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Abstract

A numerical theory for the massively parallel lattice gas and lattice Boltzmann
methods for computing solutions to nonlinear advective-diffusive systems is intro-
duced. The convergence theory is based on consistency and stability arguments that
are supported by the discrete Chapman-Enskog expansion (for consistency) and con-
ditions of monotonicity (in establishing stability).

The theory is applied to four lattice methods: Two of the methods are for some
two-dimensional nonlinear diffusion equations. One of the methods is for the one-
dimensional lattice method of [B. Boghosian and C. D. Levermore, Complez Systems
1(1):1987, pp. 17-30] for the one-dimensional viscous Burgers equation. And one of
the methods is for a two-dimensional nonlinear advection-diffusion equation. Conver-
gence is formally proven in the Li-norm for the first three methods, revealing that
they are second-order, conservative, conditionally monotonc finite difference methods.
Computational results which support the theory for lattice methods are presented.

In addition, a domain decomposition strategy using mesh refinement techniques
is presented for lattice gas and lattice Boltzmann methods. The strategy allows
concentration of computational resources on regions of high activity. Computational
evidence is reported for the strategy applied to the lattice gas method for the one-
dimensional viscous Burgers equation.



Preface

Since around 1986, when lattice gas methods were first scen in terms of cellular
automata [72], there has been tremendous interest in the methods as they apply
to hydrodynamics. Much of the interest has resulted in numerous applications and
new methods. As early as 1987-8, the Lattice Boltzmann Approximation to lattice
gas methods was being applied as a finite difference technique. Throughout these
developments, 1itt1e headway has been made regarding the numerical stature of the
methods. While the main purpose of the dissertation is to introduce a numerical
theory for lattice gas and lattice Boltzmann methods, a secondary purpose is to help
foster further numerical investigations of the methods. I hope that' this dissertation
will serve well in this secondary capacity, eliciting a growing interest in lattice methods

toward a greater understanding of their numerical and computational relevance.

I would like to express my gratitude to those individuals and institutions that
helped make this work possible. I thank Professor Garry Rodrigue for patiently
guiding me through to completion of this work. I learned from him the basic tools
of research in numerical analysis and advanced scientific computing. He also taught
me how to prepare and review papers and to deliver presentations. I thank him most
for enthusiastically revealing to me the wonderful world of computational sciences.
To Professor C. David Levermore, [ am indebted for all that he taught me regarding

the technical aspects of lattice methcas and the mathematics of partial differential

- i -



equations. | appreciate his steadfast patience in working with me. I thank Dr.
Gerry Hedstrom for helping me with solutions of partial differential equations. I also
tha,nl{ Dr. Bruce Boghosian, who helped me with some questions about the discrete
Chapman-Enskog procedure. I appreciate the comments and criticism of Professor
Peter Linz. To Professor Michael Dollinger I owe many thanks, for he first taught me
about communicating mathematics. [ thank Professors John Killeen, Garry Rodrigue,
Gene Fisher, Rao Vemuri, and Fred Wooten for serving on my Qualifying Committee.
I am grateful to Russell Brand, Dr. Gary Doolen, Dr Farid Dowla, Dr. Mark Durst,
Carolyn Hunt, Dr. Philip Manwell, Abigail Staley, Chuck Moore, Matt Nolan, Dr.
Jeffrey Scroggs, Dr. Mark Seager, Clement Ulrich, and other fr_iends and colleagues
for their input and support. I also thank the secretarial staff of the Dep@rtment of
Applied Science. Finally, I appreciate the enduring support of each of my parents.

[ am glad to have been a student in the last course sequence taught by Professor
John Killeen. in a project for one of those courses, which were in computational
physics, I first began to study seriously using the Lattice Boltzmann Ai)proximation
as a finite difference technique, i.e., the lattice Boltzmann method. He had said that
the project inight serve in some way as a foundation for the dissertation. Despite my
doubts that it would serve for me in such a capacity, that project helped focus my
efforts on lattice Boltzmann methods, which constitutes the major subject of the dis-
sertation. In the courses, I learned about the many techniques used in computational
physics, especially as they relate to solving partial differential equations of plasma
physics. It became clear that better methods are vital to increased un‘derstanding in

this and related areas. I thank Professor Killeen for instilling this in me.
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the following for the use and availability of their respective computer resources:
e the Computing and Mathematics Research Division, LLNL,
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of the VORIEX document preparation system [19-22].
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Notation
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diag(Ae)4=o
Olg(e)]

{0,1}
set of integers

set of real numbers
the empty set

cross product of set A, d times: A X Ax .- . x A

d times
boundary of domain §

{reR|a<z<b}

{reR|a<z<b)

set membership

such that

there exists

set subtraction: A\ B={z€ A|z ¢ B}

volume of set A

set of functions from A to B with n continuous derivatives

1 -0, for b€ [0,1]

is defined to be

implies

if and only if

Q.E.D. (quod erat demonstrandum)

gradient with respect to ¥ € R?

matrix with diagonal elements A\; and zeros elsewhere

order of magnitude: f(e) = Olg(e)] iff 3 a constant ¢ such that
lim f(e)/g(e) = ¢

componentwise vector product

ensemble average operator: (a) is the expected value of a
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~1

D’C(n)

S

n!

o

C+

0 < 6 < 1, small dimensionless parameter

temporal scale length

spatial scale length {

number of directions on the lattice structure of a lattice method
number of spatial dimensions on a lattice

Lé, lattice spacing

T'6%, temporal spacing

€ {0,1,...,d — 1}, lattice direction index

€ J 3 n 2 0, time step index

a p-dimensional Bravais lattice in R?

(unit) velocity vector in direction &

crystallographic group of isometries globally preserving the set
of velocity vectors

€ £, position vector on Bravais lattice £, it is a linear combina-
tion with integer coefficients of p generating vectors (see [1])

€ B, vector of occupation numbers at (#n)

€ [0,1]%, ensemble average or expected value of f(7:n)

€ [0,1], mean occupation number in direction k at (7}n)

= (A(7n)) € [0,1]%, vector of mean occupation numbers at (i n)
= n(#}n)

= ¥206n0)(#t) is an equilibrium expansion about equilib-
rium n(©)

€ BY, state at a node in a lattice gas method

€ [0,1], state transition function: the probability of a lattice

node in state a changing to state f in effecting the collision
phase

o
= mc(nL differential operator (on mean occupation num-
bers)

advection operator
collision operator

€ [0,1]%, equilibrium state (ground state in discrete Chapman-
Enskog asymptotic expansion)

= D C(D)(n)’n_n(o),

about equilibrium n(©)

linearized collision operator (linearized

pseudo-inverse of £
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Chapter 1

Introduction

Consider the three-dimensional incompressible Navier-Stokes equations,

Sav@vya = -Llvpysend
ot p

i

(1.1)
Vi =20

which connect the velocity ?'I and pressure P, where p is the constant density and
¢ is the kinematic viscosity. We would like to compute solutions to these equations
with 0 < € < 1 efficiently and accurately for problems (to which Eq. 1.1 is only an
approximation) with boundary and internal layers, shocks, turbulence, and complex
domains, However, resolving accuracy of even simple problems with conventional
methods far exceeds the current capability of computer resources [6%]. The desired
problems can easily require vasts amounts of memory and computation time, so much
memory that the problems would not fit on current machines and so much time that it
would surpass a lifetime.! To make obtaining meaningful solutions to these problems
more feasible we turn to the development of algorithms and supporting theory for

parallel and vecter computation. We encounter the same computational space-time

LA full Navier-Stokes calculation of turbulent flow over an aircraft with Reynolds numbers 6 x 107
to 3 x 10® (with 1988 algorithms) has been projected to take over 2 x 10! years; a large eddy
simulation approximation to the Navier-Stokes equations, in which only large scale motions are
computed from filter=d Navier-Stokes equations and «mall scale motions are modeled, reduces the
projection by about b orders of magnitude to around 2 x 10'! years [62).

1
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problems for conventional, sequential methods transformed into parallel methods.
Part of the difficulty in the developmient of parallel methods is that traditional training
embraces sequential thinking processes. This dissertation investigates the numerical
theory of some new cornputational methods that are inherently parallel. The methods
involve particles traversing the links of a lattice and interacting at the nodes. The
particles advance in unison to neighboring nodes with unit speed according to a
discrete clock. The system can be viewed as a discretization in time, space, and
velocity of the Boltzmann equation, e.g., [37] (cf. [15, 59]). However, the velocity space
is coarsely discretized and does not refine in the limit as the unit spatial and temporal
lengths (Az and At respectively) tend to zero. The fixed, coarse discretization of
the velocity makes the approach amenable to a mathematical description (of the
microdynamics) over a Boolean field,? with an implementation using only logical
operations, i.e., no floating point arithmetic. This point, in addition to the methods’
vast implicit parallelism, has been argued in their favor. Although the microdynamics

of these models is non-physical, several researchers have recovered macrodynamical

descriptions that agree®

with those based on physical microdynamics, e.g., {37, 38].
Most models regard the macroscopic description of fluid dynamics, i.e., the Navier-
stokes equations. The models have been known as, among other terms, lattice gas
automata, cellular automata, and cellular fluids. Obtaining the macrodynamical
description involves averaging and an assumption regarding molecular chaos. Another
related class of methods does not, however; they are lattice Boltzmann methods

(5, 6,36, 49, 56]. These methods originated from lattice gas methods, but differ in that

particle distributions move along the links rather than particles themselves. In this

“Gr . + . . .
“The microdynamical description can also be made in terms of cellular automata, e.g., [72].
3A more precise term will be defined subsequently,
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way the molecular chaos assumption becomes an inherent part of the method, and the
methods are ﬁo?xting point arithmetic calculations. Indeed, they are a form of ﬂnfte
difference methé:d. Lattice gas and lattice Boltzmann methods (herein collectively
termed “lattice methods”) have been used in a number of computational arenas:
incompressible fluid flow (Navier-Stokes) [37, 38, 46-48], magnetohydrodynamics (16,
17, 58], the Poisson equation [18], mixed flows [2, 9, 12-14, 16], turbulence {6, 49],
diffusion 8, 11, 26, 27, 33], reaction-diffusion (28], advection-diffusion {7, 24, 53], and
flow in porous media [10, 23] As the sukject gains understanding, undoubtly, its

scope and spectrum will increase.

However, lattice methods have lacked a formal numerical theory, which would in-
clude proving convergence through, e.g., consistency and stability arguments. With
but one exception (7], numerical analysis of lattice methods only derives partial dif-
ferential equations that describe the their macroscopic behavior; this is but the first
part of a formal consistency argument. Consequently, many questions regarding their
applicability, effectiveness, efficientness, competitiveness, and utility have remained
open. Due mostly to limited knowledge about lattice methods, little progress toward
answering the questions is being made. This dissertation addresses the issue by intro-
ducing a formal numerical theory for lattice methods and revealing that the methods
are second-order, conservative, conditionally monotone finite difference methods for
solving some partial differential equations. An attempt is made to formulate a foun-

dation for rigorously treating convergence of the methods, including the consistency

“Note that the references listed provide examples of the application areas and are by no means
meant to be exhaustive listings. The references, [30, 31, 52, 57], are collections of works and pro-
ceedings of conferences and workshops that encompass lattice methods (and related topics). Several
of the articles contained therein have thorough reference lists, e.g., [37).
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and stability arguments. Another part of the dissertation investigates the applicabil-
ity of domain decomposition techniques to the lattice methods, in an effot to better

utilize computational resources, e.g., concentrate resources near highly active regions

in the computational domain.

Chapter 2 introduces a numerical theory for lattice methods, the theory encom-
pe{ssing the microdynamical description, equilibria, the discrete Chapman-Enskog
expansion in the derivation of associated partial differential equations, and conver-
gence. Convergence is argued through “~ mal consistency and stability arguments
similar to the ones made for nonlinear monotone schemes. Stability and convergence
arguments are based on establishing maximum and minimum principles for both the
lattice method its continuum approximation, i.e., its associated partial differential
equation. The proof of the discrete maximum and minimum principles depends on,
among other criteria, that a lattice method satisfies certain “conditions of mono-
tonicity”. These are the conditions under which a lattice method is a monotune finite
difference method. As we will see, the conditions of monotonicity impose restrictions
on the mean occupation numbers® in a lattice method, i.e., that the mean occupa-
tion numbers must initially lie within the “domain of monotonicity”.®6 Convergence
is proven on the basis that the occupation numbers are always within the domain of
monotonicity. This is an important technical contribution of the dissertation, for it

reveals that a lattice method may be unstable outside the domain of monotonicity.

.

STor now, the mean occupation numbers can be thought of as the average (or ezpected) numbers
of particles per direction per node per time step.

8The domain of monotonicity, loosely speaking, is the largest domain in which the conditions
of monotonicity are satisfied. And it will be shown that if the occupation numbers are initially

within the domain of monotonicity, then as the system evolves they remain within the domain of
monotonicity.
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An example is interleaved throughout this chapter to aid the presentation of the con-
cepts and techniques. Chapter 3 applies the theory of Chapter 2 to three additional
lattice methods., The first is a variation of the example lattice method in Chapter
2. The second method is for the one-dimensional Burgers equation. It was originally
introduced as an advection-diffusion model in [7] and later studied as a lattice gas
method in [53]). The third method is for two-dimensional advection-diffusion, Chap-
ter 4 summarizes computational studies on all four of the lattice methods discussed
in the dissertation. The results indicate agreement with the theoretical convergence
rates for the methods. The chapter explores the behavior of the methods outside
their domain of monotonicity (the proven realm of convergence), the results suggest-
ing an extended realm of convergence in some cases. Largely based on the ideas
in [60], Chapter 5 explores domain decomposition for lattice methods. The overall
goal is to be able to concentrate computational resources on regions of high activity,
such as steep gradients [39, 71], and boundary and internal layers (25, 32, 68]). The
chapter introduces a possible strategy, one that might be used for explicit finite dif-
ference methods. Computational evidence supports the strategy and suggests that
domain decomposition techniques can be applied to lattice methods in a manner to

increase performance when only localized increased accuracy is desired. Chapter 6 is

the conclusion.



Chapter 2

' Theory

This chapter introduces a numerical theory for lattice Boltzmann methods and the
Lattice Boltzmann Approximation to lattice gas methods. The theory covers two
techniques for determining equilibria of a lattice inethod, derivation of partial differ-
ential equations via the discrete Chapman-Enskog procedure, and convergence anal-
ysis. Convergence is obtained through formal consistency and stability arguments.
Consistency is shown by a second app ‘ation of the discrete Chapman-Enskog pro-
cedure, while stability is shown by establishing discrete and continuum maximum
and minimum principles for the lattice method, and showing that the method is a

monotone finite difference method. An example is interleaved throughout the chapter.

Section 2.1 introduces notation and definitions of and for analysis of lattice gas
and lattice Boltzmann methods. Section 2.2 provides two methods for determining
equilibria of lattice methods. The first application (and introduction) of the discrete
Chapman-Enskog analysis encompasses Section 2.3. And Section 2.4 introduces the

convergence analysis.



oo

CHAPTER 2. THEORY

2.1 Deﬁnitio‘ns and Notation

This section defines terms and introduces notation for the subsequent discussions and
analyses of lattice gas and lattice Boltzmann methods. We begin with introducing
some vector notation and associated opervtiens, e.g., exponentiation, differentials,
gradients, and the Jacobian matrix. We then discuss norms, order of magnitude, and
some set operations. Next, we discuss ensembles, ensemble averaging, and approx-
imations to ensemble averaging. At this point we define lattice gas methods. And
finally, we discuss the Lattice Boltzmann Approximation to lattice gas methods and

use this to motivate the introduction of lattice Boltzmann methods.

2.1.1 Basic Definitions

Let us denote

B

{0,1}

[a,b] = {z|a<z<b}.

Let d be a positive integer indicating the number of directions in which particles may

travel. Let

f,g € [0,1]* (=[0,1] x [0,1] x --- x [0,1]),

~

d times
o € BY
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and

1= € [0, 1]%.

1
Henceforth, boldface letters and numbers, e.g., f, g, h, n, 0, 1, denote column vectors
of length d. Also, o and § denote vectors in BY, although they are not in a boldface

face. Let fi denote the xth element of f. Then in terms of f; we write f as

k=d-1
‘ [ f } .
k=0
Whetve clear the limits may be left off.

We define the following operations involving f, g € [0,1]%, a € B?, and 1 € B¢:

- d-1
f+g = | fx+ ok ] | (componentwise vector sum),
- 4=F=0
frxg = Sx9k ] (componentwise vector product),
o
f-g = Y feok (dot product),
=0 de-1
f = | 1-fk =1-f (read “not(f)”),
; =1
a = | 1-o =1-a (read “not(a)”).
L k=0

The componentwise vector product (x) has the same precedence as scalar multipli-
cation. Note that operations other than “not” (f) extend to vectors in R?. Other

operations like the logarithm are evaluated componentwise, e.g.,

logf = {bgfk }
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DEFINITION 2.1 (VECTOR EXPONENTIATION). Let n € [0,1)¢ and @ € B
Then define n® € [0,1] by n® = [T%4 n*, in which n = 1.

From the preceding definitions, we see that

_ d-1 d-1
v = o] [T
i=0 1=0
= [ng“’n‘l” . nSiii] . [(1 _ no)(l—ao)(l - nl)(l—ax) c (1= nd—l)(l—ad—l)]
d-1
- H nok(1 — nk)(l-ak)
=0
d-1 —
= H ny TRk, (2.1)
1=0

a quantitity that appears, as we will see, in the collision operator (cf. Definition 2.18).

And since oy € B, we find
nzlk-——kak — nZ"(l —_ nk)(l""") = (2'2)

Note also that

d-1 d-1
a-logn = oy logng = log [] ne™* = logn®. (2.3)
=0 1=0

Differentials

Let C(n) denote a vector-valued function C : [0,1]¢ — [0, 1]¢. Denote the kth function

Ci(n). Let h©@ h(®) . hG-1 & [0,1]%. Then define the jth differential of C(n) as

o | .
—_ BRI R N A
(?njc(n) h'*’h h

k=d-1
d-1 d- - ]
21 Zl dzl ( FCk(n) )hgpnzf)...h{j"” ]
0o “k: $j 1

ko=0 k=0 k,_,::o ()nko([)nkl e ank_]._l

e [0,1)°.
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The jth differential of C(n) evaluated for n = n(® is written

& | ‘
—C(n@) . LORKD) . RKE-1)
8njC(n ) - h®h hV
k=d-1
d-1 d-1 d-1 dic
= XXX (a ooHn) ) g bl - A7)
ko=0 ky =0 ky_1=0 Mo OUTlky nkal n=n(0)
k=0
[0,1]%.
o - o
The Jacobian matriz of C(n) is written —C(n) = | ey y where ¢,y = =—Cy(n).
‘ on k(=0 an
& .
We may use the shorthand notation D’ = 7 (n).
Norms

In the convergence analysis, we use norms over discrete and continuum quantities.

We will use the same notation for each with the context determining the appropriate

definition.

The £,-norm for a function u(#;t) with # € Q = [0, L] is defined by

/o
lu(&;t)l,, = [/ lu(Z;t) |pd1} , forp>1,
if the integral exists and is finite, and
lu(®)lle,, = Jlim Jlu(Z;0)], ,

if the limit exists and is finite.

Let U be an approximation to u(7fAz;nAt) with # € Q = [0,L]P. Then the
£p-norm of U is defined by

. A\ P o)
I, = ((F) Twer)
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Notle that

U™ Nle,, = lim 7], = sup [UF]
1

p—roo

Order of Magnitude' '

DEFINITION 2.2 (ORDER OF MAGNITUDE). We say function g(e) is on the order
of the magnitude of f(n), which is denoted g(e) = O[f(n)], if there exists a constant

c such that !li_rn)f(c)/g(e) =c.

- Sets

The following definitions are from (55, p. 68 and p. 258}, modified for lattice methods.
DEFINITION 2.3 (CONNECTEDNESS). We say a set A C R? is connected if there
do not exist two non-empty, open sets, B and C, such that AC BUC, AN B # 0,
ANC #0,and ANBNC = 0.
DEFINITION 2.4 (SET VOLUME). If€ C [0,1]¢, define the characteristic function
lg(n) of € by
1, n€E,
0, ng€.

lg :[0,1]* = R, 1g(n) =
We say that € has volume if 1¢ is integrable, and the volume of € is the number
/8 lg(n)dn = ‘v(E).

(Note that it makes sense to talk about the integrability of 1¢ since € is a bounded

set.)
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Ensembles

An ensemble is a possibly infinite collection of events or values. The ensemble average
is the expected or average value of the events or values. Let @ denote a particular
event in an ensemble. Then its ensemble average is written (Q). Henceforth, when
discussing ensembles and ensemble averages, a quantity without a hat (“”) is taken
to be the ensemble average, e.g., @ = (Q).

It is ofteis convenient to discuss the correlation between two collections of events.
One mathematical tool for doing so is the covariance, which is defined as follows:

DEFINITION 2.5 (COVARIANCE). Let A and B be two collections of events. Let
& be a random event in collection A; let b be o random event in collection B. Then
from probability theory, e.g., [50], the covariance between A and B, Cov(A, B), is
defined by

Cov(A, B) = (ab) — (a)(b).

The covariance measures the dependence between two collections;! the covariance
between two collections is zero if they are independent, i.e., statistically uncorrelated.

In the abscence of having labels for collections, we may write
Cov(a,b) = (ab) — (a)(b),

with the meaning understood.

For spatially and temporally dependent data, there are a variety of methods fér
approximating the ensemble average with as few as one instance (event) of an en-
semble, the simplest being to average over the few instances. Spatial and temporal

averaging may be used when certain assumptions regarding correlations can be made,

"Mute that the concept of covariance can be extended to measure the correlation among multiple
colle..ii s,
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e.g., ergodicity. (For systems of particles such an assumption may regard molecular
“ ‘. ] ‘ m ' 4 )

chaos® when using spatial averaging.) The validity of temporal averaging depends on

how slowly and locally the data evolves in time. Combinations of all three methods

may be used to approximale the ensemble average for a possibly infinite ensemble,

Lattice gas calculations have, in general, used the spatial averaging approach (applied

to one instance),

2.1.2 Lattice Gas Methods

This dissertation focuses on one-speed models, although the concepts can easily be
extended to multi-speed models, including models with rest particles, i.e., particles
with no velocity. In the one-speed models, particles move about in unison according
to the ticks of a discrete clock along the links of a regular lattice with unit speed
and interacting at the nodes of the lattice; a set of collision rules determines the
nature of the interactions. The interactions change the velocity of the particles,
which are indistinguishable, and the outcomes are deterministic or nondeterministic,
depending the collision rules. Lattice gas methods are inherently designed with ’the
Fermi Exclusion Principle.

DEFINITION 2.6 (FERMI EXCLUSION PRINCIPLE). The Fermi Exclusion Prin-
ciple (for lattice gas methods) allows at any given time, at most one particle per

direction per node.?

Adhering to this principle ensures either absence or presence of a particle moving in

“See, e.g., [64, p. 523] for a discussion of the molecular chaos assumption.
3Note that one can adhere to this rule and obtain multiple particles per direction by duplicating
directions where increased numbers of particles are desired to be allowed. Each “same” direction

would have different direction labels, though they would denote (through interpretation) identical
physical directions,
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a particular direction at a node. It is in this way that a finite number of bits may be
used to describe the state at a node—-one bit for each direction. Supposing that cach
node has d links, a node state may be described as an eloment of a Boolean field, BY,

Toward building notation for quantifying a lattice gas method’s behavior, the
lattice gas methods discussed have the following characteristics: a doubly periodic
(toroidal) regular lattice suspended in p-dimensional space, = [0, L]*, with d links
per node, each link having length Az = L6 time advances in units of At = 7T'6%
where L and T are the spatial and temporal scale lengths, respectively. We adopt the
following from [37, pp. 657-9]:

DEFINITION 2.7 (LATTICE), Let Bravais lattice, £ C RP, be such that there
exists a set of d velocity vectors, €, k € {0,1,...,d — 1}, having equal modulus (the

modulus, ¢, is called the particle speed). Regarding the velocity vectors, we adopt the

p—-1
€k = [ €k, } .
=0

We may refer to the velocity vectors as the unit velocity vectors. Of £ and the velocily

notation

vectors, we require:

1. {T+é& | ke {0,1,...,d =1}} C L is the set of nearest neighbors of lattice node
7€ L,

2. for any two nodes 7,7 € £, there exists a finite sequence of velocity vectors,
hd -4 -;ﬁ
Choy Chyy v e o yChkp
P
-t - -
such that ¥ = 7+ Z €k,
p=0

8. For any pair of velocity vectors, (€, €), there exists an element, which maps
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from € to &, in the crystallographic group & of isometries globally preserving

the set of velocity vectors,

4. Let & denote the subgroup of & that leaves velocity vector €, invariant, Let
Ay be the orthogonal hyperplane of €. Then there is no non-vanishing vector
in Hy that is inveriant under all the elements of By, and the only linear trans-
formations within the space $Hi that commute with all the elements of B are

proportional to the identity in RP.

DEFINITION 2.8 (OCCUPATION NUMBER).  The occupation number denotes
the number of particles (0 or 1) with a particular velocity at a node. We denote this
()} € B for the number of particles in direction k at lattice node © € £ and time

step n. For a particular node, e.g., (T;n), we denote the vector of occupation numbers

v k=d-1
ﬁ? = l: (flk)? } ‘

where d is the number of directions on the lattice.

We may sometimes use the alternative notation #x(#{n) = (fix)}. Note that n used

as a superscript denotes a time step.

At this point we introduce an example? that will be interleaved throughtout the
text. We will refer to this example as new material is introduced. The example
lattice method, we will find, is a model for diffusion via a two-dimensional nonlinear

diffusion equation.

‘Examples are typeset in Sans Serif fonts at a slightly smaller pointsize than the surroumlmg
text. Their margins are slightly reduced, also,
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Figure 2.1: LB, direction labels.

Example (LBj: Its Lattice and Velocity Vectors).

Consider a two-dimensional deterministic lattice gas method, called “LB;", with a
square lattice. Its cells are also squares. Let each edge have unit length Az with
time advancing in units of At. There are four directions in which particles may
travel to nearest neighbors, so n = 4. Let us label these directions 0, 1, 2, and 3
in a counterclockwise fashion with 0 being to the right. Pictorially, this is shown
in Figure 2.1, We see (fo)7 is the number of particles (either 0 or 1) moving in
direction 0 at position (1), Also, A} € B4 is a vector of occupation numbers.
Here, 7= (1,7) is the vector of indices over the two-dimensional lattice, ‘where ¢ and
J index horizontal and vertical positions on the lattice respectively. Unless stated
otherwise we assume that i is evaluated at (7in). Note that the unit direction

vectors are

2
S
i

(2.4)

N
i

™
1l
—_ o~ o~ o~
(o=
—
~—

17
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Let the coordinate axes be given by & = (2p,a,) = (2,y), where the x-axis is in
the direction of .

Let us verify® that the lattice and velocity vectors for LBy satifies the require-
ments of Definition 2.7. Note that permutations and reversals of the x- and y-
coordinates generate the isometry group & of the set of velocities, {é, €|, 5, €4},
Any & can be mapped to & by the above isometries; for example, & maps to &
by permuting the x- and y-coordinates of &, and then reversing the sign of the
y-coordinate in the result. Let g, denote the subgroup of & that leaves & invari-
ant, We see that in each case, the subgroup consists of the identity and reversal
of the (k+ 1 (mod 2))-coordinate. In addition, the orthogonal hyperplane to &} is
k= $pan(€{k41 (mod 2))). There is no non-zero vector in § that is invariant un-
der the subgroup gy, and the only linear transformations within $, and commuting

with all elements of g, are proportional to the identity operator.

Microdynamical Equation

The behavior of a lattice gas is governed directly by its rules: rules for advecting
particles to new locations and rules for determining new directions of the particles.
These are characterized in the microdynamical evolution equation for a lattice gas
method:
Any = ay + C(ag), (2.5)
where A4 and C are the advection and collision operators, respectively,
The microdynamical equation, FEq. 2.5, says that the new occupation numbers (on

the left) at the new locations, (7'+ € n+ 1), are the same as the occupations numbers

5Note that LB, shares the same lattice and set of velocity vectors as the HPP model {48] for
some two-dimengional Navier-Stokes-like equations. Verification of the requireinents for the lattice
and set of velocity vectors of the HPP model is given in (37, p. 691]. We repeat the verification here
for completeness,
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at the current location, (7in), plus some correction for particles changing directions.
The term, (1)}, is the vector of occupation numbers at (% n). The collision operator,

C, changes the direction of particles at (¥in) before the advection. Then the sum,
(% n) + C(A(7in)),

describes the new occupation numbers that are to be advected.
DEFINITION 2.9 (ADVECTION OPERATOR). Let a lattice, £, and its associated

unit velocity vectors, {€, €y, ..., €4-1}, be given. Then then advection operator, A,

is defined by

N 1

(no)?:é‘o
d=1

) ()i, .
An,'.‘ = ‘ ! = (nk)?:é}k

: k=0

. 1

L (nd-l)?-té'd..l i

The advection operator, A, is used to describe mathematically the movement of par-
ticles to their new locations.
Note that the microdynamical equation may be written in a more familiar differ-

ence equation format, i.e., without the advection operator,

d—1
Apt! = [ Hi(Af g, } ,

k=0

where
Hi(8f 5) = (fu)ig +C(AL ).
State Transition Function and Collision Rules

First of all, note that each lattice node has a state that describes its configuration.

We have denoted this state with the occupation numbers, A}, Because i € BY, there
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are exactly 24 possible configurations or states that a particular lattice location can
have. CGiven that a location is in state o € BY, say, e.g., o = fl, then there are
2 possible new states, # € BY. Depending on the lattice gas method, there will be
a certain probabilility that a location in state a will change to state B before the
advection occurs, This is determined by the collision operator. We can define a state
transition function that maps these probabilities for the finite number of a and g
combinations.

DEFINITION 2.10 (STATE TRANSITION FUNCTION).  Let the set of possible
states at a laitice node in a lattice gas method be B, Let S : B¢ x BY — [0,1] be
defined by

S(e — B) =P {a — B},
where

Y, S(a—=B)=1 Yae B,
peBd

i.e.,, S obeys conservation of probability, Then S(a — ) is the probability of a
transition from state o to state 3, independent of location. S(a — f3) is called the
state transition function of a lattice gas method.

The state transition function determines the probability of a lattice node changing
state prior to advection. Let us put this in terms of the lattice particles. Iirst, let
a be the state at a particular lattice node. Then it describes the particles and their
respective directions at that node. Let 8 be a new state at the same lattice node prior
to advection, so that 3 describes the particles and their new directions. Note that «
and £ may, of course, be diflerent. Given that a node is in state «a, the probability
that it will change to state g prior to advection, is S(a — ﬂ). If the number of

particles in o and # are the same, i.c., mass is conserved, then the state transition
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function describes the process of particles obtaining new directions.
We assume that the state transition function may be expressed in a finite sum in

powers of 6, V6 € [0,1], i.e.,

Sl 8) = X 559(a - ) 20

=0
for some J > 0, V a,8 € B% Such an expansion exists for all the methods studied
herein (as well as all other one-speed lattice method methods like FHP [38] and
FCHC [37]); it . the case that J = 0 (for the diffusion models) and J = 1 (for the
advection-diﬁ‘usion models).

We adopt the following from [37, p. 660], which also discusses further invariance-
and isotropy-related properties:

DEFINITION 2.11 (LATTICE ISOMETRY INVARIANCE). Let S have the expansion
in Eg. 2.6. A state transition function, S, is said to have lattice isometry invariance

if SO is invariant under all isometries preserving the set of velocity vectors, i.e.,
SO(g(a) —+ g(B) =SV (a—p), Vge®, Ya,feB.
DEFINITION 2.12 (COLLISION RULES). The set of collision rules of a lattice gas
method is the tabulation of the mapping of its state transition function.

Example (LBj: Collision Rules).

The collision rules for LB are exhibited in Figure 2.2 and listed in Table 2.1.

DEFINITION 2.13 (CONSERVED QUANTITY). Leta € [0,1]¢. Then a is said to
be a conserved quantity if
d-1

ST (B — ex)S(a— Blar =0 Y o, 8 € B

k=0
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Table 2.1: LB, Collision Rules.

5(a— b)

p

B Bl

By
0

Po
0

Qp Q2 Qa3
0 0 0

Qg
0

-

10
11

12
13
14

ERLE
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STATE PB‘ E-COLLISION POST-COLLISION

No Particles ——— = —_—
One Particle L E—— = —t

\
Two Orthogonal Particles ——sf—w = —r
Two Head-on Particles — e = —_1__
Three Particles —_ = ~——{——
Four Particles —f— = +

Figure 2.2: LB: collision rules. The only states in which particles change direction
are those with exactly two particles present. In both the orthogonal and head-on
cases, particles change direction to the unoccupied directions.
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Conservation of mass and momentum are related to
ar € span(l) and  ak € span(exo,€k1y. - Chp-1)s

" respectively. We assume herein that these are the only types of conservation laws

that a lattice method may have.
DEFINITION 2.14 (MAss-CONSERVING). A lattice method is said to be mass-
cbnéerving if

i:,@k—ak S(a@—p)=0 ¥a,pe B

The important concepts of detailed balance and semi—detailed balance are defined
as follows:®

DEFINITION 2.15 (DETAILED BALANCE). Let S(a — 3) be the state transition
function of a lattice method method. Then if S(a — f) =&(B — a) ¥V a,B € B, we
say that the lattice method satisfies detailed balance.

Example (LBy: Detailed Balance).

To show that LB satisfies detailed balance, we must verify that each collision rule
satisfies detailed balance. As an example let us verify that rule 3 satisfies detailed

balance. In rule 3,

- . -
0 1
0 1

S( — ):1
1 0
1 0
L J L d

8 They play important roles in (1) determining equilibrium solutions of a lattice method, and (2)
guaranteeing that the linearized collision operator is nonpositive definite.
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and checking the table, we find (see rule 12)

1 0
1 0
S( — )=1
0 1
0 Ll

Thus, rule 3 satisfies detailed balance. Note that this also verifies detailed balance

of rule 12. Checking the remaining rules, we find that LB satisfies detailed balance.

Note that while a lattice gas method may not satisfy detailed balance it may
satisfy semi-detailed balance.

J

DEFINITION 2.16 (SEMI-DETAILED BALANCE). LetS(a — ) =Y 68W(a —
i=0
() be the state transition function of a lattice gas method. If

5" SO@—=p)=1 Vpe B,
aeBd
then we say that the lattice method satisfies semi-detailed balance.
DEFINITION 2.17 (QUASI-DETAILED BALANCE). Lc¢' S(a — B3) be the state

transition function of a lattice gas method. If

S BS@-B =3 BS(B—a) VaebB,
peBd peBd

then we say that the lattice method satisfies quasi-detailed balance.

Note that detailed balance is a special case of semi-detailed balance, for

Sla—=p) = SB—a) Va,pBe B
= 2. Sla=p) = Y 88— a)
= | V,ﬁEBd,
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by renaming indicies and since all transition probabilities are normalized so that

Y. Sla—p)=1 Yae B

ped
Example (A Lattice Method with Semi-Detailed Balance without Detailed Balance).

Consider a lattice method on a two-dimensional square lattice (the lattice used in

LBy). The collision rules are dafined as follows:

e If a lattice node has exactly one particle, moving in, say, direction k, then its

new direction is k + 1 (evaluated modulo 4).

» In all other cases, particles do not interact, passing through each other, i.e.,

the node's state does not change.

The rules are summarized in Table 2.2. By examining the table one finds that
all rules, excepting rules 1, 2, 4, and 8 (the single-particle collision rules), satisfy
detailed balance. Rules 1, 2, 4, and 8 individually satisfy semi-detailed balance,

however. Consider rile 1, in which

o O O

L J L 4

and S(a — B) = 1. But S(8 — «a) = 0, i.e., state 3 never makes a transition

to state a. However, semi-detailed balance is satisfied, for with 3 fixed as above,
Z S(¢ — B) = S(a — B) = 1. Checking the other non-detailed balance rules
(eB*

(2, 4, and 8), it can be verified that they satisfy semi-detailed balance. Thus, on

the whole the lattice gas method satisfies semi-detailed balance.

Whether a lattice gas method satisfies detailed or semi-detailed balance is im-

portant for one method of determining its equilibrium behavior. We will see this in
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2.1.

1
1
1

1
1

[Rule o A S(a — B)
ap ay ay as|PBs B P2 Ba

11

12
13
14

15

Table 2.2: Collision Rules for an Example of Semi-Detailed Balance without Detailed

Balance.
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Section 2.2.7

"The collision operator, C, is defined in terms of the state transition function, S,
as follows: |

DEFINITION 2.18 (CoLLISION OPERATOR).  Let a lattice gas method on a

regular lattice with d directions in p-dimensional space be given. Let its state transition
function, S : BY x B = [0,1], and occupation numbers i = f(#in) € B4, be given.
Then the collision operator, C : B* — B%, of the lattice gas method is defined by

)= 3 S(a— B)B - a)ih .

a.ﬁGBd
The kth component of the collision operator is

C(d)= 3 S(a— B)(Bk — ax)h°R",
a,feBd

where
S(a — P) is the probability of a transition from state « to state 3,

(Bk — ) € {—1,0,1} is the correction for direction k,

0, otherwise

To see the last statement, look back at Eq. 2.2 and use the fact that A, € {0,1}.
We can now formally define a lattice gas method:
DEFINITION 2.19 (LATTICE GAS METHOD). A lattice gas method is defined
as a system that satisfies Eq. 2.5 with the advection operator, A, and the collision

operator, C, as defined in Definitions 2.9 and 2.18, respectively. Let S be the state

"The usefulness of quasi-detailed balance is under investigation for guaranteeing certain properties
of the linearized collision operater.
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transition function of a lattice gas method. If the runge of S is B, then we say that
the lattice gas method is deterministic. If the range of S is [0,1] and not B, then we
say that the lattice gas method is stochastic or probabilistic.

DEFINITION 2.20 (ROTATION INVARIANCE). On a two-dimensional lattice, a

collision operator is said to be rotation invariant if Vi € B4, Vi€ {0,1,...,d -1},

d=1 d=1
C [ Tkl } =C [ kel ] )
k=0 k=0
in which all indices are evaluated modulo d.

Example (LB;: Collision Operator).

