@ e A
&%\\\&L}//m \\\Q%/ \0 S
P % AN oy

(Q)/ Association for Information and Image Management

Q P) o
\' Ve * 1100 Wayne Avenue, Suite 1100 P & J
\\/ w{{;y‘, \\/ Silver Spring, Maryland 20910 //[9\ (l:-::: ,&i;\ﬁ ///%3\\

\b// 301/587-8202 ~\\\5~ ///g \§
\\/ D \\ N // /\\0
' N
Cen’r]ime;er 5 4 5 6 7 8 9 10 11 12 13 14 15 mm
IIII|l|ll|ll|lllllIIIIIIlIIIlIIIIIhIIIIIllIliIHlIllllllllllllllllllllnIIlllIIIIlIIIIII|IllllHlI||IIlhllllllllll:lllll:IlllllIIllll‘ll‘|ll|lllll|lll‘lllu]|_
HH]IHl!lH|I|\Il1‘21lll|l|l||llll\lllllllll‘ L | |
Inches 10 Bl i
“\“:E:: ol
“\“ i s 12 [l
= IS
2 s e
% AT A
0\\/////// ////c\\\\\ //\\4\ //\\\
N & C; o N
‘§\///>//f\>\/%” //\\/ 4 A \‘% //Q\\\
& ,3;:;;‘?;'0' ACTURED TO AIIM STANDARDS /\\\ P &}?"’&
24N \ // MANUF D « /4\\\ %52\\\4&

2 W BY APPLIED IMAGE, INC. /4\\\\

ORNL/TM-12356
Engineering Physics and Mathematics Division

Mathematical Sciences Section

BROADCASTING ON LINEAR ARRAYS AND MESHES

Steven R. Seidel

Department of Computer Science
Michigan Technological University
1400 Townsend Drive
Houghton, Michigan 49931-1295

steve@cs.mitu. edu

Date Published: March 1993

Research was supported by the Applied Mathematical Sciences Re-
search Program and the Atmospheric and Climate Research Divi-
sion of the Office of Energy Research, U.S. Department of Energy,
and by NASA Ames Research Center grant NAG2-757.

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
managed by
Martin Marietta Energy Systems, Inc.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

DIBTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Contents

1

3

© o3>

Introduction L 1
Communication Model 2
Broadcast Algorithms o 4
3.1 Spanning tree broadcast on a lineararray 4

3.1.1 STobroadcast, v =0 4

3.1.2 ST broadcast on a linear array, v >0 8
3.2 Spanning tree broadcast onamesh00 o0 9

3.2.1 ST broadcast onamesh,v=0, 9

3.22 ST broadecast onamesh, v >0 12
3.3 Bidirectional spanning tree broadcast on a lineararray 14

3.3.1 BST broadcast on a linear array, v=0.. 14

3.3.2 BST broadcast on a linear array, v>0. 15
3.4 Bidirectional spanning tree broadcast onamesh 16

3.4.1 BST broadcast onamesh,v=0 16

3.4.2 BST broadcastonamesh,v>0 18
3.5 Recursive halving broadcast on a lineararray 19
3.6 Recursive halving broadcastonamesh, 20
3.7 CompariSonsS v v v o i e e e e e e e e 22
Broadcasting from an Arbitrary Node 23
4.1 ST broadcast on alineararray, v=0. 23
4.2 ST broadcast on alineararray,v>0. 24
4.3 BST broadcast on a linear array 25
4.4 RH broadcasts on linear arrays and meshes 26
Broadcasting to Arbitrary Numbersof Nodes 26
51 Virtualnodes L e 26
52 Companions e e e e e e e e e e 27
5.3 CompariSons v v v vt e e e e e e 28
Performance on the Intel DeltaMesh 29
SUMINALY e e e e e 31
Acknowledgments L. e 33
References e 34

- ili -

BROADCASTING ON LINEAR ARRAYS AND MESHES

Steven R. Seidel

Abstract

The well known spanning binomial tree broadcast algorithm is generalized to obtain
several new broadcast algorithms for linear arrays and meshes. These generalizations take
advantage of bidirectional communication, the connectivity of two-dimensional meshes,
and the difference between node-to-network and network-to-network bandwidth. It is
shown how these algorithms can be further generalized so that any node can be the source
of the broadcast message. A partitioning scheme is given that allows these algorithms to
be used on linear arrays and meshes of any size. One of these algorithms, the bidirectional
spanning tree broadcast, always has lower cost than the recursive halving broadcast for
linear arrays. All of these algorithms offer significant performance improvements over the
basic spanning tree broadcast. These algorithms do not rely on a knowledge of machine-
dependent constants for network bandwidth and latency, so their performance is not as
sensitive to changes in machine characteristics as that of hybrid and pipelined algorithms.
Performance measurements are given for some of these broadcast algorithms on the Intel

Delta mesh.

1. Introduction

A broadcastis an operation where one processor of a multicomputer has a message that must be
copied to each of a set of processors. Solutions to this problem for various MIMD architectures
have been widely studied. Much attention has been given to this problem for linear arrays and
meshes [2,3,8.14,15] because of the recent availability of such machines. One group of broadcast
algorithms [3,14,15] transmits the message pipeline fashion, in packets. While these algorithms
have good theoretical performance, specific constants representing network bandwidth and
latency are used at execution time to compute optimal packet lengths. This makes these
algorithms sensitive to changes in the system on which they are implemented. In addition,
such algorithms can be more difficult to implement on a mesh than on a hypercube because a
mesh lacks the vertex and edge symmetry that is so useful for the implementation of algorithms
on hypercubes. So far there have been no reports on the performance of these algorithms on
existing meshes. Another approach to algorithm design is to construct hybrid algorithms.
Examples of hybrid algorithms for other communication problems are given in [5,9], but such
algorithms also use a knowledge of network constants to determine which strategy to apply.
Neither pipelined nor hybrid algorithms are considered here.

The work presented here offers several new solutions to the broadcast problem for linear
arrays and meshes based on the familiar spanning binomial tree (the communication pattern
used in “recursive doubling” on hypercubes) {12] and on dimensional exchanges (also known as
the “butterfly”). These algorithms are extensions of those given in [2]. They will perform well
even as machine characteristics change because their design avoids execution-time dependence
on constants that represent network performance characteristics. In particular, they do not
use constants representing network bandwidth and latency to determine packet sizes or to
decide among strategies, as is done in pipelined and hybrid algorithms. The recursive halving
broadcast algorithm is also considered here because it shares this independence. This broadcast
algorithm is only a slight modification of the recursive halving global combine algorithm given
by van de Geijn in [1,16).

The next section describes the communication model on which the analysis of communica-
tion algorithms will be based. The broadcast algorithms and their costs are given in Section 3.
In Section 4 it is shown how these algorithms can be generalized so that any node is the source
of the broadcast message. Generalizations of these algorithms to linear arrays and meshes of
any size are given in Section 5. Section 6 presents the predicted and observed performance of

some these algorithms on the Intel Delta mesh.

2. Communication Model

This work considers solutions to the broadcast problem on linear arrays of n processors and
on 2-dimensional meshes of n = n; x na processors. The nodes of a linear array are numbered
from 0 through n — 1. The nodes of a mesh are numbered from (0, 0) through (n; — 1,n, — 1).
Each node is connected by a pair of communication links (one in each direction) to each of
its immediate neighbor(s) in the horizontal and vertical directions. There are no wrap-around
links. Each node can concurrently transmit one message and receive one message. Circuit
switched message passing with wormhole routing is used. The route taken by a message in a
linear array is just the shortest path between the sending and receiving nodes. A message in a
mesh is routed horizontally until it reaches the column containing the receiving node and then
it is routed vertically to the receiving node. Messages can be routed through a node without
affecting its performance as a sender or receiver. Finally, it is assumed that each receiving node
allocates a buffer for each incoming message before that message arrives. Under this assumption
the sending node can transmit a message without prior handshaking with the receiver. (This
is the “forced” message passing protocol [11}.)

A simple communication model describes the cost of sending a message of m bytes as
am + b, where b is the latency and a is the per-byte transmission cost. A close examination
of real message passing networks reveals a much larger collection of factors that can affect the

cost of communication algorithms. Some of these factors are:
e contention for communication ports and links,
o choice of message passing protocol,
o packet permutation costs (message packet copying) within a node,

e bandwidth differences between different parts of the message passing network, such as

from the node to the network “gateway”, and on the network itself (between “gateways”),
o the length of the circuit over which the message travels,
o the effects of message packetization performed by the node operating system,
o costs of arithmetic or logical operations on the message, such as in the combine operation,

o the distinction between the cost of a send operation measured in the sending node alone,
and the cost measured from the initiation of a send operation to the completion of the

corresponding receive operation,
¢ synchronization costs,

e communication algorithm execution overhead (loop control, etc.),

- 3.

o delays contributed by operating system interrupt processing,
e delays contributed by concurrent computation,

o the effect of message traffic on the network that is not under the control of the application
programmer, such as that caused by 1/O operations and other message traffic generated

by the operating system, and

e the effect of caches, FIFOs, and other hardware features.

