and to ensure that solenoid drain valve actua-
tion does not adversely affect weight accumulation measurements.

e Heat generation rate measurement accuracies within +5% of true values can
be obtained with the calorimeter in the range between 0.5 and 2.5 kW.
Accuracies within +5% to +10% can be expected at power levels from 0.1 to
0.5 kW.

2.1



The heat loss from the calorimeter system at a hot bay temperature of
~66°F was ~0.6 kW. An uncertainty analysis indicated that heat 1loss
measurement uncertainties contributed significantly to the overall mea-
surement accuracy. If better calorimeter measurement accuracies are
desired, additional heat loss data at power levels of 1, 1.5, 2, 2.5, and
3 kW should be obtained to unconditionally verify that the system heat
loss is essentially constant over this heat generation range.

Reference calorimeter runs are as important to measurement accuracy as
runs with an unknown heat generating device in the calorimeter. Until
sufficient operating experience is gained, references runs should be per-
formed before and after actual runs made with heat generating devices
installed in the calorimeter.

The calorimeter system has the potential to permit measurements of heat
generation rates of spent fuel assemblies and other devices in the 12- to
14-kW range. Measurements of accurately known reference heat generation
rates up to 12-14 kW should be obtained prior to attempting measurements
of unknown heat generating devices in this range.

Approximately four hours are required to bring the calorimeter water to a
boiling condition from room temperature. Once the system reaches boiling,
a steady-rate condition can be obtained in two to six hours at constant
heater power.

If 4 or 5 gallons of cold water from the supply/storage tank are injected
into the calorimeter after attaining a steady-state condition, approxi-
mately one to two hours are required to regain a steady-state condition.

The decay heat generation rate of a Turkey Point PWR spent fuel assembly
as measured with the calorimeter system was 1.55 kW.

Predictions of the decay heat generation rate (1.64 kW) of a Turkey Point
PWR spent fuel assembly obtained with the ORIGEN2 (Croff 1980) computer
program compared within 6% to values measured with the calorimeter system.
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2.2

RECOMMENDATIONS FOR FUTURE SYSTEMS

Calorimeter vessels should be 6-12 in. longer in systems built in the

future. This will permit optimum distances between critical liquid level
alarm setpoints near the top of the vessel and prevent water carry-over to
the condenser, due to surface agitation during boiling.

An additional liquid level sensing system should be installed on the
upper 50 in. of future calorimeter vessels to increase the sensitivity of
the level measurements and alarm setpoints.

Calorimeter fluid temperatures should be measured with direct-contact
temperature sensors in future systems.

For ease of monitoring, future instrumentation consoles should include
continuous digital readouts of vessel and supply/storage tank liquid
levels, vessel fluid temperature, heater power, condensate head values,
and condenser outlet temperature.

As recommended in initial system conceptual designs, condensers in future
systems should be liquid cooled to permit accurate heat balances to be
obtained throughout the calorimeter system.
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3.0 SELECTION AND EVALUATION OF CANDIDATE CALORIMETER METHODS

During the initial effort of this project several candidate calorimeter
methods were selected and evaluated for further development:

e Contact Boil-Off (spent fuel assembly in contact with working
fluid)

e Non-Contact Boil-Off (spent fuel assembly not in contact with working
fluid)

e Flowing Water
e Static Air
e Flowing Air

The selection criteria and details of the evaluation analysis performed for
each candidate method are presented in the following sections.

3.1 SELECTION CRITERIA

Before initiation of the analytical evaluation process, selection criteria
were identified. The selection criteria most pertinent to the selection process
were

Capacity: one BWR or one PWR spent fuel assembly

e Potential decay heat generation range: 0.1 to 2.5 kw(a)
o Measurement time: <30 hours

e Accuracy: +10% or better

Requirements for system safety, operability, maintainability, simplicity, and
costs were also considered in the evaluation.

(a) It is important that the term "potential decay heat generation" be under-
stood. It is defined as the decay heat generation rate of a spent fuel
assembly, plus the heat generation that would result from escaping radia-
tion particles; i.e., alpha, beta, and gamma. In BWR and PWR spent fuel
assemblies, gamma particles are the significant source of escaping
radiation energy. In this report, heat generation will mean potential
heat generation.
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3.2 CONTACT BOIL-OFF CALORIMETER
The cross section of a conceptual contact boil-off calorimeter is shown

in Figure 1. The calorimeter would be similar to a small cryogenic boil-off
calorimeter developed at Los Alamos (Yarnell and Bendt 1977) and would consist
of an inner pipe, lead radiation-absorbing liners, a cooling annulus, an outer
containment pipe, and insulation. A spent fuel assembly would be placed in
the inner pipe in contact with a boiling fluid. Note that the spent fuel
assembly was modeled as one fuel rod in this analysis because all rods in an
assembly will generate approximately the same amount of heat and have the same
time constants.

12-in. SCH. 10S PIPE
1/2-in.-THICK LEAD LINER

BOILING REFRIG, \:
VOLATILE LIQUID, i

FIGURE 1. Contact Boil-0Off Calorimeter
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The purpose of the inner pipe would be to contain a spent fuel assembly
and to support one lead liner. The lead liners would absorb gamma radiation
and generate a proportional amount of thermal energy. The cooling annulus
would permit boiling fluid to contact the maximum surface area and reduce the
thermal time constant of the calorimeter. The outer vessel would support
another lead liner and act as a final container. The insulation would reduce
heat losses from the calorimeter.

The contact boil-off calorimeter could be installed in a system similar
to that shown in Figure 2. The system woq]d consist of a Tiquid supply/storage
tank, a fill pump, the calorimeter, a condenser, and a condensate measuring
tube.

VENT
5 VENT
LIQUID SEAL
— . COOLING WATER
o CONDENSER | (5
1 ||

SIGHT | SPENT FUEL
GLASS | <7 ASSEMBLY

| -

| TEMPERATURE  |-| MEASURING TUBE

| |'<:> SENSOR =

L =~ P| PRESSURE TRANSDUCER

| VENT

_ .
CALORIMETER : : m COOLING WATER
— VENT CONDENSER
SUPPLY/STORAGE
1t T TANK
HEATERS
—=—{}-_" HEATER
E 2 D<e I
PUMP

FIGURE 2. Boil-off Calorimeter System
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The supply/storage tank would be used for filling and draining the calo-
rimeter. A small pump would be used to fill the calorimeter with liquid. A
pump bypass line would permit the calorimeter to be drained.

In addition to those parts shown in Figure 1, the calorimeter would be
provided with heaters and a sight glass as shown in Figure 2. The purpose of
the heaters would be to initially heat the liquid to boiling and to provide
accurate reference vapor generation rates. The sight glass would enable the
operator to readily assure that an adequate liquid Tevel is maintained at all
times. An absolute pressure transducer located near the bottom of the calori-
meter could also be used to measure liquid levels and provide automatic shut-
down capability.

A condenser connected to the calorimeter via a pipe could be used to con-
dense the vapor. The condensate would be collected in a measuring tube. The
product of the condensate mass accumulation rate (ﬁc) and the latent heat of
vaporization (hfg) would be equal to the heat being generated in the calorime-
ter (qcal) minus heat Tosses (qL); i.e., q.1 -9 = mchfg'

The boil-off calorimeter system could be operated using the following
procedure:

1. Without a spent fuel assembly in the calorimeter, the calorimeter
would be filled with liquid and the heater set at a predetermined
power Tlevel.

2. After the system reached a steady state condition, the initial con-
densate mass accumulation rate (mi) would result from the heat
being generated by the calorimeter heater (qh) less any heat losses
(q,) from the system; i.e., q; = q, - q = mihfg.

3. A spent fuel assembly would be positioned in the calorimeter, and the

system would be refilled with liquid to a desired level.

4, After steady-state conditions were attained, the final condensate
mass accumulation rate (mf) would be measured. Note that the final
condensate mass accumulation rate would result from that measured in
step 2, plus the heat being generated in the spent fuel assembly and
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the lead liners (qSF)' The difference between the final and initial
condensate accumulation rates would be that resulting from the heat
being generated in the bundle and lead; i.e., the potential decay heat

generation rate of the assembly dgf = (ﬁf - hi)hfg'

A transient thermal analysis was performed with the HEATING 5 computer code
(Turner, Elrod, and Siman-Tov 1977) using the geometry model shown in Figure 1.
Both water and ethyl acetate boil-off calorimeters were investigated. Ethy]l
acetate was considered because it has a latent heat of vaporization of ~185
Btu/1b compared to water at ~970 Btu/1b. The lower latent heat would permit
more condensate mass to be accumulated during a given period of time for the
same heat generation rate, thus enhancing measurement accuracy.

Results of the analysis indicated that the type of fluid used did not sig-
nificantly affect the measurement time, i.e., the time to reach steady-state
conditions.(a) Both BWR and PWR fuel rods were predicted to reach steady-
state conditions in less than 30 min. Two 0.5-in.-thick lead liners would
attain steady-state conditions from an initial temperature of ~160°F in approxi-
mately 10 hours, when subjected to boiling water. In an actual case, the lead
liners and piping would be very near the boiling temperature of the working
fluid after an initial (reference) run using the system reference heater was
completed. Therefore, with a spent fuel assembly immersed in the calorimeter,
the measurement time was estimated to be more on the order of three to four
hours, a value which satisfied the design criteria.

A sensitivity analysis was performed to determine the effects of changes
in atmospheric pressure and ambient temperature on the heat of vaporization of
water and calorimeter component temperatures. An assumed large change in atmo-
spheric pressure of *1 in. Hg at constant temperature was predicted to corre-
spond to a change in the heat of vaporization of water of ~*0.1%, which is

(a) Steady state was assumed to be the condition at which a temperature was
within 0.01°F of the predicted steady-state temperature.
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insignificant in the calculation of heat generation rates. A thermal analysis
using the HEATING 5 computer program indicated that an ambient temperature
change of 20°F, over a 5-min time period, would result in a maximum internal
calorimeter temperature change of ~0.01°F during a six-hour measurement period.
This small temperature variation would not detectably contribute to calorimeter

inaccuracies.

From the above results, it was preliminarily concluded that a contact boil-
off calorimeter was a promising method to measure decay heat generation rates of
spent fuel assemblies. Accuracies within £5% were predicted to be feasible.
Water has definite advantages over refrigerants and volatile liquids because
corrosion and flammability problems are minimized.(a)

3.3 NON-CONTACT BOIL-OFF CALORIMETER

A conceptual schematic of a non-contact boil-off calorimeter is shown in
Figure 3. A typical LWR spent fuel assembly was modeled as a lumped circular
mass. The bundle was assumed to be in a pipe containing air or helium. Boiling
refrigerant, volatile liquid, or water in contact with the outer surface of the
containment pipe would provide a heat sink. Note that the boiling fluid would
not contact the spent fuel assembly, as the calorimeter name indicates. Calo-
rimeter parts beyond the inner container, such as a lead absorbing liner, outer
containment pipe, and insulation, were not considered in the evaluation of this

concept.

The non-contact boil-off calorimeter could be installed in a system iden-
tical to that discussed in section 3.2. The operating procedure would also be
the same; however, the measurement times were predicted to be longer than the
contact concept because of the insulative gas gap.

A transient thermal analysis of the non-contact boil-off concept using
freon and air resulted in excessively long measurement times. The temperature
of a typical BWR spent fuel bundle generating 0.1 kW at an assumed initial

(a) More than 25 refrigerants and volatile liquids were considered as potential
calorimeter working fluids.
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8-in. PIPE
AIR OR He

SPENT
FUEL ASSEMBLY

BOILING FREON-11 @ 75°F OR
BOILING ETHYL ACETATE @ 171°F OR
BOILING WATER @ 212°F

FIGURE 3. Non-Contact Boil-Off Calorimeter

temperature of ~300°F required ~12 hours to decrease by ~20°F. The steady-
state temperature of the bundle was predicted to be ~223°F. By linearly
extrapolating the temperature history to 223°F, it was predicted that ~46 hours
would be required to reach a steady-state condition. An additional thermal
analysis revealed that it would require ~12 hours to reduce the bundle tempera-
ture from 225 to 223°F. It was concluded that the measurement time of a non-
contact boil-off calorimeter would be excessively long and that the method was
not practical.

3.4 FLOWING WATER CALORIMETER

A flowing water calorimeter system, shown schematically in Figure 4, was
considered in the selection process. The system would consist of a pump, a
flowmeter, a calorimeter instrumented with inlet and outlet temperature sensors,
a cooldown heat exchanger, and a heater. The calorimeter would be essentially
the same as the contact boil-off calorimeter previously presented in Fiqure 1,
but the boiling fluid would be replaced with flowing water. The cooldown heat
exchanger and heater would be required to select and control desired inlet
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FIGURE 4. Water Flow Calorimeter

calorimeter temperatures during isothermal runs. Isothermal runs would be
required to accurately determine heat losses from the calorimeter between the
inlet and outlet temperature sensors.

During the operation of the water flow calorimeter, the flow rate (m) and
inlet temperature (TIn) would be set at desired values. The flow rate would
be selected to produce a significant temperature gradient (>10°F) across the
length of the calorimeter. The magnitude of the temperature gradient is
important for accuracy requirements. A heat balance across the calorimeter
would yield the heat being generated in the spent fuel assembly and lead
liner; i.e., ggp = rﬁcp(TOut - Tip) *oa-

The flowing water calorimeter was eliminated as a potential method because
the contact boil-off calorimeter appeared to be a faster, more accurate method
of measuring decay heat generation rates. Also, a flowing water system would
be extremely difficult to operate remotely in a hot bay facility.
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3.5 STATIC AIR CALORIMETER

A typical static air calorimeter, shown in Figure 5, would consist of a
spent fuel assembly, an inner containment pipe filled with air or gas, a heater,
a lead Tiner to absorb escaping radiation energy, a gas gap, an outer contain-
ment pipe, and insulation. This calorimeter concept is similar to the tech-
nique reported by Beyer, Perry, and Lewis (1976). During the operation of the
calorimeter, without a spent fuel assembly in place, power would be applied to
the heater. After steady-state conditions are attained, temperature measure-
ments at three or four axial locations would be obtained across the gas gap. A
spent fuel assembly would be inserted in the calorimeter and the heater power
reduced until the same temperature differences existed across the gas gap. The
amount the heater power is reduced would be equal to the heat being generated
in the assembly and lead liner.

