
,.t'_'7_._. _'*_ 1100 Wayne Avenue, Suite 1100 ._° _d _
\-,- Silver Spring, Maryland 20910 _._"¢ /_._o_ _O

l/s,

Centimeter
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mm

Inches 0 m_
,' |_

,_ Illllg
., Ulllg

|. _.L.

Illllg

IIIIINi1111_11111'==_6

" BY _PPLIED IMAGE, INC. _
.

ORNL/TM-12356

Engineering Physics and Mathematics Division

.. Mathematical Sciences Section

*Q

BROADCASTING ON LINEAR ARRAYS AND MESHES

Steven R. Seidel

Department of Computer Science

Michigan Technological University
1400 Townsend Drive

Houghton, Michigan 49931-1295

steve@cs, rntu. edu

Date Published: March 1993

Research was supported by the Applied Mathematical Sciences Re-
search Program and the Atmospheric and Climate Research Divi-
sion of the Office of Energy Research, U.S. Department of Energy,
and by NASA Ames Research Center grant NAG2-757.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

• • Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-84OR21400

Di6TRir3UTiOi',,i OF THIS DOCUi'vIENT IS UNLIMITED

-" Contents

1 Introduction ... 1

,. 2 Communication Model 2

3 Broadcast Algorithms 4
3.1 Spanning tree broadcast on a linear array 4

3.1.1 ST broadcast,_=0 4

3.1.2 ST broadcast on a linear array, v > 0 8
3.2 Spanning tree broadcast on a mesh 9

3.2.1 ST broadcast on a mesh, v = 0 9
3.2.2 ST broadcast oil a mesh, v > 0 12

3.3 Bidirectional spanning tree broadcast on a linear array 14
3.3.1 BST broadcast on a linear array, v = 0 14
3.3.2 BST broadcast on a linear array, v > 0 15

3.4 Bidirectional spanning tree broadcast on a mesh 16
3.4.1 BST broadcast on a mesh, v = 0 16
3.4.2 BST broadcast on a mesh, v > 0 18

3.5 Recursive halving broadcast on a linear array 19
3.6 Recursive halving broadcast on a mesh 20
3.7 Comparisons 22

•4 Broadcasting from an Arbitrary Node 23
4.1 ST broadcast on a linear array, _ = 0 23
4.2 ST broadcast on a linear array, v > 0 24

, 4.3 BST broadcast on a linear array 25
4.4 RH broadcasts on linear arrays and meshes 26

5 Broadcasting to Arbitrary Numbers of Nodes 26
.- 5.1 Virtual nodes 26

5.2 Companio;ls 27
5.3 Comparisons 28

6 Performance on the Intel Delta Mesh 29

7 Summary .. 31

8 Acknowledgments 33
9 References .. 34

°°°

- Ul-

BROADCASTING ON LINEAR ARRAYS A ND MESHES

Steven R. Seidel

Abstract

The well known spanning binomial tree broadcast algorithm is generalized to obtain

several new broadcast algorithms for linear arrays and meshes. These generalizations take

advantage of bidirectional communication, the connectivity of two-dimensional meshes,

and the difference between node-to-network and network-to-network bandwidth. It is

shown how these algorithms can be further generalized so that any node can be the source

of the broadcast message. A partitioning scheme is given that allows these algorithms to

be used on linear arrays and meshes of any size. One of these algorithms, the bidirectional

spanning tree broadcast, always has lower cost than the recursive halving broadcast for

linear arrays. Ali of these algorithms offer significant performance improvements over the

basic spanning tree broadcast. These algorithms do not rely on a knowledge of machine-

dependent constants for network bandwidth and latency, so their performance is not as

sensitive to changes in machine characteristics as that of hybrid and pipelined algorithms.

Performance measurements are given for some of these broadcast algorithms on the Intel

Delta mesh.
°_

-V-

1. Introduction

A broadcast is an operation where one processor of a multicomputer has a nlessage that must be

-. copied to each of a set of processors. Solutions to this problenl for various MIMD architectures

have been widely studied. Much attention has been given to this problem for linear arrays and

., meshes [2,3,8,14,15] because of tile recent availability of such machines. One group of broadcast

algorithms [3,14,15] transmits the message pipeline fashion, in packets. While these algorithms

have good theoretical performance, specific constants representing z_etwork bandwidth and

latency are used at execution time to compute optimal packet lengths. This makes these

algorithms sensitive to changes in the system on which they arc implemented. In addition,

such algorithms can be more difficult to implement on a mesh than on a hypercube because a

mesh lacks the vertex and edge symmetry that is so useful for the implementation of algorithms

on hypercubes. So far there have been no reports on the performance of these algorithms on

existing meshes. Another approach to algorithm design is to construct hybrid algorithms.

Examples of hybrid algorithms for other communication problems are given in [5,9], but such

algorithms also use a knowledge of network constants to determine which strategy to apply.

Neither pipelined nor hybrid algorithms are considered here.

The work presented here offers several new solutions to the broadcast problem for linear

arrays and meshes based on the familiar spanning binomial tree (the communication pattern

used in "recursive doubling" on hypercubes) [12] and on dimensional exchanges (also known as

tbe "butterfly"). These algorithms are extensions of those given in [2]. They will perform well

even as machine characteristics change because their design avoids execution-time dependence
._

on constants that represent network performance characteristics. In particular, they do not

use constants representing network bandwidth and latency to determine packet sizes or to

decide among strategies, as is done in pipelined and hybrid algorithms. The recursive halving

broadcast algorithm is also considered here because it shares this independence. This broadcast

algorithm is only a slight modification of the recursive halving global combine algorithm given

by van de Geijn in [1,16].

The next. section describes the communication model on which the analysis of communica-

tion algorithms will be based. The broadcast algorithms and their costs are given in Section 3.

In Section 4 it is shown how these algorithms can be generalized so that any node is the source

of the broadcast message. Generalizations of these algorithms to linear arrays and meshes of

any size are given in Section 5. Section 6 presents the predicted and observed performance of

some these algorithms on the Intel Delta mesh.

_

2. Communication Model

This work considers solutions to the broadcast, problem on linear arrays of n processors and

on 2-dimensional meshes of n = 7_1× r_2processors. The nodes of a linear array ar_ numbered ..

from 0 through n- 1. The nodes of a mesh are numbered from (0,0) through (ni - 1,n2- 1).

Each node is connected by a pair of communication links (one in each direction) to each of ,.

its immediate neighbor(s) in the horizontal and vertical directions. There are no wrap-around

links. Each node can concurrently transmit one r[lessage and receive one message. Circuit

switched message passing with wormhole routing is used. The route taken by a message in a

linear array is just the shortest path between the sending and receiving nodes. A message in a

mesh is routed horizontally until it reaches the column containing the receiving node and then

it is routed vertically to the receiving node. Messages can be routed through a node without

affecting its performance as a sender or receiver. Finally, it is assumed that each receiving node

allocates a buffer for each incoming message before that message arrives. Under this assumption

the sending node can transmit a message without prior handshaking with the receiver. (This

is the "forced" message passing protocol [11].)

A simple communication model describes the cost of sending a message of m bytes as

am + b, where b is the latency and a is the per-byte transmission cost. A close examination

of real message passing networks reveals a much larger collection of factors that can affect the

cost of communication algorithms. Some of these factors are:
4-

• contention for communication ports and links,

• choice of message passing protocol, ""

• packet permutation costs (message packet copying) within a node,

• bandwidth differences between different parts of the message passing network, such as

from the node to the network "gateway", and on the network itself (between "gateways"),

• the length of the circuit over which the message travels,

• the effects of message packetization performed by the node operating system,

• costs of arithmetic or logical operations on the message, such as in the combine operation,

• the distinction between the cost of a send operation measured in the sending node alone,

and the cost measured from the initiation of a send operation to the completion of the

corresponding receive operation, ,.

• synchronization costs,

• communication algorithm execution overhead (loop control, etc.),

-3-

• delays contributed bF' operating system interrupt processing,

• delays contributed by concurrent computation,

"" • the effect, of message traffic oil the network thai is not under tile control of tile application

programmer, such as that caused by I/O operations and other message traffic generated

' by tile operating system, and

• the effect of caches, FIFOs, and other hardware features.

Along with transmission cost a and latency b, tile first, four factors (link and port contention,

protocol choice, permutation costs, and bandwidth differences) significantly affect the cost of

global communication on the Intel Delta mesh, so these factors are included in the communica-

tion model presented here. The remaining factors, many of which have relatively small affects

on cost, will not. be considered here.

The communication model of the Delta that will be used here is the same as that presented

in [1], with the addition of a term for permutation costs. (See [11] for a general description of the

message passing network of that machine.) This model distinguishes two kinds of transmission

costs: a is the per-byte cost of moving data from a processor onto the network and _ is the cost

of moving data over the network itself. This means that there is a path from (or to) a node to

a network "gateway" and that there is a circuit connecting the "gateways" of the source and

.. destination nodes. These two costs are not cumulative, they simply represent the capacity of

these two components of the network. It is assumed that a = 2vR for some integer v > 0.

