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Abstract

A numerical theory for the massively parallel lattice gas and lattice Boltzmann
methods for computing solutions to nonlinear advective-diffusive systems is intro-
duced. The convergence theory is based on consistency and stability arguments that
are supported by the discrete Chapman-Enskog expansion (for consistency) and con-
ditions of monotonicity (in establishing stability).

The theory is applied to four lattice methods: Two of the methods are for some
two-dimensional nonlinear diffusion equations. One of the methods is for the one-
dimensional lattice method of lB. Boghosian and C. D. Levermore, Complex Systems
1(1):1987, pp. 17-30] for the one-dimensional viscous Burgers equation. And one of
the methods is for a two-dimensional nonlinear advection-diffusion equation. Convel-

gence is formally proven in the Li-norm for the first three methods, revealing that
they are second-order, conservative, conditionally monotone finite difference methods.
Computational results which support the theory for lattice methods are presented.

In addition, a domain decomposition strategy using mesh refinement techniques
is presented for lattice gas and lattice Boltzmann methods. The strategy allows
concentration of computational resources on regions of high activity. Computational
evidence is reported for the strategy applied to the lattice gas method for the one-
dimensional viscous Burgers equation.
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Preface

Since around 1986, when lattice gas methods were first seen in terms of cellular

automata [72], there has been tremendous interest in the methods as they apply

to hydrodynamics. Much of the interest has resulted in numerous applications and

new methods. Asearly as 1987-8, the Lattice Boltzmann Approximation to lattice

gas methods was being applied as a finite difference technique. Throughout these

developments, little headway has been made regarding the numerical stature of the

methods. While the main purpose of the dissertation is to introduce a numerical

theory for lattice gas and lattice Boltzmann methods, a secondary purpose is to help

foster further numerical investigations of the methods. I hope that this dissertation

will serve well in this secondary capacity, eliciting a growing interest in lattice methods

toward a greater understanding of their numerical and computational relevance.

I would like to express my gratitude to those individuals and institutions that

helped make this work possible. I thank Professor Garry Rodrigue for patiently

guiding me through to completion of this work. I learned from him the basic tools

of research in numerical analysis and advanced scientific computing. He also taught

me how to prepare and review papers and to deliver presentations. I thank him most

for enthusiastically revealing to me the wonderful world of computational sciences.

To Professor C. David Levermore, I am indebted for all that he taught me regarding

the technical aspects of lattice methc_ds and the mathematics of partial difi'erential
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equations. I appreciate his steadfast patience in working with me. I thank Dr.

Gerry Hedstrom for helping me with solutions of partial differential equations. I also

thank Dr. Bruce Boghosian, who helped me with some questions about the discrete

Chapman-Enskog procedure. I appreciate the comments and criticism of Professor

Peter Linz. To Professor Michael Dollinger I owe many thanks, for he first taught me

about communicating mathematics. I thank Professors John Killeen, (larry Rodrigue,

Gene Fisher, Rao Vemuri, and Fred Wooten for serving on my Qualifying Committee.

I am grateful to Russell Brand, Dr. Gary Doolen, Dr. Farid Dowla, Dr. Mark Durst,

Carolyn Hunt, Dr. Philip Manwell, Abigail Staley, Chuck Moore, Matt Nolan, Dr.

Jeffrey Scroggs, Dr. Mark Seager, Clement Ulrich, and other friends and colleagues

for their input and support. I also thank the secretarial staff of the Department of

Applied Science. Finally, I appreciate the enduring support of each of my parents.

I am glad to have been a student in the last course sequence taught by Professor

John Killeen. in a project for one of those courses, which were in computational

physics, I first began to study seriously using the Lattice Boltzmann Approximation

as a finite difference technique, i.e., the lattice Boltzmann method. He had said that

the project might serve in some way as a foundation for the dissertation. Despite my

doubts that it would serve for me in such a capacity, that project helped focus my

efforts on lattice Boltzmann methods, which constitutes the major subject of the dis-

sertation. In the courses, I learned about the many techniques used in computational

physics, especially as they relate to solving partial differential equations of plasma

physics. It became clear that better methods are vital to incI"eased understanding in

this and related areas. I thank Professor Killeen for instilling this in me.
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Notation

- {0,1}
,.7 - set of integers
T¢ - set of real numbers

0 - the empty set

Ad - cross product of set A, d times'. A × A x... x A
d times

Off - boundary of domain f_

(a,b) -
E - set membership

9 - such that
:I - there exists

\ - set subtraction: A \ B =_{x _. A lx _. B}

v(A) - volume of set A
C"(A,B) - set of functions from A to B with n continuous derivatives
"_ - 1-b, for bE[0,1]
- - is defined to be

=_ - implies,

¢, - if and only if

[] - Q.E.D. (quod erat demonstrandum)

V_ - gradient with respect to _ E 7"¢v

diag(Ak) d-lk=o- matrix with diagonal elements Ak and zeros elsewhere

O[g(e)] - order of magnitude: f(e) =. O[g(e)] ifr :I a constant c such that
lira f(e)/g(e)- c
e--+0

, - componentwise vector' product

(.) - ensemble average operator: (a) is the expected value of a

-xiii -



b - 0 < a << 1, small dimensionless parameter

T - temporal scale length

L - spatial scale length
d - number of directions on the lattice structure of a lattice method

p - number of spatial dimensions on a lattice

/.Xx - L6, lattice spacing

At - Tt_2, temporal spacing

/,' - E {0, 1,,,,,d- 1}, lattice direction index

n, - E ,7 _ n >_O, time step index

- a p-dimensional Bravais lattice in 7_P

gk - (unit) velocity vectorin direction k

t3 - crystallographic group of isometries globally preserving the set
of velocity vectors

_' - E 12,position vector on Bravais lattice 12, it is a linear combina-

tion with integer coefficientsof p generating vectors (see [1])

fi(_",n) - E Be, vector of occupation numbers at (,-';n)

(fl(_n)) - E [0,1] d, ensemble averageor expected value of fi(_';n)

(nk)_' - E [0,1], mean occupation number in direction k at (z';n)

n(_",n) - = (fl(_'; n)) E [0,1] a, vector of mean occupation numbers at (_,n)

nrn _ --n(,.n)

n(.g;t) - = _j_=o_Jn(J)(._;t) is an equilibrium expansion about equilib-
rium n (°)

c_,fi - E Bd, state at a node in a lattice gas method

$(a _ ft) - E [0, 1], state transition function: the probability of a lattice
node in state a changing to state /3 in effecting the collision
phase

0j

T_JC(n) - - onjC(n), differential operator (on mean occupation num-
bers)

A - advection operator

C - collision operator

n (°) - E [0, 1ld equilibrium state (ground state in discrete Chapman-
Enskog asymptotic expansion)

£ -- "-- 'L')C(°)(n)]n=n(O),, linearized collision operator (linearized

about equilibrium n (°))

£+ - pseudo-inverse of

-- xi\ .....



_ll II ......

List of Tables

2.1 LBl Collision Rules ............................ 22
2.2 Collision Rules for an Example of Semi-Detailed Balance without De-

tailed Balance ............................... 27

2.3 The Sig_, of the First Partial Derivatives of f(x,y) ........... 39
2.4 LBl Componentwise Eigenvector Products .............. . . 55
2.5 Boundary Extrema of f(_,p,¢) and g(¢,p,¢) in LBl ......... 106
2.6 Direction of Increase in f and g for Arguments Just Outside £ in LBl. 109
3.1 LB2 Collision Rules ............................ 124

3.2 Boundary Extrema of f((,p,¢), g(_,p,¢), and h((,p,¢) in LB2 . . . 148
3.3 Extrema of H in LB2 ........................... 148

3.4 Direction of _,lcrease in f, g, and h for Arguments ,lust Outside t_ in
LB2 ..................................... 151

3.5 Collision Rules of a Lattice Met,od for Eq. 3.29 ............. 156

3.6 Componentwise Eigenvector Products .................. 160
3.7 Pictorial Description of Collision Rules for Two-Dimensional Advection-

Diffusion .................................. 182
3.8 Collision Rules for Two-Dimensional Advection-Diffllsion ....... 183

4.1 Li-norm Comparison of LBl- and Finite D;.fference-Computed Solu-
tions with Initial Condition Parameters, A = 1/x/_ and B = 1/2. 201

4.2 Loo-norm Comparison of LB:- and Finite Difference-Computed Solu-
tions with Initial Condition Parameters, A = 1/x/_ and B = 1/2. 201

4.3 Li-norm Comparison ef LBl- and Finite Difference-Computed Solu-
tions with Initial Condition Parameters, A = 0.45 and B = 1/2. . . 202

4.4 Lee-norm Comparison of LBl- and Finite Difference-Computed Solu-
tions with Initial Condition Parameters, A = 0.45 and B = 1/2. . . 202

4.5 Li-norm Comparison of LB2- and Finite Difference-Computed Solu-
tions with Initial C'mdition Parameters, A = 1/12 and B = 3/4. . 207

4.6 L_-norm Comparison of LBl- and Finite Difference-Computed Solu..
tions with Initial Condition Parameters, A = 1/12 and B = 3/4. 207

4.7 Li-norm Comparison of LB2- and Finite Difference-Computed Solu-
tions with Initial Condition Parameters, A = 0.45 and t:3 = 1/2. . . 208

-- XV --



4.8 Loo-norm Comparison of LB2- and Finite Difference-Computed Solu-
tions with Initial Condition Parameters, A = 0.45 and B = 1/2 .... 208

4.9 Compa,rison of Lattice Boltzmann- and Finite Difference-Computed
Solutions to Eq. 3.34 at t = 1/4 with v = 2 -s and Initial Condition
_i(x) = (cos(27rx) -[-1)/2 ........................ 211

4.10 Comparison of Coarse and Fine Grid Finite Difference. Computed So-
lutions to Eq. 3.34 at t = 1/4 with v = 2 -s and Initial Condition
uI(x) = (cos(2_rx)+ 1)/2 ........................ 213

4.11 Comparison Lattice Boltzmann- and Finite Difference-Computed So-
lutions to Eq. 3.58 at t = 1/8 for v = 1/32 and Initial Condition
(cos(27rx) + 1)/2 .... .......................... 218

4.12 Comparison of Lattice Boltzmann- and Fir Lite Difference-Computed
Solutions to Eq. 3,58 at t = 1/8 for v = 1/'16 and Initial Condition
(cos(2rx) + 1)/2 ........................... .... 219

4.13 Comparison of Lattice Boltzmann- and Finite Difference-Computed
Solutions to Eq. 3.58 at t = 1/8 for v = 1/8 and Initial CondiL:_n
(cos(2rz) + 1)/2 .............................. 219

4.14 Comparison of Lattice Boltzmann- and Finite Difference-Computed
Solutions to Eq. 3.58 at t = 1/8 for v = 1/32 and Initial Condition
(sin(2_rx) sin(2_ry)+ 1)/2 .............. ........... 220

- XVi ....

' _!IP ,r,i, ,111, , ,_,



List of Figures

2.1 LBl direction labels ............................ 17

2 2 LBl collision rules. 23

2.3 Graph of f(z, y)= x log(x/y) + y- z .................. 40

3.1 LB2 collision rules .............................. 123

3.2 Direction labels for a lattice method for Eq. 3.29 ............ 155

3.3 Collision rules of a lattice method for the one-dimensional viscous

Burgers equation. .............. 156

4.1 Evolution of u(x,y;t) according to Eq. 2.29 with v = 1/2: (a) Initial
condition, u(x,y;O) = ui(x,y)= Asin(2rx)sin(21ry) + B, where A =
1/v/_ and B = 1/2; (b) u(z,y;_) at t 1/32. ............. 200

4.2 Evoh,tion of u(x,y; t) according to Eq. 2.29 with u = 1/2: (a) Initial
condition, u(x,y;O) = u_(x,y) = Asin(2_rx)sin(2_ry) + B, where A =
0.45 and B = 1/2; (b) u(x,y;t) at t= 1/32 ............... 200

4.3 Evolution of u(z,y;t) according to EQ. 3.6 with u = 1/2" (a) Initial
condition, u(x,y;O) = ux(x,y) = Asin(2rx)sin(2ry) + B, where A =
1/12 and B = 3/4;.(5) u(x,y;t) at t = 1/32. 206

4.4 Evolution of u(x,y;t) according to Eq. 3.6 with u = 1/2: (a) Initial
condition, u(x,y;O) = uz(x,y) = msin(2rx)sin(2_ry) + B, where m =
0.45 and B = 1/2; (b) u(x,y;t)at t= 1/32 ............... 206

4.5 Evolution of u(x;t) according to Eq. 3.34 with v = 2-'s: (a) Initial
condition u(x;0) = uv(x) = (cos(27rx)-t-1)/2; (b) u(x;t) at t = 1/4.. 212

4.6 Cornparison of lattice Boltzmann-computed and finite difference-computed
solutions to Eq. 3.34 at t = 1/4 with v = 2-s and vary;ng grid sizes:
The finest grid, i.e., N = 32768, is the finite difference-computed so-
lution, V(x,t); calculations for grid sizes N E {256,192,160, 1.28} are
the lattice Boltzmann-computed solutions, U(x,t) .... ....... 212

4.7 Evolution of u(x,y;t) according to Eq. 3.51 with v = 2--5. (a) Initial
0condition, u(x,y;O) = uI(x,y) = (COS(nrX)+ 1)/2; (b)u(x y;l)at

t= 1/s ................................... 217

.- xvii-



. '? 2-5,1S Lvolution of u(x,y;t) according to Eq. 3.51 with v : (a) Ini-
tial condition, u(x,y;O)= u,(x,y) - (sin(27rx)sin(27ry)+ 1)/2; (b)
,.(:v,y;t) at, t= 1/8 ............................ 217

5.1 Initia,1 condition .............................. 227

5.2 (t_) Coarse lattice and (b) fine l_tttice solutions; t = 0.125; M = 1. . . 227
().3 (_) Co_rsc l_ttice and (b) fine lattice solutions; t = 0 125; M = 2. 228

.,,joarse l_ttice a,nd (b) fine la,ttice solutions; t = 0.125; M '-- 4. 228
5.5 (a) Coa,rse lattice and (b) fine l_ttice solutions; t = 0.125; M = 8. . . 229

- xviii-



List of De,finitions, Lem.mas,Theorems and Corollaries

Definition 2.1 Vector Exponentiation .................... 10
Def',nition 2,2 Order of Magnitude ...................... 12
Definition 2,3 Connectedness ......................... 12
Definition 2,4 Set Volume .......................... 12
Definition 2.5 Covariance ........................... 13

Definition 2.6 Fermi Exclusion Principle .................. 14
Definition 2.7 Lattice ............................. 15

Definition 2.8 Occupation Number ...................... 16
Definition 2.9 Advection Operator ...................... 19
Definition 2,10 State Transition Function .................. 20

Definition 2,11 Lattice Isometry Invariance ................. 21
Definition 2.12 Collision Rules ......................... 21

Definition 2.13 Conserved Quantity ............... ....... 21
Definition 2.14 Mass-Conserving ....................... 24
Definition 2,15 Detailed Balance 24

Definition 2,1,6 Semi-Detailed Balance ..................... '25
Definition 2.17 Quasi-Detailed Balance .................... 25
Definition 2.18 Collision Operator ....................... 28

, Definition 2.19 Lattice Gas Method ............. ......... 28
Definition 2,20 Rotation Invariance 29

Definition 2.21 Mean Occupation Numbers .................. 31
, Definition 2.22 Lattice Boltzmann Approximation .............. 32

Definition 2.23 Lattice Boltzmann Method .................. 33

Definition 2.24 Equilibrium .......................... 35
Theorem 2.25 Equilibrium Theorem ..................... 36
Lemma 2.26 .................................. 38
Lemma 2.27 .................................. 38
Lemma 2.28 .................................. 38
Lemma 2.29 . ................................. ,10
Lemma 2.30 .................................. 40

- XiX'-



4

1,emma 2,31........... ........................ 41

1)efinition 2.32 Litmarized Collision Operator . . . , ............ 49
7' i , , , 4 0Definition 2.33 I_,lgenmat,rlx 52

1)c[inition 2.34 Pseudo-Inverse ......................... 53

I)efillition 2.35 Consistency Condition .................... 71
Definition 2.36 Hydrodynamical Equation .................. 71
Definition 2.37 Truncated Equilibrium Expansion ...... ........ 85
Definition 2.38 Consistency ........................... 85
Definition 2.39 Conditions of Monotonicity .................. 85
Definition 2.40 Domain of Monotonicity ................... 86

Definition 2.41 L[n _, h _] ............................ 87
Definition 2.42 Stability .................... 87
Delinition 2.43 Hydrodynamical Mode .................... 87
Definition 2.44 IIydrodynamical Error 88
Lemma 2.45 ................................... 88

Definition 2.46 Convergence .......................... 88
Theorem 2.47 Consistency ........................... 89 f

Lemma 2.48 Consistency of LBl ....................... 90
Theorem 2.49 Discrete Maximum/Minimum Principle ........... 97
Lemma 2.50 .................................. 97
Lemma 2.51 .................................. 98

Corollary 2.52 ................................. 98
Lemma 2.53 Domain of Monotanicity for LBl ................ 99
Lemma 2.54 Discrete Maximum/Minimum Principle for LBl ........ 108
Lemma 2.55 Hydrodynamical Maximum/Minimum Principle for LBl . . . 110
Lemma 2.56 Continuum Maximum/Minimum Principle for LBl ...... 111
Corollary 2.57 ................................. 113
Theorem 2.58 Stability in the Li-norm .................... 113
Lemma 2.59 .................................. 113

Lemma 2.60 Stability of LBl in the Li-norm ................. 114

Theorem 2.61 Convergence .......................... 115
Theorem 2.62 Convergence of LBl ...................... 117
Lemma 3.1 Consistency of LB2 ....................... 137
Lemma 3.2 Domain of Monotonicity for LB2 ................ 141

Lemma 3.3 Biacrete Maximum/Minimum Principle for LB2 ........ 150
Lemma 3.4 Hydrodynamical Maximum/Minimum Principle for LB_ . . . 152
Lemma 3.5 Continuum Maximum/Minimum Principle for LB2 ...... 152
Corollary ,3.6 ................................. 152
Lemma 3.7 Stability of L132 ......................... 152 m

Theorem 3.8 Convergence ot'l,B2 ....................... 153

--- XX ....