A detailed thermal analysis of the static air calorimeter concept was not
performed. It was obvious from the previous analyses that the time constant of
the static air calorimeter would be longer than that of the non-contact boil-off
calorimeter. Because the time to reach steady-state conditions was excessively
long, it was concluded that the static air concept was unsatisfactory.

AIR OR GAS
~— INNER CONTAINER

AT 3 OR 4 AXIAL
LOCATIONS

FIGURE 5. Static Air Calorimeter
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3.6 FLOWING AIR CALORIMETER

A flowing air calorimeter operates on the same heat balance principle as
the flowing water calorimeter. A typical flowing air calorimeter system is
shown in Figure 6. A high-head blower would be required to supply air to the
calorimeter. A heater and cooler would be required to select and control
desired inlet air temperatures during isothermal heat loss runs. A flowmeter
and temperature/pressure instruments would be necessary to permit heat balances
to be obtained across the calorimeter.

Results of the transient thermal analysis of the flowing air calorimeter
at relatively high air flows (11 ft/sec) indicated BWR and PWR fuel rods would
reach steady-state conditions in ~3 hours. At Tow air flow rates (0.5 ft/sec)
required to obtain satisfactory axial temperature differences (310°F) across
the calorimeter, the time for the fuel rods to reach steady-state conditions
increased to ~10 hours. A significant axial temperature difference across the
calorimeter is desirable because it increases measurement accuracy. Velocity
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magnitudes (~0.5 ft/sec) associated with desired air flow rates would be of the
order of magnitude of free convection currents. It was judged that very unsta-
ble outlet calorimeter temperatures could be encountered if the flow velocities
are not an order of magnitude greater than the free convection currents. This
judgment is based on past experience with low-flow air facilities.

Although the air flow calorimeter appears to be satisfactory for measure-
ment time and accuracy (£#8%), it was eliminated as a prospective method because
of the unknown problems associated with the system instabilities. In addition,
the difficulties associated with operating a flowing system in a limited access
hot bay do not appear to be justifiable.

3.7 RECOMMENDED CALORIMETER METHOD FOR FURTHER DEVELOPMENT

From the results of this initial effort on the project, it was concluded
that the contact water boil-off calorimeter met the selection criteria pre-
sented in section 3.1 better than the other candidate methods. The remaining
sections of this report discuss the detailed design of a contact water boil-off
calorimeter system that evolved from the concepts presented in section 3.2.

The calorimeter system was fabricated and ultimately installed in the EMAD hot
bay facility. Results of an acceptance test and actual calorimeter measure-
ments of a spent fuel assembly are also presented.
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4,0 EXPERIMENTAL METHOD

The following sections discuss the development of a contact water boil-off
calorimeter system. Facility and equipment designs are presented, and the pro-
cedures used to perform the acceptance test and measure the decay heat genera-
tion rate of a Turkey Point PWR spent fuel assembly are discussed. The data,
the data reduction method, and the estimated accuracy of the data are pre-
sented.

4.1 FACILITY AND EQUIPMENT

The calorimeter system was designed and fabricated by PNL and shipped to
the Nevada test site for installation and operation in the EMAD hot bay facil-
ity. A description of the EMAD facility and a discussion of the calorimeter
equipment design are presented.

4.1.1 EMAD Hot Bay Facility

The EMAD facility is a large complex which contains a hot bay approxi-
mately 140 ft long, 66 ft wide, and 74 ft high. The walls are constructed of
5- to 6-ft-thick reinforced concrete with lead glass viewing windows located
at various work stations. The hot bay contains standard gauge railroad tracks
which allow railroad transport system vehicles to enter and exit the bay with
radioactive materials. A shielded air lock pass-through for personnel entry
from a change room is provided.

The hot bay is equipped with a 40-ton overhead crane with a 10-ton auxil-
iary hook which is remotely operated from portable controllers located in the
operating gallery near window work stations. Maximum hook heights of ~62 ft
are possible.

In addition, the bay is equipped with a wall-mounted handling system, an
overhead positioning system, and a floor-mounted handling system, which are all
remotely operated from portable controllers located in the gallery. These
handling systems have special tools and fixtures to facilitate remote assembly
and disassembly operations. Master slave manipulators and inspection tables
are located at window work stations. Periscopes at various work stations pro-
vide inspection and photographic capabilities.
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The hot bay contains a pit ~13-1/2 ft deep, ~4-1/2 ft wide, and ~26-1/3 ft
long. The calorimeter system was installed in the north end of the pit in full
view of a window work station. The hot bay is described in depth by the EMAD
Capabilities Manual (refer to references).

4.1.2 Calorimeter System

The calorimeter system consists of five major subsystems. These subsys-
tems are the calorimeter vessel and support structures, the water supply/
storage tank and fill pump, the steam condenser, the condensate collection
apparatus, and the control and data acquisition instrumentation. In addition
to these subsystems, a fuel handling fixture designed and fabricated by the
Hanford Engineering Development Laboratory (HEDL) was required to support a
Turkey Point PWR spent fuel assembly within the calorimeter vessel during decay
heat generation rate measurements.

The calorimeter vessel and the water supply/storage tank for the system
were installed in the calorimeter pit located in the EMAD hot bay facility, as
shown in Figure 7. The steam condenser and the condensate collection apparatus
were located on the hot bay floor adjacent to the calorimeter pit. The con-
trols for the calorimeter system and the data acquisition system were located
in the operating gallery adjacent to, but isolated from, the hot bay area.

Detailed discussions of each calorimeter subsystem are included in the
following sections. Appendix A provides detajled design drawings of the calo-

rimeter system.

4.1.2.1 Calorimeter Vessel and Supports

The calorimeter vessel consists of an outer vessel, an inner vessel, lead
absorption rings, closure lids, and insulation as shown in Figures 7 and 8. The
outer calorimeter vessel (Figure 9) was fabricated from an 18-ft-long section of
304 stainless steel pipe with a 20-in. outer diameter and a 1/2-in. wall thick-
ness. The bottom head of the vessel was fabricated from 1/2-in.-thick 304 stain-
less steel plate. A 2-1/2-in. by 1l-in. concentric reducer, which serves as a
drain sump, and four 3/4-in.-dia hold-down studs were welded to the bottom head.
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14-in. Sch. 40S PIPE

BOILING WATER

FIGURE 8. Contact Boil-0ff Calorimeter Cross Section

Two closure 1ids are provided for the calorimeter. One serves as a calo-
rimeter vessel 1id/1ifting fixture and is used both to 1ift and position the
outer vessel during installation and to seal it during heatup operations with
no fuel assembly. The second 1id (Figure 10) serves as a lid/support when an
assembly is in the calorimeter vessel. Both 1lids were constructed of 1l-in.-
thick 304 stainless steel plate, 24 in. in diameter, and mate with an O-ring
inserted in the calorimeter vessel top flange (Figure 11). The 1id/lifting
fixture is similar to the 1id/support except that the 1id support has no 1id
hook. During decay heat generation measurements, the weight of the spent fuel
assembly suspended from the 1id/support hook is sufficient to maintain a steam-
tight seal against the vessel flange O-ring. When no fuel assembly is suspend-
ed from the 1id/support or when the vessel 1id/1ifting fixture is used during
heatup operations, the closure seal is made by screw locks that compress the
1ids against the 0-ring seal (see Appendix A for details of the locking
spider).
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Three piping penetrations were welded into the calorimeter vessel, in
addition to the reducer welded to the bottom head. A 3/4-in. Schedule 40 pipe,
which functions as a fill/drain 1ine, enters the vessel 2-1/2 in. above the
bottom head (Figure 9). A 3/4-in. Schedule 40 pipe, Tocated 2-1/2 in. below
the vessel top flange (Figure 11), provides a steam discharge path to the con-
denser and acts as a vessel pressure relief vent to the hot bay atmosphere
through the open end of the condenser discharge line. The third vessel pene-
tration, a 1/2-in. Schedule 40 pipe, provides a connection for the water level
sight glass and a second pressure relief vent path to the hot bay atmosphere
(Figure 11).

A 1-in. Schedule 40 drain line was welded to the reducer penetration in
the bottom head of the vessel (Figure 9). The drain line branches below the
vessel support structure elevation. One branch of the drain line contains a
connection for the calorimeter vessel level detection system and two manual
ball valves. The other branch of the vessel drain line extends to the east
operating gallery to provide an auxiliary water fill system.

In addition to the calorimeter vessel piping penetrations described above,
four half-pipe couplings were welded to the vessel 3-1/2 in. above the bottom
head as shown in Figure 12. The couplings were threaded to accept immersion
electric heaters that are used to heat the water in the vessel to boiling con-
ditions and to maintain system thermal equilibrium,

The calorimeter outer vessel was insulated with a nominal 8.5-in.-thick
layer of silica-lime block-type insulation. The top closure insulation "hat"
was constructed of a stainless steel sheet metal can covered with insulation
and is removable for access to the vessel 1id (Figure 7).

During decay heat generation measurements, a spent fuel assembly is posi-
tioned within an inner vessel fabricated from 14-in.-dia Schedule 40 type 304
stainless steel pipe (Figure 13). Holes were drilled in the pipe to reduce the
thermal time constant and permit water to flow in the annulus formed by the
inner and outer vessels. The principal purpose of the inner vessel is to sup-
port lead rings which absorb gamma radiation emitted by spent fuel assemblies
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The lead rings, which are attached to the outer surface of the pipe, have a
nominal absorption thickness of 1.25 in. The rings were estimated to be 99 %
effective in absorbing the gamma energy emitted from typical spent fuel assem-
blies. Water flow slots were machined in the rings to reduce their thermal
time constant.

The calorimeter vessel is supported vertically by two 8-in. beams that
span the width of the calorimeter pit (Figure 14). The support beams were
anchored into the calorimeter pit walls with 3/4-in.-dia anchor bolts. Addi-
tional support is provided by columns that extend from the ends of each beam
to the pit floor. Restraining saddles, welded to the calorimeter vessel near
the bottom end as shown in Figures 9 and 12, are restrained by a steel plate/-
ring (shown in Figure 7) that was welded to the top of the 8-in. support beams
to provide horizontal stability during seismic events. Spacers support the
bottom head of the vessel approximately 3 in. above the top of the support
beams and provide clearance for insulation.

A welded steel structure, anchored to the hot bay floor at the top of the
calorimeter pit, provides horizontal restraint for the vessel at approximately
mid-height (Figure 7). The restraint is provided by standard pipe rollers that
react against saddles welded to the vessel. The pipe rollers allow unre-
strained thermal growth of the vessel during vessel heatup.

4.1.2.2 Water Supply/Storage Tank and Fill Pump

The water supply/storage tank for the calorimeter system was anchored to
the floor of the calorimeter pit directly below the calorimeter vessel. The
tank was fabricated from 1/8-in.-thick 300-series stainless steel and is 60 in.
long by 48 in. wide by 22 in. high. The top of the tank is recessed approxi-
mately 2 in. below the side walls to form a catch basin. The approximate
internal volume of the tank is 250 gallons, excluding the catch basin, which
holds approximately 25 gallons.

A simplified schematic diagram of the calorimeter system piping and
instrumentation is provided in Figure 15. The tank fill line and the air line
for the pneumatic level instrumentation enter the supply/storage tank through
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an opening in the bottom of the catch basin. The all-brass fill pump was
bolted to the floor, and the 1-1/4-in. suction line was attached to the tank
near the bottom. The pump has a capacity of 10 gal/min, operating against a
water head of 58 ft. The pump is close-coupled to a 1/2-hp motor that is
energized from a reqgulated 120-V single-phase source. The fill line extends
from the supply/storage tank to the hot bay floor elevation, where demineral-
ized water can be added from portable containers. A manual ball valve isolates
the fill line after the supply/storage tank is filled.

A normally closed solenoid valve (EV4, Figure 15) and a check valve
installed in the fill pump discharge line isolate the fill line from the calo-
rimeter vessel. The two normally closed solenoid valves, EV3A and EV3B, iso-
late the calorimeter vessel from the supply/storage tank and provide a means
to remotely drain the vessel if required.

4.1.2.3 Steam Condenser

Steam generated within the calorimeter vessel is directed from the vessel
to a condenser (Figure 16) located on the hot bay floor outside the perimeter
of the calorimeter pit. The 3/4-in. steam pipe from the vessel enters the con-
denser through a manifold where the flow is divided into two parallel paths.
Each of the parallel paths through the condenser was fabricated from 3/4-in.-
dia (0.035-in. wall thickness) 304 stainless steel tubing fitted with spiral-
wound aluminum fins to enhance heat transfer. The total length of each flow
path is ~12 ft. Condensate flows from the condenser through a manifold where
the two flow paths are combined and directed to the condensate collection tube.

The condenser is air-cooled by a squirrel cage blower rated at 1300 scfm.
A sheet metal shroud channels the air flow through the finned tube condenser
to the fan inlet located below the condenser. The fan, driven by a 1-hp
single-phase electric motor, discharges directly into the hot bay. A switch
to sense air flow through the condenser is located in the fan outlet duct. The
condenser and the associated air flow equipment were conservatively designed
to condense and subcool all the steam generated in the calorimeter vessel by a
2.5-kW spent fuel assembly plus 1 kW from a dc reference heater.