We can write the collision operator for LB by examining its collision rules in Tabie
2.1. The collision operator is a summation over all the collision rules and with
i = A(%n) may be written: |
Clh)= 3 Sla—pB-aiF = Y Sla—pB- )R,
o,f€Bd a,feBd

Each rule in Table 2.1 contributes one term to the summation. We will look in
detail how one of these terms is generated, and then forgo the details for the rest
of the terms. Consider rule 9 (denoted Rg) in Table 2.1 We want to determine its

contribution to the collision operator summation. Well, in rule 9

1 0

0 1
a= y B= )

0 1

1 0

and
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Then
r “ r '} o j
0 1 -1
1 0 +1
(ﬂ’““) = ( - )= ’
1 0 +1
0 1 1 -1
L ol L e L s
r
1, 0, 0, 1]
ne = n[ = ndAdAdR) = Rofia,
T T
" -l 1 0 0,1] [0, 1, 1 0]
A = n[ =(1-1) '
= (1= 0)°(1 = 71)'(1 = g) (1 — 723)°
= (1—ﬁ,1)(1—f12).
And so,8

A =

which is a scalar, as expected. Then the term contributed by rule 9 to the collision

operator is i
-1
— +1 ——
S(a b ﬂ)(ﬂ - a)ﬂ"’ N = fl()’fll flzﬁa.
+1
N

The Oth component of the above is —figfy figfig. Rule 9 contributes this term to

the Oth component of the collision operator, Co(f1), in the following:®

Co(R) =

Al o : T - . ~ S -
8¢ef. Eq. 2.1 and Eq. 2.2 with a = [ I, 0, 0, 1 ] and n = [ flg, 7y, fg, Na ]T.
9The indicated rule contributes the underbraced term to the collision operator.
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+7ig Ry Ry + oM Tz g +Tigh afig ~ NoRy Rghg — RoRiilafl ~ oy 7g Tig .
Rule3  Rule5  Rule6  Rule9  Rule10  Rule 12
The other terms (besides the one contributed by rule 9) in the above can be

determined directly from the collision rules in the same way as outlined for rule 9.

Because LB is rotation invariant, we can write

Ck(R) = +Rk Phg1Rkpalhss + PhkRhp1 Tohpafthts + Pk Pkpt Rhg2 Rbsa
— Pk Pokg1 k2 ks = Pk 1 Phoga Tkt — Pk Phgi kg a Dagas
(2.7)

in which the indices are evaluated modulo d = 4. Alternatively, we could go
through the collision rules and explicitly determine each component of the collision
operator; we would find that we could write it as in Eq. 2.7. We can write the

collision operator as a vector by

C(h) = [Ck(ﬁ) ] ‘

2.1.3 Lattice Boltzmann Methods

DEFINITION 2.21 (MEAN OCCUPATION NUMBERS). Denote the ensemble average

of the occupation number for direction k by

(n)y = ((f)7).

Then (ng)} € [0,1] is called the mean occupation number in direction k at (3}n). The

vector of mean occupation numbers at node 7* and time step n is denoted

d-1
np = [ (ng)¥ } e [0, 1]%

k=0

The microdynamical equation for the mean occupation numbers is

An} = n + (C(i}).
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Assuming that the expected value, i.e., the ensemble average operator, passes through

the nonlinearities in the collision operator, we may write
ny . I
C(n}) = (C(AY)).

DEFINITION 2,22 (LATTICE BOLTZMANN APPROXIMATION). The Lattice

Boltzmann Approximation to a lattice gas method is
An} = n} 4 C(n}).1° (2.8)

We refer to C as the lattice Boltzmann collision operator Under this approximation,
we refer to the n} as the occupation numbers. The extent to which the Lattice
Boltzmann Approximation to a lattice gas method holds depends on the underlying
statistical properties of the lattice gas method. Specifically, the covariances!! must
be negligible.

We will using an ordering the lattice Boltzmann collision operator in later analysis.
Let 6 such that 0 < & <« 1 be given and consider a fixed vector, n € [0,1)¢, of
occupation numbers, The we will assume that there exists coefficients, C¥), such that

J
C(n) = Y_6Cl¥(n), (2.9)
=0
for some J > 0. This expansion is based on the Eq. 2.6, the expansion for S. A
dependency of the collision operator on § can produce a method that models nonlinear
advection, the nonlinearity being introduced as a consequence of the Fermi Exclusion
Principle. I'or the methods studied herein, we assume that J < 1, In the absence of

advection, we write C(n) = C(®(n); such is the case for LBy. (See Sections 3.2 and

1 Orl\

his equation, in reference to lattice Boltzmann methods (see Definition 2.23), is called the
Lattice Boltzmann Equation.

Gee Definition 2.5 regarding covariances. Also, see the example in Section 3.2, in particular,
Section 3.2.3, for an explicit representation of the covariances in a lattice gas method.
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3.3 for cases in which J = 1.) Note that C(%(n) is referred to as the O[1] contribution

of the collision operator.

Example (LB;: Lattice Boltzmann Collision Operator).

The lattice Boltzmann collision operator for LBy is given by

Ce(n) = +TETERFTk+2Tk43 + TR k41 ThF2 k48 + TRIk+1Tk+2T k13

—NEThE1 Tkt alk4+3 — NkThy1Tk42Th+3 — NNk 1Th42 Thta

and remains valid in the Lattice Boltzmann Approximation to the extent that the
covariances may be neglected, i.e,, that the ensemble average operator passes

through the nonlinearities in the collision operator. In vector notation, we write

—‘3

C(n) = [Ck(n)} ‘ (2.10)
k=0

DEFINITION 2.23 (LATTICE BOLTZMANN METHOD). Let the occupation num-
bersn} € [0,1]¢ evolve according to Eq. 2.8. Then a method satisfying microdynamical
equation Eq. 2.8 is called a lattice Boltzmann method. We refer to Eq. 2.8 as the

Lattice Boltzmann Equation,

Discussion

The occupation numbers in Eq. 2.8 are analogous to particle density functions in the
Boltzmann equation of hydrodynamics as can be found in, for example, [4]. We will see
later that lattice Boltzmann methods are finite difference methods. A major difference
between lattice Boltzmann methods and typical finite difference methods is that in
the latter, the hydrodynamical equations, i.e., the partial differential equations, are

differenced, whereas in the former the hydrodynamical equations are not directly

m
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differenced, rather the Boltzmann equation is differenced. The differenced ciuantities
relate in a special way to the solution of the hydrodynamical equations.

Note t‘hut. the definition of lattice Boltzmann method may be extended by drop-
ping the Fermi Exclusion Principle so that n} € [0,00)¢. The same microdynamical

equation applies, i.c., Eq. 2.8; however, the collision operator is then defined by

Cn(#in)) = > (B-a)Sla— B)(n(#in)) (2.11)
o J€ B4
d=1
= > (B-a)S(a—f) H ng(Tin)),
adelid

in which (nx(7in))? is defined to be 1 for all ng(#}n) € R. Note that a lattice Boltz
mann method without the Fermi Exclusion Principle is not a Lattice Boltzmann
Approximation to a lattice gas method, for without that principle the occupation

numbers are not restricted to the interval [0, 1].

Example (A Lattice Method Without the Fermi Exclusion Principle).

Dropping the Fermi Exclusion Principle in LBy yields the collision operator,

3
C(n) = [ Ck(n) } :

k=0
where

Ch(n) = Nkgatbss + Nkgp1 k43 + RA41T k42 = DkT4E = ThTkp2 — DRk,
the indices being evaluated modulo 4. Note that the lattice Boltzmann method,
An} = n} + C(n}),

requires fewer arithmetic operations than in the corresponding lattice Boltzmann
method with the Fermi Exclusion Principle, i.e., LBy (cf. Eq. 2.10, the collision

operator for LBy).
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Subsequent analysis herein pertains to lattice Boltzmann methods with the Fermi
Exclusion Principle (ti:2n the analysis applies to their counterpart lattice gas meth-
ods under certain statistical assertions). Most of the analysis can be easily and
straightforwardly extended to lattice Boltzmann methods without the Ferni Exclu-
sion Principle by using occupation numbers n € [0,00)? and a collision operator as
defined in Eq. 2.11, with the same definitions for the various types o. balance, e.g.,

semi-detailed balance.

2.2 Equilibrium Analysis

DEFINITION 2.24 (EQUILIBRIUM). If for n(® € [0,1]¢, CO(n(®) = 0, then we say

that n© s an equilibrium solution of the Lattice Boltzmann Equation, Eq. 2.8.

This section provides and discusses two methods for determining equilibrium solu-
tions of the Lattice Boltzmanu Equation, Eq. 2.8. One approach is via a theorem for
lattice methods satis{ying semi-detailed balance. The other approach is more direct
and applies even in the absence of semi-detailed balance. It is, however, somewhat
more cumbersome to use in lattice methods with large phase spaces, i.e., large d.
But for lattice methods not satisfying semi-detailed balance, one generally resorts to
the alternative approach. Once having obtained the algebraic form of equilibrium
solution, it is used to calculate the linearized collision operator of the lattice method,
which is employed to generate the discrete Chapman-Enskog expansion. First, we

introduce the direct method, then the one requiring semi-detailed balance.
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2.2.1 Determining Equilibria Directly

The simplest and most direct method for determining the equilibria of a lattice
method is to set the O[1] contribution of the collision operator, C(°)(n), to zero. This
produces d nonlinear equations and d unknowns. The equations may be manipulated

so that each unknown is in terms of the other unknowns.

Evample (LB: Equilibria via Direct Method).

Consider setting the collision operator (as in Eq. 2.10) to zero. Note that the
collision operator is O[1], i.e., C(n) = C(®(n). Then C(n) = O implies that

Co(n) = Cy(n). After some algebraic manipulation, we find ng = ny. Similarly,

Co(n) = Co(n) = mng = ny,
Co(n) = Ca(n) = nNg = N3.

Hence, ng = ny = ny = n3 = u and the equilibrium solution has the form

. -

u

u
n(© =

2.2.2 Equilibrium Theorem

Another technique for determining equilibria of a lattice gas method is through the
following theorem. This theorem applies to lattice methods that satisfy semi-detailed
balance.

THEOREM 2.25 (EQUILIBRIUM THEOREM).  Let a lattice method satisfying
semi-detailed balance and upholding the Fermi Ezclusion Principle be given with col-

nl

lision operator, C : [0,1) — [0,1]* with expansion, Fq. 2.9, and state transition
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function, S(a — B), with ezpansion, Eq. 2.6. Then for n € (0,1)%, CO(n) =0 if
and only if n°R = nPAP V a, B € B? such that SO(a — B) # 0.
First, we introduce and prove some lemmas, after which we prove the theorem.

The lemmas (and the subsequent proof of the theorem) use an auxiliary function,

s: R* — R, defined by
s(n) = —(1-n) - log(l —n)—n-logn,

Now, let s'(n) denote the gradient,

Then we have vector

and
d-1
52
s"(n) = s
k=0
where
1
—_— k=,
Spt = nk(l — ny)
0, otherwise

Note that for n € (0,1)¢, the s”(n) is negative definite. Hence, s(n) is concave

downward on the interval (0,1)?. We now proceed with the statement of the lemmas.
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‘ nne
LEMMA 2.26. Let o, € B Then (8 — a) - s'(n) = log ( a—ﬁ)'
nfm

Proof. Recalling that @ = 1 — n with 1 € R? denoting a vector of ones, we have

aa

-1

(B-a)-s'(n) = =) (Bx—ax)log 1

k=0 Nk

d-1 (Br=ck)
H Nk
& k=0 1- Mk

n (U—ﬁ)
= log (1 - n>

= logn©=? _logm*-A

= logn®n® — log nPHP — log T + log @t

nen®
= log

nﬁ

A result of semi-detailed balance is the following:.
LEMMA 2.27. 3 8O (a — B) (nﬁﬁ'ﬁ —~ n"’ﬁ*—"> =0.

o,
Proof. Semi-detailed balance and renaming indices gives

3 SO(a— B) (nﬂﬁﬁ—- n“ﬁa)

a,feBd

= Yo' Y 8O(a = f) - 3. 8O(a — f)n°m®
B8 o

o8

= Y 5O(a = fn°m" - Y SV (a - f)n*n®
a'ﬁ Vﬁ
= 0.

LEMMA 2.28. Let f(z,y) = zlog(z/y) +y — x. Then for any (z,y) € Q =
(0,00) x (0,00), f(z,¥) > 0 and f(z,y) =0 if and only if v = y.
Proof. We look at the global minimum of f on {2, and we show that the global

minimum is 0 is achieved for (z,v) such that £ = y. First, we show that the only local



2.2, EQUILIBRIUM ANALYSIS 39

Table 2.3: The Sign of the First Partial Derivatives of f(z,y).

sign(fu(z,y)) [ sign(fy(z,9)) |

<y -

T>Y + -

extrema, which are zero, are at those points in A = {(z,y) | ¢ = y}. Then we show
that on the boundary of Q, i.e., 8Q, f(=z,y) is positive for (z,y) € {(z,y) |z #y} C
onN.

The critical points of f(z,y) are found where f,(z,y) = f,(z,y) = 0. Noting that
fe(z,y) = log(z/y) and f,(z,y) = 1 — z/y, we find critical points at (z,y) € A. To
show that (z,y) € A is at a local minimum, we resort to examining sign(fz(z,y)) and
sign(fy(z,y)) near z = y since the second derivative test fails. The sign of the first
pértial derivatives of f are exhibited in Table 2.3. The signs are such that indeed
(z,y) € A gives a local minimum of f(z,y) = 0. Hence, z = y indeed gives a local
minimum of f(z,z) = 0.

Checking the boundaries of 1, we find

1. For fixed z # 0 yli*m(>° f(z,y) = oo and yl_iglof(m,y) = 00,
2. For fixed y #0 lim f(z,y) = oo and zlj_rilof(a:,y) =y.
3. mli_gnol}_i_r_r*lof(x,y) = 0o and yli_r'nwli_n)lof(w,z) = (.

Then since f(z,z) =0V z € (0,00) and the only local minima are at (z,y) 3 z =y,
the global minimum of f(z,y) is 0 and is achieved for (z,y) such that z =y. O

Figure 2.3 exhibits a graph of f(z,y), substantiating the lemma.
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B & ”’
3 i
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(a) | (b)

Figure 2.3: Graph of f(z,y) = zlog(z/y) +y - z for (x,y) € [0,1] x [0, 1] from two
perspectives. (a) Perspective is at (z,y; f(z,y)) = (-3/2,1/2;1/2); (b) perspective
is at (z,y; f(z,y)) = (3,2;1/2). Note that the graphs are clipped as f—o0.

LEMMA 2.29. Let f(z,y) be as in the previous lemma. Then
g'(n) - CO(n) = S 8O (a — B) f(n°A®, n’HwP).
o8
Proof. The result is obtained by combining Lemmas 2.26 and 2.27. O
LEMMA 2.30. s'(n)-CO(n) = 0 if and only if n°A% = n°AP V a,8 € B¢ >
SO(a — B) £0.
Proof. Since S©(a — ) > 0,

if and only if V &, 8 3 S@(a — 8) > 0, f(n®H*,n’A?) = 0. Note that n°f® > 0 and
n’i® > 0 since n € (0,1)4. Then by Lemma 2.28, f(n°*T®, nn?) = 0 if and only if

n°ii® = nfu’?, 0O
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Proof of Theorem 2.25. In view of Lemma 2.30 it suffices to show that 8'(n) -
CO(n) = 0 if and only if C@(n) = 0 . Well, certainly CO(n) = 0 implies s'(n) -
C®(n) = 0. Now, assume s'(n) -C(D)(n) =0V n € (0,1)%. Note that s'(n) = 0 if and
only if ng =1/2V k € {0,1,...,d — 1}; but, in this case, C©(n) = 0 by semi-detailed |
balance. Thus, C@(n) =0V n € (0,1)¢. O

2.2.3 Applying the Equilibrium Theorem

We now apply the theorem from the previous subsection to determine possible equi-
librium solutions of a lattice method satisfying semi-detailed balance. First, we will

- outline the steps, then apply them to our example method, LB,. The steps are as

follows:

1. Verify that the lattice method satisfies semi-detailed balance, i.e., verify
38N a—pg)=1.

2. For each , 8 3 S©(a — $) > 0 add n*H® = nPHP to a system of (nonlinear)

equations, by Theorem 2.25.

3. Solve the system of equations and identify equilibrium solutions, if possible.

The following will help in applying Theorem 2.25.
g

LEMMA 2.31. Letn € (0,1)* and define g € (0,1)? by gy = . Then for

l—nk
L#k, gt = g iff iy = ny.

Proof.. Clearly,

ny Tk

= & =
gr= gk 1 —my 1 —ny
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& (1 =ng)ny = (1 — ny)ng

& Ny =g =N — yng

3

Example (LB;: Equilibria via Theorem 2.25).

n = ng .

In LBy, note that S(a — ) = SO (a — §). We determine the equilibria following

the steps outlined above:

1. LBy satisfies detailed balance (and hence semi-detailed balance) as verified

in Section 2.1.2 (p. 24).

2. There are six collision rules in LBy in which S©@(a — 8) > 0. But be-

cause LB satisfies detailed balance these rules generate only three unique

equations. The system of equations is

n®011(F)1100 - p1100(

=l

ﬁ-)OOll

nOllO(

=l

)1001 —_ nlOOl (-ﬁ)OIIO

nlDlO(-ﬁ-)OIOI - nOlOl(-ﬁ-)l()IO

or

nenaNo M1 =
ninMig N3 =

nongfiy By =

(from rules 3 and 12)
(from rules 6 and 9) 2

(from rules 10 and 5)

noni M2 N3
nonafy Tz (2.12)

n1naMo g

3. There are trivial solutions to Eq. 2.12 if we allow n € [0,1]¢, They occur

when various combinations of nj are either zero or one. Now, we return to

2Here, the superscripts are in shorthand vector exponent notation so that, e.g.,

n001! 0. 0,

= ul

1, 1"
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the assumption, n € (0,1)¢, to determine non-trivial solutions, To help find
the solutions, define gx = nx/(1 — ng), and write Eq. 2,12 in terms of the

gk We then get

1

9295 = gogi (a)
g192 = gogs (b)
gog2 = @143 (C)

Solve for go in the first equation, (a), to get

_ 9293

0= —

N

.

Substitute this for go in the others, (b) and (c), to obtain (remember that

each gi > 0)

nt = gt = g

922 = 0

1l

g3
=% o= g1
Substituting these for g3 and gz in the second equation, (b), gives go = g1.

And in summary, we have
g0 = g1 = g2 = g3.
Thrice by Lemma 2.31, we have
Ng = N1 = Ng = N3 = U,

Let n(®) denote the non-trivial equilibrium solution. Then

o L

u

MO (2.13)
u

Uu

Note that this is the same result found by the direct method of Section 2.2,1.
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2.3 Discrete Chapman-Enskog Analysis

This analysis recovers the partial differential equations that are consistent with a lat-
tice method, These are known as the hydrodynamical equations of a lattice method. '
Also, toward proving convergence, the discrete Chapman-Enskog analysis is applied to
verify formal consistency of lattice methods, as is shown in the next section. B..ically,
the analysis involves matched asymptotic expansions: An asymptotic spatial-gradient
expansion of the mean occupation numbers is combined with Taylor series expansions
of the advection and collision operators for a lattice method to obtain the discrete
Chapman-Enskog expansion. The analysis is accurate for lattice gas methods to the
extent that the Lattice Boltzmann Approximation remains valids,

All expansions are in terms of a parameter, § 3 0 < § « 1 that is related tc
the size of the lattice though Az and At and any O[Az| advection biases. Differ-
ent relationships between these parameters may result in differing sets of consistent

equations,® The following outlines the matched expansion analysis:

1. Expand the vector of occupation numbers'® n(&;t) in an asymptotic series in &
about an equilibrium function, n(®(#;t) (the so-called “ground state” in asymp-
totic expansion terms),

n(#t) = Y 6'nl)(F;1).

j=0

13The term, “hydrodynamical equations”, will be formally defined upon vhe irtroduction of suffi-
cient notation.

An example of how differing relationships between Az and At in standard finite difference
schemes correspond to differing sets of consistent equations may be found in [66, p. 177].

"In this section n = n(#;t) does not denote the occupation numbers as computed by a lattice
Boltzmann method; rather, it denotes an equilibrium expansion, Note also that in this section (only)

does np denote n(iAz;nAt). Elsewlere n} denotes the vector of occupation numbers as computed
by a lattice Boltzmann method,
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(In the remainder of this section, we use n and n¥) to denote n(&;t) and
nl)(# 1), respectively,) Equilibrium n(® is determined by the equilibrium anal-

ysis of the last section.,

. Generate the (p+ 1)-dimensional'® Taylor expansion of the advection operator,

Any = [ (nk)i,

= n} (higher order terms),
about (¥Az;mAt), the temporal and spatial scales related by

Az = 6L,
Al = 5kT,

in which L and T are the spatial and temporal scale lengths, respectively, and
k is an appropriate order for relating the spatial and temporal scales. A usual
choice for k in diffusion-related problems is k = 2, since diffusion occurs on an
O[(Az)?) time scale. (We use k = 2 throughout the dissertation.) Different
choices may yield different sets of consistent equations, as previously indicated.
We substitute the asymptotic series for n into the Taylor series expansion of
the advection operator, then rearrange the resulting expansion to obtain the

coeflicients of powers of 6.

. Generate the 1-dimensional Taylor expansion of the collision operator. To do

this, first substitute the asymptotic expansion for n into the collision operator

so that

C(n) = C(i §inl)y,

1=0

1%There are p spatial dimensions and 1 temporal dimension.



CHAPTER 2. THEORY

Then define an auxiliary function, ¢(6), by

o(6) = C(i §nW),

J=0

for fixed n. Then expand ¢(6) in a Taylor series about é = 0 to get

/ 62 " & (4]
c(6)=c(0)+6c(0)+§Tc (0)+~n+3—!-c (0) + v,

where

§=0

(o) = <g;—Jc(6)>

. Equate the coefficients of like powers of § on both sides of the expanded form

of the Lattice Boltzmann Equation, Eq. 2.8.

. The n) are to be determined by equating the coefficients of the Taylor series

expansions for each side of Eq. 2.8, This sets up a linear system of equations
involving the linearized collision operator of the lattice method (see Definition

2.32). Since the linearized collision operator will be seen to be singular, the lin-

_ear systems either have no solution or an infinite number of solutions. Imposing

compatibility, or consistency conditions guarantees that solutions exist at each
order in matching the expansions, i.e., the nl) coefficients can be determined.
Such conditions introduce one degree of freedom (or parameter) at each order
for each dimension of the nullspace of the linearized collision operator. These
parameters, {0(0),0(1),0(2), i .}, are determined by matching higher orders in
the expansions.!” Note that these parameters are vectors having as many ele-

ments as the dimension of the nullspace of the linearized collision operator,!®

175(0) ig determined by an equilibrium solution,
810 the case that the dim(nullspace(£)) = 1, the o®) are sealars.
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2.3.1 Equilibrium Expansion

Suppose the equilibrium solution of a lattice method is given, (Theorem 2.25 may
have been used to determine this if the lattice method satlsfies semi-detailed balance.)

In any case, the assumption is that we have some equilibrium solution, n(®,

Example ( I.Bi.‘ Equilibrium Solution),

u

u
For LBy, the equilibrium solution is n(® = , where 0(® = u is the O[1]

U

u
parameter, which we will find satisfies the consistency condition at ([62], We

applied both the Equilibrium Theorem and the direct method to obtain the form

of the equilibrium solutions for LBy,

Given an equilibrium, we assume existence of an asymptotic expansion of n(#;t) €

[0,1]¢ about n®(z;¢) € [0, 1)%:
n(#t) = Y &nl(&1), (2.14)
j=0

where 6§ 3 0 < § < 1 is a small dimensionless parameter that is related to the
unit spatial and temporal scale lengths , Az and Af, This may be recognized as
forming the basis of the well-known Chapman-Enskog expansion, which is discussed
in [44, 45]. A couple of points are now in order. The first point regards existence and
convergence of the r.h.s. of Eq. 2.14; the secona point‘is about the discrete nature
of our Chapman-Enskog expansion. Grad [44, 45] notes that the expansion may not
converge or even exist, depending upon the initial and boundary conditions, Here,

the expansion is assumed to exist, and its validity is discussed in the convergence
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analysis of Section 2.4, Tn the Chapman-Enskog procedure of {44, 45] the expansion,
Fq. 214, viewed as a function of & and ¢, s substituted into the Boltzmann equation.
Our expansion is substituted into the Lattice Boltzmann eq‘mtion, Eq. 2.8, and is
therefore evaluated for only discrete space and time; hence, the term the discrete
Chapman-Lnskog expansion. The nl¥) in Eq. 2.14 are determined when applying the
discrete Chapman-Enskog procedure. This procedure is the process of matching the
advection and collision operator expansions lo determine the nt¥) coefficients and the

associated consistency conditions,

Depending on the particular lattice method, certain restrictions must hold for ex-
istence of the terms of the expansion, This will be apparent when matching the advec-
tion and collision operator expansions; the nl¥) in Eq. 2.14 are determined in matching
the expansions. Note that n{/) is a function of the parameters {U(O), oW, ..., a(j“‘)},

which in turn are functions of & and ¢, but are evaluated only at the lattice nodes 7

and time steps n,

2.3.2 Linearized Collision Operator

This section defines the linearized collision operator and discusses its eigenvalues and
eigenvectors and pseudo-inverse. The relevance of the componentwise vector product

for the eigenvectors is also discussed,

‘.

The linearized collision operator, £, is to be defined as a linearization of the
zeroth order contribution of the collision operator!? aboutl a non-trivial equilibrium,

n®. Our discrete Chapman-Enskog analysis applies to the case where the collision

{ Il N . - e
Y¥Gee p. 32 regarding ordering the lattice Boltzimann collision operator,
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operator can be expressed (for fixed n) as
C(n) =Cn) + 6¢M(n),

fof some C(®(n) and C™M(n). (In our example method, i.e., LBy, C®(n) = 0.) That
- the collision operator can be expanded to first order in § encompasses lattice methods
with an advection bias on the order of §. This, coupled with the Fermi Exclusion
Principle leads to methods for nonlinear advection-diffusion systems. (Advection
biases are addressed in the analysis for the two example lattice methods in Sections
3.2 and 3.3.) In our treatment, we assume that the highest order in the collision
operator is O[6]. The linearized collision operator and its pseudo-inverse, L, are
used in the the discrete Chapman-Enékog expansion.

DEFINITION 2.32 (LINEARIZED COLLISION OPERATOR). The linearized colli-
sion operator, £, of a lattice method with collision operator, C, operating on the mean

occupation numbers, n, is defined by the d x d matriz
d-1
L= [ l:k’z :I y
k,i=0

_ 9 0
Ck,l = ET—L—ICk (n)

where

)
n=n(0)

and n(® is an equilibrium solution of the lattice method.

The linearized collision operator is a linearization of the zeroth order, i.e., O[1],

contribution of the collision operator about a non-trivial equilibrium. Not> that

iC(n(O)) = —C(n)

n on

L =DCOn®) =



50 CHAPTER 2. THEORY

For all the lattice methods studied herein, £, is a symmetric, nonpositive defi-
nite circulant.?® This is because for all of our methods: (1) they have rotation and
reflection?’ invariances (these are isomorphic to the permutation and reflection isome-
tries in the the isometry group ® globally preserving the set of velocity vectors on
our two-dimensional lattice (see Definition 2.11)), (2) the linearization of the collision
operator is about an isotropic equilibrium, i.e., it is invariaht under ﬁhe isometries
of the lattice (see Definition 2.7), and (3) they satisfy semi-detailed balance?® (see
Definition 2.16). Reasons (1) and (2) guarantee that £ is a symmetric circulant; the
addition of (3), which implies the existence of an entropy through local and global

H-theorems (see [37]), guarantees nonpositive definiteness.

Example (LBj: Linearized Collision Operator).

First, note that for LBy, C(n(®) = C(©)(n(®), since it contains only O[1] terms,
i.e., all higher order terms (C(¥)(r(®), for k > 1) are zero. Henceforth we write
C(n) for C{O(n) in this example method. Then the linearized collision operator for
LB is given below with k € {0,1,2,3},%®

0
—C
Ong k(n) n=n(%)

= (~Thg1Nk+2Mk+3 — Nk+1Tk42Mk+3 — Nh41Mk+2T k13

20A d x d circulant (see for example, [3, pp. 242-4]) is a d x d matrix of the form,

Co €1t Cdn

Cd-1 €0 ' Cd-2
L=

Ci Cy v Cp

2 Reflection invariance is a symmetry about the axes spanned by each velocity vector é&;. (It is
analogous to parity-invariance in {37].) This definition suffices for two-dimensional problems on both
the hexagonal and square lattices.

22Weaker assumptions are being considered (cf. quasi-detailed balance, Definition 2. 17) [54].

23Recall that the indices are evaluated modulo d = 4.
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=Tt Wht2k4+3 — Th10k+2Tk43 — Nh+1 k42 7\‘rk+3)|n=n(0)
= ~Tuu — ulu — uul — T Tu — uTU

= =-3u¥ = -3u(l — u),

aT"/c-{-l n=n(%

= (—TkNk42Mk43 + Tk TEF2Nk+3 + BhNkt2TRE3

FNETRTZ k43 + Tk T4 2ThE3 — NkTok42 TE+3) ln=n(0)

= ul=u(l - u)‘,

8' N
5 Ci(n)
Nht2 n=n(0)
= (47 TeFi%+3 — TR Nk4+10k43 + TENk41ThgD
+RATRFI k43 — METRFT TRg3 + Tk Nkt 17%43) lnen(0)
= ull = u(l —u),
Ck(n)
ank:+3 n=n(9

= (7% TET 142 + TRkt 1TRF2 — TR k41 Tkt 2

—NkTkt1 Bhta + AT F1 42 + Tk k+1TRF2) lnen(o)

= w¥ = u(l - u).

Hence, the linearized collision operator may be wriiten,

-3 1 1 1
1 -3 1 1
£=-3 ,
1 1 -3 1
1 1 1 -3
where A = —4uT = —4u(1l — u). Note that indeed £ is a symmetric, nonpositive

definite circulant.



T
[

CHAPTER 2. THEORY

Eigenvalues and Eigenvectors

The eigenvectors and eigenvalues of the linearized collision operator are important
in the discrete Chapman-Enskog analysis. They are also important in deterrnining
the conserved quantities in a lattice Boltzmann method [37]. Note that they may be
casily found for circulant linearized collision operators (see, for example, [3, pp. 242-
4]). A symbolic mathematical manipulation tool, such as Mathematica, can be used
to determine the eigenpairs. Given that the linearized collision operator is symmetric
it possesses a complete set of real orthogonal eigenvectors.

DEFINITION 2.33 (EIGENM‘ATRIX). Let {qo, 41, ...,94-1} be a set of real orthog-
onal (column) eigenvectors of L with corresponding real eigenvalues { Ao, A1, o Ad-1}.

Then the eigenmatrix, Q, is defined by

Q = [quqh"'aqd—-l]'

The normalized eigenmatrix, Q, is defined to be

A

Q

(G0 @1y -+ Ba1],
where Qr = qi/ || gkl

Example (LBj: Eigenpairs of the Linearized Collision Operator).

The set of unnormalized eigenpairs (eigenvalue, eigenvector) of our example's lin-

earized collision operator, L, is
{(/\k,Qk) | ke {0a112a3}}1
where the eigenvalues are given by

eigenvalues(L) = ()\U,/\l‘, A2, Ag) = (0, —4uw, —4uT, —4uT), (2.15)
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and the eigenvectors are given as the eigenmatrix,

1 1 0 1
1 0 1 -1
Q= [qo' q1, d2, q3 | < ) (2.16)
1 =1 0 1
1 0 -1 -1

in which the qx are column vectors,

Recall that the nullspace of a matrix is the span of the eigenvectors corresponding

to the zero eigenvalue.

Example (LBj: Nullspace of Linearized Collision Operator).

In our example, the nullspace of the linearized collision operator is given by
nullspace(L) = span(qo).

The linearized collision operator may be expressed in terms of its eigenpairs. Let
A = diag(A4)§z). Then

d-1 T

A A qxqi
L=QTAQ =Y N—2.

k=0 9k 9k

Since the linearized collision operator has a nonempty nullspace it has no inverse;
however, we can define a pseudo-inverse, L, as follows:

DEFINITION 2.34 (PSEUDO-INVERSE). Let linearized collision operator, L €
RY, be symmetric with a complete set of real orthogonal eigenvectors {co,qy, . . ., dd—1)
qnd respective eigenvalues {Ag, Ay, ..., Aa_1}. Let Q be the normalized eigenmatriz

and let A = diag(A¢)iz). Also let A* = diag(f(M))i2), where

/N, if A#0,

0, other wise.

J(A)

il
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Then the pseudo-inverse of £, denoted L*, is defined by

\ . 1 T
Lt = QTA+Q — Z _/\_._q._kgi_.
kBr\k#O qu ¢ qk

This is consistent to the definition given in Golub and Van Loan [41, Pp. 138-9].

Example (LB;: Pseudo-Inverse of Linearized Collision Operator).

From Eq. 2.15 and Eq. 2.16 we have

3 T
qk 9y 1 T ™, !
L = Ak——~=A[— q19; + 929 +-q3q],
:L—::O q'{qk 2 ( 1 2) 4 3
1 qeqf 1 [1 T ™, 7
Lt = — = = < |~ (qiqy + 9293 ) + 59393 | ,
Koo M Ak A 2( ) 4
where A = —4uT = —4u(l - u).

Componentwise Eigenvector Product

The componentwise vector product (* operator) between eigenvectors of the linearized
collision operator will be employed to simplify calculations in carrying out the dis-
crete Chapman-Enskog procedure. Recalling the definition of the * componentwise
product operator in Section 2.1.1, we see that for two eigenvectors, q; and q;, their
componentwise vector product is |

d—1
qi*xq; = { qi kqj,k } )

k=0
in which q; x denotes the kth element of the ith eigenvector. Also recall our convention
that the » operator has the same precedence in expressions as scalar multiplication.
For example, * operations would be evaluated before vector additions. We will also

refer to the » operator as the componentwise eigenvector product when applicable.
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[
(@11

Table 2.4: LB; Componentwise Eigenvector Products,

* |l o A1 d2 3
do || 9o a1 q2 q3
o || a1 | 3 (o + a) 0 qQ
q2 || 9z 0 Hao—q3) | —qz
q3 || 93 q1 —q2 %o

In the forthcoming discrete Chapman-Enskog analysis, using componentwise prod-
ucts will simplify calculations. The simplification is in expressing the product’s result
as a linear combination of the eigenvectors. Then dot products of such an expression

with an eigenvector becomes trivial (in the light that the dot product of orthogonal

eigenvectors is zero).

The componentwise product of two eigenvectors can be expressed as a linear
combination of the eigenvectors of the linearized collision operator, for qx * q; €
span(qe)iz). Given the eigenvectors of £ we can tabulate all possible componentwise
products. Determining the discrete Chapman-Enskog expansion makes extensive use

of such a table so that vectors, v € R¢, can be readily expressed in terms of the basis

{d0,q1, ..+, Qd-1}-

Example (LB;: Componentwise Eigenvector Products).

The componentwise products of the eigenvectors of the linearized collision operator
of LBy are tabulated in Table 2.4. Some exatnples follow to show how the entries

in the table are determined.
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1. Evaluate q; » qy:

1 W 0 W (1)(0) W 0
0 1 (0)(1) 0
qir*xqz = * = = = 0,
-1 0 (—1)(0) 0
0 I -1 (0)(=1) | 0 |
2. Evaluate q; * q3:
[ 0 ] o© | [o]
1 1 (1)(1) 1
dexqy = * = =
0 0 (0)(0) 0
I -1 ] 1 -1 (-1)(-1) i 1
= %(qu—cm)'
3. Evaluate q; » qa:
1 1 -
0 1 (0)(1) 0
1 -1 (1)(-1) -1
qa2*q3 = * = =
0 1 (0)(1) 0
-1 i -1 (=1)(-1) 1
0
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Using Componentwise Eigenvector Products

Given a table like Table 2.4 for all componentwise eigenvector products, we will

often have to calculate an expression like

' +-§;u1

0
T
S=qr o qqa* vy » . (cf. the example on p. 69)

—-—1
Oz

Iy
L dy 1)

To do the calculation, first we write the vector expression

r -

—_—
'

ad
arra

as a linear combination of eigenvectors of L. Then we use the componentwise
eigenvector product table (Table 2.4) to simplify the expression, after which we
complete the dot product. In calculating the dot product, we use orthogonality of

distinct eigenvectors. We find

0
S = qi- %*(m,) +CI28J )}

0
= q- (%*m "—u+(Q3*Q2)"““)

dy
= alt
qi: ChD —dq1°q2

dy
= 2—?()—u—0-.2()
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Calculations involving complicated vector expressions and dot products can beconie

much simpler with the * componentwise product.

2.3.3 Collision Operator Expansion

For fixed n (and fixed {n(-” |7 = 0}), define ¢ : R — [0,1]¢ by

«(8) = ¢ 46n® 4520 4.

= COMmO 4 enM 4 62n®@ 4. 4+ 60O 4 60 4 620 4.0,

Note that ¢ € C®(R,[0,1]*) because C(n) is a polynomial-type function in the ny

and since n is polynomial in 8. Then by Taylor’s theorem?4,

§2 &3 &4 .
¢(6) = ¢(0) + ¢'(0) + 51—(:"(0) + -8-‘«0’”(0) + ZTC[W] o)+, (2.17)

where

A0y = (%45))

6=0

Eq. 2.17 is the expansion for the collision operator, which will become apparent
through application of the chain rule.
To determine the coefficients in Eq. 2.17, we look at the derivatives of ¢(6) evalu-

ated at 6 = 0. First, note that

, d d

n' o= o= (n(o) +6nM 4 6'n® 4 §2n@ 4 .. )
= nM 4+ 26n® 43620 4 ...
o
T T e

= 2n@ 4 66n® 412620 4 ...

MTor a statement (and a proof) of Taylor’s Theorem see, for example, [65, Section 6.8 (Theorem
10)).



