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NONLINEAR CHARACTERISTICS OF CYCLOTRON WAVES IN
AN ARA CONFIGURATION

R. J. FAEHL, W. R. SHANAHM, AND B. B. GODFREY
University of California, Los Alamos Scientific
Laboratory, Theoretical Division, Los Alamos,
New Mexico 87545

The Autoresanant Accelerator (ARA) offers great
promise for collective im acceleration provided
large amplitude cyclotron waves can be generated
with long coherence scales and controllable pro-
pagation characteristics. Numerical simulations
have been perfGrmed to examine cyclotron wave
growth in a helical slow-wave structure. No in-
hibition of growth was observed, short of an
intrinsic space charge limitation. ExtractIon of
such waves from the amplifying section through
realistic t,em:nations has been pe:formed. The
radial structure and propagation of these large,
extracted cyclotron waves bas been studied and
comparisons with linearized waves have been
drawn, The effect of nonlinear wave properties
on ARA designs are presented.

I. INTRODUCTION

Ion acceleration in collective wave fields of rela-

tivistic electron beama has been studied energetically in

recent years. The Auto-Resonant Accelerator (ARA), which

Iltilizesa slow cyclotron mode, is probably the best ana-

lyzrd and furthest developed of such collective wave

schemes. In these conceptually simple schemes, ions are

trapped in a beam supported wave, which is then acceler-

ated in some fashion. There are implicit aasumptiona

here, however, namtly that nonlinear wavea (a) remain
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coherent for long distances and

least approximately, like linear

questions have motivated us to

B. B. GODFREY

times and (b)

waves. These

Study finite

behave, at

fundamental

amplitude

cyclotron waves such as are needed in the MA. We have

studied the nonlinear wave characteristics with emphasis

on radial wave structure, field strength, and possible

deviations from linear dispersion. Large two-dimensional

particle simulations were used to grow waves self-consist-

ently and then follow their subsequent propagation. These

results have been augmented by numerical studies of radi-

ally inhomogeneous linear theory and analysis of nonlinear

waves.

The overall structu:e of this paper is as follows.

Linear theory and the equations from which it is derived

are examined briefly. Origin of the axial electric field,

the component responsible for ion acceleration, is dis-

cussed. Also, qualitative examination of the equations

suggests possible nonlinear effects. The simulations

themse~ves are then described. Finally, simulation re-

sults are given : which slow cyclotron waves are grown

from small amplitude signals and stable propagation is

observed over

simulations is

pared directly

modest scale lengths. Analysis of the

performed tc obuain data which can be com-

with linear theory.

II. LINEAR TNEORY AND NONLINEAR CYCLOTRON WAVES

Before discussing “nonlinear waves”, it is proper to

define what we mean by “nonlinear”. The term is used in

this context simply to distinguish finite amplitude wavee

from &he results of first-order perturbation analysis.

This is complicated since unique equilibrium conditions
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make ●ven linear analysis of unneutralized relativistic

electron beama nontrivial. A brief analysis of the linear

equations shows this clearly.

Relativistic electron beam equilibrium during vacuum

propagation in a smooth-walled drift tube requires a

large, ●xternal axial ❑agnetic field, Bz. Since the beam

is unneutralized, significant radial ●lectric and azimu-

thal magnetic fields are present with magnitudes deter-

mined by total beam current, beam and drift tube dimen-

sions, and radial density distribution. For these to be

self-consistent, the beam must rotate, giving a zero-

order v
e’ Finally, since there are large equilibrium

potentials, injection of even a monoencrgetic beam into a ●

finite radius drift tube results in radial variations in

y, given by

mc2(yo - 1) = mc2(y(r) - 1) - ●$(r) I (1)

where y = [1 - ~v,c)21-1/2
and @ is the electrostatic

potential. Linearization around a self-consistent beam

equilibrium leads to equations which, to the best of our

knowledge, do not possess closed-form solutions. Conse-

quently, analytic efforts have often neglected beam rota-

tion, density inhomogeneity, and/or radial y-variations.