4.1.2.4 Condensate Collection Apparatus

The rate of steam generation and the latent heat of vaporization of the
boiling water were used to determine the decay heat generation rate of a spent
fuel assembly in the calorimeter. To determine the rate of steam generation,
all the steam produced within the calorimeter vessel during a known interval
of time was condensed, subcooled, collected, and weighed, and the volume was
measured.

Condensate from the condenser discharge was directed to a collection tube,
which is a 41-in.-long section of precision tubing with an outside diameter of
1.25 in. and a wall thickness of 0.035 in. The collection tube was welded to
a base plate that is mounted on the pan of a precision electronic scale. The
upper end of the collection tube 1is supported with a linear ball bushing that
provides lateral support for the tube with minimal axial restraint. A drain
line with a solenoid shut-off valve (EV1) was welded near the bottom end of
the collection tube (Figure 15). To minimize the eccentric load effect of the
solenoid valve and drain line on scale measurements, an adjustable counter-
weight is located on the opposite side of the collection tube.

The collection tube drain line discharges into a catch pan below the
scale. The catch pan drain is connected to the supply/storage tank fill line
through a check valve. With the solenoid drain valve (EV1) open, condensate
from the collection tube flows to the catch pan and then directly to the tank.
The 1ip of the catch pan projects over the edge of the calorimeter pit so that
any overflow is directed into the pit drain gutter. Such overflow could be
the result of drain stoppage or flow in excess of drain line capacity, which
might occur, for example, if the fill pump were to continue running after the
calorimeter vessel was filled.

A 0.25-in.-dia tube for the pneumatic level detection system extends
inside the collection tube to an elevation below the drain line connection.
Signals from the level transmitter automatically initiate data logger scans
and control operation of the collection tube solenoid drain valve, EV1. In
addition to the normal automatic data collection mode, the operator can
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remotely initiate a data scan without draining the collection tube or can ini-
tiate drainage of the collection tube, which automatically initiates a data
scan.

4.1.2.5 Control and Data Acquisition Instrumentation

Instrumentation provided with the calorimeter system is used principally
to monitor and control water level, pressure, and temperature, and to facili-
tate data acquisition. The main instrumentation and control panels are shown
in Figure 17. Power for the instrumentation, control panels, and fill pump is
isolated from facility voltage transients (up to +15%) by an ac voltage regu-
lator.

Water Level Instrumentation and Control. Water levels in the calorimeter

vessel, supply/storage tank, and condensate collection tube are measured pneu-
matically (Figure 15). Air is introduced through a small diameter tube until
a finite flow (~10% of full scale) is indicated on an air rotameter located in
the control panel (Figure 17). The pressure required to sustain air flow, as
sensed by a pressure transmitter (Figure 17), is equal to the head of water in
the vessel above the open end of the tube. The advantage of using this "bub-
ble" technique for hot bay applications is that the pressure transducers could
be Tocated outside the bay for easy maintenance and calibration.

There are five water level set points in the calorimeter vessel: high
high (HH), operating high (OH), operating low (OL), safe low (SL), and Tow low
(LL). The LL Timit was established to assure that the electric heaters located
in the bottom of the calorimeter vessel cannot be energized unless there is
sufficient water in the vessel to cover them. At or below the LL level, the
electric heaters cannot be operated and an alarm on the annunciator panel is
activated. The LL Timit interlock on heater operation cannot be bypassed by
any manual switch on the control panel.

The SL T1imit in the calorimeter vessel was established to assure that
spent fuel assemblies are completely immersed in water. At or below the SL
level, all electric heaters are deactivated, and an annunciator alarm is acti-
vated in the control panel. The SL Timit can be adjusted for different types

4.17






of fuel assemblies and support equipment. Conservatively, it is recommended
that the SL 1imit be set approximately 8 in. above the top of a fuel assembly.

The OL and OH set points establish the normal water level range. At the
OL Tevel, the OL alarm activates on the annunciator panel, and the fill pump
automatically starts to refill the ca]orimeter vessel. The pump continues to
fill the vessel until the level reaches the OH level or a data scan is ini-
tiated through the condensate collection control circuit. Pump operation can
be initiated manually whenever the water level in the vessel is below OH and a
data scan is not in progress. At the OH level, an alarm activates on the con-
trol panel and the fill pump automatically shuts off.

If the pump fails to shut off, the water level would continue to increase
until the HH level is reached. At the HH level, an alarm would sound, and the
operator must shut the pump off to avoid excess water from flowing out the
steam discharge line, through the condenser, into the collection tube, and to
the supply/storage tank. Remote drainage of the calorimeter vessel can be
initiated by activating a key switch on the control to avoid the HH level.

There are five water level set points in the supply/storage tank: high
high (HH), operating high (OH), operating low (OL), high fill (HF), and a safe
Tow (SL2), which is a backup for the calorimeter safe low condition. The HH,
OH, OL, and HF levels are monitored by alarms on the annunciator panel, and a
storage tank level meter is located on the control panel. The SL2 level is
set to sense an increase in storage tank water level above the OH level, a
condition that can be indicative of inadvertent drainage from the calorimeter
vessel. The storage tank SL2 level is connected in series with the SL calo-
rimeter level in the electric heater control circuit to shut off the electric
heaters if the supply/storage tank safe low level is exceeded.

There are two water level set points, low and high, associated with the
condensate collection tube. Air for the pneumatic level detection system is
introduced through a dip tube that passes through the open end of the collec-
tion tube and extends to an elevation below the drain connection (Figure 15).
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When the level of condensate reaches the high limit, a data scan is automati-
cally obtained with the data acquisition system. After the data scan is com-
pleted, the collection tube drain valve is automatically opened and the tube
is drained to the low level. The system has a built-in time delay that can be
adjusted so the data scan can be completed before the drain valve opens. The
pump control circuit was designed so the pump cannot be operated during a data
scan.

A momentary push button switch can be used to initiate a data scan and
dump the condensate collection tube at any time. Another momentary push button
switch can be used to initiate a data scan without dumping the collection tube.
When the water level in the collection tube drains to the low level, the sole-
noid drain valve closes, and the system is ready for the next condensate col-
lection cycle. Both the high and low level conditions in the collection tube
initiate alarms on the annunciator panel.

Pressure Instrumentation. An absolute pressure transducer (25 psia)

located in the hot bay measures and records the steam pressure in the calorim-
eter vessel (Figure 15). A condensate collection pot connected to the calo-
rimeter steam discharge line minimizes condensate accumulation in the pressure
sensing line. Measurement of the absolute pressure in the calorimeter vessel
is necessary to determine the latent heat of vaporizaton from the steam tables.

Temperature Instrumentation and Control. Two resistance temperature

detectors (RTDs) are included in the calorimeter system--one to measure the
outer calorimeter vessel wall temperature and one to measure the temperature
of the condensate discharged from the condenser. These temperature signals
are transmitted to a strip chart recorder on the control panel and to the data
logger. The calorimeter vessel "skin" temperature is provided to aid the
operator during the heat-up phase of testing. The condensate temperature is
necessary to assure adequate subcooling and to determine if the system has
attained a steady-state condition; i.e., a constant, stable outlet temperature
is an indication that a steady-state condition exists. The condenser cooling
fan circuit was designed such that if the fan is not turned on, it would
automatically come on if the condenser outlet temperature reaches ~150°F.

4.20



Four thermocouples (TCs) are located near the calorimeter to measure hot
bay ambient temperatures. These temperatures were recorded several times
during each testing day to verify that the hot bay temperature was essentially
constant. A constant or near constant hot bay temperature leads to the con-
clusion that the heat loss from the calorimeter is constant because this heat
loss is directly proportional to the differential temperature between the
boiling water and the hot bay.

Electric Heater Control. Four electric immersion heaters were installed

near the bottom of the calorimeter vessel.. All four immersion heaters provide
a total of 22 kW and are used for initial heatup of the system. Two 8-kW
heaters and one 3-kW heater are energized from individual 240-V single-phase
breakers. The fourth electric heater has a 3-kW nominal rating and is used to
stabilize the calorimeter system at boiling conditions prior to fuel immersion
and to serve as a reference heater during decay heat generation rate measure-
ments. The variable power for the fourth heater is supplied from a precision
dc power controller. The dc heater voltage and current are monitored by volt-
meters on the control panel and are recorded by the data acquisition system.
The dc heater power is determined by measuring the voltage across the heater
and by measuring the voltage across a precision shunt resistor placed in series
with the heater. With the shunt resistance and voltage, the current passing
through both the heater and shunt can be calculated.

An interlock in the heater control circuit is provided to prevent ener-
gizing the heaters if the water level in the calorimeter vessel is below the
LL Timit. The heater control circuit alsc de-energizes the heaters if the
calorimeter vessel water level falls below the SL limit, if there is no airflow
through the condenser, or if the water level in the storage tank exceeds the
safe low (SL2) level.

Data Acquisition and Recording. A data scan is initiated on a data logger
(Figure 17) by a high level in the condensate collection tube or by activating

a push button switch. During a data scan, the following system parameters are
recorded:

e Collection tube weight

e Collection tube water level
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dc electric heater power

dc electric heater voltage

dc electric heater amperage

Condenser outlet temperature

Calorimeter "skin" temperature
Calorimeter absolute pressure

Storage tank water level

Calorimeter water level

Start and stop times for collection cycle
Date.

Two multi-pen analog recorders mounted in the control panel (Figure 17)

provide a continuous record of these test parameters:

Calorimeter vessel water level
Calorimeter "skin" temperature

dc electric heater power
Condensate collection tube level
Condensate collection tube weight
Condenser outlet temperature.

Analog indicating meters mounted on the control panel (Figure 17)

continuously monitor the following parameters:

dc electric heater power

dc electric heater voltage
dc electric heater amperage
Storage tank Tlevel.

A digital display of the following parameters is furnished on the control

panel:

Preselected data logger channel parameters
dc electric heater voltage

dc electric heater amperage

Condensate collection tube weight.

Annunciator Panel. An annunciator panel (Figure 17) installed in the

control panel provides the operator with an audible and visual indication of
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the following system conditions:

® Calorimeter high high level
Calorimeter operational high level
Calorimeter operational Tow level
Calorimeter safe low level
Calorimeter low low level
Collection tube high level
Collection tube Tow level
Condenser discharge high temperature
Storage tank operational low level
Storage tank high high level
Calorimeter safe low level and condenser air flow by-pass
Calorimeter drain switch
Storage tank high fill level
Loss of condenser cooling air flow.

EXPERIMENTAL PROCEDURE

S
%)

After the calorimeter system was installed in the EMAD hot bay, checked
out, and calibrated, an acceptance test was performed. After adequate oper-
ating experience was achieved, the decay heat generation rate of a Turkey Point
PWR spent fuel assembly was measured. The following sections briefly present
the procedures used to conduct the testing and measurement efforts.

4.2.1 Acceptance Test

The purpose of the acceptance test was to verify the operability of the
system, to check system accuracy, and to estimate the overall system heat loss.
During acceptance testing, important operating parameters such as the time
required for cold start-up, the time to reach equilibrium, and the effects of
injecting cold water into the calorimeter during equilibrium were investigated.
Safety considerations, such as determining the approximate amount of additional
heat loss that can be expected if the calorimeter insulating cap is removed,
were determined.

The acceptance test was performed by bringing the water in the calorimeter
vessel to boiling with power from the available heaters. The time to reach
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boiling and attain equilibrium was recorded. The three ac heaters were turned
off, and the dc heater was used to simulate the power generated by a spent
fuel assembly., Nominal heater power settings of 0.9, 1.0, 1.5, 2.0, 2.5, and
3.0 kW were selected and accurately measured. At each of these settings,
condensate accumulation rates were measured with the calorimeter collection
apparatus. The run at 1 kW was repeated three times to determine system
repeatability. The calorimeter insulation cap was removed during one 3-kW run
to determine the additional heat loss that can be expected.

The data were used to check the accuracy of the calorimeter for measuring
heat generation rates. This was achieved by utilizing the data from any two
runs in the following relationships:

9.1 = 9ar,1 9,1 T MPeg T A1

U,2 = eat,2 ¥ OL,2 = Moheg * AL

%,2 = 9%al,1 " Ycat,2 FA,1 79,2 T Mg - Moheg YA g -9

Assuming the hot bay ambient temperature and the temperature of the boiling
water are constant, heat losses from the system during run #1 and run #2 are
equal, therefore

BAp = 8Qcqq = Myhpy = Mohe
where

qh--actua] heat generated in the calorimeter by the heater for
runs #1 and #2

qca]--measured heat generation rate in the calorimeter using the
mass accumulation collection system for runs #1 and #2

cha]--difference in heat generation rates for runs #1 and

#2 measured with the calorimeter system

Aqh--difference in heat generation rate of the dc heater for
runs #1 and #2

ml--mass accumulation rate for run #1

mz--mass accumulation rate for run #2
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hfg—~1atent heat of vaporization for water at calorimeter pressure.

In this manner, the difference in heat generation rates determined from mea-
suring the condensate accumulation rate could be checked against actual heat
generation rate differences based on the heater settings. Results of the
acceptance test are discussed in detail in section 5.0.

4.2.2 Spent Fuel Assembly Heat Generation Measurement

The procedure used to measure the decay heat generation rate of a Turkey
Point PWR spent fuel assembly was as follows:

1) The day prior to inserting the fuel assembly in the calorimeter, a
reference run with the dc heater at ~1 kW was performed using the
procedure in section 4.2.1. Measurements using the collection tube
apparatus, weigh scale, and head transmitter provided the initial
mass accumulation rate, m. . Note that this mass accumulation rate
resulted from the heat generated by the heater (qh) minus the heat
loss (qL,i) from the system.

2) The day the spent fuel assembly was inserted, the water in the calo-
rimeter was heated to boiling using the heaters. After boiling was
established, the dc heater was set at the value that the reference
run was performed at in step 1.