Along with transmission cost a and latency b, the first four factors (link and port contention,
protocol choice, permutation costs, and bandwidth differences) significantly affect the cost of
global communication on the Intel Delta mesh, so these factors are included in the communica-
tion model presented here. The remaining factors, many of which have relatively small affects
on cost, will not be considered here.

The communication model of the Delta that will be used here is the same as that presented
in [1], with the addition of a term for permutation costs. (See [11] for a general description of the
message passing network of that machine.) This model distinguishes two kinds of transmission
costs: a is the per-byte cost of moving data from a processor onto the network and @ is the cost
of moving data over the network itself. This means that there is a path from (or to) a node to
a network “gateway” and that there is a circuit connecting the “gateways” of the source and
destination nodes. These two costs are not cumulative, they simply represent the capacity of
these two components of the network. It is assumed that a = 2@ for some integer v > 0.

Link contention occurs when the paths taken by two or more messages have one or more
links in common. As long as no more than 2 messages share any one link at a given time,
link contention does not add to cost of sending a message. Port contention occurs when one
or more messages arrive at a node at the same time. Those messages can arrive over distinct
incoming links or, if v > 0, they can arrive on the same link. In both cases port contention
adds to cost of sending a message.

In the absence of communication port contention, the cost of transmitting a message of m
bytes is expressed as [k/2"]am + b, where k is the largest number of message circuits that
share a link during the transmission of the message. Suppose that k < 2¥ send operations are
initiated by k distinct nodes. If all of the receiving nodes are distinct, that is, there is no port
contention, then the latency of each send operation is overlapped and the total cost of these
send operations is just am + b, regardless of whether or not any of the message circuits have
one or more links in common. However, when k = 2* for some ¢ > v, the transmission cost is
2iam+b=2""Yam +b.

Finally, certain communication algorithms, such as the complete exchange algorithms given

in [5] and [6], require significant amounts of message packet movement within individual nodes.

-4 -

Such internal data movement is also required in the recursive halving broadcast algorithms
described in the next section. During execution of these algorithms the next message to be sent
is formed by permuting the message packets that have already arrived. In these algorithms each
node moves as much data internally as it does over the network. A constant p that represents the
cost of moving one byte of data from one location to another within a node is thus included in
the cost analysis of the algorithms given in the next section. Also note that permuting message
packets usually requires that additional storage be provided for message packets. This typically
amounts to a doubling of storage requirements, which, when long messages are involved, can

be a significant factor in the choice of algorithms.

3. Broadcast Algorithms

Several broadcast algorithms for linear arrays and meshes are considered. Each algorithm is
based on communication patterns commonly used on hypercubes, such as spanning binomial
trees and dimensional exchanges. In this section it is assumed that a linear array consists of
n = 24 nodes and that a mesh consists of n = 291 x 2% nodes. It is also assumed that node 0
contains a message of length m to be broadcast and that all other nodes are blocked, waiting
for node 0 to begin the broadcast operation. The cost of a broadcast operation is measured
from the time node 0 begins the broadcast to the time the last node receives the message.
The familiar spanning tree broadcast algorithm is considered first. Several improvements of

that basic algorithm are given. These improvements take advantage of:
1. the additional bandwidth offered by v > 0,
2. the additional bandwidth offered by bidirectional links, and
3. the increased connectivity of meshes over linear arrays.

For comparison, the recursive halving broadcast algorithm is also described at the end of this

section.

3.1. Spanning tree broadcast on a linear array
3.1.1. ST broadcast, v =0

The first algorithm is based on the familiar spanning binomial tree that is used in the recursive
doubling broadcast algorithm for hypercubes [12]. This algorithm will be called the spanning
tree (ST) broadcast and was described earlier in [2] for linear arrays and meshes. A ST broadcast
on a linear array of 2¢ nodes takes d steps. On the i*? step (1 < i < d), each node j that already

has a copy of the message sends it to node j @ 2%~*, where @ denotes bit-wise exclusive OR.

-5.

This is illustrated for a linear array in Figure 1(a). The corresponding spanning tree is shown

in Figure 1(b). Each arc of the tree is labeled with the step at which it carries the message.

0 7 000
1 + P R
100 010 001
2 33
2 > >
110 101 011
)
SN i el B el B el P e 111
(a) (b)

Figure 1: Spanning tree broadcast on a linear array.

The spanning binomial tree on which the ST broadcast algorithm is based is also used in
all of the other broadcast algorithms considered here. The nodes of such trees are numbered
in binary and the bits of each node number are indexed from most to least significant by
d-1,d-2,...,0. (From a purely graph-theoretic point of view, these trees are not spanning
trees of linear arrays or meshes. However, these trees are useful for describing the scheduling
and routing of messages in those networks and they will continue to be referred to as spanning
trees here.) For purposes here, a spanning tree with root 0 is a directed graph of n = 24 nodes
in which each node 7 has children whose node numbers are obtained by complementing exactly
one of the trailing zeros (if any) of i. To determine the node numbering of a spanning tree
with root other than 0, exclusive OR the node number of each node in the tree with the node
number of the new root. For more details about the properties of these trees see {12].

In the spanning tree of a linear array of 2¢ nodes, some tree arcs represent circuits of several
links in the linear array and some links in the linear array are used in several tree arcs. Since
some of the tree arcs carry messages simuvltaneously during this broadcast algorithm, there
might be link contention. (This possibility does not arise in a hypercube because there is a
one-to-one correspondence between tree arcs and hypercube links.) Even though some arcs in
the tree share the same links, at each step only disjoint sets of links are used. It was shown in
[2] that the ST broadcast algorithm causes no port or link contention if node 0 is the root of
the spanning tree. Also, there are no packet permutation costs in this algorithm because the

message is not divided into packets. Thus, the cost of the ST broadcast algorithm is

d(ma+b) for a linear array of 2¢ nodes. (1

-6 -

There are two other communication problems whose solutions are used frequently in the
broadcast algorithms given here. Solutions to these two problems, based on spanning trees,
are now described. Many of the algorithms that follow make use of the distribute operation in
which one node sends a distinct message to each other node in the network. This operation is
also called a scatter or a one-to-all personalized communication [12]. In most of the broadcast
algorithms that follow, the messages to be distributed arise by partitioning the message that is
to be broadcast. In a linear array or mesh of n = 29 nodes, each of the distributed messages,
called packets, has length m/n, where m is the length of the message to be broadcast. The
distribute algorithm that is used here is based on a spanning tree. A message of length m is
distributed to all the nodes in the tree by halving it at each step until each node has received

its packet. The cost of this distribute algorithm is

d
Y+t =(1- -21—d)ma +db.

The other problem of interest is called the all-to-ail broadcast. In this problem, each node has
a message (typically, a packet of length m/n) that must be broadcast to all other nodes. This
problem is easily solved by exchanging packets between nodes whose node numbers (written in
binary) differ by one bit. On hypercubes this algorithm is known as a dimensional exchange
and the same term will be used here. Note that the message length doubles at each step of this
algorithm and so its cost is the same as the cost of the distribute algorithm described above,
provided there is no link contention. However, on linear arrays and meshes a dimensional ex-
change can give rise to both link contention and permutation costs. The issue of link contention
is considered in detail in Sections 3.5 and 3.6, where the dimensional exchange is a critical part
of the recursive halving broadcast algorithm. Until then dimensional exchanges will be done
only on subarrays of 2¥ nodes and on submeshes of 2 x 2 nodes. Link contention does not
arise in arrays of these sizes.

Permutation costs can arise during a dimensional exchange if there is some inherent ordering
among the packets that are exchanged. There is always such an ordering associated with the
packets exchanged in the broadcast algorithms studied here. For example, it will often be the
case that each contiguous subarray of 2 nodes contains distinct packets numbered 0,1, ...,2¢ -1,
as shown in the two examples in Figure 2. It will be required that each subarray does an all-to-all
broadcast of the packets within that subarray so that each node receives a copy of each packet.
In addition, the packets must ultimately be ordered by their index. Figure 2(a) illustrates that
the ordering of packets is preserved by exchanging with nearest neighbors first. This corresponds
to selecting destinations by complementing the sender’s node number bits from least to most

significant. The opposite ordering of destinations results in an out-of-order concatenation of

2" nodes
—
O N K N N O
[onJof2s]asfofo]2a][as]fa]oa]

B ey B st

- =—m—
[0123] 0123] 0123] 0123} 0123 012:ﬂ_012310123| 0123 0123|
(a) right
2v nodes
—
foJivj2f3fJofrJafasfofu |

|02113|02T|3|02| Blof[ol
R e - - e g3

[0213] 0213 0213] 0213] 0213] 0213] 0213 0213] 0213] 0213]

(b) wrong

Figure 2: Dimensional exchanges of 2¥ packets among 2¥ nodes, v = 2.