As we show beiow, the consequences can be significant.vis-

●-vis collective ion acceleration.

The dispersion of beam cyclotron waves can be quite

accurately described wiLh a reduced set of linearized

cold fluid ●nd field ●quations, which for azimuthally

symnetric modes (m = O) ● re
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where tildes refer to perturbed quantities, v = O,
r

fii= yOGi, i = r,e, and A is the vector potential, such

that B =Vxfi, Numerical solution of the full fluid and

field equations on self-consistent equilibria provide con-

fidence in the viability of (2-5) for mGdeling cyclotron
6,7

waves. Aside from their utility in deriving disper-

sion relations, this reduced set can yield information

directly about nonlinear waves. .
In writing the model equations (2-5), the ~z and Ez

equations were omitted, Although they could be included

for the sake of accuracy, they effectively decouple from

cyclotron waves of interest to ARA. In fact, they arise

almost as by-products, The Vr and Ve induced motions

characterize the wave, leading to periodic radial modula-

tions of the beam.

simulation, clearly

figuration space (r

modulation after a

Figure 1, taken from a wave growth

shows this. In Fig. l(a), the con-

- z) of the beam exhibits this beam

section of convective wave growth.



NONLINEAR CE4RACTERISTICS OF CYCLOTRON WAVES ...
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r 2.85

0
z

Fig. 1. Connectively grown cyclotron wave in particle
simulation, (a) configuration space (r - z) and
(b) constant contours of electrostatic potential,
6.

Figure l(b) shows the corresponding constant contours of

$, the electrostatic potential. The potential troughs

“are associated with the modulations. This is the source ‘

of the E= field which traps and accelerates the ions;

the radial modulation causes density compressions and

rarefactions. Thus, the cyclotron wave always possesses

some E~ field, but its magnitude is determined by the

depth of radial modulation. To be more precise, it is

the radial integral of the density modulation which deter-

mines Ez, and this depends on the structure of Vr, since

&r = vr/(fl/y), Q = eBz/mc. If the radial perturbation is

distributed broadly across the beam, the integrated

density modulation will be greater than if it were, say,

localized on the surface. Since there is only a finite

beam-to-wall separation, the magnitude of modulation on

the outside of the beam is limited. Maximizing the axial

electric field, therefore, depends sensitively on the

radial eigenmodes.
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Other information deducdble from Eqs. (2-5) is more

qualitative. Examina&ion of the first order equations

shows the terms neglected in this order, but which in

general need not be small. A prime example is the radial

convective term, vr(Bpi/~r), i = r,e. These terms are

clearly not first order. However, when the waves become

finite, perturbation schemes become dubious and actual

magnitudes must be considered. In this case, lack of an

axially homogeneous (k = O) Vr component indicates that,

for large waves at kO, the convective terms contribute

most strongly at 2ko, the spatial second harmonic. (Since

the 2ko contribution is not resonant, however, only forced

oscillations are induced.) More directly applicable terms

are those involving v . In the reduced equations, only
z

the k = O component was retainccl. The self-field Be(k = O)

can be quite la:ge, however, so finite values of vz(k = k )o
csn contribute significantly to the k. ❑ode. While one

can argue that these should be included in linear theory,

v is coupled nonlinearly
z

with wave amplitude, through

(6)

This nonlinear term can directly alter the cyclotron dis-

persion. Linear results are of little value in estimat-

ing O since there ia
z

no guarantee ii priori that the

nonlinear ratio of wave quantities remains fixed. One of

our primary objectives, in fact, is to determine the

relative magnitudes of nonlinear wave quantities. To do

this, more powerful numerical tools are required.
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III. DESCRIPTION OF CYCLOTRON WAVE GROW’H SIMULATIONS

The study of relativistic slow cyclatron waves re-

quires self-consistency. Two-dimensional relativistic

particle simulations were therefore conducted to amplify

small amplitude cyclotron-like perturbations. The large

amplitude ●xtracted signals were then allowed to propagate

for moderate distances in a smooth-walled guide. A more

complete discussion of the cyclotron wave growth has been
7reported elsewhere, but a brief outline will now be

given to place that work in perspective.