Link contention occurs when the paths taken by two or more messages have one or more

links in common. As long as no more than 2v messages share any one link at a given time,

link contention does not add to cost of sending a message. Port contenlion occurs when one

or more messages arrive at a node at the same time. Those messages can arrive over distinct

incoming links or, if v > 0, they can arrive on the same link. In both cases port contention

adds to cost of sending a message.

In the absence of communication port contention, the cost of transmitting a message of rn

bytes is expressed as [k/2V]am + b, where k is the largest number of message circuits that

share a link during the transmission of the message. Suppose that k < 2 v send operations are

initiated by k distinct nodes. If ali of the receiving nodes are distinct, that is, there is no port

contention, then the latency of each send operation is overlapped and the total cost of these

send operations is just am + b, regardless of whether or not any of the message circuits have

., one or more links in common. However, when k = 2i for some i > v, the transmission cost is

2i5m + b = 2i-Vam + b.

Finally, certain communication algorithms, such as the complete exchange algorithms given

in [5] and [6], require significant amounts of message packet movement within individual nodes.

-4-

Such internal data movement is also required in the recursive halving broadcast algorithms

described in the next section. During execution of these Mgorit, hms the next message to be sent

is formed by permuting the message packets that, have already arrived. In these algorithms each
,.

node moves as much data internally as it does over the network. A constant p that represents the

cost of moving one byte of data from one location to another within a node is thus included in

the cost analysis of the algorithms given in the next section. Also note that permuting message '

packets usually requires that additional storage be provided for message packets. This typically

amounts to a doubling of storage requirements, which, when long messages are involved, can

be a significant factor in the choice of algorithms.

3. Broadcast Algorithms

Several broadcast algorithms for linear arrays and meshes are considered. Each algorithm is

based on communication patterns commonly used on hypercubes, such as spanning binomial

trees and dimensional exchanges. In this section it is assumed that a linear array consists of

n = 2d nodes and that a mesh consists of n = 2d' x 2d_ nodes. It is also assumed that node 0

contains a message of length m to be broadcast and that, ali other nodes are blocked, waiting

for node 0 to begin the broadcast operation. The cost of a broadcast operation is measured

from the time node 0 begins the broadcast to the time the last node receives the message.

The familiar spanning tree broadcast algorithm is considered first. Several improvements of
8.

that basic algorithm are given. These improvements take advantage of:

1. the additional bandwidth offered by v > 0,

2. the additional bandwidth offered by bidirectional links, and

3. the increased connectivity of meshes over linear arrays.

For comparison, the recursive hMving broadcast algorithm is also described at the end of this

section.

3.1. Spanning tree broadcast on a linear array

3.1.1. ST broadcast, v = 0

The first algorithm is based on the familiar spanning binomial tree that is used in the recursive

doubling broadcast algorithm for hypercubes [12]. This algorithm will be called the spanning

tree (ST) broadcast and was described earlier in [2] for linear arrays and meshes. A ST broadcast ,.

on a linear array of 2_ nodes takes d steps. On the ith step (1 < i < d), each node j that already

has a copy of the message sends it to node j (3 2d-i, where $ denotes bit-wise exclusive OR.

-5-

This is illustrated for a linear array in Figure l(a). The corresponding spanning tree is shown

in Figure l(b), Each arc of the tree is labeled with the step at which it carries t,he message.

.- 0 7 000

' 100 010 001

110 101 011

111

(a) (b)

Figure 1: Spanning tree broadcast on a linear array.

The spanning binomial tree on which the ST broadcast algorithm is based is also used in

all of the other broadcast algorithms considered here. The nodes of such trees are numbered

in binary and the bits of each node number are indexed from most to least significant by

d- 1, d-2, ...,0. (From a purely graph-theoretic point of view, these trees are not spanning

trees of linear arrays or meshes. However, these trees are useful for describing the scheduling

and routing of messages in those networks and they will continue to be referred to as spanning

trees here.) For purposes here, a spanning tree with root 0 is a directed graph of n = 2 d nodes

.- in which each node i has children whose node numbers are obtained by complementing exactly

one of the trailing zeros (if any) of i. To determine the node numbering of a spanning tree

with root other than 0, exclusive OR the node number of each node in the tree with the node

number of the new root. For more details about the properties of these trees see [12].

In the spanning tree of a linear array of 26 nodes, some tree arcs represent circuits of several

links in the linear array and some links in the linear array are used in several tree arcs. Since

some of the tree arcs carry messages simultaneously during this broadcast algorithm, there

might be link contention. (This possibility does not arise in a hypercube because there is a

one-to-one correspondence between tree arcs and hypercube links.) Even though some arcs in

the tree share the same links, at each step only disjoint sets of links are used. lt was shown in

[2] that the ST broadcast algorithm causes no port or link contention if node 0 is the root of

the spanning tree. Also, there are no packet permutation costs in this algorithm because the

•. message is not divided into packets. Thus, the cost of the ST broadcast algorithm is

d(ma + b) for a linear array of 2d nodes, (1)

-6-

There are two other communication problems whose solutions are used frequently in ttle

broadcast algorithms given here. Solutions to these two problems, based on spanning trees,

are now described. Many of the algorithms that follow make use of tile dislribule operation in

which one node sends a distinct message to each other node in the network. This operation is

also called a scatter or a one-to-ali personalized communication [12]. In most of the broadcast,

algorithms that follow, the messages to be distributed arise by partitioning the message that is ""

to be broadcast. In a linear array or mesh of n = 2e nodes, each of the distributed messages,

called packets, has length ron, where m is the length of the message to be broadcast. The

distribute algorithm that is used here is based on a spanning tree. A message of length rn is

distributed to all the nodes in the tree by halving it at each step until each node has received

its packet. The cost of this distribute algorithm is

d

-_ + b) = (1 -)ma + rib.
i-1

The other problem of interest is called the all-to-ali broadcast. In this problem, each node has

a message (typically, a packet of length m/n) that must be broadcast to ali other nodes. This

problem is easily solved by exchanging packets between nodes whose node numbers (written in

binary) differ by one bit. On hypercubes this algorithm is known as a dimensional exchange

and the same term will be used here. Note that the message length doubles at each step of this

algorithm and so its cost is the same as the cost of the distribute algorithm described above,

provided there is no link contention. However, on linear arrays and meshes a dimensional ex-

change can give rise to both link contention and permutation costs. The issue of link contention

is considered in detail in Sections 3.5 and 3.6, where the dimensional exchange is a critical part

of the recursive halving broadcast algorithm. Until then dimensional exchanges will be done

only on subarrays of 2 v nodes and on submeshes of 2v x 2v nodes. Link contention does not

arise in arrays of these sizes.

Permutation costs can arise during a dimensional exchange if there is some inherent ordering

among the packets that are exchanged. There is always such an ordering associated with the

packets exchanged in the broadcast algorithms studied here. For example, it will often be the

case that each contiguous subarray of 2v nodes contains distinct packets numbered 0, 1, ..., 2v- 1,

as shown in the two examples in Figure 2. It will be required that each subarray does an all-to-ali

broadcast of the packets within that subarray so that each node receives a copy of each packet.

In addition, the packets must ultimately be ordered by their index. Figure 2(a) illustrates that

the ordering of packets is preserved Dgexchanging with nearest neighbors first. This corresponds • •

to selecting destinations by complementing the sender's node number bits from least to most

significant. The opposite ordering of destinations results in an out-of-order concatenation of

-7-

2 v nodes

iol , i _ i_10 i, i_ 13 i0 i_-!

['01 1 OI 123 ! 23 I OI i o, 123 I" 10, lot I

_. __ _ _ _

Io_-10_3[012310123[012310123[0123[,01231012310123[

(a) right

2 v node_

I..o ! I] :_ 1"3-1 0 I 1 I 2 13] 0 I-I I'
,ir"

_ _ _ _

I" 02 ! 13 [02 [!! [02 [13 I 02 1. 13 I 02 1' 13 [

] 0213 [02.13] 0213] 0213] 0i13] 0213 ! 02131 021310213] 0213 I

(b) wron8

Figure 2: Dimensional exchanges of 2v packets among 2" nodes, u = 2.

-8-

packets, as shown in Figure 2(b). In this case an internal permutation of packets is required

to achieve the desired packet ordering. Until tile recursive halving algorithms are introduced

in Section 3.5, ali of the oroadcast algorithms given here perform dimensional exchanges so

that, permutation costs are avoided. (Note that since the size of each subarray is limited to 2v, '"

the overlapped pairs of exchanges do no exceed the capacity of the links, so there is no link

contention during these exchanges.) ""

With the basic tools introduced above, we can now continue with ttle construction and

analysis of broadcast algorithms.