2.8. DISCRETE CHAPMAN-ENSKOG ANALYSIS 59

£ A O A (T B SR (V B a,(8) 1,
n d&n (161<] 4+ 6nt) 4 690 4 5n® 4 )

= jinU) 4 U+ 1)15 G+ U +]2)!5J (G492 4,
and in general

= jln(j)
§=0

[J}‘ ! -

=11
6=0 dbi

Also note that in determining the coefficients we will apply the the chain and product

rules for differentiation, e.g.,

d 0 d
= —(0) —n = !
d6c ()_anC (n) - = DCO(n) . 1/,
and
d 2(0) o
(_i_SDC (n) +n'n
'DQC(O)(I‘))' d( / ”)-}-'DSC(O( ) n/n/nu

dé
— ch(o)( ) (n/n/4/+n//n//) 4. Dsc(o)( ) n/n/nu

D*CO(n) . n'n" + DXO(n) . n"n" 4+ D*C®(n)  n'n'n".
The coefficients in Eq. 2.17 are found at each order as follows:
O[1}:
c(8) = C9n)+6cV(n)
= ¢(0) = COnO),
Ol6):

d(6) = DCO(n). n'+CY(n) +6DCM(n) n
= d(0) = DO (n®y. M +CW(n(0),
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O8%):

A8 = = (d(8))
= DCUn) n" + DI (n) n'n
+ 2DC"(n) n'+8 [D"‘C“)(n) n'n’ + DCW(n) . n”]

= (0) = 2PCO(n®). n® 4 DO @) nOp® 4 2pct(n®) . nlt),

O[8):
d
" % n
'(8) = —(c'(6)
= D (n). n'n'n' 4+ 3D*C(n)  n'n" + DCO(n) - n
+ 3D*W(n) . n'n'43DCM(n) n"
+ 6[D¢W(n) n'n'n’ +3D*C"(n) n'n" + DLW (n). n"|

= ¢"(0) = D3}COn®). nMnWnp® 4 6D2CO(n)  nMnp®

6DCO(n®) . n® 4 3D* M (n(?). nMn

+

6DCM(n®) . n(®,

+

O[64):

) = ()

= D*CO(n) n'n'n'n' + 6DCO(n)  n'n'n" + 4D*C®(n) . n'n"
+ 3D*CO(n) . n"n" + DCO(n) . n""
+ 4D¢W(nj . n'n'n’ +12D%¢(n) - n'n" + 4DV (n) . n”
+ ( O[6] terms )
= ™M) = DICOmO) . n(InWp®MyM 4 ep3e@ (). (R

+ 24Dy W@ g epe Oy @)
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+ 24DCO Oy n 4y pieM(p@y) (D)

..'. 24'D2C(1)(n(0)) . n“)n(z }.. ‘)(1'DC(1)( 1([))) 1("

Finally, substituting the cl!(0) into Eq. 2.17 and using the notation £ = DCO (n(©))
(see Definition 2.32), we obtain the Chapman-Enskog-Taylor asymptotic expansion

of the collision operator about equilibrium, n(®),

C(n) = c6)
= CO(nO)
+ 6 [.-n“)+C(“(n(°))]
+ & 'c-n<2>+%1>9c<°>(u<°>) (U ”+Dc1)'n<°)).n<*)]
+ 8L n® 4 pOROY, W@ 4 %93(3(0)(,1(0)) ONCINNGY

+%D’C(1)(n(°)) W 4 D). n(z)]

Y g.nm+%chco>(n<o>).n(z)n(z) + DO (n®) . ny @
+%DSC(°’(n(O)) Wy _Lp 100 (n0)) . ({1 (1)
+.1_'1)3(3(1)(n(0)) a4 D (RO y (1)

+ DM (n(®) 1(3)]

+0[8%). (2.18)

This expansion is independent of the particular collision operator (up to O[6] advec-
tion Liasing, as per the discussion at the beginning of Section 2.3.2). Note that the
form of the expansion depends neither on the dimensionality of the lattice nor on the

number of particle directions.
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2.3.4 Advection Operator Expansion

The advection operator expansion depends on the dimensionality of the lattice and
the number of particle directions, It also depends on the relationship between Az and
At. As the focus of this dissertation is on systems with diffusion, we restrict treatment
of the advection operator expansion to the case At = O[(Az)?], l.e., At = T6* and

Az = L6, The steps for determining the expansion follow:

I. Calculate the (p 4 1)-dimensional Taylor expansion of Ank(&it) = ny(& +
Azt 4+ At) evaluated at (Ft) with At = 6*T and Az = L6, The constants

T and L are the temporal and spatial scale lengths, respectively.

2. Substitute the space-gradient equilibriumn expansion for n (see Eq. 2.14) into

the result of step 1, writing the result as an expansion in 8.

Let us apply these steps to determine explicit expressions for the advection operator
expansion, But first, let us discuss gradient expressions as they appear in the advec-

tion operator expansion, then we will proceed with the development of the expansion.

Some Derivative Operations in the Advection Operator

Before developing the advection expansion, some notation for gradients of vector
valued functions of m variables (g, xy,..., Zm-;) needs to be introduced. If &, is a
unit velocity vector in direction & on the lattice (and ¢y is its itth component), then

in operator notation

m-~ 1 Iy J
" J
(e V) = ( E €y ) ,
du;

1z=0

As usual, expressions involving subscripts surrounded by square brackets denote vee-

tors compatible with vectors of occupation numbers, i.e., veetors in [0, 1),
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Example (LB: Derivatives in Advection Operator).

Let us list some derivative expressions involving the four unit vectors in LBj as

given in Eq. 2.4, Here, we are denoting o = = and z, = y. First,

0 0
1~ V = a_ v
(61: dy) and
‘ 92 92
2
2. V V.V = 3 + W
Then
0 4 02 3 03
g0V = _— £y - = fo - = e
€o oo (€0 V) YA (€0 - V) b
- 0 - 0* - 93
€&V = +'5?;, (A \7))' = Wa (& V)P = Jy—d’
. a . . 9% . 4 a°
€&V = o (82-V)* = t5.7 (62 V) = ~ 323
. 0 - 2 0?2 . 3 03
ES'V = —b_ya (63'V) = Wa (6'3 V) = .—5‘,"/_3'
n our vector notation these are written,
+~_(_?ﬂ N 0? + o
Oz Ol Dz?
_(?_ . 0? a8
. vl 3
&V |=| ,[(e‘k-vf = Y @ V)”}-: o
o N 7
Oz Oz Oz
) A e
L Oy | L dy? | L 9y8

(2.19)

Taylor Expansion

First, let us recall the Taylor series expansion for a vector function of several in-

dependent variables. Let n € C®(R™,R?) be analytic in R™, where n(Z) has m
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d—1
independent variables, & = (xg,21,...,&m-1), and d cependent ones, n = [ Nk } ‘
- —.k=0 ‘
Then the Taylor series expansion about £ = (@g, 1,...,Zn-1) and evaluated at £ + ¢
is
m-—1
m—1
y 1 S ;
[ mE+ A | =] 2 3—. e V) nk(€) , (2.20)
-I k=0 j=0
k=0

where 7 is some vector distance away rom € that depends on which function, i.e.,

which (ny), is being evaluated. Here, we are using the usual definition of the gradient,

(0 b 5}
V= (on’(?m,"”'axmq)'

Fe V) = (Z Vkim— )j-

The advection operator expansion comes from a special case of Eq. 2.20.

Also,

A lattice method has d directions at each node of its lattice. It also has p spatial
dimensions with one temporal dimension. We use a Taylor expansion with n being
the vector of occupation numbers (each a function of space/time position 5) The
spatial/temporal positions are indicated by £ = (Zo, 1y .. oy Tpa1;t) = (&;t). The
desired Taylor expansion is of a vector function with p 4+ 1 independent variables,

T

i.e., (Z;t), and d dependent ones, i.e., n = [no, n, ..., ng_1 | )» The Taylor

expansion may be written

[ Ang (1) ] = nk(Z +Axéy; t +At)

001 J
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N
= 'nk(:b‘;t)-{—Z%(L&(é‘k‘V)—%TS?-(%)nk , (2.21)

where

Az L§

il

At T8,

il

€, is the unit velocity vector in direction k, and the gradient operator, V, includes

only the first p independent variables, i.e.,

0o 0 0
V= (61’0’6(111’”"82),,_1).

In particular the gradient does not include the temporal variable, ¢; it is treated

separately due to the differing spatial and temporal scales. Rearranging Eq. 2.21
yields

= 6 | L(€ V)ng jl (2.22)
L
L 0
2 — 2
+ ) —2—!'(6kv> nk+T"0—ZTLk
3
+ 63 -é-‘- (ek V)S ng + LT (f?k V) —(an
L 3! ot
4 L4 4 LZT - 2 0 T2 02
+ 6 7{1— (ek V) ng + ———2—- ((:k . V) Ez’nk + 3—5&-571;6
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LT d* LT
5 (€ V) 70-%:‘-7?,/; + 5 (€ - V)a —ng

H LS 5
+ & = (€k V) np +

+ O ‘ (2.23)

This is the Taylor expansion of the advection operator. It expands the occupation

numbers about a location (F;t) and is evaluated at their new locations.

Asymptotic Expansion

The final expansion of the advection operator is finally obtained by substituting the
asymptotic equilibrium expansion for n (see Eq. 2.14) into Eq. 2.23 and determining

the coefficients of powers of §:

Ani (T t) — n(Z;1) } =

§ | L(&- V)nY }
sl Ll oy, 9 ) (1)
gl L. op. - o0 (@
+ —3—‘-(Ck V) ny +LT(ek-V)-8-zn + L (€& -V)ny
L o, 0
+“2-!- (& V)'ny’ + T—a-znk
4 L4 4 _(0) T - 2 0 (0) 2 9 (0) - (3)
+ 6 Z‘,‘(Ck V) ny —l——Tz—-(f’k V) el +7;§ﬁnk + L (& V)n
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L2v

2@ ol @ B 3 (1) 9w
+2' (€ V)'n +F0 + 3' ( V) + LT (€ - V) ik
LS LT? ok L3 0
5 > 5 (0) n0)
+ 6 ~5—!-(€/¢ V) ny + 5 (e - V) )tz"“k ~+——6—(e/c v)? 57"
L* oy, LT 2 0 (1) T & )
tp G VI = (B V) i
L3 d L*? 2
+—3-,-(ek Ik nk +LT(é‘L V) (")fni?) +W( V) ni) + L (€ V)n(k”
+ O[89 (2.24)

2.3.5 Matching the Expansions

Matching coefficients of like order of the advection and collision operator asymptotic
expansions (Eq. 2.24 and Eq. 2.18, respectively), we obtain the following hierarchy of

equations for orders up to O[64]:

O[]
cOm®y = o.
O[8):
£-nW 4 c(nO) - {L(gk_v)n(km]
O[6?%):

L.on® 4 _;_ch(m(nw)) W 4 pet (n©) .y

L 0 o (x (1)
= 2 (ek V) +T5t-nk +L(ek-V)nk
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O[6*]:
Lon® g é‘DBC(O)(n(O)"\,f u.“’nlff'-"n‘”‘-% DO (n(©). n(i)“(z)
+ élﬂC(""(n(D)) . n‘(ﬁﬁ"n'” /} (iZ?C‘”(n‘“’) .nl®
= % i V)%‘k‘” + LT (& V) %n‘;” + L(& - V)n®
+ -g—; (€k - V)2 n&.” + T-(%ni”
O[84):

£t 4 LpicO (). g yMpo 4 Lpoepey . qogmLe
24 2
+ DCOMO) .y n® 4 Lp2e ey q@a
2 .

6 2

4 2m c 2 02 )
= | Loy n) + LT e vy 9 nl® + f-i?—ni_"’ + L& V)nd

4 2 T bt 2 012 k
L2 —~ 2 (2) pe 0 (2) Ls — 3 (1) - 0 (1)
+ —2—!'(€k'V) g +15t-nk +-3—!(ek-V) n. + LT(ek-V);c)-;nk

In managing this hierarchy of equations, it is generally convenient to express vectors

of the form [

[ (& - V) n ] |

as linear combinations of the eigenvectors of the linearized collision operator, £. This,
of course, depends upon the particular lattice method, its collision rules, the lattice,

and the number of directions. But intelligently parameterizing lattice methods can
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significantly reduce the analysis of similar methods,?®

Example (LBj: Gradient Expressions).

For LBy, expressing | (¢;- V)¥n; | as linear combinations of eigenvectors(L)

depends on whether j is even or odd:

[ (B VY | = (2.25)
9’ oY .
Q1*-5;7+Q‘2*577) n, J odd,

1 AT LA\ U
3 0%\ 527 oyl PR WP Y7 » g even.

Then, for example,

|i (é’k . V)‘nio) ]

i

0 0
—_ i I (V)]
(‘h * 97 + q2 % 8y> n

0 0
2 L0 Y (o)
ql*amn +qz*0yn

— 8 _+_ 0 r

1 A WS S LR L A TS
T o\ZYM\ G T ) Ta R\ o) )"
1 ik 02 1 02 0?
-1 97 (0 ORI ©_ 9 o
2““*(0 to" >+2q”()2 oy )
1 ik 92 Sl (2 ik
= 0% | 559 + 92 Qo | U+ 5d3*| 5540 — 0y 73 90
o] }. iz- _+_ _(?_2_.. (7 + }_ .i).?_ — _(?.2_ 7]
R PR 3B\ 922 T Oy

25 “Similar” means having the same lattice dimensionality, number of particle directions, eigenvec-
tors of the linearized collision operator, and nullspace of the linearized collision operator.
#¥Note the use of the % operation for componentwise vector product (see Section 2.1.1).
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(cf. Eq. 2.19, which lists operator [ (€% V)? | in a form without the eigenvec-

tors.)

As previously motivated, the convenience of expressing | (& - V)n, | as linear com-
binations of the eigenvectors of £ comes from that the eigenvectors are mutually or-
thogonal. Then the componéntwise vector product (%) can be employed to simplify
complicated expressions. This is especially useful when the expressions involve dot

products.

Example (LB): Using Componentwise Eigenvector Products).

Consider the expression qo-(q1 * q2). Then using the x multiplication table (Table

2.4), |

1

1
Qo (qi*q) = Clo'[tz'(q()+q:1)]=§[(QO'QO)+(QO'QS)]=%[4+()]=2~

For the equilibrium expansion, Eq. 2.14, to exist (let alone converge), we must
be able to obtain expressions for the n®), In matching the advection and collision
operator expansions, these coefficients are obtained using the pseudo-inverse (L*) of
the linearized collision operator (see Definition 2.34). At each order j > 1 in matching
the expansions appears an equation, £ - nl) = gl nl) gl) € (0,1]%. In order that
a solution exists, the r.h.s., i.e., g1¥), must be orthogonal to the nullspace of £. This
requirement forces a consistency or compatibility condition for each eigenvector in the

nullspace of L.



2.3, DISCRETE CHAPMAN-ENSKOG ANALYSIS 71

DEFINITION 2.35 (CONSISTENCY CONDITION). Given that £ - n¥) = gl) for
some order j in the discrete Chapmnan-Enskog expansion, the jth order (C)[Sj]), con-

sistency or compatibility condition is that
Q8N =0 VhkdN=0, (2.26)

where Ay € eigenvalues(L).
If the consistency condition holds, then nt) may be obtained using £, and nti =

L* . gl 4 a, in which a € span(nullspace(L)) is arbitrary.

Example (LBy: Form of O[67] Consistency Condition).

For LBy, nullspace(L) = span(qg). Then at O[6/] £ nl) = gl for some g},
which is known. The consistency condition is that qq - g{?) = 0. If the consistency
condition holds, then nl) = £+ . gl) 4 allqy, in which 0l qy € nullspace(L) is

arbitrary (o) is a scalar).

At each order, O[87], in matching the advection and collision operator expansions, we
will solve for () in terms of {n O ), .,n(’“”}. This will introduce a consistency
condition for each eigenvector in the nullspace of £ at that order. It will also introduce

the same number of arbitrary parameters, which are denoted (o, ol )47

DEFINITION 2.36 (HYDRODYNAMICAL EQUATION). If Aw = O[8] and At =
O[6?%), then the O[6%] consistency condition is called the hydrodynamical equation of
a lattice method. When the D[6%] consistency condition is a multiple cendition, i.c.,

the dimension of the nullspace of the linearized collision operator is greater than one,

we refer to the multiple conditions as the hydrodynamical equations.

7If dim(nullspace(£)) = 1, we write o) for o), the subscript being unnecessary,
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Since only {n(“), n, L, h*’“”} is needed to determine the consistency condition at
order j, solving for nb) only helps in determining the next higher order consistency
condition. Now, let us perform these tasks for our example, LBy, up to O[8%]. (Please
note that as this will take up several pages, it is suggested that upon a first reading the
reader refer to the important results, namely the O[6%], O[6%], and O[6'] consistency
conditions, Eq. 2.29, Eq. 2.31, and Eq. 2.37, respectively. Also, while some details of
the calculations ate included in the text, the interested reader will find further details

in Appendix A.)

Example (LB;: Applying the Discrete Chapman-Enskog Procedure).

The following notation is used throughout this example:

A= A=A = A= —du(l - w),
1 1
blw) = -3-%
4(2u - 1
D'(u) = -L_.;\—')—._l,
3 .
k=0
. . . 3 f
n? = ollgy 4Lt ‘g(J) - Z "2])% '

k="

in which c(()j) = oU) and cscj) = -/\—];éfcj) for k € {1,2,3}. Also, recall C(n) = C{%)(n),

In the forthcoming formal consistency and stability arguments, we will be using
an equilibrium expansion truncated beyond third order, i.e., h = Z?=0 67h), in
which hU) = nU). It turns out that o(®) appears in n(®, and ¢(® is determined
by the O[6°] consistency condition. Therefore, we must carry out the discrete
Chapman-Enskog procedure to determine the consistency condition at O[8%]. For

each order in matching the advection and collision operator expansions, Eq. 2.24
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and Eq. 2,18, respectively, we find the following:
O] ¢O®Y) = ¢(n®) = 0, as desired, by choice of n(®), Then
nl® = qou, (2.27)

O[6]: We find

i
xR

where

by applying Eq. 2.25,

o Consistency: qo - g(!) = 0 is already satisfied, so no consistency condition

is introduced at this order.

¢ Solve for n{!); We have

i

n(l) E+ . g(l) + U(I)Cl()

. 3
a0+ 3 e, (2.28)
k=0

li

where

Cgl) = 0'(1)

3
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is a free parameter (determined in the (7{6°] consistency condition), and

RO

or

K
(3(2”

oAV

il

it

dY ke {1,2,3),

1
L:\-ur )
1

1_"Uy )

A
0,

in which A = Ay = Ay = Ay (see Eq. 2.15 for eigenvalues(L)).

O[6%): We find

Lo = f’—(fk.vm{?)u‘a

ot

2!

~ Loy qogm
2
= g0

Lt (1 9?

[4

) d
+ QU[""U+L(C11*FE+QQ*

ot
- .;.pwc(n(o;) My

Kw=0
where
L?

F(()"') = Ty - ,Q_v «D(u)Vu ,
&? = Lol - LD'(wAo M, ,
5’(27') - ngl) - LD’(U)/\U(l)“ya
) 2
RO L[l
‘ 2 12

2
u|l +

.
=7 (5% (5“* g

n\ 4 L@ v)al)

| 0* y 0* "
Bq" Jua? dy* /

0 i 1 |
?)3) ("&l)% + "(1 )Qx + ('(g )Qz)

d d

D'(u) ((ur)'z - (uy)2) - (%(D(u)uw) - %(D(u)ug)n .
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o Consistency: Imposing the consistency condition that qg « g{4 = 0 ylelds

J
q- Y &q; =4 =0,
Jjea0

or

5&2) =0,
2

With v = -2111—1 this may be written

g = vV« D(u)Vu. (2.29)
¢ Solve for n(?): We find

3
= 3 eak, (2.:30)
k

2

where

& = o0

is a free parameter (to be determined in the O[¢%] consistency condition),

and
ol = Xlzr:ﬁf’, ke {1,2,3},
or
cg’) = —f\iagl) - LD'('u)/\amux ,
) = -’Iiagl) - LD'(w)AoWMu, ,
= B [32/00) (w7 = (%) = (D) = gD )]

O[6%]: We find

LS L . ,
Lo = [—ST(ak.vy’ni“’ + 1,'1'(ak.V)F‘)3t-7,,§."’ + L7 V) n?
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L

R 0 ()
g (T W T
- Dy 4 - -(L‘D“C(n“’)) MMl
)

g

J
Z E(kd)qk '

k=0

ilt

i

'1‘a‘”-~—v D)Vl 4 D'(u)a V),

A , L3 o o 0 1
‘—(i"'Ur:rx + [/7 Uyt +‘ (""z"'m + LI ’5?) <~X1t,,)

o1, . N 1[0 0

3= (520 (0 - W) - § (D) - (D) )
4L ,

Lo — <Fus (A1) = (Luy)?)

i’-D'(u) [(2/\0(’))2 (u)uy — 4A (amu +rr“)a(‘))

+ Ly, (D'(u) ((“r)q - (”v)Q) -2 (;')%(D(")"") - %(D(u)uv)))] ’

L3 o L3 H? L0 1
‘E‘“vw + LTuy + (-2—5—;7 + L1 —(5?) (Xu”>

3o (1, . ; 1 /0, 0
_‘2—53; (ﬁl) (u) ((ur)}' - (Uy)z) 3 (%(D(U)Ur) - O—y([)(")”v))>

4 .
Lo = 22w, (™) - (Lu, )
L :
Z-L u) [ 2,\0(1))21)'(u)uv -~ 4A (a("‘)uy + o(”o‘(,”)

2\
() |(
- L%y (D (u) (( ‘. (uv)g) -2 (—raf(D(u)ur) — E%(])(u)u,,)))] ,

%\{’;0(1) ((u,)2 - (uy)2) + — (-(-)Q- - _9,_) [1) u)Vae My p (u)o(”Vn]

2
L? d 0
Zp 2Ac (m ) — )
(u) l o az(l)(u)u,; Uy(])(u)uy)

- 3/\0(”1')’(11) ((u‘.) (u,,) ) + 2( (1) Mg + n,(j”uy)] .
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o Consistency: Imposing the consistency condition that qo - g(®) = 0 gives

& =0,
or
o) = vV - [D(w)VoD + D'(w)oM V. (2.31)

Note that a(l)(m,y;t) = const. satisfies the consistency condition. Let us
choose o(V)(z,y;t) = 0. This choice simplifies the O[64] calculations and is

crucial for obtaining consistency and stability.

o Solve for n(®: We find

n(a) = £+ . g(a) + a(a)qo

3
3 ePax, (2.32)

k=0

where

) = o

is a free parameter (to be determined in the O[§°] consistency condition),

and

3 l @
¢ = -/-\-;ci), ke {1,2,3).

Note that if &‘”(a:,y;t) = 0, then eff’ = cgs) = 0. Further calculations in

the derivations assume o(!) = 0,

O[6%]: We find

£-n®

= -F (ek . V)4 nﬁo) + T(ek . V)? B'ZHSCO) + =2 (0)

5 g T L V)

L ooe @, 0 o, L oo . oy 9
o (8- V) 7+ Toom” + 27 (8- V) ny 4 LT (8- V) 5y,
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- 53'[)40(11(0)) aWpMp) - =D3¢(n®) . nM M y(2)
~ D(n®). aWn® _ Lp2p(n0)y. p@ @
2
. 3 4
= Z ésc )qk )
k=0
L L*T
) Tat(z) + — (Yoo + uyyyy) + = (azt + uyyt) (2.33)

48 4
L) 0% 11 ? L*T Jd (1
* Tz{a— (X"x)J“a_yé'(X“y)]J“Tv 5 (57)

T* L(d 8 2
+ —unt+ 3 <—C(13) + “"C(zs)) + — L [V2 @ 4 (-(?—- - 2—) (2)} )

2 Oz oy dz?  Oy?
&Y = I (ag‘) -~ D’(u))\a(a)ux) , (234)
& = L (o - D'(uro®,), . (2.35)
. L4 L2T 0
cg4) = & (Yzzzr — Uyyyy) + —— (Upgt — Uyyt) + Tb—tC( ) (2.36)
L? 9? 0? ) L/0o d (s
T [” - ('a— * "a'if) g ’] +7 (el - 5"

LYf & 93 0 /1 LT 1 8 0 0 /1
* E(T“W) "a‘f(xV“ +T<5;’“5g)"5:(xv“)
) (%)4

o |72 (- )
0
Y

~ L* ((u$)2+(uy‘)2) (%a - —a——) - D(u)Vu — 2202 ((uz) ('uy)z)]
- £:-;—D’(u,)/\o'(?) [D’(u) (("%)2 = (uy) ) 2 ((;1, - l—)%) D(u)Vu]
L

+ 3 "(u)A (cga)ur - cga)uy) .

o Consistency: Imposing the consistency condition that qq g =0, we find
at(z) = vV. [D(u)Va(z) + D'(u)a(Q)Vu] (2.37)

l4 Al
- ]:(L,J,W,y,t,u,ul,,.,url.zj,nrwjxk,urix]xkz‘)
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where 2 and z; denote = and y, respectively. Note that F can be explicitly
expressed in terms of the spatial derivatives of u by using the results of
this section and the details of Appendix A. (Note that the O[62] consistency
condition, Eq. 2.29, can be used to remove dependences of F on the temporal

derivatives of u.)

Note that Eq. 2.37 may be written

(L +h)e®¥] = F, (2.38)
where
1 1
. 9? .. 0 a
L = z_: (lu(.’l?,t)‘a_z‘—a"a‘; + Zb;(z,t)'g;‘- -— -‘% N
1,7=0 . 1=0
in which
aOO(%?/N) = I/D(U) 3
am(m,y;t) = 0,
alO(mvy;t) = 0 )
an(z,y;t) = vD(u);
bo(z,y;t) = vD'(uw)ug,
bi(z,y;t) = vD'(w)uy;
and

h(z,y;t) = vV .D'(u)Vu.

With periodic boundary conditions and an appropriate initial condition, note
that the operator L is uniformly parabolic in region E7 = ([0, L] x [0, L]) x
(0,T) for u € C*([0,L]% (0,1)). Under these and additional assumptions
(regarding smoothness) and regularity arguments, it can be shown [54] that

solutions 0(?) of Eq. 2.38 are C*(R?, R) functions. Then bounds on o2

79
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and up to its second derivatives exist. We will assume such bounds to obtain
statements regarding numerical convergence of the lattice method.
(See and Lemma 2.48 of Section 2.4.2 for how the bounds apply to numerical

consistency and Lemma 2.56 of Seztion 2.4.3 for how they apply to continuum

maximum and minimum principles for a truncated version of n, i.e., the
truncated equilibrium expansion.?8)

e Solve for n{¥: We find

n(d) = £+ . 8(4) + 0'(4)q0

2«
= Z Ci )qk )
k=0
where
oo = 6@
and
1
e = /\_keg“), ke {1,2,3)

O[6°%]: At this order, only the consistency condition is to be determined. This con-
dition specifies o(%), We will find that o{®(z,y;t) = const. satisfies this condition.

We find

L-n®
L? 5 ) , 8% (o L° 30 (0
= |77 (& V)'n +—-'( )atgnk + 5 (@ V) 5
Lt (! LT 200, T2 0% (1
+ a7 (& V) ng) + == (& ) t 5™
3 3 a ,
+ 57 @ VPP +IT (6 V) 5 ‘2)+-—(‘ V) nd® +1(8 - V)l
+ (Coll.)
= g0

“8This will be formally defined in the next section (see Definition 2.37).
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3.
= E 5§¢5)qk 3

k=0

where (Coll.) is the contribution from the coefficient of §° in the collision operator
expansion, Eq. 2.18. Since (Coll.) is orthogonal to the nullspace of the linearized
collision operator, it does not contribute to the consistency condition. Note that
é(()"’) is completely determined in view of this by the terms listed in Appendix A.

The remaining coefficients, 525) (k € {1,2,3}), are left uncalculated.?®

o Consistency: Imposing the consistency condition that qo - g(® = 0 implies

Z‘((,&) =0, or

o\ = vV . [DW)Ve® + D'(we®Vul . (2.39)
t .

We see that 0(®)(z,y;t) = const. satisfies the consistency condition. Then

choosing o{®(z,y;1) = 0 implies that 654) = 6&4) =0.

¢ Solve for n(®): We would complete this calculation were we to desire the
O[6°) consistency condition, which would determine o(4), But since o(*) does
not appear in the truncated equilibrium expansion, which is used in estab-
lishing consistency (as per the next section), it is not necessary to determine

o) nor, hence, n(®,

We have shown how to apply the discrete Chapman-Enskog procedure to obtain the
hydrodynamical equations, and higher order consistency conditions, associated with

a lattice method.

2%The ng) (k € {1,2,3}) would need to be calculated for determining n‘®, which means also
calculating the (Coll.) term. One would complete such caleulations to determine the next order's
consistency condition,
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2.4 Convergence Analysis

This section describes a numerical convergence theory for lattice Boltzmann methods;
it applies to lattice gas methods to the extent that the Lattice Boltzmann Approxi-
mation is valid. Convergence is obtained here under the umbrella of monotone finite
difTeren‘ce methods. (Appendix C contains a model convergence proof for a monotone
finite difference scheme.) Three parts constitute proofs of convergence for monotone
finite difference schemes: consistency, maximum and minimum principles, and stabil-
ity (see, for example, [69]). This section develops these facets for lattice methods. In
typical finite difference methods, one relates the computed and exact solutions. In
lattice methods, the mean occupation numbers, n, take on the role of the “computed
solution”, while a truncated equilibrium expansion, h (see Definition 2.37), takes on
the role of the “exact solution”. We will be viewing n as an approximation to h, i.e.,
the truncated equilibrium expansion is treated as an “exact” solution for purposes
of demonstrating consistency, stability, and convergence of a lattice method. Then,
generally, the terms related to convergence of lattice methods are described as fol-
lows: Consistency is obtained by applying the discrete Chapman-Enskog procedure
to truncated equilibrium expansion and showing that the remainder (from Taylor’s
Theorem) tends to zero. Stability is defined in terms of boundedness of a linear
operator that depends on both the me#n occupation numbers, i.e., the solution to
Eq. 2;8, and the truncated equilibrium expansion; the linear operator can be bounded
in the Li-norm with the support of discrete and continuum maximum and minimum
principles. Conditions of monotonicity are used to establish the discrete maximum
and minimum principles for the Lattice Boltzmann Equation, i.e., for the finite dif-

ference method, Eq. 2.8. The continuum maximum and minimum principles depend
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on maximum-and minimum principles of the hydrodynamical equations of a lattice
method and may depend on regularity of the higher order consistency conditions as
revealed by the discrete Chapman-Enskog expansion. Finally, convergence is related
to the difference between the hydrodynamical modes and the solutions of the hydro-
dynamical equations of a lattice method, and the norm of that difference in the limit

as At tends to zero. The general convergence result is that if
1. Az = L§ and At = T6?,
2. The collision operator is mass-conserving,
3. The initial condition‘, n?, is in the domain of monotonicity,

4. The collision operator is zero at the extreine points of the domain of monotonic-

ity,

5. The lattice method has a symmetric, nonpositive definite linearized collision

operator,
6. The hydrodynamical equations have maximum and minimum principles,
7. The higher order consistency conditions (up to O[6°%]) have bounded solutions,
then the hydrodynamical modes of a lattice methcd converge to the solution of its

hydrodynamical equations. It is established that consistency and stability imply

convergence,
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2.4.1 Definitions

The following terms and concepts are defined in this section: truncated equilibrium ex-
pansion, consistency, truncalion error, conditions of monotonicity, domain of mono- .
tonicily, stability, and hydrodynamical errors, convergence. Generally, demonstrating
consistency of a finite difference method for a partial differential equation entails show-
ing that the truncation error, which depends on the difference operator applied to an
exact solution, tends to zero in the limit as the grid spacing tends to zero.3° In lattice
methods, the truncated equilibrium expansion takes on the role of the “exact” solu-
tion for consistency, stability, and convergence arguments. Stability is associated with
a set of linear operators being bounded; the operators dépend on both the computed
and exact solutions. The domain of monotonicity is, loosely, the largest connected
region in which the conditions of monotonicity®! are satisfied. Discrete maximum and
minimum principles for a lattice method are established through arguments assuming
that the conditions of monotonicity are satisfied (see Theorem 2.49). Convergence is
then defined in terms of the “hydrodynamical errors” and their tendency (in some
norm) toward zero as At—0. The hydrodynamical error is the difference between
hydrodynamical modes and the solutions of the hydrodynamical equations. Consis-
tency and stability can help establish convergence of a lattice method. The formal

definitions of the terms related to convergence follow.

30See, for example, [66] or [70].

I'The conditions of monotonicity are those conditions that, when satisfied, ensure that the lattice
method, seen as a difference operator, is monotonically increasing in all of its arguments. This is
detailed in Definition 2.39.
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DEFINITION 2.37 (TRUNCATED EQUILIBRIUM EXPANSION). Letn = i&jn(”
be the equilibrium expansion about equilibrium‘ n(®, where coefficients n(j)J:(jre de-
termined by the discrete Chapman-Enskog expansion. Then h = ZJzé"h("), wheré
h) =nl, j e {0,1,... yJ}, zs a truncated equilibriurn expansion ojf=(())rder J, where
J is a (finite) positive integer.

DEFINITION 2.38 (CONSISTENCY). Let equilibrium ezpansion
nf = ()7 +6M)F + @) 4.

satisfy the Lattice Boltzmann Equation, Eq. 2.8, where the n') are determined by the
discrete Chapman-Enskog procedure of Section 2.3, Let h} be a truncated equilibrium
expansion, i.e.,

J

ht = 3 6 (hO)y,

i=0

of order J, in which h¥) = nl¥) and
Ab} = b} +C(h?) — T(h}), (2.40)

where truncation error, T (h}), is determined from the Taylor series expansion with

remainder in the Chapman-Enskog procedure on hi. Suppose for some norm, |||,

1 o
Altlr—rvlo—A—Z”'r(h)“:O’ 0<t<1

for all sufficiently smooth®? occupation functions h of Eq. 2.40.
DEFINITION 2.39 (CONDITIONS OF MONOTONICITY). Let a lattice method be

given that satisfies the Lattice Boltzmann Equation, Eq. 2.8. Define
d-1

H = {Hk(n?_ak) } ,

k=0

32«Sufficiently smooth” means h has endugh continuous spatial and temporal derivatives so that

Taylor’s Theorem applies. (See, for example, (55, Section 6.8 (Theorern 10)] for a statement the
theorem.)
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where

f

(?7‘/\-)?-*1 = ]{k(n?—é'k) = (nk)?—-é‘k + Ck(n?—é'k)'

Consider H as a vector function of its arguments. Then let

k=3
’?E[GkJ y
k=0

in which each Gy is the gradient of Hy, i.e.,

O
G = Bn?_é.k Hi (n?— ‘k) '
Then the inequalities,
Gy20 YVke{0,1,...,d-1}, (2.41)

are called the conditions of monotonicity of a lattice method.

The domain of monotonicity, denoted &, is a d-dimensional rectangle in which
the conditions of monotonicity are satisfied. The domain of monotonicity cannot be
extended in a connected fashion to another region, the union in which the conditions
of monotonicity are satisfied.

DEFINITION 2.40 (DOMAIN OF MONOTONICITY). Let a lattice method be given
thal satisfies the Lattice Boltzmann FEquation, Eq. 2.8. Let MY and Mik) be such
that €W = MBS MP] c [0,1) Vk e {0,1,...,d = 1}. Let

d-1 d-1

M_= and M, = [ MJ(rk) }

MW

k=0 k=0
And let € = €O x €M) x ... x gld-1) ~ [0,1)4. Suppose € defines a region in

which the conditions of monotonicity are satisfied. Suppose that there does not exist

i w
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some direction k for which the EW can be extended and still satisfy the conditions
of monotonicity in the respectively extended € (where the extended € is a connected
region). Furthermore, suppose that € has volume, i.e., v(€) > 0. Then € is called
the domain of monotonicity, and My and M, are called the extreme points of £,
DEFINITION 2.41 (L[n",h"]). Let n® satisfy Eq. 2.8. Let h™ be a truncated

equilibrium ezpansion of order J that satisfies Eq. 2.40. Define the error e® by

e"=n" -h"

Then operator L(n®, h*] is defined by
1
Lin®, h"] = /0 [ +DC(n* - s(h™ —n™))] ds,
so that by the Fundamental Theorem of Calculus
Ae™ =e" +C(e") + 7(h") = L[n",h"] e" + T (h").

DEFINITION 2,42 (STABILITY). Let n}, h}, and L[n™, h"] be as in Definition
2.41. Then a lattice method is said to be stable up to time T if for some T > 0, the

infinite set of operators,

. ‘
{H Lin™ h™] | 0 < At <7 and 0 < nAt < T}
m=0

is uniformly bounded.

DEFINITION 2.43 (HYDRODYNAMICAL MODE). Let n? salisfy the Lattice Boltz-

‘ d-1
mann Equation, Eq. 2.8. Then let p} = { (pr)} } , where
k=0

(pk)f = ——~ Vke{0,1,...,d-1}.
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Then pi such that qx € nullspace(L) is called a hydrodynamical mode of the lattice
method.

DEFINITION 2.44 (HYDRODYNAMICAL ERROR). Let n} and h} be as in Defi-

d-1
nitton 2.41. Let p} = [ (pr)} } , where

k=0
(pr)7 = 95%’"— VY ke{0,1,...,d-1}.

Then pi such that qi € nullspace(L) is called a discretized hydrodynamical mode of
d—1

the truncated equilibrium ezpansion. Let f} = [ (fi)? } , where

k=0

(fk)? = (Pk)? - (Pk)? Vke {Ovla"'ad"‘ 1} .

Then fi such that q, € nullspace(L) is called a hydrodynamical error of the lattice

d-1

(fe)} ] and F* = | FP ] ,
el k=0
LEMMA 2.45. fF = [E‘Ld_e_]

method. Let F} =

d-1 1

o e, fi = EQ-e?,

Proof. This is a combined result of Definitions 2.33, 2.41, 2.43, and 2.44. O
DEFINITION 2.46 (CONVERGENCE). If V k such that qi € nullspace(L),

.1 .
Hm — [|F|| = 0 V n such that 0 < nAt < T in some norm, ||-||, we say that

im
at—o At
the hydrodynamical modes of a lattice method converges to the solution of its consis-

tency conditions, as determined in the discrete Chapman-Enskog expansion.

2.4.2 Consistency

In a general sense, consistency of lattice methods comes from applying the discrete
Chapman-Enskog expansion of Section 2.3 to n. That expansion imposes consistency

conditions, and those conditions lead to overall consistency of the method. In that
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process, n is assumed to be an infinite expansion about an equilibrium, i.e.,
e . .
j=0

where the nl) are determined at each step of matching the expansions (see Section
2.3.5). Formal consistency arguments involve applying the discrete Chapman-Enskog
expansion to a truncated version of n, which is denoted h (see Definition 2.37). The
truncation order depends on characteristics of the lattice method, such as inclusion of
O[6] advection and, though not yet verified, probably the number of directions, d, and
spatial dimensions, p. The application of the discrete Chapman-Enskog procedure (on
n) determines the o{?) paramneters (each set of o{/) parameters is introduced by the
nullspace of the linearized collision operator). Any o{/) parameters appearing in the
truncated expansion, h, satisfy (by definition) the consistency conditions determined

by the discrete Chapman-Enskog exnansion on n.

THEOREM 2.47 (CONSISTENCY). Let Az = L6 and At = Té* for spatial and
temporel scale lengths L and T, respectively. Let n = i«Sjn(j) satisfy ine Lattice
Boltzmann Equation, Eq. 2.8, where n\® is an equz’libr;:?n and the remaining n¥
are determined by the discrete Chapman-Enskog procedure of Section 2.3. Let h be
an associated truncated equilibrium ezpansion of order J for some J € J and J >
1 so that h = }i_:éjhm. Suppose that {h(i) |7 €{0,1,...,J}, 0<nAt< T} is
uniformly bounde:l(.) Then h satisfies Eq. 2.40, in which T(h) = 0[6"““"] for some
integer I{ > 0. Further, if J+ 1 4+ K > 2, then

, 1
Jim 1T =0,

for some norm, ||-||.
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J :
T(h) = Z §ITW 4 O[6J+I],

=0

for some coefficients T, j € {0,1,...,J}. To prove the first part of the theorem, it is
J

enough to show that T =0V j € {0,1,...,J}. Since h® = n(® is an equilibrium

solution, C(h®) = 0: hence, T(” = 0. Aud since ht) = n( Vije{l2,..,J}

Ah —h-C(h) = (9[6“1] hy applization of the discrete Chapman-Enskog procedure

on n, i.e., the n®¥) are determined in a way to insure this. Hence, 3 K > 0 such that

T(h) = O[s7+1+K].

To prove the second part, we assume that J+1+K > 2. Then7 ‘h) = O[&Jﬂ-w\,]’

and 3 a constant C such that ||7(h)|| < C6’+'+X for some norm, ||-||. Finally,
TITWI < zpos/
At - Té? '
< 9_5J+1+K—2
- T

sinceJ+1+K-2>0.0

Example (LB;: Consistency).