Lemma 3.9 Consistency of LB Method for Burgers' Equal.ion .... .... 170
Lemma 3.10 Domain of Monotonicity of LB Method for Burgers' Eqtlation 17,1
Lemma 3,11 Discrete Maximum/Minimurn Principle of LB Met.hod for Burg-

ers' Equation ............................ .... 175
Lemma 3.12 Maximum/Minimum Principle for the 1-D Viscous Burgers

Equa, tion .................................. 176
Corollary 3.1a ................................. 176
Lemm_ 3.14 Continuum Maximum/Minimum Principle of LI3 Method for

Burgers' Equation ............................. 176
Corolla, ry 3.15 .................................. 177
Lemma 3.16 Stability of LB Method for Burgers' Equation ......... 178
Theorem 3.17 Convergence of LB l\1ethod for Burgers' Equation ...... 178
Lemma C.I Continuum Maximum Principle ................. 246
Lemma C.2 Discrete Maximum Principle .................. 247

] ,

-xxi-



List of Equations

1.1 .............. . 1 2.32 .......... ..... 77
2,1 ............... 10 2.33 ............... 78
2.2 ............... 10 2.34 ............... 78
2.3 ........ , ...... 10 2.35 ......... ,.,, , . 78
2,4 ............... 17 2,36 , , . ............ 78
2,5 ............... 18 2.37 ............... 78
2,6 ............... 21 2,38 ............... 79
2,7 ............... 31 2.39 ............... 81
2,3 ............... 32 2,40 ............... 85
2,9 ............... 32 2,41 ............... 86
2,10 ............... 33 2.42 ............... 90
2,11 ............... 34 2,43 ............... 91
2,12 ............... 42 2.44 ............... 91
2,13 ............... 43 2.45 ............... 92
2,14 ............... 47 2.46 ............... 92
2,15 ............... 52 2.47 ............... 94
2,16 ............... 53 2.48 ............... 94

2,17 ....... ........ 58 2,49 ............... 96
2,18 ............... 61 2.50 ............... 100
2.19 ............... 63 2,51 ................ 101
2,20 ............... 64 2,52 ............... 101
2.21 ............... 65 2.53 ............... 101
2,22 ............... 65 2,54 ............... 101
2,23 ............... 66 2.55 ............... 102
2,24 ............... 67 2.56 ............... 102
2,25 ............... 69 2.57 ', .............. ll0
2.26 , , ............. 71 2.58 ............... l ll
2.27 ............... 73 3,1 ............... 125
2,28 ............... 73 3.2 ............... 126
2,29 ............... 75 3.3 ............... 127
2,30 ............... 75 3.4 ............... 129
2.31................ 77 3.5 ............... 130

- xxiii-



13,6 ............... 131 3,46 ............... 171
3,7 ............... 131 3,47 ............... 171
3,8 ............... 133 3.48 ............... 174
3,9 ...... 133 3,49 ............... 174
3,10 ............... 134 3.50 ............ 177

3,11 ................ 134 3,51 .......... 180
3,12 ............ , . . 134 3,52 .......... 181
3,13 ............... 134 3,53 ....... , . , 181
3,14 , ......... 135 3,54 .......... 184
3.15 ............... 135 3,55 .......... 185
3,16 ............... 137 3,56 .......... 185
3,17 ............... 137 3,57 ............ . . , 186
3,18 . .............. 138 3.58 .............. 190
3,19 ............... 138 3,59 .............. 192
3,20 ............... 138 4,1 ............... 197
3,21 ............... 139 4,2 ............... 209
3 22 139 4.3 ............... 214
3.23 ............... 143 4,4 ............... 214
3,24 ............... 143 4,5 ............... 215
3.25 ................ 144 C,1 ................ 245
3.26 ............... 144 C,2 ............... 246
3.27 ............... 144 C.3 ............... 246
3,28 ............... 144 C,4 ................ 247
3,29 ............... 154
3.30 ............... 158
3,31 ............... 158
3,32 ............... 161
3.33 ............... 162
3.34 ............... 163
3,35 ............... 163
3.36 ............... 164
3.37 ............... 165
3.38 ............... 165
3.39 ............... 166
3.40 ............... 166
3.41 ............... 167
3.42 ............... 167
3,43 ............... 169
3,44 ............... 170
3,45 ............... 170

-- X×iV



Chapter 1

Introduction

Consider the three-dimensional incompressible Navier-Stokes equations,

0 1

+ = +# (1.1)
V.ff = 0

which connect the velocity g and pressure P, where p is the constant density and

is the kinematic viscosity. We would like to compute solutions to these equations

with 0 < e < 1 efficiently and accurately for problems (to which Eq. 1.1 is only an

approximation) with boundary and internal layers, shocks, turbulence, and complex

domains, However, resolving accuracy of even simple problems with conventional

methods far exceeds the current capability of computer resources [6_]. The desired

problems can easily require vasts amounts of memory and computation time, so much

memory that the problems would not fit on current machines and so much time that it

would surpass a lifetime. 1 To make obtaining meaningful solutions to these problems

more feasible we turn to the development of algorithms and supporting theory for

parallel and vectc,r computation. We encounter the same computational sp_tce-time

lA full Navier-Stokes calculation of turbulent flow over an aircraft with Reynolds numbers 5 x l07
to 3 x l0 s (with 1988 algorithms) has been projected to take over 2 × 1016 years; a large eddy
simulation approximation to the Navier-Stokes equations, in which only large scale motions arc
computed from filtered Navier-Stokes equations and ,_mall scale motions are modeled, reduces the

projection by about 5 orders of magnitude to around 2 x 1011 years [62],

1
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problt_ms for' conventiontd, scquenti_d methods transformed into parallel methods.

['art of the difficulty in the develo[)meut of parallel methods is that traditional training

cmbr_wes sequential thinking processes. This dissertation investigates the numerical

theory of some new co'nputation,_l methods that are inherently parallel. The methods

involve particles traversing the links of _ lattice and interacting at the nodes. The

particles advance in unison to neighboring nodes with unit speed according to a

discrete clock. The system can be viewed as a discretization in time, space, and

velocity of the Boltzmann equation, e.g., [37] (of. [15, 59]). I-Iowever, the velocity space

is coarsely di,_cretized and does not refine in the limit as the unit spatial and temporal

lengths (/Nx and At respectively) tend to zero, The fixed, coeorse discretization of

the velocity makes the approach amenable to a mathematical description (of the

microdynamics) over a Boolean field, 2 with an implementation using only logical

operations, i.e., no floating point arithmetic. This point, in addition to the methods _

vast implicit parallelism, has been argued in their favor. Although the microdynamics

of these models is non-physical, several researchers have recovered macrodynamical

descriptions that agr_ 3 with those based on physical microdynamics, e.g., [37, 38].

Most models regard the macroscopic description of fluid dynamics, i.e., the Navier-

3tokes equations. The models have been known as, among other terms, lattice gas

automata, cellular automata, and cellular fluids. Obtaining the macrodynamical

description involves averaging and an assumption regarding molecular chaos. Another

related class of methods does not, however; they are lattice Boltzmann methods

[5, 6, 36, 49, 56]. These methods originated from lattice gas methods, but differ in that

particle distributions move along _he links rather than particles themselves. In this
k

:_The microdynamical description can also be made iu t(rrnls of cclhtlar atttom_tta, e,g,, [72],
3A more precise term will be defined subsequeatly,
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way the molecular chaos assumption becomes an inherent part of the method, and the
i
4

methods are floi_ting point arithmetic calculations. Indeed, they are a form of finite

difference method. Lattice gas and lattice Boltzmann methods (herein collectively

termed "lattice methods") have been used in a number of computational arenas:

inc.ompressible ttuid flow (Navier-Stokes) [37, 38, 46-48], magnetohydrodynamics [16,

17, 581, the Poisson equation [181, ,nixed flows [2, 9, 12-14, 161, turbulence [6,491,

diffusion [8, 11, 26, 27, a31,reaction-diffusion [28], advection-diffusion [7, 24, 5al,and

flow in porous media [10, 23],'_ As the subject gains understanding, undoubtly, its

scope and spectrum will increase.

However, lattice methods have lacked a formal numerical theory, which would in-

clude proving convergence through, e.g., consistency and stability arguments. With

but one exception [7], numerical analysis of lattice methods only derives partial dif-

ferential equations that describe tile their macroscopic behavior; this is but the first

part of a formal consistency argument. Consequently, many questions regarding their

applicability, effectiveness, efIicientness, competitiveness, and utility have remained

open. Due mostly to linfited knowledge about lattice methods, little progress toward

answering the questions is being made. This dissertation addresses the issue by intro-
q

ducing a formal numerical theory for lattice methods and revealing that the methods

are second-order, conservative, conditionally monotone finite difference methods for

solving some partial differential equations. An attempt is made to formulate a foun-

dation for rigorously treating convergence of the methods, including the consistency

4Note that the references listed provide examples of the application areas and are by no means

meant to be exhaustive listings. The references, [30, 31, 52, 57], are collections of works and pro-
ceedings of conferences and workshops that encompass lattice methods (and related topics). Several

of the articles contained therein have thorough reference lists, e.g., [37],
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and stability argunmnts, Anotlwr part of the dissertation invest_igates the applicabil-

it,y c,t'domain decomposition t,echniques to the lattice methods, in an effo:t to better

utilize computational resources, e,g,, concentrate resources near highly active regions

in tile computational domain.

Chapter 2 introduces a numerical theory for lattice methods, the theory encom-

passing the microdynamical description, equilibria, the discrete Chapman-Enskog

expansion in the derivation of associated partial differential equations, and conver-

gence. Convergence is argued through" real consistency and stability arguments

similar to the ones made for nonlinear monotone schemes. Stability and convergence

arguments are based on establishing maximum and minimum principles for both the

lattice method its continuum approximation, i.e,, its associated partial differential

equation. The proof of the discrete maximum and minimum principles depends on,

among other criteria, that a lattice method satisfies certain "conditions of mono-

tonicity'. These are the conditions under which a lattice method is a monot_,ne finite

difference method. As we will see, the conditions of monotonicity impose restrictions

on the mean occupation numbers _ in a lattice method, i.e., that the mean occupa-

tion numbers must initially lie within the "domain of monotonicity". 6 Convergence

is proven on the basis that the occupation numbers are always within the domain of

monotonicity. This is an important technical contribution of the dissertation, for it

reveals that a lattice method may be unstable outside the domain of monotonicity.

_For now, the mean occupation numbers can be thought of as the average (or e_cpected) numbers
of particles per direction per node per time step.

aThe domain of monotonicity, loosely speaking, is the largest domain in which the conditions
of monotonicity are satisfied. And it, will be shown that ii' the occupation numbers are initially
within the domain of monotonicity, then as the system ew:fives they remain within the domain of
monotonicity.

.............................. IIII...... I.................................................. ilfl_ II -" [11'1.........
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An example is interleaved throughout this chapter to aid the presentation of the con-

cepts and techniques. Chapter 3 applies the theory of Chapter 2 to three additional

lattice methods, The first is a variation of tile example lattice method in Chapter

2. The second method is for the one-dimensional Burgers equation. It was originally

introduced as an advection-diffusion model in [7] and later studied as a lattice gas

method in [53]. The third method is for two-dimensional advection-diffusion. Chap-

ter 4 summarizes computational studies on all four of the lattice methods discussed

in the dissertation. The results indicate agreement with the theoretical co'nvergence

rates for the methods. The chapter explores the behavior of the methods outside

their domain of monotonicity (the proven realm of convergence), the results suggest-

ing an extended realm of convergence in some cases. Largely based on the ideas

in [60], Chapter 5 explores domain decomposition for lattice methods. The overall

goal is to be able to concentrate computational resources on regions of high activity,

such as steep gradients [39, 71], and boundary and internal layers [25,321 68]. The

chapter introduces a possible strategy, one that might be used for explicit finite dif-

ference methods. Computational evidence supports the strategy and suggests that

domain decomposition techniques can be applied to lattice methods in a manner tot

increase performance when only localized increased accuracy is desired. Chapter 6 is

the conclusion.



Chapter 2

Theory

r

This chapter introduces a numerical theory for lattice Boltzmann methods and the

Lattice Boltzmann Approximation to lattice gas methods. The theory covers two

techniques for determining equilibria of a lattice method,' derivation of partial differ-

ential equations via the discrete Chapman-Enskog procedure, and convergence anal-

ysis. Convergence is obtained through formal consistency and stability arguments.

Consistency is shown by a second ap_"_ :ation of the discrete Chapman-Enskog pro-

cedure, while stability is shown by est,ablishing discrete and continuum maximum

and minimum principles for the lattice method, and showing that the method is _

monotone finite difference method. An example is interleaved throughout the chapter.

Section 2:1 introduces notation and definitions of and for a,nalysis of lattice g_s

and lattice Boltzmann methods. Section 2.2 provides two methods for determining

equilibria of lattice methods. Tile first application (and introduction) of the discrete

Chapman-Enskog analysis encompasses Section 2.3. And Section 2.4 introduces the

convergence analysis.

7
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2.1 Definitions and Notation

This section defines terms and introduces notation for the ,subsequent discussions and

analyses of lattice gas and lattice Boltzmann methods. We begin with introducing

some vector notation and associated oper,tions, e.g., exponentiation, differentials,

gradients, and the Jacobian matrix. We then discuss norms, order of magnitude, and

some set operations. Next, we discuss ensembles, ensemble averaging, and approx-

imations to ensemble averaging. At this point we define lattice gas methods. And

finally, we discuss the Lattice Boltzmann Approximation to lattice gas methods and

use this to motivate the introduction of lattice Boltzmann methods.

2.1.1 Basic Definitions

Let us denote

B -= {0,1}

[a,b] = {x [a < x <_b}.

Let d be a positive integer indicating the number of directions in which particles may

travel. Let

f,g E [0,11d (= !0,1] x [0,1] x ... x [0,1]),, HJ

d times

cY E Bd,
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and

1

1
I = E [0, li a.

1

Henceforth, boldface letters and numbers, e.g., f, g, h, n, O, 1, denote column vectors

of length d. Also, a and 3 denote vectors in B d, although they are riot in a boldface

face. Let fk denote the kth element of f. Then in terms of fk we write f as

7 j k=d-i
f-'fk

•.I k'-O

Where clear the limits may be left off.

We define the following operations involving f, g E [0, 1]d, a E Bd, and 1 E Ba:

f + g = fk + gk (componentwise vector sum),

"Id ik=O
!

f* g = fkgk I (componentwise vector product),
] k=O

d-1

f" g = _ fkgk (dot product),
i-O

d-1
m

f = 1 - fk = 1 - f (read "not(f)"),

1 a_ [i_o = 1 - a (read "not(a)").

The componentwise vector product (,) has the same precedence as scal.ar multipli-

cation. Note that operations other than "not" (f) extend to vectors in O-_d.Other

operations like the logarithm are evaluated componentwise, e.g.,

]Ilog f= ! logfk .
L.
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i

DEFINITION 2.1 (VECTOR EXPONENTIATION) Let n E [0,1] d and a E g d.

d-1Ttmp,_e_,_,_ e [o,1]byn_- rI,=o,_._ i,_,,,high,_°k- 1.

From the preceding definitions, we see that

d-1

- I-i n_k( 1 - nk)(I-_")
i:0

d-I

- II -_----_ (2.1/-- _2.h H,k
i=O

a quantitity that appears, as we will see, in the collision operator (of. Definition 2.18).

And since c_kE B, we find

n_k_-_'7 nk)(l__k ) { nk, c_k= 1_-'£, c_k = 0

Note also that

d-1 d-1

ct. logn = E crklognk = log 1"I nk_k = l°g n_' (2.3)
i=0 i=0

Differentials

Let C(n) denote a vector-valued function C'[0, 1]d _ [0, 1]d. Denote the kth function

Ck(n). Let h(°l,h(X),...h(J-1) E [0,1] d. Then define the jth differential of C(n) as

0J

cT_njC(n), h(°)h (1) . . . h(J-1)
k=d-1

d-1 d-1 d-1 ( OJ_k(n) ) h(O)h(1) h(J_l)= E E... E "ko=O kl =0 kj_l =0 1

k=O

[o,11_.



2,I, DEFINITIONS AND .NOTATION 11

The jth differential of C(n) evaluated for n = n(°) is written
,,

o@jC(n(°)), h(°)h(a),,, h(J-1)

: k-'d-1

= Xi'.. E "',o,,,_,ko=O kl =0 kj-I =0

k=O

e [0,11_.

d-1The Jacobian matrix ofC(,)is written _nC(n) = ck,t , where%,- 0-_iCk(n).
k,l=O

We may use the shorthand notation 73_ - OJ
- 0nJC(n).

Norms

In the convergence analysis, we use norms over discrete and continuum quantities.

We will use the same notation for each with the context determining the appropriate

definition.

The gp-norm for a function u(_;t) with _ E f_ = [0, LID is defined by

u(_,;t)lIe, =_ [u(g-;t) p d , for p _>1,

if the integral exists and is finite, and

Iu(t) It_ =- lira [lu(a_;t) ep• p---+c_ '

if the limit exists and is finite.

Let U_ be an approximation to u(rAx;nAt) with a7 E _'_= [O,L]D. Then the

g_-norm of U is defined by

Ilg"[_,- _ IU?l_ .i

r
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Note l liar

U" = sup U?[,e_ - lira [IU_ le,p---+c_ r

Order of Magnitude'

DEFINITION 2.2 (ORDER OF MAGNITUDE). We say function g(e) is on the order

of the magnitude of f(n), which is denoted g(e) = C9[f(n)], /f there exists a constant

c such that lira f(e)/g(e)= c.e--+ O

Sets

The following definitions are from [55, p. 68 and p. 258], modifi¢=l for lattice methods.

DEFINITION 2.3 (CONNECTEDNESS). We say a set A C 7"¢d is connected if there

do not exist two non-empty, open sets, B and C, such that A C B U C, A N B _ 0,

ANC _O, andANBNC=O.

DEFINITION 2.4 (SET VOLUME). /f_¢ C [0, 1] d, define the characteristic function

1£(n) of £ by

1]_--+n, l£(n )= / J' neE,lE' [0,

t O, n¢£.

We say that E has volume if lE is integrable, and the volume of F_.is the number

f£ l£(n)dn = v(£).

(Note that it makes sense to talk about the integrability of 1£ since E is a bounded

set,)
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Ensembles

An ensemble is a possibly infinite collection of events or values. The ensemble average

is the expected or average value of the events or values. Let Q denote a particular

event in an ensemble. Then its ensemble average is written (O). Henceforth, when

discussing ensembles and ensemble averages, a quantity without a hat ("_.") is taken

to be the ensemble average, e.g., Q = (Q).

It is ofte:l convenient to discuss the correlation between two collections of events.

One mathematical tool for doing so is the covariance, which is defined as follows:

DEFINITION 2.5 (COVARIANCE). Let A and B be two collections of events. Let

be a random event in collection A; let b be a random event in collection B. Then

from probability theory, e.g., [50], the covariance between A and B, Cov(A,B), is

defined by

Cov(A,B) = (6b)- (&)(b).

The covariance measures the dependence between two collections; 1 the covariance

between two collections is zero if they are independent, i.e., statistically uncorrelated.

In the abscence of having labels for collections, we may write

Cov(a,b) = <ab)-<a><b>,

with the meaning understood.

For spatially and temporally dependent data, there are a variety of methods for

approximating the ensemble average with as few as one instance (event) of an en-

semble, the simplest being to average over the few instances. Spatial and temporal

averaging may be used when certain assumptions regarding correlations carl be made,

":',,:,tc that the concept of covariance can be extended to measure the correlation among multiple
colle_,v..as,
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e.g., (,rgocticity. (For systems of particles such an ttssumption may regard molecular

(:haos" wllen using spatial averaging,) The validity of temporal averaging depends on

llow slowly and locally the data evolves in time. Combinations of ali three methods

may I)e used to approximate the ensemble average for a possibly infinite ensemble,

Lattice gas calculations have, in general, used the spatial averaging approach (applied

to one instance).

2.1.2 Lattice Gas Methods

This dissertation focuses on one-speed models, although the concepts can easily be

extended to multi-speed models, including models with rest particles, i,e., particles

with no velocity. In the one-speed models, particles move about in unison according

to the ticks of a discrete clock along the links of a regular lattice with unit speed

and interacting at the nodes of the lattice; a set of collision rules determines the

nature of the inter_ctions. The interactions change the velocity of the particles,

which are indistinguishable, and the outcomes are deterministic or nondeterministic,

depending the collision rules. Lattice gas methods a.re inherently designed with the

Fermi Exclusion Principle.

DEFINITION 2.6 (FERMI EXCLUSION PRINCIPLE), The Fermi Exclusion Prin-

ciple (for lattice gas methods) allows at any given time, at most one particle per

direction per node. a

Adhering to this principle ensures either absence or presence of a particle moving in

2See, e.g., [64, p, 523] for a discussion of the molecular chaos assumption,
aNote that one can adhere to this rule and obtain multiple particles per direction by duplicating

directions where increased numbers of particles are desired to I)e allowed. Each "same" direction

would have difl'erent direction labels, though they would denot, e (through interpretation) identical
physical directions,
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a particular direction at a node, It is in this wtty theft a finite number of bits Iua,y bc

used to describe the state at a, node--one bit for each direction. SuI)posing that eacll

node h_s d links, 8 node state may be described as an element of a Boolc_m field, B't,

Toward building notation for quantifying a lattice g_ts method's behavior, tlm

lattice gas methods discussed have the following characteristics: 8 doubly periodic

(toroidal) regular lattice suspended in p-dimensional space, fZ = [0, L]_', with d links

per node, each link having length Ax = LS; time advances in units of At. = 7"52,

where L and T are the spatial and temporal scale lengths, respectively, We adopt, the

following from [37, pp, 657-9]:

DEI"INITION 2,7 ([_AT'rlCE), Let Bravais lattice., 2. C 7_Y, be such, that there

exists a set old velocity vectors, c-k, k e {0,1,, .,,d- 1}, having equal modulus (the

modulus, c, is called the particle speed). Regarding the velocity vectors, we adopt the

notation

p- 1

_k -" _k,i

i=0

We 'may refer to the velocity vectors as the unit velocity vectors. Of _ and the velocity

vectors, we require:

I. {r+ gk ] k e {0,1,...,d- 1}} C 1] is the ,set of nearest ,_,ei[lh,bors of lattice _,ode

rE£.,

2, for any two nodes r,j'E _, there exists a fi'.,ite, sequenceof 'velocity]v_:c/,ors,

,.4 ..4
eko_ ek1_ ' ' ' _ _'kr

P

suchthatr = y+
p=O

3. For any pair of velocity vectors, (_k, ft), the're exists an element, u,hieh m(_p,s'
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'1

li'ore _ to Ct, in the e rystallo!]mphie [trottp _ of isometries .qlobally preserving

the set of velocity vectors,

t

4, Let Oi,, denote the subgroup of 0 that leaves velocity vector gk invamant, Let

._j,. be the orthogonal hyperplane of gk, Then there is no non.vanishing vector

in _k that is invariant under all the elements of Ok, and the only linear trans.

formations within the space ._k that commute with all the elements of Ok are

proportional to the identity in 7U',

DEFINITION 2,8 (OCCUPATION NUMBER), The occupation number denotes

the number of particles (0 or I) with a particular velocity at a node, We denote this

(¢zl,)'_E 13 for the number of particles in direction k at lattice node _ E .P. and time

step n, For a particular node, e,g,, (z_;n), we denote the vector of occupation numbers

nr - (¢*k)[.'
k=o

where d is the nvmber of directions on the lattice.