3.1.2• ST broadcast on a linear array, v > 0

If v > 0 and if it is assumed that v is an integer, the ST broadcast, can be generalized to

take better advantage of the available network bandwidth. Under these circumstances the

linear array can be viewed as 2v interleaved subarrays each with 2d-v nodes. The ith of these

subarrays, for 0 < i < 2v, consists of nodes numbered j2 v + i, for 0 _<j < 2d-v. Figure 3 shows

the two interleaved arrays as white and gray cells in a linear array of 8 nodes for the case of

v=l.

To broadcast the message on these interleaved arrays, the message is first distributed among

nodes 0, 1,..., 2v - 1. The cost of this distribution is

(1 - 1)ma + rb. ,.

When v "- 1 this distribution phase amounts to only one step, as shown in the first step in

Figure 3. Each of the nodes 0, ..., 2v then acts as the source node of a ST broadcast of a

message of length ml2 v on a subarray of 2d-v nodes, at a cost of

(d-v)(_+b).

This is shown in the second and third steps in Figure 3. Since there is no link contention

during a ST broadcast there is also no link contention when 2 v ST broadcasts are performed

concurrently because the maximum number of messages that contend for any link is 2v. There

is no port contention because none of the spanning trees have any nodes in common. Also note

that the ST broadcasts leave the packets ordered in each contiguous subarray of 2v nodes just

as they were after they were first distributed.

The final phase of the algorithm consists of collecting the packets to reconstruct the original

message. This is accomplished by a dimensional exchange on each contiguous subarray of 2v

nodes. This is the final step in Figure 3. Recall that there is no link contention during this

phase since all communication is localized among contiguous subarrays of 2v nodes. Also,

-9-

distribu_ ST broadcast (step 1)

ST broadcast (step 2) exchange
m,

Figure 3: ST broadcast on a linear array, v - 1.

the dimensional exchanges can be done in an ordering that allows the original message to be

reconstructed without the need for permuting the packets within each node. Thus, this phase

has cost

(1 - 2--?)ma +
yD.

The total cost is

(2 + d - v - 2)m a + (d + v)b. (2)2_

When v = 0 this cost reduces to d(ma + b), as it should.

3.2. Spanning tree broadcast on a mesh

3.2.1. ST broadcast on a mesh, v = 0

. A ST broadcast on a mesh, based on the algorithm for linear arrays, is shown in Figure 4. In

this algorithm the message is first broadcast to the nodes in the leftmost column of the mesh,

then each node in that column broadcasts the message to the nodes in its row. The cost of thisr

algorithm is

(di + d_)(ma + b) for a mesh of 2 d' x 2d2 nodes,

and it is easy to see that there is no link or port contention and that there are no permutation

costs.

This algorithm does not take very good advantage of the connectivity of the mesh. Better

advantage is taken by treating the mesh as four interleaved 2d_-I x 2d_-I submeshes. This

viewpoint is illustrated in the first two frames of Figure 5 where each of the four submeshes is

given a unique hatching pattern. The message is first distributed to the 2 x 2 block of nodes in

the upper left corner of the mesh so that each of the four nodes in that block has one quarter

of the message. This is shown in the first two steps of Figure 5. The cost of these steps is

3
' • -ma + 2b.

4

Each of the four corner nodes then uses the ST broadcast algorithm described in the previous

Hl

- 10-

d2

2d I, IIi v.,.'....
column ST broadcast (2 steps)

row ST broadcast (3 st_ps)

Figure 4: A simple spanning tree broadcast on a mesh.

paragraph to concurrently broadcast the message in its submesh. Steps 3 through 6 of Figure 5

show these broadcasts. Ali link and port contention can be avoided by alternating the orienta-

tion of the spanning trees of the four submeshes. If alternate mesh nodes are colored red and

black as in a checkerboard, then the red cells broadcast the message first in their column and

then in their row, and the black cells do the opposite. If di :_ d2, the broadcasts along the
4

shorter axis must be delayed for [di - d21 steps after the two broadcasts along the longer axis

begin. The cost of this phase is the cost of the broadcasts along the longer axis,
"-e

/7_a

2(max(di, d2) - 1)(---_- -I-b).

At the end of the ST broadcasts the packet, distribution pattern of the first two steps is now

replicated in each contiguous 2 x 2 block of nodes. Two exchanges between neighboring pairs

of nodes complete the algorithm. The cost of these two exchanges is

3

._rna 4- 2b.

For a 2di × 2d2 mesh the total cost of the algorithm is

(max(di, d2) 4- 1)rna 4- (2 max(di, d2) 4- 2)b.2

For sufficiently long messages, this is a significant improvement over the simple algorithm given ' '

at the beginning of this section.

-11-

JIl'll IIII! -_ ,-
IIIII IIIII IIII IIIII I!111III11

_1111i1111 i111IIIII IIIII IIIII '

lllll II111 ,1111I!111IIIIIIIIII
distribute distribute broadcaston submeshes

i : #,

._.._...._...._. ww w w wlVw w
exchange exchange

Figure 5: A better ST broadcast on a mesh.

- 12-

3.2.2. ST broadcast on a mesh, v > 0

For v > 0 the ST broadcast algorithm can be generalized from a linear array to a mesh just as

in the case of v = 0, that is, first broadcast along the leftmost column and then concurrently ,.

broadcast along each row. It follows from Equation 2 that this broadcast algorithm has cost

(4+ di + d_ - 2v-4)m a + (di + d2 + 2v)b. (3)
Q I

2_

However, some savings can be achieved by delaying the collection step at the end of the column

broadcast until the row broadcasts are complete. This way, the packets broadcast along the

rows are somewhat shorter. In a mesh of 2a_ × 2d2 nodes, this algorithm proceeds in five phases

(see Figure 6):

! ::::_':">':: ::::::::::::i . "_i _;..'_i_
_il 1_2".7./$,: |_:_Y-'

dislribute column ST broadcast (2 steps) distribute

i-.,,- -., .- V V V V
"_" " " AAAA
-_*--.,.- V V V V
-.t ,.- -._,- k $ _ k
-_*- -.. ,_ VVVV

row ST broadcast cxchansc cxchan_c

Figure 6: ST broadcast on a mesh, v = 1.

1. Distribute the message to the first 2 v nodes in the leftmost column. Cost: (1-_)ma+vb.

2. The first 2v nodes in the leftmost column each do a ST broadcast of a message of length

ma/T' in a linear subarray (column) of 2d,-u nodes. Cost: (di - p)(_a_a -{-b). ''

3. Each node in the leftmost column distributes the message it received in phase 2 to the

first 2v nodes in its row. Cost: (1 - !_ma + _b.2 _'J 2"

13-

4. The first 2v nodes in each row do a ST broadcast of a message of length rna2 TM in a

linear subarray (row) of 2d2-v nodes. Cost: (d_ - v)(_-_ + b).

5. Each contiguous 2v × 2_ block of nodes exchanges packets to reconstruct the original,°

message in each node. Cost: (1 - 21--_)rna+ 2rb.

" The distribute operations of steps 1 and 5, and the dimensional exchange of step 5, cause no

link contention because each of those operations is limited to continguous subarrays of 2" nodes

or to continguous submeshes of 2v x 2v nodes. Also, it is easy to see that the 2v ST broadcasts

overlapped '_c each of steps 2 and 4 do not exceed link capacity. The total cost of this algorithm

is thus

(3+ dl-2 vv- 2 + d_ -2_vv- 1)m a + (d1+ d2 + 2v)b. (4)

(In view of this cost, when di > d_ it is advantageous to first broadcast along the top row and

then down the columns.) This cost is always lower than that of Equation 3. Also note that

when v = 0, this cost becomes (di + d2)(ma + b), as expected.

One additional algorithm is given that trades transmission costs for latency costs. It com-

bines the "better" mesh ST broadcast algorithm given in Section 3.2.1 with the advantage that

v > 0. Again, the mesh is viewed as 22v interleaved meshes each of size 2d_-u × 2d_-u The

message is first distributed to the block of 2v x 2v nodes in the upper left corner of the mesh

at a cost of

1)ma + 2rb.-

Each of the nodes that received a packet then acts as the source of a ST broadcast in its

submesh, using the "better" ST broadcast algorithm of Section 3.2.1. Since each packet has

length m/22", the cost of this broadcast is

(max(d2d2) - v + 1) ma_; + (2(max(di, d2) - v) + 2)b. (5)

At the end of this broadcast each block of 2v x 2v nodes uses a dimensional exchange to collect

the entire message into each node. The cost of this collection step is

1

(1 - _)ma + 2v5,

and the cost of the entire algorithm is

(2 + max(di, d2) - v - 2)m a + (2 max(di 42) + 2v + 2)5. (6)
• ' _2v-{- 1 '

. Comparing Equations 4 and 6 and assuming that di _< d2, we see that this algorithm has

d2 - di + 2 more steps, so its latency cost is higher while its transmission cost has been reduced.

- 14-

This algorithm will be the one chosen for comparison with others in Section 3.7.

3.3. Bidirectional spanning tree broadcast on a linear array

In ali of the ST broadcast algorithms for linear arrays presented in Section 3.1, messages flow

strictly from left to right when node 0 is the source of the broadcast message. Similarly, in the
o*

mesh algorithms of Section 3.2 messages flow only from top to bottom and from left to right.