T
Oas/‘;t:—EEEQ—-»O,

o0
LEMMA 2.48 (CONSISTENCY OF LBy). Letn =Y 6'n(9) be determined by the

j=0

discrete Chapman-Enskog procedure. Let the iruncated equilibrium ezpansion,

h, ' defined by

3
h=3"6ht), (2.42)
j=0

where W) = nl) for 5 ¢ {0,1,2,3}, where the n?), j € {0,1,2,3}, are deter-

mined by Eygs. 2.27, 2.28, 2.30, and 2.32. Then h satisfies Fq. 2.40, in which
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T(h) = O[84]. Suppose that 0 € C4([0, L)%, (0,1)) and 0(? € C2(R?, R).%
Let At = T6%, Az = Lé, and v = L%/(2T"), for spatial and temporal scale
lengths L and T, respectively. Then

lim L
At—0 At

I7(h)|| =0,
for some norm, ||-||.
Proof. First, we determine the parameters of the truncated equilibrium expan-

sion in terms of the expansion for n. Then we determine the remainder, 7 (h).

1
i i — -
Finally, we show that Altlm0 ; [7(h)||=0.

Part 1: Determining the Truncated Equilibrium Expansion

Recall that any constant o(!)(2, y;t) and .(®)(z,y;t) satisfy the 063 and 01[6%]
consistency conditions, i.e., Eq. 2.31 and Eq. 2.39, respectively. Choose a(z, yit)
= o (2,y;t) = 0. Then using that h() = n()) and Eqs. 2.27, 2.28, 2.30, and

2.32 for n©, n(®), n(?), and n®, respectively, we find

h(® = qot . (2.43)
3 1)
h) = 3 ¢lVqy, (2.44)
k=0
where
cé,l) = 0,
L
Cgl) = X“x )
& = Tu,
cgl) = 0;

34Recall that u(z,yt) = J(U)(J:,y;t) and that the 0(/) parameters are determined by applying the
discrete Chapuian-Enskog procedure to n. See Eqgs. 2.29 and 2.37 for o(®) and ¢(*), respectively,

91
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3
h® =5 ePay (2.45)
k=0

5—:' [%D’(U) ((ur)2 - ('lly)z) ; 52 —(D(u)ug) - %(D(u)uy)>] ;

3
=Y Par, (2.46)
k=0

0,

1{L3 L3 §? o\ /1

X [—(;umﬁ-wum ( LT m) (3u)

‘ N 178 a>

T [ ) (- ) - 5 (55 % D(w)val

Lo( 4 /\[; (ur)(uy)? = LD'(u)AoPu,

LB

= D'(u)us [D'(u) (207 = (u)?) - 2 (‘;‘5’ ;) D(u)Vu]] ,

1 (L3 L3 92 a\ /1

by ['6—““’” T DTuy ( 702 T LTat) (A" )

o1, . N\ 170 )

575 [P () - ) - 3 (5~ a—y) D)V
( 413 , 2)

Lo I (uz)*(uy) = LD (u)AoPuy

L3

7D [ D) ()7 - () - 2 (- %)‘D(“W"H’
K |
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Part 2: Determining the Remainder

Now, to determine the truncation error, i.e., the remainder, 7{h), let us apply the
discrete Chapman-Enskog expansion to h.

We carefully apply the advection and collision operator expansions (Eq. 2.24
and Eq. 2.18, respectively) to the truncated equilibrium expansion, h. Care is
taken in noting that the collision operator is O[1] and that h contains only up to
the O[§°] terms of the discrete Chapman-Enskog expansion. Thus, some of the
terms in the referenced expansions do not appear in the expansions with h. The

resulting expansion follows:

4
Ah - h - C(h) = -T(h) = = 5 TW6I 4 O[6°],
j=0

TO = C(h®),

T(l) - C'h(l)“[ll(é‘;,'V)hS‘o)

T = c‘h(z)+%ch(hm)),h<nh(1>

L? 0
- | Bavrn 2l

mh}j” +L@E-v)RY |,

T = £.5® 1 LpsemOy . O RORD £ p2e(R©). D@
c +6C(l)hhh+C(h)hh

3
- [’-‘3,-( VP RO 4 LT (& - V)—h(o) 2,

a
+ T hY + L(a - Vn?|

at
T = Ela’D"C(h(o))-h“)h(”h“)h(‘ L)*C(h ) - AR K
1

+ §D26(h(0))-h(2)h(2) +D%C(h® ),h(l)h(3)

LT ) T?
[4, (& - V) + = (@ V)Qé-t-hfj’w 5 wh R AR VIR
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L* . 0@ L 3 i
A rzﬁn‘f’ + = (8- 0)° WY + LT (8 - V) a"ﬁ” .

4

Now, we derive explicit expressions for the coefficients T() as linear combinations

of the eigenvectors of the linearized collision operator, We will write

where Tij) is a scalar expression. With this notation we may write the Taylor

remainder as follows:
4 =3 ()
Te=D 8> T qus.
) =0 =0

We find by the discrete Chapman-Enskog expansion on n that

TU) =0, je{0,1,2,3) (2.47)
and
T = 3" T{"qx (2.48)
k==0
where
T = &9 =y, (because of the (0[6°] consistency condition)
T({‘) = -6&4) =0, (because o) = ()
T(;) = ——Eg‘” =0, (because (¥ = Q)
Tg‘i) = _ &4

)
o) (zyit)=o(3)(zy;t)=0

in which the 65:) are given in Eqs. 2.33-2.36. Note that Tf;‘) is a function of u
and o(?) and up to their fourth spatial derivatives (using the O[6%] and O[8%]
consistency conditions to remove temporal derivatives.)

We have determined that the remainder, 7(h), is O[6*]. (Note that it is in

span(qs). This is the least accurate mode; it drives the truncation error.)
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Part 3: Showing Consistency

The comnbined results of parts 1 and 2 establish consistency of LB1, as summarized

by the following: Note that h(), j € {0,1,2,3}, are uniformly bounded since
o e c4([0,1)%,(0,1)) and o e CYR?R),

and they satisfy the O[6%] and O0[6] consistency conditions, Eq. 2.29 and Eq. 2.37,

respectively. Hence, 3 a norm, |||, such that

1
lim —

Jim ) S IT () =0

by Theorem 2.47. O

2.4.3 Maximum and Minimum Principles

The crux of the upcoming convergence argument relies on maximum and minimum
principles for the finite difference equation, i.e., the Lattice Boltzmann Equation,
Eq. 2.8, and for the dependent variables appearing in the truncated equilibrium
expansion. The former involves monotonicity properties of the difference equation
while the latter involves maximum and minirnum principles for partial differential
equations. (These amount to obtaining discrete and continuum maximum/minimum
principles.) The combined maximum/minimum principle results (along with certain
regularity conditions) will provide sufficient conditions to guarantee stability of a
lattice method.

The discrete maximum/minimum principle depends on monotonicity of the finite
difference method, i.e., that the r.h.s. of the Lattice Boltzmann Equation, Fq. 2.8,

is monotonically increasing as a function of its arguments. Consider the diffcrence
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method,

!

n rm A{‘ B AL n ,/At n 7" n
UMt = U~ AT [( T = ( 4/j_1)2] + Ae)? [ i1 —2U7 + Uj~,] y o (2.49)

for the one-dimensional viscous Rurgers equation,
Uy + UUy = MUgy o

Note that the r.h.s. of Eq. 2.49 can be written as a function H(Uy, U}, U7, ). ‘Then
the difference method, Eq. 2.49, is a monotone finite difference method if H is mono-
tonically increasing in all of its arguments [69, Ch. IV]). We assume H € C}(R3,R).
Thus, the gradient of H may be used to determine whether H is monotonically in-
creasing; a nonnegative gradient yields the desired result. It may be the case that
some conditions on the arguments of A (in addition to the familiar stability criterion)
must be imposed to guarantee that the difference method is monotone. These are
called the conditions of monotonicity. By the nature of the recursion relation in which
H appears, the monotonicity conditions are restrictions on the initial conditions, i.e.,
U? for all grid locations j. (See Appendix C for the details of this example.)

A similar function, H, applies in lattice methods. However, H turns out to be
a vector of “H” functions (each of which is denoted Hy). In this case, we say that
H is monotonically increasing if each Hj is monotonically increasing separately in
all arguments (see Definition 2.39. An important contribution of this work is that a
lattice method may only be conditionally monotone, That is, it may be a monotone
difference method for only certain initial conditions, i.e., ones meeting the‘ conditions
of monotonicity. The conditions of monotonicity form a basis of a discrete maxi-

mum/minimum principle for lattice methods. Upon these conditions rests the crux

37T his is the example discussed in Appendix C.



2.4, CONVERGENCE ANALYSIS 97

of the convergence proofs herein; hence, it may be that a lattice method converges for
orly initial conditions meeting the conditions of monotonicity.

Let £ be the domain of monotonicity of a lattice method (see Definition 2.40). Let
n} satisfy the Lattice Boltzmann Equation, Eq. 2.8, and let truncated equilibrium
expansion h} satisfy the lattice Boltzmann equation with remainder, Eq. 2.40. Then

the discrete and continuum maximum/minimum principles we desire to establish are:
1. If(VTe L, n}€€&), then (nf € &, VT, Vn)

2.1 (Ve L, hYe€), then (hf € &, V1, Vn).

Discrete Maximum/Minimum Principle

THEOREM 2.49 (DISCRETE MAXIMUM/MINIMUM PRINCIPLE). Let the domain of
monotonicity, £ = £@ x €W x ... x £6=Y < [0,1]%, for a lattice method be given,
where ) = [Mik),M.(f)]. Let

d-1 d—1
M—=[Mﬁk)] and M+=[Mik)]
k=0

k=0

be the extreme points of the domain of monotonicity. Suppose that the initial condition
is in the domain of monotonicity, i.e., n} € €, V ¥ € L. Further suppose that
C(M.)=C(M,) =0¢€[0,1)%. Then for all time stepsn, nt € £, V7€ L.

We will prove the theorem by induction on n using the definitions of H and G in
Definition 2.39. But first, let us introduce the following lernmas:

LEMMA 2.50. For each k € {0,1,...,d — 1}, Hi(n) is monotonically increasing
in each of its d arguments, {no,ny,...,n4-1}, forn € .

Prbofof lemma. In € the conditions of monotonicity are satisfied. Thus, by

definition Gx(n) > 0, which implies that [x(n) is monotonically increasing, O
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LEMMA 2.51. Suppose n € £ and C(My) = 0. Then Hiy(n) € €W, ¥V k e
{0,1...,d -1},

Proofof lemma, Let k € {0,1,...,d =1} be arbitrary. Then by Lemma 2.50
I (n) is monotonically increasing in each of its d arguments, {ng,ny,...,nq_y}, for
n € €. Thus, the extreme values of Hi(n) are at the extreme values of n, i.e.,
al n = My, Recall from Definition 2.39 that Hyn) = ng 4+ Cx(n). Then since
C(My) = 0, it follows immediately that Hy(Myg) = Mik) and Hy(n) € €W, Hence,
Il maps from € to €, i.e., If applied to an argument in the domain of monotonicity
produces a value in the domain of monotonicity. O

COROLLARY 2,52, H : € =+ E.

Proof of corollary. 'This follows immediately from that Hy : € — E€® for each
ke {0,1,...,d=1},0

Proofof Theorem 2.49. We now proceed with the induction. Considering the
base step, since the case n = 0 iy an assumption of the theorem, we must show
(for time step n = 1) n} € € V7 € £ Well, for each lattice node 7, we apply

Lemma 2.51 to obtain that Hy(nl_,) € EM Y ke {0,1,...,d—=1}.3 Therefore,

d-1
nl = [ Hk(ng_é.k) } € €.
k=0
IFor the induction step, we assume that n} € € to show n}t! € €. Applying

Lemma 2,51 foreach 7€ £, wefind (ng)ft! = Hi(n} ) € EMY L e{0,1,...,d -1}

Henee, nttl € £, O
In summary, Theorem 2.49 establishes maximum and minimum principles for a

lattice method under the following conditions:

I Given thal the initial condition is in the domain of monotonicity, and

YiWe have used that nf € € implies ny , €€
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2. At the extreme points of the domain of monotonicity (extreme is applied to

each dimension separately), the lattice method is in a state of equilibrium, t.e.,

the collision operator is zero,

Example (LBj: Domain of Monotoniity).

LEMMA 2.53 (DoMAIN OF MoNoTONICITY FOR LBy). Let interval £K) =
(M-, My] for k € {0,1,2,3}, where My = (1 + 1/v/5)/2 and M_ = (1 -
1/v5)/2.37 Then

E = g(C) X g(l) % 8(2) X 8(3)

is the domain of monotom’c'ﬂy for the lattice method, LBy.

(Since the proof is rather long and involved, the reader may wish to accept the
lemma and proceed to the discussion and development of the continuum maximum
and minimum principles on p, 110.)

Proof. There are three parts to proving the lemma: (1) show that the condi-
tions of monotonicity are satisfied in £, (2) show that € cannot be extended to a
larger connected region, and (3) show that £ has volume. We will proceed in the

order (3), (1), and (2).

(3) Clearly, £ has volume since M_ < M.

(1) To show that the conditions of monotonicity are satisfied in £, we begin by

rewriting the Lattice Boltzmann Equation for LBy in terms of n"*! to get

k=3
n}‘“ = { (“k)’rlue*k + Cr(ni_g,) }

where = (7,7) and & is the unit velocity vector for direction k. Then /I is

My 2 0.72361 and M_ ~ 0.97649.
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defined by

where
Hi(nig) = (nk)ieg, + Ch(npg,):

Then substituting for the LB collision operator (Eq. 2.10), Hy may be written

explicitly,
()Ft! = (me)feg, +Crl(niay,) (2.50)
= Hk(n?-é'k);
= (s

-

(k) g, (Rka1)P g, (Rht2) g, (Nita)ig,

(k) g, (k1 ), (Mk2 g, (Mk43) P,
(k) g, (k1 )i, (k) P, (k40 g,

- ("k)?-a',.("lkﬂ)?_e,, (nk+2)?_.g,,("k+a)?..g,,

+ + +

~ ("k)?—e‘*(nkﬂ)?_e‘h(nk+2)?—a‘*(nk+3)?..g,,

= (k)R (ka1 i, (M), (Mkta)i g, -

Note that ¥— & = (i + 1,5), ¥ & = (i,j = 1), T~ & = (i — 1,J), and
T— & = (1,7 + 1). To help clarify the notation, consider direction k& = 0.

Then

(no)i ! (no)i-y,; + Co(ni_y ;)

= (o),

+ ("0)?—1.,7'("1)?—1,,‘(”2)?—1,,'("8)?—1,;
+ ("D):‘L],j("l)rl—l.j("'z)?.1,]‘(713)?_1,1

T n no Toan
+ (710),‘_[‘1‘(711),’-1,1(71‘2).;1,)‘("3)?_1,1‘
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- ("0)1‘1-1,1'("1)}11.;' (n2)?..1,j("'3)?—1.j

= (mo)iLy,;(na)ly j(na)iy ;(na)iy

= (no)i-y ()i, (na)iy ; (ng)iy

There are similar equations for (m)}‘fl, (ng)}“j“, and (na)}‘jl. But because
LBy is rotation invariant, we can concentrate on the general form of Eq. 2,50.

Now, to prove *hat the conditions of monotonicity are satisfied in £, we must

show for
k=3
G =| Gy ,
k=0
where
Gy = Hi (ne_g, ),
n '~ &%

that G > 0. In this proof, for the sake of brevity, it is understood that unless
explicitly stated expressions involving ny, for ke{kk+1,k+ 2,k + 3} are
all evaluated at (7~ €;n). Then for example, k41 denotes (njy1)} g

similarly, n dendtes n?~é‘~' Then with & and | evaluated modulo d = 4, we

have
Gt = —--—0—~Hk (nr-g) - (2.51)
o(n)e-e,
Then we find
G = =M (ne 2.52)
k,k 8(nk)r_é‘~ k( [ €k) ( 0
= 1 NppaMhgs + Mgkt s = Mhgs + N1 Nkgs — Nhpy = Nhp1
0
G = e} (ny_g 2.,53)
Kkl Srer s, (ni_g,) (
= —3Mkyofhkea + NENkgs + s+ RERg2 + gg — Tk,
4]
Grrsa = 1y (np_g, ) (2.54)

N Nkya)r-e,

= ~3nk+1nk+3 t ngnggn + Ngtd + g Nk + kg1 — Nk
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0
(')(7"k+rs)r~e“k
= = dNpp kg2 F R g2 F g2 F ATt T — Nk

1l

(-.'|k,k+«'1 HA (llr~(7k) (2.55)

(Note that these partial derivatives were calculated when determining the
linearized collision operator.”®) We show that Gy > 0 by showing that G >
0.

Note that each G/ is a function of three arguments. Let E = [M_, M,].

Then the domain of a particular G s is E, a box. Toward the end of reducing

the number of cases to check, let

f(¢,pid)
9(C,p,¢)

L+ pb+(o+p—C—p—¢,

—3pp+(h+ Cptptd—C.

1l

It

Referring to Eqs. 2.51-2.55, we see that

Grk = f(Nhg1snrga, Neya),

Grher = g(gyNigo, Nrga) ‘
’ ’ (2.56)

Gtz = ﬂ(”k,”kﬂ,nk—w),

Grhys = g(ny, Tk415 k42 ).

The domain of f and g is E3. To prove (k1 > 0, it is enough to show that

J(Cpy),9(Copy @) > 0for (C,p,¢) € E3. We show that the extreme values

of f and g are nonnegative.

Since f,9 € C'(R® R), their respective absolute extrema are on the bound-
aryof &%, i.e., 01 (on the edges and faces of the box), or where the gradients

of f and y are zero in the interior of 12, ie., 1*\ 9F7.

el Igs. 2.52-2.55 before the evaluation of the partial derivatives at the equilibrium state, i.c

before substituting n = nt® = uq,.
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Local Extrema of f and g. We show that for ((, p,¢) € E3\ QE3, the lo-
cal extreme value of f and g is 1/4. It is found at ({,p,¢) = (1/2,1/2,1/2).
Consider (¢, p,¢) € E3\ 9E3. Then the local extrema of f and g are found
where V0 f(C,p,®) = (0,0,0) and V¢ ,49(¢,p,6) = (0,0,0), respec-
tively.

We find

Vo f(Cop, @)

Veodd(Cpd) = (p+é—1,-3¢+C+1,-3p+(+1).

(p+éd-1,{+¢-1,(+p-1),

Then setting the gradients to zero, we find for f that ( = p = ¢ = 1/2 and

for g that { = p = ¢ = 1/2. Hence, the local extreme values are

f(1/2,1/2,1/2)
9(1/2,1/2,1/2) = 1/4.

-~ -

1/2

1/4,

1l

| 12 | _
Thus, G 1 has a local extremura at n, = . The local extreme values

1/2
1/2

are given by

Gri(ne) =1/4, Y k,l€{0,1,2,3}.

Boundary Extrema of f and g. We will show that the boundary extrema

of f and g are between 0 and 2/5. For each function, f and g, there are six
cases:

la/b: (b,p,¢), be {M_, M.},

2a/b: (¢, p,0), be {M_,M},

3a/b: (C,b,8), be{M_,M,)}.
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Noting that f(C,p,¢) = f(¢,¢,p) and g(C,p, @) = 9(¢, ¢, p), the number of
cases is reduced to four for each function. Checking cases 1a/b and 2a/b will

suffice.

Case la/b:  Consider (b,p, ) with b € {M_, M.} and (p,$) € E% Then
fbyp,d) = pod+bp+bp—p—¢p—-b+1,
9(b,pyd¢) = —3pp+bp+bdp+p+d-0b

We now consider f and g as functions of p and ¢. The local extreme values
of these f and g are where their gradients (in p and ¢) are zero. For f we
find

Vos f(b,p,8)=(6+b-1,p+b-1)=(0,0)
implies that p = ¢. Then

f(bip,p) =p* +2(b-1)p-b+1

and (treating f(b, p,p) as « function of p)

0
5;]‘((”[)710) =2p +2(b" 1)=0

implies that p = 1 — b. The local extrema of f(b,p,#) are thus found at

(b,a,c) for a,b,c € {M_,M,}. The results are listed in Table 2.5. For g we
find

Vs 9(byp,¢) = (-36+b+1,-3p+ b+ 1) =(0,0)

implies that p = ¢. Then
g(b,p,p) = "3/92 + 2(b + l)p -b
and (treating g(b,p,p) as a function of p)

) o _
-8—py(b,p,p) =2(~3p+b+1)=0
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“implies that p = (b + 1)/3.v The local extrema of g(b,p, ¢) are thus found at
(b,(b+1)/3,(b+1)/3) forbe {M_, M.} We find

g(M., (M. +1)/3,(M_ +1)/3)

it

4/15,

i

oMy, (My +1)/3,(My +1)/3) = 4/15.

The boundary extrema are found at (b, a,c) for a,b,c € {M_, M.} and are
listed in Table 2.5, |

Case 2a/b: Consider (¢,p,b) with b ¢ {M_, M} and ((,p) € E% Then

f(¢,py0)

g(C1pyb) = “3bP+bC+CP—C+p+b.

Cp+bC+bp~(—p~-b+1,

i

We now consider f and g as functions of ¢ and p. The local extreme values

of f and g are where their gradients (in ¢ and p) are zero. For f we find

V(»P‘I(C#)vb) = (,0+ b"‘ 11C+ b - 1) = (O'»O)

implies that ( = p. Then

FCCBY = ¢t +20b-1)¢-b+1

and (treating f((,¢,b) as a function of ()

0 .
-a?f(C,C,b) =20+2(b-1)=0

implie§ that ( = 1 — b. The local extrema of f((,p,b) are thus found at

(a,c,b) for a,b,c € {M_, M,}. The results are listed in Table 2.5. For g we
find

Ve 9(C,p0) = (p+b—1,( -=3b+1) = (0,0)
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Table 2.5: Boundary Extrema of f(¢,p, ¢) and g(¢, p, ¢) in LB;.

L » ¢ 1f6ne) 9(Cp )
M- M- M_] 2/ 1/5 |
M_ M. My| 1/5 2/5
M. My, M.| 1/5 2/5
M. My M,| 1/5 0
M, M. M_| 1/5 0
My M. My| 1/5 2/5
M, M, M_| 1/5 2/5
M, M, M.| 2/5 1/5

implies that p = ( — 4b+ 2. Then

9(Cy ¢ = 4b+2,b) = (T + 2(1 = 3b)¢ — 9b + 2 + 1262

and (treating g((,¢ — 4b + 2,b) as a function of ()

596G~ 40 +2,6) = 2(C -6+ 1) = 0

implies that {( = 3b—1. But 3b—1 ¢ E for b € {M_, M, }. Hence, this case

does not produce a local extreme value inside the domain of ¢, i.e., E\ 9E.

And noting that a — 4b + 2 € F for a,b € {M_, M.} implies that there are

no extreme values on the boundary of the domain of ¢ either. So, g((,p,b)

has no local extrema. However, boundary extrema are found at (a,c,b) for

a,b,c € {M_,M;}. They are listed in Table 2.5.

Absolute Extrema of G ;. The absolute extrema of f and ¢ are found as

the respective minimum and maximum over the local and boundary extreme

values. Considering the preceding analysis, we find for (¢,p,9) € E3,

min f(¢,p, )
min g(¢, p, ¢)

maxf((,',p,qﬁ) = 2/57
max g(¢,p,¢) = 2/5.
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Thus,

(@18l )

minGy; =0 and maxGy, =

Hence, Eq. 2.41 holds, and everywhere in £ are the conditions of monotonicity

satisfied.

To show € cannot be extended. Let € > 0 be given such that 0 < M_ —¢ <
M+ +e<1 Thenlet R. = [M_ —¢,My]and Ry = [M_, My + €, and
M = [M_,M.]. Further, let Ex = M UE. Then let

éo,:}: = MxMxMxE,.,

11 = MxMxEgxM,
€20 = MxEgxMxM,
£3+ = Ex xMxMxM.

It is enough to show that for each i € {0,1,2,3} and 5 € {+, -}, Gx(n*) <
0 for some k,l € {0,1,...,d — 1} and some n* € f'f,-'s. Well, note that from
Eq. 2.56 and Table 2.5, Gy =0 for (1) ng = M_, and ny = ny = M, and
(2) no = My, and ny = n3 = M_. There are eight cases to examine. While
we will only present the proof for two cases, the other cases proceed similarly,
and the tables we will be using have enough information to verify the other

six cases. For each case we use a proof by contradiction.

Case &y, =M x M x M x E;: Suppose Gy > 0, V k,l € {0,1,2,3)
andV n € £p . Let
'I‘ -~
= M., My, My, My+e| €Eoq.
Note that Gl (n*) = y(M_, M4, My +¢). From Table 2.6 we see that

0 , o
Eg(M_,M+,M+ +¢) < 0. This coupled with g(M_, M, M;) = 0

107
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(see Table 2.5) implies that Gy, (n*) < 0, which is a contradiction.
Therefore, the conditions of monotonicity are not everywhere satisfied in
Eos.
Case £y =M x M x M x E_: Suppose Gy, > 0, ¥V k,l € {0,1,2,3)
and n € £ _. Let
T
n*=| M, M., M., M_-¢| €E&o-.
Note that Gg1(n*) = g(M4, M_, M_ —¢). From Table 2.6 we see that
b%g(M+,M_,M_ —€) < 0. This coupled with g(M4, M_,M_) = 0
(see Table 2.5) implies that Gg1(n*) < 0, which is a contradiction.

Therefore, the conditions of monotonicity are not everywhere satisfied in

Eo,.-.

1

As noted, the remaining cases proceed similarly, the final result being that
none of the eight ways of extending £ produces a region everywhere satisfying

the conditions of monotonicity.

We have shown that the conditions of monotonicity are satisfied in £, that no
extension of £ everywhere satisfies the conditions of monotonicity, and that £ has
volume. Hence, £ = [(1-1/v/5)/2,(141//5)/2]* is the domain of monotonicity
for LB;. O

LEMMA 2.54 (DisCRETE MaAxiMuM/MINIMUM PRINCIPLE FOR LB,).
Considering the lattice method, LBy, let its domain of monotonicity, £, be as
in the hypothesis of Lemma 2.53. Then LB has the discrete mazimum and
minimum principles described in Theorem 2.49.

Proof. Note that My = M, qo and M_ = M_qq, and that Cy(M,) =
Ck(M_) =0V k €{0,1,2,3}. Therefore, Theorem 2.49 applies, i.e., if n{ € £ ¥

T€ L, thenn? € EV 7€ £ forall time steps n. O
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Table 2.6: Direction of Increase in f and g for Arguments Just Outside £ in LB;.

The table lists gf and 59 for arguments just outside the boundary of £, The
¢ €
arguments are parameterized by ¢ > 0.

F(G) = (C(C),p(e),¢(€)) 5 5
() ol e | gt FalFle)
M. M. M_-¢]| +1/VB -1/
M_ M_ My+e| =1/V/6  +1/V5
M_ M, M_ -¢ 0 +2/V5
M. M, M, + ¢ 0 ~2/V5
M, M. M_—¢ 0 -2/V/5
M, M_ M, +e 0 +2/V5
M, M, M_—¢| =1/v/5  +1/V5
M, M, My+e| +1/V/6 =1/VB
M_ M_—-¢ M_ +1/vV5  =1/VB
M_ M_-¢ M, 0 +2/V5
M_ M,+e¢ M. -1/V5  +1/V5
M_ M, +e¢ M, 0 ~2/v/5
M, M_—-¢ M. 0 -2/V/5
M, M_—-¢ M, -1/v5  +1/V5
M, My+e M. 0 +2/V5
M, M, +e¢ M, +1/vV6  =1/V5
M_—-¢ M. M_ +1/V5  +1/VB
M_—-¢ M. M, 0 0
M_-—-¢ M, M_ 0 0
M_—e M, My ~-1/V5  -1/V5
My+e M M. ~1/vV5  =1/V5
M, +e¢ M_ M, 0 0
Mi+e¢ M, M._ 0 0
My+e M, M, +1/vV5  +1/V5
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We have established maximum and minimum principles for the Lattice Boltz-

mann Equation for LBy. The initial requirement is that

,1/\/5 < (m)f € L UVE ,1/\/5

1 -
2

2

for all lattice nodes 7and directions k € {0,1,2,3}, i.e., ||n - 1/2ll,,, < 1/V5.

Continuum Maximum/Minimum Principle

J
Recall that h is a truncated expansion about an equilibrium so that h = Eh(’) for

some finite J. Note that the h/) are in terms of the o) (I < j) parameters ;r;:roduced
in determining the corresponding n'¥) in the discrete Chapman-Enskog expansion on
n. The o® parameters are solutions of the O[62] consistency conditions, i.e., the
hydrodynamical equations. The o) parameters (for [ € {1,2,...,J}) satisfy the
(9[5“"2] consistency conditions. Thus, maximum and minimum principles for h can
be obtained from (1) maximum and minimum principles for the o(® parameters, and
(2) regularity of all o(") parameters appearing in the truncated equilibrium expansion,

i.e., h, and (3) conditions on 6.

Example (LBj: Continuum Maximum and Minimum Principles).

We now present the continuum maximum/minimum principle for LBy. The main
results are in Lemma 2.56 and Corollary 2.57.
LEMMA 2.55 (HYDRODYNAMICAL MAXIMUM/MINIMUM PRINCIPLE FOR

LBy). Let u(z,y;t) be a solution of

0 ,

Y= vV - D(u)Vu on Q = ([0, L] x [0, L]) x (0,T), (2.57)
1
du(l — u)
isfying 0 < R_ < w(z,y;0) < Ry < 1, for some R_,Ry € (0,1) such that

1 o G
where D(u) = =S with initial condition, u(x,y;0) = uy(z,y) sat-
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R_ < Ry, and periodic boundary conditions, Then the mazimum and mini-
mum of u(,y;t) occur either at the initial time, t.e., R_ < u(z,yit) < R+ A
(2,y;t) € ([0,L] % [0,L}) x (0,T].

Proof. Define a new coefficient, D(u), that is precisely D(u) on the closed
interval [R.., R4 and smoothly extends D(u) beyond the closed interval to all of
R so that D(u) has everywhere a bounded first gradient and D(w) is a positive

function. Now, let #. be a solution of

0 N l. .
(’)—tﬁ =vV. (D(u)V&) (2.58)

with periodic boundary conditions and initial condition satisfying R_< o(x,y;0) <
Ry for all (z,y) € [0,L) x [0, L] and 0 < R < Ry < 1. Then since Eq. 2.58 is
easily verified to be parabolic for all & and any constant satisfies that equation, The-
orem 12 of [63, p. 187-8] applies to Eq. 2.58. The result is that R_ < (x,y;t) <
Ry for (z,y;t) € ([0, L) x [0, L]) x [0,T), establishing a maximum/minimum prin-
ciple for Eq. 2.58.

Now, suppose i (z,y;0) = u(z,y), and R_ = R. and Ry = Ry. Then
the solutions of Eq. 2,57 and Eq. 2.58 are identical, i.e., @(x,y;t) = u(z,y;t).

Therefore,

Ro <uw,yit) < By Y (2,y5t) € ([0,L] x [0,L]) x [0,7],

where 0 < R_ < Ry < 1. O

We have established a maximum/minimum principle for the hydrodynamical
equation of LBy (Eq. 2.29).

We arrive at the following maximum/minimum principle for h.

LEMMA 2.56 (CoNTINUUM MAXIMUM/MINIMUM PrINCIPLE FOR LBY).

Let u(x,y;t) be a solution of Fq. 2.29, and let h = Z?:u 67h0) be as in the
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hupothesis of Lemma 2,483 Suppose for some constants R, 0y, BU), B2,

and 3,
LO0< R <u(e,y0) < Ry <1V (e,y) €[0,L]) x [0, L), and
Hh(’)H < BYW < oo ¥ (z,yit) € ((0,L]) x [0,L]) x [0,T], V4 €{1,2,3}.

Then 3 8y > 0 such that for 6 € (0, 6p)

h™ € [R_,Ry)%, V time steps n > 0.

hﬂ -

1z++13_“ <R+-R_ o1
b

2 <1,75‘

Proof. Well, by Lemma 2.55 with R_ = inf u(e,y;0) and Ry = sup u(x,y;0)

so that R_ < R_ < Ry < Ry, we have

Ry - R_
<3

th) Ry + R
2

¥ (z,;t) € ([0, L) x [0, L]) x [0, T).

{oo
Consequently,

R_ < (K™% < R,

for all lattice nodes 7€ £, time steps n, and directions k € {0,1,2,3}.

Now, choose 6o > 0 3 for § € (0,8), R < (h\V)2+6B1) +.62B(3 469 BO) <
Ry for all lattice nodes 7€ £, directions k € {0,1,2,3}, and time steps n. Then
for 6 € (0,60) we have

Ry + R Ry + K_
’hn__._j_’;___t (h( ))"+5( l))n___ +'; I
oo loo
< [(hoyn - M 2,53 ” W)y
< [[(h@y - R+ + R “ + Z (60) BU)
=1
¢ R
- 2

%The coefficients, k), j € {0,1,2,8), are defined in Eqs. 2.43-2.46, respectively.
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Hence, h™ € [R_, R.]Y. O

ConoutAry 2,67, In LBy, 3 by > 0 such thatV 6 € (0, 68p), if h‘,f € E\UE,
VTe L, then hf € & Vi€ £, Vn, where € 1s the domain of monotonicity
for LBy,

Proof, Let Ry = M, < | and . = M_ > 0, where M, and M_ are defined
in Lemma 2,53, Then apply Lemma 2,56 to yield the result. O

We have established a continuum maximum and minimum principle for the
truncated equilibrium expansion, h. The sufficient conditions are that (1) ¢(®) has
a maximum/minimum princip|é‘, \2) finite global bounds on h{!), h(#, and h(Y

exist’, and (3) expansion parameter § > 0 is sufficiently small,

2.4.4 Stability

TUEOREM 2.58 (STABILITY IN THE L{-NORM). Let a lattice method be given with
domain of monotonicity, €, Let n} and h}. Suppose that if h$ € €, then h} € €
V n such that 0 < nAt < T and At < 7 for some 7 > 0. Then if the method is
mass-conserving it is stable® in the L -norm.

LEMMA 2.59. Let C(n) be @ mass-conserving collision operator. Then for n ¢ &,
1 +DCmll, = 1

Proofof lemma. Well, let

(= { (Vi } ,

where
§ 0
Gy = 75— (n),
L Oy
40

It can be shown that the (.')[é"’] and C)[b"] consistency conditions, g, 2,29 and . .20,
respectively, have regular solutions so that there exist uniform bounds on W™ WO and W,
See Definition 2.42 for the definition of stability.
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and //(n) = n 4 C(n). Note that Gy 20 for n € € by Deflnition 2.40. Then we

have
| =1
11+ DCm)f,, = sup Ll("k.tl
le{0 0 d -
Cod-1
= qu‘p?;o % HHL n)

= qup () m Z Hi(n)

)
= stllp ;}{1_17 zk: (ng + Ci(n))

0
== hl.;]) [1 + '51-]'-'- ;Ck(n)]

= 1,

since Z(*k (n) =0, i.e., C(n) is mass-conserving, 0
l’r(mfof Theorem 2,58, We will show that ||[L[n",h*]||, = 1 ¥ n. Since ny € €,
Theorem 2,49 guarantees that n} € €. Also, h € € by the statement of the theorem.,

Then noting that (nf — s(hf —n})) € € fer s € {0,1] so that Lemma 2.59 applics, we

have
1
L™ b, = “f [/ + DC(n} - s(h? —n?))] ds
0 4
!
< ; I +DC(n} — a(h} — “?))“!1 ds
!
= ldg = 1.
0
(]

Example (LB: Stability).

LEMMA 2.60 (Srasiurry, o LB N THE Lj-NokM). Let n", h" and

Lin™, b be defined as in Definition 2,41, Let domain of monotonicity, €, be
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as in Lemma 2,58, Suppose n, (WY € £.4% And suppose the hypotheses of
Lemma 2.56 are satisfied. Then 3 7 > 0 such that |[Ln" h)[l, < UV 0 such

that 0 < nAL <1 and 0 < At < T,

Proof. Let Ry = My and R_ = M_, where M, and M. are defined in
Lemma 2.53. Let 8y be given by Lemma 256, Choose r = 7'(§,)? so that
Awx < Lép. Note that Corollary 2.57 applies to yield that h™ & £ V n such that

0<nAE<T and 0 <At < 7. Then ||L[n",h"][|, < | by Lerama 2,59, ©)

2.4.5 Convergence

Convergence of a lattice method can be made in terms of consistency and siability.
THEOREM 2.61 (CONVERGENCRE)., Suppose a lattice method is consistent. Ther
stability s a sufficient condition for convergence,
Proof. We show that a consistent and stable luttice method is necessarily con-
vergent. Let error ef = n} — h}, Then note that by the Fundamental Theorem of

Calculus
Ae" = Ln", h"] e" + T (h}),
where
!
Lin",h"] = / [ +DC(n™ — s(h" — n"))] ds
J0

(1 is the identity matrix). Then

L{n™, h"] = diag (L) e €

4
. , ey s C ey , N .
#Recall that h(® is the equilibriwm in the truncated equilibrivm expansion, o= S 6/09 7 (See

J=0

Fq, 2.42).
WM™ W s block dingonal matrix.
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where Lyis aod x d matrix given by
f
L= / [/ 4+ DC(n! + s(h — n))] ds.
0
Indecd
Ade} = Ly er + T(hy).

There exists a permutation matrix, P2, such that
e"! = [[n", h"] e" + T (h"),
where (Nd) x (Nd) I‘rlat,l‘ix""; |
Ln™,h") = PTL[n",h"|P,

and T(h") = PTT(h"),
By definition of consistency there exists a constant, Cp, such that |T(h")| <
Cob* X, for some K > 0, V n such that 0 < nAt < T By definition of stability

there exists 7 > 0 and ('

H L[nm’ hm]

m=0

for all n and At such that 0 < At <7 and 0 < nAt < T,

S C’l b}

We have

e"“” = :;Z;:; (rj;[l] LT, h'"]) ’j'(h'”)l
< Jerfe S imomn+ e imae)
m=0
< (n=1)||PT| oy 4 P Cost+"
< O,

N = O[1/(Ax)"] is the total number lattice nodes in the lattice, £,
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where C = “PT” max(CyCy, Cy). Then
Let f} and F™ be as in Definition 2.44. Then f} = «QTP by Lemma 2.45.

Further, |
17 < 5 @] e
Hence,
sl s fgllcf‘llnne"u
< dAt “QTunC(SNJ\
< 1farnorss
- 0
as At—0. O

Example (LB]: Convergence).

THEOREM 2.62 (CONVERGENCE OF LBI) Let the conditions of Lemmas
2.48, 2.54, and 2.56 be satisfied. Then hm
T.

At NF™l,, =0,V n30<nAt<
Proof. This follows directly from Theorem 2.61. O
We can recover an (O[6%] approximation to u(z,y;t) by the covergence ar-
guments, the definition of the truncated equilibrium expansion, and consistency
- arguments to obtain that hydrodynamical error,

1
Ja0-ef +0[6?)

= pt -~ pr + O[8?

3
_ -Z( WE =+ (e + 018
k=0

(fo)?



