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Abstract - The quadrature response of longitudinal pairs, we have,
impedance is shown to be the effective impedance for
the beam instability. The results of the application of F(w) = 1
this formulation are compared with that obtained "_(FL(_°+wRr)+FL('--*ORr)) (1)
using the Robinson-Pedersen approach and the Sach- Also for II(t) = fL(t) sin CORFt, we have,
erer integral equation. The formulation is further yen- 1

eralized to the rigid bunch motion using signal Fl(w)= _-f(FL(CO+CORF)--FL('_--CORF)) (2)analysis method, where a form factor shows up natur-

ally. Finally, the formulation is applied to solve the Under the modulation of the frequency wRr , the in-
coupled bunch instabilities. Examples of the AGS phase and quadrature responses of the impedance Z(_)
Booster and the AGS coupled bunch instabilities are are determined by [2],used to illustrate the applications of the formulation.

1 (3)I. The New Formulation Zp(w) = _- ,
In the longitudinal motion, a synchrotron oscil- 1

lation is modulated by the RF carrier. The beam ZQ(w)= _-ff(Z(CO-bcoRF)--Z(_,'--_RF) ) (4)
current induced voltage through the longitudinal
impedance may affect the synchrotron oscillation and respectively. We also define Ge(co) = FL (w)Zp(co) and
cause the beam instability. Gq(co) -- FL(W)ZQ(W ). Using gp(t)--.Gp(w) and

Q t --*G ca for Fourier pairs, the total res onse ofA. Beam Dynamic Model g_( ) Q( ) . p "

A beam dynamic model is shown in Fig.l, where tt/e modulated signal F(co) in (1) through the
s is the Laplace operator, wo and WRF are the revolu- impedance Z(w) is,

tmpn and RF frequencies, respectively. AV B is the g(t)= gp(t)cOSCORFt + gQ(t)sin coRFt (5)
equivalent RF gap voltage deviation caused by the
beam motion, and AVcA v caused by the cavity vol- Using (1-4), the equation (5) can be sho_vn to be,
tage variation. IB is the beam current amplitude of G(w)=F(co)Z(co)) (6]
the fundamental frequency, i.e., the RF frequency.
Finally, ZM(S) represents the effective longitudinal therefore (5) is proved. When the beam passes the
impedance with respect to the beam instability. In cavity gap, the in-phase response due to the cavity
the block diagram, the upper loop represents the syn- impedance, which is modulated by cos coRFt, provides
chrotron oscillation, as shown in [I]. The lower loop an almost constant force in the beam synchrotron
represents the effects of the beam current to the cavity oscillation, which has little effect on the beam instabil-
voltage through the longitudinal impedance, ity. On the other hand, since the quadrature response

is modulated by sin coRrt it is in the same fashion as
- that of the RF driving wave and functions as the same

as the RF driving wave. Therefore, if the instability ofsynchrotron oscillation is concerned, the quadrature

,% _j ®,,T1 _ responserepresented by (4) becomes a dominant effect.-- Thus the effective longitudinal impedance is,
aVcAv {" - _L...___ 1 13=E, I I 7 ---"l 1

li..... I i = zQ(,)=
(z(, (7)

_1 _ Consider an RF cavity with the resonant fre-!
quency cpR, the shunt resistance R, the half-

- bandwidth u, and the quality factor Q. Under the
Fig.1. Beam Dynamic Mo&! conditions of Q>>I, torr _ wR >>w _ cos, and also

B. Impedance Jw_-0_r J>> ]a9-J=_, the longitudinal impedance of

- We use both Laplace and Fourier transforms, the RF cavity is,
For instance, an impedance in the Laplace form can be -R a2tanez

- Z(s+]WnF ), and its counterpart in the Fourier form is ZM(S) = s2+2us+cr2(l+tan2¢z) (8)written as Z(w+wnf ). Consider a general situation of

the modulated input and output. Let the input signal where the detuning angle ez=tan -_ ((wRF--w R )/a).
: of a system be f (t) and the output be g (t). The O. Stability

input signal is assumed to be a low frequency signal
fL(t) modulated by an RF cartier, say coswRFt , i.e., To study the beam stability under the influence

we can write, { (t.)_._(_) cos _/.,Ft Using of the longitudinal impedance of RF cavity, we can_ ---,. _-J --- " write the following equation from Fig.l,f (t)---,F(ca) and fL( ) denm.e the Fourier
e coowRFq Vcos_bs e wo wRp q