-8-

packets, as shown in Figure 2(b). In this case an internal permutation of packets is required
to achieve the desired packet ordering. Until the recursive halving aigorithins are introduced
in Section 3.5, all of the oroadcast algorithms given here perform dimensional exchanges so
that permutation costs are avoided. (Note that since the size of each subarray is limited to 2,
the overlapped pairs of exchanges do no exceed the capacity of the links, so there is no link
contention during these exchanges.)

With the basic tools introduced above, we can now continue with the construction and

analysis of broadcast algorithms.

3.1.2. ST broadcast on a linear array, v > 0

If v > 0 and if it is assumed that v is an integer, the ST broadcast can be generalized to
take better advantage of the available network bandwidth. Under these circumstances the
linear array can be viewed as 2V interleaved subarrays each with 29-% nodes. The i*h of these
subarrays, for 0 < i < 2¥, consists of nodes numbered j2¥ +1, for 0 < j < 29~¥_ Figure 3 shows
the two interleaved arrays as white and gray cells in a linear array of 8 nodes for the case of
v=1.

To broadcast the message on these interleaved arrays, the message is first distributed among

nodes 0, 1,..., 2¥ — 1. The cost of this distribution is
1 1 b
(1- ﬁ)ma + vb.

When v = 1 this distribution phase amounts to only one step, as shown in the first step in
Figure 3. Each of the nodes 0, ..., 2 then acts as the source node of a ST broadcast of a

message of length m/2¥ on a subarray of 29-¥ nodes, at a cost of

(d = V)G +b).

This is shown in the second and third steps in Figure 3. Since there is ao link contention
during a ST broadcast there is also no link contention when 2” ST broadcasts are performed
concurrently because the maximum number of messages that contend for any link is 2. There
is no port contention because none of the spanning trees have any nodes in common. Also note
that the ST broadcasts leave the packets ordered in each contiguous subarray of 2V nodes just
as they were after they were first distributed.

The final phase of the algorithm consists of collecting the packets to reconstruct the original
message. This is accomplished by a dimensional exchange on each contiguous subarray of 2¥
nodes. This is the final step in Figure 3. Recall that there is no link contention during this

phase since all communication is localized among contiguous subarrays of 2 nodes. Also,

distribute ST broadcast (step 1)

R [

ST broadcast (step 2) exchange

Figure 3: ST broadcast on a linear array, v = 1.

the dimensional exchanges can be done in an ordering that allows the original message to be
reconstructed without the need for permuting the packets within each node. Thus, this phase
has cost
1
(1- 2—”)ma + vb.
The total cost is

d—v—2
+_.___—__

2+~

yma + (d + v)b. (2)

When v = 0 this cost reduces to d(ma + b), as it should.

3.2. Spanning tree broadcast on a mesh
3.2.1. ST broadcast on a mesh, v =0

A ST broadcast on a mesh, based on the algorithm for linear arrays, is shown in Figure 4. In
this algorithin the message is first broadcast to the nodes in the leftmost column of the mesh,
then each node in that column broadcasts the message to the nodes in its row. The cost of this
algorithm is

(dy +d2)(ma +b) for a mesh of 24 x 293 pnodes,

and it is easy to see that there is no link or port contention and that there are no permutation
costs.

This algorithm does not take very good advantage of the connectivity of the mesh. Better
advantage is taken by treating the mesh as four interleaved 291! x 292~! gubmeshes. This
viewpoint is illustrated in the first two frames of Figure 5 where each of the four submeshes is
given a unique hatching pattern. The message is first distributed to the 2 x 2 block of nodes in
the upper left corner of the mesh so that each of the four nodes in that block has one quarter

of the message. This is shown in the first two steps of Figure 5. The cost of these steps is

%ma+ %,

Each of the four corner nodes then uses the ST broadcast algorithm described in the previous

-10 -

-

column ST broadcast (2 steps)

+ -
-

row ST broadcast (3 steps)

I
Y

I
Y
Y

i -

Figure 4: A simple spanning tree broadcast on a mesh.

paragraph to concurrently broadcast the message in its submesh. Steps 3 through 6 of Figure 5
show these broadcasts. All link and port contention can be avoided by alternating the orienta-
tion of the spanning trees of the four submeshes. If alternate mesh nodes are colored red and
black as in a checkerboard, then the red cells broadcast the message first in their column and
then in their row, and the black cells do the opposite. If di # d3, the broadcasts along the
shorter axis must be delayed for |d; — d2| steps after the two broadcasts along the longer axis

begin. The cost of this phase is the cost of the broadcasts along the longer axis,
2(max(ds, da) — 1)(- +).

At the end of the ST broadcasts the packet distribution pattern of the first two steps is now
replicated in each contiguous 2 x 2 block of nodes. Two exchanges between neighboring pairs

of uodes complete the algorithm. The cost of these two exchanges is

%ma + 2b.

For a 291 x 292 mesh the total cost of the algorithm is

max(ds, dy)

(5 + 1)ma + (2 max(dy, dz) + 2)b.

For sufficiently long messages, this is a significant improvement over the simple algorithm given

at the beginning of this section.

- 11 -

Figure 5: A better ST broadcast on a mesh.

JIE I =il I -
X =W N =N=N
l l
Y EEENEN
B L 1
il Il WL
=ENEN N NENE N
distribute distribute broadcast on submeshes
IESINESS = . o i
Al =+ YT l
\) YT
i S Sus s
|
Y - TV
Ej‘i’:gﬁ AT
ST R
BeEEes LKILILICILLIE
==s===c= UL
exchange exchange

- 192 -

3.2.2. ST broadcast on a mesh, v > (0

For v > 0 the ST broadcast algorithm can be generalized from a linear array to a mesh just as
in the case of v = 0, that is, first broadcast along the leftmost column and then concurrently

broadcast along each row. It follows from Equation 2 that this broadcast algorithm has cost

di+dy—2v—-4
+1+2 v

(4 5

)ma+(d1 +ds +2l/)b. (3)
However, some savings can be achieved by delaying the collection step at the end of the column
broadcast until the row broadcasts are complete. This way, the packets broadcast along the
rows are somewhat shorter. In a mesh of 2% x 292 nodes, this algorithm proceeds in five phases

(see Figure 6):

o

Y -

broadcast (2 steps) distribute

4
=
i
_$.

row ST broadcast exchange exchange

===
===

Figure 6: ST broadcast on a mesh, v = 1.

1. Distribute the message to the first 2¥ nodes in the leftmost column. Cost: (1— 2—‘, Yma+-vb.

2. The first 2¥ nodes in the leftmost column each do a ST broadcast of a message of length

ma/2” in a linear subarray (column) of 241~ nodes. Cost: (d; — v)(B2 + b).

3. Each node in the leftmost column distributes the message it received in phase 2 to the

first 2 nodes in its row. Cost: (1 — 3i) 22 + vb.

- 13-

4. The first 2¢ nodes in each row do a ST broadcast of a message of length ma/2* in a

linear subarray (row) of 242=* nodes. Cost: (d2 — v)(F% + b).

5. Each contiguous 2” x 2” block of nodes exchanges packets to reconstruct the original

message in each node. Cost: (1 - Eé;)ma + 2vb.

The distribute operations of steps 1 and 5, and the dimensional exchange of step 5, cause no
link contention because each of those operations is limited to continguous subarrays of 2” nodes
or to continguous submeshes of 2 x 2 nodes. Also, it is easy to see that the 2¥ ST broadcasts
overlapped ix: each of steps 2 and 4 do not exceed link capacity. The total cost of this algorithm

is thus

dl——l/—2+d2-l/

-1
5 57 Yyma + (d + d2 + 2v)b. (4)

3+

(In view of this cost, when di > d3 it is advantageous to first broadcast along the top row and
then down the columns.) This cost is always lower than that of Equation 3. Also note that
when v = 0, this cost becomes (d; + d2)(ma + b), as expected.

One additional algorithm is given that trades transmission costs for latency costs. It com-
bines the “better” mesh ST broadcast algorithm given in Section 3.2.1 with the advantage that
v > 0. Again, the mesh is viewed as 22" interleaved meshes each of size 24177 x 292=v_ The
message is first distributed to the block of 2V x 2 nodes in the upper left corner of the mesh

at a cost of

! yma + 2vb.

22w

(1-

Each of the nodes that received a packet then acts as the source of a ST broadcast in its
submesh, using the “better” ST broadcast algorithm of Section 3.2.1. Since each packet has
length m/22¥, the cost of this broadcast is

max(dl, dg) -V
(2

+1)55 + (2max(dy, do) = v) + 2. (5)

At the end of this broadcast each block of 2 x 2” nodes uses a dimensional exchange to collect

the entire message into each node. The cost of this collection step is

“

1- 2iu)ma + 2vb,

and the cost of the entire algorithm is

max(dy, d2) — v
22v+1

2+ = 2)ma + (2 max(dy, d2) + 2v + 2)b. (6)

Comparing Equations 4 and 6 and assuming that d; < dz, we see that this algorithm has

dy — d; +2 more steps, so its latency cost is higher while its transmission cost has been reduced.