We may sometimes use the alternative notation _k(_]n) = (¢_k)_. Note tht, t n used

as a superscript denotes a time step.

At this point we introduce an ext_mple4 that will be interlet_ved throughtout the

text. We will refer to this example as new m_terial is introduced. The example

lattice method, we will find, is a model for diffusion via t_ two-dimensiont_l nonlinear

diffusion equt_tion.

4Examples are typeset in Sans Serif fonts at a sliglltly sturdier point, size thtm the surrounding
text, Their margins are slightly reduced, also,
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"_ ...... _ 0

3

Figure 2.1: LBl direction labels, I

L'

Example(LBl: Its Lattice and VelocityVectors),

Considera two.dimensionaldeterministiclatticegasmethod,called"LBl", witha

squarelattice. Its cellsare alsosquares.Leteachedgehaveunit lengthA_ with

time advancingin unitsof At. Thereare lo=jr directionsin whichparticlesmay

travelto nearestneighbors,son = 4. Let us labelthesedirections0, 1, 2, and 3

in a counterclockwisefashionwith 0 beingto the right. Pictorially,this isshown

in Figure2.1. We see(h0)_ is thenumberof particles(either0 or 1) movingin

n _4direction0 at position(i';u). Also, nr E is a vectorof occupationnumbers.

Here,i'= (i,j) is thevectorof indicesoverthetwo-dimensionallattice,wherei and

j indexhorizontalandverticalpositionson the latticerespectively,Unlessstated

otherwisewe assumethat h isevaluatedat (_n). Note that the unit direction

vectorsare

go = (1,o),

_'1 - (0,1),
(2,,1)

= (-1,o),

ga = (o,-1),
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Let the coordinate axes be given by _ = (xe, xi) = (x,y), where the x.axis is in

the directiot_ of ('o,

Let us verify r' that the lattice and velocity vectors for LB 1 satifies the require.

ments of Definition 2,7, Note that permutations and reversals of the x- and y.

coordinates generate the isometry group L._of the set of velocities, {e'o, e'l,_,_a},

Any c'k can be mapped to _;I by the above isometries; for example, _0 maps to _'_

by permuting the x- and y.coordinates of _o, and then reversing the sign of the

!/-coordinate in the result, Let gk denote the subgroup of _ that leaves _k invari-

ant, We see that in each case, the subgroup consists of the identity and reversal

of the (k + 1 (reed 2)).coordinate, In addition, the orthogonal hyperplane to _t., is

.¢..'_k-span(ff(/_+l (reed_))), There is no non-zero vector in _/_ that is invariant un-

der the subgroup g_:, and the only linear transformations within .¢')/_and commuting

with ali elements of gk are proportional to the identity operator,

Microdynamical Equation

'l'lle behavior of a lattice gas is governed directly by its rules: rules for advecting

particles to new locations and rules for detexmining new directions of the particles.

These are characterized in the microdynamical evolution equation for a lattice gas

Inetltod:

= +C(fi;.'), (2.5)

wllere Jt ,and C are the advection and collision operators, respectively.

Tile microdynamical equation, Eq. 2.5, says that the new occupation numbers (on

t,lie left) al: the new locations, (Y+ _k; n + 1), are tlle same rts the occul)ations numl)c,rs

5Not,e that LBl shares the, same lattice and set of w_'iocity vectors as the IIl'P model [48] for
solrle two-dimensiotlal Nttvier-Stokes-like eqllations, Veriflcatiotl of tile requirelllentt_ for the lat,tice

alltl set of v(:ic)cit,y vectors of tlw 11I'!' IIl<)<lelis giw,n iii [:17,p, 6!11], We repettt the verilicatiotl Ilere
['c_rC¢,lltl)let,pness,
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ttr the current location, (_';n), plus some correction for particles changing dh'ectlons,

The term, (fi)_, is the vector oi"occupation uumbers at (_; n). The collision operator,

C, changes the direction oi' particles at (_"';n) before the advection. Then the sum,

ft(,.n)+ c(fl(,,n)),

describes the new occupation numbers tllat are to be advected.

DEFINITION 2,9 (ADVECTION OPERATOR), Let a lattice, o_, and its associated

unit velocity vectors, {e-o,gl,,,,, e__x}, be given, Then then advection operator, Jt,

is defined by

Jr+g0

(til _,,+1 a-1J r+¢_
-- _ x Jr+_'_

, k=o

t_d-1 )r+gd-:L

The advection operator, ,A, is _used to describe mathematically the movement of par-

ticles to their new locations,

Note that the microdynamical equation may be written in a more familiar differ-

ence equation format, i,e,, without the advection operator,

d-1

""+_ [ H_(fl"
nr = r-g_) ,

k=O

where

/:lk(flrLeh) = (flkJr-ck'"+ C(fi___ ).

State Transition Function and Collision Rules

First of all, note that each latLice node has a ,state that describes its configuration.

We have denoted this state with the occupation, numbers, n r,'" Because nr'n E B't, there
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nrc exnctly 2't possible configurations or states th_,t _ imrticular l_ttice location c_n

lilly(:. C,iven that a location is in state (_ E /_'t, say, e.g., _ = fi_, then there are

2'Lpossible new states, fl E F d, Depending on the lattice gas method, there will be

a certain probabilility that a location in state a will change to state/_ before the

advection occurs, This is determined by the collision operator, We can define a state

transition function that maps these probabilities tbr the finite number of a and fl

combinations.

DEFINITION 2,10 (STATE TRANSITION FUNCTION), Let the set of possible

states at a lattice node in a lattice gas method be I3d, Lets : Bd×/3d ___ [0,1] be

defined by

s(. --, P

where

E d,
BEB"

i.e., S obeys conservation of probability, Then ,5'(a -+ /3) is the probability of a

transition from state a to state _, independent of location. $(a -+ _) is called the

state transition function of a lattice gas method.

The state transition function determines the probability of _ lattice node changing

state prior to advection. Let us put this in terms of the lattice particles. First, let

a be the state at a particular lattice node. Then it describes the particles and their

respective directions at that node. Let fl be a new state at the same lattice node prior

to advection, so that fl describes the particles and their new directions. Note that c_

and /3 may, of course, be different. Given that a node is in state a, the probability

that it will change to state /3 prior to advection, is $(cr -_ /_). If the number of

particles in a and fl _u'e the same, i.c., mass is conserved, then the state transition
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function desci'ibes the proces_ of particles obtaining new directions.

We assume that the state transition function may be expressed in a finite sum in

powers of 5, V5 E [0, 1], i.e.,

J

s(_ -__) _ _s(J)(_-__) (2.6)
j=0

for some J >_O, V a,/3 E Bd. Such an expansion exists for all the methods studied

herein (as well as all other one-speed lattice method methods like FHP [38] and

FCHC [37]); it ._ the case that g = 0 (for the diffusion models) and J = 1 (for the

advection-diffusion models).

We adopt the following from [37, p. 660], which also discusses further invariance-

and isotropy-related properties:

DEFII_ITION 2.11 (LATTICE ISOMETRY II';VARIANCE). Let $ have the expansion

in Eq. 2.6. A state transition function, S, is said to have lattice isometry invariance

if $(°) is invariant under all isometrics preserving the set of velocity vectors, i.e.,

s(°)(g(_)--,g(_))= s(°)(__ _), v g _ _, v _,_ _z3_.

DEFINITION 2.12 (COLLISION RULES). The set of collision rules of a lattice gas

method is the tabulation of the mapping of its state transition function.

Example(LBl: CollisionRules).

The collisionrulesfor LB1 areexhibitedin Figure2.2 andlistedinTable2.1.

DEFINITION 2.13 (CONSERVED QUANTITY). Let a E [0, 1]d. Then a is said to

be a conserved quantity if

d-1

_(flk -- _k)S(c_ _ fl)ak -- 0 k/ O_,fl e Bd.
k=0
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Table 2.1: LBl Collision Rules.

Rule # 8(c 3)
i

" 0 0 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 1 1
2 0 0 1 0 0 0 1 0 1
3 0 0 1 1 1 1 0 0 1
4 0 1 0 0 0 1 0 0 1
5 0 1 0 1 1 0 1 0 1
6 0 1 1 0 1 0 0 1 1
7 0 1 1 1 0 1 1 1 1
8 i 0 0 0 i 0 0 0 I
9 1 0 0 1 0 1 1 0 1
I0 I 0 i 0 0 I 0 1 i'
ii I 0 i I I 0 i i I
12 I 1 0 0 0 0 I 1 I
13 i i 0 I I i 0 i I
14 i i i 0 I i I 0 I
15 I i I i I i i i i
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STATE PRE-COLLISION ,POST-COLLI$!QN

No Particles =_

One Particle -1

Two Orthogonal Particles . 't =*" -"

Two Head-on Particles -]-

Three Particles .... l

Four Particles _L =_ .

]-
Figure 2.2: LBr collision rules. The only states in which particles change direction

, are those with exactly two particles present. In both the orthogonal and head-on
cases, particles change direction to the unoccupied directions.
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Conservation of mass and momentum are related to

ak E span(l) and ak E span(ek,0, ek,1,...,ek,v-1),

respectively. \Ve assume herein that these are the only types of conservation laws

that a lattice method may have.

DEFINITION 2.14 (MASS-CONSERVING). A lattice method is said to be mass-

conserving if
d-1

- 0 v e Bd.
k=O

The important concepts of detailed balance and semi-detailed balance are defined

as follows: 6

DEFINITION 2.15 (DETAILED BALANCE). Let S(a _ 19)be the state transition

function of a lattice method method. Then if S(c_ _ _) = S(_ ---,_) V a,_ C Be, we

say that the lattice method satisfies detailed balance.

r

Example(LBl: Detailed Balance).

To showthat LB1 satisfiesdetailedbalance,wemustverifythat eachcollisionrule
i

satisfiesdetailedbalance.As anexamplelet usverifythat rule3 satisfiesdetailed

balance.In rule3,
"1

0 1]
0 1

S( -_ )=1
1 01

I

I

1 0
d

6 They play important roles in (1) determining equilibriurn solutions of a lattice method, and (2)

guaranteeing that tile linearized collision operator is nonpositive definite,
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andcheckingthe table,wefind (seerule12)

1 OI

11 ,0s( )=1,
0 I 1

I
.0 1j i

Thus, rule3 satisfiesdetailedbalance.Notethat this alsoverifiesdetailedbalance

of rule 12. Checkingthe remainingrules,wefindthat LB1 satisfiesdetailedbalance.

Note that while a lattice gas method may not satisfy detailed balance it may

satisfy semi-detailed balance,
d

DEFINITION 2.16 (SEMI-DE'rAILED BALANCE). Let S(a _ fS) _ 5Js(J)(a
j=O

t3) be the state transition ,function of a lattice gas method. If

S(°)(a--_/5)=l V/SEB d,
_EB d

then we say thai the lattice method satisfies semi-detailed balance.

DEFINITION 2.17 (QUASI-DETAILED BALANCE). Le' S(_ --_ 15) be the state

transition function of a lattice gas method. If

3EB d pe_ d

• then we say that the lattice method satisfies quasi-detailed balance.

Note that detailed balance is a special case of semi-detailed balance, for

c_ ot

= 1 VfleB _,
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by renaming indicies and since all transition probabilities are normalized so that

V eg
l,'3eBd

ExamPle(A Lattice Method with Semi-Detailed Balance without Detailed Balance).

Consider a lattice method on a two-dimensional square lattice (the lattice used in

LB1). The collision rules are d_fined as follows'.

• If a lattice node hasexactly one particle, moving in, say,direction k, then its
r

new direction is/_ + I (evaluated modulo 4).

In all other cases,particles do not interact, passingthrough each other, i.e.,

the node's state does not change.

The rules are summarized in Table 2.2. By examining; the table one finds that

all rules, excepting rules I, 2, 4, and 8 (the single-particle collision rules), satisfy

detailed balance. Rules I, 2, 4, and 8 individually satisfy semi-detailed balance,

however. Consider rule I, in which
"I

0 I 1
01 0

0] 01 0

and S(_ --+ ft) = 1. But $(/3 _ _) = O, i.e., state fl never makes a transition

to state o_. However, semi-detailed balance is satisfied, for with fl fixed as above,

E 8(_ --,/_) = S(c_ -.+/3) = 1. Checking;the other non-detailed balance rules
_EB4
(2, 4, and 8), it can be verified that they satisfy semi-detailed balance. Thus, on

the whole the lattice gas method satisfiessemi-detailed balance.

Whether a lattice gas method satisfies detailed oi" semi-detailed balance is im-

portant for one method of determining its equilibrium behavior. We willsee this in
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i

Table 2.2: Collision Rules for an Example of Semi-Detailed Balance without Detailed
Balance.

Rule a f_ S(a _ _)

o o o o o o o o o l '_......
i 0 0 0 i i 0 0 0 1

2 0 0 i 0 0 0 0 1 1
3 0 0 1 I 0 0 1 1 1
4 0 1 0 0 0 0 1 0 1

= 5 0 1 0 1 0 1 0 1 1
6 0 1 1 0 0 1 1 0 1
7 0 1 1 1 0 1 1 1 1
8 1 0 0 0 0 1 0 0 1
,9 1 0 0 1 1 0 0 1 1
10 1 0 1 0 1 0 1 0 1
11 1 0 1 1 1 0 1 1 1
12 1 1 0 0 1 1 0 0 1
13 1 i 0 1 1 1 0 1 1
14 1 1 1 0 1 1 1 0 1
15 1 1 1 1 1 1 1 I i



'23 CItAPTER 2. THEORY '

Section 2.2. r

The collision operator, C, is defined in terms of the state transition function, `9,

as follows:

DEFINITION 2.18 (COLLISION OPERATOR). Let a lattice gas method On a

regular lattice with d directions in p-dimensional space be given. Let its state transition

function, ,9 : Ba x I3_ -+ [0, 1], and occupation numbers fi = fi(i';n) E I3a, be given.

Then the collision operator, C : Bd ---+Bd, of the lattice gas method is defined by

c(r_)- _ s(. --+#)(#- _)r_"-g_.
a ,#_13a

The k th component of the collision operator is

\ ^ OIA"_"

Ck(ft)= __ $(a -+ #)(/_k -- ak)n n ,
a,#EB a

where

S(a --+/3) is the probability of a transition from state a to state _,

(ilk -- ak) E {-1, O,1} is the correction for direction k,

- / 1, i_fi(r;_)=fi_ =

[ 0, otherwise

To see the last statement, look back at Eq. 2.2 and use the fact that fzkE {0,1 }.

We can now formally define a lattice gas method:

DEFINITION 2.19 (LATTICE GAS METtIOD). A lattice gas method is defined

as a system that satisfies Eq. 2.5 with the advection operator, .A, and the collision

operator, C, as defined in Definitions 2.9 and 2.18, respectively. Let S be the state

7The usefulness of quasi-detailed balance is under investigation for guaranteeing certain properties

of the linearized collision operater.
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transition flmction of a lattice gas method. If the range of $ is 13, then we say that

the lattice gas method is deterministic, If the range of ,.,¢is [0, 1] and not 13, then we

say that the lattice gas method is stochastic or probabilistic,

DEFINITION 2,20 (ROTATION INVARIANCE), On a two.dimensional lattice, a

collision operator is said to be rotation invariant if V fl E 13d, V l E {0,1,, .,,d- 1},

C fik+t =C fik+l+_ ,
k=O/ k=O

in which all indices are evaluated modulo d,

Example(LBl: Colli._ionOperator).

Wecanwritethecollisionoperatorfor LB1 byexaminingits collisionrulesirlTable

2.1. The collisionoperatoris a summationoverali the collisionrulesandwith

fi = ft(ii n) maybe written:

c(_)= _ s(_ -__)(_- _)_' = _ s(_ -__)(_- _)_,

Eachrulein Table2.1 contributesoneterm to the summation, We will look in

detailhowoneof"thesetermsis generated,andthenforgothe detailsfor the rest

of the terms.Considerrule9 (denotedRg) in Table2,1 We wantto determineits

contributionto thecollisionoperatorsummation.Weil, in rule9

"1] 0
oi 1

0 1
I
_

1 _ 0
. J

and

,3(_---. )')= 1.
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Then

0 1 -1

1 0 +1
(#-c,) = ( - )= ,

i 0 -FI

0 i 1 -1
r .4 7'

I

/Ic' = AL I, 0, 0, 1 ' _I o" = "ofhf_oQ= _of_3,

r [ ],-_- _ 1, O, O_ 1 ,
n = nL - =(1-_) O, 1, 1, 0

-" (1 - f_o)°(1-- _,1)1(1- ,i2)1(1 --/_3)°

- (i- f,,l)(1- f_2),

And so,s
nT

[ 001 001]a_g_ = a g ,

- _o(1-.7_)(1- _)r_a

whichisa scalar,asexpected,Then the term contr(butedbyruleg to thecollision

operator is

-1

-- -- nonl n2n3,

+1

-1

The 0th componentof the aboveis -fZo'_"lh"-_i_3,Rule9 contributesthis term to

the 0th componentof the collisionoperator,Co(_), in the following:9

Co(_,)=

_'cf.Eq.2.1,,nelEq.2.2with_ - [I, 0, 0, I ]7'andfi- [i'to,/*,,h:_,ft3 ]T

DTheindicated rule cont,riJ)utesthe underbraced term to the collisionoperator,



2,1, DEFINITIONS AND NOTATION 3l

Rule3 Rule5 Rule6 Rule9 Rule10 Rule12

The other terms (besidesthe one contributedby rule 9) tn the abovecan be

determineddirectlyfrom thecollisionrulesin thesamewayasoutlinedfor rule 9,

BecauseLB1 is rotationinvarlant,wecanwrite

-
(zw)

in whichthe indicesare evaluatedmodulo d = 4, Alternatively,we could go

throughthecollisionrulesandexplicitlydetermineeachcomponentof thecollision

operator;we wouldfind that we couldwrite it as in Eq, 2,7, We can write the

collisionoperatorasa vectorby

C(fi)= lcr(ft) I,

2.1.3 Lattice Boltzmann Methods

DEFINITION 2,21 (MEAN OCCUPATION NUMBERS). Denote the ensemble average _

of the occupation number for direction k by

=

Then (na)_ E [0, 1] is called the mean occupation number in direction k at (z.n), The

vector of mean occupation numbers at node _ and time step n is denoted

d-1
n; = (n_); e [0, 1]".

k=o

The microdynamical equation for the mean occupation numbers is

An_' = n_ + (C(fi_)),
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Assuming t,llat tile expected value, i,e,, tile ensemble twerp,ge operator, passes through

tile llonlinearities in the collision operator, we may write

, C(np)- (¢(fi_)),

DI;:FINITION 2.22 (LATTICE BOLTZMANN APPROXIMATION), The Lattice

Boltzmann Approximation to a lattice gas method is

,an_ = n_ + C(n_), 1° (2,8)

We refer to C as the lattice Boltzmann collision operator Under this approximation,

we refer to the np as the occupation numbers, The extent to which the Lattice

Boltzmann Approximation to a lattice gas method holds depends on the underlying

statistical properties of the lattice gas method, Specifically, the covariances 11must

be negligible.