Wave growth in a helical slow wave structure has

been widely employed for many ‘“ears,for example, as the

basis for traveling wave tubes. The principle of opera-

tion is that in a helix waveguide structure, the phase

.!elocity of the clectrornagnetic mode is reduced to

v = c sin ~ , where ~ is the helix pitch angle.
ph It is,

in fact, lowered to the point where resonance with a slow

beam mode is achieved. Only slow inodescan be resonant

since, ~y definition, they alone possess phase velocities

slower than the ❑edium velocity, in this case v * c.o In

traveling wave tubes, the beam mode

MA applications call for unstable

cyclotron wav~, however. This mode

fron the space charge wave. Previous

perimental experience was therefore

is a Langmuir wave.

growth of the slow

is quite dissimilar

theoretical and ex-

inapplicable. This

led to a number of unpleasant surprises in the simulations

before certain fundamentals of electrical engineering

were rediscovered and successful stable amplification was

achieved.

Figure 2 depicts the simulation configuration used

in these studies. A sheath helix with pitch angle $ and

radius
%’

illustrated with the dashed line in the figure,
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Fig. 2. Schematic representation of the simulation con-
figuration employed to grow cyclotron wave.

was attached to perfectly conducting fldngeS on either

efld, shown as crosshatching. An outer conducting wall

with radius ~existed outside the helix. Therelativis-

tic electron beam was injected on the left simulation

boundary and propagated to the right: downstream bound-

ary, where it was “smoothly” extracted. Once the space

charge fields reached the grounded helix, they induced a

charge flow on it. This “charging current” is quite phy-

sical and in a non-resistive helix, it rang for an unac-

ceptably long period. More gentle risetimea would have

ameliorated this condition, for helix dispersion eventual-

ly smooths the charging pulse. Although the helix current

smoothed, however, the residual current flow resulted in

a strong, finite width diamagnetic region. The total Bz

field experienced by the beam was therefore discontinuous
..

at the flange/helix boundaries. This stationary discon-

tinuity excited zero-frequency cyclotron waves with wave-

number k 2 (20/yovo. These waves did not interfere with

growth of the coupled helix/cyciotran waves, but beating

of the two finite amplitude cyclatron modes yielded a
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potential distribution unsuitable for long-term trapping.

Removal of the helix current without disturbing helix

charge distributions was found to be highly desirable,

and accomplished in the simulations, as in the laboratory,

by terminating the helix with matched impedances. After

the initial transients decayed away, the current and

charge distributions were quiescent and suitable for

introduction of a small amplitude signal at the most un-

stable frequency upstream of the helix. Our “gene:ator”

was directly tied to the helix, but other more physical

antemas have been examined. When the signal generator

was “turned on”, steady cyclotron wave amplification

occurred, in close agreement with linear theory. To pre-

vent oscillation, rather than amplification, large volum-

etric resistances were added outside the helix at.the far

end of the growth section. These were sufficiently large

that they inhibited amplification, but such magnitudes

were required to prevent oscillation. After the result-

ir,glarge amplitude cyclotron wave reached the end of the

helix, it was found to propagate into the smooth-walled

drift tube with only nominal (10-20%) attenuation of the

wave.