3) The water level in the calorimeter was dropped to the SL setpoint,
the insulation cap and temporary 1id removed (Figures 18 and 19),
and the fuel assembly was inserted in the calorimeter (Figure 20).
The 1id/support and the insulation cap were reinstalled, and the
water level was increased to the OH level.

4) Data runs were obtained by letting the collection tube fill and dump
automatically. After approximately 4-1/2 hours, the condenser out-
let temperature was constant and four consecutive data runs had been
obtained in which the times to accumulate fixed heads of water were
constant within *l1¢ of the average time. With the mass accumulated
and the accumulation time, the final mass accumulation rate (mf)
was determined. Note that this mass accumulation rate resulted from
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the heat generated by the assembly and lead liner (qSF) plus the heat
generated by the heater (qh) minus the heat loss from the system (qL,f)'
The difference between the step 4 and step 2 mass accumulation rates

(m¥ - ;) was that resulting from the decay heat generated by the

spent fuel assembly and lead liner as shown below:

Me = Miodge + ay - q ¢ = (9 - 9 4)

The missing proportionality constant is the latent heat of

vaporization and the heat generation rate of the spent fuel assembly

was determined using the following expression assuming constant
ressure (hg ):

p ( fg)

Ogp = (Mg = Mdheo + q ¢ - q

Assuming the heat losses from the system were constant between the
initial and final steps yields:

Gsp = (M = M )heg

5) The spent fuel assembly was removed from the calorimeter and another
reference run was obtained the following day.

4,2.3 Data Presentation

Raw data obtained during acceptance testing and measurement of the decay
heat generation rate of the Turkey Point spent fuel assembly are presented in
Appendix B. A detailed discussion of the results obtained from analysis of
the data is presented in section 5.0.

4.2.4 Data Reduction Method

The method used to reduce experimental data to engineering units is pre-
sented in Appendix C. It is important to note that not all recorded data
values were important to the data reduction process. Many data were obtained
for operations and backup purposes only.
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4.2.5 Data Accuracy

An uncertainty analysis using Schenck's (1961) error and uncertainty
method was performed to estimate important data accuracies. The method and
analysis are presented and described in detail in Appendix D. Table 1 summa-
rizes the results of the uncertainty analysis.

From Table 1 it is obvious that values obtained using head measurements
have lower uncertainties than those using weight measurements. Lower uncer-
tainties are a result of more accurate differential head measurements during
condensate accumulation. Uncertainties in weight measurements of the conden-
sate are higher because of uncertainties resulting from contact between the dip
tube and collection tube, the resistance to scale platform movement caused by
the collection tube alignment bearing, and the uneven loading on the scale
platform caused by vibration from the collection tube solenoid drain valve
during actuation.

TABLE 1. Typical Uncertainty Values

Uncertainty

Parameter Nominal Value Value Percent
A 1.045 in.? £0.0039 in.2 £0.4%
Pcal 13.8 psia #0.125 psia ] .0%
At 525 sec *]1.4 sec £0.27%
hfg 974.8 Btu/1b #0.3 Btu/1b £0,03%
ap, 3 kW £0.03 kW £1.0%
AH 11 in. H20 0,35 in. H20 £3,2%
AW 185 g £]2.0 g £6.5%
m,, 1.41 1b/hr +0.046 1b/hr +3.2%
mw 1.45 1b/hr £#0.092 1b/hr £6.3%
qca],H 0.386 kW £0.013 kW *£3.3%
qcal,w 0.386 kW 0,026 kW +6.8%
qL,H 0.596 kW 0,034 kW £5.6%
qL,N 0.553 kW £0.040 kW 7 .,2%
95F H 1.55 kW £0.058 kW £3.7%
qSF,w 1.55 kW £0.091 kW £5,8%
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The most significant uncertainty values presented in Table 1 are those of
measurements of decay heat generation rates of the spent fuel assembly, i.e.,
qSF,H and qSF,W' Uncertainty values of #3.7% and #5.8% were estimated for
measured assembly heat generation rates obtained with the head and weight
methods, respectively. These uncertainty values are less than the *10% iden-
tified in the selection criteria discussed in section 3.1.
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5.0 EXPERIMENTAL RESULTS AND DISCUSSION

The results of the calorimeter system acceptance test and measurement of
the decay heat generation rate of a Turkey Point PWR spent fuel assembly are
presented in this section. The measured value of the heat generation rate of
the fuel assembly is compared with predictions obtained with the ORIGEN2 com-
puter program (Croff 1980).

5.1 ACCEPTANCE TEST

The purpose of the acceptance test was to verify system operability,
check accuracy, measure overall system heat losses, determine times for initial
startup, estimate times to reach equilibrium after initiating boiling, and
investigate the effects of injecting cold water into the bottom of the calo-
rimeter during equilibrium. The additional heat loss that can be expected if
the calorimeter insulating cap is removed was also determined. These topics
are discussed in detail in the following subsections.

5.1.1 Comparison of Head and Weight Mass Accumulation Measurements

The primary measurement obtained with the calorimeter system was the con-
densate mass accumulation rate. The mass accumulation rate was used to cal-
culate effective heat generation rates within the calorimeter using the
equation

Qeqy = (mchfg/3412) KW

Two methods of measuring mass accumulation rates were used to assure accurate,
reliable results. The primary method utilized a pressure transducer and a
precision tube to measure head (volume) accumulation over a period of time.
The secondary, or back-up, method was the measurement of weight accumulation
using a precision scale. These methods have been discussed in detail in sec-
tions 4.1.2 and 4.2.4.

Figure 21 presents the ratios of weight-to-head mass accumulation rates.
The mass accumulation rates obtained with the weigh scale are consistently ~2%
less than those obtained with the head measurement. Possible reasons for this
slight disagreement other than instrument calibration uncertainties are:
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FIGURE 21. Comparison of Mass Accumulation Rate Measurements Using
the Head and the Weight Methods

e The bubble tube used in the head method may have contacted the wall
of the collection tube and caused resistance to movement of the
scale platform.

e The vibration created by actuation of the collection tube drain
valve may have caused eccentric loading of the tube on the scale
platform.

e Binding between the collection tube and alignment bearing may have
resulted from tube movement caused by drain valve vibration.

Agreement within 29 between measurements obtained with the two methods is
considered satisfactory. Therefore, results from both head and weight mea-
surements are presented in sections that follow.

5.1.2 System Heat Loss

As previously discussed in section 4.2.1, the evaluation of system heat
loss was important, especially if it was determined to be relatively stable
and constant. The loss was determined by taking the difference between the
accurately measured reference heater power and the effective heat generated in
the calorimeter measured with the condensate collection apparatus; i.e.,

q =9, - 9,1° Figures 22 and 23 present heat loss data determined
from individual condensate collection runs; i.e., collection tube fill-ups.
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FIGURE 23. System Heat Losses Determined from Weight Measurements
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Heat loss values ranging from ~0.56 to ~0.66 kW were calculated from the
mass accumulation rate data obtained with the head and weight methods. Fig-
ures 22 and 23 indicate that heat loss values at reference heater powers of
1.5, 2.0, and 3.0 kW were slightly higher (~0.05 kW) than values at 1.0 and
2.5 kW. Note that more data points were obtained near q, = 1 kW than at
other heater power levels. Also, the scatter in data obtained near 1 kW was
less than at other heater power levels.

The averaged data of Figures 24 and 25 show the same trends as the indi-
vidual data points of Figures 22 and 23. Linear curve fits of the averaged
data indicate slightly higher (~0.05 kW) heat loss values at the higher heater
powers. Slightly higher heat losses at higher heater powers appear reasonable
because the heater element operated at a higher temperature, which increased
conduction losses along the body of the heater. Mathematical averages of the
averaged data resulted in constant system heat losses of 0.602 kW and 0.621 kW,
using the head and weight measurements, respectively.

During initial testing, it was believed that acceptable mass accumulation
data were constituted by two consecutive condensate collection runs in which
the times to collect a preselected head of condensate were within %1% of one
another. As operating experience was gained and during the completion of ini-
tial runs at reference heater powers of 1.5, 2.0, 2.5, and 3.0 kW, it became
obvious that two runs were not sufficient to assure that steady-state condi-
tions had been obtained. It was concluded that four consecutive runs with
collection times agreeing within *1 to *1-1/2% of their average time were
required to assure that steady-state conditions existed and to constitute an
acceptable series of runs. Most of the data acquired at a heater power of
~1 kW were obtained using this criterion. It is obvious from Figures 22 and
23 that the scatter in the data at 1 kW is much less than at the other power
levels.

Data obtained at 1.5, 2.0, and 3.0 kW may be in slight error as a result of
incorrect testing methods. Figures 22 through 25 indicate that the data at
these three power levels were slightly high (~0.05 kW). It was preliminarily
concluded that the heat loss from the system was essentially constant (~0.58 kW)
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at all power levels. This preliminary conclusion is partly confirmed by the
hot bay ambient temperature history presented in Figure 26. As indicated, the
temperature was essentially constant throughout a typical testing day. Because
the temperature of the boiling water in the calorimeter was also constant, the
difference between the water and ambient temperatures was constant. Therefore,
the heat loss from the calorimeter system should have been constant.

67 |-
&
& 66 o 00 o o o

o o}
O
65
O

64 O | | L | | |

800 9:00 10:00 11:00 12:00 1:00 2:00 300 4:00 5:00

AM PM

TIME OF DAY

FIGURE 26. Typical Hot Bay Ambient Temperature History During a Testing Day.

The opportunity to repeat some of the heat loss runs did not present
itself during acceptance testing. Therefore, if better calorimeter measure-
ments accuracies are desired in the future, it is recommended that the data
runs in Figures 22 and 23 be repeated to verify that the heat loss is constant.

5.1.3 Evaluation of Accuracy

An indication of the accuracy of the calorimeter system was evaluated by
comparing differential calorimeter heat generation rate measurements with dif-
ferential reference heater power levels. Table 2 and Figures 27 and 28 pre-
sent the results of such a comparison.

Figure 27 presents differential heat generation values using the averaged
data obtained in runs 37 and 38 as a reference value (Eh = 0.990 kW). As
shown, the measurements obtained with the calorimeter at differential heat
generation rates of 1 kW and above compare within ~4% of the corresponding
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TABLE 2. Comparison of Differential Calorimeter Heat

Measurements With Differential Heater Power Levels

Generation Rate

+Run Numbers(a) 80, kw Aq'ca] kW cha1/°qh

(5,6) - (37,38) 2.500 - 0.990 = 1.510  1.888 - 0.411= 1.477  0.978 (W)(P)
1.925 - 0.415 = 1.510  1.000 (H)(®)

(7,8,9) - (37,38) 2.011 - 0.990 = 1.021 1.391 - 0.411 = 0.980  0.960 (W)

1.415 - 0.415 = 1.000  0.979 (H)

(12,13,14) - (37,38) 3.000 - 0.990 = 2.010  2.357 - 0.411 = 1,946  0.968 (W)

2.374 - 0.415 = 1.959  0.975 (H)

(18,19,20,21) - 1.493 - 0.990 < 0.503  0.848 - 0.411 = 0.437  0.869 (W)

(37,38) 0.860 —~ 0.415 = 0.445 0.885 (H)

(37,38) - (28, 0.990 - 0.893 = 0.097  0.411 - 0.319 = 0.092  0.948 (W)

29,30) 0.415 - 0.325 = 0.090  0.928 (H)

(24,25,26,27) - 0.987 - 0.893 = 0.094  0.397 - 0.319 = 0.078  0.830 (W)

(28,29,30) 0.404 - 0.325 = 0.079  0.840 (H)

(C1,2) - (28,29,30) 0.989 - 0.893 = 0.096  0.399 — 0.319 = 0.080  0.833 (W)

0.413 - 0.325 = 0.088  0.917 (H)

(5.6) - (7,8,9) 2.500 - 2.011 = 0.489  1.888 - 1.391 = 0.497  1.016 (W)

1.925 - 1.415 = 0.510  1.043 (H)

(12,13,14) - 3.000 - 2.011 = 0.989  2.357 — 1.391 = 0.966  0.977 (W)

(7,8,9) 2.374 - 1.415 = 0.959  0.970 (H)

(

a)
(b} (W) Weight Measurements, (H) Head Measurements

accurately measured heater power differentials.
the uncertainty estimates determined in section 4.2.5.
of ~0.5 kW (Aﬁh = 1.493 - 0.990 kW), the comparison falls outside the desired
design criteria of #10%. However, it should be noted that this differential
involves the runs at 1.5 kW, which are thought to be in slight error. Compari-
sons at a low differential power level of 0.1 kW fell both inside and outside

the desired accuracy range.

See Appendix B for data associated with individual run numbers.

This compares favorably with

At a differential power

The credibility of the 1.5-kW runs can be further investigated by taking
the difference between other runs to obtain a differential power of 0.5 kW.
Figure 28 presents differential heat generation rates using the average of
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Runs 7 through 9 (ﬁh = 2.0 kW) as a reference run. The comparison at Eﬁh =
0.5 kW (2.5-2.0 kW) between the heater and calorimeter differential heat gen-
eration rates are within 5%. This result is reasonable confirmation that the
1.5-kW run is slightly in error. Note that at E&h =1 kW (3.0 - 2.0 kW), the
ratios of Aﬁha]/Aah are essentially the same as those in Figure 27 using

ﬁh =1 kW as a reference.

5.1.4 Calorimeter Sensitivity

Three sets of data were obtained near ﬁh ~ 1 kW. Figures 29 and 30
present mass accumulation rates and corresponding calorimeter heat generation
rate measurements at heater powers of 0.987, 0.989, and 0.990 kW. These data
show that the calorimeter system was sensitive to a change of 0.001 kW (1 watt)
in heater power. However, the data in Figure 30 indicate that the calorimeter
is not accurate to 1 watt because the differences in calorimeter heat genera-
tion rate measurements do not equal corresponding heater power differentials.
Therefore, it cannot be concluded that the calorimeter has an accuracy of
1 watt. Discussions of accuracy were presented in the previous section and in
section 4.2.5.

