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Abstract - The quadrature response of longitudinal
impedance is shown to be the effective impedance for
the beam instability. The results of the application of
this formulation are compared with that obtained
using the Robinson-Pedersen approach and the Sach-
erer integral equation. The formulation is further gen-
eralized to the rigid bunch motion using signal
analysis method, where a form factor shows up natur-
ally. Finally, the formulation is applied to solve the
coupled bunch instabilities. Examples of the AGS
Booster and the AGS coupled bunch instabilities are
used to illustrate the applications of the formulation.

I. The New Formulation

In the longitudinal motion, a synchrotron oscil-
lation is modulated by the RF carrier. The beam
current induced voltage through the longitudinal
impedance may affect the synchrotron oscillation and
cause the beam instability.

A. Beam Dynamic Model

A beam dynamic model is shown in Fig.1, where
s is the Laplace operator, wp and wgp are the revolu-
tion and RF frequencies, respectively. AVy is the
equivalent RF gap voltage deviation caused by the
beam motion, and AV, caused by the cavity vol-
tage variation. /p is the beam current amplitude of
the fundamental frequency, i.e., the RF frequency.
Finally, Zy(s) represents the effective longitudinal
impedance with respect to the beam instability. In
the block diagram, the upper loop represents the syn-
chrotron oscillation, as shown in [1]. The lower loop
represents the effects of the beam current to the cavity
voltage through the longitudinal impedance.
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Fig.1. Beam Dynamic Model
B. Impedance

We use both Laplace and Fourier transforms.
For instance, an impedance in the Laplace form can be
Z(s+jwgr), and its counterpart in the Fourier form is
written as Z(w+wpp). Consider a general situation of
the modulated input and output. Let the input signal
of a system be f(t) and the output be g(t). The
input signal is assumed to be a low frequency signal
f1(t) modulated by an RF carrier, say coswgrt, i.e.,
we can write, f(t)= f;(t)coswyrt. Using
S (t)—=F(w) and jL(t)—-»FLd)l) to denoie the Fourier

* Work performed under the auspices c¢f the U.S.
Department of Energy

pairs, we have,

F@) = 3 (Fy(ohwar )t FLlomwpe)) (1)
Also for f(¢t) = f,(t) sin wgpt, we have,

Fy(w) = El']' (FL(wtwrp)=Fp(w—wgr))  (2)

Under the modulation of the frequency wgp, the in-

phase and quadrature responses of the impedance Z(w)
are determined by (2],

Zp(w) = %(Z(ww)w(w—w D, (3)

Zo(w) = 51'1- (Z(w+wprp )~ Z(w—wgr)) (4)

respectively. We also define Gp(w) = FL(w)Zpgw) and
Go(w) = Fi(w)Zg(w). Using gp(t)—Gp(w) and
gQ(t)—'GQ?w) for Fourier pairs, the total response of
the modulated signal F(w) in (1) through the
impedance Z(w) is,

9(t) = gp(t) cos wart + gg(t) sin weet  (5)
Using (1-4), the equation (5) can be shown to be,
G(w)=F(w)Z(w)) (6)

therefore (5) is proved. When the beam passes the
cavity gap, the in-phase response due to the cavity
impedance, which is modulated by cos wgrt, provides
an almost constant force in the beam synchrotron
oscillation, which has little effect on the beam instabil-
ity. On the other hand, since the quadrature response
is modulated by sin wgpt it is in the same fashion as
that of the RF driving wave and functions as the same
as the RF driving wave. Therefore, if the instability of
synchrotron oscillation is concerned, the quadrature
response represented by (4) becomes a dominant effect.
Thus the effective longitudinal impedance is,

Zue(s) = Zg(s) = EIJ— (Z(s+5wrp)=Z(s—jwrr)) (7)

Consider an RF cavity with the resonant fre-
quency wp, the shunt resistance R, the half-
bandwidth o, and the quality factor Q. Under the
conditions of @>>1, wpr X wp>>w = wg, and also

wi—wdr |>> |42 |=w?, the longitudinal impedance of
the RF cavity is,

—Ro*and,
ZM(a ) =3 2 2
8°+208+0%(1+tan%p )

where the detuning angle ¢ ;=tan™! ((wpr—wp )/c).
C. Stability

To study the beam stability under the influence
of the longitudinal impedance of RF cavity, we can
write the following equation from Fig.1,

4= ewowprnVeoss — ewgwgrn
2nf%E 82 ' 2nB°F 42

(8)

Zu(2)pé (9)
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Using u§=—e WoWRpN VC()§¢5{(2ﬂﬂ2E) and the beam
and generator current ratio Y=Jg/lgo=IgR/V, the
characteristic equation of the system becomes,

0 n wiYo'tang,/cospg

S'tws = —; 5 5
* 7 s%ya0s +o%(1+tan®dz)

(10)

Using Routh-Hurwitz table, it is straightforward to
find the stability conditions as tandz > 0 and
Ytangcos?,; < coség, which are called the first and
second Robinson criteria, respectively.