IV. DISCUSSION AND ANALYSIS OF NUMERICAL

The model configuration described above

fully employed to grow lz’rgeamplitude

Since growth is due to coupling with the

❑ode, however, the finite amplitude wave

ferent radial structure from a stable

Relaxation

after the

fact, the

toward a stable configuration

CALCULATIONS

was success-

cyclotron waves.

helical waveguide

possessed a dif-

cyclotron wave.

is thus expected

wave leaves the growth section. This is, in

dominant behavior observed in simulations. A
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small fraction of the wave energy is ne*:erthelesscon-

verted into high frequency noise. This noise seems to

couple into resonant TE and TM wave guide modes with mod-

erate efficiency. These are only tentative conclusions,

since there are indications that the coupling may be

enhanced by purely numerical effects. Even if the simu-

lations overestimate the magnitude of electromagnetic

noise, however, the combination of high frequency with

incoherence in this field make it unlikely to interfere

with the cyclotron accelerating fields. The low fre-

quency field itself showed only weak attenuation or loss

of coherence as it propagated for distances of order

L = 100 c/uJ beyond the growth section.
P

The only wave

coupling effect observed was a tendency toward generation

of harmonics, which never amounted to more than a few ~er-

cent of the primary wave energy.

Demonstration of long coherence lengths for nonlinear

cyclotron waves was accomplished with the numerical simu-

lations. Beyond this, however, a primary objective was

to characterize the finite amplitude wave state. How

then should a nonlinear wave be characterized? Linear

waves are completely described once a dispersion relation

and the eigenfunctions are determined. The situation is

much more complicated for finite amplitude waves. For

one thing, linear superposition of modes is no longer

strictly valid; a non-zero coupling between all ❑odes

exists in general. Therefore, while it is still impor-

tant to determine the relation between w and k, i.e., the

dispersion, one also needs to specify the spectrum. Spec-

tral characteristics are a self-consistent asFect of a

nonlinear wave state. The radial wave structure in our

case is also a valid indicator, in so far as it can be
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compared with a linear eigenfunction. As mentioned

earlier, it can be directly correlated with the Ez field

of the wave. Finally, iinear theory allows us to predict

ratios of eigenfunctions, for instance, v
rlmax/Ez lmax”

Similar ratios can be determined directly from sin -

tions. In this fashion, the degree to which nonlinear

waves resemble linear ones can be inferred quantitative-

ly. To ❑ake these concepts ❑ore concrete, we will cun-

sider a typical simulation.

A series of simulation calculations was performed in
*

a geometry similar to that in Fig. 2. In units of c/uJ ,

the helix and the inner flange radii ~ere ~= 3.8, :he

outer flange radius was ~= 5.7, and the beam radius,

‘B
= 2.65. This last dimension corresponds to a Budker

parameter of .)= 1.75, or 30 kA. The helix extended from

z = 15.0 to 115.0, with a pitch angle U = -15°. The

helix was excited directly at z = 30, giving a total

growth length L = 85. For these conditions, the
grow

growth rate was ~ = 0.020 Up and the 8roup velocitY

~ 0.6 Cj giving almost 3 e-foldings, in the absence
‘gr .—

of resistive terminations. These simulations were design-—

ed for consewative performance, with a maximum power

amplification of only about a factor of 260. In fact,

addition of various resistive elements to inhibit feed-

back shortened the effective growth length, so that the

observed amplification factor was on the order of 130.

Our purpose here was not maximum amplification; in specif-

ically designed wave growth simulations, amplification

factors almost

‘*Forcomparison
c/uJ ~ 1 cm.

P

10 times

purposes

larger have been measured,7 The

note that when n = 3 x 1011 cm-2,
o



R. J. FAEHL, W. p. SHANAHAIU,B. B. GODFREY

large amplitude cyclotron waves which were grown, however,

proved very suitable for studying the nonlinear character-

istics.

The magnitude of the Ez field on axis is plotted in

Figure 3, as a function of axial position. The electric

field is observed to reach its maximum value near the end

of the helix. More significant, however, is that, while

some fluctuations in amplitude are observed, the average

field of the extracted wave is only about 10% lower than

the peak.