5.1.5 General Observations

During operation of the calorimeter system, the following observations

were made:

e Approximately 4 to 5 hours were required to heat the water in the calo-
rimeter from a cold condition (~65°F) to boiling.

e Approximately 3 to 6 hours were required to attain steady-state con-
ditions after boiling was initiated.

e Once steady-state conditions existed, the addition of 4 or 5 gallons
of cold water to the calorimeter required 1 to 2 hours to reestablish
steady-state conditions.

e The difference in system heat losses with and without the insulation
cap installed on the calorimeter vessel was ~0.23 kW (0.85 ~ 0.62 kW)
at a reference heater power of 3 kW.
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e Even though the system was designed for 3 or 4 kW, it has the poten-
tial to permit heat generation measurements in the 12- to 14-kW
range. This was demonstrated by collecting condensate at ~14 kW
without overloading the condenser/fan unit.

5.1.6 Recommended Criteria for Acceptable Mass Accumulation Data

The most important result of the acceptance test was the experience gained
in operating the calorimeter system and determining what constituted acceptable
condensate accumulation runs. It is recommended that the following procedure
be used to attain boiling and assure that reliable, accurate mass accumulation
data are obtained:

e When approaching boiling with 22 kW of heater power, the power
should be reduced to 11 to 14 kW when the calorimeter vessel skin
temperature (TE-2) reaches 84 or 85°C. This will minimize the
chance of overloading the condenser or overflowing the steam and
sight glass discharge lines.

e MWhen boiling is initiated, the reference dc heater should be set at
the desired power and the total heater power should be reduced to 4
to 8 kW. This power level should be maintained for 30 min to 1 hour.
This will permit the system temperatures to attain steady-state

values.

e The necessary ac heaters should be turned off, and the history of
the condenser outlet temperature should be similar to that shown in
Figure 31. The temperature should decay down to a steady-state
value. If the temperature decays below the steady-state value and
begins to increase, 3 to 8 kW of power from the ac heaters should be
applied to the system for a short period of time (15 to 30 min).

The ac heaters should be turned off and the condenser outlet tem-
perature should decay similar to that shown in Figure 31. This pro-
cedure should be repeated until Figure 31 is approximated. Note,
this procedure reduces the time required to attain a steady-state
condition and makes it relatively easy to recognize that a steady-
state condition has been reached.
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Approach to a Steady-State Condition

e Once steady-state conditions exist, the power being generated by the

dc reference heater should be checked for correctness. Four con-

secutive full-length collection tube runs should be obtained. The

times to collect a specific head (weight) of condensate in the tube

should compare within *1 to *1-1/2 4 of their average time.

5.2 SPENT FUEL ASSEMBLY HEAT GENERATION RATE MEASUREMENT

The decay heat generation rate of a Turkey Point PWR spent fuel assembly

(ID #D-34) was measured with the calorimeter system.

The day prior to perform-

ing calorimetry on the spent fuel assembly, a reference run with the dc heater

generating 0.989 kW was performed (Runs Cl and C2 of Appendix B). Prior to

insérting the fuel assembiy in the calorimeter, the calorimeter water was
brought to boiling and the reference heater was reset at 0.989 kW. The as-
sembly was immersed in the calorimeter vessel, and approximately 4-1/2 hours

were required to establish steady-state conditions and obtain acceptable mass

accumulation rate data.

Results of the four data runs are presented in Table 3. The data reduction

method discussed in section 4.2.4 was used to determine spent fuel assembly
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decay heat generation values from measured mass accumulation rates. Heat losses
from the system were assumed to be constant at any heat generation rate. Results
from measurements obtained with both the head and weight methods indicate the
Turkey Point PWR spent fuel assembly was generating 1.55 kW. Three different
sets of reference runs obtained on different days were used to determine the fuel
assembly decay heat generation rate. The three sets of data permitted an evalu-
ation of uncertainties introduced by reference runs. A comparison of the average
heat generation values in Table 3 indicates repeatability of %1y is possible as
long as the hot bay ambient temperature is reasonably constant (#2°F). Data of
individual runs used to obtain average heaf generation rates indicate a scatter
of ~t§§, which is within the uncertainty values estimated in section 4.2.5.

An initial prediction of the decay heat generation rate of spent fuel
assembly D-34 was performed by HEDL, using the ORIGEN computer program (Cross,
Haese and Gove 1976). A value of 1.77 kW was predicted which agrees within
14% of the measured value of 1.55 kW. A subsequent prediction using the
ORIGEN2 code, the latest version of the ORIGEN code (Croff 1980), resulted in
a prediction of 1.64 kW, which compares within 5.8% of the measured value.
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TABLE 3. Spent Fuel Assembley (D-34) Measured Heat Generation Rate

Reference

Run Run - -~
Number Date  MNumber  Date  90-34,w*" 9p_34,w*" 9p_34 po*W Gp_34 yokW

C3  4/01/80 24 - 27 3/25/80 1.543 ) 1.547

ca 28 - 27 1.584 $ 1.590

c5 20 - 27 1.543 1.553 1.552 1.560

C6 20 _ 27 ‘ 1.541 1.552

)

c3 Cl & C2 3/31/80 1.541 ) 1.539 )

ca Cl &C2 1.583 g 1.581 >

c5 Cl & C2 1.541 1.551 1.544 1.552

c6 Cl & C2 1.539 1.544

Y / ’

c3 37 & 38 4/02/80 1.529 1.536 )

ca 37 & 38 1.571 1.579

c5 37 & 38 1530 p 1540 1.541 1.549

c6 ¢ 37 & 38 1.530 | 1.541
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EXPERIMENTAL RUN SUMMARY

The following table presents a summary of the important experimental runs
completed during acceptance testing and calorimetry of spent fuel assemblies.

TABLE B.1. Experimental Run Summary

Run # Heater Power, kW Objective

5 and 6 ~2.5 ‘ Measure eal

7, 8, and 9 ~2.0 Measure eal

12, 13, and 14 ~3.0 Measure 9eal

18, 19, 20, and 21 ~1.5 Measure Aeal

24, 25, 26, and 27 ~1.0 Measure 9cal and ref-
erence run for spent
fuel assembly D-34

28, 29, and 30 ~0.9 Measure 9eal

33 and 34 ~3.0 Measure 9cal with
no insulation cap

37 and 38 ~1.0 Measure eal and ref-
erence run for spent
fuel assembly D-34

Cl and C2 ~1.0 Reference run for spent

fuel assembly D-34

C3, C4, C5, and C6 ~1.0 Measure dgp of spent
fuel assembly D-34
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DATA LOGGER CHANNEL NOMENCLATURE

The following table presents the data logger channel nomenclature and

units required to reduce the raw data presented in the following section to

engineering units.

TABLE B.2.

Channel

Parameter

0
1
2
3
4
5
6

7
8 &9
10, 11, & 12
13
14 & 15
16 & 17
18 & 19

RAW DATA PRINTOUTS

Condensate Weight
Collection Tube Head
Reference Heater Power
Reference Heater Voltage
Reference Heater Current
Condenser Outlet Temp
Calorimeter "Skin" Temp
Calorimeter "Dome" Pressure
Storage Tank Water Level
Calorimeter Water Level
Condensate plus Tare Weight
Storage Tank Water Level
Calorimeter Water Level
Data Run Initiate and Reset

Data Logger Channel Nomenclature

Units

g
in. H,0 ¢ 68°F

2
kW
volts/24.615
amps/4.808
°C
C
psia/0.25
inches/0.22
inches/2.16
g/50
inches/0.22
inches/2.16

-]

The following pages present data obtained with the data logger throughout

testing.

B.2



197 < {6002

19 < Q0002 v v
13 q0n1 v 1€ GC01 v
17 $539 % 17 5513 %
16 3539 o 1e $513 %
5 2209 % 15 2417 %
14 2209 % 1a 2217 %
12 6646 % 13 6646 %
12 9537 % 12 5516 %
11 9537 % 11 9516 %
10 0537 % 10 5517 %
9 2207 % 9 27218 %
8 22017 % 8 2217 %
7 5154 % 7 5463 ¥
6 £9413 % 6 R94S %
5 2972 % 5 29139 ¥
4 23760 v 4 33783 v
3 8903 v > §906 v
2 25435 ¥ 2 25500 W
1 > 3713 %W 1> 3716 W
n 13159 G 0 13162 G
8] N6538 9 6539
noonns Goone3
372:12:39:32 JTzitzisiion
1 > 3703 %W 1 > 3705 %W
172:12:39:31 372012053101
19 < 00093 v 19 < go0001 Vv
15 neot v 1e G901 v
17 3541 % 17 9530 %
15 9541 % 1€ 9573 %
15 2413 % 15 23219 %
14 2213 % 14 2219 %
13 5320 % 13 5617 %
17 5540 % 1?2 5521 %
11 1540 X 11 %513 %
10 9540 % 1c 5519 %
9 2213 % 5 2319 %
8 2213 % 8 2219 %
7 156 % 7 51,84 Y
6 8943 % 6 6544 ¥
5 29,05 %, 5 2909 %
4 23777 v 4 23781 Vv
3 5506 v k B9z v
2 25531 W 2 254217 W
i 514 CTW 1 517 W
N 7542 G G 7520 G
n 060908 “! 3 00869 &G
200063 so Gooogs
172451237346 3ﬂ¢’ 172:12:462:19 3#1180
1 503 W 1 507 W
I 1217645 72121422018

B.3



v

neat

4

n

<

19
i3

Y

noAa
‘\l 1

v 19 < 50002
184

1

< geons
nen

19
18

[ »
» .
¢ R I RS - e R z= > f Al T A > D e
£ O ' Rl
U e e 0T T e e O~ em o LT O~ ON T -— CU w0 NY T T N R D Ty g e e B DD e MY 0D
[ G AN S I U S i o S L SRR SR L A o B o C C 1w o IOV e e e e Y 0 T AT w0 e Y e Y
[PV SO IV G AR AoV ITOR TN, BEQWA PP, B A NS G ANIES S FER - B RN (S BN TT o TS\ IE I S BF IV RTANE  ESO IR B BN AR O S AR AVO LT ot
(5 N e AT SO  FRVo o I ATIES SUN oS Y AV RIS WA QA O L VN | AN LaNiEenliy o) [LaRTe) [ R S S S SRRSO AVIET o« S S (N AV o A Ta S L A S [
Ay o - e (0. L < an o
oL @ Lo
N [l SN A ar v
~ e .e
o~ T~
— L
[N Vo ITORIES S (SR VLU TN BN AT o B < RNRVO BT WRE. B, S U N & .o — e O~ LN M N e OG0 DN SN N O
L I e I I I I o o L B S R A o I ]
[} [ o~
o <
SN N T - - S Ed > <X R T SR R T S
£ O £ 0D
0~ (=~ N, N jad T 2 N o~ — - NS T N WD NN b S T 3 Fo e ALY o B A c
- — O A R o C 7 N KT e TN T, S Y g e g~ (N
Y YO WY [ I [TE AW e e C T ANAN SF N Y A AN e S Y Y e oy wY e
(o NS A VI s S La ESES NN 4 MmN O Y L N T TN oY DT N e oY o~
— w o e e fand Y -~
Ao SN VT o Lot} .
A [ A v v
e .-
o~ o~
-4 -
L dite BT AU LA T I A s liNs AN+ o BN - SRV SN TOWNPE. SN o WK o CIE - B ow} LR — e [<AYEEI oI <RV RNV o WEN N o o S I+ NN ¢ I N Vs B VR WEEL. Y. S QN I en ]
— et v o e e e o [o¥] L B e I T B I ]
o ~ 1
(g} (el
. a¥ W ™K N R B x > e £ &R N LT N>
£ < ' 5D
R D RSN N L s X v N DN O D o~ Y W v T~ S NS N RN N SN R A "o NP VR S RS o
NI et e MO O et v D S B A @ Y e Y < R T G T T I OO T SRV R Ry - Fo Wi co)
PO RNV I SR E &8, VG BT RN Y S SR MR T A BeC ) BE N SRS S o [ AR = e C o YT AT A T Y (DN YR YA o Y T
2204 AU A VY QRO TN 4 AYR ¥ SO« A o VIR o VT S WS - Y o VIS - S sl | SO I s JTAN o C VN R VDN NN T NN DN e SO [
or o - N e .. c? o o
(VoI UK 4 <
A [ R A v
 es .e
[ o~
-4 — B
e~ WV N M N OONWO®@ O WD MM v e (O e e o0 OV D~ 'O N N QNN NN e O
v e e v e et e [4¥] o~ — rd vd rd vt v e ed e
(o] e~ o~
o fan)