We will using an ordering the lattice Boltzmann collision operator in later analysis.

Let 6 such that 0 < b"<< 1 be given and consider a fixed vector, n E [0,1] a, of

occupation number.q, The we will assume that there exists coefficients, CO), such that

d

C(n) = y_ 6JC0')(n), (2.9)
j=o

for some J >_ 0. This expansion is based on the Eq. 2.6, the expansion for S. A

dependency of the collision operator on 6 can produce a method that models nonlinear

advection, the nonlinearity being introduced as a consequence of the Fermi Exclusion

Principle. For the methods studied herein, we assume that J _<1. In the absence of

advection, we write C(n) = C(°)(n); such is the case for LBl. (See Sections 3.2 and

t°This equation, in reference to lattice Boltzmann methods (see Definition 2,23), is called the
Lattice Boltzmann Equation,

t tSee Definition 2,5 regarding covariances, Also, see the example in Section 3,2, in particular,
Section 3,2,3, for an explicit representation of the covariances in a lattice gas method,
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3,3 for (:ases in which d = 1.) Note t,h_t d(°)(n) is referred to _ts tlle C9[1]contribution

of the collision operator,

Example(LB]: Lattice BoltzmannCollisionOperator),

The lattice Boltzmanncollisionoperatorfor LB1 is given by

Ck(n) = +_ k_Tnk+_n_+3 +!_n_+l_nk+3 +_nk+lnk+_ k_TE_-_

-nk k_'T_k_'ink+3- 'I=k_nk+2 kTr_'_- nknk+l k_T4"__

and remainsvalid in the Lattice BoltzmannApproximationto the extent that the

covariancesmay be neglected, i,e,, that the ensembleaveras;eoperator passes

through the nonlinearitiesin the collisionoperator, In vector notation, we write

C(n)= C/_(n) , (2,10)
k=o

DEFINITION 2.23 (LATTICE BOLTZMANN MF.'rHOD). Let the occupation num.

bets n'_ E [0, 1]d evolve according to Eq, 2.8. Then a method satisfying microdynamical

equation Eq. 2.8 is called a lattice Boltzmann method. We refer to Eq. 2,8 as the

Lattice Boltzmann Equation.

Discussion

The occupation numbers in Eq. 2.8 are _!malogous to particle density functions ira tlm

Boltzmann equation of hydrodynamics as can be found in, for example, [4]. We will see

later that lattice Boltzmann methods are finite difference methods. A major difference

between lattice Boltzmann methods and typical finite difference methods is th,tt in

the latter, the hydrodynamical equations, i.e., the partied differenti_tl equ_ttions, _tre

differenced, whereas in the former the hydrodynamiczd equations are llot directly
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differenced, rather the Boltzmann equation is differenced, The differenced quantities

relate ill a special way to tile solution of tile hydrodynamical equ_tlons,

Note thal, tile definition of lattice Boltzmann method ma,y be extended by drop-

Excping the Fermi lusion Principle so that n_._ ¢ [0, e_) 't, The same microdynamical

" 2.8, however, the collision operator is then defined byequation al)plies, i,e,, Eel,' _'

C(n(,Sn)) = _ (ft-c_)S(cY ---, fl)(n(P,n)) _' (2,11)

d-1

= E

in which (nk(t,";n))9 is detined to be 1 for ali nk('t-';n) e 7"4,Note that a lattice Boltz-

mann method without the Fermi ,' ' PLxcluslon rinciple is not a Lattice Boltzmann

Approximation to a lattice gas method, for without that principle the occupation

numbers are not restricted to the interval [0, 1],

Example(A Lattice Method Without the Fermi ExclusionPrinciple).

Droppingthe Fermi ExclusionPrinciplein LB1 yieldsthe collisionoperator,
3

C(n)= G(n) ,
k=O

where

Ck(n) = nk+2nk+a + nk+lnk+3 + nk+lnk+'_ - n_nk+a - nknk+_ - nknk.t-1,

the indicesbeingevaluatedmodulo,1. Note that the lattice Boltzmannmethod,

requires fewer arithmetic operations than in the corresponding lattice Boltzmann

method with the Fermi ExclusionPrinciple,i.e., LB1 (cf, Eq, 2.10, the collision

operator for LB1)
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Subsequent analysis herein pertains to lattice Boltzmann methods with the Fermi

Exclusion Principle (t_::_'nthe analysis applies to their counterpart lattice gas meth-

ods under certain statistical assertions). Most of the analysis can be easily and

straightforwardly extended to lattice Boltzmann methods without the Fermi Exclu-

sion Principle by using occupation numbers n E [0, c_) d a,nd a collision operator as

defined in Eq. 2.11, with the same definitions for the various types o2 balance, e.g.,

semi-detailed balance.

2.2 Equ;.iibrium Analysis

DEFINITION 2.24 (EQUILIBRIUM). Ifforn (°) E [0,1] d, C(°)(n (°)) = 0, then we say

that n (°} is an equilibrium solution of the Lattice Boltzmann Equation, Eq. 2.8.

This section provides and discusses two methods for determining equilibrium solu-

tions of the Lattice Boltzmann Equation, Eq. 2.8. One approach is via a theorem for

lattice methods satisfying semi-detailed balance. The other approach is more direct

and applies even in the absence of semi-detailed balance. It is, however, somewhat

more cumbersome to use in lattice methods with large phase spaces, i.e., large d.

But for lattice methods not satisfying semi-detailed balance, one generally resorts to

the alternative approach. Once having obtained the algebraic form of equilibrium

solution, it is used to calculate the linearized collision operator of the lattice method,

which is employed to generate the discrete Chapman-Enskog expansion. First, we

introduce the direct method, then the one requiring semi-detailed balance.
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2.2.1 Determining Equilibria Directly

The simplest and most direct method for determining the equilibria of a lattice

method is to set the (.911]contribution of the collision operator, C(°)(n), to zero. This

produces d nonlinear equations and d unknowns. The equations may be manipulated

so that each unknown is in terms of the other unknowns.

Evample (LB 1" Equilibria via Direct Method).

Consider setting the collision operator (as in Eq. 2.10) to zero. Note that the

collision operator is 0[1], i.e., C(n) = C(°)(n). ThenC(n) = 0 implies that

Co(n) = Ct(n). After some algebraic manipulation,we find no = nz. Similarly,

Co(n) = C2(n) =*, no = n2,

Co(n)=C3(n) _ no=n3.

Hence, no = ni = n2 = n3 = u and the equilibrium solution has the form

U

U

n (°)=
U

U

2.2.2 Equilibrium Theorem

Another techniquefordeterminingequilibriaof a latticegas method isthrough the

followingtheorem. This theorem appliestolatticemethods thatsatisfysemi-detailed

balance.

T}IEOREM 2.25 (EQUILIBRIUM TtIEOREM). Let a lattice method satisfying

semi-detailed balance and upholding the Fermi Exclusion Principle be given with col-

lision operator, C ' [0,1] a _ [O,l] J with expansion, Eq. 2.9, and state transitiort
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function, S(a _ ft), with expansion, Eq. 2.6. Then for n e (0, 1)d, C(°)(n)= 0 if

and only ifn"Yi = n/3_"_V a, fl E Bd such that S(°)(a ---*ft) _ O.

First, we introduce and prove some lemmas, after which we prove the theorem.

The lemmas (and the subsequent proof of the theorem) use an auxiliary function,

s' 7_d --, 7"4,defined by

s(n)= -(1 - n). log(1 - n) - n. logn,

Now, let s'(n) denote the gradient,

s'(n)- _nk (n) .
k-O

Then we have vector

s'(n) = log(1-n)-logn

= l°g( 1-n)n
n

nk d-1

and
d-1

s"(n) = OnkcOntSk,t ,
k,l=O

where

1 k = 1,

sk,t = nk(1 -- ni)'

O, otherwise

Note that for n E (0,1) d, the s'(n) is negative definite, ttence, s(n) is concave

downward on the interval (0, 1)d. We now proceed with the statement of the lemmas.
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LEMMA 2.26. Let c_,/5 E B d. Then (13- a) . s'(n) = log \n-_].

Proof. Recalling that ft"= I - n with I E 7U denoting a vector of ones, havewe

d-1

(/3-a).s'(n) = --Y_'_(/3k--akllog nk
k=o 1 -- nk

d-x( nk )(_k-°'k)= -logII 1-nkk=O

n n) (_-_)= log (1 -

= logn (_-_) _ logg(_-t _)

- log n_ - log nt_g_ - log gl + log gl

= log _.

O

A result of semi-detailed balance is the following:

227 E s(°)( =O.
Proof. Semi-detailed balance and renaming indices gives

E S(°)(a_f_)(n'_-n_)
c_,_EBd

= __, n'_ "___, S(°)(a _ _) - __, S(°)(a _/3)n_i_
_ o_,_

= _ $(°)(a _ _)n"_ - _ $(°)(a _ _)n_

-" 0.

[]

LEMMA 2.28. Let f(x,y) = xlog(x/y) + y - x. Then for any (x,y) E _'l =

(O,cx_) × (O, oc), f(x,y) > 0 and f(x,y) = 0 if and only if x = y.

Proof. We look at the global minimum of f on ft, and we show that the global

minimum is 0 is achieved for (x,y) such that x = y. First, we show that the only local
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Table 2.3: The Sign of the First Partial Derivatives of f(x, y).i

_ sign(f_,(x,y))[sign(f_(x,y))
x <y - +

, ,,

x>y + -

extrema, which are zero, are at those points in A _ {(x, Y) I x = y}. Then we show

that on the boundary of _, i.e., 0ft, f(x,y) is positive for (x,y) e {(x,y) lx _ y} C

OFt.

The critical points of f(x,y) are found where f_(z,y) = fu(x,y) = 0. Noting that

f,(x,y) = log(x/y) and fu(x,y) = 1 - x/y, we find critical points at (x,y) e A. To

show that (x,y) e A is at a local minimum, we resort to examining sign(f_(x,y)) and

sign(fu(x,y)) near x = y since the second derivative test fails. The sign of the first

partial derivatives of f are exhibited in Table 2.3. The signs are such that indeed

(x,y) E h gives a local minimum of f(x,y) = 0. Hence, x = y indeed gives a local

minimum of f(x, x) = 0.

Checking the boundaries of Ft, we find

1. For fixedx#0 lim f(x y)=_and limf(x y)=c_.
y'-_oo _ y"-+0 '

2. For fixedy_0 lira f(x,y)-c_ and lira f(x,y)-y.
x-'-'_ oo x'-'_0

3. lim lim f(x, yl- cx_and lira lim f(x, y) -- O.
x'-'_O y-'--_O " y'--+O x--'_'O

Then since f(x,x) = 0 V x e (0, c_) and the only local minima are at (x,y) _ x = y,

the global minimum of f(x,y) is 0 and is achieved for (x,y) such tight x = y. []

Figure 2.3 exhibits a graph of f(z,y), substantiating the lemma.
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!

Ut

u u -, .. o. ., u u *o u _Y-u_

(a) (b)

Figure 2.3: Graph off(x,y)=xlog(x/y)+y--xfor(x,y)E [0,1] x[0, I]fromtwo
perspectives. (a) Perspective is at (x,y;f(x,y))= (-3/2,1/2; 1/2); (b) perspective
is at (x,y; f(x,y)) = (3,2; 1/2). Note that the graphs are clipped as f_oo.

LEMMA 2.29. Let f(x,y) be as in the previous lemma. Then

s'(n). C(°)(n) = _ S(°)(a --+ ft) f(n"_ g, n_l_).

Proof. The result is obtained by combining Lemmas 2.26 and 2.27. []

LEMMA 2.30. st(n). _'(°)(n) -- 0 if and only if n_'_ _ = n_ 75V _,fl E Bd

--, 0.

Proof. Since S(°)(a --+ ft) >_0,

s'(n). C(°)(n) = y_ $(°)(c_ --, ft) f(n"_, nZ__) = 0
cr,fl

if and only if V _,/_ 9 $(o)(_ _ ft) > 0,/(n_'_ "_',nZi/_) = 0. Note that n_ "u > 0 and

n_i__ > 0 since n E (0, 1)d. Then by Lemma 2.28, f(n"i/_', nZ_ _') = 0 if and only if

na//_" = n_/i'_. [-3
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Proof of Theorem 2,25. In view of Lemma 2.30 it suffices to show that s'(n) .

C(°)(n) = 0 if and only if C(°)(n) = 0 . Well, certainly C(°)(n) = 0 implies s'(n).

C(°)(n) = 0. Now, assume s'(n). C(0)(n) = 0 V n E (0,1) d, Note that s'(n) = 0 if and

only if nk = 1/2 V k E {0, 1,..., d - 1}; but, in this case, C(°)(n) = 0 by semi-detailed

balance. Thus, C(°)(n) = 0 V n E (0, 1)d. []

2.2.3 Applying the Equilibrium Theorem

We now apply the theorem from the previous subsection to determine possible equi-

librium solutions of a lattice method satisfying semi-detailed balance. First, we will

outline the steps, then apply them to our example method, LBl, The steps are as

follows:

i.Verify that the lattice method satisfies semi-detailed balance, i.e., verify

S(°)(c_---+/5)= i.
e

2. For each a, fl 9 $(0)(_ ..., ft) > 0 add n"_ _ = n_W_ to a system of (nonlinear)

equations, by Theorem 2.25.

3. Solve the system of equations and identify equilibrium solutions, if possible.

The following will help in applying Theorem 2.25.

nk
LEMMA 2.31. Let n E (0,1) d and define g E (0,1) a by gk -- , 7'hen for

1--nk
l _ k, gt = gk iff nl = nk.

Proof. Clearly,

ni nk
gl = gk ¢¢'

1- i - nk
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¢, (1- nk)ht= (1- ni)nk

ni -- rtknl "- ?_k -- ttlrtk

¢:_ TtI _ n k ,

Example (LB 1' Equilibria via Theorem 2.25).

In LB1, note that $(a --, ft)= $(°)(a _/_). We determine the equilibria following

the steps outlined above:

1. LB1 satisfiesdetailed balance (and hence semi-detailed balance) as verified

in Section 2,1,2 (p. 24),

2. There are six collision rules in LB1 in which S(°)(a --* /3) > 0, But be-

cause LB1 satisfies detailed balance these rules generate only three unique

equations. The system of equations is

n°°Zl(g) 11°° = nll°°(g) °ml (frc_mrules 3 and 12) /

nmZ°('fi')1°°1 = nl°°l(_') ml° (from rules 6 and 9) / ,XRnl°l°(g) mm = n°1°1(_') l(n° (from rules 10 and 5)

or
't

n2n3n'-'on-T --- nonln2 n3 /

nln2no n3 = non3n'T?_ ! ' (2.12)non2 _r_'_i_ = nlnan-'_Ti_

3. There are trivial solutions to Eq. 2.12 if we allow n E [0, 1]d, They occur

when various combinations of nk are either zero or one. Now, we return to

l_Itere, the superscripts are in shorthand vector exponent notation so that, e.g.,

n°°ll=n[ O, O, 1, 1 ]T
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the assumption,n E (0,1)6 to determinenon-trivialsolutions, To help find

the solutions,define gk = nk/(1 - nk), and write Eq. 2.12 in terms of the

gk. We then get

g293 = gogl (a ) I

%

gig2 = gog3 (b) I'gog2 = giga (c)

Solve for go in the first equation, (a), to get

g293
go - _,

gl

Substitute this for go in the others, (b) and (c), to obtain (remember that

each gk > 0)

gl 2 = g32 ::_ gl = g3

g22 = gl 2 -_ g2 = gl.

S!Jbstitutingthese for g3 and g2 in the secondequation, (b), givesgo = gl.

And in summary,we have

go = gl = g2 = g3.

Thrice by Lemma2.31, we have

nO = nl = _2 = n3------ U,

Let n(°) denotethe non-trivial equilibriumsolution. Then

U

U

n (°) = . (2.13)
U

Note that this is the same result found by the direct method of Section 2.2,1.
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2.3 Discrete Chapman-Enskog Analysis

'l'llis analysis recovers tlm partial differential equations that are consistent with _ lat-

tice method, These are known as the hydrodynamical equations of a lattice method, 13

Also, toward proving convergence, the discrete Chapman-Enskog analysis is applied to

verify formal consistency of lattice methods, as is shown in the next section, B._cally,

the analysis involves matched asymptotic expansions', An asymptotic spatial-gradient

expansion of the mean occupation numbers is combined with Taylor series expansions

of the advection and collision operators for a lattice method to obtain the discrete

Chapman-Enskog expansion, The analysis is accurate for lattice gas methods to the

extent that the Lattice Boltzmann Approximation remains valids,

All expansions are in terms of a parameter, 5 9 0 < 5 <'_ 1 that is related te

the size of the lattice though Ax and At and any O[Ax] advection biases, Differ-

ent relationships between these parameters may result in differing sets of consistent

equations, 14 The following outlines the matched expansion analysis',

1, Expand the vector of occupation numbers 15n(Z; t) in an asymptotic series in

about an equilibrium function, n(°)(Z; t) (the so-called "ground state" in asymp-

totic expansion terms),

oo

n(:_; t) = _ Sin(/)(Z; t),
j=P

laThe term, "hydrodynamical equations", will be formally defined upon _he iptroduction of sufli-
cient notation.

14An example of how differing relationshipa between Ax and At in standard finite difference

schemes correspond to differing sets of consistent equations may be found in [66, p, 177].
l_In this section n = n(Z;t) does not denote the occupation numbers as computed by a lattice

Boltzmann method; rather, it denotes an equilibrium expansion, Note also that in this section (only)
does n_ denote n(_'£_x;nAt), Elsewhere n_.*denotes the vector of occupation numbers as computed
by a lattice Boltzmann metl,od,
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(In the remainder of this sectton, we use n and n (j) to denote n(t;t) and

n(i),-, , , , ,ix, t), respectively,) Equilibrium n (°) is determined by the equlhbrlum anal-

ysis of the last section,

'2, Generate tile (p + 1)-dirnensiona110 Taylor expansion of the advection operator,

An_ -' (nk) n+l-- r+_'k

= n; . (higher order terms),

_bout (VAx; mat), the temporal and spatial scales related by

Ax = 6L,

At = 6kT,

in which L and T are the spatial and temporal scale lengths, respectively, and

k is an appropriate order for relating the spatial and temporal scales. A usual

choice for k in diffusion-related problems is k = 2, since diffusion occurs on an

O[(Ax) 2] time scale. (We use k = 2 throughout the dissertation.) Different

choices may yield different sets of consistent equations, as previously indicated.

We substitute the asymptotic series for n into the Taylor series expansion of

the advection operator, then rearrange the resulting expansion to obtain the

coefficients of powers of 6.

3. Generate the 1-dimensional Taylor expansion of the collision operator. To do

this, first substitute the asymptotic expansion for n into the collision operator

so that

C(n)
j=O

16There are p spatial dimensions and 1 temporal dimension,
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Then deflne an auxiliary function, c(6), by

oo

j=o

for fixed n, Then expand c(6) in a T_ylor series about 6 = 0 to get

5_ 5i

c(6) = ,:(0) + 6c'(0) + _c"(O) +,,, + 7c_1(0) +,,,,

where

c 3(0) ( dr

4, Equate the coefficients of like powers of 6 on both sides of the expa_.ded form

of the Lattice Boltzmann Equation, Eq, 2,8,

/5, The n (j) are to be determined by equating the coeffmients of the Taylor series

expansions for each side of Eq. 2,8, This sets up a linear system of equations

involving the linearized collision operator of the lattice method (see Definition

2,32), Since the line_rized collision operator will be seen to be singular, 'the lin-

ear systems either have no solution or an infinite number of solutions, Imposing

compatibility, or consistency conditions guarantees that solutions exist at each

order in matching the expansions, i,e., the n (j) coefficients can be determined,

Such conditions introduce onedegree of freedom (or parameter) at each order

for e_tch dimension of the nullspace of the linearized collision operator, These

parameters, {a(°), a(1),a(_),., ,}, are determined by rnatching higher orders iri

tlm expansions, lT Note that tlmse paramcters are vectors having as many ele-

ments as the dimension of the nullspace of the linearized collision operator, is

17¢r(°) is determined by an equilibrium solution,
lSln the case that the din_(nulispacc(E)) = 1, t,lw a (_) are scalars,



2,3. DISCRETE CHAPMAN.ENSKOG ANALYSIS ,17

2.3.1 Equilibrium Expansion

Suppose the equilibrium solution of a lattice method is given. (Theorem 2.25 may

}lave been used to determine this if the lattice method satisfies senli-detailed baltmce.)