The E= values shown in Fig. 3 were obtained by set-

ting numerical “probes” at various positions along the

axis. Figure 4 shows a typical “probe” trace, near the
,

end of the growth section, and its 3ss0(iated power spec-

trum. The dashed line indicates the frequency expected

from linear theory for this configuration. There is vir-

tually no detectable frequency shift, even Chough the mag-
12 -3

nitude is over 2 x 105 V/cm, assuming no = 10 cm ,

Since this probe was still tiithinthe region dominated by

the linear helix, this is pe:haps not surprising,

Figure 5, however, c}mpares that power spectrum with one

obtained almost 90 C/UJpfurther down the propagation path,

well beyond the helix. Although the total noise content

at high frequencies is quite different, the low frequency

cyclotron signal is hardly affected at all.

With the aid of computer generated movies, a point

of constant phase can be observed directly. The phase

velocity of finite amplitude waves determined in this

fashion was remarkably close to that of infinitesimal

linear waves. As an example, a series o! wave crests

were followed for a distance L = 50 C/IJJpand times on the
-L

order of t = 300 . Wave modulation was such that
P
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Fig. 3.

Fig. 4.

::~

i~j
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[

2.0
:3
\
w“

o

02

0
U ah ,,.0

U,m I $
Lu-

Ez as a function of axial position, z;

r = 0,35 C/U)p,RB = 2.65, I& = 3.8, ~ = 5.7/~.8,

Q= -15°, eBo/~~c= 2,0 w L = 200 c/wp,
P’

L
grow = 100 C/w .

P

WBT ,IOJ

c:(d

WA),

(a) Typical E ~ “probe” trace; r = 0.35, z = 106;

(5) Power spectrum derived from probe trace,

~ashed line indicates frequency of original

antenna signal,
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Fig. 5. Comparison of Ez power spectra at z. (a) z = 106

and (b) z = 193. Enhanced high frequency com-

ponents at z = 193 may be due to numerical
.

effects.

Ar/RH = 0.23. (The beam-to-wall

culation corresponded to Ar/RB =

velocity was measured to be V
ph

theory predicted V = 0.269 C.
ph

separation for this cal-

0.43). The average phase

= 0.275 c, while linear

One of the few nonlinear spectral effects observed

so far has been harmonic generation, This is registered

to varying degrees on probes of Ez, Be, and Ee fields,

and seems to be correlated with the wave magnitude. Th●

specific origin of this apparent nonlinearity has not yet

been identified but is under investigation.

Figure 6 shows the beam envelope under typical con-

ditions of steady cyclotron wave amplification. Radial

beam modulations increase through the growth section, but

are not attenuated on leaving it, In fact, they increase
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Fig, 6. Typical beam envelope in a wave growth run.
Growth section ex~ends from z = 15 to z = 115.

to somewhat larger values. Surprisingly, this behavior

is explicable on the basis of inhomogeneous linear theory.

Figure 7 shows the radial eigenfunctions for vr derived

on self-consistent radial profiles, with the same wave-

length. These are related to the radial modulation by

Ar = Vr/(UJ- kvO), Figure 7(a) depicts the radial veloc-

ity stricture within the growth section; the frequency 1s

UJ= 0.124 t 0,020i w In Fig. 7(b), we show the eigen-
P“

function under identical conditions, except that a smooth

waveguide wall is at the helix radius; for constant,fre-

quency, the relative wavenumber shift is less than 1’%.

Both scales are normalized to the maximum value of E .
.-

Since Fig. 3 indicated that the Ez magnitude did not de-

crease significantly, it is evident that the radial modu-

lation must increase substantially as the node relaxes

toward its stable configuration,

We have repeatedly referred to inhomogeneous linear

theory, The reason is well illustrated by the above ex-

arnplc. To obtain the expected ratio, linearization was
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r

Comparison of linear eigenfunctions of v derived
r

numerically on a self-consistent equilibria,

‘B
=2.65, Q = 2,0w . (a) Vr versus r within

0 ,~=L3, ~= 5.7,$=-150,growth section

UJ= 0.124 t 0.020i w k = 0,46 Wp/C; (b) v.
P’

versus r in smoo:..-wal.ledwaveguide, %=3:3,

u= 0,122uJ k=0,46w,
P’ P

performed around the radially i,~homogeneousequilibrium.