- 14 -

This algorithm will be the one chosen for comparison with others in Section 3.7.

3.3. Bidirectional spanning tree broadcast on a linear array

In all of the ST broadcast algorithms for linear arrays presented in Section 3.1, messages flow
strictly from left to right when node 0 is the source of the broadcast message. Similarly, in the
mesh algorithms of Section 3.2 messages flow only from top to bottom and from left to right.
Broadcast algorithms that have bidirectional message flow are now described. These algorithms
exploit the network property that messages moving in opposite directions do not contend with
each other foir communication links. Each of the algorithms presented in Section 3.1 has an
analogous bidirectional version, presented in this section. The bidirectional analogs of the ST

broadcast algorithms for meshes are given in Section 3.4.

3.3.1. BST broadcast on a linear array, v =0

In a linear array of n = 2¢ nodes, the bidirectional spanning tree (BST) broadcast algorithm
broadcasts the message over two spanning trees, one rooted at node 0 and the other rooted
at node 2% — 1. Node 0 first sends half of the message to the root of the other spanning tree.
Both root nodes then do a ST broadcast of their halves of the message over their respective
spanning trees. On the last step neighboring pairs of nodes exchange their halves of the message,
completing the broadcast. Figure 7 shows the message routing determined by these two trees.
There is no link contention because all messages from node 0 are transmitted from left to right

I o e e e e

distribute

§!

100
3 4

) 111
=] , .
O] N

001 010 1 1

[= ;{0

[=]

o
—

(a) ®)
Figure 7: Bidirectional spanning tree broadcast on a linear array.
while all the messages from node 2¢ — 1 are transmitted from right to left. There is no port

contention because, until the last step, only even-numbered nodes send and receive messages

in the spanning tree rooted at node 0 and only odd-numbered nodes send and receive messages

- 15 -
in the spanning tree rooted at node 2¢ — 1. This algorithm has cost
ma . d
(d+ 1)(—2— +b) for alinear array of 2% nodes. (7

Comparing this cost to the cost of the analogous ST broadcast algorithm from Section 3.1.1
(Equation 1), we see that for d > 1, transmission time has been reduced at the cost of one
additional startup.

3.3.2. BST broadcast on a linear array, v > 0

If v > 0, the linear array can be viewed as 2" interleaved subarrays each with 29=* nodes, just

as in Section 3.1.2. (See Figure 8 and compare with Figure 3.)

m—m—ma

BST broadcast (3 steps)

=] [

exchange

Figure 8: BST broadcast on a linear array, v = 1.

The message is first distributed among nodes 0, 1,..., 2¥ — 1. The cost of this distribution is
1
(1- -27)ma + vb.

Each of the nodes 0, ..., 2 — 1 then acts as the source node of a BST broadcast of a message
of length m/2" over a subarray of 24~ nodes, at a cost of

ma

(d = v+ Dl

+b).

Since 2¥ BST broadcasts are performed concurrently, the maximum number of messages that
contend for a link is 2, so there is no link contention during this phase. There is no port
contention because none of the spanning trees have any nodes in common. It is easy to verify
that the BST broadcasts leave the packets ordered in each contiguous subarray of 2¥ nodes
just as they were in the original partitioning. The final phase of the algorithm consists of cor-
bining the packets to reconstruct the original message. This is accomplished by a dimensional
exchange within each contiguous subarray of 2 nodes. Since these exchanges are localized
among subarrays of 2¥ nodes, there is no link contention during this phase. Also, recall that
the dimensional exchanges can be done in an ordering that allows the original message to be

reconstructed without the need for permuting the packets within each node. Thus, this phase

- 16 -

has cost
(1- %)ma + vb.
The total cost is

d—v—3

2+ S

yma + (d + v + 1)b. (8)

When v = 0 this cost reduces to that of Equation 7, as it should.

3.4. Bidirectional spanning tree broadcast on a mesh
3.4.1. BST broadcast on a mesh, v =0

Applying the BST broadcast to a mesh, node 0 first broadcasts the message to the leftmost
column of the mesh and then each node in the leftmost column broadcasts to the nodes in its
row. If these row and column broadcasts each use the BST broadcast algorithm for a linear

array, it follows from Equation 7 that the cost is
ma d d
(d1+d2+2)(—é—+b) for a mesh of 2% x 297 nodes.

A slight improvement can be obtained by treating the mesh as a linear array of 291+92 podes
and applying the BST algorithm just once to broadcast the message. It is easy to verify that

there is no link or port contention in this version of the broadcast. The cost of this approach is
(dy +dz + 1)(5 +0). (9)

However, neither of these broadcast algorithms take very good advantage of the connectivity
of the mesh. A lower cost algorithm can be obtained by an approach analogous to that used
in Section 3.2.1 for the “better” ST broadcast on a mesh. The message is first distributed
among two square blocks of 4 nodes each at opposite corners of the mesh. The details of this
distribution phase are shown in the first three steps of Figure 9. The message is viewed as eight
packets numbered 0,1, ...,7. Initially, node (0,0) contains all eight packets. Distributing the
packets as shown in the figure avoids permutation costs later in the algorithm. The cost of this
distribution phase is fixed at

gma + 3b.

Each of the eight nodes that has a packet now uses a spanning tree to concurrently broadcast its
packet of length m/8 among eight interleaved meshes each of size 291~1 x 242=1, Steps 4 through
7 of Figure 9 show these broadcasts. All link and port contention is avoided by alternating the
orientation of those spanning trees as described in Section 3.2.1. (Also, compare with Figure 5.)

If d; # d2, the broadcasts along the shorter axis must be delayed for |d; — d3| steps after each

- 17 -

o1 03 [0.2 |
36 l 4 |To ‘
] 2 ‘[1,173
4567 47 51 7
distribute (3 steps)
= = =8
N
il Y aggin i #«'ﬁ J‘
* _i \ _ 4 A T -’7 4::%:' T
3 4 - 1=
alternating row/column ST broadcasts (4 steps)
TS R
T S [
¢% T (HEhH
=SeSese=RLLLLLLLIL
exchange (2 steps)

Figure 9: A better BST broadcast on a mesh.

- 18 -

of the two broadcasts along the longer axis begin. The cost of this phase is the cost of the

broadcasts along the longer axis,
2(max(d;, da) — 1)(’%‘5 +b).

At the end of the ST broadcasts, each continguous square block of four nodes contains the entire
message, distributed among its members. Figure 10 shows how the original eight packets are

distributed among the members of each such block. This particular packet distribution pattern

2j 2541

2i | 01 23

2i+1 | 45} 67

Figure 10: Packet distribution after broadcast phase. Row and column indices indicate block
orientation. (0 <i< 2%~ and 0 < j < 242-1)

allows the original message to be reconstructed in each node, without permutation costs, by

the pair of exchanges shown in the last two steps of Figure 9 and with a cost of

%ma + 2b.

The total cost of the algorithm is thus

2max(d,,d;) + 11
8

ma + (2 max(d;, ds) + 3)b. (10)

3.4.2. BST broadcast on a mesh, v > 0

As in Section 3.2.2, consider the 29! x 292 mesh as made up of 22* interleaved submeshes, each
of size 291~V x 242—¥ 50 that each 2“ x 2¥ contiguous block of nodes has exactly one node from
each submesh. To broadcast a message, node 0 first distributes the message as 22V packets
among the nodes in the 2¥ x 2¥ block in the upper left corner of the mesh. The cost of this
step is

1

(1- 2—2;)ma + 2vb.

Each of the nodes in that block then acts as the root of a BST broadcast of a message of length

m/2% in a submesh of size 291=¥ x 2492~ with v = 0. From Equation 10, the cost of those

broadcasts is
2(max(dy,dz) - v) + 11
22u+3

ma + (2(max(d;, d3) — v) + 3)b.

- 19 -

After those broadcasts are completed, each node in each contiguous 2” x 2" block contains one
of the 22¥ packets. These packets are then recombined using a dimensional exchange. The
ordering of these packets within each block is the same as the ordering of the packets after the
distribution phase so there are no permutation costs during the exchange. Also, the level of
link contention during the exchange is never greater than the network’s capacity to handle it
because communication is localized within blocks of 2 x 2 nodes. This dimensional exchange
thus has cost

1
(1- —22v)ma + 2vb
and so the total cost of this algorithm is

2 max(dy,ds) — 2v —

)
92 +3 yma + (2 max(dy, d2) + 2v + 3)b.