In any case, the assumption is that we have some equilibrium solution, n (°),

Example(LBl: EquilibriumSolution),
d o

For LB1 the equilibriumsolution is n(°) u, = , wherea (°) =- u is the 0[1]
U

tL
,,, ,

parameter,whichwe will find satisfiesthe consistencyconditionat (3[62], We

appliedboth the EquilibriumTheoremand the direct methodto obtainthe form

of theequilibriumsolutionsfor LB1,

Given nn equilibrium, we assume existence of _n asymptotic expansion of n(Z', t) E

[0,1] boutnlOl( ; )e[o,1]":
OO

n(_; t)- _ 5Jn(J)(._;t), (2.]4)
j=0

where 5 9 0 < 5 << 1 is a small dimensionless parameter that is related to the

unit spatial and temporal scale lengths , Ax and At. This may De recognized as

forming the basis of the well-known Chapman-Erlskog expansion, which is discussed

in [44, 45]. A couple of points are now in order. The first point regards existence and

convergence of the r.h.s, of Eq. 2.14; the seconct point is about the discrete nature

of our Chapman-Enskog expansion. Grad ['14, ,15] notes that_ ttle expansion may llot

converge or even exist, depending upon the initial and bound,try conditiotla. Itere,

the expansion is assumed to exist, and its validity is discussed irl the convergence
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analysis of Sectiott 2,4, Itr tile Cliapmat_-l_nskog procedure of [44, 45] the expansion,

l::q, 2,1,1, viewed as a function of ,_!rtlld t,is substituted into the Boltzma, nn equtl,t,ion,

()ttr expansion is subst, ituted into tile Lattice Boltzrntmn Equation, Eq, 2,8, alld is

therefore evaluated for only discrete space and time; hence, the term the discrete

Chap,!an-Ensko9 expansiol,, The n (j) in Eq, 2,14 are determined when al)plying the

discrete Chapman.Enskog procedure, This procedure is the process of matching the

advection and collision operator expansions t,odetermine the nO) coefficients and the

associated consistency conditions,

Depending on the particular lattice method, certain restrictions must hold for ex-

istence of the terms of the expansion, This will be apparent when matching the advec-

tion and collision operator expansions; the n (i) in Eq, 2,14 are determined in matching

( }' ,,. a(J-1)the expansmns. Note that nO) is a function of the parameters a (°), cr(1), , ,

which in turn are functions of I and t, but are evaluated only at the lattice nodes i*

and time steps n,

2.3.2 Linearized Collision Operator

This section defines the linearized collision operator and discusses its eigenvalues and

eigenvectors and pseudo-inverse, The relewmce of the componentwise vector product

for the eigenvectors is also discussed,

The linearized collision operator, /2, is to be defined _s a linearization of the

zeroth order contribution of the collision ol)er_ttor iu about tLnon-trivial equilibrium,

n (oI, Our (liscrete Chapman-Enskog emalysis al)l)lies t,o the (:ase where the collision

tt_See p, 32 rt:garding or(lering t,lte lattice Bolt, zlu_:nn collision olwrator,
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operator can be expressed (for fixed n) as

C(n) = C(°)(n) + 6C(')(n),

for some C(°)(n) and C0)(n). (In our example method, i.e., LBl, C(°)(n) = 0.) That

the collision operator can be expanded to first order in 6'encompasses lattice methods

with an advection bias on the order of 8. This, coupled with the Fermi Exclusion

Principle leads to methods for nonlinear advection-diffusion systems. (Advection

biases are addressed in the analysis for the two example lattice methods in Sections

3.2 and 3.3:) In our treatment, we assume that the highest order in the collision

operator is 0[6]. The linearized collision operator and its pseudo-inverse, £+, are

used in the the discrete Chapman-Enskog expansion.

DEFINITION 2.32 (LINEARIZED COLLISION OPERATOR). The linearized colli-

sion operator, £, of a lattice method with collision operator, C, operating on the mean

occupation numbers, n, is defined by the d x d matrix

d-1

£ - £k,t ,
k,l=O

where

= (gnl '-'k n=n(°)

and n (°) is an equilibrium solution of the lattice method.

The linearized collision operator is a linearization of the zerotb order, i.e., 0[1],

contribution of the collision operator about a non-trivial equilibrium. Not _ that

£ =/)C(°}(n(°)) : -a_-OC(n(°))= -_-0C(n)
un on n=n(0)
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For all the lattice methods studied herein, £, is a symmetric, nonpositive deft-

nite circula, nt. 2° This is because for all of our methods: (1) they have rotation and

reflection 2J invariances (these are isomorphic to the permutation and reflection isome-

tries in the the isometry group _ globally preservingthe set of velocity vectors on

our two-dimensional lattice (see Definition 2.11)), (2) the linearization of the collision

operator is about an isotropic equilibrium, i.e., it is invariant under the isometries

of the lattice (see Definition 2.7), and (3) they satisfy Semi-detailed balance 22 (see

Definition 2.16). Reasons (1) and (2) guarantee that £ is a symmetric circulant; the

addition of (3), which implies the existence of an entropy through local and global

H-theorems (see [37]), guarantees nonpositive definiteness.

Example (L B1 • Linearized Collision Operator).

First, note that for LB I, C(n (°)) = 6'(°)(n(°)), since it contains only (911] terms,

i.e., ali higher order terms (c(k)(n(°)), for k >_ 1) are zero. Henceforth we write

C(n) for un(°)(n) in this example method. Then the linearized collision operator for

LB1 isgiven belowwith k E {0, 1,2, 3},2a

O-'_nkCk(n)ln=n(O)

= (-nk+lnk+2nk+3 - nk+ln--_nk+3 - nk+lnk+2nk+3

2°A d × d circulant (see for example, [3, pp, 242-4]) is a d × d matrix of the form,

Co el ' ' ' Cd- 1

Cd- 1 Co ' ' ' Cd- 2

_ . o ,

°.

el c2 . . . c 0

21Reflection invariance is a symmetry about the axes spanned by each velocity vector e'k. (lt is
analogous to parity-invariance in [37],) This definition suffices for two-dimensional problems on both
the hexagonal and square lattices.

22Weaker assumptions are being considered (cf. quasi-detailed balance, Definition 2.17) [54].
='aRecall that the indices are evaluated modulo d = 4.
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-- - "fiuu -u_u- u u'_ - TiTiu - u'ii"_

= -3u'g = -3u(1 - u),

0 n=n(°)Onk+l ck(n)

= (-_'_nk+2nk+3 + _ nk+2nk+3 + W#nk+2n--_

+nk_nk+3 + nknk+2n'W'_- nknk+2 _)[n=n(O)

= u_=_(1-u),

Onk+2 ck(n) =n(O)

= (+'__nk+3 - 'g'_nk+lnk+a + 'tr_'nk+ln---_"_

q-nk k_'_nk+ 3 -- nk'ff_"_ + nknk+lh_)]n=n(O)

= UTI=U(1--U),

0 G(n) IOnk+3 n=n(O)

= (+h-_'_nk+2 + _nk+l_-n--'_nk+lnk+2

-nknk+l nk+2 + nk'a,':+lnk+2 + rtknk+ln-i'_)ln=n(O )

= u'_= u(1-u).

Hence, the linearized collision operator may be written,

-3 1 1 1

A 1 -3 I I

4
1 1 -3 1

1 1 1 -3

where A = -4u_ = -4u(1 - u). Note that indeed £ is a symmetric, nonpositive

definite circulant.
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Eigenvalues and Eigenvectors

The eigenvectors and eigenvalues of the linearized collision operator are important

in the discrete Chapman-Enskog analysis. They are also important in determining

tlm conserved quantitics in a lattice Boltzmann method [37]. Note that they may be

easily found for circulant linearized collision operators (see, for example, [3, pp. 242-

4]). A symbolic mathematical manipulation tool, such as Mathematica, can be used

to determine the eigenpairs. Given that the linearized collision operator is symmetric

it possesses a complete set of real orthogonal eigenvectors.

DEFINITION 2.33 (EIGENMATRIX). Let {q0, ql,...,qd.-1} be a set of real orthog-

onal (column) eigenvectors of £ with corresponding real eigenvalues {Ao, Al,..., Ag-l}.

Then the eigenmatrix, Q, is defined by

Q -- [q0, ql,...,qd-1].

The normalized eigenmatrix, Q, is defined to be

where ct_ - qk/I qk 2'

Example (LBl: Eigenpairs of the Linearized Collision Operator).

The set of unnormalized eigenpairs (eigenvalue,eigenvector) of our example's lin-

earized collision operator, £, is

{(Ak,qk) lkE {0,1,2,3}},

where the eigenvaluesare given by

eigenva_lues(/2) = (Ao, A1,A_,A:_)= (O,-4u'g,-4u"ff,-4u_), (2.15)
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and the eigenvectors are given as the eigenmatrix,

1 1 0 1

[ ] 1 0 1 -i (2,16)Q = qo, ql_ q2, q3 =
1 -I 0 1

1 0 -1 -i

in which the qk are column vectors,

Recall that the nullspace of a matrix is the span of the eigenvectors corresponding

to the zero eigenvalue.

Examp/e (LBl: Nul/space of Linearized Co//ision Operator).

In our example, the nullspace of the linearized collision operator is given by

nuUspace(/: ) = span( qo).

The linearized collision operator may be expressed in terms of its eigenpairs. Let

A = diag(Ak) d-1 Thenk=O'

d-1 qkqT=Q AQ=E
_=o qk 'q_

Since the linearized collision operator has a nonempty nullspace it has no inverse;

however, we can define a pseudo-inverse, £+, as follows:

DEFINITION 2.34 (PSEUDO-INVERSE). Let linearized collision operator, £ E

7"4,d, be symmetric with a complete set of real orthogonal eigenvectors {q0, ql,..., q4-1 }

and respective eigenvalues {Ao,A1,...,Ad_I}. Let Q be the normalized eigenmatriz

and let A - diag(Ak)_-'lo_. Also let A+ -- diag(f(Ak)) d-lk=o,where

f(A)- / I/A, /fA:_O,

[ O, othe7 wise.
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7'hc7_the pseudo-inverse of £, denoted £+, is defined by

., 1 qkq_'

kz_k_0

This is consistent to the definition given in Golub and Van Loan [41, pp. 138-9].

Example (L B1 : Pseudo-Inverse o( Linearized Collision Operator),

FromEq, 2.15 and Eq,2.16 we have

£ = E"kkq--_ = A _ _q3q3 ,k=0

1 qkq T 111 (qlqT+q2q27,)+l ]£+ = E "_k_- A 2 4"q3qT 'kg_k¢O

where A - -4u_ = -4u(1 - u).

Componentwise Eigenvector Product

The componentwise vector product (, operator) between eigenvectors of the linearized

collision operator will be employed to simplify calculations in carrying out the dis-

crete Chapman-Enskog procedure. Recalling the definition of the, componentwise

product operator in Section 2.1.1, we see that for two eigenvectors, qi and cb , their

componentwise vector product is

d-I

qi * qj = qi,kcb,k ,

k_'-0

in which qi,k denotes the kth element of the ith eigenvector. Also recall our convention

that the. operator has the same precedence in expressions as scalar multiplication.

Fore×ample, . operations would be evaluated before vector additions. We will also

refer to the. operator as the eompoT_eTTt.,isecigcnvector product when applicable.
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Table 2.4: LBl Componentwise Eigenvector Products,

Ii- I[noI ql [ II
qo qo ql q2 q3

,, ,,,

q, q, ½(qo+ q_) o q,
1

q2 q2 0 _!qo -- q3) --q2
,

q3 q3 ql -q2 qo
, ,, ........... ,, , , , ,

In tile forthcoming discrete Chapman-Enskog analysis, using componentwise prod-

ucts will simplify calculations. The simplification is in expressing the product's result

as a linear combination of the eigenvectors. Then dot products of such an expression

with an eigenvector becomes trivial (in the light that the dot product of orthogonal

eigenvectors is zero).

The componentwise product of two eigenvectors can be expressed a.s a linear

combination of the eigenvectors of the linearized collision operator, for qk * qt C
d-1

span(q/,)k=0. Given the eigenvectors of £ we can tabulate ali possible cornponentwise

products. Determining the discrete Chapman-Enskog expansion makes extensive use.

of such a table so that vectors, v E TCd, can be readily expressed in terms of tlm basis

{qo,ql,...,qd-1}.

Example (LBl: Componentwise EiKenvector Products).

The componentwiseproductsof the eigenvectorsof the linearizedcollisionoperator

of LB1 aretabulated in Table2,4. Someexatnplesfollow to showhow the entries

in the table aredetermined,
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I, Evaluate ql * q'2'

r .

: o (1)(o) o

0 1 (0)(1) , 0
ql*q2 = , = = =0,

-1 0 (-1)(0) 0

0 -1 (0)(-1) 0

2, Evaluate q2*q2:

o o (o)(o) oi
I i (I)(I) I'

q2 * q2 : , -- -- l

o o (o)(o) o l
I

-: -: (-:)(-1) :j

_ 1 (qo q3),, 2

3. Evaluate q2 * q3'

0 I (0)(I) 0

I -i (i)(-I) -i
q2 * q3 : * ! : =

o : (o)(1) o
i

-1 -1 (-I)(-i) 1
,d

0

1
,-,,

0

-1

= -q2,
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Using Componentwise Eigenvector Products

Given a table like Table2,4 for ali componentwiseeigenvectorproducts,we will

oftenhaveto calculateanexpressionlike

0

0

S=qt, qa* Y ,, (cf. the example on p, 69)
0

0

-_-_yU

To dothe calculation,first wewritethe vectorexpression

0
+_-Txu

0

,, Oy
0

-_--_u
0

- _'_yu

as a linear combinationof eigenvectorsof L_. Then we usethe componentwise

eigenvectorproducttable (Table2.4) to simplifythe expression,after whichwe

completethe dot product.In calculatingthe dot product,weuseorthogonalityof

distincteigenvectors,We find

S = ql' *( -4-:u+ u

= ql' (qa*ql)_zu+(qa*q_) u

( o o- q_ _W-u_
= ql' ql_-_xu oy /

0 0

= ql , ql_xU - ql . q_/-_yu
0 0

= 2_u-O=2_Ozu,
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(!nlctlla.l,ions illvolving complicat, ed vecl,or expressions _md dot products can become

lllU¢'llSiml)ler ,,vii,li the. component, wise product,,

2.3.3 Collision Operator Expansion

1,'o,,fixedn (studfixed{n(';)Ij > 0}), definec', 7V.-,[0,1]a by

C(_) _--" C(ll(°)-_ all (1) -_ a211 (2) -lt-,, ,)

= C(°)(n(°) + 6n (I) + ,_2n(2)+., ,) + 6C(I)(n (°) + 6n (I) + 62n (_)+ ,, ,),

Note t,ha,t c E U°'('R., [0, 1]a) because C(n) is a. polynomial-type function in the n.k

a,nd since n is polynomial in 6, Then by Taylor's theorem :a'l,

62 a3 64

c(6) = c(O) + c'(O) + _TC"(o) + _c'"(o) + --_,c[iV](o) +..., (2.17)

Wh (2l'e

:/0,-( I =o,
Eq. '2,17 is the expansion for the collision operator, which will become apparent,

through application of the chain rule,

'I.'o determine the coefficients in Eq. 2,17, we look at the derivatives of c(6) ew.flu-

ated at a = 0. First, note that

_ d d
,,' = _-an=_ (n(°>+_,,('>+:,,(_>+:,,(_>+...)

= n(_>+ 2an(')+ 3a=n('_)+.,, ,

n" d2 d ,
= 7g_,,= _,_
= 2n(2) + 66n(a) + 12_n (4)-k.... ,

"_41_'orrxst,_tt,ement (and a proof) of laylor's I heore)n see, for exalnple, [55, S'(:ctlon 6,8 (i lwor(,llt
lo)],
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i

o

n[jl dJ d j

= jl,a(_}+ (j + t)l 6n(_+1) -t (j + 2)I_n(j+_) +,,,21 31 '

and in general

.c_ll dJ [_=0 = _-yn = jln (_},6=0

Also note that irl determining the coefficients we will apply the the chain and product

rules for differentiation, e,g,,

dc(o)(n = Oc(o)(n), d 7)C(o)On _,1 = (n), n',

and

I:)_¢(°)(n),n'n"

- 'D2C(°)(n), d , ,,- _--_(nn ) + DaC(°)(n), n'n'n"

= 7?2C(°)(n), (n'n'" + n"n") 4"DaC(°l(n) , n'n'n 'i

= D2C(°)(n) , n'n'" + D_C(°)(n), n"n" + 'L')aC(°)(n), n'n'n",

The coefficients in Eq, 2,17 are found at each order as follows:

o[11.,

c(3) = C(°)(n) + 6C(')(n)

=v c(O) = C(°)(n(°)).

J(6) = r)c(°)(_)._' + c(_)(n)+ _vc(')(n). ,,'

::_ c'(O) = "DC(°)(n(°)).n(1)-_-C(')(n(°)),
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O[_"1:

d

_.,,(,_)= ,/_(_"('_))

= _C(°l(n), n" + _'_C(°)(n), n_rt_

+ '2_)c{l)(ll) , ll t ._. (_ [_')2C(1)(I1), 11111/ + Z)C(1)(I'I) , n it ]

_-,. c"(0) = 2_C{°)(n(°)) , n (2) + D_C(°)(n(°)), n(1)n (I) + 2DC(1)(n(°)) ' n(1),

O[_:']:

d (c"(,5))J"('_) = d'7

= DaC(°)(n), n'n'n' + 37)2C(°)(n), n'n" + 'DC(°)(n) , n'"

+ 37>_6(')(n), n_nt 4-3_C(_)(n) ,n"

+ 6 [D3cC1)(n) , ntntn _+ 3D2C(1)(n) , nrn" + DC(t)(n) , n"q

d"(0) = 7)aC(°)(n(°)), n(_)n(_)n (_)+ 6D2C(°)(n(°)) , n(_)n (_)

+ 6DC(°)(n(°)), n (3)+ 3D2C(t)(n(°)), n(1)n (1)

+ 6_C(1)(n(°)), n(2),

O[_"]:

d

_I_,,1(,5)= _ (j,,(,_))

= 'D4C(°)(n), n'n'n'n' + 67)aC(°)(n), n'n'n" + 4_D2C(°)(n), n'n'"

+ 37)2C(°)(n), n"n" + DC(°)(n). n'"'

+ 4'D3d(l)(n). n'n'n' + 12D2C(t)(n) , n_n" + 4DC(t)(n) . n'"

+ (o[_] t,,,.m.)

c[LV](0) = D4C(°)(n(°)), n(_)n(_)n(t)n(_) + 12D:_C(°)(n(°)), l-_(1)n(l)n(_)

+ 24_')'2C(°)(11(°) ), llCt)ll(3) + l'2'D2C(t))(ll(°)), ll(2)ll(2)
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+ 24'Dg(o)(n(o)), n('t)+ ,l.DaC(t)(n(o)), n(l)n(l)n(l)

+ 24T_2C(1)(n(°)), n(l)n (2)+ 24T_C(l)(n(°)), n(a),

Finally, substituting the c[J](0) into Eq, 2,17 and 'using the notation E = :DC(°)(n(°))

(see Definition 2,32), we obtain the Chapman-l."hlskog-T_ylor asymptotic expansion

of the collision operator about equilibrium, n(°),

C(n) =

-- C(°)(n(°))

+ 6 [E, n O) +C('l(n(°))]

+ 6a [E, n (a) +/)_C(°)(n(°'), n(lIn (_)+ .._/)ac(°)(n(°)), n(')n(')n(1)

+,_/)2C(')(n(°)), n(')n(')-_. T)C(')(n(°)), n(_)]
4

n(1)ll(3)

+_/)ac(m(n(°)), n(')n(1)n(_)+ 1D"C(°)(n(°'). n(1,n(,,n(1,n(,,

+6'DaC(1)(n(°)). n(1)n(1)n (l) + g)2C(1)(n(°)), n(1)n (_)

+ n(a)]

+o[6 1, (2,is)

This expansion is independent of the particular collision operator (tl l) to 0[(5"]advec-

tion Liasing, as per the discussion at, the beginning of Section 2,3.2). Note that t,lw.

form of the expansion clepencls tmither on tlm dirnensionality of t,he lattice llor ()n the

number of particle directions.
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2,3,4 Advection Oi)erator Expansion

1li( adv(,(:tioll ol)er_ttor e×paxlsion d(,p(.'ll(ls oil tile (.llrnen_lonMlty of tile lattice and

l,lle itun_b(_rof particle directiolls, lt also del)ends on the relationship between ghz and

'S ,._\t, ,,ksthe focus of this disscrt_ttion 1,on svste,ms with diffusion, we restrict treatment

of Lh(.,advection operator expansion to the case &t = cg[(&x)a])i,e,, _t - 7'/5a and

Ax = L_, Tlm steps for determiniIlg til(.' expansion follow:

I I i ...,t1, C,_tlculat(. tile (p + 1)-dllnellsional Taylor expansion of Ank(x;t) = 7_.k(1+

_zc_;t + Gr)evalu_ted at (a_';t) with _t = _7' and Ax L_, In constants

'I' and L are the temporal and spatial scale hmgths, re.spectively,
I

, 2, Substitute the space-gradient equilibriuxn expansion for n (nee Eel. 2,14) into

the result of step 1, writing the result as an expansion in 6,

Let us apply these steps to determine explicit expressions for the advection operator

expansion, But first, let us discuss gradient expressions as they appear in the advec-

tion operator expansion, then we will proceed with the development of tile expansion,

Some Derivative Operations in the Advection Operator

Befo,'e developing the advection expansion, s()me notation for gradients of vector

valued functions ofm variables (xo, xt,,,,,x,,,_l) needs to be introduced, If_'k is a

unit velocity vector' in direction k oil tile lattic(., (alld t.'_,iis its il,l_ (:oml)onent), tl_e_

in operator notation

v)'- ,
As usual, expressions involvi_g s_tl_s(:ril,tSs_rr()_t_d('d I,v s_lll_U'eI.)rackets den()t,(, v_,c-

tots (:On_l)atibl(.,witl_ vect(,rs of (,(:('_ll_ittioI__Illt_['l's, i,(',, v_,ct(_rs il_ [0, 1]'_,
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Example (LB 1 ' Derivatives in Advection Operator).