If the same calculation is conducted, ex~ept with a con-

stant, averaged value of y, i.e.,

J‘B
<y> = Y dr/RB ,

0
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qualitatively and quantitatively different eigenfunctions

result. Figure 8 gives a comparison betuern the Vr and

Ez eigenfunctions computed with <y>, Figs. 8(a,b) and

those with y(r), Figs. 8(c,d). The difference is quite

significant, for it indicates that, if linear theory is

relevant to finite amplitude waves, over 4 times the

density modulation is required to induce a given Ez mag-

nitude than would be expected on the basis of the simpler

<y> analysis. Since the beam modulation is effectively

limited to the beam-to-wall separation, this implies

relatively small upper limits on

acceleration fields. Although the

large compared with conventional

smaller than originally anticipated.

the obtainable wave

magnitude is still

fields, it is much

The self-consistent

equilibrium employed here depends on a specific current

distribution, of course, and this is certainly not unique.
●

?zTl
1,0 ,

E
(b)

Ezo:

-Q5 1: 3s0
r

Fig. 8. Comparison of Vr and

RB = 2.65, ~ = 3.8,

1.0 ,

m

‘ (d)

Ezo”:

-a%
l.’ 2.053.80
r

Ez linear eigenfunctions,

k = o.46.wp/c. (a) vr

versus r derived from equilibri~ with <Y> = 4.9,

(b) Ez versus r, same as (a); (c) Vr verous r

derived from self-consistent equilibrium,

Y(RB) = 5.8, y(0) = 4, (d) Ez versus r, same

as (c).
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Tailoring the radial current distribution may yield more

propitious field/modulation ratios. The important point

is that linear theory at least should be based upon real-

istic. not idealized, beam states.

Eigenfunctions of the radial velocity were also com-

pared with linear theory. These were obtained numerically

by measuring the root-mean-square radial velocity of the

beam at various axial slices as a function of the original

stream lines, i.e.,

<Vr(ro)> = (~~ v~(rO)dt/T)l’2 .

The time interval for averaging was chosen large enough

so that uncertainties in quant:’.tiesat the desired wave

frequency were less than 2%. Figure 9 shows the linear

3.0 ‘ I

: /’
1
I I
I

2.4
I
I
I

1.8 /
I

/’ i
I
I I

1.2r /: J I -i
I
I I

9

Q6 - !

P
1HELIX/WALL

0.0 1 I
---
0.0 1.42 285 427 8.70

R

Fig. 9. Comparison of Vr linear ●igenfunction (solid

line) with RMS vr(ro) derived from simulation

(daahed line), RB = 2.65, ~ = 3.8, &r/RB = 23%.
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eigenfunction

dashed line,

The structure
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as a solid line,

both normalized to
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and the nonlinear as a

the axial Ez magnitude.

is qualitatively the same, though the non-

linear wave exhibits less modulation. This is significant

in that it indicatss less modulation is required to pro-

duce a given Ez-iield on axis. Compared with Fig. 8,

however, it is apparent that inhomogeneous linear theory

is more applicable to nonlinear waves than is simple

linear theory.

The ratio of beam modulation to induced axial elec-

tric field is a very important accelerator parameter, due

to finite beam/wall separation, Simulation derived values

of (Ar/Ez)max are plotted in Fig. 10 as a function of z.

It is

linear

stable

Fig.

clear that the ratio approaches the inhomogeneous

values in both the unstable growth section and the

propagation section.