2+

3.5. Recursive halving broadcast on a linear array

The recursive halving (RH) broadcast is similar to the recursive halving broadcast algorithm for
hypercubes given by van de Geijn and it differs only slightly from the global combine algorithm

for linear arrays and meshes given in [1,16).

Ee==dEEERECINESIRREIEIEIE D

distribute (3 steps)

Rec==2hc=3c=3SlEIEIEIES

exchange (3 steps)

Figure 11: Recursive halving broadcast on a linear array.

The first phase of the RH broadcast uses a spanning tree to distribute the message among

all processors. This is shown in the first three steps of Figure 11. The cost of the first phase is

(1- gla-)ma + db.
The second phase recombines the message packets using a sequence of pairwise exchanges
analogous to a dimensional exchange in a hypercube. On step 7 (1 < i < d), all pairs of
nodes whose (d — i) bits differ exchange messages. With each exchange the lengths of the
message packets double until each node contains the entire message after d steps. There is link
contention at each step of this phase but the last. The amount of contention decreases with
each step. On the first step 29~! messages contend for the link from node 24-! — 1 to node 241,
The same number of messages contend for the link going in the other direction. If v > 0, the

link contention that occurs during the second phase is mitigated somewhat by the facts that

- 20 -

the shortest messages are sent during steps having the greatest link contention, and, if v > 0
the bandwidth of the network links is a factor of 2¥ higher than that of the connection from
the node to the network (since a = 2¥@), so 2" pairs of exchanges can proceed concurrently.

Under these considerations the cost of the second phase of the RH broadcast is

d—v
L[Ql“m ax(a,2'@) +b) = (1+——27+1—)ma+db

This algorithm partitions the original message into 2¢ packets. An examination of the
routes followed by those packets shows that in order for the broadcast algorithm to preserve
their original ordering they must either be permuted in node 0 before the first phase or permuted
in each node following the second phase. Either choice has cost mp. The total cost of the RH
broadcast is thus

d—v—2

(2 + v+l

- 2—l‘jl)ma +2db+mp for a linear array of 29 nodes.

3.6. Recursive halving broadcast on a mesh

The RH broadcast algorithm for a mesh is similar to the RH broadcast algorithm for a linear
array. The cost of distributing the message in the first phase (shown in the first six frames of
Figure 12} is

(1 2d +d)ma+(d1+d2)b

The dimensional exchange of the second phase can take advantage of both dimensions of the
mesh to reduce contention. By interleaving horizontal and vertical exchanges in alternate nodes
(shown in the remaining six frames of Figure 12) the amount of contention that occurs in a
square mesh (d; = d3) is half that which would occur if all horizontal exchanges were done
before any vertical exchanges. For non-square meshes the reduction is not as great. (See [1] for

further details.) For v < d; < ds, the cost of the second phase is

2d; -1 dy+da—1 .
; [2‘+1 max(a, 2U/2-1g) + b] + 22; [2+l max(a, 2°~4@) + b]
1 2(dy — dy) -
=(1+ (d2 1) 3)ma+ (dy + da)b.

92v+3 2d1+u+2

As in a RH broadcast on a linear array, permutation costs of mp are incurred at the beginning
or at the end of the algorithm, so the total cost of the mesh RH broadcast for 241 x 292 nodes
is
2(dg—dy) -3 1 1
2+ T + 55F3 2dl+d’)ma+2(d1 + d2)b + mp.

- 91 -

distribute (6 steps)

{RHHH ESESESES
AT ESE=E=E=
fhes: e
nnnnnnnn T
L LILILILALILALILS
i HEHFHHHE
n LILILIAALILALILA
ik LALILILIIANALE
i
nnnnn mA

Figure 12: RH broadcast on a mesh.

.99 .

3.7. Comparisons

Table I summarizes the costs of the broadcast algorithms described in this section. The costs of
the algorithms designed for linear arrays are given for n = 24 nodes while the costs of the mesh
algorithms are given for n = 241 x 292 nodes. It is assumed that v < d and v < d; < d2. All of

these algorithms have O(lg n) coefficients of transmission cost and latency. The RH broadcast

has an O(1) coefficient of transmission cost in the special case of square meshes (d; = dy).

linear ST | (2+ =5=2)ma + (d + v)b

linear BST | (2+ 4473)ma + (d-+v + 1)b

linear RH | (2 + %472 — &;)ma + 2db + mp

mesh ST | (2 4+ 22X(id)=v=2yr4 4 (2max(d), dy) + 2v + 2)b

mesh BST | (2+ Mﬁ’%’:gi"_—é)ma + (2max(d;, d2) + 2v + 3)b

mesh RE | (2+ 23250022 4 ol — ko)ma + 2(dy + da)b + mp

Table I: Broadcast algorithm costs.

For the shortest messages the ST broadcast algorithms have the lowest cost on hoth linear
arrays and meshes because of their low latency. The BST broadcast always has lower cost than
the RH broadcast on linear arrays, regardless of message length. The BST broadcast also has
lower cost than the ST broadcast whenever

2v+1p

m> ad-v-1)

It can be verified from the data given in Section 6 that this crossover point is reached on the
Intel Delta mesh before m > 1K bytes.

The costs of the ST and BST broadcast algorithms for meshes in Table I are those of the
“better” versions of those algorithms given at the ends of Section 3.2.2 and 3.4.2, respectively.
The mesh BST broadcast algorithm has one more step than the mesh ST broadcast algorithm
and so its latency cost is higher by 4. The difference between the coefficients of ma in the
cost expressions for those two algorithms is not as great as in the case of the algorithms for
linear arrays and so the additional latency of the BST broadcast is not as quickly amortized
by longer message lengths. On the Delta the predicted performance of the BST broadcast is
better than that of the ST broadcast only for messages of many tens of kilobytes. The value
of the crossover point varies inversely with the size of the mesh. The RH broadcast algorithm

for meshes sometimes has lower transmission cost than the ST and BST broadcast algorithms,

- 23 -

but the latter always have lower latency costs and they have no permutation costs.
Finally, note that the ST and BST broadcast algorithms require no additional temporary
stcrage of message packets because they do not need to permute message packets. The RH

broadcast algerithms require temporary storage proportional to message length.

4. Broadcasting from an Arbitrary Node

In all of the broadcast algorithms given so far, the node that contains the message to be
broadcast has always been node 0 in the case of linear arrays, and node (0,0) in the case of
meshes. This saction considers the problem of generalizing the algorithms of Section 3 so that
any node can serve as the source of the broadcast message. This is done for the ST and BST
broadcasts on linear arrays and for the RH broadcast on linear arrays and meshes. None of
these generalizations adds any :cst to the original algorithms. It is conjectured that a similar

approach can be used to genera'ize the ST and BST broadcast algoritlims for meshes.

4.1. ST broadcast on a lineas array, v =0

It was mentioned in Section 2.1.1 that there is no link contention during a ST broadcast on a
linear array. This is clear from Figure 1(a) when node 0 is the root of the spanning tree. In
fact, there is no link contention even when some other node is chosen as the root of the ST
broadcast. It is now shown that for a ST broadcasi from an arbitrary node of a linear array of
n = 29 nodes, a! each step each inessage travels the same distance and in the same direction,
and all nodes that send messages are separated by a distance that is greater than the distance
their messages travel. This will allow us to conclude that there is no link contention during
such a broadcast.

Consider a linear array with n = 29 nodes and suppose node k is the source of the broadcast
message. Construct the spanning tree for the broadcast by exclusive OR-ing k with the node
numbers of the spanning tree with root 0. (Sec Figure 13(b).) Now assume that at the beginning
of the i*h step of the broadcast, any two nodes that have a copy of the message are separated
by a distance of at least 29-¥! in the linear array. (This is vacuously true at the beginning of
step 1.) Each message sent during the i*? step travels a distance of 24 hops because it is the
(d — i)™ bit of the sender’s node number that is complemented to determine the destination of
the message. In addition, each message sent during the i*P step t-avels in the same direction
because the i bit of each sender is the sarne. This is clearly true in the spanning tree with
root 0; all such bits are 0 and all messages travel to the right at the i*" step. This is also true
in the spanning tree rooted at node k since the (d — i)*h bits of the sending nodes were all
obtained by exclusive OR-ing the (d —)" bit of k with 0, so at the end of step i, all nodes that

have a copy of the message are separated by a distance of at least 29-¢. Thus, at each step all

-94 -

message follow disjoint paths and so there is no link contention. It follows that there is no link
contention during an ST broadcast from an arbitrary node of a linear array of 24 nodes. (See

Figure 13(a).)

0 7 101
1 - 1 2 3
001 111 100
/\i 3
2 -
011 000 110
!
Sl =~ = 010
(a) (b)

Figure 13: Spanning tree broadcast on a linear array with root node 5.

Based on these observations it is also clear that there is no port contention during a ST
broadcast from an arbitrary node because at each step each message has a distinct destination.
Also, there is no link or port contention during a distribution operation from an arbitrary
node. This follows because the distribution algorithm uses the same spanning tree as the
ST broadcast. These observations are now applied to generalize some of the other broadcast

algorithms presented in Section 3.