118 ' ‘ | CHAPTER 2. THEORY

3

ot = 1 (S0 + 0l + ol

k=0

==
It

il
SN e
=

0

(np)} — ulf + O[6Y

P
i
c

1l
S =
.Mm

(nk)? — w(TAz;nAl) + O[8%).

Il
o=
.Mw

P
il
=]

We have shown that the hydrodynamical mode of the lattice Boltzmann method,
LBy, converges O[§?%] to the solution of its hydrodynamical equation, Eq. 2.29.
Assumptions and statements used to obtain convergence include: (1) monotonicity
principles of the lattice method, which restricts the domain of the occupation
numbers, (2) boundedness of the solutions, u and o{?) (and up to their fourth
spatial derivatives), to the O[§%] and O[6*] consistency conditions, and (3) a

maximum/minimum principle on u. This concludes our example.

2.5 Conclusion

The analysis of this chapter showed how to obtain convergence results for lattice
Boltzmann methods and the Lattice Boltzmann Approximation to lattice gas meth-
ods. Convergence can be established through formal consistency and stability argu-
ments. These arguments are similar to those employed for establishing convergence
of monotone finite difference methods. Consistency can be obtained through two ap-
plications of the discrete Chapman-Enskog expansion (one to an infinite equilibrium
expansion, one to a trunceted expansion). Stability can be proven by establishing
maximum/minimum principles for both the lattice method and the partial differen-
tial equation, solutions of which the lattice method approximates. Restrictions on
the occupation numbers may be required for maximum/minimum principles of lat-

tice methods to yield convergence in the Li-norm. The next chapter applies the
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theory to additional lattice methods; its sequel provides computational evidence that

substantiates the theory.



Chapter 3
Applications

This chapter presents three lattice methods and analyzes them in accordance with
the ideas set forth in the preceding chapter. Two of the methods are new and have
not been previously investigated.

The first lattice method is a variation of LB, from the previous chapter; we denote
it LB3.! It is the subject of Section 3.1. The second laitice method was first introduced

and analyzed in [7] as a lattice gas method for the one-dimensional viscous Burgers

equation,
Pt + PPzr = VPzz .

The method’s statistical properties, i.e., correlations and covariances, were subse-
quently discussed in [53]. Our treatment, the subject of Section 3.2, regards it as an
example of a lattice method for advection-diffusion in one dimension, i.e., as a method
with O[6] biasing in the collision rules, and we detail its analysis. In Chapter 5, the
method is applied to study a domain decomposition method for lattice gas methods.

Finally, Section 3.3 presents and analyzes a lattice method for the two-dimensional

'LB; actually denotes one of two lattice methods. The other one is obtained by exchanging
particles and holes, i.e., the meaning of 0 and | are reversed: In the occupation numbers, iy = (
would denote presence and ny = | would denote absence of a particle at a node.

121
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advection-dilfusion equation,

pet ppe = V(pee + Pyy).

While convergence is proved for the methods in Section 3.1 and Section 3.2, conver-

gence of the third one remains to be completed and will appear.in a future work.

3.1 LB,

This section presents the numerical theory for a lattice method that is a variation
of LB,. (L.B; is analyzed extensively in the previous chapter.) The new method is
denoted LB,. Under the symmetry of exchanging particles and holes, L.B; represents
one of two identical lattice methods. One of t’he variants of LB, is introduced in Sec-
tion 3.1.1, and the numerical theory of the variant method comprises the succeeding
sections. The equilibrium analysis is in Section 3.1.4.

In Section 3.1.5, the discrete Chapman-Enskog expansion is reveals the hydrody-

namical equations for the method. The formal convergence arguments are made in

Section 3.1.6.

3.1.1 Collision Rules

First, note the lattice, £, and velocity vectors, €k, & € {0,1,2,3} are the same as
those for LLB;. The collision rules for LB, are defined to be those for LB, with one
addition. The édditioxlal rule adds single-particle collision rule that for a node in
a pre-collision state of exactly one particle, in the post-collision state the particle
returns from whence it came. The resulting collision rules are exhibith«l in Figure 3.1

and listed in Table 3.1.
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STATE PRE-COLLISION POST-COLLISION

No Particles B — = S S

One Particle e = = SO EN
b

Two Orthogonal Particles ———sye = -t
'y

Two Head-on Particles T S =

}

' M
Three Particles —e =
. y
Four Particles »ie =

Figure 3.1: LB, collision rules. Particles change direction only in states with exactly
one or two particles present, In both the orthogonal and head-on cases of two-particle
collisions, particles change direction to the unoccupied directions.
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Table 3.1: LB, Collision Rules.
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3.1.2 Collision Operator

The collision operator for the lattice gas method is given by

Ce(R) = 7k Apg1hpallhts + Aelleg1Nkg2ftess + Nelkp1 rp2Nhta

— Tk Tkt 1 Toktz Tokd — TkTpg1 Nkg2Tihgs — MeRpp1Tip2Reqa

— Nk Tokg1 k42 Tk + Nk 1M 2T k43 (3.1)

3.1.3 Lattice Boltzmann Approximation

The corresponding lattice Boltzmann method is from the Lattice Boltzmann Ap-
proximation, in which we replace the f, € B with ny € [0,1], where nx ~ (7).
The approximation holds under “m&lecular chaos”, in which particles are assumed to
be statistically uncorrelated prior to collisions. This assumption becomes an inherent
part of the lattice Boltzmann method, which then operates on mean occupation num-
bers, i.e., particle distributions, rather than particles themmselves as with the lattice

gas method.

3.1.4 Equilibrium Analysis

It can be easily verified that LB, satisfies detailed balance so thet the Equilibrium
Theorem (Theorem 2.25) can be applied. Then considering LB, to be in an equilib-

rium, i.e., C(n) = 0, and consulting Table 3.1), the theorem yields the following:
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nf®N ()10 = pOO([)ION (from rules 1 and 4)
n%O(m)HOt = p1O(F)OMT (from rules 2 and 8)
n0OtH ()00 = OO0t (from rules 3 and 12) ¢ ,°
noHO(m)I0T = plOOL(E)OHO(from rules 6 and 9)
n'%O(m)010t = pOON(FYI  (from rules 10 and 5) ,
or
\
N3l Ty My = nyTig 1z g
Nallg Ty Tty = noTy iz N3
Nongllg 0y = ngny Mgy (s (3.2)

MiNeTy N3 == ngnafi] 1y

NoNeMy My = n,ng’ﬁ‘aﬁ}'J

for ny € (0,1). Define gx = ni/(1 — n). Then Eq. 3.2 can be written

i

gs 91

1l

g2 9o

(a)

(b)
9295 = gog1 (¢ |-

9192 = YJogs (d)

()

Jog2 = G193

Combining (d) and (e) through g;, we get g, = g5 (because the gi are nonzero). Then

I

9o = g1 = g2 = g3 and by Lemma 2.31, ny = n; = ny = na = u. Denoting the

“Here, the superscripts are in shorthand vector exponent notation so that, e.g.,

noo11 :n[ 6,0, 1,01 ]T'
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equilibrium solution, n(®, we have

n® =

L U
3.1.5 Discrete Chapman-Enskog Expansion

Linearized Collision Operator

Note that the collision operator is O[1]. (It has no O[] contribution for a fixed
argument, i.e., C¥(n) = 0.) Then C(n) = C{®(n), and we henceforth drop the

superscript. The linearized collision operator is given by

[ —(2u+1)

u 1 u
u ~(2u+1) u 1
L= (l~-u)
1 U —-(2u +1) U
L U 1 u —(2u + 1)

Note that indeed L is a symmetric circulant and thus possesses a complete orthogonal
set of real eigenvectors. Note also that £ is nonpositive definite for u € [0, 1]. The set
of eigenpairs of the linearized collision operator, which can be found by the methods

suggested on p. 52, is
{(Ayaw) | k € {0,1,2,3}},

where the eigenvalues are given by

eigenvalues(L) = (Ao, A1, Ag, Aa)

= (0, ~2(1 —w){l +u),—2(1 —u)(l + u), —du(l —u)),
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and the respective eigenvectors (colimn vectors) are given in the eigenmatrix,

Q = Qo

iy

Chu

q:

3 =

L]

0

-1

Note that the linearized collision operators of L3; and LB, have identical eigenvec-

tors. Consequently, they share a common componentwise eigenvector product (%)
4 o

the possible products are listed in Table 2.4,

Gradient Expressions

Note that in the present method the unit velocity vectors, éx (k € {0,1,2,3}), ave

the same as in LB;. Thus, gradient expressions involving the unit velocity v~ctors

are expressed in the same fashion (see Lq. 2.25),

Matching the Advection and Collision Operator Expansions

In matching these expansions, we assume

Ay
At

Il

Ay = L6,

T6?,
L')
ﬁ»

for spatial and temporal scale lengths, L and T, respectively; v is a diffusion coeffi-

cient. We use the following notation in the analysis:

D(u)

Il

il

= —=2(1 — w)(1 +u),

ne
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D (u) = ('l'ltD(u) - /\2’
3 )
g(-’) = L. n(-j) = Z E'(k])qk )
k=0
3 .
n(J) — G(J)qo -+ £+ . g(-’) = Z Ci.J)Qk )
k=0

in which, as with LBy, ¢§ = ol and o) = -;;asj) for k € {1,2,3}. The o9 will be
found to satisfy the consistency conditions of the lattice method. Note that A # As.
(In referring to Eqs. 2.18 and 2.24, the reader is reminded that C!Y(n) = 0 and
C(n) = CO(n),)

In the convergence arguments, we will be using a third order truncated equilibrium
expansion order, i.e., h = £9_;6/hl¥, in which h{) = n), Since o appears in n(®),
and o® is determined by the O[6°) consistency condition, we carry out the discrete
Chapman-Enskog procedure to the extent of determining the consistency condition
at O|8°]. For each order in matching the advection and collision operator expansions,

Eqs. 2.24 and 2.18, respectively, we find the following:®
O1): €(n¥) = 0, as desired, by choice of n®), Then

n® = qou. (3.4)

O[é]:

where

3Since lattice methods LBy and LBy are very similar, while reading this section the reader may
wish to consult the portion of Section 2.3.,5 that discusses matching the advection and collision
operator expansions for LB;, pp. 72-81. Further details may found in Appendices A and B.
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= L,
("(zl) = Llly )
A =0,

o Cousistency: ¢ g" = 0 is already satisfied, so no consistency conditionis

introduced at this order,
¢ Solve for nY; We have

3
! 1 .
= (-'((1 ety + ) C(k CT (3.5)
k=0
where c{" = o) is a free parameter that will be determined in the O[6°]

consistency condition, Eq. 3.8, and

1
= —dV ke {1,2,3},
Ak

or
c(,l) = L:liur ,
cgl) = L-}{uy )
cgl) = 0
O[6%):

d
-n

Dl Lyl

2
£.n® = [ — (& V)* nio) +T
!
2
g

i
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where

. L?
&) = Tug~ =V - D(u)Vu,

I

Lol — LD'(u)AoMu,
&Y = Lol — LD'(uw)AotMuy

2 —
= LR (el - ) - (2 (00u) - g (D) ).

, , L* . .
or é((,” = 0. With v = — this may be written

orT
uy = vV .« D(u)Vu. (3.6)
o Solve for n{?: We find

n(z) ] E'{' . g(z) + a(z)qo

= > dla, (3.7)
k=0
where o = o(® is a free parameter that will be determined in the O[61]

consistency condition), Eq. 3.14, and

; 1
A = 5o’ ke {23),

or
D = -g\fag” ~ LD'(w)Ne My,

L .
P = ~/—\-a§1) — LD'(u)AoWy,

oo _ L=l N (O D
CN 2/\3[ i (e = (0)?) = (55 (P(w) = - (D)) |
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3 ) ‘ .

Lon® - [_g_'(gk.vy O L LT (& - V)%nf)+L(ak.V)7-zL”
L* 2 (1) 0
+-2‘!—(6A V) ‘*‘Tgt'

— DX(n®). np ——EDBC( N nWpMp)

]
09

where

]

12
& Tolt) — :—2-V- [D(u)Vo(l) + D'(u)o(l)Vu] ,

i L L & EAYG!
Cga) — —é—U;wz- + LTU,: + (?0—- + LTat) < um>
L} o /1 2L
+ g (3ue) — 3 (0002 = (L) + Lof?
L
+ TZ-D'(u) [2(1\0 N2D'(u)ug — 2X (a(z)uxﬁ— U(l)ail))

2 —
~ L*u, <§a-:.’ - %) - D(u)Vu + ZE—Q;‘—L——-——I—)% ((uw)2 - (uy)2)]

30 |1 0 0 -1 2
+ LEE{TA; <'a7£’“5“)'0( )Vt o () '"(“”)2)]’

~(3) L3 L3 52 0 1
Cy = 6 uyyy + LTUW + ( 5 5“2- + Tat (-X'Ll,y)
L% 8 2L ‘
= Sy (30) = 37 (0007 = (T)?) + Lo

L
+ EDI(U) [Q(Aa(l))zD’(u)uy -2 (a(z)uy + or(l)az(ll))

: 2
+ L, (2. — _f)_) - D(u)Vu + g_[i..@Tu;'.l_)uy ((ur)?' - (uy)2>}

dr Oy

9 11 o 0 w1,
B 13 ( adndii ) 2 2
Dy ["ug (am ()y) D(w) Vit == ()" = () )},
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" L* (0 d , 2L2
cga) - 2 (__;, _ _@) . [D(U)VU(U + D’(u)a(l)vu] + _X_Z_U(l) ((%)2 _ (uy)2>

2L2(2U - 1) 1 0 A 1 (1)
—_—t [Aa( ) i D(u)Vu + (a,(; Yug — o, uy)

— o ((2u — 1)D"()A) ((ue)? - (uy)i)] .

e Consistency: Imposing the consistency condition that qq - g(® = 0, we find

&((,3) =0,or
o) =V {D(U)VO’(I) + D’(u)amVu] . (3.8)

Note that o()(z,y;t) = const. satisfies the consistency condition. Let us choose
oM (z,y;t) = 0. This choice simplifies the O[6%] calculations and is crucial for

obtaining consistency and stability.

» Solve for n®: We find

11(3) — £+ . g(a) + 0(3)q0

3
= Z Cia)qk y (39)
k=0

where ¢ = ¢ is a free parameter that is determined in the O|[6®] consistency

condition, Eq. 3.16, and

Note that if ¢(V(z,y;t) = 0, then 83%3) = cga) = 0 . Further calculations in the

derivations assume o(!)(z,y;t) = 0.
O[6%]: We find

£ n
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IVA 2T ) 7% H?
T e Y S (@ V) ) 7" Dt L(E-V)nd

L pic(n@)y . pipipyoy, ,~.1_’D3C( 01y . (@

1
DX(n@) . nMWnp® ;;"D""C(n(0 ) - n®n®

g

2 4

Z éi )qk ’

k=0

L L? T? |
48 = (Uzzze + Uyyyy) + 1 —Vu, + —Uet +T 0: (3.10)

9% o8 1 L*T 0 /1
2 (dml‘ ¥ ) (57) + 57 5 (574)
Llos @, 2 PN @]  L(0 @, 0 @
[V L sz*;?‘/ “ +2 9z ! +0_y'c?'

L (o8 - D'()hoe®u,), (3.11)
L (o ~ D'(u)ro®y,), (3.12)
L LT 0

18 (Urzez — Uyyyy) + 1 (Uget — Uyyt) + Tacgﬂ (3.13)
L? 9] 0

20 2, @ _ 9 @

4[M Uyy+LV ]+ (83:( 83/62)

L 8 .(lv)+___L2T 9 _29 ﬁ(lv)
2\028" " 0) XY T T2 \Be Tay) e\
2L(2u — 1 L2 [2L%(2u — 1

—_T_l (c(lq)ux - cf)) - -/\—3 [_‘h(AT«;_—l ((Ux)4 - (uy)4)

— 200 ((ua)? ~ (u,)?) ~ [—3- ((a)? + (,)?) (% -~ ;%) : D(u)Vu]
2L%(2u — 1 2(2u — ) [ )
__.....(_/\us___._)_ (2) [_Lj\_?]_) ((Uz) - (uy)Q) — (5% - (7(_3/) D(u)Vu]
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o Consistency: Imposing the consistency condition that qo - g™ =0, we find

o = vV [DW)Ve® + D'(u)e@Vul (3.14)

- f(L, T; z,Y, t; Uy Ugys ua:.'w,-su::iz,'mp u:c.'x,':nka:g)

where zo and z; denote z and y, respectively. Note that F can be explicitly
expressed in terms of the spatial derivatives of u using the results of this section
and the details of Appendix B. (The (O[6%] consistency condition, Eq. 3.6, can

be used to remove dependences of F on the temporal derivatives of u.)

Note that Eq. 3.14 may be written
(L+h)[c?] =F, (3.15)

where operator

2 1‘ a
S (&)

= I A T T

in which

ago(z,y;t) = vD(u),

an(z,y;t) = 0,

alo(z,y;t') = 0’

an(z,y;t) = vD(u);

bo(z,y;t) = vD'(u)uz,

bi(z,y;t) = vD'(ujuy;
and

h(z,y;t) = vV . D'(u)Vu.



136

CHAPTER 3. APPLICATIONS

Note that operator L is uniformly parabolic in £y = ([0, L] x [0, L]) x (0,T) for
w € C'([0, L)% (0,1)) Suppose further that v € C'(R% R). Then under these
and additional assumptions (regarding smoothness and initial and boundary
conditions) and regularty arguments, it can be shown [54] that solutions o(?) of
Eq. 3.15 are C*(R* R) functions. Then bounds on o(® and up to its second
derivatives exist. We will assume such bounds to obtain statements regarding
numerical convergence of the lattice method. (See Lemma 3.1 for how the
bounds apply to numerical consistency and Lemma 3.5 for how they apply to
continuum maximum and minimum principles for the truncated equilibrium

expansion.)

Solve for n¥: We find

3

k=0

where i) = o is a free parameter that would be determined in the 0|65

. . 1
consistency condition, and CS:) = ”(4
k

, ke {1,2,3}.

O[6°]: At this order, only the consistency condition is to be determined. This condi-

tion specifies 0(®), We will find that any o®(z,y;1) = const. satisfies this condition.

We have
L n®
L5 5 (0) LT - 0 (0) L — 3 0 0)
o7 (8 V) n 4+ 5 ( V) 5am + 5 (V) 57"&
L* 4 (1) LT " 2 d ( T? 9 (1)
+‘4"!‘(€k'v) ng + 5 (€ V) a1 +'-5-‘d7'2‘
L3 3 (2) . 0 o L 0
+§|—(ek V)Y n + LT (& - V) BT +—-——( V) n,\ "4 L (& -V)n,,
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+ (Coll.)
3

= Y&,
k=0

where (Coll.) is the contribution from the coefficient of 6° in the collision operator
expansion, Eq. 2.18. Since (Coll.) is orthogonal to the nullspace of the linearized
collision operator, it does not contribute to the consistency condition. Note that éé,s)
is completely determined in view of this by the terms listed in Appendix B. The

remaining coefficients, & (k € {1,2,3}), are left uncalculated.!

o Consistency: Imposing the consistency condition that qo - g(® = 0 implies

51(,5) =10, or

o = V. [D(u)Va“” + D’(u)a(a)Vu] : (3.16)

Note that any constant o(®)(z,y;t) satisfies the consistency condition. Then

choosing ¢ (z,y;t) = 0 implies that &% = &9 = 0.

¢ Solve for n®): We have no need for calculating this quantity since the O[6°)

consistency condition is not desired.

'3.1.6 Convergence

LEMMA 3.1 (CONSISTENCY OF LB,). Define the truncated equilibrium erpansion
by |
3 . .
h=3"6ht), - (8.17)

i=0

4The Ef’) (k € {1,2,3}) would need to be calculated for determining n(®), which mean also
calculating the (Coll.) term. One would complete such calculations to determine the next order’s
consistency condition.
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in which hU) = nU) | the nO) as defined by Eqs. 3.4, 3.5, 3.7, and 3.9 in the application

of the discrete Chapman-Iinskog procedure of Section 3.1.5. Then h salisfies
Ah = h +C(h) = T(h), (3.18)

in which T(h) = O[8%). Suppose o ¢ CHRY,R) and o' € C*R*R). Let
At = T6%, and Az = L6 for spatidi and temporal scale lengths L and T, respectively.
Then

jim — |7 ()] =0

a0 A ViE= s
Jor some norm, |||

Proof. First, we determine the parameters of the truncated equilibrium expansion

in terms of the expansion for n. Then we determine the remainder, 7 (h). Finally,

. 1
we show that Altlr_+no X |7 (h)]| =0, for some norm ||-||.

Part 1: Determining the Truncated Equilibrium Ezpansion

Recall that any constant o) (z,y;t) and o®(z,y;t) satisfy the O[6%] and O[6°] con-
sistency conditions, i.e., Eq. 3.8 and Eq. 3.16, respectively. Choose oz, y:t) =
o®(z,y;t) = 0. Then using that h®) = n) and Eqs. 3.4, 3.5, 3.7, and 3.9 for n®

n( n® and n®, respectively, we find

h(©@ = gyu (3.19)
3
h® =5 Vg, (3.20)
k=0
where
= o,
L
4 = L,
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L
O uy,
) _ 0:
3
h® = 37 o, (3.21)
k=0
where
C(()2) = o®
c§2’ = 0,
ng) = 0,

3
h® = 5 g, (3.22)

k=0

where

) = o,

A 8 /1
Cga) = }\" [Fuxxx + LTu:ct + LTB‘Z ('/'\'u:n)
La
+ Lo 2 uz(uy)? = LD'(u)AoPu,

+ %D’(u) [gé—i—;—_-llux ((uz)2 - (uy)2) — L%u, (;%, - %) : D(u)Vu]

d _
+ D [);3 (5% - %) + D(u)Vu + %W} ((us)? - (uy)2)] } ,

c§3’ = { Uyyy + LTuy + LTaat (/1\ )
23
+ 15 3 —(uz)?uy — LD'(u)roPu,

2L%(2u — 1)

D'(u) [—-—-—-—-—A——-——-—uy ((ue)? = (u)?) + L2, ( 9. _ _(')_) D(u)Vu}

L
2 dz Oy
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a1 1 J d 2N — | , ’
_— 3__ ] — n 2 _ 1 2 ,
L dy [_,\J ()J: (")3/) Du)Vu+ == A2\, ((“z) (uy) )}]

(:gs) = 0.

Part 2: Determining the Remainder

Now, define truncation error, 7 (h), by

4
Ah —h -C(h) = =T (h) = = > TV 4 O[6°],

=0

where

TO _— c(h(O)),

T = L-h(‘)—{L(e‘k.V)hL‘”},
T® - C.hm+%ch(h<0)),h<1)hm

LZ

7 (@ VAR R e

a fud
6th°)+L(ek-V)hf> .

T® = £.h® +-(1):D3C‘(h‘°))-h(‘)h“’h“)+’D"’C(h(°))~h(”h("’)

8 L?
=h{® 4 = o7 (B V)2 il

— =& VPR + LT (8 V) = =k

3!
9 ,m (2
+T—=h," + L€ - V)ny
otk
TM EI(ID4C(11(O)) hWRMO KO ll)+ :D'Jc(ho)) IO

)

1. ,
+ =DC(h?). h®h® 4 D*(h®). hDL®

2
Lt LT ) T 9 :
= g VY = (@ ) ;t/‘“’+ b+ L (& V) )
Lt 0 L} :
+ o (6 V) ALY + 1o / ) 4 o7 (- vy i L.’I‘(c?’k-V)?%hL”

s
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By the discrete Chapman-Enskog expansion on h, we find

T = 7 . 7@ - T® =9

with our choice of o(V(z,y;t) = 0®(x,y;t) = 0. Further, we find

3
T — Z Tﬁ;‘)C{k ,
k=0

where

T((f‘) = cf,‘” = 0, (because of the O[] consistency condition)
TV = &Y=y, (because 0¥ = 0)
T = & =, (because o = 0)

T = &Y

e (zyit)=e® (zyit)=0’
in which the 65:) are given in Eqs. 3.10-3.13. Note that Tg‘n is a functional in u and
up to its fourth spatial partial derivatives, and in o and up to its second spatial

partial derivatives.

Part 3: Showing Consistency

The combined results of parts 1 and 2 establish consistency, as summarized by the

following: Note that the h(), j € {0,1, 2,3}, are uniformly bounded since
o® e CYR,R) and o € C}R?R)
by the assumptions of the lemma. Hence, by Theorem 2.47 3 a norm, ||:||, such that

, 1
Alelﬂo_&z IT(h)||=0.0

LEMMA 3.2 (DOMAIN OF MONOTONICITY FOR LB,). Let E® = [M_, M,] for

k€{0,1,2,3}, where M_ =2/3 and M, =5/6 . Then

E=E0 g g(2) PAR
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(s the domain of monotonicity for the lattice method, L13,.

(Since the proof is rather long and involved, the reader may wish to accept the
lemma and proceed to the discussion and development of the continuum maximum
and minimum principles beginning on p. 150.)

Proof, There are three parts to proving the lemma: (1) show that the conditions
of monotonicity are satisfied in €, (2) show that € cannot be extended to a larger
connected region, and (3) show that € has volume. We will proceed in the order (3),

(1), and (2).
(3) Clearly, £ has volume since M_ < M.

(1) Our proof is by induction on n. Note that the base step is a special case of
the induction step. The induction hypothesis is to show that the conditions of
monotonicity are satisfied in £, we begin by rewriting the Lattice Boltzmann

Squation for LB; in terms of n™t! o get

nptt = | (ni)ig, + Ce(nfg)
k=0

where 7 = (4,7) and € is the unit velocity vector for direction k. Then H is

defined by

k=3 k=3
H Nieg, = | Hy(npg,)
where
Hk(n{.‘__é.k) = (nk)}.‘_c.k + Ck("?_gk)~
Then substituting for the LB collision operator (Iiq. 3.1}, {; may be written

explicitly,

()y*' = Hilnig)
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Il

(le )?-d‘* + C}V(n?-d'h )

It

(”k)?md';.

()i, (g1 )i g, (Pera) i g, ()i
)R g, (M 1) e, (k) e, (),

(nk)?-d';. (nk+1 )?—d’k (nk-{'-?)?_a‘k ("k+3);“-d‘;,

+ + 4+ +

(n)ig, (P )f g, (Rkga) i, (Mhga)i g,

- (nk)?—é'p. (nk"'l )?—né'k (nk'}‘?)?—d‘;, (nk*'a)?—d'k

- (nk)?-d‘p, (nk+1 )?—-6';, (nk"")){‘l—-ﬁ, (nk+3);‘l—-€k

= ()t (s, (a2 g, (Mkra) g,

= ()i g (P ) g, (Rkaa) i, (nkga) g,

Now, to prove that the conditions of monotonicity are satisfied on &€, we must

show for
~ k=3
G= [ Gk >0,
k=0
where
Gk = llk (nr__gk)

Ny gy

that (7 > 0. In this proof, for the sake of brevity, it is understood that unless
explicitly stated expressions involving nj, for ke {kyk+ 1,k+2,k+3) are all
evaluated at (7'— €;n). Then for example, Nktr denotes (ngy )i, ; similarly, n

denotes nt s . Then with & and [ evaluated modulo d = 4, we have

. 0
Gy = ——] 3.23
kol T, Hi (ne_g,), (3.23)
where
; d .
Gik = = Hy (nrs,) (3.24)

Ine)r-e,
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Wit Mgt Mg 1 Wkge = Mg

S — . (3.25)
Ikt ) s i

=2l Wi =+ W2

0 o
; ——--—Ilk(n.;,fk) (15.2())
I(Npga)r-e,
—'277,I¢.|..171k+3 + kg b gk — g+ ],

d

(')(71k+:-;)‘f-é‘,.

e (n-s,) (3.27)

= 2N g kg + NIy R Ty

We shiow that (i > 0 by showing that Gy, > 0,

Note that each Gy is a function of three arguments. Let £ = (M., M), Then

the domain of a particular Gy is £°, Let

f(Cipid) = pd+Cp—p,
9(¢,py @)
h(¢, p, @)

li

“de’ + C/) + ‘b)

i

=200+ Ch+Cp—C+ 1

Referring to Eqs. 3.23-3.27, we see tlhat

Gk.k = f("k+1,nk+'z,”k+u)a
Grksr = g(n. nkpr Nkya)
’ ’ (3.28)
Gk-k+2 = h(n‘k17lk+lsnk+3)’
Cegss = Gy gy Meger).

The domain of f, g, and his E*. To prove Gy 2 0, it is enough to show that

TG @), 9(Copy ), h(Copy ) =0 for (Cy o) & B2 We show that the extremne

values of f and ¢ are nonnegative,
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Since f, g, and h are continuously differentiable in all their arguments, their
respective absolute extrema are on the boundary of E%, i.e., 883, or where the

gradients of f, g, and h are zero in the interior of 173, i.e., £%\ O£

Local Extrema of f, g, and h, We show that f, g, and h have no local
extrema in the interior of 3, We look for solutions to V¢ ,,6f(¢, p, ¢) = (0,0,0),
V(.p.:ﬁ!J(C,Pa‘ﬁ) = (010~0)i and VC‘.p.drh(CapaqS) = (0,0,0).

We find

vC.P.d’f(Ctp’ ¢) = (/’v ¢+ ¢ - lsp)v
v(up.tﬁg(C)Pad’) (P1“2¢+C1_‘2P+ ),

VC-P.'!’}"(C,P,(‘S) = (¢+p“1a—2¢+(;$_2p+(:)'

il

Setting these to (0,0,0), we find no solutions inside of E*. Therefore, there are

no local extreme.

Boundary Extrema of f, g, and h. We will show that the boundary ex-

trema of f, g, and h are between 0 and 5/9. For each function, f, g, and 4,

there are six cases:

la/br (b,p,¢), be {M_, M.},
2a/by (¢, p,b), be {M_, M.},

Ja/by (¢, bd), be (M., M.},

Case la/bt Consider (b, p,¢) with b e {M_, M, } and (p,¢) € 1% Then

B e S—

f(bipyd) = pd+(b—1 )p,
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—2pd + bp + ¢,

I

a(b,p, @)

h(b,p,¢) = —2pd+bdp+bp—b+1.

We now consider f, g, and h as functions of p and ¢. The local extreme values of

these f, g, and h are where their gradients (in p and ¢) are zero. The gradients

are

Vﬂ.¢f(b’p1¢) = (¢+b""1ap)a
Voag(bip,d) = (=26 +0b,-2p+¢),

Vosh(b,0,8) = (=26 +b,~2p+1).

For each function, there is no solution for a zero gradient. So, the extrema lie

on OE?. Table 3.2 lists the boundary values.

Case 2a/b:  Consider (,p,b) with b€ {M_, M.} and (¢,p) € E?. Then

f(Cp, ) = bp+(p—p,
g(Capab) = ~2bP+CP+ba

R(Copb) = —2bp+bC+Cp—C +1.

We now consider f, g, and k as functions of ¢ and p. The local extreme values of

these f, g, and h are where their gradients (in p and ¢) are zero. The gradients

are

I

v('Pf(Cv P b)
v(-ﬂﬂ((a Py b) = (P, ’"Qb + C)a

Veoh(Copb) = (b4p—1,-2b40).

(P,b+ C - 1)’
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For each function, there is no solution for a zero gradient. So, the extrema lie

on 0E?. Table 3.2 lists the boundary values.

Case 3a/b: Consider ((,b,¢) with b€ {M_, M.} and ((,$) € E*. Then

f(C)b’¢) = b¢+bc—'b’
g(()ba ¢) = "—2b¢ + bC + ¢‘1
h(¢, b, 4) ~2b¢ + b¢ + (¢ — (¢ + 1.

il

We now consider f, g, and h as functions of ¢ and ¢. The local extreme values of

these f, g, and h are where their gradients (in p and ¢) are zero. The gradients

are

v(,d;f(C,b,(f)) = (b,b),
Vesg(C,0,4) = (b,—2b641),
Veoh((,0,¢) = (b+¢—1,-2b4).

For each function, there is no solution for a zero gradient. So, the extrema lie

on 0E%. Table 3.2 lists the boundary values.

Absolute Extrema of Gy,;. By the preceding analysis, the absolute extrema

of f, g, and h on E® is given in Table 3.2. We find that

ot

min Gy =0 and maxGi; = =.

N=}

Hence, G, > 0 and Hy (ergo H) is a monotonically increasing function in all
its arguments. Then lower and upper bounds on H are found at the respective

infimum and supremum of all 1ts arguments. Table 3.3 lists the two cases.
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Table 3.2: Boundary Extrema of f((, p, ¢), (¢, p9), and R((,p,d) in LB,

LE  p ¢ T7¢ne) 9(Cpd) M opd)]
M_ M_ M. 2/9 2/9 1/3
M. M. M, 1/3 1/6 2/9
M_ M, M.| 5/18 1/9 2/9
M_ M{ Mg| 5/12 0 1/18
M, M. M. 1/3 1/3 7/18
M, M. M, 4/9 5/18 11/36
My My M_| 5/12 1/4 11/36
M. My M, 5/9 5/36 1/6

Table 3.3: Extrema of H in LB,.

[ Eit}gme Values of Arguments | Functional Value of H |

Mo ny Mg N3 Ho H1 HQ Hg
M_ M_ M. M. M. M. M. M_
| My M, M, M, M, M, M, M,
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(2) To show € cannot be extended. Let ¢ > 0 be given such that 0 < M_ — ¢ <
M, +¢€ < 1. Thenlet R = [M_ —¢,M,] and Ry = [M_, M, + €], and
M = [M_, M,]. Further, let Ex = M UE4. Then let

MxMxM x Eyg,

n
[
H

ill

A
B
I

M«xMxE; xM,
€. = MxEi xMx M,

EixMxM x M.

O
[N
H

i

It is enough to show that for each ¢ € {0,1,2,3} and s € {+,~}, Gxy(n*) <0
for some n* € c.‘:',-,,. Well, note that from Eq. 3.28 and Table 3.2, we see that
(1) Geg4r = 0 for np = M_ and ngip = ngyz = My and (2) Gy pqa = 0 for
ny = M_ and ngyy = ngee = My, There are eight cases to examine. While
we will only present the proof for two cases, the other caées proceed similarly,
and the tables we will be using have enough information to verify the other six

cases. For each case we use a proof by contradiction.

Case £y, =M x M x M x E,: Suppose G; >0, V k,{ € {0,1,2,3} and V
n € é(),.*.. Let

N

T
n"=| M_, M, M,, M++¢] € &4

Note that Gy = (n*) = g(M_, M, My + ¢). From Table 3.4 we see that
0 .

Ezg(wl-,M+,M+ + ¢) < 0. This coupled with g(M_, My, M) = 0 (see
Table 3.2) implies that G (n*) < 0, which is a contradiction. Therefore,

the conditions of monotonicity are not everywhere satisfied in Eg 4.
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Case £, =M x M x M x E_: Suppose Gy >0, V¥ k,l € {0,1,2,3} and

ne ﬁ'o,_. Lot

j' A
n“=| M., My, Mg, M_-c| €&

Note that Gyo(n*) = g(M_ — ¢, My, M;). From Table 3.4 we see that
) : .

?;—g(M_ — ¢, My, My) < 0. This coupled with g(M—, My, M) = 0 (see
¢

Table 3.2) implies that G39(n*) < 0, which is a contradiction. Therefore,

the conditions of monotonicity are not everywhere satisfied in € _.

As noted, the remaining cases proceed similarly, the final result being that none
of the eight ways of extending £ produces a region everywhere satisfying the

conditions of monotonicity.

We have shown that the conditions of monotonicity are satisfied in £, that no exten-
sion of € everywhere satisfies the conditions of monotonicity, and that € has volume.
Hence, € = [2/3,5/6]* is the domain of monotonicity for LB,. D

LEMMA 3.3 (DISCRETE MAXIMUM/MINIMUM PRINCIPLE FOR LB,). Consid-
ering the lattice method, LBy, let its domain of monotonicity, €, be as in Lemma 3.2
Then LBg has the discrete mazimum and minimum principles described in Theorem
2.49.

Proof. Note that My = M1qo and M_ = M_qp, and that Cx(M4) = Cr(M_) =
0V ke {0,1,2,3}. Therefore, Theorem 2.49 applies, i.e., if n¢ € £, Vi€ £, then
nte &, Viel for all time steps n. O

We have established the discrete maximum/minimum principle for L.I3,. Now, to

establish the continuum maximum and minimum principles.
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Table 3.4: Direction of Increase in

‘ .. ad, 0
LB;. The table lists —a—gf, 39 and —

O¢

, g, and h for Arguments Just Outside € in

h for arguments just outside the boundary of

€. The arguments are parameterized by € > 0.

i) = (¢(€), (e), ¢(€))
0 a . P

¢(e) p(€) é(¢€) 'a—cf(F(f)) 36'9(7'(6)) —a—eh(r"(c))
-M_ M_ M_ —¢ -2/3 +1/3 +2/3
M. M. My+e| +2/3  -13 273
M. My Mo—e¢| -5/6 42/3 41
M- M My+e| +5/6  —2/3 -1
M, M. Mo—el -2/3 413 41/2
My M- My +e| +2/3 ~1/3 ~1/2
My My M. —e| -5/6 +2/3 +5/6
My My Mive| 45/6 -3 56
M_ M_—-¢ M_ ~1/3 +2/3 +2/3
M. M.—e¢ M, —1/2 4 +1
M. Mit+e M. +1/3 23 -2/3
M- My +e My +1/2 ~1 -1
My M- —c M- -1/2 +1/2 +1/2
M. M- —e My -2/3 +5/6 +5/6
M, Mi+e¢ M_ +1/2 ~1/2 ~1/2
M, My +e M, +2/3 ~5/6 ~5/6
M. —-¢ M_ M. -2/3 —2/3 ~1/3
M_-e M. M, ~2/3 ~2/3 ~1/2
M_—~¢ M, M_ —5/6 ~5/6 ~1/2
M. —¢ -M+ M+ _5/6 -—5/6 ”_2/3
My e M- M- +2/3 +2/3 +1/3
M, +e M. M, +2/3 +2/3 +1/2
My +e M, M. +5/6 +5/6 +1/2
My te My My +5/6  +5/6  +2/3
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LEMMA 3.4 (HYDRODYNAMICAL MAXIMUM/MINIMUM PRINCIPLE FOR LB,).
1 1

201 —u)(1+uw) 2

Proof. The arguments follow those for Lemma 2.55, except that the smooth

Lemma 2.55 holds with D(u) =
i
extension of D(u) is near u = =1 and u = 41 instcad of u =0 andu =1, O

LEMMA 3.5 (CONTINUUM MAXIMUM /MINIMUM PRINCIPLE FOR LB3). Lemma
2.56 holds with h©®, h(), h(® and h® defined in Egs. 3.19-3.22, and v € C'(R*, R)
and ¢ € CHR* R) solutions of Eq. 3.6 and Eq. 8.1/, respectively.

~Proof. The arguments follow those for Lemma 2.56. O

COROLLARY 3.6. In LBy, 3 85 > 0 such thatV § € (0,60), ifh% € &£, V7€ &,
then h} € €, V7€ £ V n, where € is the domain of monotonicity for LBy.