Broadcast algorithms that have bidirectional message flow are now described. These algorithms

exploit the network property that. messages moving in opposite directions do not contend with

each other fol communication links. Each of the algorithms presented in Section 3.1 has an

analogous bidirectional version, presented in this section. The bidirectional analogs of the ST

broadcast algorithms for meshes are given in Section 3.4.

3.3.1. BST broadcast on a linear array, v = 0

In a linear array of n = 24 nodes, the bidirectional spanning lree (BST) broadcast algorithm

broadcasts the message over two spanning trees, one rooted at node 0 and the other rooted

at node 2 a - 1. Node 0 first sends half of the message to the root of the other spanning tree.

Both root nodes then do a ST broadcast of their halves of the message over their respective

spanning trees. On the last step neighboring pairs of nodes exchange their halves of the message,

completing the broadcast. Figure 7 shows the message routing determined by these two trees.

There is no link contention because ali messages from node 0 are transmitted from left to right

II i I ' I ' i I--- I 0(10I t I I I I rv _ -,

distribute ____1_"_ 0_0%1 4Ill 1

bidirectional ST broadcasts 01 0 1 1 1

Ca) CD)

Figure 7: Bidirectional spanning tree broadcast on a linear array.

while ali the messages from node 2d - 1 are transmitted from right to left. There is no port

contention because, until the last step, only even-numbered nodes send and receive messages

in the spanning tree rooted at node 0 and only odd-numbered nodes send and receive messages

-15-

in the spanning tree rooted at node 2 d - 1. This algorithm has cost

ma

(d+ 1)(-_- + b) for a linear array of 2d nodes. (7)

Comparing this cost to the cost of the analogous ST broadcast algorithm from Section 3.1.1

• . (Equation 1), we see that for d > 1, transmission time has been reduced at the cost of one

additional startup.

3.3.2. BST broadcast on a linear array, v > 0

If v > 0, the linear array can be viewed as 2v interleaved subarrays each with 2d-_ nodes, just

as in Section 3.1.2. (See Figure 8 and compare with Figure 3.)

":'_;"": :::_':_::_ :::::::::":: '::::::::::: [_"":"" ""':"':! _':""'":_ _!!]i!i:.i

distribute BSTbroadcast(3steps)

exchange

Figure 8: BST broadcast on a linear array, v = 1.

The message is first distributed among nodes 0, 1,..., 2v - 1. The cost of this distribution is

(1 - 1)m_ +
rb.

Each of the nodes 0, ..., 2_ - 1 then acts as the source node of a BST broadcast of a message

of length m/2 v over a subarray of 2a-V nodes, at a cost of

ma

(d- v + 1)(_- i- + b).

Since 2v BST broadcasts are performed concurrently, the maximum number of messages that

contend for a link is 2v, so there is no link contention during this phase. There is no port

contention because none of the spanning trees have any nodes in common. It is easy to verify

that the BST broadcasts leave the packets ordered in each contiguous subarray of 2 v nodes

just as they were in the original partitioning. The final phase of the algorithm consists of com-

bining the packets to reconstruct the original message. This is accomplished by a dimensional

exchange within each contiguous subarray of 2 _ nodes. Since these exchanges are localized

among subarrays of 2v nodes, there is no link contention during this phase. Also, recall that

the dimensional exchanges can be done in an ordering that allows the original message to be

reconstructed without the need for permuting the packets within each node. Thus, this phase

16-

has cost,

(1 -)-_;.)rna +
rb.

The total cost is
d-v-3

(2+ 2.+I)ma+(d+v+l)b. (8)

When v = 0 this cost reduces to that of Equation 7, as it should. '"

3.4. Bidirectional spanning tree broadcast on a mesh

3.4.1. BST broadcast on a mesh, v = 0

Applying the BST broadcast to a mesh, node 0 first broadcasts the message to the leftmost

column of the mesh and then each node in the leftmost column broadcasts to the nodes in its

row. If these row and column broadcasts each use the BST broadcast algorithm for a linear

array, it follows from Equation 7 that the cost is

ma

(dl + d2 + 2)(T + b) for a mesh of 2d' x 2d2 nodes.

A slight improvement can be obtained by treating the mesh as a linear array of 2d'+a= nodes

and applying the BST algorithm just once to broadcast the message. It is easy to verify that

there is no link or port contention in this version of the broadcast. The cost of this approach is

(di +d2+ 1)(--_ + b). (9)

However, neither of these broadcast algorithms take very good advantage of the connectivity

of the mesh. A lower cost algorithm can be obtained by an approach analogous to that used

in Section 3.2.1 for the "better" ST broadcast on a mesh. The message is first distributed

among two square blocks of 4 nodes each at opposite corners of the mesh. The details of this

distribution phase are shown in the first three steps of Figure 9. The message is viewed as eight

packets numbered 0, 1, ..., 7. Initially, node (0, 0) contains ali eight packets. Distributing the

packets as shown in the figure avoids permutation costs later in the algorithm. The cost of this

distribution phase is fixed at
7

-_ma + 3b.

Each of the eight nodes that has a packet now uses a spanning tree to concurrently broadcast its

packet of length m/8 among eight interleaved meshes each of size 2di- 1 x 262-1. Steps 4 through

7 of Figure 9 show these broadcasts. Ali link and port contention is avoided by alternating the '

orientation of those spanning trees as described in Section 3.2.1. (Also, compare with Figure 5.)

If di 7_d2, the broadcasts along the shorter axis must be delayed for]di - d21 steps after each

- 17-

- 18-

of the two broadcasts along the longer axis begin. The cost of this phase is tile cost of the

broadcasts along the longcr axis,

2(max(dx, d_) - 1)(2_ + b). ""

At the end of the ST broadcasts, each continguous square block of four nodes contains the entire

message, distributed among its members. Figure 10 shows how the original eight packets are

distributed among the members of each such block. This particular packet distribution pattern

2j 2j+l

2i 01 23

2i +1 45 67

Figure 10: Packet distribution after broadcast phase. Row and column indices indicatt block

orientation. (0 _<i < 2a_-I and 0 _<j < 2d_-1.)

allows the original message to be reconstructed in each node, without permutation costs, by

the pair of exchanges shown in the last two steps of Figure 9 and with a cost of

3
-ma + 25.
4

The total cost of the algorithm is thus

2 max(di, d_) + 11
ma + (2 max(di, d2) + 3)5. (10) ,8

3.4.2. BST broadcast on a mesh, v > 0

As in Section 3.2.2, consider the 241 x 2d_ mesh as made up of 22v interleaved submeshes, each

of size 2al-v x 2 a_-v, so that each 2v x 2v contiguous block of nodes has exactly one node from

each submesh. To broadcast, a message, node 0 first distributes the message as 22v packets

among the nodes in the 2_' x 2V block in the upper left corner of the mesh. The cost of this

step is
1

(1 - _-_)rna + 2rb.

Each of the nodes in that. block then acts as the root of a BST broadcast of a message of length

ml22v in a submesh of size 2 dl-v x 2d_-v with v = 0. From Equation 10, the cost of those

broadcasts is

2(max(di, d2)- v)+ 11 '"
ma + (2(max(di, d2) - v) + 3)b.

22v+3

,

- 19-

After those broadcasts are completed, each node in each contiguous 2v x 2v block contains one

of the 22_' packets. These packets are then recombined using a dimensional exchange. The

ordering of these packets within each block is the same as the ordering of tile packets after the

distribution phase so there are no permutation costs during the exchange. Also, the level of

link contention during the exchange is never greater than the network's capacity to handle it
Q ,

because communication is localized within blocks of 2 _ × 2" nodes. This dimensional exchange

thus has cost

l)ma + 2rb

and so the total cost of this algorithm is

(2 + 2 max(di, d2) - 2v - 5)ma + (2 max(di d2) + 2v + 3)b.22v+3

3.5. Recursive halving broadcast on a linear array

The recursive halving (RH) broadcast is similar to the recursive halving broadcast algorithm for

hypercubes given by van de Geijn and it differs only slightly from the global combine algorithm

for linear arrays and meshes given in [1,16].

I ! ! I++1 I-+-+1 I
distribute(3 steps)

d

. exchange (3 steps)

Figure 11: Recursive halving broadcast on a linear array.

The first phase of the RH broadcast uses a spanning tree to distribute the message among

ali processors. This is shown in the first three steps of Figure 11. The cost of the first phase is

(1 - ,-_)ma +
db.

The second phase recombines the message packets using a sequence of pairwise exchanges

analogous to a dimensional exchange in a hypercube. On step i (1 < i < d), ali pairs of

nodes whose (d - i) th bits differ exchange messages. With each exchange the lengths of the

message packets double until each node contains the entire message after d steps. There is link

contention at each step of this phase but the last. The amount of contention decreases with
.,

each step. On the first step 2a- 1 messages contend for the link from node 2d- 1_ 1 to node 2d- 1.