4.2. ST broadcast on a linear array, v > 0

First, consider the ST broadcast algorithm for linear arrays with v > 0. (See Section 3.1.2 and
Figure 3.) That algorithm has three phases consisting of a distribute operation, concurrent ST
broadcasts on subarrays (with v = 0), and a dimensional exchange. During the first phase the
message is distributed to a contiguous block of 2 nodes. When node 0 is the source of the
broadcast this block consists of nodes 0, 1, ...,2¥ — 1. When some other node k is the source the
message should be distributed among the corresponding block of nodes that contains node k,
namely, nodes j2”,j2" +1,...,(j +1)2¥ — 1, where 0 < j < 29~¥ and j2* <k < (j + 1)2" — 1.
Call this block of nodes metanode j. If node k is not the leftmost node in metanode j the
distribute algorithm must use a spanning tree rooted at some node other than the leftmost
node in the metanode. It was pointed out above that there is no link or port contention in such
a distribute operation. Also note that it is a simple matter to consecutively distribute the 2¥
packets among the nodes of the metanode, so no permutation costs are introduced.

During the next phase there are 2 concurrent ST broadcasts performed on 2“ interleaved

- 95 -

subarrays. Note that at each step of the concurrent ST broadcasts, all messages sent by nodes
in metanode j have destinations in the same metanode. Figure 13(a) can thus be viewed as
a ST broadcast over a linear array of metanodes so the argument given in the case of v = 0
applies equally well to the case of v > 0.

The final phase of the ST broadcast is the dimensional exchange of packets among nodes
in the same metanode. At this point the source node of the broadcast is irrelevant since each
metanode contains the same information, so the issues of link and port contention do not arise.
It follows from these observations that there is no link or port contention during a ST broadcast
from an arbitrary node for linear arrays with v > 0. It is conjectured that similar arguments can

be used to extend these observations to the mesh ST broadcast algorithms given in Section 3.2.

4.3. BST broadcast on a linear array

Now consider the BST broadcast on a linear array with v = 0. (See Section 3.3.1 and Figure 7.)
If some node k # 0 is the source of the broadcast message, then the appropriate broadcast tree
is obtained by exclusive OR-ing k with each node of the BST broadcast tree with root 0. (See
Figure 14.) On the first step the message is divided into two halves. Node k sends one half

[T i

distribute ! N\
) 01 001 i1 1
gEPE=S=SIAN) AN
bidirectional ST broadcasts 18 11 011 110
[T N 1 3
100 111 1 010

[1

(a) ()

Figure 14: BST broadcast on a linear array with root node 5.

to node k, that is, to the bit-wise complement of k. Nodes k and % then act as source nodes
in ST broadcasts on two interleaved arrays each with 29-! nodes. It was shown in Section 4.1
that there is no link or port contention during either one of those ST broadcasts. There is no
port contention between those two concurrent ST broadcasts because their spanning trees are
disjoint, and there is no link contention because at each step all messages in one spanning tree
travel in the opposite direction from all message in the other spanning tree. It follows that
there is no link or port contention during a BST broadcast on a linear array with v = 0. This
observation can be extended to the case of v > 0 by viewing a BST broadcast on a linear array

of 24 nodes with v > 0 to be a BST broadcast on a linear array of 29-% metanodes with v = 0.

- 96 -

The reasoning is the same as in the case of a ST broadcast with v > 0, above. It is conjectured
that similar arguments can be used to extend these observations to the mesh BST broadcast

algorithms given in Section 3.4.

4.4. RH broadcasts on linear arrays and meshes

Finally, the RH broadcast algorithm for linear arrays can be easily generalized to start from
an arbitrary node. The first phase of that algorithm is a distribute operation (across the entire
array) based on a spanning tree. (See Figure 11.) It was shown above that such a distribute
operation can be generalized to start from any node. After the distribute is complete the
location of the source node is no longer relevant and the final dimensional exchange phase of
the algorithm proceeds in the same way regardless of which node started the broadcast. Similar
observations serve to generalize the RH broadcast on a mesh. The first phase is a column
distribute followed by a row distribute. (See Figure 12.) These operations are easily extended
to start from any node. The remainder of the algorithm consists of exchange operations, and

these are not affected by the location of the source node.

5. Broadcasting to Arbitrary Numbers of Nodes

The problem of broadcasting on linear arrays and meshes of arbitrary size is now considered.
Two approaches to this problem are described: virtual nodes and companions. The method
of virtual nodes can be applied only to the ST and BST broadcast algorithms. The method
of companions can be used to generalize all of the broadcast algorithms given in Section 3.
The method of companions is also likely to be useful for extending the applicability of other
communication algorithms, such as the complete exchange algorithms of [6] and the global

combine algorithms of [1], but such considerations are beyond the scope of this work.

5.1. Virtual nodes

Given a linear array of n nodes, append 28"l — n virtual nodes to the right end of the array to
bring the number of nodes up to the next closest power of two. Figure 15(a) shows an 11-node
linear array with five virtual nodes appended to it. The idea is to execute an algorithm designed
for 21’871 nodes on n nodes, with node n — 1 simulating all of the virtual nodes to its right.
This can only be done if there is not too much message traffic passing through node n — 1.
For example, suppose n = 5 and suppose the rightmost three nodes are virtual nodes in
the RH broadcast shown in Figure 11. Then at the fourth step, node 4 would have to send
and receive messages from nodes 0, 1, 2, and 3. Since this would increase the cost of the
broadcast over the usual cost of a RH broadcast on 2/'8"1 nodes, generalizing such algorithms

using virtual nodes is not considered worthwhile.

- 97 -

On the other hand, the ST and BST broadcast algorithms for linear arrays with v = 0
do not require node n — 1 to send and receive more than one message at a time. These two
algorithms can be generalized using virtual nodes. The cost of broadcasting in a row of n nodes
is then just the cost of broadcasting in a row of 2/'8"1 nodes.

In the case of an ny x ny mesh, shown in Figure 15(b), each cell in the rightmost column of
physical nodes simulates the virtual nodes to its right. Similarly, the bottom row of physical
nodes simulates the virtual nodes below. This leaves node (n; —1,n5—2), the bottom rightmost
physical node, to simulate a submesh of (2M'8™1 — n; 4 1)(2M'€721 — ny + 1) — 1 nodes, shown
with double hatching in Figure 15(b). This simulation is feasible for the “simple” ST and the
BST broadcast algorithms for meshes with v = 0 given in Sections 3.2.1 and 3.4.1 because at
each step of those algorithms all messages travel only horizontally or only vertically, so node
(ny — 1,n9 — 2) has no greater responsibility for the simulation than any other nodes in its row
and column. In these two cases the cost of using virtual nodes is the same as the cost of a

broadcast on a mesh of 2/18m:1 x 9{i8n3] podes,

N\
N
R A A\ A \

(a)

Hilals

()

(@)

Figure 15: Virtual nodes (a and b), and companions (¢ and d).

5.2. Companions

The method of companions can be applied uniformly to generalize all of the algorithms of Sec-

tion 3. Consider the 11-node linear array shown in Figure 15(c). Use any broadcast algorithm

- 28 -

for linear arrays to broadcast the message to the 8 nodes shown full-sized in that figure. Each
full-sized nodz then sends the message to its smaller neighbor, its companion (if any), to its
immediate right. In a linear array of n nodes, ¢ = n — 28" nodes have companions. It is
assumed that the companion nodes are the first ¢ odd-numbered nodes in the array, the smaller
nodes shown in Figure 15(c). The cost of the broadcast is then the cost of broadcasting the
message to 2U!8"] nodes plus an additional cost of ma + b to send the message to the compan-
ions. In an ny x ny mesh entire rows and columns may consist only of companions, and some
nodes in a mesh may have as many as three companions, as shown in Figure 15(d). In this
case the cost of the broadcast is that of a broadcast on a mesh of 2U1871} x 2L872) podes plus
min(2(ma + b}, 3((ma/2) + b)). The additional term is the minimum of the costs of ST and
BST broadcasts, respectively, on a 2 x 2 mesh. (The RH broadcast algorithm always performs
less well than either of these on a 2 x 2 mesh.) Note that the transmission cost in the additional
term is at least 3ma/2. Also note that the transmission costs of all of the mesh broadcast
algorithms given in Table I are approximately 2ma. This means that when companions are
used to g~.teralize those broadcast algorithms, the transmission cost of broadcasting on a mesh
of arbitrary size is almost twice that of broadcasting on a mesh with the next smaller powers

of 2 rows and columns.