In deriving the transfer function Zy(s) in Fig.1,
the in-phase and quadrature transfer functions Zp(s)
and Zg(s) are used. In the Robinson - Pedersen
approach (3], the beam to cavity phase and amplitude
transmissions and their cross transmissions Zpp(s),
Zaq(s), and Zpq(s), Zgp(s) are used to derive the
total equi\ralené7 transmission from the beam phase
variation to the induced cavity voltage phase devia-
tion. In Fig.2, typical step responses of the transfer
functions are plotted, which show the difference
between the two types of the transfer functions, and
the two approaches as well.
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Fig.2. Step Responsea for the Transfer Functions.

Using Sacherer integral equation [4] for the
dipole motion, we get the following equation,
8rwil o0 dy
2, .2 _ S-0 2 o
Frwd = 2 (LTI ) Be) ()

where Ij is the beam average current, y is the bunch
stationary distribution, and r is the amplitude of the
beam phase oscillation. Substituting (8{, the equation

(IR is shown to be equivalent to (10), except for a
scaling difference.

II. Generalize the Formulation

To generalize the formulation to the rigid bunch
motion, the beam current signal needs to be analyzed.
For each frequency component in the signal, the
corresponding effective impedance can be found, which
needs only a trivial modification from the results
shown in Section I. The summation of the effects of
the impedance due to each component in the signal is
the force the beam received.
A. Signal of rigid bunch motion

Let .TRF be the RF period, TRF=21r/wRF7 a
beam longitudinal current signal with N particles in a
bunch is,

i(t)= Ne 35 6(t—kTgp+ rcoswskTrr) (12)

k m—00

where 7 is the synchrotron oscillation amplitude in
time. The spectrum of this signal is calculated as {1',
[q8)
Hw)=2rly ¥, j"Ju(<7) 8 (w=p wpp—mwe) (13)

p,m=m—co

We further assume that the bunches have a Gaussian
distribution, which is chosen for convenience, and with
an effective bunch length -, . Using the phase oscilla-
tion amplitude r=wpp the equation (13) becomes 11,
5]

[((A))= 2”10 E ]‘m Jm(ru)/wm:)

p.Mm sm—co
—(ryw/wgp)?/32 5 (

X € W—p Wrp—muws) (14)

B. Generalization
To compare the rigid bunch signal represented
by (14) with the idealized signal, we may write the

signal used to develop the formulation in Section I as
t'jt) = [prcos wgtsin wgrt, whose spectrum is,

r
I(w) = arlp o~ Y (=p) 6 (w—pwrp—mwg) (15)
J p,mmil]

The first difference between the real rigid bunch
motion signal represented by (14) and the idealized
signal (15) is that (14) contains not only RF frequency
modulation but also RF harmonics modulation, i.e.,
by the frequencies pwgpp, |p [>1. It is shown [1] that
ZMgw) = Zg Sw) is valid not only for the RF frequency
modulation, but also for the RF harmonic modulation.
For the carrier with the frequency p wgp, the variable
wgp in (4) should however be replaced by pwgr. In
the system synthesis, firstly these frequency com-
ponents in the rigid bunch motion signal should be
identified, then the corresponding longitudinal
impedances should be used to find the induced forces.
The combined force is the one the beam received.

The second difference of (14) from (15?} is that it
contains not only dipole motion but also high mode
motion, i.e., mwg, |m |>1.

The third difference is that in (14), the spectrum
amplitude is affected by the Bessel function, the bunch
distribution and the bunch length. The combined
influence of these factors can be called a form factor.
C. Form factor

. Consider the most important case of dipole
motion with RF frequency modulation, where p = +1
and m = 1. We write (14) as,

I(w) = 8mloJy(r |w | Jwgp)e L@ wrr /32
x% E (-p) 6 (“"_P“’Ri‘—mws) (186)
J pumemt

For the delta distribution, Iy = 2J,, the form factor
can be written as,

P 1]((,;?) _ 2Jy(r Ic:l/wnp) c—-(er/wR,.)z/SQ
1

o 201 ~(r w/uge /32
r

(17)

where in the simplification we used |w | =~ wgp.