1#°

7\

e

3l
17231725313 ) 2 pko

574

4

TANNT3

J12:17:126 014

AL

oA
C Y

3
|

3

5C 4

JC3 Kd,

272:17:88017

D A0k

B.4

~

clay
v

0ot

EE

17

272

'l
/m/ 4

NIGNG3 9\
1

SO:IinwT;‘o

poaas

372116



19 < oo0a2 y 1y LLER v 19 < Annr v
13 aneg v 18 Ny Y ik ann2 Vo
1 9434 17 1415 17 9417 4
16 93435 16 w412 5 1 9418
15 2353 % 5 22,59 P : 26 .
14 22513 k3 14 2259 ; 14 A kA
13 647 % 13 X : 13 L6535 %
12 5438 4 12 G547 X 12 2409 %
il 3438 % 11 9474 o 11 G410 %
10 3473 # 192 34,24 ) 14 AL %
G 2353 % 3 22549 - 1 246t ,
b 22572 % P 2259, F 24e1 2
7 51,74 b3 7 5473 v, 7 5,73 4
5 K961 % I3 3961 ¥ % 951 %
5 3210 % 5 3207 % & 3909 %
4 26024 v 4 2601¢€ W 4 24625 v
3 9751 Vv 3 3745 v 2 3754 v
2 302435 @ ) 3N242 ) 2 300¢%¢€ 4
1 > 3775 M 1 > 3720 T ! > rte
7y 13264 C 0 13261 4 e 13241 ¢
0 0654a¢ 9 96534 ol NESK 4
AGNAN3 ’ 10793 .
A731146006 042 1735142171644 1732141250456
1 > 300 T ] > 3701w 1 > 3702 e
I?731410€E45 V1331417045 173313122246
13 < A00N3 v 1¢ < nnns v 19 < nnnn Vv
18 SRR v 18 5071 v 18 PREED! v
17 943y % 17 Iq13 % 17 419 4,
1¢ 343k ¥ 16 I42a 5. 1¢ 9473 %
1% 2254 % 15 2260 5 15 2469 %
14 2254 L4 14 2259 Y 14 235¢ KA
13 5526 ¥ 13 5521 o 12 5520 %
12 3436 * 1?2 3430 4 17 9421 %
11 9428 b4 11 5 4% o 11 3427 %
1n, 9477 % 12 5431 ¥ 10 3621 3
9 2054 % g 22509 ° 3 5N ¥
8 22354 % . ) 2255 s = PR ¥,
7 5476 % 7 51,73 5 (i 51,73 %
5 3960 < & £9,:52 ) 561 “
5 31501 % 5 32572 Y 5 31504 %
4 26013 v A 26719 Vv 4 26232 v
3 9752 v 3 5748 v ? 575y v
2 0240 ] 2 IN2 %1 N > 30245 W
1 518 W 1 517 tw 1 5153 T
0 7945 O 7550 » i 15617

G [ (3
Y 13 , L gy

O ‘.’)'..' 5 R 4 {‘)\ (o) l M [ N o)
"‘”"“J?’Z” ﬁyk’d’ i ':(w::-'_ia %3#"0 .erw?':‘ﬁf??kw

373:13:58:07 3/!3/;0 473:14:09:nng//g/io AR TEELEBE 7//7/30

1 505 TH t 506 1 t 576 T
D73 I58:06 173:164:08:59 7ET14:29:04

B.5



—
<"
)
]

oo y 19 4NC3a v
18 YR y 18 > 24663 v
17 96050 2 17 2559 w
16 3595 ; 16 2543 “
15 2307 3 15 2304 "
14 2362 2 14 21304 Y
13 5 Q€ ¢ 4 13 €075 5.
12 95,¢ 3 2 12 5597 %
11 9532 % 11 9556 %
10 355% ; 10 9597 %
9 27,01 % 9 2304 1
8 2301 % a 2304 %
7 5437 e 7 51,34 %
3 38573 s 6 3575 % .
5 e413 % 5 2706 %
4 L5265 v 4 15365 v
3 GIES Y 3 38172 \
2 15074 A 2 15126 W
1 > 2109 W 1 > 2,08 W
n 10284 o o 13270 G
0 026639 0 0365%
nnNnocnaz GOID3
D84314047:51 084:15:05:63
1. > 21,04 W 1 > 21,03 %W
1843143147556 n84315:05:n2
19 ~3N0"1 v 13 3002 i
18 G001 ¥ 18 GG v
17 3501 . 17 e595 %
16 36,01 16 95%a A
15 295y 2 15 2304 %
14 2959 p 14 2304 %
13 5495 13 5454 o
12 555¢ ; 12 8567 %
11 2594 S 11 559 e
138 3554 10 9527 %
3 2329~ ~ ] 2374 %
2 232953 kA 8 2304 %
7 5434 i 7 513¢ %
6 3572 7 6 Ag74 i«
5 13 v 5 2711 %
4 L3356 y 4 L2374 v
3 56 F v 3 6876 v
2 15573 : 2 1EL06
1 3505 T 1 503 T
n 1436 G 0 T47%3 G

e R¥ soay KELT
) nCt81 4. R (LY K ;
s LR v gt
T_).,Y c14:25042 3/24/@ 084:114:5204¢ 3/?7/30

1 5"1(\ 3 5323 T
084:14:35:41 N34:14:52:45

B.6



nna

0‘(

1y

" 3/24/%

501
2€

13415027

S I GISC I S AR SR N 2 = - KO- ~ NN N —
L ' 2 ey
3=
D Ty 0 D = T I N T S Y T D ~ L DN e T e N T U g Y BN R B F i g T K ﬂ”
S SIS S SRV (R i oD SRS S B ST O o o R T S N N TR S S NIED N B A I
[RRTa VT IS I BT ARV I D D A A N Y ¢ RV N TR R FaN ~ e - i VN TS S T, JOC U TR I SR T o 0 I I U, PO DM
ek SR S VAR SRR TS NI SN~ SO S VI QU Y SIS I S VIR SR & BT o WY Vi [FARNASIE o oo [ SRR N SO S U o VIR TSNS SR ¢ SRS S S VIS VI TP G SO o AT
- - - O o es e ~N N o e
RN . < <
A LSy T A P
foadR X3 e =)
Fa) 1
. - —
T M T N O e DTS N Ny e D .. - X Qe TN A GO DN ST NN e O
e v et et e et gy gt = <t et ot v e e e
< o o84 [
—_ p-
= R R G N N N = x e S EOE N N s > > o o t
R & fo W
~
B N B N R A I - S SRy Sl N SN, B S ) m d e T e T L TS T M DS R O e 0D Kﬁw
Pl SN TN N i o SR CaRs SIS URC LR oo sl R i i S S S Y o [w} SR S Y Gl NPT S S U S U B i o
o NV GNY e 2V e Y A Y o g N e i T = O Moo -, P e R I B T TRV, VR B T T B B I R T T T - T
SEY M o VAN W oS NN Dy YN o T s I Tal o~ [ G IS S & S (A WS W o T W GV o P Y S UNES TE Ve L BT N e~ oD
[ ) - - — -t [ .o o -~ — o
MmO o t [
A [V SEE O Ao [N
el R oe )
w0 [
- -— R
[2 B SRV BTN S S T K <l oo T - Y N T WIEC i SUR o S S o oe — e Gy D~ 0 N M N OO DN RN O
T e el ed e e e T v . < < — gt vl oyt et g v vt gyt
[e0) x [2+] [
o (o

T

7

15

134
B.7

L

-

ue

5
7]
1

N9 :0°

" 3/29/%

o

1

7841215
184018



19
id

g
oIS S .

\

— ot jed
T e N\

L

[ RN Y S R AN S ¢

1.
es]
[

NoRara)
~

N

R PRI IRY)
X e s N

& W ©

i NS Pl D e v WS
Nl A NGNS

BV I B NS MY

s SIER NG I N

194
285,490
L6949
2594
1na90
1 6N 4
957"

4

>

1 > 1602
185 1112048
19 |‘:v;f)al')
18 ARRE!
17 95,59
1e EReR ]
15 2\5‘14
la TALA
13 B ER
12 i“.‘}‘i:)"i
11 9568
19 354k
E 2314
5 2313
7 54370
& 5391
5 2¢,73
4 Lavas
3 553%
2 10063
1 503
0 7417
0 JC72
(‘(‘ 5
;’\352!5: 145 ﬂ?
1 501
JAS 13 I11 i1

1.0
a/

oW

: rd‘“

ok

0

B.8

-
L

-~ &

. e e e e s e -
PSS BRI S I S A

a:

-3

6)

-0

4

19
1¢
17
16
15
14
1%

~
<

11
VG

oSO

(@ B ]

113

153

i

Y W)

‘]JO J O é
SRR

Q564
3364

R V.
Nl GO I Sl
- NN

i
(2@

Te 0\
'
Oow
[y §)

585
Le4a6
5594
13623

> 1403
5193

271117
0015

NIV

> 1501
»H 101

yena?
DR
S 564

LCING

-

[oBENCERVUER Rt
Lok N

BN s R S S Y * R W L S A LAY
D N \u

[l

[ BRE e < IV T BN SHICYIRG I E IS I RS VGRS
o=

Y
—_

N

—
[N
el

W
E -3

~

507
57:26

ol 14

ST N

ENIECN

J

£

o



—
<

100452 \!
5001 1
569 %

— -
-~ D

1< f “
15 3 31 %,

-~

)
X on
DWW B W0 DD
S ~
B R

—
N
(S

e}
b4
5
Y
V]
EA
- LSS 3
12 959 ‘% '
11 359 . :
10 1555 % 1
G ? 5‘1 3 A_»
5 2315 i
7 532 %
6 2951 %
5 2614
g 1,495 72 v
3 oW \"
7] AR %
1 > 1604 TH
0 9351 0
5 127307 :
ARSTALER D B
1551422707 Y

[y

> 1602 6w

slaionoiny 135

i
-

—
SNe)
—
N
)
V]

s

N

W =

N\ o B

[t

NS

U oo

[ I P

[

) 'l /
L7 9501w v
14 3558 . 14
L 2320 i5
La 2321 ’ 14
t: 54492 % 12
12 2Hu 4 % 15
11 Q‘jﬁ;‘-', Y 13
9. '7"}1 4 _J
“ 571 : 3
v 5438 % 7
© IR 5
5 26,27 % 5
4 L4241 v 4
3 5“59? v %

148201 W 5

— N0

502 €T
760% C

)

Q:"W'I‘ED .Ot“)
D45116:04 54 125
" g[25790

1 cs (] g

A5 014104045 113

B.9

15 e

>

-

500 \
I5EE .
3556 R
73753 4
2303 7
4
B2 %
G558 v,
";‘3‘:’ 4 T
9556
23423 5
ol l"‘; P4 y
5434 4
%91 7,
2 5‘}3 4 ks
AR T v

P
NV
AV
&
<<

N ]‘(-, W
1604 e

N2739
CULY

Pl a8 %

SEVES /
0 Y
G99 %
g Y2
2574
7374

I ‘
549

9560 7
9":")9 *
30,59
2524 %
287
R #
Sy 00 %
2555 i
45467 v

A v
IR NaNe e o
RRARSS P
-~
%702 e
. “
(RO 3

Ji
A b)
3
503 e
M



19 -30nN00
18 SR ]
17 3¢09
) ) 9602
15 23295
14 22835
13 58717
12 9409
11 2603
10 9603
E] 2285
8 22895
7 51412
6 8385
5 2152
4 L4220
3 5320
2 a1032
1 > 16n3
0 9271
9 n21759

001000
De6143012022

1 > 1601
7862146341522

18 -nocen
18 nNot
17 $5N5
16 Ng0¢€
15 2234
14 2204
13 5499
2 9611
11 *9412
1n 9612
9 22,84
A 2284
7 5144
6. 89565
5 2749
4 L4211
3 5327
2 2956
1 5072
C 7393

0 N8 2A ﬂ
Q0102482

1 500N
N86:14:19:12 7

-~

G

W

TN

~
\

¢29

Y2 ot
086:14:19:33\3/h6/90

A

13
19
17
1¢
15
13
12
11

S AN =3 D DO D

0 e N

o]

33€:15 1}

1 > 1601 W
Je2Ei15:13100
19 UALECDE | J
18 Lo b
17 3694
1¢ 14,04
15 2390
14 2237 8
13 sS40 .
12 9507 ;
11 33572
10 9477
5 2295 o
; 2527
7 5;41
S Bt s ¥
5 27,57 ¢
4 L4215 v
3 5307 v
2 3643 ¥
r 503 e
0 7297 G
0 1r531 e
101050 0,1@7

N6 1140

4 .

ARENC R BV IS
‘N D

o

IS T
T ds AN WD

—>

Y
D e 0 en B ) D WU ) R WD D D N

v
WY Y e R gD A 0D WD 0 O G D
FEIS )

u]
c

2
nNd
~d

bat

3

o j:k\,' FE Y
WO
n‘
P 2

Fooss

13 Lot v
18 o0 v
17 54902 %
14 56072 5
1% 29589 %
14 2292 %
13 513 %
12 5601 %
11 56060 3
1¢ 3400 %
3 2290 %
8 2560 A
7 54,41 %
5 25,03 in
5 279,55 %
4 La2is Vv
3 5315 v
2 90516 §
1 > 1603 W
gt 3345 4
c £217178.
126D
Y3615 0450465
1 > 1602 W
1363152452453
15 ISRSRAREE | i
13 gnr V
17 5554 %
15 25,44 A
15 22354 %
14 22,20 ;
13 34,59 %
12 34,03 E
11 S04 .
a 3504 e
5 7351 %
E D %
7 ERN a
£ &a?B b
> 2454 &
4 L8214 v
b 5322 v
2 8153 4
. N RN { o
L 4 5
B 7401 G
g ©0329 R*g [
Lol
JB6 i3I 3038 /%4/30
1 550
NRgI1S T35



19

> PR NN RN N N e o B
&=
@ oim ™ P el T D e 3N T
I I R TN R F ORI R DR S I
WNAY Y MY Y LB e e o e oy MY LN e
[NeOI s S s e SR QU Q VT A S s Al ATV A w i a e = oo
o o — s e
AL e
~ O s
e
-
-
[ A L EEE I A R AT AU SRR & R AN /S I ~ RV BN TANRS S A S L
et = vt el v et et ot e ~
: [l o
™
N R N - =
o
L
(S I AV SR B GRS
P i SR s N O A T
oo e ey -~ .
o oo o
land W
N
A .
M i WD W MY Ol OO Gl NG W N R N et O
B I R T T
-

R I )

L£ 3

137514

LaaY

(SRS 9

IS SRR TRTIE N
[ BT S

NNy

<

oo Y Y e Ay
[N N e s AR U AV
pst

- r

-
<t
PV N
[ U Fa
[N o

N

&

Vo

N4

k#JV
3.0
e

N

5
e

.!‘D
/w;

s
H

LEB
o ve
P

A%

90252
5

4
h i
2
1
it
J
14107
1

0
187

el

~5

.o

I

[

.