5.3. Comparisons

Only a few of the broadcast algorithms given in Sections 3 can be generalized using virtual
nodes. These are the ST and BST broadcast algorithms for linear arrays with v = 0 given in
Sections 3.1.1 and 3.3.1, and the “simple” ST and BST broadcast algorithms for meshes with
v = 0 given in Sections 3.2.1 and 3.4.1. It is easy to verify that generalizing the “simple” mesh
broadcast algorithms using virtual nodes yields the same or lower cost than generalizations
based on companions, but in both cases the overall lowest costs are obtained by generalizing
the “better” mesh broadcast algorithms using companions, so it is not worthwhile to use virtual
nodes to generalize mesh algorithms.

For the ST broadcast algorithm for linear arrays with v = 0, the cost of the algorithm
generalized using virtual nodes is [lg n](ma + b) and the cost of generalizing with companions
is (|lgn] + 1)(ma + b). These two costs are the same when n is not a power of 2. On the
other hand, for the BST broadcast algorithm for linear arrays with v = 0, the cost of the
algorithm generalized using virtual nodes is ([lgn] + 1)(ma/2 + b) and the cost of generalizing
with companions is (|lgn] + 1)(ma/2 + b) + ma + b. It is easy to check that the former cost
is lower. This is the only known case where generalizing a broadcast algorithm using virtual

nodes has lower cost than generalizing that algorithm using companions.

- 99 -

6. Performance on the Intel Delta Mesh

The predicted and actual performance of the broadcast algorithms of Section 3 are now consid-
ered. Predicted costs are based on the communication model of the Intel Delta mesh presented
in Section 2 and on measurements of the constants for that model. The actual costs of the ST,
BST and RH algorithms measured on a linear array of 16 nodes are also presented.

It is claimed by Barnett et al. in [1] that v = 1 for the Delta. More recent results given
in [13] reveal that this is an accurate estimate of v only when certain programming techniques
are used. Under ordinary circumstances it is more often the case that v &~ 0 and so it is
assumed here that a = @. The values given in Table II for a, @, and b are taken from {7]. These
performance measurements were made using the “robust” kernel. The remaining constant used
in the communication model of the Delta is p, the cost of data movement within a node. A
careful consideration of this cost for the 1860 processing nodes used on the Delta is beyond the
scope of this work. The performance measurements given in [4] indicate that a data transfer
rate of 100MB/sec is easily obtainable in practice, so p is chosen to be 0.01 microseconds per
byte.

node-to-network trans. cost a 0.08usec/byte
network-to-network trans. cost a 0.08usec/byte
latency b THusec

permutation cost p 0.01usec/byte

Table II: Communication constants for the Intel Delta mesh.

The predicted costs of broadcast algorithms are shown in Figure 16 for a linear array of 2¢
nodes. That figure illustrates that the BST broadcast is always faster than the RH broadcast
and that the BST broadcast is faster than the ST broadcast on all but the shortest messages.

Figure 17 shows the observed costs of implementations of the ST, BST, and RH broad-
cast algorithms for a linear array of 16 nodes. Those data confirm that the BST broadcast
algorithm performs better than the ST broadcast algorithm for all but the shortest messages.
The crossover point is between 256 and 512 bytes. The observed cost of the RH broadcast
algorithm was much higher than predicted by the model. This is attributed to the facts that
the RH broadcast recursively breaks the original message into packets of length m/n and that
the cost model of the Delta used here is not accurate for such packet lengths. This observation
about the cost model is supported in [10]. Some improvement in the performance of the RH
broadcast can probably be obtained by applying programming techniques described in [13).

The predicted costs of the broadcast algorithms for meshes given in Section 3 are shown

in Figure 18 for a 2% x 25 mesh with v = 0. The predicted costs given for the ST and BST

-30 -

2.00—] [I I

linear ST
/
20.00|— /]

18.00 /

16.00|— PG

1400 ~ lingar BST
12.00 // ,,"‘, —
msec T
10.00 |

I I | l | I
0.00 10.00 2000 30.00 4000 50.00 60.00

message length (Kbytes)

Figure 16: Predicted broadcast costs: n = 2% 8 < m < 64K, v = 0.

broadcast algorithms are those of the “better” versions of those algorithms given at the ends of
Section 3.2.2 and 3.4.2, respectively. Again, the ST broadcast performs best for short messages
and gives way to the BST broadcast for message of between 512 and 1K bytes. The predicted
performance of the RH broadcast is better than that of the BST broadcast for messages of
more than 12K bytes. Actual performance figures for these algorithms are not available at this
time. Work is currently underway to implement these algorithms and measure their costs on
the Delta.

The observations made in this section are preliminary. Further work will be conducted
to obtain a larger collection of performance results from the Intel Delta and to better deter-
mine which features are needed in the communication model to provide accurate predictions of

algorithm performance.

-31-

25.00— K S

20,00 —{ linear BST

15.00—

msec

10.00{—

5.00{—

°‘°°”i | | | | | | B
0.00 10.00 20.00 30.00 40.00 50.00 60.00

message length (Kbytes)

Figure 17: Intel Delta observed broadcast costs: n =24, 8 < m < 64K.

7. Summary

This study of the problem of broadcasting on linear arrays and meshes has yielded several
improved algorithms. The well known spanning tree (ST) broadcast algorithm for linear arrays
was extended in several ways. First, it was modified to take advantage of the difference between
node-to-network and network-to-network communication rates. Second, it was modified to
take advantage of bidirectional communication. Combining these two extensions of the basic
ST broadcast algorithm yielded the bidirectional spanning tree (BST) broadcast algorithm for
linear arrays. The BST broadcast algorithm always has lower cost than that of the recursive
halving (RH) broadcast algorithm and has lower cost than the ST broadcast algorithm for all
but the shortest messages.

Similar consideration was given to the ST broadcast algorithm for meshes. In this case the

-392.

200077 ! l 1 !

mesh ST
18.00\— S

16.00}— // —

/ mesh BST
14.00— Vs R

/ P o
12.00— R
10.00|— e]
msec PR
8.00_ PR _

6.00—

400

0.00L_1 | | 1 I | |
0.00 10.00 20.00 30.00 40.00 50.00 60.00

message length (Kbytes)

Figure 18: Predicted broadcast costs: n = 24 x 25,8 <m < 64K, v = 0.

basic algorithm was extended to take advantage of the additional connectivity offered by the
mesh. This yielded the BST broadcast algorithm for meshes. Its predicted performance falls
midway between the ST and RH broadcast algorithms for meshes. The ST broadcast algorithm
performs best for very short messages and the RH broadcast algorithm performs best for very
long messages.

None of these algorithms require knowledge of machine-dependent constants for network
latency and bandwidth to obtain good performance. This means that these algorithms will
have relatively stable performance as hardware and operating system software changes. While
better performance for a specific machine can probably be obtained by designing pipelined
algorithms, such as those given in [12] for hypercubes, or by constructing hybrid algorithms, as

in [5,9], such algorithms will be more sensitive to changes in machine characteristics than the

-3 -

algorithms described here.

In Section 4 it was shown that the ST, BST, and RH broadcast algorithms for linear arrays
can be extended so that any node, not just node 0, can act as the source of the broadcast mes-
sage. There is no cost penalty when another node is chosen to be the source. It is conjectured
that these results can be extended to meshes as well.

Two techniques for generalizing these broadcast algorithms to linear arrays and meshes of
arbitrary size were given in Section 5. The method of companions can be used to generalize all
of the broadcast algorithms given here. 1t was shown that using this method to broadcast on a
mesh that does not have rows and columns with powers of 2 nodes approximately doubles the
cost of the broadcast. It is likely that campanions can also be used to generalize other global
communication algorithms, such as the complete exchange algorithms for meshes given in [5].
A second generalization technique, called virtual nodes, was described that provides slightly
better performance than companions for the BST broadcast algorithm for linear arrays with
v=0.

Finally, the actual performance of the ST, BST and RH broadcast algorithms for linear
arrays was measured on the Intel Delta mesh. These measurements generally confirmed the
analytic results of Section 3 but showed that a more precise model of the communication
network is desirable. Future work will include implementations of these algorithms for meshes,
additional study of the communication model for the Delta, and preparation of a model for the

communication network of the Intel Paragon mesh.

8. Acknowledgments

This research was performed in part using the Intel Touchstone Delta System operated by the
California Institute of Technology on behalf of the Concurrent Supercomputing Consortium.

Access to this facility was provided through the Center for Research on Parallel Computing.

-4 -

9. References

(1] M. Barnett, R. Littlefield, D. G. Payne, and R. van de Geijn. Global combine on mesh
architectures with wormhole routing. In Proceedings of the 7th International Parallel Pro-

cessing Symposium. IEEE Computer Society Press, April 1993.

[2] M. Barnett, D. G. Payne, and R. van de Geijn. Optimal minimum spanning tree broad-
casting in mesh-connected architectures. Technical Report TR-91-38, Dept. of Computer

Sciences, Univ. of Texas, December 1991.

[3] Jean-Claude Bermond, Philippe Michallon, and Denis Trystram. Broadcasting in
wraparound meshes with parallel monodirectional links. Parallel Computing, 18:639-648,
1992.