Let us list some derivative expressions involving the four unit vectors in LB 1 as

givenin Eq.2.4. Here,we aredenoting zo = :cand xi = y. First,

0 0 _ and1. V= cO:r.'Oy/'

, 02 02

2. _72 _7. V = Ox---_ + _,

Then

CO 8 _ 0:3
_.o. V = +_z ' (_'o.V)"_ = -+-8x----_, (_o.V):_ = _._ ,

02 03

gl'_7 = +O--y"__co ( h'l ' V)2 = -_ Oy 2' ( g! '_)3 = __._,i)y3

O CO_ 83
_2._7 = -0-7' (_2._ )2 = __.cOz_..__, (_'v;)3 = 0x3'

O CO_ 03

r3.v = coy, (r3. v)2 = +_, (r3. v)3 = 8ya "

!n our vector notation these are written,

cO t.)2 0 3
+_ +_ +_

_k.v = +N (ek v/_ (ek.v)_ +_-_Y__ ° --- _ "-- o

0 8 :_ 03 /

-O--'; +Tx'_ coz3I

JO 02 03

(2.19)

Taylor Expansion

First, let us recall the Taylor series expansion for a vector function of several in-

dependent 'variables. Let n e C°°(7_m,TEd) be analytic in _m, where n(E) has m
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d-1

indel:,end¢,nt variabl_I,S,2 = (,ro,:rl, .... a:m-l), and d dependent ones, n = nk
II ,

k=O

Then tl_e Taylor series expansion about (= (Xo, x_, ..., xm__ )and evaluated at _ -t-3'k

is
m- l ] m- 1

1_,,.((+-7_) = _. (_k.v) j ,_k(() , (2.2o)j=o
k=O

k=O

where _k is some vector distance away [rom (that depends on which function, i.e.,

which (nk), is being evaluated, ttere, we are using the usual definition of the gradient,

(oo o)V - Ozo' Oz_' Oz__l

Also,

('Tk' V) _- (t___0_'k,,¢1¢_11

The advection operator expansion comes from a special case of Eq. 2.20.

A lattice method has d directions at each node of its lattice. It also has p spatial

dimensions with one temporal dimension. We use a Taylor expansion with n being

the vector of occupation numbers (each a function of space/time position 0. The

spatial/temporal positions are indicated by ( = (xo, x_,...,z,__;t) :-: (_;t). The

desired Taylor expansion is of a vector function with p + 1 independent variables,

i.e., (_;t), and d dependent ones, i.e., n = n0, hl, ..., hd-1 ). The Taylor

expansion may be written

[ [ 1
j=O
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[ ( ) ]
_ 1 0 '/

= nk(_';t) + _ LS(_k. V) +TS_--_ nk , (2.21)j-I

where

i

Ax - L5

At - T52,

fi'kis the unit velocity vector irl direction k, and the gradient operator, V, includes

only the first p independent variables, i.e.,

0 0)V-- , , ....
o Ozl ' Oxp_l

In particular the gradient does not include the temporal variable, t; it is treated

separately due to the differing spatial and temporal scales. Rearranging Eq. 2.21

yields

.Ank(Y;t) - ,_k(Y;t)

= 5 [ L(gk.V) n_, (2.22)

+ 52[ L2
_-.(ek.v)_k + TO,_

(_k'V)__ + LT (_k,V) N_k

7. (_k.V)_,k+ _ (Ck.V)_N_ + -5-b-_,_k
II
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Ls LT 2 02 L3T 0

+ _' 7(_k. Vl_k +-T-(_, v)_,_k + -_ (_'k,V)_N_k

+ 0166]. (2.23)

This is the Taylor expansion of the advection operator. It expands the occupation

numLers about a location (Y;t) and is evaluated at their new locations.

Asymptotic Expansion

The final expansion of the advection operator is finally obtained by substituting the

asymptotic equilibrium expansion for n (see Eq. 2.14) into Eq. 2.23 and determining

the coefficients of powers of 5:

[ Ank(_;t)-nk(_;t) ] =

6 [ L(G. V)n (°)k

+ 6_ L2 n_°) rrOn(°) ]
T.,(¢_' v) _ +_ k + L(_k. V)_ ')

+ 63 L3 n(kO) On(O) (2)_, (G' V) 3 + LT (G. V) +L(G.V)nk
I

L2 n_l) On(l)+'27 (Ck' V) _ + T_/ k

. n_31
+ 54 .L' )4n_O)+ L2T2 (-'_t k + 2T2Ot "V.(¢_.v (_. v)_On(o)__,_o) +L(_ v)
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+ -2T(G .v + T :d[ -_.(G 'V + LT (G .V) _[nk)

%7(ck.v)_,_T)+,-7-(_.v)_7_,_+7 (_k.v _7
T2 02

L 4 L2T 0 n_l) q n_l)+IT(ck.v)"n_')+-T (ck'v)__ 2 of

La )3 ]+_(G'V n_2)+LT(G,V) On(2) L2k +'_-! (_'k'V)_"_)+ L(_'k'V)n_ '')

+ 0166] . (2.24)

2.3.5 Matching the Expansions

Matching coefficients of like order of the advection mid collision operator a,symptot, ic

expansions (Eq. 2.24 and Eq. '2.18, respectively), we obtain the following hierarctly of

equations for orders up to 0[64] .

d(°l(n (°1) = O.

]

£" n(') + C(')(n (°)) : L (_'_ /
J

o[,_].

1
£. n (2)

+ 2_2d(°)(n(°)). n(_)n (1)+ 7?C(1)(n(°)). n (_)

L 2 0
= 2 T n (°) n_l)-_v(G'V) n_°)+ _ k +L(G.V) .
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0[_:_]'

i , i!

= _ , e-:,¢,V) a + LT(ga, V) _-_na + i (gk' V)

L 2 8 (1) ]

+ 97.(ek' V)2,,_') + T_--_na j '

1 1 .
/Z. n (4) + --'D4C(°)(n(°)), n(_)n(_)n(_)n (_) + "'_3C(°)(n(°)). n(1)n(1)n(2)

24 2

+ D2C(°)(n (°)) . n(1)n (3) + _D2C(°)('n(°)) . n(2)n (2)

i 1) n(1)n(1) ) _ n(1)n(2) _ (n(O))+ _'L')3C((n(°)). n(_+ 7)2C(_,(n(°)). + "DC(_) . n(3)

-_.L4 )4 ,,._o) zL2T o_O_o, TT20t"--102n_°>+ L(L'j, V) n_3)= (_. v + ---_(¢k.v)__. + .

In managing this hierarchy of equations, it is generally convenient to express vectors

of the form [

(_'k'V)j nk

as linear combinations of the eigenvectors of the linearized collision operator, £. This,

of course, depends upon the particular lattice method, its collision rules, the lattice,

and the number of directions. But intelligently parameterizing lattice methods can
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significantly reduce the analysis of similar methods. 2_

Example(LB1: GradientExpressions).

For LBl, expressing[ (g_.V)/Cni I as linear combinationsofeigenvectors(I_)
' dependson whetherj isevenor odd:

[(e_. nk = (2.25)
V) j

l/:o o,, * _ + q2* _) n, j odd,

__/°J x_ , (x oJ'_)_qo -2 OxJ Oy'/ n, j even.

Then, for example,

] / o o).,o,(gk' V)n_ °) = q, * _ + q2* _y

0 n(O)= ql* n (°)+q2*
0 0

= ql _-Tu + q2_yU.

and2_

(ek,v): n_°)

= 7qo* \_x 2 + Oy'2,] +Tqa* Ox; Oy_ n(°)

= _qo, _n(°) + n!°) +_q_* 7,_n(°)- _. )

1 ( Oa 02)1( 02 Ou '_= _qo, bT_=qo+ b-Tqo _+ _q_• b-v_qo- o,Tqo],,,

= 7q0 _+_ u+_qa 0z 2 0u2 _.

25,,Similar,,means having ghesame lattice dimensionality,number of particle directions, eigell¢cc-
tors of the linearized collisionoperator, and nullspace of the linearized collisionoperator.

_6Notethe use of the, operation for cornponentwisevector product (see Section 2.1,1),
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r
(cf, Eq. 2,19, whichlists operator _ (Ek, V) 2 in a form without the eigenvec-

L
tors, /

As previously motivated, the convenience of expressing (gk ' _r)Jnk as linear com-

binations of the eigenvectors of/2 comes from that the eigenvectors are mutually or-

thogonal. Then the componentwise vector product (,) can be employed to simplify

complicated expressions. This is especially useful when the expressions involve dot

products.

/

Example (L81 " Using Componentwise Eigenvector Products).

Consider the expression qo'(ql * q2). Then using the, multiplication table (Table

2.4),

[1 ] 1 114.0]._2 .qo'(q1*q2) = qo' _(qo.q3) = 7[(qo'qo)+(qo.q3)]=

For the equilibrium expansion, Eq. 2.14, to exist (let alone converge), we must

be able to obtain expressions for the n (k), In matching the advection and collision

operator expansions, these coefficients are obtained using the pseudo-inverse (L:+) of

') ¢ ,the linearized collision operator (see Definition ..34) At each order j > 1 in matching

the expansions appears an equation, Z:. n (j) = g(J), n(J), g(J) E [0, 1]a. In order that

a solution exists, the r.h.s., i.e., g(J), must be orthogonal tc, the nullspace of E. This

requirement forces a consistency or compatibility condition for each eigenvector in the

nullspace of £.

Ill
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DEFINITION 2,35 (CoNSISTF, NC,Y CONDITION). Gi'veTt that £,. n (j) = g(J) foT'

some order j in lhc discrete Chap'man-Enskog expansion, l/tc jtl_ order (_)[(_J]), coil-

sistency or comptttibility condition is that

qk' g(.i) = 0 V k 9 Ak = 0, (2.26)

'lvhcre Ak E eigenvalues(L:),

If the consistency condition holds, then n (j) ll]_ty b(_ ol)tained tlsiIig £+, aIl(l n (j) --

L:+ . g(J) q- a, in which a C sptm(nullspttce(/:)) is a.rbitrary.

Example (LBl: Form of O[6J] Consistency Condition),

For LBl, nullspace(L:) = sp_tn(qo). Then at 0[6 j] L:. n (j) = g(J) for some g(J),

which is known. The consistency condition is that qo ' g('i) = (}, If the consistency

conditionholds,then n (j) = £+ . gCJ)+ cgJ)qo,in whicha(;)qo E nullspa('(,(L:)is

arbitrary (a(J) is a scalar).

At, each order, C9[,6'J], irl mat,oiling tlw _ulv('ction iul(l ('ollisi(,ll Ol)(,rat,or ('xl)allsi(,tl,,_,w(,

will solve for n(J) in terms of {n ("), n(l),..., n(J-I)}. 'l'llis will illt,'OdllC(' a ('()llsist('l,('y

condition for each eigenvector in the nullsl)a.ce of £ al. that order. Ii, will als(, illl,r()(lllc('

the same number of arbitrttry parameters, whi(:l_axe (h'_ol,ed (tri/), crlJ),...)"r.

DEFINITION 2.36 (HYDI/OI)YNAMI(:AL EQIIA'rlON). If Ax = C')[5] ,,d At :=

O[_:], then the 0[62] consistency condition is called the l_ydro(lyna,_i(:al e(lUa,ii()n of

a lattice method. When the (9[6_] consistency condition is a m'ltltiplc cc't_dilion,, i.c.,

the dimension of the nullspaee of the li'nearized collision operator is .ql'eater lh.au o,c,

we refer to the multiple conditions as the hydrodynamic_d equtttio,ls.

_zIf dim(nullspaee(£))= 1, we write ¢(d) for cr_/), the subscript being unnecessary,



72 CtlA PTEt_ 2, 7'HEOI?,Y

Since oIllv..{n (°), n (l),,,,, h ,J-!)} is needed to deterrnine the consistency condition at

order j, solving for' n(J) only }lell)s in determining the next lligher order consistency

condition, Now, let us perform these tasks for our example, LBl, up to O[_5], (Please

note that as this will take up several pages, it is suggested that upon a first reading the

reader refer to the important results, namely the O[/i2], O[Sa], and O[54] consistency

conditions, Eq, 2,29, Eq, 2,31, and Eq, 2,37, respectively, Also,while some details of

the calculations are included in the text, the interested reader will find further details

in Appendix A,)

Example (LB I ' Applyin E the Discrete Chapman.Ensko E Procedure).

The following notation is used throughout this example:

A = Al=A_=Aa-=-4u(1-u),

1 1
D(u) = A 2'

D'(u) = 4(2u- 1_..._.._)
3

k=o
3

n(J) = a(i)q° + L:+ 'g(J) = Z c_j)qa,
k=t.,

1 {a,2,a) AIo, c(°)(.).in which c(j) = a(J) and c_j) = _ fork E , =

In the forthcomingformalconsistencyandstabilityarguments,wewillbeusing

anequilibriumexpansiontruncatedbeyondthird order,i,e., h = _"_j=O3_jh(j), in

whichh(j) = n(J). lt turnsout that a(3) appearsin n(3),anda(3) is determined

by the CO[_5] consistencycondition.Therefore,we must carryout the discrete

• Chapman-Enskogprocedureto determinethe consistencyconditionat C9165],For

eachorderin matchingthe advectionand collisionoperatorexpansions,Eq. 2.24
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and Eq, 2,18, respectively,we find the following;:
i,

011]: C(°)(n(°) ) = C(n (°)) = O, as desired, by choice of n(°), Then

n(°)= qou, (2,27)

016]: We find

= °)

= g(1)
3

= E E.ll)q, ,
k=O

where

0(1) = O,

_!) = Lu=,

1) = Lu u ,

_(31) = 0

by applying Eq, 2,25,

• Consistency: qo' g(1) = 0 is already satisfied, so no consistencycondition

is introduced at this order,

• Solve for n(1): We have

n(t) = g+ ,g(1) + a(1)qo
3

= c(°l)q° + Ec_l)qk ' (2,28)
k=O

where

cO) = a(1)
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is a free parameter(determined in the 015 :iI consistencycondition)°and

or

ell) 1= i_u_,
(1) L 1

(:2 -" _ Ry

c_I) = (},

in wilichA -=AI - ,\'_ = A:._(seeEq,2,15 foreigcnvaJues(£)),

C)[6_]'We find

= I L_" _,,io)r_° (,,) i,)
£, I1( 2 )

2-T(G.V) + Otn,k + L(G . V)n
L.

_ 1D_C(n(o) ) , n(l)n (1)
2

g(2)

+ qor u+L ql,_z+q_,(Ty] (c(')qo+ , q, "t-

_ 1.D2C(n(O)), n(l)n(l)2
3

_r=-O

where

i;2

_(_) - Tut- yV, DI_)WL,

_I_) = LC)-_,D'(.)a_(')u_,

.3 - T 7_ (u) n:r -(u v )-_(l)(u)uz,)-_y(D(u)uu) ,



_'N" "' ' 752,'J, DISCRETE C'tlAI_A[AN.t,, SK'O(; ,,iN,,1L]SIS

= Consistency: Imposing the consistencycondition that qo' g(_) = 0 yields
1

3

j=O

or

_2) = O,
i

With u - )¥ this may be written

"ut= uV, D(u)Vu, (2,29)

* Solve for n(_): We find

nC_) = /2+,gC_l+cr('_)qo
3

= \-"_)qk (2ao)
k-.'O

where

c(o_) = aC_)

is a free parameter (to be determined in the 016 'lI consistency condition):

and

,kk '

or !

cl2) = La(=')_ LD'(u)Aa(')u=,k

4_) = _t_,)_c.v,(.,)x_(,),,_,£

Cg2) = L 2 0 ))],

0[63]: We find

Lat(ek, ,,_o)+z..r(_.v)g
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L '_ ),_ ,0 ]+7 (,:'k,v ,,_')+_1_,,_')
l.p3 C (o) l) (t) t)

- 'D'_C(n(())),n(l)n (_) - _ (n ),n( n n (

g(3)
3

-- E _?qk,
k=o

where

#) = 'r_l')- L2v,[_(_)v_'"+_'<..).,.,v_]2

-" "-_u==r+ LTu_,t + --_.Ox----7 + L'I _t ,t=

L 3 0 1 D

4L )_

L [ )_ (_(_) .(,)4)+ 7D'(u)(2Aa (1) D'(u)uz,-4A ux+ )

o (D(,,)u,)))]

= --(u_ + tT'u_, + y 0---7 + L7 _ -fu_

_ L3 O D,(u)((u_,)__(uu)_)_._ ?__x(D(u)u_:)_.._y(D(u)uu)2 Oy

4t _((_.(,))__(L_x)_)

L "v" [+ _L, (u) (2Aa('))_D'(u)uv--,tA(a(_)uu+a(l)a_ l))

( o o )))],

+ T • _(D(_),,_,)- _{D(,,),,_}
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• Consistency: Imposingthe consistencycondition that q0' g(3) = 0 gives

_(o3) = 0,

or

Note that a(1)(x,y;t) = const, satisfiesthe consistency condition. Let us

choosea(1)(x, y;t) = 0. This choicesimplifies the 0[6 4] calculations and is

crucialfor obtaining consistencyand stability.

• Solve for n(3): We find

p(3) = £+ .g(3) jr.o.(3)qo
3

= _ ¢_3)qk, (2.32)
h=O

where

c_3) = a(a)

is a free parameter (to be determined in the 0[6 _] consistencycondition),

and

Ak '

Note that if a(1)(x,y;t)= O, then _:_3)= c_3)= O. Further calculations in

the derivationsassumea (1) = O.