The same number of messages contend for the link going in the other direction. If v > 0, the
i

link contention that occurs during the second phase is mitigated somewhat by the facts that

- 20-

the shortest messages are sent during steps having the greatest link contention, and, if v > 0

the bandwidth of the network links is a factor of 2_ higher than that of the connection from

the node to the network (since a = 2v_), so 2v pairs of exchanges can proceed concurrently.

Under these considerations the cost of the second phase of the RH broadcast is "'

d-I d-v-2
--[m max(a 2i_)+b] = (1+)ma+db. ""
i=O

This algorithm partitions the original message into 2a packets. An examination of the

routes followed by those packets shows that in order for the broadcast algorithm to preserve

their original ordering they must either be permuted in node 0 before the first phase or permuted

in each node following the second phase. Either choice has cost mp. The total cost of the RH

broadcast is thus

(2 + d - v - 2 1)ma + 2db + mp for a linear array of 26 nodes.2v+l 2d

3.6. Recursive halving broadcast on a mesh

The RH broadcast algorithm for a mesh is similar to the RH broadcast algorithm for a linear

array. The cost of distributing the message in the first phase (shown in the first six frames of

Figure 12) is
1

(1 2a_+d2)ma + (di + d2)b.

The dimensional exchange of the second phase can take advantage of both dimensions of the

mesh to reduce contention. By interleaving horizontal and vertical exchanges in alternate nodes

(shown in the remaining six frames of Figure 12) the amount of contention that occurs in a

square mesh (di - d_) is half that which would occur if ali horizontal exchanges were done

before any vertical exchanges. For non-square meshes the reduction is not as great. (See [1] for

further details.) For v < di _<d2, the cost of the second phase is

2dl - 1 di +d2 - 1
m m

[2-_ max(a,2tq2J-ld)+b]+ _ [2-i-_ max(a,2'-_'a)+b]
i=0 i=2dl

1 2(42 - 41) - 3)m a= (1 + _ + 2d,+_+ 2
+ (di+ d2)b.

As in a RH broadcast on a linear array, permutation costs of mp are incurred at the beginning

or at the end of the algorithm, so the total cost of the mesh RH broadcast for 2d_ × 262 nodes ..

is

(2+ 2(d2-dl)-3 1 1)ma+2(dl+d_)b+mp.
2dr+v+ 2 -{- 22v+ 3 2dl+d_

-21 -

- 22 -

3.7. Comparisons

Table I summarizes the costs of the broadcast algorithms described in this section. The costs of

the algorithms designed for linear arrays are given for n = 2d nodes while the costs of the mesh

algorithms are given for n = 2d_ × 2d2 nodes, lt is assumed that v < d and v < di _<d2. Ali of

these algorithms have O(lg n) coefficients of transmission cost and latency. The RH broadcast
,,

has an O(1) coefficient of transmission cost in the special case of square meshes (di = d2).

linear ST (2 + dz_----_2)ma+ (d + v)b
__

d-_-_, 1)blinear BST (2 + 2_-.--¢r-_r-_ma+ (d -F v +

d-v-2 1)ma + 2db + mplinear RH (2 + _ -
. .

mesh ST (2 + m_x(a_,a2)-v-_)m a + (2 max(di d2) + 2v + 2)b22v+1

mesh BST (2 + 2max(a"a2)-2v-5)ma + (2 max(di, d2) + 2v + 3)b22=,+3

2(a=-dl)-3 1 1)ma + 2(dl + d2)b + mpmesh RH (2+ 2_,+v+= +_-

Table I: Broadcast algorithm costs.

For the shortest messages the ST broadcast algorithms have the lowest cost on both linear

arrays and meshes because of their low latency. The BST broadcast always has lower cost than

the RH broadcast on linear arrays, regardless of message length. The BST broadcast also has

lower cost than the ST broadcast whenever

2V+lb
m>

a(d-v- 1)"

It can be verified from the data given in Section 6 that this crossover point is reached on the

Intel Delta mesh before m > 1K bytes.

The costs of the ST and BST broadcast algorithms for meshes in Table I are those of the

"better" versions of those algorithms given at the ends of Section 3.2.2 and 3.4.2, respectively.

The mesh BST broadcast algorithm has one more step than the mesh ST broadcast algorithm

and so its latency cost is higher by b. The difference between the coefficients of ma in the

cost expressions for those two algorithms is not as great as in the case of the algorithms for

linear arrays and so the additional latency of the BST broadcast is not as quickly amortized

by longer message lengths. On the Delta the predicted performance of the BST broadcast is ..

better than that of the ST broadcast only for messages of many tens of kilobytes. The value

of the crossover point, varies inversely with the size of the mesh. The RH broadcast algorithm

for meshes sometimes has lower transmission cost than the ST and BST broadcast algorithms,

- 23 -

but the latter always have lower latency costs and they have no permutation costs•

Finally, note that the ST and BST broadcast algorithms require no additional temporary

stcrage of message packets because they do not need to permute message packets• The RH

broadcast algorithms require temporary storage proportional to message length.

e.

4. Broadcasting from an Arbitrary Node

In all of the broadcast algorithms given so far, the node that contains the message to be

broadcast, has always been node 0 in the case of linear arrays, and node (0,0) in the case of

meshes. This ,_ection considers the problem of generalizing the algorithms of Section 3 so that

any node can serve as the source of the broadcast message. This is done for the ST and BST

broadcasts on linear arrays and for the RH broadcast on linear arrays and meshes. None of

these generalizations adds any ;,_st to the original algorithms. It iu conjectured that a similar

approach can be used to genera_i_e the ST and BST broadcast algorithms for meshes.

4.1. ST broadcast on a lbaear array_ u = 0

It was me_ltioned in Section 2.1.1 that there is no link contention during a ST broadcast on a

linear array. This is clear from Figure l(a) when node 0 is the root of the spanning tree. In

fact, there is no link contention even when some other node is chosen as the root of the ST

broadcast. It is now sho_gn that for a ST broadcast from an arbitrary node of a linear array of

n = 2a nodes, at each step each message travels the same distance and in the same direction,

, and all nodes that send messages are separated by a distance that is greater than the distance

their messages travel. This w_,ll allow us to conclude that there is no link contention during

such a broadcast.

Consider a linear array with n = 2¢'_nodes and suppose node k is the source of the broadcast

message. Construct, the spanning tree for the broadcast by exclusive OR-ing k with the node

numbers of the spanning tree with root 0. (See Figure 13(b).) Now assume that at the beginning

of the/ta step of the broadcast., any two nodes that have a copy of the message are separated

by a distance of at least 2 a-i+1 in the linear array. (This is vacuously true at the beginning of

step 1.) Each message sent during the ith step travels a distance of 2a-i hops because it is the

(d- i)_h bit of the sender's node number that is complemented to determine the destination of

the message. In addition, each message sent during the ?:.rh step t_avels in the same direction

because the ith bit of each sender is the same. This is clearly true in the spanning tree with

.. root 0; all such bits are 0 and ali messages travel to the right at the/ta step. This is also true

in the spanning tree rooted at node k since the (d - i) ta bits of the sending nodes were ali

. obtained by exclusive OR-ing the (d-i)th bit of k with 0, so at the end of step i, all nodes that

have a copy of the message are separated by a distance of at least 2a-i. Tihus, at each step ali

-24 -

message follow disjoint paths and so there is no link contention. It follows that there is no link

contention during an ST broadcast from an arbitrary node of a linear array of 2d nodes. (See

Figure 13(a).)

0 7 101

1 1___'_.,_._ ..
001 111 100

011 000 110

(a) (b)

Figure13:Spanningtreebroadcaston a lineararraywithrootnode5.

Based on theseobservationsitisalsoclearthatthereisno portcontentionduringa ST

broadcastfroman arbitrarynode becauseateachstepeachmessagehasadistinctdestination.

Also,thereisno linkor portcontentionduringa distributionoperationfrom an arbitrary

node. This followsbecausethe distributionalgorithmusesthe same spanningtreeas the

ST broadcast.These observationsarenow appliedto generalizesome oftheotherbroadcast

algorithmspresentedinSection3.

4.2.ST broadcast on a lineararray_v > 0

First,considertheST broadcastalgorithmforlineararrayswithv > 0.(SeeSection3.1.2and

Figure3.)That algorithmhasthreephasesconsistingofa distributeoperation,concurrentST

broadcastson subarrays(withv = 0),and a dimensionalexchange.Duringthefirstphasethe

messageisdistributedto a contiguousblockof2v nodes.When node 0 isthe sourceofthe

broadcastthisblockconsistsofnodes0,1,...,2v- 1.When some othernode k isthesourcethe

messageshouldbe distributedamong the correspondingblockofnodesthatcontainsnode k,

namely, nodes j2 v, j2 v + 1, ..., (j + 1)2 v - 1, where 0 < j < 2a-" and j2" < k < (j + 1)2v - 1.