Proof. Let Ry = M, <1 and R_ = M_ > 0, where M, and M_ are defined in
Lemma 3.2, Then apply Lemma 3.5 to yield the result. O

We have established continuum maximum and minimum principles for the trun-
cated equilibrium expansion, h. The sufficient conditions are that (1) o(® has a
maximum/minimum principle, (2) finite global bounds on h®, h(®, and h(® exist?,
and (3) expansion parameter § > 0 is sufficiently small.

LEMMA 3.7 (STABILITY OF LB;).  Let n*, h" and L[n",h"] be defined as
in Definition 2.41. Let domain of monotonicity, £, be as in Lemma 3.2. Suppose
n?, (h? e £5 And suppose the hypoiheses of Lemma 3.5 are satisfied. Then 3
7> 0 such that ||L[n", h"]||, <1V n such that 0 < nAt < T and 0 < At < 7.

Proof. Let Ry = My and R. = M_, where M, and M_ are defined in Lemma

®These are guarenteed to exist by regularity of the O[6*] and O[6%] consistency conditions, Iigs.
3.6 and 3.14, respectively.
3
Recall that h(®) ig the equilibrium in the truncated cquilibrium expansion, h = Zé"h(” (See
J=0

Sy 3.17).
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3.2. Let & bé gi“/en by Lemma 3.5, Choose 7 = T'(6y)® so that Az < Léy. Note
that Corollary 3.6 applies to yield that h™ € £, V n such that 0 < nAt < T and
0 < At < 7. Then ||L[n", h"]||,, €1 by Lemma 2.59. O

THEOREM 3.8 (CONVERGENCE OF LB,). Let the conditions of Lemmas 3.1,
3.8, and 3.5 be satisfied. Then Alti—n—}o_[i? NF" e, =0,V n30<nAt T, in which
At = (Az)?/(2v), and Az = L6, At = T62, and v = L2/(2T) for spatial and temporal
scale lengths L and T

Proof. This is a consequence of Theorem 2.61. O

We can recover an (O[§?] approximation to u(z,y;t) by the covergence arguments,
the definition of the truncated equilibrium expansion, and consistency arguments t§

obtain that hydrodynamical error,

I

(o) —1-qo et + O[]

4
= p; —pf + O[6"]
l 3 13
= =) (nk)s — = J T+ Ol
4 k=0 4 k= ]
13 1 /3
= i E (ne)7 — 1 <Z F+ (’)[62]) + O[6?]
1 ; -
= 1w - up + 0l#Y
k=0
1 3
= 7 Y o (nk)} — u(tAa;nAt) + O[62).

-
]
(=]

We have shown that the hydrodynamical mode of the lattice Boltzmann method, LB,,
converges O[%] to the solution of its hydrodynamical equation, Eq. 3.6. Assumptions
and statements used to obtain convergence include: (1) monotonicity principles of the
lattice method, which restricts the domain of the occupation numbers, (2) bounded-

ness of the solutions, v and ¢(* (and up to their fourth spatial derivatives), to the
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O[6%) and O[6*) consistency conditions, and (3) a (continuum) maximum/minimumnm

principle on .

3.2 A Lattice Method for the 1-D Viscous Burg-

ers Equation

This section presents numerical analysis of a lattice method for the one-dimensional

viscous Burgers equation,

prt ppe = Vpes . (3.29)

Boghosian and Levermore 7] introduced a lattice gas method for this equation. Here,
we present analysis of this method as a lattice Boltzmann method under the frame-
work set up in Chapter 2. The main purpose of this example is to point out how a
collision operator with an O[é] component affects the analysis. It also fills in some of
the details of the analysis in [7]. Considering the results of [53], regarding correlations
for the lattice gas method, our lattice Boltzmann analysis also extends to the lattice
gas case. (Lebowitz, et al. [53) showed that the correlations may safely be neglected,
i.e., that particles are statistically uncorrelated prior to collisions.) While presenting
computational results for the lattice Boltzmann method, we also use the correspond-
ing lattice gas method in a forthcoming chapter on domain decomposition for lattice
methods. We find the lattice Boltzmann method to be a second-order convergent

finite difference method.,
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Figure 3.2: Direction labels for a lattice method for Eq, 3.29.
3.2.1 Collision Rules

There are two directions, labeled 0 and 1. Their orientation is depicted in Figure 3.2,
with 0 to the right and 1 left. Table 3.5 and Figure 3.3 exhibit the collisiun rules.
The probability of an advection in direction 0 (to the right) is a; in opposite direction

itis@=1—a. We assume that

1+4¢

1 —¢
d g=—r0,
and @ 5

where for some constant K > 0, e = K6 is the advection bias (to the right).” The
assumption that ¢ = O[§] is crucial in recovering Eq. 3.29 from the dynamics of the

method.

3.2.2 Collision Operator

By examining the collision rules (Table 3.5), we find the collision operator to be given

by
Co(N) = Harphy —Thony
o) = farioh, —ahony
Rule 1b Rule 2a
Cl(ﬁ) = —‘(lflo'fbl +ﬁﬁ0ﬁ],

Rule 1b Rule 2a

"The advection bias is denoted ¢ in the present text while it is denoted « in [7].
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PRIE-COLLISION POST-COLLISION PROBABILITY
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Figure 3.8: Collision rules of a lattice method for the one-dimensional viscous Burg-
ers equation,

Table 3.5: Collision Rules of a Lattice Method for Eq. 3.29.

Rule « I¢) S(a— f)
ap ay | fo Py
0 0O 010 O 1
la 0O 1170 1 a
1b 0 1|1 0 a
2a 1 010 1 a
2b 1 0|1 0 a
3 1 1 L1 1
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or, in vector notation,

. +anghy — Thotty
C(n) = = (

—angfy -+ Theny

l A € A A ¢ A —"l
3(-n0 + Ny ) + 72«(7140 + Ty — Zfz,unl)) 1 .

fi, is the occupation number for direction &, i.e., the number of particles moving in

direction k.

3.2.3 Lattice Boltzmann Approximation

The exact ensembled collision operator is given by®

(CR)) = C(n)+C

- . A
+atign, — angmy | +a Cov(ng, 7ty) — @ Cov (g, 1y)

~-afigny -+ Tnefy —a Cov(fg, fty) + @ Cov(fzo,ﬁ?)
| € ) e +1
= §(~nu +ny) + —2—(71(, +ny - 2ngny) — ebov(ng,nl)>

-1

= CO(n)+6cH(n)+C,
where C(n) is the O[1] cocflicient, CtV(n) is the O[6] coeflicient, and C involves the
covariances. To get the third line of the above, a certain relationship for covariances
is used. Let pand ¢ be instances of some infinite collection of events or samples,

Then

CovFoi) = |

= - Cov(p,q).

#Because wo keep track of the covariances, this equation is exact; it is not an approximation.
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We are interested in pursuing this method as o lattice Boltzmann method, There-
fore, we make the a priori assumption that C = 0, which leads to Lattice Boltzimann

liquation,

An = n 4 C(n), (3.30)
whoere
C(n) = CO(n) 4 6¢(n) (3.31)
Al
| +1
C(U)(ll) == ;2 (-‘-Hu - 711)
|
Iy +1
(7(‘)(11) = -;:— (ng -+ 1y — 2ngny) ,
- -1

and the advection operator is defined by

1
41
-An:‘l = [ (”k):‘l.gﬁk ]

k=20
for unit velocity vectors, & = +1 and & = -1, Then n s the vector of mean

occapation numbers,

3.2.4 Equilibrium Analysis
It is convenient to use the direct method of Section 2,21 for determiniug the equilib-

rivin, Setting the leading term of the collision operator to zero, we get

0 |
C(“)(n) = = 3‘(“‘“(] + 'Nl) = () = gy = Ty =,

( -
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Then the equilibrium may be written

U
nl® =

(1)
3.2,5 Linearized Collision Operator

Using the non-trivial equilibrium solution, n(®, woe can now linearize the collision
operator, But first, recall that only the leading order term of the collision operator iy

used in the linearization (sce Definition 2.32), Then the linearized collision operator

is given by

1
= T)‘lc“’)(n) - | Lol ™ (n) .
on — ony
k=013 =1,(0)
I'here are four cases
D) ’ ! d ) ‘ !
) = g () < by
Ong " ( n=n( 2’ ony " . n=n 2
4] 1 o 1
5 C(“)( ) = -}‘—2-’ 5 (»(D)( ) = 75
Uhg n=nl0) oy n=n( 2

Then the linearized collision operator, £, written in matrix notation is

L] -1 41
L= - .
20

Clearly, £ is a symmetric, nonpositive definite circulant,

3.2.6 Eigenvalues and Eigenvectors

I'he eigenvalues of £ are given by

cigenvalues(L) = (Ao, Ay) = (0, —1).
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Table 3.6: Clomponentwise Eigenvector Products,

EREEN
Qo | o | U
q: || 91 | Yo

m R : : ' H ‘ \ ¢
I'he unnormalized ¢igenvectors of £ are given by its cigenmatrix,?

Q = _Q(h qi
+1 +1
+1 -1

The nullspace of the linearized collision operator is spanned by the eigenvectors cor-
resnopding to zero eigenvalies, i.e., nullspace(L) = span(qg). The pseudo-inverse of

L can be written

e L NN VAP U I

=—-5q19 5
Q- q 2" 2 —1 41

The componentwise eigenvector products (* operation) are summarized in Table 3.6.

3.2.7 Discrete Chapman-Enskog Expansion

To apply the discrete Chapman-Enskog procedure of Section 2.3, we «. sume

€ = ](5,
Azr = L(S,
At = Té,

[
Y19 and ¢ are column vectors.

Fs
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in which K > 0, and L > 0 and T > 0 are the respective spatial and temporal scale
lengths.
Note that gradient expressions involving the unit velocity vectors may be genérally

expressed as follows:

' & qo, Jeven
. q .40, )
[ (& V) } = aaaﬁj .
k=0 3 J odd.
Now, we may readily apply the discrete Chapman-Enskog procedure. We will use

the following notation:

Alu) = u(l —u),
Alu) = 1-2u,
g = L.n(j)_y_lzamqk,
k=0
n) = olilgy 4 L*. gt = 2—1: g |
k=0

in which ¢’ = ¢ and ) = ~&7.1° We will be using a third order truncated
equilibrium expansion, i.e., h = Z?:o 6'h | in which h() = n), And as ¢® appears
in n® and ¢ is determined by the O[6°] consistency condition, we carry out the
discrete Chaprnan-Enskog procedure to determine the consistency condition at O[6°%).

For each order in matching the advection and collision operator expansions, Eq. 2.24

and lq. 2.18, respectively, we find the following:
O[1]: CO(n®) = 0 as desired, si; e

u
n® = (3.32)

u

10651’) = -}-E(lj) and Ay = -1,
A1
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is an equilibrium.

O[6]: We find

L‘l)(l) - ]/ E[“v

= )
~{1
C(k )C“ )
k=0
where
E:(()l) - G L]

A= Lu, — KA(u) .

¢ Consistency: Note that already g(!) is orthogonal to the nullspace of L, i.c.,

qo - g1 = 0, so that no consistency condition is introduced at this order.

e Solve for nV: We have

nM - £+.g(l)+g(l)q0 (3.33)
1
= Y,
k=0
where
C(()l) = 0'(]),

V= KA - Lu,

and o)) is the arbitrary parameter introduced by the nullspace of the linearized

collision operator.!?

"One parameter is introduced since dim(nullspace(£)) = 1.
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O[é%]: We find

n® 4 T.‘?_n(ﬂl + L

. nl2
Ln 5

il

L? L — 1
- | @& vy &V |n®

= 1pc@ Oy yy0) _ pe@(p@)y. pi)
2

g(2)

1
= Z éf)Qk 3
k=0

il

where

L?
g~ Tut+[(L-f0—-A(u)—~——uu,
Jzx 2

& = Lol — KA'(u)e",

il

and in which
D2C(O)(n(0)) . n(l)n(l) = 0 ,

DCH(nl@) . n) = KA{uwoq, .

o Consistency: Setting qq - g® = 0 yields the O[6?] consistency condition,

0 d Ik
Ty Y 3.3
(,)tu+ ((,)IA(u) 1/(%2!1, (3.34)
where
KL
. 2Z (3,
c s (3.35)
1,2
Y OE T

With the change of variable,'? p = cA'(u), a linear transformation, we find that

p satisfies Eq. 3.29. (This is identical to the result of [7).'?) The transformation

'2Recall from the beginning of this subsection, i.e., Section 3.2.7, that A(u) = u(l — u) and
Al(u) =1-2u.
B0ur p is their u.
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is consistent with the following parameters:

Az = L6,
(Ax)?
_ 2
At = Té6 = 5
¢ = K§=28
2v
c # 0
¢ Solve for n(®; We have !
n® = £t gl lig, (3.36)
1
= Y Pq,
k=0
where
B = o)

P = KA(w)e — LoV |

in which ¢(? is the arbitrary parameter (a scalar) introduced by the nullspace

of the linearized collision operator.
O[6°): We find

L-n®
-

_ | L2 3 . | (o

= '5!-(6;:-‘7) —{-LT(ek-V)EZ nt’ + oT

-

+ L& V) |n® - éfDBC(O)(n(O)) nMpM @ Dﬂc(o)(n(o)) nMp@

_ %chm(n(m) W _ gDt (@) .

g,
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where

9 oy L
&) = KLg=(Au)olV) —ol) + Tof!,

3 . 2
GRS L3 e -+ ] ( L -‘)— +T ;) A'(u) + Lo® — 61 A'(u)o?
\ n

) (e - A,

and in which

D3CO(n(@) nnMp = o,

D2C(0)(n(0)) ' n(l)n(g) — 0 ,
DM (n®) . p () = 2K [(Lu, - KAW) - ()] q,
DCM(nO)) . @ = KA'(u)o®q, .

o Consistency: Setting qq - g!® = 0 yields the O[6%] consistency condition,
g g

2
2ot 4 e ((wo) = Lo, (3.37)

Note that as with LB, and LB,, the O[6®] consistency condition is satisfied
with o) (z;t) = const. Let us choose 0(V(z;t) = 0; further analysis reflects this

choice.

e Solve for n®: We have

n® = r+. g(3) + g(?)qo (3.38)
1
= Z ci(])qk ) ‘
k=0 {
where
KO RC]

3

: _ L , d ! YIS Al (2)
¢’ = 7 Ueza + K ( > 5 +T o ) Au) + Lol® — 6K A'(u)o
]

+ K [(0®)? ~ (Lu, - KA(u

A}
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in which o is the arbitrary scalar parameter introduced by the nullspace of

the linearized collision operator,

O[61]. We find

L£.n
144 4 1/21 9 0 7'2 02 ((])
= | (G V) 4+ (6 V)= 4 —— | n
G VP = GV g g
.113 R (’) (]) 142 2 (") (2)
+ — (& V) (G V)— [+ — (V) 4+ T— | n
ar (G VI LG V) o (G VI T
+ | L(& V) | n™ - %’D"‘C(U)(n(“)) nMnMpp
_ Lo q@) @) pe© (o) qge lp 100 () (D
3
B (l O (O . npMp) _ p2e) (4O . n(l)n(?)_~pcl)(n(0),n(d)
)
= g,

. 2
W = Te® 4 61\']4—8(2-(/1’(11)0(2)) - i‘)—(f(”
T
+ 71]:( [\!a L; &,y ia Uy Ugy Uggy Upgy “J:z?:va:)» (33())
& = Lo - KA (w)e™, (3.40)
for
F(K, LT, o, 8 u,Up. Ugz, Ugar, Ugprz)
_ LA KL3[1 &8 K2L?2 2 0* 1
= +l()]1u’1‘11.1‘ + .[1 S_O—_—A(u) + ’U‘Tul1‘| - _f11_- [55?;2— (A(U)A,(u)) - E’“’Tﬂ'
oK,

—— Al A (w)u,
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and in which

'D"C(O) n(o) n(l)n(i)n(l)n(l) -

(n®). 0
D3CO) (n0). 0
DO (n0)) : n(1pE) = 0
(n'). 0
(n™). 0
(n) 0

]

n(l)n(l)n(z) — ,

1

'DQC(D) n(o) n(g)nm) =
DI (O

D2C(1) n(o)

b

nnMp) =

n(n® = 0,
DC(n®) . n® = KA(u)o®,
Note that our choice of o{!)(z;t) = 0 played a significant role in simplifying the above

calculations.

¢ Consistency: Setting qqo - g = 0 yields the O[] consistency condition,

J 0: .
-C;)-t-a()) -I—Gc-a-;(A'(u)a(g)) = 1/%0(3) - (3.41)

- F(A"L1,I|;m1t;uauxaurxaum‘raUJ".'.'r:r)~

Note that Eq. 3.41 may be written

(L+h)[c®] = F, (3.42)
where operator
_ 9 o 9
L= (l.(.L', t)-(')—;pi + b(:r‘t)a —_ ,(.')—t-)

in which

a(z;t) = v,

b(z;t) = —6cA'(u),

h(z;t) = 12cu, .

Note that L is uniformly parabolic in region Ep = ([0,L] x [0,L])) x (0,T).

Suppose that u € C*([0,1],[0,1]). Then under this and additional assumptions
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(regarding initial and boundary conditions) and regularity argwments, it can
be shown [54] that solutions o3 of Eq. 3,12 are (“(R.R) functions and, in
particular, o!®, old and ol are uniformly hounded. We will assume that such
bounds exist Lo obtain statements regarding numerical convergence of the lattice
~method (see Lemma 3.9 for how the bounds apply to numerical consistency
and Lemma 3.14 for how they apply to continuum maximum and minimun

principles for the truncated equilibrium expansion).

e Solve for n!: We have

n® = £t.gW 4 s¥q,
= Zl: 024)Qk )
k=0
where
EOR—C
Y = KA (w)e® - Lo® |

in which o) is the arbitrary scalar parameter introduced by the nullspace of

the linearized collision operator.

O[6°%): At this order, only the consistency condition is to be determined. This con-
dition specifies 0®. We will find that ¢ (z;t) = const. satisfies the condition. We

find

£.n®
Lﬁ 5 7‘2 (r);! [/3 9 (') (()]
= — (& V) 4+ — (&, V) — + — (&}, - V)" — | n
57 (8 V) == (@ V) g+ 5 (G V) o
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LA . LT , 0 T*9? (1)
2 (& L e. - 122 _|n
B TR el CRA O v v
LB - 3 — 0 (2)
Z (& . T (&  V)— | n
to (8 9P (V) o
2
+ | 2@ vy n‘“’+{L<a«V> n'4
+ (Coll.)
= g

1
(5
Z Ci )Qk )
k=0
‘where

5 .. 0 L? )
9 K12 (W) - Loy o

and (Coll.) is the contribution from the coefficient of 6° in the collision operator
expansion, Eq. 2.18." Note that (Coll.) is orthogonal to the nullspace of the linearized
collision operator, and therefore does not contribute to the consistency condition. The

« . ~(5
remaining coefficient, cg "5 left uncalculated.'®

 Consistency: Setting qo - g = 0 yields the O[6°] consistency condition,

a . 0 0*
=0 4 o= (A'(u)o®) = v—0c®, 3.4
50+ 5 (A (u)o ) il | (3.43)

Note that @ (z;t) = const. satisfies Eq. 3.43. Let us choose o®(z;t) = 0 .

(This implies that &V = 0.)

M(Coll.) consists of the O[6%] collision operator expansion terms minus £ - 1(®),
~(H . . . .
’5c(i ) would need to be calculated for determining n®, which would also mean calenlating the

(Coll.) term. One would complete such calculations to determine the 0[65] consistency condition.
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e Solve for n®: We would complete this calculation were we to desive the O8]
consistency condition, which would determine <M, But sinee o™ does not
appear in the truncated equilibrium expansion, which is used in establishing
consistency (as per the nest subsection), it is not necessary to determine ol?

nor, hence, n®,

This completes the first application of the discrete Chapman-Enskog procedure, It
determined hydrodynamical equation of the lattice Boltzmann method to be I, 3.3
and the consistency equations for oM, ot and ¢ (o be Bqs. 3.37, 3.41, and 3.13,
respectively, We saw that ot and ¢® may be chosen to be constants, and that

uw=o® e C*([0,1],]0,1]) and o € C*R,R).

3.2.8 Coi vergence

To obtain a statement regarding the convergence of the lattice Boltzmann method, we
establish consistency, discrete and continuum maximum and minimum principles, and
stability. The discrete maximum and minimum principles result from monotonicity
arguments.

LEMMA 3.9 (CONSISTENCY OF LB METHOD FOR BURGERS' EQUATION).

Define the truncated equilibrium expansion by
3 I "
h =3 6hb), (3.44)
j=0

in which h©) = nl), the nU) as defined by Eqs. 3.32, 8.33, 3.36, and 3.38 in the ap-

plication of the discrete Chapman-Enskog procedure of Section 8.2.7. Then h salisfies

Ah = h + C(h) — T(h), (3.45)

-~
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in which truncation error, T(h) = O[6%], Suppose o € C*([0,1],(0,1]) and o €
CHR,R)ME Let At = T8, Ax = L6, v = L*/(21"), and ¢ = KL/T, for spatidl,

temporal, and advection scale lengths L, T', and K, respectively, Then

1

Ae-n At 170l =

Jor some norm, ||||.
Proof. First, we apply the discrete Chapman-Enskog procedure to determine the
truncated (squilil)rium expansion, Then we determine the remainder, T (h). Finally,

we show that llm — [|T(h | =

Part [: Determining the Truncated Equilibrium Erpansion

Recall that ¢ (x;t) = conat. and o®(z;t) = const. satisfy the O[8*] and O[8%)
consistency conditions, i.e., BEq. 3.37 and Bq. 3.43, respectively. Choose oV (rit) =
e (xit) = 0. Then using that h©) = 1) and Fgs. 3.32, 3.33, 3.36, and 3.38 for

nt 0 n® and n® | respectively, we find

(0)

n'’ = uqp (3.46)

1
ZH”qk hi) = L<( ‘e ) = Z M (3.47)
k=0

where

(ﬁ)l) = 0 )

c(ll) = NA(u)— Lug ;

Y Recall that u(z;t) = o(O(x;t).
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t

u((,'“,) = ol

= KA el < LelD)

('f,ﬂ) = 0,

oA = ~——1{2um,z + IV <~{§% + /;%) A(u) 4 Lat® — 6 A (u)o

+de“f~(mu-hwmmﬂ.

Part 2: Determining the Remainder

Now. to determine the remainder, 7(h), let us apply the discrete Chapman-Enskog
procedure to h. We apply the advection and collision operator expansions(lq. 2.24
and Eq. 2,18, respectively) to the truncated equilibrium expansion, h. Care is taken
in noting that only up to the O[6%] terms of n appear in h. Thus, some of the terms
in the advection and collision operatorv expansions do not appear in the discrete
Chapman-Enskog expansion on h. The resulting expansion follows:

4

Ah—h-C(h)=-T(h)=-5" &T0) 4 O[6%),
)=0

where
TO = ¢cO®nO),
T = cwﬂ”+d”mm)-L[a-v}hM,

T® = c.mﬂ+%D%mew.MWﬁ”+Dd”mwnww>

~

L2 , ;
- ;—pﬂ'vﬁ}mmmT%HW+L[&-V]NW

™ - L‘,,h(a’+%D“C‘“’(h‘“))'h“)h(”l‘l(”~+~ D (h®) . hh®
| :
+ =DHMMO) hORM 4 GDe (L)) L3
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Part 3¢ Showing Consistencey

The combined results of parts | and 2 establish consistency, as simmmarized by the

following: Note that the R, j e {0,1,2,3}, are nuiformly bounded since
e (0, 10,0,1]) and o™ e CHRVR)

, \ , l
by the assumptions of the lemma. Hence, 3 a norm, ||+, such that im — |7 ()] =
‘ At—0 A/
0 by Theorem 2,47, O
LEMMA 3.10 (DoMAIN oF Mosoronterry or LB Metnod ror Burarns'

EQUATION).  Let e € (0,1) in the lattice Boltzinann method,
Anl' = nl +C(n)'), (3.18)

where

\ .
C(ny) = au {5 (=(no)! 4 (e + 5 (o) + (n)) = 2(na)f 00| (340)

and
(no)H!
(nOiH!

Let £V = g1 = (0,1). Then € = EW s £ 4y the domain of monotonicity for the

An}‘ =

method,
P’roof . There ave three parts to proving the lemma: (1) show that the conditions
ol monotounicity are satisfied in €, (2) show that & cannot be extended to a larger

connected region, aud (3) show that € has volume, Clearly, (2) and (3) are true!'?

For (2) let us write the Lattice Bollzmann Equation, ¢, 3,48, in the form
Ho(n}_ )

' ]

l‘[l(]'l:l_'_l)

nu-{-l —

'€ cannot be extended beyond [0, 1%, and it obviously has volune.
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Part 3: Showing Consistency

The combined results of parts 1 and 2 establish consistency, as summarized by the

following: Note that the h), j € {0,1,2,3}, are uniformly bounded since

@ e C4([0,1],[0,1)) and ¢ € C*(R,R)
. . 1
by‘ the assumptions of the lemma. Hence, 3 a norm, ||-||, such that Altl_fn_}0 i |7 (h)|| =
0 by Theorem 2.47. O
LEMMA 3.10 (DOMAIN OF MONOTONICITY OF LB METHOD FOR BURGERS’

EQUATION). Lete € (0,1) in the lattice Boltzmann method,

An? = n" +C(n?), (3.48)
where
C(np) = a [5 (= (o)l + (m)]) + 5 ((mo)} + ()} = 2Anoli(m)})]  (349)
and
o = | (O
(n2)i

Let £© = €M = 0,1]. Then € = £ x €W is the domain of monotonicity for the
method.

Proof. There are three parts to proving the lemma: (1) show that the conditions
of monotonicity are satisfied in €, (2) show that € cannot be extended to a larger
connected region, and (3) show that £ has volume. Clearly, (2) and (3) are true.'”

For (2) let us write the Lattice Boltzmann Equation, Eq. 3.48, in the form

Ll Ho(nj_;)

t )

Hl(n?ﬂ)

7€ cannot be extended beyond [0, 1)%, and it obviously has volume.
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where

—+

€

((no)iy + (1)) = €(no)iy (n1)Py
((”0)?“ + (nl)?+1) + €(n0)iy1 (1)

| 8o

€

[ monzy || -
l

n 11
Hl(ni+1) 5

Define Gy = anf - Hi(n?_), k € {0,1}. We must show that G; > 0 for k € {0,1}.
i-&

Well, we have

. . .
14¢ . l4e n
Go 2 - e(nl)i—l 2 — f(no),'_.l
= >0, Vie g,
l1—e¢ 1—e¢ n
G — + €(n1)i 3 + €(n0) iy,
L | 2 ]
if
l1—e¢ 1+e€
— < n L
% - (no)t = %€ )
l—e¢ 1+e€
- < noL
% = (nl)l = %e P

which is certainly true since € € (0,1). Hence, the domain of monotonicity is €. O
We have established that the domain of monotonicity encompasses all possible
occupatiqn numbers, i.e., ng € [0,1]. Hence, the method is monotonically increasing.
LEMMA 3.11 (DISCRETE MAXIMUM/MINIMUM PRINCIPLE OF LB METHOD
FOR BURGERS’ EQUATION). Theorem 2.49 holds for the lattice Boltzmann method,
Eq. 3.48, with domain of monotonicity, € = [0, 1]2.
Proof. First note that any ipitial condition in this method must necessarily’® be

in €. Let My denote the extreme values of £, i.e.,

0 1
M_ = and M+ =
0 1

Then note that C((M_) =C(M,)=0¢€[0,1]2. O

!By definition of a lattice Boltzmann method with the Fermi Exclusion Principle.
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To establish a continuum maximum/minimum principle on h, we use two lem-
mas. One is a maximum/minimum principle for Eq. 3.29. The other is a max-
imum/minimum principle for the hydrodynamical equation of our lattice method,
Eq. 3.34.

"LEMMA 3.12 (MAXIMUM/MINIMUM PRINCIPLE FOR THE 1-D Viscous BURG-
ERS EQUATION). Let p(w;t) satisfy the one-dimensional viscous Burgers equation,
Eq. 3.29, on Q = [0,L] x (0,T] with v > 0, periodic boundary conditions and initial
condition p(x;0) = pr(z) € C}R,R). Then the mazimum and minimum values of
p(z;t) occur at the initial boundary. |

Proof. We easily verify that Eq. 3.29 is parabolic for all functions p. Noting that
any constant satisfies Eq. 3.29, we may apply Theorem 12 of [63, p. 187] to conclude
that the maximum and minimum values of p(z;t) occur at the initial boundary. O

COROLLARY 3.13. Let u(z;t) be a solution of Eq. 3.34 on Q = [0, L] x (0, «"] with
initial condition u(z;0) = uy(z) u; € C*(R,R) satisfying 0 < R_ < wuy(z) < Ry <1
and periodic boundary conditions. Then the mazimum and minimum values of u(z;t)
occur at the initial time, i.e., u(z;t) € [R_, Ry], V (z;t) € [0,L] x [0,T).

Proof. Let p(z;t) = -IET-I-I-(I —2u)and v = —2-[’;- Under this transformation, Lemma
3.12 may be applied to obtain the desired result. O

LEMMA 3.14 (CONTINUUM MAXIMUM/MINIMUM PRINCIPLE OF LB METHOD
FOR BURGERS’ EQUATION). Let u(z;t) € C*(R,R) be a solution of Eq. 3.84. Let
h), j € {0,1,2,3} be defined by Egs. 3.{6-3.47. Then suppose 3 constants R_, Ry,
B, BO), and B® such that |

1.0< R_<u(z;0) <Ry <1,Vze(0,L], and

9. For each j € {1,2,3}, [hV], < B9, ¥ (1) € [0, L] x (0,T).

oo
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Then 3 6o > 0 3 for 6 € (0,60)

Ry + R_
2

LR -R

h™ - LS o

for all time stepsn >0 .
Proof. Let R_ = infu(z;0) and R, = supu(z;0). Then by Corollary 3.13 and
noting that R_ < R_ < R, < R,, we have

Ih (o m+&” Ry — R_
— ST

where hgo) = h§°’ = u(z;t). Consequently,
R_ < (A" < R, (3.50)

for all lattice nodes ¢, time steps n, and directions k € {0,1}.
. 3
Now, choose 8, 5 R_ < (h{”)? + 3" (60)' BY) < Ry for all lattice nodes 7 and
directions k € {0,1}.® Then

2 loo =0 2 | lm
< |[(h@Yy» - M + Z &9 “ (h®)n
< (h(O))n - R+ + R. + Z(éO)JB(J)
2 to  j1
< R-R
- 2

the last step by Eq. 3.50 and our choice of §. O ‘
COROLLARY 3.15. 3 b0 > 0 such thatV 6 € (0,&), if h? € £, V7€ L, then

hf € £, Vi€ £ Vn, where £ is the domain of monotonicity, £ = [0, 1]2.

3
19This amounts to choosing 6o 3 R_ < u(z;0) + Z (60 BY) < Ry ¥ z € [0, L) so that Corollary

3.13 applies.
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Proof. Let R, = ! and R_ = 0. Then apply Lemma 3.14 to yield the result. O

LEMMA 3.16 (S'l‘ABiLI']’\' of LB METHOD FOR BURGERS® EQUATION). Let
n", h* and L[n". h"] be defined as in Definition 2.1, Let domain of monotonicity,
E, be as in Lemmg 3.10. Suppose n?, (W% ¢ €. And suppose the hypotheses of
Lemma 3.1 are satisfied. Then 3 7 > 0 such that |[L[n" h*}||, < 1V n such that
0<nAt<T and 0 < At < 7.

Proof. Let Ry = 1 and R_ = 0. Let & be given by Lémma 3.14. Choose
T = T(8)* so that Az < Léy. Note that Corollary 3.15 applies to yield that h™ € €,
V n such that 0 < nAt < T and 0 < At < 7, Then ||L[n*, h"]{|,, < 1 by Lemma
2.59. O

THEOREM 3.17 (CONVERGENCE OF LB METHOD FOR BURGERS' EQUATION).
Let the conditions of Lemmas 8.1, 8.3, and 3.5 be satisfied. Then Alti-g-}O—Alz 1F7l,, =
0,Vn30<nAt <T, in which At = (Az)?/(2v), and Az = L§, At = Té%, and
v = L?/(2T) for spatial and temporal scale lengths [ and T.

Proof. This is a consequence of Theorem 2,61, O

Discussion

But since this problem is one-dimensional, some of the abstract quantities that

appear in Theorem 2.61 can be easily listed. We include them here for informational

purposes.

n
‘ (€0)i : > '
Let error, e} = , be as in Definition 2.44. Then operator L[n™, h"] can

(e))?

be written in the block diagonal form,

L[n"h"] = diag (Li),.a,
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where L; is a 2 X 2 matrix and is given by

1+ € n n 1+6 n n
| T gl () 5 = G ) (hol)
S S ()] S5 5 [(no)? + (hol]

Indeed
Ae" = L[n", h"]e" + T(h™).

The reordered operator matrix, L{n™ h"), as it appears in the proof of Theorem 2.61,

can be derived from the recurrence,

() = [1te

M= g = 5 ()R () | ok
o (o) + (o)) (o) + To(By)

CF = [F55+ 5 (i + (ht)] (eoli
5 (o)t + (Bl (et 4 i)

Note that the coefficients of (ex)%, for k£ € {0,1} in the r.h.s. of the above are

nonnegative by Lemma 3.11 and Lemma 3.14. Hence, \[:[n", h"]”t = 1.
1

Summary

We have shown that the lattice Boltzmann method converges to the solution of
Eq. 3.34 in the Ly-norm. Although the convergence rate for O[8%] for the error,
the method is O[6?]. We see this by the following: Let UP = ((no)} + (n1)')/2 be
solution computed by the lattice Boltzmann method. Then by consistency arguments
(see the expansion for h, Eq. 3.44), u(z;t) = (A (2;1) + h&"’(x; t))/2 + O[6?] so that
u? = (R + (R /2 + O[6?). We showed that e} = n? — h? = O[6%] in the
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arguments for convergence. lowever,

(fo)p = 220
= ((no)] + (n)} = (ho)f = (h1)}) /2 + O[6°]
= ((no)? + ()P = (R = (B2 + 016%) + O[6%]

= ((no)] + (n)}) /2 = o + O[5

Hence, the lattice fnethod is second-order convergent (and not third-order) because
of how we relate the 6ccupation numbers to the exact solution, u(z;t).

Under the transformation, P! = c(1 — 2U"), where P! =~ p(tAz;nAt) and p(z;t)
satisfies £q. 3.29, we see that the method yields second-order convergent solutions to
the one-dimensional viscous Burgers equation. Note that this also verifies convergence
of the corresponding lattice gas method to t'ie extent that the covariances may be

safely neglected. As previously pointed out Lebowitz, et al. [53] have shown that the

covariances indeed can safely be neglected.

3.3 A Lattice Method for a 2-D Advection-Diff-
usion Equation

This section introduces a lattice Boltzmann method the two-dimensional advection-

diffusion equation, |
pe+ ppz = V(paz + pyy). (3.51)
The first section defines the lattice Boltzmann method. The second section derives

a hydrodynamical equation (via the discrete Chapman-Enskog procedure) that, under

a linear transformation, yields solutions to Eq. 3.51. This provides the groundwork
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for a formal consistency argument of this method. The conditions of monotonicity
have yet to be determined. Thus, the convergence proof remains to be completed.
However, a numerical study of this method is reported in Section 4.4 and indicates

second-order convergence.

3.3.1 Collision Rules

First, note the lattice, £, and velocity vectors, €, k € {0,1,2,3} are the same as
those for LB,. Table 3.8 lists the collision rules consistent with our notation; Table

3.7 offers a pictoral description. The rules include an O[6] advection bias so that

1+e and E:l—c

2 2’

a =

(3.52)

where for some constant K > 0,
e= K¢ (3.53)
is the advection bias (to the right). As for the lattice method for the one-dimensional

Burgers equation (Section 3.2), that ¢ = O[6] is crucial for recovering the hydrody-

namics of the method with the discrete Chapman-Enskog expansion.

3.3.2 Collision Operator

By examining the collision rules as listed in Table 3.8, we find the collision operator

to be given by

Co(fh) =

—{—afzo 'fhflg’flg + (l.ﬁ() ﬁ]flgfl(g + (L'fl()'fllflg’ﬁg + (lﬁoﬂ]flzﬁ;}

———— — —cnnn —— . —— —

-—Eﬁo'fll 7‘\12 ﬁ.g - Efl()ﬁ] flz'flg - -(_l-’flofllﬁg 'flg - ?[’flo'fllﬁzﬂg
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Table 3.7: Pictorial Description of Collision Rules for Two-Dimensional Advection-
Diffusion. Each line in the table lists possible input states v and corresponding output
states 3 with nonzero probabilities.

PRE-COLLISION | POST-COLLISION

Q B, S(a—p3) | B,S5(a— 8) | 3,S(a—3)]| B, S(a—B)

+

or

| } 1 \ 1
—TL 7 2 2

l 14¢ 1 —c¢

or —p p—— e,
2 2

b 1 4¢ 14+ ¢ f 1—¢ | 1—c¢
or - > - -
’ . 4 , 4 | 4 Y 4

+ [
e

i
+
“[1
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Table 3.8: Collision Rules for Two-Dimensional Advection-Diffusion. a = (1 +¢)/2
and @ = (1 —¢€)/2.

Rule o B S(a — B)
Qo O Q; Qg Bo B1 PBr Ps

00 0 0 0J]0O 0 0 0 1

1 0 0 0 110 0 0 1 1/2
0 1 0 O 1/2

2 0 0 1 0|1 0 0 O a
0 0 1 0 a

3 0o 0 1 1]0 0 1 1 a/2
1 0 0 1 a/2

0 1 1 0 a/2

1 1 0 0 a/2

4 0 1 0 00 0 0 1 1/2
0 1 0 O 1/2

5 0 0 111 0 1 O 1
6 0 1 0 0 1 1 a/2
1 0 0 1 a/2

0 1 1 0 a/2

1 1 0 0 af?

7 o0 1 1 1{0 1 1 1 a
1 1 0 1 a

8 1 0 0 010 0 1 O a
1 0 0 O a

9 1 0 0 110 0 1 1 al2
1 0 0 1 a/2

0 1 1 0 a/2

1 1 0 0 a/2

10 1 0 1 0 L 0 1 1
11 1 0 1 1)1 0 1 1 1/2
1 1 1 0 1/2

2491 1 0 00 0 1 1 a/2
1 0 0 1 a/2

0O 1 1 0 a/2

1 1 0 0 a/2

13 1 1 0 10 1 1 1 a
1 1 0 1 a

14 1 1 1 0411 0 1 1 1/2
1 1 1 0 1/2

15 1 1 1 14{1 1 1 1 1
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—

+ Mo Tealty — Al itgty

Cy(n) =
T T -, A TE T 1, —,
+3no ny NgNig + -‘;nu 1y NaNtg -+ 5T0ny N2l + 5N Neng
N lom A o E T 1, . =
—-‘—)'72‘07“712 Ng — 3‘71071171'27&3 - 377-071.1‘112 N3 — =Nl NNy
+7‘:l.07"217‘7,27~7.3 - f?.g'fl]'f?.'z'f?g
Cz(ﬁ) =

‘+E7A1075l1 7‘\12 ’flg + ?[7"10731 7‘127‘\13 + '(—[ﬁoﬁ]fl.g 7A13 + ﬂﬁo'fllﬁgﬁa
—-(173.0 ﬁ]ﬁgﬁg - aﬁo 7AL17‘Z'27AL3 - (lfl()?‘?,17"lr2ﬁ3 - aﬂofl] 7.\12753

+ngM NgNg — NNy NgNg

Ca(h) =
17—AA_'A— A oA T YA A AT 1AAA.7\—
+§non1n2 fig + §non1ngna + §non1n2 Ty + =NgT Nang
-uu el ey e 1, e, 1, o—\
—-2-7'10 ny Naong — 'é-no NiNaNg — =NoNy NoNg — -énonlngng

+ﬁo'ﬁ1’ﬁgﬁa - fldﬁq'flgflg

i

or, in vector notation,

C(fi) = (3.54)
+ qi [(1 - Za)fluﬁg + aflg — Eﬁo]

+ az [y — ] /2

+ qs [7‘\7.()7',\&27%3 + ‘ﬁ()’fl]f?q — ﬁq'fbg'ﬁ.g — ’IA'()fI.]WAL(g + ﬁ]fl;} - floﬁg] y
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where column vectors qy are given by

1 1 0 1

1 0 1 -1 )
Q= [CIo, di, 92, g3 ] = ‘ (3.55)

1 -1 0 1

1 0 -1 -1

(We find later in the text that Q is the eigenmatrix of the linearized collision operator.)