- * Work performed under the auspices cf the U.S. _ = ¢ + ZM(e)I_¢ (9)
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t Using w_=-ewowRrrlVcosCs/{27r3"I£)and the beam where r is tile synchrotron oscillation amplitude in
and generator current ratio Y-IB/Iao=[BR/V, the time. The spectrum of this signal is calculated _ [1'.
characteristic eqllation of the system becomes, o., '

o ..,.o , . ..o.,__ _'tanCz/cosCs l(_) = °._'Io _ i" .L_I-'r) _ (_.'-r' _-',.,r-m_..) [I a)
's2+w_-" " o t ° (10) p,,.--,-o

e'+-as+a2(l+ an'ez) We further assume that the bunches have a Gaussian
Using Routh-Hurwitz table, it is straightforward to distribution, which iu .hosen for convenience, and with
find the stability conditions as tanCz > 0 and an effective bunch length rz. Using the phase oscilla-
YtanCzcos2¢z < cosCs, which are called the first and tion amplitude r=wRrr the equation (13) becomes 11!,
second Robinson criteria, respectively. _

In deriving the transfer function ZM(S) in Fig.l, I(w) = 2tri 0 _ .7'' J_(rw,/wn*`)
the in-phase and quadrature transfer functions Zp(s) v.m--co
and Z 8)_ are used In the Robinson - Pedersen
approach to], the beam to cawty phase and amplitude xe 6 (w--pwRr--mWs) (14)
transmissions and their cross transmissions Zt_t_(s), B. Generalization

Zaa(n}, and Zva(S), Zarj(s) are used to deriv'_ the To compare the rigid bunch signal representedtotal equivalen_ transmis'sion from the beam phase
by. (14) with the idealized signal, we ma,y write the

variation to the induced cavity voltage phase devia- sl_;nal used to develop the formulation in Section I a_
tion. In Fig.2, typical step responses of the transfer it(t) --Isrcos wstsin oJnF t)whose spectrum is,functions are plotted, which show the difference

r

between the two types of the transfer functions, and I,(w) = 27rIB-_v,m_=±t (-the two approaches as weil. P ) 5 (od--pcdnF--mojs) (15)

3500....... The first difference between the real rigid bunch

_ motion signal represented by (14) and the idealized
3ooo z_(,),zpm) signal (15) is that (14) contains not only RF frequency

_zs00 ....1_--_.__ Zp(,) modulation but also RF harmonics modulation, i.e.,
by the frequenciesp WR,', lp l> 1. lt is shown [1] that

2000 .._, ...... z_(,) ZM(w ) = ZQ.(c0)is valid not only for the RF frequent,"
_- ,..,' ....... modulation, but also for the RF harmonic modulation.

_ 1_ j ./'" For the carrier with the frequency pwR,', the variablewR*, in (4) should however be replaced by p wRr. In
the system synthesis, firstly these frequency com-

50o ponents in the rigid bunch motion signal should be
0 .-- z_,_ -zpr(,) identified, then the corresponding longitudinal

impedances should be used r.o find the induced forces.
._oo_ _t a_ _3 (l( oz de d7 d.s g._ The combined force is the one the beam received.

a-_s_,_,_ =_0_ The second difference of (14) from (15)is that it
contains not only dipole motion but also high mode

Fi_.Z. Step Responses for the Transfer Funetion_. motion, i.e., rows, lm I > 1.

The third difference is that in (I4), the spectrum
Using Sacherer integral equation [4] for the amplitude is affected by _he Bessel function, the bunch

dipole motion, we get the following equation, distribution and the bunch length. The combined
influence of these factors can be called a form factor.

8rw_I0 co _ dC0$2+0J_
Vcos¢,j (lO Jl (r)dr dr)ZM(_) (11) C. Form factor

Consider the most important case of dipole
motion with RF frequency modulation, where p = 4-1

where I0 is the beam average current, ¢0 is the bunch and m = =t:1. We write (14) as,stationary distribution, and r is the amplitude of the

(ll)beamisPhaSeshown°SCillati°n'tobe equivalentSUbstitutingto(10),(8)'theexceptequatiOnfora I(w) = 8rl0J,(r [co I/mRr )e -(rLw/wnr)s/32
scaling difference.

E (-p) (10)
II. Generali-.e the Formulation _3 p,=--a:_

To generalize the formulation to the rigid bunch For the delta distribution, I_ -----2/0, the form factor
motion, the beam current signal needs to be analyzed, can be written as,

For each frequencycomponent in the signal, the 2Jt(r [oa
corresponding effective impedance can be found, which F = _ [/CeRF ) e -( rt,ca /w nF )2/32
needs only a trivialmodificationfrom the results It(w) = r -

shown in Section I. The summation of the effects of 2J_(r) --(rt, o_/c%F)s/32
the impedance due to each component in the signal is _ _e (17)the force the beam received, r

A. Signal of rigid bunch motion where in the simplification we used [w I _ wnr.
Let TRF be the RF period, TRF---2r/WRF , a Consider the longitudinal dipole motion dis-

beam longitudinal current signal with N particles in a cussed in Section I again. The form factor F in (17)
bunch is, haS to be multiplied to the scaling In in Fig.l, and

co therefore also to Y = I_R/Y in (10). Thus,
i(t) = ge _ 6(t-kTnF+ rcoswskTnr ) (12) Yt = FY will replace Y in the second stability equa-

l---co tion. Since F <1, the stability margin is extended.
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; III. Coupled Bunch Instabillties In a small range of r, for instance between 0.01 to 0.2
A. Coupled bunch motion in Fig.3, the form factors are appro×':mately the same.