- ~e

- -

MO e O oo - e
o ~

A I er
—~ -

1873114135

B.11



18 3001 18 9001 v
17 9562 17 9564 %
16 9562 16 9564 ¥
15 2224 1 15 2229 %
14 2224 % 14 2230 %
13 5890 % 13 5867 %
12 9559 % 12 9564 %
11 9553 % 11 9563 ¥
10 9559 % 10 9564 %
9 2225 % 9 2230 %
8 2224 % 8 2230 %
7 51,55 % 7 5154 %
6 BROE % 6 8899 %
5 2784 X 5 2785 %
4 14963 vV 4 ,46958 v
3 5602 Vv 3 5607 v
2 10059 W 2 10049 ¥
1 > 1605 W 1 > 1605 W
0 9395 & 0 9394 G
0 02822 0 02820
900001 000001
093:15:24:26 093:15:50:35
1 > 1§02 W 1 > 1602 W
093:15:24:25 093:15: 50'34
18 qonN1 v 18 Go0t v
17 9570 % 17 9566 %
16 9569 1¢ 9566 ¥
15 2225 & 15 2228 %
16 2225 % 14 222¢ %
13 5498 % 13 5496 %
12 9569 ; 12 9565 %
11 9569 % 11 9564 X
10 9563 % 10 9564 %
9 2225 % 9 2227 %
8 22025 % 8 2227 %
7 5155 % 7 5156 %
6 8899 % 6 8696 X%
5 2785 ¥ 5 2787 %
4 14953 vV 4 16955 v
3 5606 vV 3 5606 vV
2 10050 W 2 10050 W
1 504 W 1 503  tw
0 7431 G 57 0 7444 G
0 nN0867 pfﬁ 0 0873 K*g'ﬁ
000001 plt 000901 “"
093:15:07:20 ‘”1 0693:15:33:20 q[;ﬁo
1 501 W 1 T P
N93:15:07:19 093:15:33:19

B.12



ENGINEER: _ WEEKS  PAGE: A reF: D=3y
[ELee

TECHNICIAN:

SPENT FUEL CALORIMETER TEST

ﬁf\'w)

DATE: .31 MAR 198 FINAL:

: : -0000(11
.391 17‘“'}’] UO "_'

: > qupz
: 091 11 16239

FOFORYAS :

R N O

P

ae Aty

€ 3 3




ENGINEER: _M/EEKS  PAGE: ____ o '
TECHNICIAN: DeLEE  DpatE: L APRIL 19%0  FINAL:

SPENT FUEL CALORIMETER TEST

REF:

0D -=2¢%

:;9v’"qu!nay‘ v 1 ogocer - v
_!6‘ ‘Q(“.—'l' Ty 4 18 Q52 v ‘
AL eses X T A, v
1&-{ TeszE o E e 5311 .
15 3309 % 13 16 4
- 1& 3929 % Y4 L 3314 “
13 €71 - (I 54,54 »
12 . 9525 L2 3513 ;
’ tr 33525 ' 11 514 %
tc 3525 ER 1c LS ]
9 Inoe Ty, 9 3g1¢ "
8 03937 .« ‘8 - 316 %
o1 5425 k- 7 5424 5
6. 6512 P 5, 2% S A
5. 2357 PO 5 2923 %
: b L4959 4 L4362 v
L3 5503 v 3 3605 v
2. . - 10D4s | 2 10031 4
Cr > 3721 ww 1 .> 3718  tu
0 13255 o6 0 13242 6
- S A ‘
)] 16630 R a fonta ;
100021 P : ARSI .
1 19211682410y, o T32:16537:013
1> 3708 tw 1 > 3706 W
192:15:248:00 R ¢2:1e:37:10
19 .n0eay v 15 Weon2 v
e ' forr Y 2 16 q0m1 v
1T T L9328 T 117 S92l o
16. . 9521 3. 16 L9529 %
15! S311 - % 15 Co3nLT
14 S 31 - % te 331k
13 <§2k X o« -13 "o5521 %
12 298533 12 Toa518 x
11 9536 ¥ - it 9515 %
10" 9%38 ¥ 1o - 9514k
A JIntor % a - 3Q117 %
3 3410 g B 3nvs %
T 5121 Sy 7 T 3,2s
6 8212 ° & 6 " a314 wl
5 2453 % 5 2372 v
4 48357 v ! LY L6757 v
03 T U3599 v i3 BCTRY R
o2 13953 -y 2 1004k [
« 1 . Rle oW 1 —211 T
0 7542fa ) 7525 ¢
¢ omarg K Qesom a2 apyae K’CL’
Jn"“J"IF"qu 5 - Halian ”ﬂ"&'
Jw:xe.l ‘24 p'| plb BRERES PN « g;"
1 ;osqLA? I . D) %@ﬁw
1222161133 23 . 132:26:26:48 . .

B.14




SPENT FUEL CALORIMETER TEST
Weers

ENGINEER:

TECHNICIAN: DELEE ~  DATE:

PAGE:

X1

REF:

1 APRIL |98 FINAL: _D-34%

] |

19 .ogidoyr. v o4 19 37302 v
13 - GC31 v 13. SRR R
17 9457 '% : 17 3422 i
Y T5457 7 W 7 17 453 -
1s Tq23 * T1n 37258
16 3323 % 14 3373
13 5368 4 13 877
12 . 5453 B 12 2452 ;
11 9505 % 11 1451 i
16 ISHO . X 13 54,30 K
b) 3Q23 A J S3gns %
5. 3g23 A 4 3526 5
7 3423 %, - 7 SLT4
“ 6. 5313 ¥ 6’ §310
-5 2363 ~ % 5 2451 ;
4 L49ol v 4 L4SE3 y
A ; 5696 0V 3 5077 ¥
-2 109256 W . < 18354
1 > 37114 v -1 > 3717 W
Do 132590 a. iy ‘13283 0
3 56632 . o 36653 .
33C991 - . ) “BEGTI '
o3¥2il6i80%2y 33781718067
1 > 702 .TW 1 > 37095  tw
152115150124 £32:17:5% 45 .
19 3002 V. 13 =305 P
ts CoGaTL, v 3 oYL
17 2511 % 17 3433
16" 5312 % 16 945% -
1s BO25 % 13 3%I) - ..
1677 3p25 % 14 ,’1n “
13 3529 % 13 T =537 o
S 12 5514 % 12 9453 e
11 . 9514 £ 11 5452 5
16 351% AN 10 94,52 %
y. . 3026 G ) T agIn .
8 . 3g2s "% I 3335 %
7 5424 P 7 5425 »
6. <. 8911 % ¢ a1z a
5 2551 | 4 - 3 2358 4
4 L4257 v 4 L45A0 v
3 56006 v '3 5306 v
T2 1toc3? ¥ 2 T100%¢ "
1 T Rle T 1 521 A
J 7820 3 L9 TGN ¢
9 66933 R“c“"f_, s 490672 ('g‘“.,
053001 F"l v JTeAa1 ‘13

192316339147 b b 332:16332:513
' 508 ‘4&‘“ 1 303

0332316023346 ’)92 16 53314

B.15
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DATA REDUCTION METHOD

The following sections present the method used in the data reduction pro-
cess. The parameter of primary interest was the determination of the heat
generation rate of the spent fuel assembly.

CALORIMETER PRESSURE

The pressure at the top of the calorimeter, i.e., in the "dome" above the
water level, was printed out in Channel 7 by the data logger. Refer to Appen-
dix B for raw data nomenclature and printouts. The unit of the Channel 7
printout was percent of full scale. The absolute pressure transducer used to
measure "dome" pressure had a full-scale range of 25 psia. Therefore, pres-
sure was computed as follows:

P Chan 7 Reading/100) - 25 psia (C-1)

cal = (

LATENT HEAT OF VAPORIZATION

The latent heat of vaporization, hfg Btu/1b, was obtained from the steam
tables at Pcal psia.

MASS ACCUMULATION RATE

Two methods were used to obtain mass accumulation rates. The primary
method was measurement of the head accumulation rate in a precision collection
tube with a differential pressure transmitter. The secondary or backup method
was direct measurement of the wieght of condensate accumulated. The equations
required to calculate mass accumulation rates using these two methods are pre-
sented in the following sections.

Head Accumulation Measurement

The time to accumulate a selected amount of condensate in the collection
apparatus was determined by subtracting the time of the initial data scan
(empty collection tube) from the time of the final data scan (full or partial-
ly full tube), i.e., At = (tf - ti) sec. The times are shown on the print-
outs in Appendix B.
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The differential head of condensate collected during the accumulation
time, at, was determined by differencing the final (Hf) and initial (Hi)
heads (Channel 1) as shown below: Co.

aH = (Hf - Hi) in. HZO (C-2)

The differential pressure transducer indicated head at standard conditions 68°F.
The mass accumulation rate was obtained using the following equation:

mH = (KyA7aH/at)1b/hr | (C-3)

where

KH is a constant used to convert standard in. H20 to psi and seconds
to hours: i.e., KH = (0.0361 psi/in. H20)(3600 sec/hr) =
129.96 psi-sec/in. H20—hr

AT is the area of the collection tube containing condensate, which is
equal to the internal area of the collection tube, 1.094 in.z, minus
the outer area of the "bubble" or "dip" tube, which extends into the

collection tube, 0.049 in.Z2: Ap = 1.094 - 0.049 = 1.045 in.2

The equation reduces to

ﬁH = (135.81 aH/at)1b/hr (C-4)

Weight Accumulation Measurement

The collection time for the weight accumulation measurement was obtained
in the same manner as that previously discussed for the head accumulation
measurement. The weight accumulated was determined by differencing the final
weight accumulated (wf) and the initial tare weight (wi) printed out in
Channel 0, and correcting for the buoyancy force created by the air-filled dip -

tube (WB = pCADTAH)

oW = (We - Wi - Wg)g (C-5)
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ﬁh = (Kwawlat)lb/hr (C=6)

where
Ky is a constant used to convert grams to pounds and seconds to hours;
e, K, = (3600 sec/hr)(454 g/1b) = 7.929 g.sec/(1b hr)
The equation reduces to

i, = (7.929 aW/at)Tb/hr (C-8)

CALORIMETER HEAT GENERATION MEASUREMENT

Heat generated in the calorimeter that produced boiling was determined
using the mass accumulation rates measured with the differential head trans-
mitter (ﬁH) and the weigh scales (hw). Note that the calorimeter heat
generation measurement was the total heat generated in the calorimeter minus
heat losses, i.e., Qeal = (qtot - qL)kw. Equations used to determine
calorimeter heat generation measurements from the two mass accumulation rate
methods were

qca],H (mthg/3412) kW, and (€-9)

Gear,w = (yheg/3412) K. (c-10)

CALORIMETER HEAT LOSSES

Heat losses from the calorimeter were determined by accurately measuring
power to the reference dc heater and subtracting these values from the heat
generation rates measured with the calorimeter. The equations used to calcu-
late heat losses using the two mass accumulation rate measurement methods were

qL,H = (qh - qC&],H) kw’ and (C‘ll)

qL’w = (qh - qca]’w) KW (C—lZ)

where 4, is the accurately measured reference heater power (Chan 3 x
Chan 4), kW.
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SPENT FUEL ASSEMBLY HEAT GENERATION RATES

The heat generation rates of spent fuel assemblies were determined using
the equations identified in the following steps:

1) The system was brought to boiling and the dc reference heater was
set at ~1.0 kW. After the system reached steady state, the mass
accumulation rate (mR’lb/hr) resulting from the heat being gene-
rated by the reference heater (qh’ kW) Tless any heat losses
(qL,R’ kW) from the system was measured. This reference heat
generation rate was determined using the equation

4 = Gy - qL,R = (m o fg R/3412) kW (C-13)

2) The heater power was maintained constant and a spent fuel assembly
was inserted in the calorimeter. The final mass accumulation rate
(mf 1b/hr) was measured. This mass accumulation rate resulted
from the heat generated by the reference heater, plus the heat gene-
rated by the spent fuel assembly (qSF), minus any heat losses.
The following equation was used to describe the final heat genera-
tion rate

Gf = Gsp * O ~ 9,5 = (Meheg ¢/3412) KM (C-14)

-3) The heat generated by the spent fuel assembly was determined by sub-
tracting the reference heat generation rate from the final rate as
shown below:

9 = 9 = (dgp * a4 - 9 gp) - (o - )

[(mf g, = e Mg, R)/3412]kw (C-15)

- 9sF = E £ Neg,f = M Neg,R)/3412 * Ay o ‘qL,R] kW (C-16)

If the calorimeter heat losses were constant and if the calorimeter
dome pressure was the same during the reference run (qR) and the
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final run (qf), the latent heat of vaporization was also the same

and the equation reduces to

agp = [(r'n1c - ip) hfg/3412] kW (C-17)

Because there were two methods used to measure mass accumulation
rates, equations can be written for both the head accumulation
method and the weight accumulation method, as follows:

Ir 4 = [(mf,H - g ) hfg/3412] kW, and (C-18)

Ige y = [(mf,w - g ) hfg/3412] KW. (C-19)
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UNCERTAINTY ESTIMATES

The following sections present details of the uncertainty analysis.