Consider the longitudinal dipole motion dis-
cussed in Section I again. The form factor F in (17
has to be multiplied to the scaling Iy in Fig.1, an
therefore also to Y = IgR/V in (10). Thus,
Y, = FY will replace Y in the second stability equa-
tion. Since F' <1, the stability margin is extended.
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III. Coupled Bunch Instabilities
A. Coupled bunch motion

Let, there be A bunches, and let n be the coupled
bunch mode number. There will be n =0. 1, ..., A~1
coupled bunch modes [4]. The spectrum of the signal
observed from the wall monitor becomes,

Hw)=2nly 3, 3™ Jn(rw/wgr)
P, =—00

xe_(er/wRF)2/32 5 (

wWw—pwpp—nwog—mwsg) (18)
The coupled bunch mode of nwy can be assumed to be
a rigid wave, For an individual bunch, the modulation
effect of the beam current signal due to the coupled
bunch mode is demodulated. By the same argument as
in Section I, the quadrature response represents the
effective longitudinal impedance. Therefore we have
the following longitudinal impedance,

Zyy(w) = 517 (Z(wn wotwrr )= Z(w+n wo—wrr)) (19)

B. Coupled bunch instabilities

If n =0, then the two spectrum lines of the
same frequency modulation may be far apart, there-
fore in general the treatment for the resonator type
impedance such as that in Section I cannot be applied,
and the spectrum lines may have to be treated
separately. Consider the dipole upper sideband at
Z(w+wgtwpr) in (19), and let the real part of the
impedance be R,. Using ¢ = jw = jwg, the stability
equation can be written as,

2
OJSIBF N-—wsngRl
27V cosdg Z(wwotwpr )™ 2Vcosds

Below transition cos¢gs >0, therefore the upper side-
band is stable because that the coefficient of s is nega-
tive. It follows that the lower sideband at
Z(w+wo—wgr), which has a negative sign in (19), is
unstable, and the opposite above transition.

It is interesting to revisit the form factor derived
in Section II. We rewrite it as,

P 2Jy(r |w |/wgr) e—(er/pr)2/32
r

The simplification of the form factor in (17) cannot be
made in the case of the coupled bunch mode, since
now |w] is not close to wgr if n 3 0, and both vari-
ables have to be considerecf in the Bessel function. For

high frequency, the influence of r shows up, which is
shown in F'ig.3.

824w = s (20)

(21)
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Fig.8. Form Factors with Different r.
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In a small range of r, for instance between 0.01 to 0.2
in Fig.3, the form factors are approximately the same.
This shows the reason why we can assume that the
coupled bunch mode is a rigid wave in the instability
study.
C. Ezamples of the AGS Booster and the AGS

A coupled bunch instability has been excited in
the AGS booster by tuning a test RF cavity [5]. In the
booster & is 3, and fpr was 2.55 MHz. In the test, the
coupled bunch instability of a dipole mode was
observed at the first revolution line, i.e., at 850 KHz,
which implies that n = 2. We have [, = 0.082 A,
¢s =0, and V =30 KV, and 7,=130 nS. The RF
cavity used to excite the coupled bunch motion has
approximately a quality factor 2.5 and a shunt resis-
tance 3 KQ, it was tuned at the revolution frequency
in the test. To estimate the effective resistance FR,,
the form factor in (21) is used, where the Gaussian
distribution is still used allowing minor errors. The
effective resistance of the test cavity is found to be 1
KQ at 850 KHz. The growth rate calculated using EQO)
is 27.7 mS, which is close to the test result of 30 mS.

In an AGS operation, a coupled bunch instabil-
ity was observed at the 1.77 GeV front porch, with
frr=4.18 MHz, and n=11 ( h=12 ). To find the loca-
tion of frequency of the exciting resonator, two tests
were performed, with 7, are 46 nS and 70 nS, I, are
0.089 A and 0.457 A, V are 260 KV and 184 KV, and
fs are 164 KHz and 1.38 KHz, respectively. The
observed growth rates are 48 mS and 24 mS, respec-
tively. Using a moderate r = 0.1r,, the resistance
required to generate the observed growth rates are
plotted in Fig.4, which shows that at 17.6 MHz the
required resistances are crossed. The closest unstable
coupled bunch mode frequency is at 17.1 MHz, there-
fore Fig.4 shows a possible location of the exciting
resonator. This result agrees to the one obtained by
different approaches [6].
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Fig.4. Resistances to Ezcite the Growth Rates.
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