(4] Rudolf Berrendorf and Jukka Helin. Evaluating the basic performance of the Intel
iPSC/860 parallel computer. Concurrency: Practice and Ezperience, 4(3):223-240, May
1992.

[6) Shahid H. Bokhari. Multiphase complete exchange on a circuit switched hypercube. Tech-
nical Report ICASE Report No. 91-5, ICASE, January 1991.

(6] Shahid H. Bokhari and Harry Berryman. Complete exchange on a circuit switched mesh.
In Proceedings of the Scalable High Performance Computing Conference, pages 300-306,
April 1992.

[7] Thomas H. Dunigan. Communication performance of the Intel Touchstone delta mesh.
Technical Report ORNL/TM-11983, ORNL, January 1992.

[8] Pierre Fraigniaud, Serge Miguet, and Yves Robert. Scattering on a ring of processors.
Parallel Computing, 13:377-383, 1990.

[9] Ching-Tien Ho and M. T. Raghunath. Efficient communication primitives on hypercubes.
Concurrency: Praclice and Ezperience, 4(6):427-457, September 1992.

[10] Roger W. Hockney and Edward A. Carmona. Comparison of communication on the Intel
iPSC/860 and Touchstone Delta. Parallel Computing, 18:1067-1072, 1992.

(11] Intel Supercomputer Systems Division, Beaverton, Oregon. A Touchstone DELTA System
Description, February 1991.

[12] S. Lennart Johnsson and Ching-Tien Ho. Spanning graphs for optimum broadcasting and
personalized communication in hypercubes. IEEE Trans. Computers, 38(9):1249-1268,
September 1989.

- 35 -

[13] Rik Littlefield. Characterizing and tuning communications performance on the Touchstone
DELTA and iPSC/860. In Proceedings of the Intel Supercomputer Users’ Group 1992
Annual Users’ Conference, pages 309-313, October 4-7 1992.

[14] Youcef Saad and Martin H. Schultz. Data communication in parallel architectures. Parallel
Computing, 11:131-150, 1989.

[15] Martin Simmen. Comments on broadcast algorithms for two-dimensional grids. Parallel
Computing, 17:109-112,-1991.

(16] Robert A. van de Geijn. Efficient globzil combine operations. In Proceedings of the Sizth
Distributed Memory Computing Conference, pages 291-294. IEEE Computer Society Press,
1991.

11-15.
16-20.
21.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

—
So@Nou AN~

ORNL/TM-12356

INTERNAL DISTRIBUTION

B. R. Appleton 22-26. R. C. Ward

J. Choi 27. P. H. Worley

T. S. Darland 28. R. W. Brockett (Consultant)
J. J. Dongarra 29. J. E. Leiss (Consultant)

D. J. Dudziak 30. N. Moray (Consultant)

T. H. Dunigan 31. M. F. Wheeler (Consultant)

G. A. Geist 32. Central Research Library

M. R. Leuze 33. ORNL Patent Office

C. E. Oliver 34. K-25 Applied Technology Li-
B. W. Peyton brary

S. A. Raby 35. Y-12 Technical Library

R. F. Sincovec 36. Laboratory Records Dept. -
D. W. Walker RC

37-38. Laboratory Records Dept.

EXTERNAL DISTRIBUTION

Dan Anderson, Ford Motor Co., Product and Manufacturing Systems, Mail Drop
10, EEC Building, P.O. Box 2053, Dearborn, MI 48121-2053

Mike Barnett, Laboratory for Applied Logic, Department of Computer Science,
University of Idaho, Moscow, Idaho 83843

Dr. Eric Barsczc, Mail Stop T-045, NASA Ames Research Center, Moffett Field,
CA 94035

Dr. Edward H. Barsis, Computer Science and Mathematics, P. O. Box 5800,
Sandia National Laboratory, Albuquerque, NM 87185

Scott Berryman, Yale University, Computer Science Department, 51 Prospect
Street, New Haven, CT 06520

Professor Shahid Bokhari, Dept. of Electrical Engineering, University of Engi-
neering and Technology, Lak-re, Pakistan

Tom Crockett, Mail Stop 162C, NASA Langley Research Center, Hampton, VA
23665-5225

Mark A. Davis, Goddard Space Flight Center, 10210 Greenbelt Rd, Suite 700,
Seabrook, MD 20706

Professor Larry Dowdy, Computer Science Department, Vanderbilt University,
Nashville, TN 37235

Professor Geoffrey C. Fox, Northeast Parallel Architectures Center, 111 College
Place, Syracuse University, Syracuse, NY 13244-4100

49.

50.

51.

52.

53.

54.

55.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

- 38 -

Prof. Pierre Fraigniaud, Laboratoire de 'Informatique du Parallelisme - IMAG,
Ecole Normale Supericiire de Lyon, 69394 Lyon Cedex 07, France

Professor Dennis B. Gannon, Computer Science Department, Indiana University,
Bloomington, IN 47401

Dr. J. Alan George, Vice President, Academic and Provost, Needles Hall, Univer-
sity of Waterloo, Waterloo, Ontario, CANADA N2L 3G1,

Dr. Gene H. Golub, Computer Science Department, Stanford University, Starford,
CA 94305

Dr. John Gustafson, 236 Wilhelm, Ames Laboratory, Iowa State University, Ames,
1A 50011

Dr. Dan Hitchcock, Uffice of Scientific Computing, ER-7, Applied Mathematical
Sciences, Office of Energy Research, U. S. Department of Energy, Washington,
DC 20585

Dr. Ching-Tien Ho, Computer Science, IBM Almaden Research Center, 650 Harry
Road, San Jose, CA 95120

Dr. Gary Johnson, Office of Scientific Computing, ER-7, Applied Mathematical

Sciences, Office of Energy Research, U. S. Department of Energy, Washington,
DC 20585

Dr. Hans Kaper, Mathematics and Computer science Division, Argonne National
Laboratory, 9700 S. Cass Avenue, Bldg. 221, Argonne, IL 60439

Dr. Kenneth Kennedy, Department of Computer Science, Rice University, P. O.
Box 1892, Houston, Texas 77001

Dr. Tom Kitchens, ER-7, Applied Mathematical Sciences, Office of Scientific

Computing, Office of Energy Research, Office G-437, Germantown, Washington,
DC 20585

Professor S. Lakshmivarahan, School of Electrical Engineering and Computer Sci-
ence, University of Oklahoma, 202 West Boyd, Room 219, Norman, OK 73019

Professor Peter Lax, Courant Institute for Mathe matical Sciences, New York Uni-
versity, 261 Mercer Street, New York, NY 10012

Dr. John G. Lewis, Boeing Computer Services, P. 0. Box 24346, MS 7L-21,
Seattle, WA 96124-0346

Dr. R. Littlefield, Pacific Northwest Laboratory, P.O. Box 999, Richland, WA
993352

Dr. James McGraw, Lawrence Livermore National Laboratory, L-306, P. O. Box
808, Livermore, CA 94550

Dr. David Nelson, Director of Office of Scientific Computing, ER-7, Applied
Mathematical Sciences, Office of Energy Research, U. S. Department of Energy,
Washington, DC 20585

Crofessor James M. Ortega, Department of Applied Mathematics, University of
Virginia, Thornton Hall, Charlottesville, VA 22901

67.

68.

69.

70.

71.

72-76.

77.

78.

79.

80.

81.

82 -83.

-39 -

Dr. David G. Payne, Intel Corporation, Supercomputer Systems Division, 15201
NW Greenbrier Parkway, Beaverton, OR 97006,

Dr. Paul Pierce, Intel Corporation, Supercomputer Systems Division, 156201 NW
Greenbrier Parkway, Beaverton, OR 97006,

Professor Daniel A. Reed, Computer Science Department, University of Ilinois,
Urbana, IL 61801

Professor Ahmed Sameh, University of Illinois at Urbana-Champaign, Center for
Supercomputer R&D, 469 CSRL, 1308 West Main St., Urbana, IL 61801

Dr. David S. Scott, Intel Scientific Computers, 15201 NW Greenbrier Parkway,
Beaverton, OR 97006

Professor Steven R. Seidel, Department of Computer Science, Michigan Techno-
logical University, 1400 Townsend Drive, Houghton, M1 49931-1295

Dr. Horst Simon, NASA Ames Research Center, Mail Stop T-045-1, Moffett Field,
CA 94035

Dr. Paul N. Swartztrauber, National Center for Atmospheric Research, P. O. Box
3000, Boulder, CO 80307

Professor Robert van de Geijn, Department of Computer Sciences, The University
of Texas at Austin, Austin, TX 78712-1188

Dr. Andrew B. White, Los Alamos National Laboratory, P. O. Box 1663, MS-265,
Los Alamos, NM 87545

Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P. O. Box 2001, Qak Ridge, TN
37831-8600

Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37830