3.3.3 Lattice Boltzmann Approximation

The Lattice Boltzmann Approximation is obtained by ensemble averaging Eq. 3.54

and neglecting the covariances. With ny ~ (i) the resulting approximation is
C(n) = CO(n) + 5 (n),
in which

Cn) = ai(nz —n0)/2 + qu(na — 11)/2
+ qa(nonena + noning — nynana ~ noning + nyng — nenz),

CW(n) = qi(no+ ng — 2nona)/2,
where we have used the relations Eq. 3.52 and Eq. 3.53. Then
An =n +C(n) (3.56)

may be used as a lattice Boltzmann method with n € [0,1]*. The remaining analysis

derives the hydrodynamical equations of this method.
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3.3.4 Equilibrium Analysis

Let us use the direct method of Section 2.2.1 for determining the equilibrium. We

will find one form of the equilibrium,
n(o) = uqp .

To see this. first set the leading term of the collision operator to zero,

N
0
COm)=0= ‘ (3.57)
0 .
L0

This implies CSO)(n) = C{%(n), whict. forces ng = n, = v. Similarly, Cfé)(n) = C;E,O)(n)

implies ny = n3 = w. Substituting these back intc Eq. 2.57 we find that either

or

v—1"

This yields two forms for the equilibrium:

.u. ) ;
u 2v -1 ‘

(v=w=u), and v/ ) (w=0/(2v -1)).
| u | Lv/(?v—l)—

Note that f(v) = v/(2v —1) € (0,1) for v € (0,1). Thus, the second form does not

apply; occupation numbers cannot lie outside [0,1]. We will use the first form for the

O
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remainder of the analysis. Then the equilibrium is

1
U

3.3.5 Linearized Collision Operator

Using the non-trivial equilibrium solution, n®, we can now linearize the leading order

of the collision operator,

L= —?—-C(O’(n) = | Ly |,
on n=n(0)
where
0
Lii= —C(n
ki an’ k ( ) nen(®)
Completing the calculation, we find
90 0.0
—C; ' (n = (2u?—-2u-1)/2, —C"(n = u(l —u),
e ( )n=n<o> ( )/ Frre; Ok ( )n=n<0) ( )
0 0 0
¢ (n = {(2u®—-2u+1)/2, ——C%n = u(l —u),
ank+2 k ( )n=n(0) ( )/ ankA‘-a k ( )n=n(0) ( )

for k € {0,1,2,3} and all indices are evaluated modulo 4. Then £ may be written

[

2ut —2u—1 2u(l—u) 2u? — 2u+1 2u(l —u)

2011 —u) 2u? —2u —1 2u(l —u) 2u? — 2u + 1

N =

2ut —2u+1 2u(l —u) 2u? —2u~1 2u(l —u)

2u(l —u) 22 — 2+ 1 2u(l — u) 2u? — 2u — 1

L !
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3.3.6 Eigenvezlues and Eigenvectors

Note that indeed £ is a symmetric circulant, so it has a complete set of orthogonal

real eigenvectors with real eigenvalues. The eigenvalues of £ are given by

eigenvalues(L) = (Ag, A1, Ag, Az) = (0, =1, —1, —4u(l — w)).

- Indeed we see that £ is nonpositive definite for v € [0,1].

As previously suggested Eq. 3.55 lists the (unnormalized) eigenvectors of £, which
one can find, e.g., by noting that £ is a circulant and using the formulas for eigen-
vectors of circulants (3, pp. 242-3]. Note that the dimension of the nullspace of L is

one, the nullspace being spanned by q, i.e.,
nullspace(L) = span(qo).

The pseudo-inverse of £ may be written

[ = L aeal
kS argo Nk Gk * Dk

Noting that the eigenmatrices for this and the LB; (and LB;) lattice Bolizmann
methods are identical, Table 2.4 lists the componentwise eigenvector products for the

lattice method of this section also.

3.3.7 Discrete Chapman-Enskog Expansion

We assume
e = Ké
Azr = Lé
Ay = Lé

At = Té&,
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in which K > 0, and L and T are the respective spatial and temporal scale lengths.
Now, we may readily apply the discrete Chapman-Enskog analysis.
Gradient Expressions

Note that in the present method the unit velocity vectors, & (k € {0,1,2,3}), are
the same as in LB; and LB;. Thus, gradient expressions involving the unit velocity
vectors are expressed in the same fashion (see Eq. 2.25).

Matching the Expansions

Employing the results of Section 2.3.5, order by order we obtain the following hierar-

chy:
O[1]: C®(n®) = 0, as desired.

O[6): We find

L n(l) = L [: é'k -V } n(o) -—C(‘)(n(o))

= (Lug — Ku(l - u))qu + (Luy)qs

¢ Consistency: Note that already g(!) is orthogonai to nullspace(L), i.e., qo -

g(l) = 0, so that no consistency condition is introduced at this order.

¢ Solve for n(!); We find

n® = £t.gl) 4 s,

— U(l)QO + (Ku(l —u) — Lug) qi + (= Luy e,



190 | CHAPTER 3. APPLICATIONS

where o1 is the arbitrary parameter introduced by the nullspace of the lin-

carized collision operator, One parameter is introdiced since
dim(nullspace(L)) = 1.

O[8?%): We find

L?
£.n® = 5 [ (€ - V)?

n® 4 T—gn(o) + L [ & -V } nt?)
ot

- })fﬂC D(n) . nMn® = pet (@) .y
KL o, , L,
= (Tut + —é—a(lx u(l —u)) — -Z—V u) do
Lol + K(2u — 1)o ) q + (Lal(,‘)) q2

Jd, ., L?
2K L—(Ku(l —u)) — -—Z(uu - Uyy)

i
o
)

in which

DO (n) - nMWnM = 2(2u—1)((Lyy)? = (Ku(l = u) — Lu,)?) qs,

DCH (@) . n) = KeM(1 -2u)q,.
e Consistency: Setting qo - g® = 0 we find the consistency condition,
d g, 0* D*
P + 05;( u(l —u)) =v (012 u + -é-J—u) , (3.58)
where
. = KL
ooer’
L2
V e ot

4T
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Note that we can now write At and ¢ in terms of ¢, v, Az, and Ay:

cAzx
2’
(Az)?
4v

€ =

At =

Then with the linear change of variable,

p = c(l —2u),

|

Eq. 3.58 becomes Eq. 3.51.

e Solve for n(®: We have
n(:) — £+ . g(Q) + 0-(2)q0
= quo? + q [K(l —2u)o) — Lagl)] + q, [——af/‘)]

0

+qs L (upg — Uyy) — KLB'Q;(”(I —u))

1
16u(l — u) [
4(2u — 1) ((Luy)? - (Ku(l —u) - Lux)z)] .

where o(? is the arbitrary scalar parameter introduced by the nullspace of the

linearized collision operator.

O[6%]: We find
L-n®
F 3 2
- L — 3 ] 0 (0) L > 2 Ly 0 (l)
30 (€k~‘V) +LT(ekV)-a—t- n*’ 4 —2—'-(61¢V) +Fa n

E

+ | L@ v n(?)_é.p3c(0)(n(0)).n(l)n(l)n(l)__Di’c(o)(n(o)).n(l)n('l)
_ %’02(}(1)(“(0)) W _ 6pet () o)

ZS ®
= ‘ék U
k=0
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where

" 0 , O ' o 0
o) = 2L (1= 20)0!) = Lol o 4 T o),

(3 ‘ - '
and C(k) remains uncalculated for k € {1,2,3}. Although not shown here, each of

DACO) (n©@) . nMnMpM) PO (n©)). nMp@ PN (@ )y and DCM(n).
n® are orthogonal to the nullspace of £. They only contribute to the uncalculated
coeflicients é(ks), ke {1,2,3} and do not affect the determination of the consistency

condition,

¢ Consistency: Setting qo - g(® = 0 yields the consistency condition,

0 o 2KLO () o w9
o+ =gy (1 - 2wt = 2T 520 taaT (3.59)

We have carried out the expansion this far to see that the O[§°] consistency
condition is satisfied with o(!)(z,y;t) = const. We would choose a(l)(:v, y;it) =0
were we to apply a formal consistency argument subsequent to the derivatior.
Further, we stop the expansion here since we are not interested in pursuing
higher order consistency condition. An attempt at proving its convergence

would reveal whether higher order consistency conditions would be necessary.

This completes the first application of the discrete Chapman-Enskog expansion.
It determined that the hydrodynamical equation of the lattice Boltzmann method is

Eq. 3.58, while the O[6?] consistency condition is Eq. 3.59.

3.4 Conclusions

This chapter presented three lattice methods and determined their hydrodynamical

equations via the discrete Chapman-Enskog expansion. For two of the methods,
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through consistency and stability arguments, we proved second-order convergence in

the Ly-norm.



Chapter 4

Computational Studies

This chapter provides computational evidence supporting the theory developed in the
previous two chapters for the following lattice ’Bolhzmann methods: LB, (of Sections
2.1-2.4), LB; (of Section 3.1), the method for the one-dimensional viscous Burgers
equation (of Section 3.2), and the method for a two-dimensional advection-diffusion
equation (of Section 3.3). Section 4.1 examines the computational results for LBy,
Section 4.2 for LBy, Section 4.3 for the method for the one-dimensional viscous Burg-

ers equation, and Section 4.4 for the method for two- dimensional advection-diffusion.

The numerical studies yield quantitative results regarding the order of convergence
of the various lattice Boltzmann methods. Coarser grid solutions computed by the
lattice Boltzmann methods are compared with fine grid solutions computed by finite
difference methods (the finite difference-computed solutions are used in place of ana-
lytic solutions). All the finite difference methods are conservative monotone schemes.
We find that the studies substantiate the convergence results reported for each lattice

Boltzmann method, excepting the lattice Boltzmann method for a two-dimensional

advection-diffusion equation?.

!'No proof of convergence was given for that method; however, the computational results reported
in Section 4.4 suggest second-order convergence,

195
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We now develop some necation for comparing the finite difference- and lattice
Boltzmann-computed solutions, Consider solving the time-dependent partial differ-
ential equation,

wy + [(u) =0,

with some appropriate initial and boundary conditions, where t'.e functional ' de-
vends on u(T;t) and its derivatives, Then let V" and 77 denote the finite difference
] i r

and lattice Boltzmann appreximations to u(#Ax;nAt), respectively, for grid size N,

where u(;t) is an exact solution to the partial differential equation.? Then let
EWN(gn) = U — V2,

with E(M)(n) being a vector of the EM)(7n) over the spatial grid points 7.2 Quanti-
tative results are reported in the L;- and Lo -norms. In one dimension, consider an

- error vector F, then the norms are defined by

I
18l = — 2 I&l,
NEl,, = sgpiE"l,

where L is the spatial scale length. In two dimensions, consider a column vector £

then the norms are defined as follows:

AzAy
llEH[‘ = T)L(y) LlFIJ|

£l

il

Sup IEHJI )
UM

where L™ and LW denote the & and y scale lengths, respectively. (We use Az = Ay

and L = L®) = L® in the two-dimensional numerical studies.) We pay particular

“We will be using a finer grid to compute the finite difference solution than to compute the
lattice Boltzmann solution. Then relative to the lattice Boltzmann-computed solution, the finite
differerce-computed solution can be viewed as an exact solution,

*1u one dimension 7= i} in two, 7= (1, 7).
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attention to the ratios,
|2, /124, wad [, /247,

both of which for O[6?] convergence should be near four.

4.1 LB,

This section presents numerical results regarding the order of convergence for lattice
Boltzmann method, LB;. We find that they confirm (and suggest extension of)
the theoretical results reported in Chapter 2 for this lattice Boltzmann method.*
Specifically, we introduce a finite difference method to generate reference solutions
with which to compare the lattice Boltzmann computations, Then we compare the

solutions computed by the two different methods and discuss the results.

4.1.1 Finite Difference Method

Consider the conservative finite difference method,

ot = vy (1)
+ VAi[D(Ui'll.j) + D(U}) (Uﬂn.,’ - U.".‘j) 3 D) + DUL, ;) (Uf',‘j - U.'"-Lj)]
)

Az Ax 2 Az
+ vAtf D(UT;1) + DIUT) (Ul = UL\ D(UR) + DU ) (U — Ul
Ay 2 Ay 2 Ay ’

-

r

1 1 . .
where D(u) = — =. With Az = Ay, one can show that the method is an

du(l —u) 2
O[(Az)?] + O[At] monotone finite difference method for UF; € (0,1) with a stability

criterion of At < (Az)?/(4v), where UP,

[, approximates solutions to Eq. 2,29,

LB, is the running example of Chapter 2.
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4.1.2 Numerical Results

We compute solutions to Ey. 2,29 for (a,p) € [0,1] x [0.1], t > 0, periodic boundary
conditions, and initial condﬁition, w(r,y;0) = uy(a,y) = Asin(2rz)sin(2ry) + B, for
constants A and B such thiat ur(z,y) € (0,1). We vary A and B to generate initial
conditions forthe lattice Boltzmann method within or not (wholly) within the domain
of monotonicity, & = (1 — 1/v/5)/2, (1 +1/v/3)/2])*, as given in Lemma 2.53.

While the lattice Boltzmann computations are on a grid of size N x N, where
N < 256, the finite difference computations are computed originally on a grid of
256 x 256 points and rendered on the coarser grids via pointwise projection®. To
avoid conflict with the limit of stability in the finite difference computations, the
associated time increment, Appt, is half that limit, i.e., Appt = (Az)?/(8v). For
the cases in which A = 0.45, Appt is a quarter of the stability limit. Note that
the finite difference-computed solution retains its accuracy when projected onto the
coarser grids,

We computed solutions for two differenct initial conditions. Figure 4.1 exhibits
the solution at time t = 0 and time ¢ = 1/32 for initial conditions in the domain of
monotonicity for LB,. Figure 4.2 exhibits the solution at time ¢ = 0 and time ¢t = 1/32
for initial conditions not everywhere satisfying the conditions of monotonicity for LBy,

e.g., the monotonicity conditions are not satisfied at the locations

(z,y) € {(1/4,1/4),(3/4,1/4),(1/4,3/4),(3/4,3/4)}.

SPointwise projection of the finite difference-computed solutions means that the approximation

on a coarse grid is the value of the corresponding point on the finest grid, This is analogous to the
pointwise projection operator, P, used in showing consistency of finite difference schemes, i.e., in

one space dimension Pu(z,.) = u{a,t), where u(x,t) is an exact solution, A contrasting operator is
T4+ Ar

the central averaging operator, Au(z,t) = / u(e, )dr,
r-Aar
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At these points the initial occupation numbers are outside the domain of motonicity.

The graphs at ¢ = 1/32 are the result of the 256 x 256 finite difference computations.

Quantitative Analysis

The first case regards Tables 4.1 and 4.2, Here, the initial condition satisfies the
conditions of monotonicity. We look at the ratio between the norm of the difference
between the finite difference- and lattice Boltzmann-computed solutions for grid sizes
a factor of two apart, expecting the = tio to be near four. The L;-norm results
support the theoretical second-order convergence in that norm, and even suggest a
slight superconvergence, i.e., convergence beyond the predicted 0[6?] rate. The L,-
norm results indicate that LBy may also be second-order convergent in the Le-norm.

The second case regards Tables 4.3 and 4.4. Here, the initial condition does
not everywhere satisfy the conditions of monotonicity for LB;. Again, we look at
" the ratio between the nérm of difference between the finite difference- and lattice
Boltzmann-computed solutions for grid sizes a factor of two apart, but not necessarily
expecting the ratio to be four (because of a lack of a statement of convergence for
initial conditions not satisfying the monotonicity conditions). The L;-norm results
show that the theoretical second-order convergence of LB, may still hold for some
initial conditions not everywhere satisfying the conditions of monotonicity. One might
argue in favor of a slight superconvergence here, too. The L.-norm results indicate
similar findings, i.e.,, LB; may be second-order accurate in the L.o-norm for initial

conditions not everywhere satisfying the conditions of monotonicity.
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Figure 4.1: Evolution of u(z,y;t) according to Eq. 2.29 with v =: 1/2: (a) Initial

condition, u(z,y;0) = ur(z,y) = Asin(2rz)sin(2ry) + B, where A = 1/v/20 and
B =1/2; (b) u(z,y;t) at t = 1/32.
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(b)
Figure 4.2: Evolution of u(z,y;t) according to Eq. 2.29 with v = 1/2: (a) Initial

condition, u(z,y;0) = uj(z,y) = Asin(2rz)sin(27y) + B, where A = 0.45 and
B =1/2; (b) u(z,y;t) at t =1/32.
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Table 4.1: L;-norm Comparison of LBy- and Finite Difference-Computed Solutions

with Initial Condition Parameters, A = 1/v20 and B = 1/2,

\ =,
N 1/N* | t= 1/32 1/16 3/32 1/8

.8 1/64 0.00241 0.00301 0.00241 0.00170
16 1/256 0.000605 0.000759  0.000624 0.000449
32 1/1024 0.000151 0.000190  0.000157 0.000114
64  1/4096 0.0000366  1.0000465 0.0000387  0.0000279
128 1/16384 0.00000804 ©.0000107 0.00000902 0.00000662
" ERRICED

8 3.991 3.961 3.867 3.776

16. 4.010 4.002 3.987 3.955
32 4.124 4.078 4.051 4.062
64 4.550 4.336 4.287 4.223

Table 4.2: L-norm Comparison of LB;- and Finite Difference-Computed Solutions

with Initial Condition Parameters, A = 1/\/2_0- and B =1/2.

”E(N)|l

N I/N* | t= 1/32 1/16 3/32 1/8

8 1/64 0.0110 0.00885  0.00683  0.00476
16 1/256 0.00191  0.00194  0.00157  0.00113
32 1/1024 0.000455  0.000473 0.000387  0.000280
64  1/4096 0.0001'0  0.000115  0.0000950 0.0000675
128 1/16384 0.0000250 0.0000275 0.0000225 0.0000175
N |2, /2],

8 5.755 4.572 4.343 4.192
16 4.198 4.095 4.058 4.053
32 4.137 4.108 4.078 4.147
64 4.394 4178 4217 3.854
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Table 4.3: L;-norm Comparison of LB,- and Finite Difference-Computed Soiations
with Initial Condition Parameters, A = 0.45 and B ="1,2.

=1,

N 1/N%|t= 1/32 1/16 3/32 1/8

8 1/64 0.00576 0.00427 0.00386 0.00281
16 1/256 0.00118 0.00125 0.00108 0.000789
32 1/1024 0.000251  0.000325  0.000279  0.000203
64 1/4096 0.0000603 0.0000818 0.0000704 0.0000513
128 1/16384 0.0000142 0.0000199 0.0000175 0.0000130
N [ P

8 4.875 3.409 3.557 3.560

16 4.715 3.846 3.884 3.884

32 4.161 3.981 3.964 3.959

64 4.231 4.116 4.025 3.943

Table 4.4: L,.-norm Comparison of LB,- and Finite Difference-Computed Solutions
with Initial Condition Parameters, A = 0.45 and B = 1/2.

|1,

N  1/N*|t= 1/32 1/16 3/32 1/8

8 1/64 0.0438  0.0173 0.0123 0.00854
16 1/256 0.00545  0.00344  0.00272 _ 0.00199
30 1/1024 0.00124  0.000860  0.000685 _ 0.000502
" 6< 174096 0.000300  0.0002125 0.000172 _ 0.000127
128 1/16384 0.0000700 0.0000525 0.0000425 0.0000325 |
N 12, 1],

8 8.041 5.043 4.505 4.294
16 4.402 3.997 3.971 3.955
32 4.125 4.047 3.971 3.941
64 1,984 4,047 4.050 3.921
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4.2 LB,

This section presents numerical results regarding the order of convergence for lattice
Joltzmann method, LBy. We find that they confirm the theoretical results reported
in Section 3.1 for this lattice Boltzmann method. Specifically, we introduce a finite
difference method to generate reference solutions with which to compare the lattice
Boltzmann computations. Then we compare the solutions computed by the two

different methods and discuss the results.

4.2.1 Finite Difference Method

Consider the conservative finite difference method, Eq. 4.1, in which

1
Dlu) = M +w(l—w) 2

[u—y

With Az = Ay, one can show that the method is an O[(Az)?] + O[At] monotone
finite difference method for UF; € (0,1) with a stability criterion of At < (Az)?/(4v),

where {J["; approximates solutions to Eq. 3.6.

4.2.2 Numerical Results

We compute solutions to Eq. 3.6 for (z,y) € [0,1] x [0,1], ¢ > 0, periodic boundary
conditions, and initial condition, u(z,y;0) = u;(z,y) = Asin(2rz)sin(27y) + B, for
constants A and B such that u;(z,y) € (0,1). We vary A and B to generatc initial
conditions for the lattice Boltzmann method within or not wholly within the domair
of monotonicity, £ = [2/3,5/6]%, as givén in Lemma 3.2.

While the lattice Boltzmann computations are on the grid of size N, where N <

256, the finite difference computations are computed originally on a grid of 256 x 256
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points and rendered onto the coarser grids via pointwise projection. To avoid conflict
with the limit of stability in the finite difference compntations, the associated time
increment, Nppt, 1s half the stability limit. i.c., A,spl = (Az)%/(8v). For the cases
~in which 4 = 0.45, Appt is a quarter of the stability limit. Note that the finite
differcnce-computed solution retains its accuracy when projected onto the coarser
grids.

We computed solutions for two differenct initial conditions. Figure 4.3 exhibits
the solution at time ¢ = 0 and time ¢ = 1/32 for initial conditions satisfying the
conditions of monotonicity for LB,. Figure 4.4 exhibits the solution at time ¢t = 0
and time t = 1/32 for initial conditions not everywhere satisfying the conditions

of monotonicity for LB,, e.g., the monotonicity conditions are not satisfied at the

locations
(z,y) € {(1/4,1/4),(3/4,1/4),(1/4,3/4),(3/4,3/4)}.

At these points the initial occupation numbers are outside the domain of motonicity.

The graj)hs at t = 1/32 are the result of the 256 x 256 finite difference computations.

Quantitative Analysis

The first case regards Tables 4.5 and 4.6. Here, the initial condition satisfies the
conditions of monotonicity for LB;. We look at the ratio between the norm of the
difference between the finite difference- and lattice Boltzmann-computed solutions
for grid sizes a factor of two apart, expecting the ratio to be near four. The L;-
norm results support the theoretical second order convergence of LBg, though not as
strongly as in the corresponding (i.e., in the sense of both initial conditions satisfying

the conditions of monotonicity) LI3; case. The L..-norm results suggest that LI, is
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second-order convergent in that norm, and, again, not as strongly as in the LB, case.

The second case regards Tables 4.7 and 4.8. Here, the initial condition does
not everywhere satisfy the conditions of monotonicity for LB,. Again, we look at
the ratio bet\.zveen the norm of difference between the finite difference- and lattice '
Boltzmann-computed solutions for grid sizes a factor of two apart, but not necessarily
expecting the ratio to be near four. The L;-norm results show that the theoretical
Ly-norm second-order convergence of LB; indeed has trouble for initial conditions
not everywhere satisfying the monotonicity conditions. (Of particular interest in this
regard are the IV = 64 entries in TaBles 4.7 and 4.8.) It should be noted that N =128
entries do uphold the ratio of sixteen for errors on grid sizes a factor of four apart,

e.g., at t = 1/32 the ratio, “E‘(“‘)”e1 / ”E(”s) = 16.042 based on Table 4.7. The -

B
apparent discrepancy may be restricted to smaller grid sizes.
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(b)

Figure 4.3: Evolution of u(z,y;t) according to Eq. 3.6 with v = 1/2: (a) Initial
condition, u(z,y;0) = us(z,y) = Asin(2rz)sin(2ry) + B, where 4 = 1/12 and
B =3/4; (b) u(z,y;t) at t = 1/32,
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Figure 4.4: Evolution of u(z,y;t) according to Eq. 3.6 with » = 1/2: (a) Initial
condition, u(z,y;0) = uj(z,y) = Asin(2rz)sin(2ry) + B, where A = 045 and
B =1/2; (b) u(z,y;t) at t = 1/32.



4.2, LBy - | 207

Table 4.5: L;-norm Comparison of LB;- and Finite Difference-Computed Solutions
with Initial Condition Parameters, A = 1/12 and B = 3/4.

oot —

|2,
N YN |t= 1/32  1/16 3/32  1/8 |
8 1764 0.000692  0.00202  0.00144  0.000827 |
16 17256 0.000276  0.000443  0.000321  0.000198
32 1/1024 0.0000722  0.000106  0.0000782  0.0000491
64  1/4096 0.0000180  0.0000264  0.0000197 _ 0.0000123
128 1/16384 0.00000463 0.00000668 0.00000502 0.00000316
N [, /g,
8 2.504 4.572 4.480 4.186
16 3.827 4.166 4.106 4.021
32 4.009 4.028 3.971 3.995
64 3.893 3.948 3.924 3.893

Table 4.8: L-norm Comparison of LB,- and Finite Difference-Computed Solutions
with Initial Condition Parameters, A = 1/12 and B = 3/4.

E(N)H

N l/N2 t= 1/32 1/16 3/32 1/8

8 1/64 0.00287 0.00504 0.00389 0.00226
16 1/256 0.00104 0.00118 0.000830  0.000502
32 1/1024 0.000263  0.000284  0.000200 0.000123
64  1/4096 0.0000650 0.0000700 0.0000500 0.0000300
128 1/16384 0.0000175 0.0000175 0.0000125 0.0000100
N A W

8 2,762 4.271 4.684 4.503

16 3.952 4.141 4,151 4.100

32 4.037 4.069 3.999 4.079

__64 __ 3.711 3.997 3.995 3.000
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Table 4.7: L)-norm Comparison of LB,- and Finite Difference-Computed Solutions

CHAPTER 4. COMPUTATIONAL STUDIES

with Initial Condition Parameters, A = 0.45 and 3 = 1/2,

Z

N I/N¢jt= 1/32 1/16 3/32 1/8

8 1/64 0.0191 0.0131 0.0126 0.0137
16 1/256 0.00483 0.00337 0.00368 0.00259
32 1/1024 0.00116 0.000914  0.000738  0.0005694
64  1/4096 0.00617 0.00830 0.00920 0.00969
128 1/16384 0.0000657 0.0000471 0.0000359 0.0000295
: ERNICN

8 3.949 3.884 3.426 5.296

16 4.158 3.684 4.985 4.366
32 0.188 0.110 0.0803 0.0613
64 93.855 176.265 256.275 328.987

et asr—

Table 4.8: Ly,-norm Comparison of LB,- and Finite Difference-Computed Solutions

with Initial Condition Parameters, A = 0.45 and B = 1/2.

12,
| N 1/N*[t= 1/32 1/16 3/32 1/8
8 1/64 0.0561  0.0859 0.114 0.148
16 1/256 0.0141  0.0228  0.0320  0.0332
32 171024 0.00462  0.00598 0.00946  0.0131
64 1/4096 0.0130 0.0187  0.0262  0.0362
128 1/16384 0.000288 0.000338 0.000503 0.000777
|2, /2],
8 3.984 3.765 3.555 4.440
16 3.046 3.817 3.387 2.531
32 0.355 0.319 0.361 0.362
64 45217 55.397  52.076  46.605
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4.3 1-D Burgers’ Equation LB Method

This section présents qualitative and quantitative numerical results regarding the
order of convérgence for lattice Boltzmann method for the one-dimensional viscous
Burgers equation, the method as presented and discussed in Section 3.2, We find
that the numerical results substantiate the theoretical second-order convergence of the
method. Specifically, we give a finite difference method to generate reference solutions
with which to compare the lattice Boltzmann computations, Then we compare the

solutions computed by the two different methods and discuss the results.

4.3.1 Finite Difference Method

To generate accurate solutions to Eq., 3.34, with which to compare those computed

by the lattice Boltzmann method, we use the finite difference method of Appendix

C, ie.,

“n n At n n
Pt = pp - Az [(Pi+1)2 - (Pf~1)2] +

vAt
(Az)?

e — 2P+ Pf'h} (4.2)

(cf. Egs. C.3 and C4 in which U} = PP). One can show (see Appendix C) that this
is an O[(Az)?] + O[At] conservative monotone finite difference method for solutions
p(z;t) of the one-dimensional viscous Burgers equation, p, + pp, = Vpgs, the solutions
of which can be transformed to Eq. 3.34 with the substitution p = ¢(1 — 2u), where
constant ¢ > Hp(?:,O)wa The stability criterion is that At < (Ax)?/(2v). The
difference method, Eq. 4.2, can be compared to the lattice Boltzmann method through

the transforrnation, PP = ¢(1 — 2U"), where [/ approximates solutions to Eq. 3.34.
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4.3.2 Numerical Results

We compute solutions to Eq. 334 for o € [0,1], ¢ > 0, periodic boundary conditions,
and initial condition, u(a;0) = w (a0) = (cos(2ra) + 1)/2. Figure 4.5 exhibits the

initial condition and its evolution to time ¢ = 1/4 for v = 274,

Qualitative Analysis

Pigure 1.6 exhibits a comparison of the finite difference- and lattice Boltzmann-
computed solutions, \"'(;ﬁ; t) and ('(xit), respectively, at £ = 1/4 for v = 2%,
'l‘h‘c finite difference-computed solution is on a grid of size N = 32768; the lat-
tice Boltzmann-computed solutions are on grids of size N € {256, 192,160,128}, The
figurce illustrates qualitative differences from the discrete Chapman-Enskog predicted
behavior of the lattice Boltzmann method, Recall from Section 3.2 that the advection
bias, € = cAxz/(2v). For the grid sizes N € {256, 192,160,128}, c € {1/2,2/3,4/5,1},
respectively (for ¢ = 1, v = 278, and Az = 1/N). For decreasing grid sizes N, the
assumption that the advection bias is O[Az] weakens, and the hydrodynamical equa-

tions revealed in the discrete Chapman-Enskog procedure grow less accurate,

Quantitative Analysis

Table 4.9 regards the L,- and L,-norm differences between the finite difference and
lattice Boltzmann calculations at time ¢t = 1/4 for v = 278, The finite difference
calculations are on a grid of size N = 32768, Varying in the table is the grid size
7 (N) ” P(2N)

k ”f,/ L ”ﬂ,’

the Ly-norm results in the table strongly support the theoretical O[6%] convergence

for the lattice Boltzrnann method. Concentrating on the ratio

of the lattice Boltzmann method and its convergence in the Lj-norm, The Lo,-norm
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Table 4.9: (f'.ompm‘isor{ of Lattice Boltzmann- and IMinlte Difference-Computed
Solutions to Eq. 3.34 at ¢ = 1/4 with v = 2% and Initial Condition u;(z) =
(cos(2me) + 1)/2.

' ' S = Sm—

v el Lol e e, 1y fee],, |
256 || 1.042x10~2 4,436 "1‘741><10*’3 4.455
512 || 2.349x10-° 4,099 3.908x10~¢ 4.096
1024 || 5.731x10-* 4.026 9.540x10~4 4,025
2048 || 1.428x10~" 4,010 2.370x10-4 3.950
4096 || 3.549x10~8 4.014 6.000x10-5 4,000
5192 || 8.842x10-9 4,046 1.500%10-8 3.750
16384 || 2.185x10-° 4,114 4,000x10~° 4,000
32768 || 5.311x10~7 NA 1.000x10~¢ NA

results suggest O8] convergence in that norm. As a reference, ‘l'able 4,10 compares
coarser finite difference-computed solutions with the fine finite difference solution
computed on a grid sized N = 32768, For coarser grid sizes away from N = 32768
(by three orders of magnitude or more), the trend of ”E(N)”h/

g W

E'(‘""N"H[ ~ 4 and
1

13(2/""\( ~ 4 is apparent.’
00

®Here, E(N) is the difference between coarser and the finest finite difference computations, where
the finest computation is rendered pointwise to the coarser grids.
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Figure 4.5: Evolution of u(z;t) according to Iq. 3.34 with v = 27% (a) Initial
condition u(z;0) = us(x) = (cos(2rz) + 1)/2; (b) w(a;t) at t = 1/4,

\V Ne128

Figure 4.6: Comparison of lattice Boltzmanu-computed and finite difference-
computed solutions to Bq. 3.34 at ¢ = 1/4 with v = 27 and varying grid sizes: The
finest grid, i.e., N = 32768, is the finite difference-computed solution, V(a,t); cal-
culations for grid sizes N € {256,192, 160,128} are the lattice Boltzmann-computed
solutions, UJ(a,t).
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Table 4.10:
Solutions to Eq. 3.34 at ¢

Comparison of Coarse and Fine Grid Finite Difference-Computed
1/4 with v = 278 and Initial Condition u(x)

(cos(2ma) + 1)/2. Fine solution is computed on a 32768 point grid.

w I, J1e], e, 1L, 1Ly 1],
256 || 8.990x10~* 4.041 6.525x10~° 4.012
512 || 2.223x 104 4.009 1.626x10-3 4.033
1024 || 5.551x10-3 4.018 4,032x10-4 3.992
2048 || 1.381x10-5 4.061 1.010x10-4 4.040
4096 || 3.402x10-8 4.207 2.500x10-8 4.167
8192 || 8.087x10~7 4.899 6.000x10-® 1.000
16384 || 1.651x10-7 | 00 6.000x10-® 00
32768 || 0.000x10~° NA 0.000x10-° NA
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4.4 2-D Advection-Diffusion LB Method

This section gives some numerical results regarding the order of convergence for lattice
Boltzmann method for the two-dimensional advection-diffusion equation, Eq. 3.51.
We find that the results suggest O[6*] convergence for the method in both the Ly-
and L.-norms for occupations numbers, 1, € [0,1]; the theoretical basis for these
conclusions remains to be investigated. however. Specifically, we give a finite dif-
ference method to generate reference solutions with which to (:ornpa.nf the lattice
Boltzmann-computed solutions. Then we compare the solutions computed by the

two different methods and discuss the results.

4.4.1 Finite Difference Method

Consider the conservative finite difference method,

" LA, |
Pt = Py - Az [( i)t = (P"-l.j)?] (4.3)
vAL n g pn n VAt n P N
* (Az)? [ g T 2P+ Pt—w'] + (Ay)? [Pi.j+1 - 2P + )s.;'—l] ‘

With Az = Ay, one can shew that this is an O[(Ax)?] + O[At] monotone finite
difference method for solutions p(x,y;t) of Eq. 3.51, which can be transformed to
Eq. 3.58 by the linear transformation, p = ¢(1 - 2u), with constant ¢ 2> |[p(z, y; 0)][,_ .
The stability criterion is that At < (Az)?/(4v). The difference method, Eq. 4.3, can

be compared to the lattice Boltzmann method through the transformation,

Pr o= e(1 =201 ), (4.4)
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4.4.2 Numerical Results

In the absence of a convergence theory for the lattice Boltzmann method, we provide
some computational evidence of it being an O[6?] convergent method for cccupations
nurbers ng € (0,1] and O[§] advection bias. To this end, we compute solutions to
Eq. 3.58 on = [0,1] x [0,1] with ¢ = 1, periodic boundary conditions, and two

different initial conditions, u(z,y;0) = u;(z,y) € [0,1], where

ur(z,y) = (cos(2mz)+1)/2 (a)
ur(z,y) = (sin(2mz)sin(27y) + 1)/2. (b)

We compute solutions with initial condition, Eq. 4.5(a), for various diffusion coeffi-
cients, v, while with initial condition, Eq. 4.5(b), for only v = 2%, Figure 4.7 exhibits
the initial coﬁditicn, Eq. 4.5(a), along with with its evolution at time ¢t = 1/8 for
v = 27° Similarly, Figure 4.8 exhibits the initial condition, Eq. 4.5(b), along with
with its evolution at time t = 1/8 for v = 275, In both figures the evolution of U is
computed on a 512 x 512 grid by the finite difference method, Eq. 4.3, through linear
transformation, Eq. 4.4 with ¢ = 1. To avoid conflict with the limit of stability in
the finite difference computations, the associated time increment, Appt, is half that

limit, i.e., Appt = (A:E)z/(sl/)

Quantitative Analysis

Case ur(z,y) = (coé(?m:) +1)/2: Tables 4.11, 4.12, and 4.13 list quantitative results

at t = 1/8 for v = 275, 274 and 273, respectively. In general, for each case the

EWN)

}e /”E(zN)He is close to four (and approaches four from below for
1

ratio
1

larger N), suggesting an O[6*] convergeﬁce in the L;-norm. Although the mag-

nitude of the error in the L.,-norm is greater than in L,-norm, the same trend
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holds for the ratio I]E(N)”ﬁm / ||E(2N’H£w. Hence, O[6*] convergence in the L.-
norm seems indicated also. Exceptional entries in the tables involving N = 512
can be explained by noting that the finite difference calculation is O[(1/512)?
accurate, and therefore can no longer be considered, for comparison purposes,
an exact solution. This does not rule out, however, possible superconvergence
as the advection bias, ¢, diminishes to € < v. (It could also be that some special
cancelling of errors occurs for v = 274.) While further results would be needed
to resolve this matter, it does appear that this lattice Boltzmann method is at

least O[8?] convergent.

Considering the results in the tables as a function cf v, one sees that the
magnitude of the error (in both of the norms) decreases for each N as v increases.
This trend agrees with the predicted theory since the O[8] assumption regarding

advection bias in the lattice Boltzmann method is stronger with larger v.

Case ur(zr,y) = (sin(27z)sin(2ry) + 1)/2: Table 4.14 comprises quantitative results
for v = 2% at t = 1/8. The results show a strong case for O[§%] convergence in

the Ly-norm, while not as strongly for O[§2] convergence in the Ly-norm.

In conclusion, based on the quantitative results in Tables 4.11-4.14, it seems likely
that at least a theoretical statement regarding O[6%] convergence in the L;-norm for
the lattice Boltzmann method for the two-dimensional advection-diffusion equation,
Eq. 3.58, with periodic boundary conditions can be obtained; perhaps one in the
L.-norm also. Unfortunately, the results can not offer any prediction of the extent

of the domain of monotonicity of the lattice Boltzmann method.
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Figure 4.7: Evolution of u(z,y;t) according to Eq. 3.51 with v = 27%: (a) Initial
condition, u(z,y; 0) = us(z,y) = (cos(27z) + 1)/2; (b) u(z,y;t) at t = 1/8.