Call this block of nodes metanode j. If node k is not the leftmost node in metanode j the

distribute algorithm must use a spanning tree rooted at some node other than the leftmost

node in the metanode, lt was pointed out above that there is no link or port contention in such

a distribute operation. Also note that it is a simple matter to consecutively distribute the 2 v '

packets among the nodes of the metanode, so no permutation costs are introduced.

During the rmxt phase there are 2v concurrent ST broadcasts performed on 2_ interleaved

- 25 -

subarrays. Note that at each step of the concurrent ST broadcasts, ali messages sent by nodes

in metanode j have destinations in the same metanode. Figure 13(a) can thus be viewed as

a ST broadcast over a linear array of metanodes so the argument given in the case of v = 0

applies equally well to the case of u > 0.

The final phase of the ST broadcast is the dimensional exchange of packets among nodes
• ,

in the same metanode. At this point the source node of the broadcast is irrelevant since each

metanode contains the same information, so the issues of link and port. contention do not arise.

It follows from these observations that there is no link or port contention during a ST broadcast

from an arbitrary node for linear arrays with u > 0. lt is conjectured that similar arguments can

be used to extend these observations to the mesh ST broadcast algorithms given in Section 3.2.

4.3. BST broadcast on a linear array

Now consider the BST broadca._t on a linear array with v = 0. (See Section 3.3.1 and Figure 7.)

If some node k ¢ 0 is the source of the broadcast message, then the appropriate broadcast tree

is obtained by exclusive OR-ing k with each node of the BST broadcast tree with root 0. (See

Figure 14.) On the first step the message is divided into two halves. Node k sends one half

[i i
distribute 010._'_

bidirectionalSTbroadcas_ II I I 0 0

(a) (b)

Figure 14: BST broadcast on _ linear array with root node 5.

to node k, that is, to the bit-wise complement of k. Nodes k and k then act as source nodes

in ST broadcasts on two interleaved arrays each with 2d-1 nodes, lt was shown in Section 4.1

that there is no link or port contention during either one of those ST broadcasts. There is no

port contention between those two concurrent ST broadcasts because their spanning trees are

disjoint, and there is no link contention because at each step all messages in one spanning tree

travel in the opposite direction from ali message in the other spanning tree• It follows that
o,

there is no link or port contention during a BST broadcast on a linear array with v = 0. This

observation can be extended to the case of v > 0 by viewing a BST broadcast on a linear array

of 2d nodes with v > 0 to be a BST broadcast on a linear array of 2a-v metanodes with _, = 0.

- 26-

The reasoning is the same as in the case of'a ST broadcast with u > 0, above. It is conjectured

that similar arguments can be used to extend these observations to the mesh BST broadcast

algorithms given in Section 3.4.

4.4. lth broadcasts on linear arrays and meshes

Finally, the RH broadcast algorithm for linear arrays can be easily generalized to start from

an arbitrary node. Tile first phase of that algorithm is a distribute operation (across the entire

array) based on a spanning tree. (See Figure 11.) lt was shown above that such a distribute

operation can be generalized to start from any node. After the distribute is complete the

location of the source node is no longer relevant and the final dimensional exchange phase of

the algorithm proceeds in the same way regardless of which node started the broadcast. Similar

observations serve to generalize the RH broadcast on a mesh. The first phase is a column

distribute followed by a row distribute. (See Figure 12.) These operations are easily extended

to start from any node. The remainder of the algorithm consists of exchange operations, and

these are not affected by the location of the source node.

5. Broadcasting to Arbitrary Numbers of Nodes

The problem of broadcasting on linear arrays and meshes of arbitrary size is now considered.

Two approaches to this problem are described: virtual nodes and companions. The method

of virtual nodes can be applied only to the ST and BST broadcast algorithms. The method

of corrApanions can be used to generalize ali of the broadcast algorithms given in Section 3.
v

The method of companions is also likely to be useful for extending the applicability of other

communication algorithms, such as the complete exchange algorithms of [6] and the global

combine algorithms of [1], but such considerations are beyond the scope of this work.

5.1. Virtual nodes

Given a linear array of n nodes, append 2rlgnl _ n virtual nodes to the right end of the array to

bring the number of nodes up to the next closest power of two. Figure 15(a) shows an 11-node

linear array with five virtual nodes appended to it. The idea is to execute an algorithm designed

for 2 [lgn] nodes on n nodes, with node n- 1 simulating ali of the virtual nodes to its right.

This can only be done if there is not too much message traffic passing through node n - 1.

For example, suppose n = 5 and suppose the rightmost three nodes are virtual nodes in

the RH brgadcast shown in Figure 11. Then at the fourth step, node 4 would have to send ..

and receive messages from nodes 0, 1, 2, and 3. Since this would increase the cost of the

broadcast over the usual cost of a RH broadcast on 2[lgn] nodes, generalizing such algorithms

using virtual nodes is not considered worthwhile.

27-

On the other hand, the ST and BST broadcast algorithms for linear arrays with u = 0

do not require node n - 1 to send and receive more than one message at a time. These two

algorithms can be generalized using virtual nodes. The cost of broadcasting in a row of n nodes

is then just the cost of broadcasting in a row of 2 [lg'_] nodes.

In the case of an ni × n2 mesh, shown in Figure 15(b), each cell in the rightmost column of
• o

physical nodes simulates the virtual nodes to its right. Similarly, the bottom row of physical

nodes simulates the virtual nodes below. This leaves node (ni - 1, n2-2), the bottom rightmost

physical node, to simulate a submesh of (2[_gna] - ni + 1)(2 [lg'_] - n2 + 1) - 1 nodes, shown

with double hatching in Figure 15(b). This simulation is feasible for the "simple" ST and the

BST broadcast algorithms for meshes with v = 0 given in Sections 3.2.1 and 3.4.1 because at

each step of those algorithms ali messages travel only horizontally or only vertically, so node

(ni - 1, n2 - 2) has no greater responsibility for the simulation than any other nodes in its row

and column. In these two cases the cost of using virtual nodes is the same as the cost of a

broadcast on a mesh of 2 flgn_] x 2f lgn_] nodes.

(a)

f

(b)

,.,,,, ..,

-- :r_ =

"" " F

(d)

Figure 15: Virtual nodes (a and b), and companions (c and d).

o,

5.2. Companions

. The method of companions can be applied uniformly to generalize ali of the algorithms of Sec-

tion 3. Consider the ll-node linear array shown in Figure 15(c). Use any broadcast algorithm

- 28 -

for linear arrays to broadcast the message to the 8 nodes shown full-sized in that figure. Each

full-sized node then sends the message to its smaller neighbor, its compamon (if any), to its

immediate right. In a linear array of n nodes, c = n - 2[lgnj nodes have companions, lt is

assumed that the companion nodes are the first c odd-numbered nodes in the array, the smaller ""

nodes shown in Figure 15(c). The cost of the broadcast is then the cost of broadcasting the

message to 2[lgn] nodes plus an additional cost of ma 4- b to send the message to the compan- ""

ions. In an ni x n2 mesh entire rows and columns may consist only of companions, and some

nodes in a mesh may have as many as three companions, as shown in Figure 15(d). In this

case the cost of the broadcast is that of a broadcast on a mesh of 2 [lgnlj × 2 [lgn_j nodes plus

min(2(ma + b), 3((ma2) + b)). The additional term is the minimum of the costs of ST and

BST broadcasts, respectively, on a 2 x 2 mesh. (The RH broadcast algorithm always performs

less well than either of these on a 2 x 2 mesh.) Note that the transmission cost in the additional

term is at least 3ma2. Also note that the transmission costs of ali of the mesh broadcast

algorithms given in Table I are approximately 2ma. This means that when companions are

used to go,_eralize those broadcast algorithms, the traasmission cost of broadcasting on a mesh

of arbitrary size is almost twice that of broadcasting on a mesh with the next smaller powers

of 2 rows and columns.

5.3. Comparisons

Only a few of the broadcast algorithms given in Sections 3 can be generalized using virtual

nodes. These are the ST and BST broadcast algorithms for linear arrays with v = 0 given in

Sections 3.1.1 and 3.3.1, and the "simple" ST and BST broadcast algorithms for meshes with

v = 0 given in Sections 3.2.1 and 3.4.1. It is easy to verify that generalizing the "simple" mesh

broadcast algorithms using virtual nodes yields the same or lower cost than generalizations

based on companions, but in both cases the overall lowest costs are obtained by generalizing

the "better" mesh broadcast algorithms using companions, so it is not worthwhile to use virtual

nodes to generalize mesh algorithms.

For the ST broadcast algorithm for linear arrays with v = 0, the cost of the algorithm

generalized using virtual nodes is Jig n] (ma + b) and the cost of generalizing with companions

is ([lgnJ + 1)(ma + b). These two costs are the same when n is not a power of 2. On the

other hand, for the BST broadcast algorithm for linear arrays with v = 0, the cost of the

algorithm generalized using virtual nodes is (Jig n] + 1)(ma2 + b) and the cost of generalizing

with companions is ([lgnJ + 1)(ma2 + b) + ma + b. It is easy to check that the former cost

is lower. This is the only known case where generalizing a broadcast algorithm using virtual

nodes has lower cost than generalizing that algorithm using companions.