0[_4] ' We find

E" n (4)

I L4 n_O) L2T )2 On(O) T2 02 n(O) n_3!
= "_ (e"k' V) 4 -It"_ (_'k" V + + n(gk' V)

2! (gk "V)2 +T + (gk • V) 3 + LT (_'k• V) _-_-- 7 J
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_ 1D4C(n(O) ) . n(1)n(1)n(1)n (1, _ 1D3C(n(O) ) . n(1)n(1)n (2)

- D2C(n(°)) . n(1)n (3) 1D2C(n(O) ) . n(2)n (2)2

__ g(4)
3 ,

k=O

where

L4 L2T
_4) = Ta_2) + "_ (u_:=::_+ uvyyy) + _ (u=_t + uuyt) (2.33)

+ _ _ _u= +o7 _ +--V- N v_

+ --_-uu+_ _ + Oy 2 j +"_ V23(2)+ _"x2 Oy2 ,

5_4) = L (a (3) - D'(u)Aa(3)ur), (2:34)

C = L(_C-D'(u)_(_)u_), (2.s5)
C- L_ L_r r-°_ _) (z.a6)

o ol ,u)
_ L.__2 L2

.

- --_-D'(u)_a (=) 2
L

* Consistency:Imposingthe consistencycondition that q0' g(4) = O,wefind

_) : ,,v. [D(_)V_(_)+D'(_)_(_)V_] (2.37)
T- 7(L, ;.:, y, t; u, u_,, u_,_j, u_.,_j_k,u_=_=k=_).
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wherex0 and xi denote x and y, respectively. Note that _"can beexplicitly

expressedin terms of the spatial derivatives of u by using the results of

thissectionand the details of AppendixA. (Note that the 0[52 ] consistency

condition, Eq. 2.29, can beusedto removedependencesof _ on the temporal

derivativesof u.)

Note that Eq. 2.37 may be written

(L + h)[a (2)] = br, (2.38)

where

z , 02 1

L =_ E a,j(_t)i)xiOxj + E bi(_;t) i) Oi,j=o i=o (gxi Ot '

in which

aoo(x,y;t) = vD(u),

aol(x,y;t) = O,

alo(x,y;t) - O,

all(x,y;t) = rO(u);

bo(x,y;t)- vD'(u)u_,

bl(x,y;t) = vD'(u)u_ ;

and

h(x,y;t) = vV. D'(u)Vu .

With periodic boundaryconditionsand an appropriate initial condition, note

that the operator L is uniformly parabolic in region ET = ([0, L] × [0, L]) ×

(0, T] for u E C4([0, L]2,(0,1)). Under these and additional assumptions

(regarding smoothness) and regularity arguments, it can be shown [54] that

solutions a (2) of Eq. 2.38 are C2(_2,_) functions. Then bounds on (7(2)
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and up to its second derivatives exist. We will assumesuch bounds to obtain

statements regarding numerical convergence of the lattice method.

(See and Lemma 2.48 of Section 2,¢.2 for how the bounds apply to numerical

consistency and Lemma 2.56 of Se=tion 2.4.3 for how they apply to continuum

maximum and minimum principles for a truncated version of n, i.e., the

truncated equilibrium expansion.28)

* Solve for n(4): We find

n(4) = £+.g(4) +_(4)qo
3

-- E C_4)qk ,
k=O

where

C(O41 -- 0.(4)

and
r'

c_4)= 1_:_4) k E {1 2,3).
_k ' '

(.9[55] . At this order, only the consistencycondition is to be determined. This con-

dition specifiesa (3). We will find that a(3)(x, y; t) = const, satisfiesthis condition.

We find

£. n (5)

L n_O) LT 2 0 2 . (0) L 3- -_. (_'k' V) 5 + _ (_'k' V) _'_'"k + T (_'k' V) 3 -0-n(°)- z Ot k

L, ,4,) 0 ,,(,)+-/r.(5.v) _ +---_(ek.v N +5-7 k

L 3 n_2) 0 n(2) L 2 n_3) + L (ga' V)n_ 4)]+_(_'k'V) 3 +LT(gk.V)_ k +_(¢k'V) 2

+ (Co,,.)

_= g(_)

_SThis will be formally defined in the next section (see Definition 2.37),
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3

k=O

Where (Coll.) is the contribution from the coefficient of _5 in the collision operator

expansion, Eq. 2.18. Since (Coll.) is orthogonal to the nul]space of the linearized

' collision operator, it does not contribute to the consistency condition. Note that

5(05)is completely determined in view of this by the terms listed in Appendix A.

The remaining coefficients, _5) (k E {1,2, 3}), are left uncalculated. 29

• Consistency: Imposingthe consistencyconditionthat q0 • g(5) = 0 implies

_') = O, or

,v. + (2.39)

We see that a(3)(x,y;t) = const, satisfies the consistencycondition. Then

choosinga(3)(x,y;t)=0 impliesthat _4)= E_4)= O.

• Solve for n(_): We would complete this calculation were we to desire the

0[_ 6] consistencycondition,whichwoulddetermine0"(4). But sincea (4) does

not appear in the truncated equilibriumexpansion,which is used in estab-

lishingconsistency(as per the next section), it is not necessaryto determine

a (4) nor, hence,n(5).

We have shown how to apply the discrete Chapman.Enskog procedure to obtain the

hydrodynamical equations, and higher order consistcncy conditions, associated wil, l_

a lattice method.

29The E_5) (k E {1,2,3}) would need to he calculated for determining n('_'),which _n,'.ansalso
calculating the (Coil,) term, One would complete such calcultttions to de.i,t;rlnine t,he ll(_xt,ord_'r's
consistency condition,
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2.4 Convergence Analysis

This section describes a numerical convergence theory for lattice Boltzmann methods;

it applies to lattice gas methods to the extent that the Lattice Boltzmann Approxi-

mation is valid. Convergence is obtained here under the umbrella of monotone finite

difference methods. (Appendix C contains a model convergence proof for a monotone

finite difference scheme.) Three parts constitute proofs of convergence for monotone

finite difference schemes: consistency, maximum and minimum principles, and stabil-

ity (see, for example, [69]). This section develops these facets for lattice methods. In

typical finite difference methods, one relates the computed and exact solutions. In

lattice methods, the mean occupation numbers, n, take on the role of the "computed

solution", while a truncated equilibrium expansion, h (see Definition 2.37), takes on

the role of the "exact solution". We will be viewing n as an approximation to h, i.e.,

the truncated equilibrium expansion is treated as an "exact" solution for purposes

of demonstrating consistency, stability, and convergence of a lattice method. Then,

generally, the terms related to convergence of lattice methods are described as fol-

lows: Consistency is obtained by applying the discrete Chapman-Enskog procedure

to truncated equilibrium expansion and showing that the remainder (from Taylor's

Theorem) tends to zero. Stability is defined in terms of boundedness of a linear

operator that depends on both the mean occupation numbers, i.e., the solution to

Eq. 2.8, and the truncated equilibrium expansion; the linear operator can be bounded

in the Li-norm with the support of discrete and continuum maximum and miMmum

principles. Condit.ions of monotonicity are used to establish the discrete maximum

and minimum principles for the Lattice Boltzmann Equation, i.e., for the finite dif-

ference rnethod, Eq. 2.8. The continuum maximum and minimum principles depend
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on maximum and minimum principles of the hydrodynamical equations of a lattice

method and may depend on regularity of the higher order consistency conditions as

revealed by the discrete Chapman-Enskog expansion. Finally, convergence is related

to the difference between the hydrodynamical modes and the solutions of the hydro-

dynamical equations of a lattice method, and the norm of that difference in the limit

as At tends to zero. rf'he general convergence result is that if

1. Az = L5 and At = T5 2,

2. The collision operator is mass-conserving,

3. The initial condition, n °, is in the domain of monotonicity,

4. The collision operator is zero at the extreme points of the domain of monotonic-

ity,

5. The lattice method has a symmetric, nonpositive definite linearized collision

operator,

6. The hydrodynamical equations have maximum and minimum principles,

7. The higher order consistency conditions (up to 69[55]) have bounded solutions,

then the hydrodynamical modes of a lattice methcd converge to tile solution of its

hydrodynarnical equations. It is established that consistency and stability imply

convergence.
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2.4.1 Definitions

The following terms a.nd concepts are defined in this section: truncated equilibrium ex-

pa'nsion, consiste'ncy, truncation error, conditions of monotonicity, domain of mono-

to'nicity, stability, and h,ydrodynamical errors, conveTyence. Generally, demonstrating

consistency of a finite difference method for a partial differential equation entails show-

ing that the truncation error, which depends on the difference operator applied to an

exact solution, tends to zero in the limit as the grid spacing tends to zero. 3° In lattice

methods, the truncated equilibrium expansion takes on the role of the "exact" solu-

tion for consistency, stability, and convergence arguments. Stability is associated with

a set of linear operators being bounded; the operators depend on both the computed

and exact solutions. The domain of monotonicity is, loosely, the largest connected

region in which the conditions of monotonicity al are satisfied. Discrete maximum and

minimum principles for a lattice method are established through arguments assuming

that the conditions of rnonotonicity are satisfied (see Theorem 2.49). Convergence is

then defined in terms of the "hydrodynamical errors" and their tendency (in some

norm) toward zero as At--,0. The hydroclynamical error is the difference between

hydrodynamical modes and the solutions of the hydrodynamical equations. Consis-

tency and stability can help establish convergence of a lattice method. The formal

definitions of the terms related to convergence follow.

a°See, for example, [661 or [701.

alThe conditions of monotonicity are those condit, ions th_.t, wllell satisfied, ensure that the lattice

methocl, seen as a difference operator, is monotonically increasing in ali of its arguments, 'Yllis is
detailed in Definition 2,39,
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oo

DEFINITION 2.37 (TRUNCATED EQUILIBRIUM EXPANSION). Let n-- Z (_Jll(J)
j=o

be the equilibrium expansion about equilibrium n(°), ' where coefficients n(J) are de-
J

termined by the di'_crete Chapman-Enskog expansion. Then h -- _ ¢_Jh (j), where
j=o t

h (j) _ n (j), j E {0, 1,... ,J}, is a truncated equilibrium expansion of order J, where

J is a (finite) positive integer.

DEFINITION 2.38 (CONSISTENCY). Let equilibrium expansion

n_ = (n(°))_' + 6(n(X))_ + 62(n(2))_ +...

satisfy the Lattice Boltzmann Equation, Eq. 2.8, where the n(J) are determined by the

discrete Chapman-Enskog procedure of Section 2.3. Let h_ be a truncated equilibrium

expansion, i.e.,
J

h_ = _ 6J(h(J))_',
j=O

of order J, in which h (j) _ n (j), and

Ah_ = h_ + C(h_)- T(h_), (2.40)

where truncation error, T(h_), is determined from the Taylor series expansion with

remainder in the Chapman-Enskog procedure on h_. Suppose for some norm, '11,
1

lim I[T(h)l = 0 0 < t < TAt--+0 _'_ ' -- --

for ali sujficiently smooth 32 occupation functions h of Eq. 2.40.

DEFINITION 2.39 (CONDITIONS OF MONOTONICITY). Let a lattice method be

given that satisfies the Lattice Boltzmann Equation, Eq. 2.8. Define

d-1
H - Hk(n__ek ) ,

k--O
32.

" Sufficiently smooth" means h has envugh continuous spatial and temporal dcrivativcs so tllat

Taylor's Theorem applies, (See, for example, [55, Section 6,8 (Theorem 10)] for a stat,(:m,_t t,l_,,
theorem,)
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whc rc

' . ' 'O. 71. )1,

(,,k):-.'+' = = +

(.7onsider It as a vector function of its arguments. Then let

k=3

q= Gk ,
k-O

i'n wh.ich each Gk is the gradient of Hk, i.e.,

___L_oCk - anL_,

Then the inequalities,

Ck>_O Vke {0,1,...,d-1}, (2.41)

are called the conditions of monotonicity of a lattice method.

The domain of monotonicity, denoted g, is a d-dimensional rectangle in whictl

the conditions of monotonicity are satisfied. The domain of monotonicity cannot be

extended in a connected fashion to another region, the union in which the conditions

of monotonicity are satisfied.

DEFINITION 2.40 (DOMAIN OF MONOTONICrrY). Let a lattice method be given

thai, satisfies the Lattice Boltzrnann Equation, Eq. 2.8. Let M (k) and M(+k) be such

thatF_.(k)-[M(k),M(+ k)] C[0,1] Vk E {0,1,...,d-I}. Let

d-1 d-1

M_ =- [ ]_1(k) and M+- M(+k)Jk=0 k=0

And let g - $(0) x g(1) x ... x £(d-:l) C [0,1] a. Sw)pose £ defines a region in

which, the conditions of rnonotonicity (rrc satisfied. S,W)posc fit,at rh,cre does not e_ isr
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some direction [_for which the E (_') can be extended and still satisfy the condition_

of monotonicity in the respectively extended E (where the extended E is a connected

region). Furthermore, suppose that E has volume, i.e., v(E) > O. Then E is called

the domain of monotonicity, and M+ and M+ are called the extreme points of E,

DEFINITION 2,41 (L[n '_,h n] ). Let n" ,;atisfy Eq. 2.8. Let h n be a truncated

equilibrium expansion of order J that satisfies Eq. 2,/,0. Define the error e" by

en -- n n - h".

Then operator L[n _, h n] is defined by

j[O
L[n", h n] = [I + _C(n" _-s(h _ - nn))] ds,

so that by the Fundamental Theorem of Calculus

Ae _ = en +C(e n) + T(h n) = L[nn, h nI en + T(h_).

DEFINITION 2.42 (STABILITY), Let n_, h'_, and L[n n,la nI be as in Definition

2._,1. Then a lattice method is said to be stable up to time T 'if for some _"> O, the

infinite set of operators,

L[n",hm]l 0<At<r and O <_nAt <_T
m-"O

is uniformly bounded.

DEFINITION 2,43 (HYDRODYNAMICAL MODE), Let n_ satisfy the Lattice Boltz-

d-1

mann Equation, Eq. 2.8. Then let p'_ = (Pk)_- , where
k=O

(Pk)_ _ qk'n_' Vke {0,1 d-l}.
d _ . . ,

E
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Then l_. such that q_ E nullspace(£) is called a hydrodynamical mode of the lattice

_llcthod.

DEVINVrION 2.44 (H','DItODYNAMIC:ALEr_R()I_). Let n? and lap be as in Deft.

, [ d-1

nition 2 .[1. Let p_ = (Pk)n where
k=O

qk'laP VkE{O,1,...,d-1}.(Pk)P - d

Then pk such that qk E Imllspace(£) is called a discretized hydrodynamical mode of

i d-1

the truncated equilibrium expansion. Let f_ - (fk)'_ , where
k=O

(fk)_'--Z(Pk)_--(pk)P Vke {0,1,...,d-i}.

Then fk such that qk E nullspace(£:) is called a hydrodynamical error of the lattice

d-1

method. Let F_ - (j'k)_- and F '_ -- F_ .
r_ k=O

LEMMA 2.45. f_ = [qk'e_] d-1 1, i.e., f_' = q- .d k=o _ .e_..

Proof. This is a combined result of Definitions 2.33, 2.41, 2.43, and 2.44. []

DEFINITION 2.46 (CONVERGENCE). If V k such that qk E nullspace(L:),
1

at---+0lim-_ jlF_ I = 0 V n such that 0 <._nAt _< T in some norm, II'II, we say that

the hydrodynamical modes of a lattice method conveTyes to the solution of its consis-

tency conditions, as determined in the discrete Chapman-Enskog expansion.

2.4.2 Consistency

In a general sense, consistency of lattice methods comes from etpplying the discrete

Chal)man-Enskog exp,_nsion of Section 2.3 to n. That expa,11sionimposes consistency

conditions, and those conditions lea.d to overa,ll consistency of the method. In that
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!

process, n is assumed to be an infinite expansion about an equilibrium, i.e.,

n = _ 5in (j),
j=o

where the n (j) are determined at each step of matching the expansions (see Section

2.3.5). Formal consistency arguments involve applying the discrete Chapman-Enskog

expansion to a truncated version of n, which is denoted 11(see Definition 2.37). The

truncation ordeI depends on characteristics of the lattice method, such as inclusion of

0[5] a,dvectlon and, though not yet verified, probably the number of directions, d, and

spatial dimensions, p. The application of the discrete Chapman-Enskog procedure (on

n) determines the a (j) parameters (each set of a (j) parameters is introduced by the

nullspace of the linearized collision operator). Any a (j) parameters appearing in the

truncated expan,fion, h, satisfy (by definition) the consistency conditions determined

by the discrete Chapman-Enskog exnansion on n.

TllEOXEM 2.47 (CONSISTENCY). Let Ax = L5 and At = T52 for spatial and
O0

temporal scale lengths L and T, respectively. Let n = _ 6in (j) satisfy _he Lattice
j=O

Boltzmann Equation, Eq. 2.8, where n (°} is an equilibrium and the remaining n (j)

are dete_vnined by the discrete Chapman-Enskog procedure of Section 2.3. Let h be

an associated truncated equilibrium expansion of order J for some J E ,7" and J >
J

1 so that h _SJh (j) { , .. J}, 0 <_ T} is= 2.-, . Suppose that h(J) [j E {0, 1 . , nat <_
j=O

uniformly bounded. Then 11satisfies Eq. 2.¢0, in which "/'(h) = 0[5 J+I+K] for some

integer K > O. Further, if J + 1 + K > 2, then

1
lira I (h)ll --0

A t"--"-+0 _

.forsome I1'11.
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Proof. Note that we may write

d

7"(l!)= E O[6J+'],
j=0

for some coefficients T(J), j 6 {0, 1,..., J}. To prove the first part of the theorem, it is

enough to show that T(J) = 0 V j E {0, 1,... ,J}. Since h (°) = n (°) is an equilibrium

solution, C(h(°)) = 0; hence, T (°j = 0. Azld since h (j) = n (j) V j 6 {1,2,...,J},

Ah- h-C(h) = 0[6 J+l] _,y appl;:ation of the discrete Chapman-Enskog procedure

on n, i.e., the n (j) are determined in a way to insure this. Hence, 3 K >_0 such that

=
To prove the second part, weassumethatJ+l+K > 2. Thenq :III) "-_ O[6J+ll_"_'],

and ? a constant C such that ]'/'(h)ll <_C6J+I+Kfor some norm, II'ii.Finally,

1 1

zx-711T(h)l_<
< _C6J+I+I,'-_
- T

T 62
--_ 0asAt=_- 7 --+0,

sinceJ+l+K.-2>0. []

Example (LBl: Consistency).

O0

LEMMA2.48 (CONSISTENCY OF LBl). Let n = Z6Jn (j) be determined by the
j=o

discrete Chapman-Enskog procedure. Let the truncated equilibrium expansion,

h, _.'..defined by
3

h - E 6Jh(J), (2.42)
j=O

where h(J) - n(J) for j E {0,1,2,3}, where the n(J), j E {0,1,2,3}, are deter-..

mined by Eq_'. 2.27, 2.28, 2.30, and 2.32. 7?_enh satisfie.s Eq. 2.40: in which
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T(h) = 0[84]. Suppose that a(°) E C4([0, L]2,(0,1)) and a(2) E C2(_2,7¢). 34

Let At = T82, Ax = L8, and u = L2/(2T), for spatial and temporal scale

lengths L and T, respectively. ]'hen

lim 1
at_o _ ]lY-(h)]l = O,

for 8omenorm, I'll.