Let there be h bunches, and let n be the coupled This shows the reason why we can assume that the
bunch mode number. There will be n = 0, i, ..., h-1 coupled bunch mode is a rigid wave in the instability
coupled bunch modes [4]. The spectrum of the signal study.
observed from the wall monitor becomes, G. Ezamples of the AGS Booster and the AGS

oo A coupled bunch instability has been excited in
I(w) = 27r/0 _ ]" J,n(rw/wnr) the AGS booster by tuning a test RF cavity [51. In the

p.m,-oo booster h is 3, and fRF was 2.55 M:Hz. In the test, the
coupled bunch instability of a dipole mode was

xe -( rLw/w RF)2/32 6(w--PWRF--nWo--mwS) (18) observed at the first revolution line, i.e., at 850 KHz.
which implies that n = 2. We have I0 = 0.082 A.

The coupled bunch mode of nw 0 can be assumed to be Cs : 0, and V - 30 KV, and rL=130 nS. The RF
a rigid wave. For an individual bunch, the modulation cavity used to excite the coupled bunch motion has
effect of the beam current signal due to the coupled approximately a quality factor 2.5 and a shunt resj_
bunch mode is demodulated. By the same argument as tance 3 Kfl, it was tuned at the revolution frequency
in Section I, the quadrature response represents the iii the test. To estimate the effective resistance FR1,
effective longitudinal impedance. Therefore we have the form factor in (21) is used, where the Gaussian
the following longitudinal impedance, distribution is still used allowing minor errors. The

1 (Z(oJ.bnOJO_t.(dnF)_Z(oj..bnOJo_CORF))(19) effective resistance of the test cavity is found to be 1
ZM(w) = _]. Kfl at 850 KHz. The growth rate calculated using (20)

is 27.7 mS, which is close to the test result of 30 mS.
B. Coupled bunch instabilities In an AGS operation, a coupled bunch instabil-

If n _ O, then the two spectrum lines of the ity was observed at the 1.77 GeV front porch, with
same frequency modulation may be far apart, there- fRF=4.18 MHz, and n=ll ( h=12 ). To find the loca-
fore in general the treatment for the resonator type tion of frequency of the exciting resonator, two tests
impedance such as that in Section I cannot be applied, were performed, with rL are 46 nS and 70 nS, I0 are
and the spectrum lines may have to be treated 0.089 A and 0.457 A, V axe 260 tcv r and 184 t_%r, and
separately. Consider the dipole upper sideband at fs are 1.64 t(I-Iz and 1.38 KHz, respectively. The
Z(OJ"_-WO-bOJRF ) in (19), and let the real part of the observed growth rates are 48 mS and 24 mS, respec-
impedance be Ri. Using 8 = ]w _ ]ws, the stability tively. Using a moderate r = 0.1rL, the resistance
equation can be written as, required to generate the observed growth rates are

w_IBF _wsiBFP 1 plotted in Fig.4, which shows that at 17.6 MHz the2

: s +wg = Z(W+WO+WRF)_ 8 (20) required resistances are crossed. The closest unstable
2]VcosCs 2VcosCs coupled bunch mode frequency is at 17.1 /VIHz, there-

fore Fig.4 shows a possible location of the excitingBelow transition cos_bs >0, therefore the upper side- resonator. This result agrees to the one obtained by
band is stable because that the coefficient of s is nega- different approaches [6]rive. It follows that the lower sideband at
Z(w+Wo--Wn_. ), which has a negative sign in (19), is x_0,

unstable, and the opposite above transition. '! \ | ' " , i [It is interesting to revisit the form factor derived _ • ! ..... ' i

in Section II. We rewrite it as, i' i t ! i I3 , i I ;
F = 2: (r I/ Rr) (21) t

" = \ t i
The simplification of the form factor in (17) cannot be ! lmade in the case of the coupled bunch mode, since _ t _k, I
now l_lisnotcloseto wnp"ifn _ 0,and bothvari- _ \ \
abieshave tobe consideredin theBesselfunction.For i \ .. _ T.=i . i

high frequency, the influence off shows up, which is 0_ _ _-_.__ I

= 0_ 11.2 0.4 _ 0.8 1.2 L4 L6 1.8 2

ii i_ Fig.J. Reaistanc_ to Excite the Growth Ratez.
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