,,

- 29 -

6. Performance on the Intel Delta Mesh

The predicted and actual performance of the broadcast algorithms of Section 3 are now consid-

• ered. Predicted costs are based on the comnmnication model of tile Intel Delta mesh presented

in Section 2 and on measurements of the constants for that model. The actual costs of the ST,

.. BST and RH algorithms measured on a linear array of 16 nodes are also presented.

It is claimed by Barnett et al, in [li that u _ 1 for the Delta. More receat results given

in [13] reveal that this is an accurate estimate of u only when certain programming techniques

are used. Under ordinary circunlst, ances it, is more often the case that, u _ 0 and so it is

assumed here that a = _. The values given in Table II for a, _, and b are taken from [7]. These

performance measurements were made using tile "robust" kernel. The remaining constant used

in the communication model of the Delta is p, the cost of data movement within a node. A

careful consideration of this cost for the i860 processing nodes used on tile Delta is beyond the

scope of this work. The performance measurements given in [4] indicate that a data transfer

rate of 100MB/see is easily obtainable in practice, so p is chosen to be 0.01 microseconds per

byte.

node-to-network trans, cost a O.08psec/byte

network-to-network trans, cost, _ O.08#sec/byte

latency b 75#sec
....

permutation cost p O.Olpsec/byte......

' Table II: Communication constants for the lntel Delta mesh.

The predicted costs of broadcast algorithms are shown in Figure 16 for a linear array of 24

nodes. That figure illustrates that the BST broadcast is always faster than the RH broadcast.

and that the BST broadcast is faster than the ST broadcast on ali but the shortest messages.

Figure 17 shows the observed costs of implementations of the ST, BST, and R[I broad-

cast algorithms for a linear array of 16 nodes. Those data confirm that the BST broadcast

algorithm performs better than the ST broadcast algorithm for ali but the shortest, messages.

The crossover point is between 256 and 512 bytes. The observed cost of the RH broadcast

algorithm was much higher than predicted by the model. This is attributed to the facts that

the RH broadcast recursively breaks the original message into packets of length m/n and that,

the cost model of the Delta used here is not accurate for such packet lengths. This observation

about the cost model is supported in [10]. Some improvement in the performance of the RH

•' broadcast can probably be obtained by applying programming techniques described in [13].

The predicted costs of the broadcast algorithms for meshes given in Section 3 are shown

'- in Figure 18 for a 24 × 25 mesh with u = 0. The predicted costs given for the ST and BST

- 30-

z_.00_--i i I I I I I -
linear ST

,/
20.00_ _ --

i

18.00 -- /// - "

_ linearRH
16.00-- - --

/ /

/ /

14.00-- -- linearBST
/

I0.00-- .- --

8.00--

5.00--

4.00-- .-'"'"'"
2.00 "" ""

,4 s J" _

0.00-- --
I I I I I I I

0.00 I0.00 20.00 30.00 40.00 50.00 60.00
message length (Kbyt_s)

Figure 16' Predicted broadcast costs: n = 24, 8 <__m _<64K, v = 0.

broadcast algorithms are those of the "better" versions of those algorithms given at the ends of

Section 3.2.2 and 3.4.2, respectively. Again, the ST broadcast performs best for short messages

and gives way to the BST broadcast for message of between 512 and 1K bytes. The predicted

performance of the RH broadcast is better than that of the BST broadcast for messages of

more than 12K bytes. Actual performance figures for these algorithms are not available at this

time. Work is currently underway to implement these algorithms and measure their costs on

the Delta.

The observations made in this section are preliminary. Further work will be conducted

to obtain a larger collection of performance results from the Intel Delta and to better deter- ,.

mine which features are needed in the communication model to provide accurate predictions of

algorithm performance. .'

-31 -

I I 1 i I I I linear RH

... linearST

25.00 -- : --

/ •, '

/ .

o, / ,
/ ,

• , /20.00 -- : ,, ,,-/- -- linear BST
/ , /

/ , /
/, , //"

/

J/ ,

/ , ," f:

/ , ,j

15.0(] -- / ," / __

/ ,

mse, c / ,"

lo.oo_ :_":':"": -

i/I/

5.00_ :," --

./

0.00--' -
I I 1 I I _1 1

, 0.00 10.00 20.00 30.00 40.00 50.00 60.00
me.,ssagelength(Kbyte,s)

Figure 17: Intel Delta observed broadcast costs: n = 24, 8 .<_m <_64K.

7. Summary

This study of the problem of broadcasting on linear arrays and meshes has yielded several

improved algorithms. The well known spanning tree (ST) broadcast algorithm for linear arrays

was extended in several ways. First, it was modified to take advantage of the difference between

node-to-network and network-to-network communication rates. Second, it was modified to

take advantage of bidirectional communication. Combining these two extensions of the basic

ST broadcast algorithm yielded the bidirectional spanning tree (BST) broadcast algorithm for

linear arrays. The BST broadcast algorithm always has lower cost than that of the recursive
.t

halving (RH) broadcast algorithm and has lower cost than the ST broadcast algorithm for ali

but the shortest messages.

" Similar consideration was given to the ST broadcast algorithm for meshes. In this case the

- 32-

20.o0 1 I I J [I 1 -
/ mesh ST

/
//

18.00-- /" --

// "
/

16.00 -- _/ -- ..
/

14.00 -- ,/// , ,-.. ,, _ mesh'13ST

/ - - mesh RH

¢ ,''" t12.00-- . " --
"'" t j

/ /

I0.00 -- ."" --

¢. /1

8.00-- .. ," --
./

-'f /

6.00-- .-, --
,'/ /

4.00-- --
/ f

./-

o._ I i I I I I I ,
0.011 10.00 20.00 30.110 40.011 50.00 60.00

message length(Kby_,s)

Figure 18: Predicted broadcast costs: n = 24 x 25, 8 <_m <_ 64K, v = O.

basic algorithm was extended to take advantage of the additional connectivity offered by the

mesh. This yielded the BST broadcast algorithm for meshes. Its predicted performance falls

midway between the ST and RH broadcast algorithms for meshes. The ST broadcast algorithm

performs best for very short messages and the RH broadcast algorithm performs best for very

long messages.

None of these algorithms require knowledge of machine-dependent constants for network

latency and bandwidth to obtain good performance. This means that these algorithms will

have relatively stable performance as hardware and operating system software changes. While

better performance for a specific machine can probably be obtained by designing pipelined '"

algorithms, such as those given in [12] for hypercubes, or by constructing hybrid algorithms, as

in [5,9], such algorithms will be more sensitive to changes in machine characteristics than the "

- 33 -

algorithms described here.

In Section 4 it was shown that tile SI', BST, and RH broadcast, algorithms for linear arrays

can be extended so that any node, not just node 0, can act as the source of the broadcast Ines-

sage. There is no cost penalty when another node is chosen to be the source, lt is conjectured

that these results can be extended to meshes as weil.

' Two techniques for generalizing these broadcast algorithms to linear arrays and meshes of

arbitrary size were given in Section 5. The method of companions can be used to generalize ali

of the broadcast algorithms given here. lt was shown that using this method to broadcast, on a

mesh that does not have rows and columns with powers of 2 nodes approximately doubles the

cost of the broadcast, lt is likely that. campanions carl also be used to generalize other global

communication algorithms, such as the complete exchange algorithms for meshes given irl [5].

A second generalization technique, called virtual nodes, was described that provides slightly

better performance than companions for the BST broadcast algorithm for linear arrays with

u=0.

Finally, the actual performance of the ST, BST and Rtl broadcast algorithms for linear

arrays was measured on the Intel Delta mesh, These measurements generally confirmed the

analytic results of Section 3 but showed that a more precise model of the communication

network is desirable. Future work will include implementations of these algorithms for meshes,

additional study of the communication model for the Delta, and preparation of a model for the

, communication network of the Intel Paragon mesh.

- 8. Acknowledgments

This research was performed in part using the Intel Touchstone Delta System operated by the

California Institute of Technology on behalf of the Concurrent Supercomputing Consortium.

Access to this facility was provided through the Center for Research on Parallel Computing.

- 34 -

9. References

[1] M. Barnett, R. Littlefield, D. G. Payne, and R. vail de Geijn. Global combine on mesh

architectures with wormhole routing. In Proceedings of lhc 7lh lnternatzonal Parallel Pro- ".

cessing Symposium. IEEE Computer Society Press, April 1993.

[2] M. Barnett, D. G. Payne, and R. van de Geijn. Optimal minimum spanning tree broad-

casting in mesh-connected architectures. Technical Report TR-91-38, Dept. of Conlputer

Sciences, Univ. of Texas, December 1991.

[3] Jean-Claude Bermond, Philippe Michallon, and Denis Trystram. Broadcasting in

wraparound meshes with parallel monodirectional links. Parallel Computing, 18:639-648,

1992.