(b)
Figure 4.8: Evolution of v(z,y;t) according to Eq. 3.51 with v = 27%: (a) Initial
condition, u(z,y; 0) = us(z,y) = (sin(2rz)sin(27y) + 1)/2; (b) u(z,y;t) at t = 1/8.
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Table 4.11: Comparison Lattice Boltzmann- and I"inite Difference-Computed Solu-
tions to Eq. 3.58 at t = 1/8 for v = 1/32 and Initial Condition (cos(27rz) -+ 1)/2.

vy ] 1E, Tl 0ee], e, 1] ), )
32 .1/1024 | 0.00986 3.446 0.0327 3.287
64  1/4096 || 0.00286 3.698 0.00996 3.563
128 1/16384 || 0.000774 3.836 0.00280 3.813
256 1‘/65536 0.000202 3.973 0.000733 3.899
512 1/262144 | 0.0000508 NA 0.000188 NA

4.5 Conclusions

We have prescnted computational results substantiating the theoretical results in the

Ly-norm that LB;, LB,, and ths lattice method for the one-dimensional Burgers’

equation are (O[6%] convergent monotone finite difference methods in the respective

domains of convergence. Additional computational results support the conjecture that

the lattice method for the two-dimensional advection-diffusion equation, Eq. 3.51, is

O[6?] convergent in the L;-norm.



4.5, CONCLUSIONS

219

Table 4.12: Comparison of Lattice Boltzmann- and Finite Difference-Computed
Solutions to Eq. 3.58 at ¢ = 1/8 for v = 1/16 and Initial Condition (cos(27z) +1)/2.

AV 1 L R ol T O o P i R
32 1/1024 | 3.85x107? 4.014 9.88x10~3 3.896 |
64  1/4096 || 9.58x10-4 3.967 2.54x10~3 4.043
128 1/16384 || 2.42x10~1 4.000 6.27x10~4 4.071
256 1/65536 | 6.04x10-° 9.155 1.54)(10;4 10.27
512 1/262144 || 6.60x10 NA 1.50%x1075 NA
Table 4.13: Comparison of Lattice Boltzmann- and Finite Difference-Computed
Solutions to Eq. 3.58 at t = 1/8 for v = 1/8 and Initial Condition (cos(27z) + 1)/2.
IV 1 ol O i 0 ol O i i
32 | 1/1024 | 9.50x10~* 3.963 1.77x1073 3.582
64  1/4096 || 2.40%x104 3.789 4,93x10~1 3.652
128 1/16384 || 6.32x10~° 3.883 1.35x1074 3.857
256 1/65536 | 1.63x1075 4.163 3.50x10~5 3.889
512 1/262144 | 3.91x10™" NA 9.00x10~4 NA




220 CHAPTER |, COMPUTATIONAL STUDIES

Table 4.14: Comparison of Lattice Boltzmann- and Finite Difference-Computed So-
lutions to Eq. 3.58 at t = 1/8 for v = 1/32 and Initial Condition (sin(2rz)sin(27ry) +

1)/2.

e
vy ey, e, e, e, (1) 1B,
32 1/1024 | 6.68x10-3 4.181 2.38x1072 3.861
64 1/4096 || 1.60x10-3 4.034 6.17x10-3 3.900
128 1/16384 || 3.96x1074| 4.011 1.58x10~* 3.923
256 1/65536 || 9.87x10~° 4.009 4.03x104 3.838

Lil_.‘l 1/262144 2.46)(_1-0‘5 NA 1.05x10~* NA




Chapter 5

A Domain Decomposition for
Lattice Methods

One difficulty with lattice gas and lattice Boltzmann methods (and often with explicit
methods) is that refining the grid for a problem’s domain can exorbitantly increase
the amount of computation. The stability criterion often appears as a restriction
on the time step, At = O[A@Q]; a twofold increase in the number of grid points
corresponds to a fourfold increase in the number of time steps. Were one to refine the
grid of such a method, the amount of computation woul‘d, depending on the stability
criterion and the grid refinement, dramatically increase.

However, often a more accurate computaﬂional solution is not required everywhere
in the problem domain. It would be desirable to be able to concentrate computational
resources in regions of interest, e.g., near boundary layers and shocks. There are tech-
niques available for finite difference methods for accomplishing such redistribution of
resources. One technique is domain decomposition, where the problem domain is
subdivided into subregions according to some interest metric. Artificial boundary
conditions are imposed along the boundaries of the subdomains, which may overlap.
And for time-dependent problems these boundaries, as well as the number of subdo-

mains, may change. [deally, a numerical time diflerencing scheme is used to advance

221
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the solution over the entire domain. Then a measurement of the computed solution is
taken to determine subregions of activity. The soluticn is then recomputed on these
subregions using a different grid and possibly a different time differencing scheme.
Initial and boundary conditions on the subdomains are obtained by interpolating the
data from the computed solution on the global domain [60, 61, G8].

For implicit finite difference schemes. a computed solution may involve iterating
computations over the subdomains until some convergence criterion is satisfied, e.g.,
the Schwartz Alternating Method [67]. A typical finite difference scheme does not in
general involve iteration. Subregion solutions are simply computed in -the subregions
with the boundaries determined from: neighboring subregions. A reasonable domain

decomposition strategy is the following:

1. Advance coarse time step A.t on the coarse lattice.

o

Decompose problem domain into subregions.
3. Interpolate coarse boundaries to obtain boundary conditions for refined regions.

4. Advance refined subregions a number of time steps to correspond with one

coarse time step.
5. Update coarse lattice.

The purpose of this chapter is to investigate the possibility and plausibility of
sub-structuring schemes (domain decomposition) for lattice gas methods. We pro-
vide a proof of concept of using sub-structuring techniques to better utilize coizipu-
tational resources in these methods. \We forego attempting to generate subregions

from computed solutions and assume a static domain decomposition. Further, we
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do not update the coarse lattice solution based upon the fine lattice solution, Sub-
structuring is shown to have some viability with this simplification for the lattice gasg
method discussed in Section 3.2. It indicates the plausibility of using some form of
sub-structuring in lattice gas methods.

Section 5.1 proposes a sub-structuring method for lattice gas method of Section
3.2, Section 5.2 provides supporting computational evidence. Finally, general con-

clusions are drawn in Section 5.3.

5.1 A Sub-Structuring Method for a Lattice Gas
Method for the 1-D Viscous Burgers Equa-
tion

Consider the lattice gas method discussed in Section 3.2 for the one-dimensional
viscous Burgers equation. Ideally in a sub-structuring method for this lattice gas
method, the mean occupation numbers would be computed on a coarse lattice and
then a first order measurement of a gradient depending on them would be taken to
determine active subregions. Initial and boundary conditions on these subregions
would be obtained by interpolating the computed mean occupation numbers on the
coarse lattice. The mean occupation numbers would then be recomputed on these
subregions using a finer lattice. And the process would repeat at time ¢ + A.t.
(Quantities related to the differing lattices are subscripted or superscripted with a
“c” for coarse lattice and “f” for fine lattice.)

Desiring a proof of concept for using domain decomposition in lattice gas methods

methods, we consider a problem with a stationary shock so that a static domain
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decomposition may be used. In a typical finite difference caleulation (without domain
decomposition), computing solutions with a higher resolution requires a finer mesh,
The question to be answered by our study is whether it seems reasonable to expect

that a domain decomposition strategy is viable (at all) in a lattice gas setting.

Consider a coarse periodic lattice £. with lattice spacing Az on a domain ) =
(0,1]. Then At = (Acx)?/(2v). The advection bias is given by €. = Acz/(2v)
(assuming ¢ = 1 in Eq. 3.35). Suppose refinement is desired on 0y = By, Bg] for
B, < Bp. Let us associate a refined lattice £y on Q; with lattice spacing A x such
that Az = A.z/2. Then At = A /4 and ¢ = 2¢.. Note that ¢ = O[A x| still.

We have two sets of occupation numbers.

The coarse lattice maintains n{”(z;t) for k € {0,1}, where z € [0,1] is an inte-
gral multiple of A,z and ¢ is an integral multiple of A,t. The fine lattice maintains
n{(z;t) for k € {0,1}, where x € [By,Bg| is an integral multiple of Az and ¢
is an integral multiple of Ast. In our approach, the fine solution depends on the
coarse lattice for its boundaries; the coarse solution operates independently. Initially,
n\? and n{’ is determined from the initial condition of the problem. Then n{” at
future time steps is determined by the lattice gas method with ¢ = €., To deter-
mine nfcf)(BL/R;m!Ajt), we advance n}f) one At time step, from m At to (m, +
1)Act. Then we interpolate the ensemble averaged values of nff)(BL/n;chct) and
ni.c)(BL/R; (me+1)A.t) to obtain Dirichlet boundary conditions for ni.j)(BL/n; meAqt+
JAyt), where j € {0,1,2,3,4}. Then ni.f)(m;t) forz € (B, Br) and t = m At +j At
for j € {1,2,3,4} is determined by operating the lattice gas method with € = ¢, The
process repeats, Note that this algorithm operates on an ensemble of lattice gas in-

stances so that the interpolated boundaries are more accurately represented, The
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results of the computation are (1) a coarse solution, which s identical to the result

without the decomposition, and (2) a fine solution on Qy,

5.2 Computational Evidence

We apply the lattice gas method of Section 3.2 to compute approximate solutions to

Eq. 3.29 with periodic boundary conditions and initial condition

-:}~-1-, 0< e <l/4,
pi(z) = p(x;0) = i v
—5—}-1, 3/4<e <,
where 0 < z <1 and
v =29

Then the initial condition for the lattice gas method is given by

1, with probability p;(z;)/2,
nk(a:;; 0) =

0, with probability 1 — p;(x;)/2,

where x; = iz € 10,1] or @ = iAjz € [By, Br], depending on whether the coarse
or fine lattices are being initialized.
Let ny (j)(x;t) € B denote lattice gas instance j. Then the ensemble averages in

our computation are

L
N(\lt)«(nknbt “TZIk]).Lt

where P = 2048 is the number of lattice gas instances in the ensemble. (The (a;t)

are computed only at the discrete spatial and temporal locations.) Let,

N(zit) = No(x;t) + Ny(2;t).
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Our results also include interplay with some spatial averaging. Lot
. | M=
N(ait) = m Z (o + pAait),

Then our approximation to p is

p=N(eit))2 -1,

Regarding the figures, the horizontal axis is the spatial dimension @ € [0,1]; the
vertical axis is p € [=1,+1]). Figure 5.1 depicts the initial condition, The remaining
ligures (Figures 5.2-5.5) exhibit a conservative finite difference calculation! superim-
posed on coarse and fine solutions at ¢ = 0.125. The figures vary with the level of
spatial averaging. In each case, the fine solution more accurately capturing the steep
gradient near @ = 3/4. And as one expects, increased spatial averaging decreases
higher frequencies in the noise while also smearing the steep gradient near @ = 3/4.
The steep gradient is better resolved on the fine lattice over the region 1y without

having to compute a fine solution everywhere on Q.

5.3 Conclusions

Using ideas developed in [60] for solving Burgers’ equation by domain decomposition,
a domain decomposition method was developed for a lattice gas method for the one-
dimensional viscous Burgers equation. The computational evidence supports that
sub-structuring or decomposing lattice gas methods is a viable means for achieving
greater accuracy in specific regions without having to pay for an everywhere reduced

performance,

PAppendix (! describes the method used.
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Figure 5.1: Initial conditio.
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Figure 5.2: (a) Coarse lattice and (b) fine lattice solutions; t = 0,125, M = 1,
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U(x;t) | | U(xit)

e O

(a)

(b)

Figure 5.3: (a) Coarse lattice and (b) fine lattice solutions; ¢ = 0.125; M = 2.

Figure 5.4: (a) Coarse lattice and (b) fine lattice solutions: ¢t = 0.125; M = 4.,

1
U(x:t) U(x:t)
\
O S
0 X 1 0 X
(a) (h)
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Figure 5.5: (a) Coarse lattice and (b) fine lattice solutions; ¢t = 0.125; M = 8.



Chapter 6

Conclusions

This dissertation provides a theoretical basis for studying the numerical properties
regarding consistency, stability, and convergence of lattice Boltzmann methods and
the Lattice Boltzmann Approximation to lattice gas methods for computationally
solving some partial differential equations. The lattice methods studied are shown
to be second-order explicit, conservative, monotone finite difference methods. Con-
vergence proofs were provided for lattice methods for two nonlinear two-dimensional

diffusion models of the form,
uy = vV - (D(u)Vu),

in which D(u) is a nonlinear diffusion coefficient determined by the discrete Chapman-
Enskog expansion, and one nonlinear one-dimensional advection-diffusion model (the

one-dimensional viscous Burgers equation),

Pt PPz = Vpgg

The details of the convergence proofs revealed possible restrictions on the occupation
numbers for convergence of a lattice method. Computational evidence that compares

lattice Boltzmann- and finite difference-computed solutions substantiated the results.

231
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This could have significant repercussions for lattice methods in general. The computa-
£1011s, completed on Alliant 1"'X/8, CRAY-2, CRAY-X/MP, and Connection Machine
CM-2 computers, included a variety of initial conditions. Whilc convergence was
not proven for a lattice method for a nonlinear two-dimensional advection-diffusion

equation,
P+ ppz = V(pzz + Pyy),

computational evidence suggests second-order convergence.

A domain decomposition strategy for lattice gas methods was introduced. The
strategy uses a combination of coarse and fine lattices to resolve regions of interest,
e.g., near steep gradients, with fewer computational resources than a case in which
only a fine lattice is used. Toward developing a proof of concept, the ideas were
applied to the lattice gas method for the one-dimensional viscous Burgers equation.
For simplification the problem involved a stationary steep gradient. Computational
results verified that a finer resolution near a steep gradient can be obtained with the
combined coarse and fine lattices than with only the coarse ldttice. The results indi-
cate that the strategy shows some promise and merits further investigation. Although

the strategy was originally developed for lattice gas methods, it can apply to lattice

Boltzmann methods.

Generally, it is expected that the numerical theory will extend to other lattice
methods, e.g., the FHP [38] and FCHC [37] type models for the two- and three-
dimensional Navier-Stokes equations, respectively. The extension would also include
lattice Boltzmann methods lacking the Fermi Exclusion Principle. Convergence of
these and other lattice methods remains to be investigated in an effort to build the

numerical understanding of lattice methods and to bring them into a better position
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for competition with other algorithms.



Appendix A
LB, Analysis Detalils

This appendix lists some of the details regarding the discrete Chapman-Enskog anal-

ysis of the lattice Boltzmann method, LB;. The listing is order by order as in Section

2.3.5. We denote zero order parameter o/ = u, and also use

1 1 1
Pl = -3 nmu-w 7
4(2u —1
Dl(u) - ( /\2 ),
in which A = —4u(l — u). Also, regarding notation, at O[§*], we do use some of the

c}cj) and éfc’) coefficients as defined in Section 2.3.5; otherwise, the expressions would

be undescriptively long.

O[é]:.

{ (€k - V)n}co) } = quUz + Qouy .

0[6%):

. l 1
(& - v)znio) } = o3 (Ur + 1uyy) + as3 (Uzr — tyy),

d
Eznﬁ_o)

= qoUy ,
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(gk : v)anif)) } = qQiUzer + Q2Uyyy »

o 0
(ek . V)En}co) = iUzt + oyt ,

1 9% /1 0*
2 (s (1)
qo2(a + o, )+qL82( >+q2LdJ

9 , 9 /1 9 /1
a1 _ {1 i - (=
gt =W taly (A”’) taly (A““) ’

[ (& - V)n® }

Il

() bt =)

- qoév- [-}\-Vcr(l) - D'(u)a(”Vu}

¢ afoe 22 L) (=) 1 ( 200~ 2 (D) )]
- S D) (e ) (D)~ (Dl )|
(-2 -t
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= @) (o) — (L)) + e ) (A7 — (Lus)?)
"2
~ a0 ((u)? = (u,)?),
DX (n@) . n(Mp®
= —qiéD'(u) [(2/\0“))2D'(u)um — 40Py + oMol
#us (D0) ((ue) - () ~2 (32 (D) - 2(0tww)) )

O6Y):

Since o(!)(z, y;t) = 0 satisfies the O[6°] consistency condition (Eq. 2.31), we have

made this assumption in the derivation of the O[] terms.

1 1
(€k - v)4"§c0) ] = QD§ (Uzzze + tyyyy) + Cb;j (Uzzzs — Uyyyy)

. 0 1 1
(€ - V)z-—nio) = oy (Uzzt + Uyye) + D3 (Uzat — Uyye)

92
'52‘2‘“(0) = qoUy ,

. 10 3 0 9 @ 0 (@
{(ek-V)nf)J=%§(a—x—Cg)+d ())+q03)+q203)+q3 (5— ~-53;(:2 ,



238 APPENDIX A, LBy ANALYSIS DETAILS

1 8 82 2) 1 82 02 (2)
= qo~[iﬁ’+a,‘,§’+<ar 5};3) ( }+q [(fz) £§)+(()m2+5‘1}3 c3 |

L_ 0 /1 L{0 d Jd (1
w3V g (374) + 53 (am’ 57) G
DC(nl?)Y. n(l)ntl)n(l)n(l) =0,
D (n(?) . nDn®
2

DSC(n(O)) nWnMp@)

|5 (w0 - )

~ L% ((uz)? + (uy)?) (%, - -d%) - D(u)Vu — 200'? ((u,)? — (uy)ﬂ :
D*C(n®) . nMn®

ot —

((uz)ﬁ - (uy)2) - <66—m, - -6%) : D(u)Vu] ,

qQ3—3

= qLD'(w)Ae®uy + quLD'(u)Ae®
L

- anD'(u)/\ ((‘S Vug — cga)uy)

Ol[8%):
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= )\ Uyt + Qolyee

= (1 Upppt + QaUyyyt »

uy>,
93 03

= (1u>+ L 0 (l )
= Wl \3v) T elgag (Fw)

9% /1
> B (X“y) ’
) a3
(& V)nf? } = Ny

ot 11 ot 11
] = ol (5u0) +ands (5

d
5. V)2 (1)
(& V) ot

0'2
(1 _ q

T30 = Qilo 1 + qzL
otz 'k 92 \ 3"

3 (0(2)+cd )+q2 o

Oy° (U(Q) + i )

(o(2 +cg3)) + qq A (0(2) _ ,(2)),

ot amat dyot “
1 d? 0* 1
o 3) | _ 4.2 3) 3N oy (D) N )
(€ V)zni = o3 (Uim + aéy’) 1 52C1 T q?aygc2 + Qg (@ ( 9~
0 2 = qoo® 1 2d® 4 gy o
5 = Qo0 +Q10t +C125?(—2 s
[ nf) }
Lo (Yoot _ pire®
= Qo5 V- (—XVU — D'(u)o Vu)
0 d :
iy pIC)) () _ (1)
- qxaz( + )+q20 (o~ ")
L0 d .
Lo 9 @ _ 1y (010
+ q32 <f)m f)y) [/\VU - D'(u)o Vlt] .

o)
Tyy
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Appendix B
LB, Analysis Detalils

This appendix lists some of the details regarding the discrete Chapman-Enskog anal-
ysis of the lattice Boltzmann method, LB;. The listing is order by order as in Section

3.1.5. We denote zero order parameter o(® = u, and also use

1 1
D(u) = -—*X—'i

4u
D) = 3

in which A = =2(1 = u)(1 4+ u). Also, regarding notation, at and beyond O[§*)], some
of the ¢’ and &’ coefficients as defined in Section 3.1.5 are used; otherwise, the
expressions are undescriptively long. |

One further note is that since the LB; n(® and n{") terms are symbolically identical

to the LB; n(® and n(V terms, only those advection expansion-related cuantities

involving higher orders in n are listed. For those quantities not listed here, refer to

Appendix A, with A, D(u), and D’(u) defined as above, and cgf) defined in the discrete

Chapman-Enskog procedure applied to n of LB, (Section 3.1.5).
O[6%:

DC(n@) . nMWp®
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2L2 2 kel 1 n I
= o, 2LAeM D'(w)uy + qp2L A D' (u)uy - qg———-i—-\%—-—-)- ((uw)“ - (u!,)‘) .

O6%);

[ (& V)i }

= qogv ' [%\-Va“) - D'(u)a(”Vu]

0 1 0 0 -1 '
@ Y (- (2L _Y BT
+ q [am + L (2/\3 (81 dJ) (u)Vu+ /\ T ((ua)® = (uy) ))}
2 0 ! 0 0 2u -1 ,
(2) i v _ o v )
+ 2 [Uy + L Oy ( )\ (dm OJ) D(u)Vu - /\M" ((Ha,) (uy) ))}

+ d0 0 (
qg 0z’ Oy

D3C(n 0)) MMM

S ()~ (D7) + s oy (A0t = (L)

122 :
- 9q3 )2 U(l) ((uﬂ?)z - (uy)z) )

D (n?) . nMn(@

>

Vol — D'(u)a“)Vu) ,

= q;=D'(u) |2) (U(Q)u, + a(”o-g”) (/\a("")) D'(u)u,

4
0 9] 2L%(2u — 1) N
2 S g - — . — —— 2 — ] 2
+ Léug ( - 8y> D(u)Vu ;) Uy ((ur) (uy) )

— |2\ (cr('”uy + a(l)crl(/”) -2 (/\0(2))2 D'(u)uy

ore . )
— L*u, (—a%, - —(—9—) + D(u)Vu + éi(ij\t———l—)-uy ((ul.)2 - (uy)2>

— 1)+ D'(u))) ((uwﬁ — (uy)?)

O[61]:
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Recalling that o{V(z,yit) = const. satisfies the O[6°] consistency condition, i.e.,

Eq. 3.8, the expressions below assume (! (x,y;t) =0,

T 2w 1 ) 9 @, 9
= g o ol ¢ d? el g o ol 4 g 4 ).
9 )
—n® = (2) (2)
(?tn q()a +Cl38t )
[ (& V)nlY }
L(9 10 w O
= Clo-,)- ([‘)m (3) + .__ @) ) 10-(3) +Cht7 (3) +q3§ (_5; (l.j) _ ch(zd)>,
DC(n®). n(”n(”m”n(l):o,
DC(n®)  n(Mntn®
2L% [2L%(2u - 1) ) .
= (a 13 [ " ((u,,) —(uy))
LQ/\ (’-) 0 )
—r ()" + (w)?) (5; - 5;)  D(w)Vu = 240 ((uy)? - (uyy)] 1

D"’C(n((’)) .nIn@

AL 2u 1) ) [2(2u — 1) . 2 d d
= Qo0 —-—7\-2——-—((113) ~ (1)) - i) RCIOMTE

D*C(n@) . nM @

= CllLD'(U)/\U("’)uI + q'zLD'(u)Ap(a)uy
2L(2u — |
% *L____)( D, ).

: e Uy — ¢y
/

O[6°%):

3 3
- 3. (2) CA T I C) D m o
(7 V)'n } g (7 + ) + g (o 4 ol)
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‘ (¢ (" 2
o )l | = o) () _ 2
(T N q'()u)t( oy ) * oy (ﬂ s )'

- y X 1 H N ) ‘) l .
(‘31\' ! v)zu(hd) } = qU§ ( i.:) + U!(/‘;)) + qlr"—((l +C 18 Rrrwern ( ) + ¢ 185 <U£Si‘) - CT,(;:;/)) )

ot ) 7t
o d a
o ?“) = QOC’t ) 4 Q1"0‘t'((ld) + q‘!dt(("])"

[m V)“]

= c1(,£\7 <—}Va(3)—— D'(zt)a‘“’\"’u)

+ q,.% (o + %) + a1 - )

(2.., - _8__) v [EVU(S) - D'(u)a(s)Vu] .
T v A



Appendix C

Convergence of a Nonlinear
Finite 1fference Scheme

This appendix presents a proof of convergence of an explicit conservative monotone
finite difference method for a nonlinear advection-diffusion equation, namely, the
one-dimensional viscous Burgers equation. This converge:ice proof serves as a model
for con‘vergence proofs of lattice gas methods. First, we give the method, then we
prove convergence via proving consistency, establishing a maximum principle of the
difference scheme, and proving stability. Stability is obtained directly from the (non-
linear) operator; it is not first linearized. See, for exanple, [69, Ch, V] for further

information regarding convergence of monotone finite difference methads,

C.1 Nonlinear Problem

Let u(w,t) satisfy the one-dimensional viscous Burgers’ equation,

1)

7} d ( . . -
EZLL(J..,&) + lt(.L,t)'{;);IL(.l»,[) = l,/~5~up-rt(.z:, t)  for (w,t) € [0, L] x (0,7 (C.1)
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with periodic boundary conditions and smooth initial condition-u(z,0) = u*(z) for

some positive constants L and 7. Then Eq. C.1 in conservative form is

g(u(z,t)) = “'d%u + %F =0, (C.2)
with
1, )
F=—-u - v—u.
2 dz

C.2 Explicit Finite Difference Method

Let the conservative finite difference method be

(a1 AR iaA

G = >+ ”""'gx i-1/2 =0, (C.3)
it o WUR PO U, - U7
Sivr = 4 Az

where U} is understood as an approximation to Au(jAz,nAt), and averaging oper-

ator A is defined by

) z+Az/2
Au(m,t)E/ re) u(z,t)dz.
z-Azx/2

C.3 Maximum Principle

We need two maximum principles for stability, one for g(u) and one for G(U). These

may be stated as:

LEMMA C.1 (CONTINUUM MAXIMUM PRINCIPLE). Gliven

u:=1[0,L] x(0,7] = R

f

satisfying Eq. C.2 with v > 0, periodic boundary conditions and smooth, bounded
initial condition u(z;0) = u;(z). Then the mazimun and minimum values of p(x;t)

occur at the initial boundary.
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Proof. See Lemma 3.12 and its proof, which is based on general theoretical re-
sults for maximum and minimum principles for nonlinear parabolic partial differential
equations. O

LEMMA C.2 (D'SCRETE MAXIMUM PRINCIPLE). Letn be given, and let U} be
determined V j from the difference method, Eq. C.3. Suppose At < (Az)?/(2v) and
1001, < 2w/do. Then [lU%], < |U°)...

Proof . First, write the difference equation as

urtt = U}‘—% (Uf41)" = ( ;‘—-1)2] +(—%[ ?+1-2U}1+U}1“](C'4)
= H( 0 U UL,
Note that
d
—a-UJFH(U}‘H,U;‘,U}‘_l) =0
S MU U U) = 52 (¥ V) 20

if the monotonicity condition, ||U"|| . < 2v/Axz, holds. Then let M, = ||U™|_, and
assume 2vAt/(Az)? <1 (the stability criterion) to get

2uAtL

n+1 n n f
2vAt
n+1 n n
Ut > U _(_;)_E(M,.+Uj)>_Mna

ies JU oo € My = [|U|,.

Now, to get ||U’;+‘||oo < ||U®)|, we use induction on n. The base step follows
from the preceding argument with n = 1, assuming the the monotonicity condition is
initially satisfied, i.e., [|U°||,, < 2v/Ag. For the induction step assume that ||U"]|,, <
1U°]l Then also from the preceding argument, it follows that ||[U™*1]| , < ™.

Thus, ||U™ |, < |V, O
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C.4 Consistency

Sufficient to prove consistency is to show R llisrtn |G(Au) — Ag(u)||,, = 0 for all 2
‘ z,At—00

and ¢t. Let V = Au. Then
A/

Glaw) = gt s (V) = )] = gy [V = 205+ 2]
_ 0 o (V¥(z,t) o )
= EZV(m,t)+-5;( > )—-VBFV(x,t)+(9[At]+O[(Am) )

And noting that!

i o 1 z+Az/[2 b5
-a—zV(:z;,t) = %2 [-&; /;_M/z u(m,t)dm} e Ag;u(:c,t),
it follows that
_ i} 9 u¥(z,t) o*
Ag(u) = A (5‘2“(1?,”) + A (5;7) —VvA (Wu(w,t))
_ 0 u(z + Az/2,t) — u¥(z — Az/2,1) d*
= 7Vt + SR — vV (2,1).
Thus,

8 (V¥z,t) ul(z + Az/2,t) — u(z — Az /2,t)
h 20z

Now,

i

Vi, 1)V (2,1

_ [u(m + Az/2,t) + u(z - Az /2,1)
2
[u(m + Az/2,t) —u(z — Az/2,t)
Az
ul(z + Az/2,t) —ut(z — Az/2,t)

= T + 0[(A2)?),

+ o[mm]

+ 0[(Aw)2]}

!By the Fundamental Theorem of Calculus.
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Hence,

G(Au) — Ag(u) = O[At] + O[(Az)?]

goes to zero in a norm sense as At, Az — 0.

C.5 Stability

The consistency analysis followed directly the sort of analysis one would do for a
linear problem. However, the stability analysis departs slightly from the traditional
stability analysis. Instead of one linear operator for all time steps, there is a linear
operator for each time step n. The linear operator depends on both the nth computed
and discretized solutions.

Let V" = (Au)} = Aul,y_(jaznar Then let Wi = UP — VI with

o A A

W = LU V(W™ + T(VY),

Then write

where linear operator L[U", V"] (yet to be determined) depends on U™, V™ At, and
Az, and T(V") = O[(At)?] + O[At(Az)?] (by the consistency arguments). Then to
prove stability (assuming maximum principles of both the finite difference scheme
and the differential equation) is to show that ||L{U™, V"]|| £ 1 for each n. Generally,

this is shown through induction on n, where U° = V° is assumed, i.e., initial absence

of error,

Noting that (Ufy, + Vi) (Ul — Vidi) = (Uk1)? = (Vi31)?, we have

J J

Wt = Wwr - At [(

= i (V) = (V) = (U0 + (V)]
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vAL
+ (Az)? [ T = 2W1 4+ W 1] + O[ At)?) + O[At(Az)?
VAt At n n n ZVAt n
- [ e s ) o |1 ]
vAt At . . |
* [(Am)2 * 1Az (URes + Vm)] o + Ol + O[At(Az)?).
Hence, ‘
W = LT, V(UT - V) + T(V?),?
‘here
where AP ) e
aq e, el T ‘ 0
0o . ;
LM V=1 ¢ . a; d; b N
: 0
0 by-1
bJ 0 0 ay dJ
in which
vAtL At - .
% = by 1Az 1as (Ul + V),
2vAt
di = 1- W’ and
vAt At m
by = _—_(Am)2+4A (( n o+ M)
and :

T,(V") = O[(At)"] + O[At(Az)*] = O[(Az)]

The upper right and lower left corner values of L{U™, V"] come from the periodic

boundary conditions.

Recall the 1-matrix norm, ||-||;, on some matrix S: ||S||, = sup } _ [Si;|. Then
7

L™ Vil =

%] = L/Az is assumed (without loss of generality) to be integral.
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e J

Now, the absolute value signs may be dropped if the following hold:

vAt At oo n
(Az)?  4Ac <Uj Y )

2vAt
(Az)?

vAt At o "
b7 T 1hs (U7 +v)

<+

-

PITIAN

ey S L and
4y
n n <
10"+ Vol S 2

The first requirement is the usual stability criterion and is only a function of the
diffusion coefficient and grid spacings. The second requirement is a monotouicity
condition. It is satisfied for sufficiently small Az. If initially satisfied, then it is
always satisfied since U and V are initially the same (U° = V°) and by the finite
difference and continuum maximum principles. So, Az must be chosen to satisfy the
stability criterion and the monotonicity condition “Vo“w < 2v/Az. Then if these

conditions are satisfied, the absolute value signs may be dropped. Some terms cancel,

leaving
Lo, vill, = 1,
and we have stability.

A statement regarding convergence can now be stated. We show that the finite

difference method is O[At] + O[(Az)?] accurate for unit time. Specifically, we show
that forn 50 < nAt <T,

], = oliasr

which we do by induction on n. First, consider the base step. We assume WP =

Up-VP=0vje{0,1,...,J},J = L/Az € J. Then we have

[w], = e vy + T(vo), = c(az),
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for some constant C'. Now, consider the induction hypothesis that
W™, = (r— )C(AZ)
We have
W, = L vrEw) + v,
< LU VI Wl + 1V,

< (n-1)C(Az)! + C(Az)*
nC(Az)*.

Il

Now, for n such that 0 < nAt < T, we have

cr

W, s rotaer <

(Az)* = 20CT(Ax)?

Hence, the method is O[(Az)?] convergent, and the finite difference scheme, Eq. C.3,

provides a convergent approximation to the solution to Eq. C.1.
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maximurm/minimum principle for,
176

cellular automata, iii, 2

cellular fluids, 2

Chapman-Enskog consistency con-
dition, see consistency condition

Chapman-Enskog-Taylor asymptotic
equilibrium expansion, 61
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collision operator, xiv, 28, 83
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ordering of, 32
Taylor expansion, 45, 58, 61
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collision operator expansion, 58, 67
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)
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theorem on, 89
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general theorem, 115

proof of for a nonlinear differ-

ence method, 245-252
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detail " balance, 24
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deterministic lattice gas method, 29,
see lattice gas method

differentials, 10

direct method, 158

discrete Chapman-Enskog analysis,
44ff

discrete Chapman-Enskog expansion,
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and consistency, 88
equilibrium expansion, 47

discrete Chapman-Enskog procedure,
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eigenmatrix, 52

€k, see velocity vectors
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FFermi Exclusion Principle, 14, 34,
35, 49, 232
example of lattice Boltzmann
method without the, 34
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H, 85, 96

hydrodynamical equation, 44, 71,
83

hydrodynamical error, 88, 117

hydrodynamical mode, 87

hydrodynamical modes, 83

Jacobian matrix, 8, 11
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L, see linearized collision operator
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L[n,h], 87
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Lattice Boltzmann Approximation,
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lattice Boltzmann collision operator,
32, see also collision operator

Lattice Boltzmann Equation, 32, 33,
35, 46, 48, 85-87, 89, 95, 97,
138

lattice Boltzmann method, iv, 33
without Fermi Exclusion Prin-
ciple, 34

example of, 34

lattice gas automata, 2

lattice gas method, 28

lattice gas methods, 14ff

lattice isometry invariance, 21

lattice node, 15

LB method, see lattice Boltzmann
method

LB method for 2-D advection-diffusion,

195
advection bias, 181
collision operator, 181
collision rules, 1851183
componentwise produact, 188
computational results, 214-220
consistency condition
067, 190
067, 192
covariance, 185
discrete Chapman-fnskog expan-
sion, 188--192
equilibria, 186
hydrodynamical equation, 192
lattice, 181
Lattice Boltzmann Approxima-
tion, 185
velocity vectors, 181, 189
LB method for Burgers' equation,
195
advection bias, 155
advection operator, 158
collision operator, 155
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collision rules, 155, 156
componentwise product, 160
computational results, 209--213
consistency, 170
consistency condition

0|6, 163

016, 165

O[], 167

0|6, 169
continuum maximum/minimum
principle, 176
convergence, 168, 170, 178, 180
covariance, 157, 18()
discrete Chapman-linskog expan-
sion, 160-170, 172, 17
discrete maximum/minimum
principle, 175
domain decomposition, 223
domain of monotonicity, 174

extreme values of, 175
equilibria, 158
H, 174
Lattice Boltzmann Approxima-
tion, 157
Lattice Boltzmann Lquation, 158,
174
stability, 178
truncated equilibrium expansion,
170
truncation error, 171

LBy, 195

advection operator

derivatives in, 63
circulant £, 51
collision operator, 29, 30
collision operator expansion, 81
collision rules, 21-23, 31
componentwise product, 55, 69,
70 ‘

componentwise product (#), 55
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computational results, 197-202
consistency, 90
consistency condition

form of, 71

O[64, 15

o[, 17

o[, 18

O[6%, 81
continuum maximum/minimum
principle, 110, 111
convergence, 117
detailed balance, 24, 42
direction labels, 17

discrete Chapman-Enskog expan-

sion, 72-81, 94
discrete maximum/minimum
principle, 108
equilibria, 36, 42, 43
equilibrium solution, 47
ground state, 47
H, 99
hydrodynamical equation, 111
lattice, 17
Lattice Boltzmann Approxima-
tion, 33
lattice Boltzmann collision op-
erator, 33
Lattice Boltzmann Equation, 99
linearized collision operator, 50
eigenpairs of, 52
nullspace, 53
pseudo-inverse, 54
rotation invariance, 31, 101
simplifying gradient expressions,
69, 70
stability, 114
truncated equilibrium expansion,
72, 90, 91, 93
truncation error, 93
velocity vectors, 17

INDIEX

LBy, 195

analvsis, 122--154
collision opérator, 125
collision rules, 122-124
componentwise product, 128
computational results, 203-208
consistency, 137, 153
consistency condition, 154
0[é%], 131
0[6%, 133
0l[61], 135
O|6°%], 137
continuum maximum/minimum
principle, 150, 152, 154
convergence, 137ff, 153
detailed balance, 125
discrete Chapman-Enskog expan-
sion, 127-137, 141
discrete maximum/minimum
principle, 150
domain of menotonicity, 141
equilibria, 125
equilibrium solution, 127
H, 142
hydrodynamical error, 153
lattice, 122
Lattice Boltzmann [Equation, 142
linearized collision operator, 127
stability, 152
truncated equilibrium expansion,
137, 153 ‘
truncation error, 140
velocity vectors, 122

LG method, see lattice gas method
linearized collision operator, 46, 49,

55, 83

and (semi-)detailed balance, 24
and quasi-detailed balance, 28
in matched expansion analysis,

46



INDEX

in terms of ils eigenpairs, 53

mass conservation, 24, 83, 113, 114
maximum principle

continum, 246

discrete, 247

maxir.num/minimum‘principle, 83, 95ft

continuum, 97, 110, 111
discrete, 95-97
general theorem, 97
for Burgers’ equation, 176
mean occupation number, 31
microdynamical equation, 18fF, 33
for mean occupation numbers,
31
microdynamical evolution equation,
see microdynamical equation
molecular chaos, 14, 125

norms, 11

O[], xiii, 12

occupation number, 16

occupation numbers, 44
vector of, 19
without Ferini Exclusion Prin-
ciple, 35

particle speed, 15

permutation matrix, 116

probabilistic lattice gas method, 29,
see lattice gas method

pseudo-inverse (L71), 53

quasi-detailed balance, 25

reflection invariance, 50
rotation invariance, 29

semi-detailed balance, 25, 47
in determining equilibrium solu-
tions, 24

set volume, 12

265

spatial-gradient expansion, 44
stability, 83, 87, 113{f
in determining convergence, 115
in Ly-norm, 113
state, 19, see also occupation num-
bers ‘
state transition function, 19, 20(f
stochastic lattice gas method, 29,
see lattice gas method
sub-structuring for lattice methods,

2211

Taylor expansion, 46
of advection operator, 45, see
also advection operator, 62, 66
of collision operator, 45, 58, see
also collision operator

Taylor series expansion
of vector function, 63

truncated equilibrium expansion, 82,
85, 87--89, 91, 97, 117
in consistency, 85

truncation error, 85

unit velocity vector, see velocity vec-
tors

vector exponentiation, 10
velocity vectors, 15, 19, 62, 65, 128
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