AVZ
~

0.03 I I I

0.02-

0.01-

z

10. Tabulated estimate of Vz shift as a function of

z using Eq. (7) and simulation data, for para-

meters of Fig. 3.
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Finally, note that finite transverse oscillations

occur at the expense of the original beam energy, which

was predominantly longitudinal. A simple model for the

effect on lon~itudinal motion is

vz(rO) = c[y~(rO) - 1 - p2(rO)l 1’2/yO(rO) . (7)

Since we measured the RMS eigenfunctions of pr, (7) can

be estimated directly. Figure 10 shows the relative mean

change in vz as a function of z, for a typical wave

growth/propagation simulation, with 6r/RB 7 23%. This Vz

not only induces frequency modulations through terms like

VB~ ~ in Eq. (2), but also in the basic doppler shift, kvz.

If frequency shifts on the order of kAv are not compen-
Z

sated by wavelength shifts, the nonlinear phase velocity

should have been reduced. Phase velocity changes of this

size would have been seen in

but the measured values, as

reduced. It is not clear at

have not been observed in the

v. CONCLUSIONS

simulation movies, however,

discussed above, were not

this time why such effects

simulations.

Cyclotron waves suitable for use in an Autoresonant

Accelerator have been self-consistently grown to nonlinear

levels in numerical simulations, and thereafter propagated

for moderate distances without significant attenuation.

while the investigation of these nonli?ear wave states

has not been completed yet, certain important observations

can still be made.

The primary conclusion must be that cyclotron waves

possessing relative radial modulation of 20% Gr less are



NONLINEAR CHAMC’fERISTICS OF CYCLOTRON WAVES ...

not violently unstable, and in f~ct exhibit coherence

lengths at least ou the order of the simulations, i.e.,

AL= 102 c/uJ. Larger amplitude waves will be simulated
P

in the near future. Comparisons with inl,omogeneouslinear

theory revealed quantitative differences in nonlinear

waves but no qualitative changes.

Finite amplitude cyclo~ron waves were also found to

be highly localized on the beam surface, which is consist-

ent with inhomogeneous linear theory. The interior of

the beam does not “actively”’participate in the oscilla-

tion. Therefore, a relatively large radial surface modu-

lation, much larger than simple linear theory predicted,

is needed to produce a given magnitude field on axis.
*

Previous work has shown that an upper limit on the ampli-

tude is that the total potential, equilibrium plus wave,

must not exceed the spac~ charge limit, roughly

4
1/3, 7

~ (mc2/e)(Y0 “ Y. “
total

.

This in turn limits both the allowable beam-to-wall sepa-

ration and the radial modulation. Although nonlinear

cyclotron waves are not quitz so surface-peaked as linear

ones, the lin ~r picture is still qualitatively correct.

If these results prove to be valid over a broad range of

magnetic field, they impose real limits on ARA perform-

ance, for the linear results indicate that propagation in

a decreasing field will not redurp the Ez field, but

rather increase the relativ- beam modulation. Conclusive

results must await either experiments or simulations of

cyclotron wave propagation in inhomogeneous fields. We

are actively pursuing the latter.
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A final observation of considerable interest is that

the phase velocity of finite amplitude waves is very accur-

ately given by linear theory, at least at the simulated

wave strengths. Since a nonlinear frequency shift on the

order of kAvz plays a significant role in cylotron waves
8,10

in low density beams, measurable changes in the phase

velocity should have been detectable for waves seen in

the simulation. Larger amplitude waves, however, should

prove a more striugent test on any nonlinear phase veloc-

ity modifications.

This work is currently being extended to larger amp-

litude waves, propagation in axially varying magnetic

fields, and longer propagation distances. If present

trends, consistent with inhomogeneous lin~ar theory, per-

sist, significant alterations will be needed in the design

of an Autoresonant accelerator”. Possible improvements

may result from reshaping the acceleration seciion, giving

smaller acceleration gradients, finding an optimum radial

current profile, or employing a higher energy electron

beam.
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