[4] Rudolf Berrendorf and Jukka Helin. Evaluating the basic performance of the Intel

iPSC/860 parallel computer. Concurrency: Practice and Experience, 4(3):223-240, May

1992.

[5] Shahid II. Bokhari. Multiphase complete exchange on a circuit switched hypercube. Tech-

nical Report ICASE Report No. 91-5, ICASE, January 1991.

[6] Shahid Ii. Bokhari and Harry Berryman. Complete exchange on a circuit switched mesh.

In Proceedings of the Scalable High Performance Computing Conference, pages 300-306,

April 1992.

[7] Thomas H. Dunigan. Communication performance of the Intel Touchstone delta mesh.

Technical Report ORNL/TM-11983, ORNL, January 1992.

[8] Pierre Fraigniaud, Serge Miguet, and Yves Robert. Scattering on a ring of processors.

Parallel Computing, 13:377-383, 1990.

[9] Ching-Tien Ho and M. T. Raghunath. Efficient communication primitives on hypercubes.

Concurrency: Practice and Experience, 4(6):427-457, September 1992.

[10] Roger W. Iiockney and Edward A. Carmona. Comparison of communication on the lntel

iPSC/860 and Touchstone Delta. Parallel Computing, 18:1067-107% 1992.

[11] Intel Supercomputer Systems Division, Beaverton, Oregon. A Touchstone DELTA System

Description, February 1991.

[12] S. Lennart Johnsson and Ching..Tien Ilo. Spanning graphs for optimum broadcasting and

personalized communication in hypercubes. IEEE Trans. Computers, 38(9):1249-1268, ..

September 1989.

- 35 -

[13] Rik Littlefield. Characterizing and tuning communications performance on the Touchstone

DELTA and iPSC/860. In Proceedings of the lntel Supercomputer Users' Group 1992

Annual Users' Conference, pages 309-313, October 4-7 1992.

[14] YoucefSaad and Martin H. Schultz. Data communication in parallel architectures, Parallel

,. Computing, 11:131-150, 1989.

[15] Martin Simmen. Comments on broadcast algorithms for two-dimensional grids. Parallel

Computing, 17:109-112,,1991.

[16] Robert A. van de Geijn. Efficient global combine operations. In Proceedings of the Sixth

Distributed Memory Computing Conference, pages 291-294. IEEE Computer Society Press,

1991.

- 37 -

ORNL/TM-12356

INTERNAL DISTRIBUTION

,. 1. B. R. Appleton 22-26. R. C. Ward
2. J. Choi 27. P. H. Worley
3. T. S. Darland 28. R.W. Brockett (Consultant)

4. J. J. Dongarra 29. J. E. Leiss (Consultant)
5. D.J. Dudziak 30. N. Moray (Consultant)
6. T. H. Dunigan 31. M. F. Wheeler (Consultant)
7. G. A. Geist 32. Central Research Library
8. M. R. I,euze 33. ORNL Patent Office

9. C. E. Oliver 34. K-25 Applied Technology Li-
10. B. W. Peyton brary

11-15. S. A. Raby 35. Y-12 Technical Library
16-20. R. F. Sincovec 36. Laboratory Records Dept. -

21. D. W. Walker RC

37-38. Laboratory Records Dept.

EXTERNAL DISTRIBUTION

39. Dan Anderson, Ford Motor Co., Product and Manufacturing Systems, Mail Drop
10, EEC Building, P.O. Box 2053, Dearborn, MI 48121-2053

• 40. Mike Barnett, Laboratory for Applied Logic, Department of Computer Science,

University of Idaho, Moscow, Idaho 83843

, 41. Dr. Eric Barsczc, Mail Stop T-045, NASA Ames Research Center, Moffett Field,
CA 94O35

42. Dr. Edward H. Barsis, Computer Science and Mathematics, P. O. Box 5800,

Sandia National Laboratory, Albuquerque, NM 87185

43. Scott Berryman, Yale University, Computer Science Department, 51 Prospect
Street, New Haven, CT 06520

44. Professor Shahid Bokhari, Dept. of Electrical Engineering, University of Engi-
neering and Technology, Lah-_re, Pakistan

45. Tom Crockett, Mail Stop 152C, NASA Langley Research Center, Hampton, VA
23665-5225

46. Mark A. Davis, Goddard Space Flight Center, 10210 Greenbelt Rd, Suite 700,
Seabrook, MD 20706

47. Professor Larry Dowdy, Computer Science Department, Vanderbilt University,
Nashville, TN 37235

48. Professor Geoffrey C. Fox, Northeast Parallel Architectures Center, 111 College
'. Piace, Syracuse University, Syracuse, NY 13244-4100

- 38-

49. Prof. Pierre Fraigniaud, Laboratoire de l'Informatique du Parallelisme- IMAG,
Ecole Normale Superi_ure de Lyon, 69394 Lyon Cedex 07, France

50. Professor Dennis B. Gannon, Computer Science Department, Indiana University,
Bloomington, IN 47401

51. Dr. J. Alan George, Vi,:e President, Academic and Provost, Needles Hall, Univer-
sity of Waterloo, Waterloo, Ontario, CANADA N2L 3G1, tt

52. Dr. Gene H. Golub, Computer Science DepartmeJat, Stanford University, Star.ford,
CA 94305

53. Dr. John Gustafson, 236 Wilhelm, Ames Laboratory, Iowa State University, Ames,
IA 500__1

54. Dr. Dan Hitchcock, Office of Scientific Computing, ER-7, Applied Mathematical
Sciences, Office of Energy Research, U. S. Department of Energy, Washington,
DC 2O585

55. Dr. Ching-Tien Ho, Computer Science, IBM Almaden Research Center, 650 Harry
Road, San Jose, CA 95120

56. Dr. Gary Johnson, Office of Scientific Computing, ER-7, Applied Mathematical
Sciences, Office of Energy Research, U. S. Department of Energy, Washington,
DC 2O585

57. Dr. Hans Kaper, Mathematics and Computer 6cience Division, Argonne National
Laboratory, 9700 S. Cass Avenue, Bldg. 221, Argonne, IL 60439

58. Dr. Kenneth Kennedy, Department of Computer Science, Rice University, P. O.
Box 1892, Houston, Texas 77001

59. Dr. Tom Kitchens, ER-7, Applied Mathematical Sciences, Office of Scientific
Computing, Office of Energy Research, Office G-437, Germantown, Washington,
DC 2O585

60. Professor S. Lakshmivarahan, School of Electrical Engineering and Computer Sci-
ence, University of Oklahoma, 202 West Boyd, Room 219, Norman, OK 73019

6i. Professor Peter Lax, Courant Institute for Math_.:natical Sciences, New York Uni-
versity, 251 Mercer Street, New York, NY 10012

62. Dr. John G. Lewis, Boeing Computer Services, P. O. Box 24346, MS 7L-21,
Seattle, WA 95124-0346

63. Dr. R. Littlefield, Pacific Northwest Laboratory, P.O. Box 999, Richland, WA
99352

64. Dr. James McGraw, Lawrence Livermore National Laboratory, L-306, P. O. Box
808, Livermore, CA 94550

65. Dr. David Nelson, Director of Office of Scientific Computing, ER-7, Applied
Mathematical Sciences, Office of Energy Research, U. S. Department of Energy, --
Washington, DC 20585

66. Urofessor James M. Ortega, Department of Applied Mathematics, University of .._
Virginia, Thornton Hall, Charlottesville, VA 22901

- 39-

67. Dr. David G. Payne, Intel Corporation, Supercomputer Systems Division, 15201
NW Greenbrier Parkway, Beaverton, OR 97006,

68. Dr. Paul Pierce, Intel Corporation, Supercomputer Systems Division, 15201 NW
Greenbrier Parkway, Beaverton, OR. 97006,

69. Professor Daniel A. Reed, Computer Science Department, University of Illinois,

• . Urbana, IL 61801

70. Professor Ahmed Sameh, University of Illinois at Urbana-Champaign, Center for
Supercomputer R&D, 469 CSRL, 1308 West Main St., Urbana, IL 61801

71. Dr. David S. Scott, Intel Scientific Computers, 15201 NW Greenbrier Parkway,
Beaverton, O[_. 97006

72-76. Professor Steven R. Seidel, Department of Computer Science, Michigan Techno-

logical University, 1400 Townsend Drive, Houghton, MI 49931-1295

77. Dr. Horst Simon, NASA Ames Research Center, Mail Stop T-045-1, Moffett Field,
CA 94035

78. Dr. Paul N. Swartztrauber, National Center for Atmospheric Research, P. O. Box
3000, Boulder, CO 80307

79. Professor Robert van de Geijn, Department of Computer Sciences, The University
of Texas at Austin, Austin, TX 78712-1188

80. Dr. Andrew B. White, Los Alamos National Laboratory, P. O. Box 1663, MS-265,
Los Alamos, NM 87545

. 81. Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P. O. Box 2001, Oak Ridge, TN
37831-8600

82 -83. Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37830

=