THEORETICAL APPROACH

Accuracies of the results of the calorimeter measurements were estimated
using the uncertainty method presented by Schenck (1961, p. 40).(6)
Consider the general case of a result R, which is a function of the two
measured variables X and Y:

Rc trp = f(Xc * X Yc + yl) (D-1)

If this function is continuous and has derivatives, it can be expanded in a
“Taylor series", using the first two terms only:

X +x, - X Y Y Y
_ 3R C 1 o 3R ct+ 1-"c (D-2)
o 1 c’ ¢ axc y 1 BYC X 1.
Or, since R¢ = f(Xg, Y¢):
3R ' 3R
r =(— ) X +(—-——~ ) y (D.3)
1 axc y 1 aYc X 1

where the lTower case letters (rl, X1» and yl) apply to deviations from
the correct readings, and

Soe (@) Teee ), (), Ser () T o

2: xy tends to zero and s E:r /n standard deviation) so that

2 2
2 _ (aR ) 2 (BR ) 2
s =X s. * |5y s (D-4)
r Re X Nelx Y

(a) This reference refers to main text reference list.
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and, for any uncertainty interval o,

2 2
2 aR 2 aR 2
wr = <——3XC> wx + <_3XC> u)y . (0‘6)
y X

ANALYSIS DETAILS

The uncertainty analysis presented in the following sections provides
estimates of the uncertainties of each primary parameter measured or calcu-
lated from a combination of measured values. These uncertainty estimates were
conservative and should enclose 95% of all measurements.

Collection Tube Wetted Area

The collection tube is a precision 1.25-in.-00 tube with a 0.035-in. wall.
The tube contains a "bubble" tube 0.25 in. in diameter. The wetted cross sec-
tional area, that area containing water during mass accumulation, is equal to

A A - A

T~ "1.18 0.25

2

2
Ar=ld) 187 - 99,25 )

T /4

0.25
The diameters of the tubes are known within +0.002 inches. The uncertainty in
A is

2

2
wy 2 _ (21 L2 (M %
3d) 18 d1.18 3dy 25/ 9g.25

-
il

2 2 2 2 2
o 22 1.4x10° +1.0x1 °
A
T
® -3
AT = %#3.87 x 10 in.
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=3

In percent
0.00387 _ £0.49

wAT/AT =* T.065 °*

Collection Tube Differential Head

The head accumulated in the collection tube during a data run was

AH = (Hf - Hi) in. H20

The final head (Hf)

of full scale: i.e., w, and w, = *0.005 - 50 = #0.25 in. H,O0.
He He | 2

and the initial head (Hi) were measured within £0.5%

The uncertainty in AH can be determined using the uncertainty equation

2 2

R CLUA RN K TUR R
AH aHf Hf aHj Hi
2 2 2

w = w + w
tH Hf Hi

During most of the data runs the initial head was 5 in. H20 and the final

head was 16, 21, or 37 in. H20. Therefore,

2 £0.35 in. H.0

+ 0.25%)2 )

Oy = (0.25

1]

In percentages

wAH,ll/AHll = +0.35/11 = +3.2%
wAH,lG/AHIG = ¥0.35/16 = +2.2%
wAH,32/AH32 = #0.35/32 = +1.1%

Mass Accumulation Time

The initial and final times of condensate accumulation were measured with
the Fluke data logger. Each time was measured within *1 sec. The
accumulation time is the difference between the final time (tf) and the
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initial time (ti) as shown below.

At = (tf - ti) sec

The uncertainty of At is

IRy,
A f i

1/
0y = (1.0% + 1.0%)7 = +1.4 sec

The shortest accumulation time was ~525 sec. The percent uncertainty is

wAt/At = 1.4/525 = £0.27%

Weight Accumulation

A weigh scale was used to obtain the weight of condensate accumulated
over a period of time (at). The scale had an accuracy of #0.1%; however, an
accuracy of #1% was assumed because of the uncertainties resulting from con-
tact between the "bubble" tube and collection tube, the resistance to movement
caused by the collection tube alignment bearing, and the uneven loading on the
scale platform caused by vibration from the collection tube solenoid drain
valve during actuation. The uncertainty in the buoyancy force created by the
air-filled dip tube, NB = pADTAH, was estimated to be 2% using these un-
certainty analysis methods.

The uncertainty in aW can be determined as follows:

AW = W, - wi - WB

2 2
CAW T CW

During most of the runs the initial weight was between ~740 or 755 g and the
final weights were ~935, 1030, or 1325 g, depending on heat generation rates.
Therefore, at 935-750 = 185 g (~1 kW, wB = 8.8 g),

2 2

1
- (9.350% + 7.500% + 0.176%)% = #11.99 g

Y AW
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or mAw/185 = 11.99/185 = %6.5%

At 1030-75 = 280 g (1.5 kW, Wy = 12.79 g),
10.3002 + 2 2,
wy = (10.300° + 7.500° = 0.256°) = +12.74 g
or w280 = (12.74/280 = +4.6%
At 1325-750 = 575 g (~2 to 3 kW, Wy = 25.58 g),
0y - (13.250% + 7.500% + 0.512%) = #15.23q
or /575 = 15.23/575 = 42.6%

Mass Accumulation Rate

The mass accumulation rate determined using the differential head method
required the following equation:

m, = KHATAH/At
The uncertainty of mH was estimated as follows:

2 + \2 + \2

mH aAT AT aAH aH ont At
2 2 2 22 -2.2 2
mmH = (KHAH/At) wAT + (KHAT/At) wey * (-1 KyAraHat ) Wy

For a typical aH = 11 in. Ho0 run (~1 kW)

w% - (129.96 - 11/1055)% - (3.87 x 1072)2
K11
+ (129.96 - 1.045/1055)2 . 0.35°
+ (129.96 - 1.045 - 11/1055%)% . 2.85°
w2 =27 x1072 =2.03x 1073 + 1.5 x 1072
My, 11
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0 = %0.046 1b/hr
H,11

In percentage

ws /m = %0.046/1.413 = £3.2%
For an ~3 kW run (aH = 32 in. Hp0 and At = 522 sec) the uncertainty is
w2 = (129.96 - 32/522)% . (3.87 x 1073)2
m
H,32
2 2
+ (129.96 - 1.045/522)" + 0.35
+ (129.96 - 1.045 - 32/5222)2 . 1.42
w2 -4 -3 4
m =9.51 x 10 " +8.29 x 10 © + 5,0 x 10
H,32
W
mH,32 = 0,099 Tb/hr
w e N o
or mH,32/mH’32 = 0.099/8.3 = £1.2%

The following equations are used to determine the uncertainty in the mass
accumulation rate obtained from weight accumulation measurements:

5-
1l

7.929 aW/at 1b/hr

. 2 . 2
2 _[2™Y 2, ™) 2
wmm =\ 7aW Y AW aat Yat
2 2 2 -2.\2 2
s, = (7.929/at)% wS, + (-7.929 at™%)° WS,

For a typical run at 1 kW, aW = 193 g, at =1035 sec, and

(7.929/1035)2 - 122 + (-7.929 - 103572)2 . 2.79°

€
It
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w% - 0.0085 + 4.26 x 10710
W

w. = %0.092 1b/hr

My

or wmw/mw = 0.92/1.45 = #6.3%

Note the time uncertainty term is negligible.

For a aW ~ 572 g run (=3 kW), at = 522 sec and

w2 = (7.929/522)2 - 15.23% + (=7.929 . 52272)2 . 1.4°
My

wi = 0.084 +1.66 x 107
W

wy = #0.23 Tb/hr
W

or w. /mw = 0.23/8.7 = £2.7%

The time uncertainty term is again negligible.
Pressure

The absolute pressure transmitter used to measure the calorimeter “dome"
pressure (Pca1) above the water level was accurate within £0.25% of full
scale (25 psia). The signal from the transmitter was passed through a signal
conditioner and read out on the Fluke data logger. Therefore, it was assumed
that the accuracy of pressure measurements was *0.5% of full scale
(£0.125 psia).

Latent Heat of Vaporization

The latent heat of vaporization was obtained from the steam tables at the
"dome" pressure. The absolute pressure ranged between 12.5 and 13.0 psia
during testing. The range of the latent heat (hfg) corresponding to this
pressure range was 975.4 Btu/1b to 974.2 Btu/1b, respectively. The
uncertainty of the Tatent heat can be estimated using the accuracy of the
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pressure measurement as follows:

Ahfg/APca] = (975.4 - 974.2)/(13.0-12.5)

1

Ahfg/Apca] 2.4 Btu/(1b * psia)

The uncertainty of Pca] was #0.125 psia, therefore,

w, =wp . Ahfg/AP = #0.125 psia + 2.4 Btu/(1b « psia)
fg cal
w, = +0.3 Btu/1b
fg
In percentage
o, /hf = #0,3/974.8 = 0.03%
fq g

Calorimeter Heat Generation Measurement

The calorimeter measurements of heat generation rates using the head
accumulation method required the following equation:

qca],H = (mthg/3412)kw
The uncertainty in Gea].p €N be estimated as follows:
o’ = (he /3812)° oF + (m/3412)° o
9eal,H 9 H fg
For a low heat generation rate the uncertainty in g (w ) is
cal,H qca],H
relatively large because wn is relatively large. The uncertainty in
. H
qca],H 18
W’ - (974.8/3412)% - 0.045% + (1.413/3412)% - 0.3
q
cal,H
w2 = 1.65 x 107 + 1.54 x 1078 K?
qca],H
w = #0.0128 kW
qca],H
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In percentage

w /q = 0.0128/0.386 = +3.3%
qcal,H cal,W

Estimates of heat generation rate measurements using the weigh scale
method are identical to those using the head method except mH must be
replaced with mw. The uncertainty in Qeal w is estimated below:

2 2 W 2 2
w = (h, /38612)2 ¥ + (m/3812)2 o
deal,w 19 my W heg
wl = (974.8/3812)% - 0.0922 + (1.45/3412) - 0.3°
qcal,w
wl =6.91 x 10°% + 1.63 x 1078 kw?
qcal,w
w = £0.026 KW
qcal,w

In percentage

w2

/q = 0.026/0.386 = +6.8%
qcal,w cal, W

Heater Power
The heat generated by the dc reference heater was determined by the

product of the voltage drop across the heater and the current passing through
the heater. The heater voltage drop was measured with a voltmeter which had
an accuracy of +#0.0006% of the reading. During testing the signal was
observed to fluctuate +0.2%. Because the reading printed by the data logger
was instantaneous, this value ($+0.2%) was assumed for heater voltage

uncertainty.

The current passing through the heater was obtained by measuring the
voltage across a series precision resistor. The voltmeter had a quoted
accuracy of £0.0006% of reading, but the signal fluctuated -+0.1% during
measurement. Therefore, this value (+0.1%) was assumed for the uncertainty of
the resistor voltage drop and the uncertainty of heater current was estimated
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as follows:

= VR/RR = Ih

=
[

2 2 -2y 2
(l/RR) mv = (—VR RR ) mR

h R

€
—
]

R

is relatively high so m2

At high heater powers (~3 kW) V I

R will be high:

h
m%h - (1/0.003327) (4.2 x 107°)?
+ (=0.0417 - 0.00332772)% - (7 x 107%)?
w%h = 1.59 x 107 + 6.95 x 107% A?
oy, = #0029 A

In percentage

w1 /Ih = 0.029/12.5 = #0.23%
h

The uncertainty in heater power can be estimated as shown below:

4 = Vply

2 2 2 2 2
w =1 "w +V w
ap, h Vh h Ih

At relatively high powers (~3 kW) Ih and Vh will be high, resulting in a
relatively high Vg, therefore
h

mg - 12.522 . 0.482 + 240.2% - 0/125°
h
Wl = 36.12 + 901.5 W2
9
_ 30.6 W
mqh 30.6
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In percentage

wq /qh = 30.6/3000 = %1%
h

Calorimeter Heat Loss

Heat losses from the calorimeter were determined using results from the
head accumulation method and the weight accumulation method as shown in the

following two equations:

qQ .y = (a4 - qca],H)kw

= (dy = dgay kW

The uncertainty equations are

2 -l +w2 and

= W
9,0 9% Yai,H

2 2, 2

w

w =
GUow 9% Y9al,w

At a reference heater power of ~2 kW, the uncertainties are

w2 = 0.031% + 0.013°
9, H

W 29.61 x 107+ 1.69 x 107%
9,H

w. = 40.034 kW or 0.034/0.59 = 5.6
9U,H

and 2 _ 4 0312 + 0.0262

9U,w

s = +0.040 kW or 0.040/0.553 = +7.2%
U u

Spent Fuel Assembly Heat Generation Rate Measurement

The heat generation rate of a spent fuel assembly was measured with the
calorimeter using the head and weight accumulation methods. The equations
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used to obtain assembly heat generation rates were
AsF 4 = [(mf,H - Mo on) Neg/3412 gy - qL,R,H]kw

and  Ggp | = [}mf,w - Mpow) Neg/342 tap gy - qL,R,W]kw

The resulting uncertainty equations become

2 2 2 2 2
. = (h, /3812)% W2+ (=h_ /3812)%4}
GSFH 9 £,H f9 R H
: : 2 2 2 2
+ [(mf,H - mR,H)/3412:| mhfg + qu . + qu .
and,
R (h /3412)2 m% + (-h, /3412)2m$
95k, W g W 9 R,W
. 2 2

+

+ +

Bﬁ] - m )/3412] w w w
LW RN e LW LR,

The uncertainties can be found as follows:

w2 = (974.8/3412)% - 0.099° + (-974.8/3412)% - 0.046°
9sF H
+ B6.875 _ 1.442)/3412]2 . 0.3% + 0.035% + 0.035°
W’ - (974.8/3812)% - 0.23% + (-974.8/3412)% - 0.92°
95k, W
+ [(7.151 _ 1.466)/3412]2 . 0.3%2 + 0.080°% + 0.040°
W 276 x 10+ 165 x 10+ 2.28 x 1077 + 1.2 x 10
9sF ,H
+1.2 x 1073
W2 C4.3x100 +6.9x 101 +2.49 x 107 + 1.6 x 107
95k ,W
+ 1.6 x 10~3
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Note that the uncertainties introduced by the latent heat are negligible and
the heat loss uncertainties are significant.

+0.058 kW

w
95F ,H
£0.091 kW

]

w
ISk, W
In percentages

o, 19ce 4 = 0.058/1.55 ~ 43.7%
Ispn o of

o, 19 0.091/1.55 ~ 5.9%
5p,u oF M
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