Proof. First, we determine the parameters of the truncated equilibrium expan-

sion in terms of the expansion for n. Then we determine the remainder, 'T(h).
1

.Cir,al,y, we show that lim 17"(h)11= 0
A t---+ 0 _

Part 1: Determining the Truncated Equilibrium Expansion

Recall that any constant aO)(x,y;t) and :(3)(x,y;t) satisfy the O[_ 3] and 0[85 ]

consistency conditions, i.e., Eq. 2.31 and Eq. 2.39, respectively. Choose a(l)(x, y; t)

= a(3)(x, y; t) - 0 . Then using that h(j) - nU) and Eqs. 2.27, 2.28, 2.30, and

2.32 for n (°), n(1), n(2), and n (3), respectively, we find

h (°) = qou. (2.43)

3

h(')= (2.,H)
k=O

where

C(O1) -- O,

c_: ) L
= "_U x

c_: ) _ L
-- _" 't/,y

c_l) = 0;

34Recall that u(x, y;t) - _(°)(x, y;t) and that the ft(J) parameters are determim:d by al)l)lyi_g tlm
"q ") Idiscrete ChaI:i,tan-Enskog procedure to n. See Eqs. 2.29 and 2.3'7 for cr(°) and ct(_) respect.iv(,ly.
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3

k=O

where

c(2) _ (_(2),

cl2) = 0 ,

c_2) = 0,

and

3

h(3) = Z c_3)qk' (2.46)
k=O

where

c(3) = O,

- + LTu_t + + LT u_}

L 3, 0 1 u)Vul
J

4L3 2
+ Lo(__)+ -_-(u_)(_) - LD'(u)_(:)_

o
- --f u_ + LTuyt + 2 Oy2 . LT u_

1

4L3 2
+ L__)+ -_-(_) (_)- LD'(_,)_(_)_

c_3) = 0 .
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Part 2: Determining the Remainder

Now, to determine the truncationerror, i.e., the remainder, T(h), let usapply the

discreteChapmaa.Enskogexpansionto h,

We carefully apply the advection and collisionoperator expansions(Eq. 2,24

and Eq. 2.18, respectively)to the truncated equilibrium expansion,h, Care is

taken in noting that the collisionoperator is O[1] and that h containsonly up to

the O[_ 3] terms of the discrete Chapman-Enskogexpansion. Thus, someof the

terms in the referencedexpansionsdo not appear in the expansionswith h. The

resultingexpansionfollows:

4

,ab- h - C(h)= -7"(h)= - _ T('_J + O[_],
j=o

where

T (°) = C(h(°)),

T 0) = L:.h 0)- L(gk.V)h_ °) ],
J

T (2) = L:. h (2) + lZ)2C(h(°)).h(1)h (1)

]L2
- T 0 h(O) h_l)(_'k'V) 2h_°)+ N k +L(ek'V) ,

= L:. h (3) + l:DaC(h(°)), h(1)h0)h (1) + Z)2C(h(°)).
T (3) h(1)h(2)

L h_O) 0 h(O) L 2- -_.I (_'k. V) 3 + LT(g_. V) + (e'k V) 2 h_1)N k

_ 0, (1) ]+_'N-k + L(e'k.V).__1J

T(4) _- 2.._7914C(h(O)).h (1)(Z)h(1)h(Z)h +-'P3C1 (h(O)).h(z)h(1)h(2)

1 2 h(O) h(2)h(2) h(O) h(1)h(a)
+ _V C( ). +_C( ).

L'  h(o) h o) V)_ T.,(e_.v),t_..)[o+__7_(_k.v +--_ +-L(_k.Ot k 2 cgt2
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L _ , 0 (2) L a 0,(1)]

Now, we derive explicit expressionsfor the coefficients T(J) as linear combinations

of the eigenvectorsof the linearized collisionoperator, We will write
,,

3

T<J)= ZT_ j)qk,
k'"O

where T_j) is a scalar expression. With this notation we may write the Taylor

remainder as follows:
4 1=3

Tk : _ 6j E T}j)ql,k'
j=O I=0

We find by the discrete Chapman-Enskog expansion on n that

T (j)= 0, jE {0,1,2,3} (2.47)

and
3

T(4) : E T_4)qk' (2.48)
k=o

where

T (4) - -5 (4.) = 0, (becauseof the 0[_ 3] consistencycondition)

T[ 4) = -c'l 4) : O, (becauseo"<3): 0)

T_4) = -5_ 4) =0, (becausea(3)-0)

in which the e._4) are given in Eqs. 2.33-2.35.Note that T_ 4) is a function of u

and _r(2)and up to their fourth spatial derivatives (using the 0[6 2] and 0[_ aI

consistencyconditionsto removetemporal derivatives.)

We have determined that the remainder, T(h), is 0[_4]. (Note that it is in

sp_n(q3). This is the least accurate mode; it drives the truncation error.)
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Part 3: Showing Consistency

The combined results of parts 1 and 2 establishconsistencyof LBl, assummarized

by the following: Note that h(j), j E {0,1,2,3}, are uniformly boundedsince

a (°) EC4([0,1]_,(0,1)) and cr(2) E C_(_2,_),

and they satisfy the 0[52] and (,:)[54]consistencyconditions, Eq. 2.29 and Eq.2.37,

respectively.Hence,3 a norm, I1'11,such that

lim 1
ht---*O_'_ IIT(h)ll = 0

by Theorem 2.47. []

2.4.3 Maximum and Minimum Principles

The crux of the upcoming convergence argument relies on maximum and minimum

principles for the finite difference equation, i.e., the Lattice Boltzmann Equation,

Eq. 2.8, and for the dependent variables appearing in the truncated equilibrium

expansion. The former involves monotonicity properties of the difference equation

while the latter involves maximum and minimum principles for partial differential

equations. (These amount to obtaining discrete and continuum maximum/minimum

principles.) The combined maximum/minimum principle results (along with certain

regularity conditions) will provide sufficient ,c)nditions to guarantee stability of a

lattice method.

The discrete maximum/minimum principle depends on monotonicity of the finite

difference method, i,e., that the r,h.s, of the Lattice I3oltzma,nn Equation, Eq. 2.8,

is monotonicMly increasing as a function of its arguments. Consider tlm diff, fence
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lawtllod, :_'_'
r

4a,T.vi+, t ,+,- ,

for til(, onc-dinaensionM viscous B,u'gers equation,

Ut + UUz -- tqZzx ,

71

Note that the r.h.s, of Eq. 2.49 can be written as a function H(U_' 1, U__,U_+:). Then

the difference method, Eq. 2.49, is a monotone finite difference method if H is mono-

tonically increasing in ali of its arguments [69, Cb. IV], We assume H E C1(7_a, T_).

Thus, the gradient of H may be used to determine whether H is monotonically in-

creasing; a nonnegative gradient yields the desired result. It may be the case that

some conditions on the arguments of H (in addition to the familiar stability criterion)

must be imposed to guarantee that the difference method is monotone. These are

called the conditions of monotonicity. By the nature of the recursion relation in which

H appears, the monot, onicity conditions are restrictions on the initial conditions, i.e.,

U° for all grid locations j. (See Appendix C for the details of this example.)

A similar function, H, applies in lattice methods. However, H turns out to be

a vector of "H" functions (each of which is denoted Hk). In this case, we say that

H is monotonically increasing if each Hk is monotonically increasing separately in

ali arguments (see Definition 2.39. An important contribution of this work is that, a

lattice method may only be conditionally monotone. Thai, is, it, may be a monotone

difference method for only certain initial conditions, i,e., ories meeting the conditions

of monotonicity. The conditions of monotonicity form a, basis of a discrete rna,xi-

mum/minimum princil_le for lattice rnethods. Upon t,llcse conditions rests the crux

at;This is the example discussed in Appendix C,
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of the convergence proofs herein; hence, it may be that a lattice method converges for

o7,/y initial conditions meeting the conditions of monotonicity.

Let £ be the domain of monotonicity of a lattice method (see Definition 2.40). Let

n_ satisfy the Lattice Boltzmann Equation, Eq. 2,8, and let truncated equilibrium

expansion hp satisfy the lattice Boltzmann equation with remainder, Eq. 2.40. Then

the discrete and continuum maximum/minimum principles we desire to establish are:

1. If(VrE_, n_EE),then(n_E£, Vr, Vn).

2. If(VrE_2, h_Et_),then(h_Ee, V,_ Vn).

Discrete Maximum/Minimum Principle

THEOaEM 2.49 (DISCaETE MAXIMUM/MINIMUM PaINCIPLE). Let the domain of

monotonicity, E = E (°} × t; (1) ×... × £(_-t) C [0,1] a, for a lattice method be given,

d-1 d-11

M_ = MI__)[ and M+ = M(+k)
J k=0 k=o

be the extreme points of the domain of monotonicity. Suppose that the initial condition

is in the domain of monotonicity, i.e., n_ E E, V _ E 2,. Further suppose that

C(M_)=C(M+)=OE[0,1] a, Then for all time steps n, n'_ E £, V rE 2_.

We will prove the theorem by induction on n using the definitions of H and G in

Definition 2.39. But first, let us introduce the following lemrnas:

LEMMA 2.50. For' each k E {0, 1,..., d - 1), Hk(n) is monotonically increasing

in each of its d arguments, {no, ht,..., nd-1 }, for n E F_..

Proofof lemma. In £ the conditions of monotonicity are satisfied. Thus, by

definition Gk(n) >__0, which implies that, Hk(n) is monotonically increasing. []
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LI,:I_IMA2,51. Suppost, n C ,'_ and C(M±) = O, Then Hk(n) E E (k), V k E

{II, l.,.,d - 1}.

l','oofoflcmma, l,et k _ {0,1,,..,d-l} be arbitrary, Then by [,emma 2,50

Ilk(n) is inonotonically increasing in each of its d arguments, {n0, nl,,,, ,n,i-i }, for

n C E, Tllus, tile extreme values of llk(n) are at the extreme values of n, i,e.,

at n = Mi, li,eta,li h'onl I)etillition 2,3[} tllat Hk(n) = nk + Ck(n). Then since

c(m+) = 0, it follows im_nedi_tely that tfk(M±) = M_kl and ltk(n) E g(k). Hcnce,

l:! ma,ps from g to £, i.e., II applied to an argument in the domain of monotordcity

produces a va.lue in l,he dol,la in of monotonicity. []

COII OLLAHY 2,52, H:$ _ £.

Proof of corollary. This follows imrnedit_tely from that Hk : E -+ E (k) for each

/,',_ {0,1,...,d--1}, []

Proofof Theorem 2,/t,9. We now proceed with tlm induction, Considering the

base step, since the case n = 0 iu an assumption of the theorem, we must show

1
(for time step n = 1) n r E g g _' E £, Weil, for ea,ch l_tt,tice node z, we a,pl_ly

, r _ __ ,(,,.), ,,Lemma 2.51 to obtain that Hk(n__ek) E £(k) V k E {0,1,,.,,d-1}at3 Ih;!;tc_t,
[" rf- 1

= / e!1_ g.
k k=O

li'or ttlc' inductioll step, we assume that rl}_ C E to sllow n}'+1 E E. Apl_lying

I.c'rv,t_a 2,51 for ¢,.acl__'C ,g, we find ('nk)_+_ = ll_(n}'e.) _ E (_l V k _ {0, 1,, .,, d - 1},

1,_ s_nrn_try, 'l'l,eorem 2.49 esta,blisl_es _a.xi_u_ _md _ninilnu_n princ, iples for a

laltic_, n_(_tl_odunder tile t'ollowi_g co_ditiol,s:

1. (liw,_l t.l_t tl_e i_litlal _'oIl_litio_,is i_ tl_e (l_,_mill of _o_ott_nicity, and

a_;\¥e I,ave use_l ii,at ,,_ c-"$ i_*_l,lb's**l_- r..-_,__ £'
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2, At the extrenm poi'lts of the domain of monotoniclty (extreme"ls api)lied Lo

each dimension sep_u'_tt,ely), the lattice rr,cLhod is in a st_ti_e of cqtiilibrlun,, i,e,,

the collision operaLo,' is zero,

Example (L BI: Domain of Mom2toni':ity),

L_MMA 2.53 (DOMAIN OF MONOTONICITY _'Olt LBl). Let inte,'valE(k) =

[M_,M+] for k E {0,1,2,3}, where M+ = (1 + 1/v_)/2 and M_ = (1-

l/v )/2Y The,,

E -- _,(O) X E (1) X _(2) X E (3)

is the domain of rnonotonicity for the lattice method, LB I,

(Since the proof is rather long and involved, the reader may wish to accept the

lemma and proceed to the discussionand development of the continuum maximum

and minimum principles on p, 110,)

Proof. There are three parts to proving the lemma: (1) show that the condi-

tions of monotonicity are satisfied in £, (2) show that E cannot be extended to a

larger connected region, and (3) show that £ has volume. We will proceed in the

(3),(1), (2),

(3) Clearly, £ has volume since M_ < M+.

(1) To show that the conditions of monoton}city are satisfied in £, we beg{.nby

rewr{ting the Latt{ce Boltzmann Equation for LB1 in terms of n "+l to get

k=3

'+' = +
k=O

where i'= (i,j) and _?kis the unit velocity vector for direction/,:. Then I! is

:"_M+_ 0,72361 and ii4_ ,_ 0,'276J"c9,
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definedby

lH nr-ek = Ilk( n'__,ek) ,
k=0/ k:0

where i

tlk( n__e_k ) = (Ttk)r_._'k + Ck( I1___ ),i

ThensubstitutingfortheLB1collisionoperator(Eq,2,10)0Hk maybewritten

explicitly,

i

I, n(nk);+_ = ('_)r-_+ck(n__,_) (2,50)

= nk(.L_)/

" )r-_'_(nk+2)r__,_(k+3)r-_h

r_ n '_""+ i,_)r_¢,(i,k+_)L_(" k+_)r-_,("k+3)r__,
,,,--I,,,

(nk);-t,('nk+l)r_¢_ (nk+2)rn_._.,

1"_ n _ n n It n- ( k)r-¢_,_k+_)r__-_(nk+_)r-,,_(k+_)r_,,_

( n \11, n 4

Note that i'- go = (i + 1,j), i',- _'_= (i,j .,- 1), i'-_'_ = (i- l,j), and

i'- e'a = (i,j + 1). To help clarify the notation, consider direction k = 0.

Then

(_o);"J_ = (,o)Ll,_+Co(_?__,_)

= (no)Li,_

_n! _, )n 1 , n n+ (no_;__,3,(n_);__,j(_ __ ,:( ,_)___,_



2,,1, C _ONVERGENCg ANAL ).'SIS tO1

11

- (no)LI,jinl)L1,, (n_)P_l,j(,.a);__,j

- (,,o)L '_ " '- " '1,j(nl)i-1,_(n_)_-1,j(na)__lo'

- (no)p-,o(nl;i-l,jv,,=J;-1,j (na)i_l,j,

_n+l , _,,+1 and (na_:'+ 1 BUt becauseThere are similar equations; for (nl,l,j , (,n2)i,j , ,,,a '

LB 1 is rotation invariant, we can concentrate on the general form of Eq, 2,50.

Now, to prove. 'hat the conditions of monotonicity are satisfied in £, we must

show for
k=3

G = Gk

k=o

where

0
a,_= -----,% (r-_k)

Onr_e_

that G/_ >_0. In this proof, for the sake of brevity, it is understood that unless

explicitly stated expressions involving n k for k. E {k,k -F 1,/_ + 2, k + 3} are

ali evaluated at (_-gk;n). Then for example, nk+l denotes (nk+x)___.k;

similarly, n dendtes n___.h. Then with k and I evaluated modulo d - 4, we

have

0

Then we find

0

Gk,k = O(nk)r_g_ Ilk (nr-_'k) (2.52) .

= 1 + nk+_nk+ 3 + nk+ink+ a _ nk+a + nk+lnk+,a - 'nk+2 - nk+l ,

0

Gk,k+ 1 = O(nk+l)r_. Itk (nr-_) (2.53)

= -3nk+2nk+3 q- ?zkT_k+'a"-I-P_k+3 "b nkrtk+2 Jr- nk+2 - _tk ,

0
= Ilk (nr.- el,) (2.5,1)

a_,k+:_ O(nk+_)r_,.-_

= -3nk+l'm,.+a 4- nknk+a + nk+a -t-nkn_+_ + nk+_ - n.k,
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0
- flk (2,65)

G'k'_'+a - O(Ttk+a)r-_,k

= -3nk+ink4.2 -]- l"_k?_.k.).2"_ _1k+2 -]- l_k?_k+l ']- nk+l - _'/,k ,

(Note that these partial derivatives were calculated when determining the

linearized collisionoperator,38) We showthat G'k> 0 by showingthat Gk,t >

0,

Note that each Gkd is a function of three arguments. Let E =- [M_,M+].

Then the domain of a particularG'k,l is t;S3,a box, Towardthe end of reducing

the number of casesto check, let

f((,p,¢) = l+p¢-t-(¢+Ip-_,'-p-¢,

g((,p,¢) = -3p¢+_¢+(p+p+¢-(,'.

Referring to Eqs, 2,51-2,55, we see that

Gk,k = f(nk+l, nk+:_, n_,+a),

(';k,k+l = g(nk,nk+_,nk+a),
(2,56)

Gk,k+2 = g(nk,nk+_,nk+a),

Gk,k4.:_ = g(nk,nk+l,nk+_).

The domain off and g is E3, To prove(,'/_,t > 0, it is enough to showthat

f((_,p,¢),g((,p, qb)>_0 for ((_,p,¢) E E3, We show that the extreme values

of f and g are nonnegative.

Since f,g C cl(_a,_,), their respectiveabsolute extrema areon the bound-

ary of E3, i.e., 0I_'3 (on the edgesand facesof the box), or where the gradients

of f a)_d .(/,(re zero in the interior of E 3, i.e., E:_\ o.r, .

astr. l:;(IS, 2.52-.2,55 Iml'c)r(_(,h('ewduat, ioll oi' til(, l)arl, ial (leriwtt, ivt:¢s a3, (,fw eqLlilibriu.m sta(,¢,, i,e,,
I).ti)r_,sul)st,itu(,ing n = n(°) = U(l(),
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Local Extrema of f and g. We show that for ({,p,¢) E E3\OE 3, the lo-

cal extremevalueof/ and g isi/4.ltisfoundat(_',p,¢)= (i/2,I/2,i/2).

Consider (c_,p, ¢) E E 3 \ tOE3. Then the local extrema of f and g are found

where V(,p,¢f(C,p,¢ ) = (0,0,0) and V¢,p,¢g(C,p,¢ ) = (0,0,0), respec.

tively,

We find

V<,p,¢f(C,p,¢) = (P+¢-I,C+¢-I,C-+-p-I),
=

V¢,p,¢g(q,p,¢) = (p+¢-l,-3¢+C'+l,-3p+C'-_.l).

Then setting the gradients to zero, we find for f that (_ = p = ¢ = 1/2 and

for g that _"= p = ¢ = i/2. Hence, the local extreme values are

f(1/2,1/2,1/2) = 1/4,

g(1/2,1/2,1/2) = 1/4.

1/2

1/2
Thus, Gk.l hasa local extremuraat n_q = "['helocal extremevalues

1/2

1/2
, are given by

Gk,l(n_q)=l/4, Vk,lE {0,1,2,3}.

Boundary Extrema of f and g. We will show that the boundary extrema

of f and g are between0 and 2/5. For each function, f and g, there are six

cases:

la/b: (b,p,¢), be {M_,M+},

2a/b: (C,p,b), bE {M_,M+},

3a/b: (c',b,¢), bE {M_,M+}.
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Noting that f(¢', p,¢) "- f((_',_,p) and g(_,,o,¢) -- g(_', ¢, ,O), the number of

casesis reduced to four for each function, Checkingcasesla/b and 2a/b will

suffice.

Case la/b: Consider (b,p,¢) with b E {M_,M+} and (p,¢) E E 2. Then

f(b,p,¢) = p¢+bp+b¢-p-¢-b.-I-1,

g(b,p,¢) = -3p¢+bp+b¢+p+¢-b.

We now considerf and g as functionsof p and ¢. The localextreme values

of these f and g are where their gradients(in p and ¢) are zero. For f we

find

Vp,¢ f(b,p,¢) = (¢ + b - 1,p + b- 1) = (0,0)

impliesthat p = ¢. Then

f(b,p,p) = p2 + 2(b- 1)p-b 4" 1

and (treating f(b,p,p) as _ function of p)

_---._f(b,p,p) = 2p + 2(b- 1) =
0

implies that p = 1 - b. The local extrema of f(b,p,¢) are thus found at

(b,a,c) for a,b,c E {M_,M+}. The results are listed in Table 2.5. For g we

find

Vp,¢ g(b,p,¢) = (-3¢+ b+ 1,-3p+ b+ 1) = (0,0)

implies that p = ¢. Then

g(b,p,p) = -3p 2 + 2(b + 1)p- b

and (treating g(b,p,p) as a function of p)

 g(b,p,p) : 2(--3p+ + =0
b
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implies that p - (b+ 1)/3. The local extrema of g(h,p,¢) are thus found at

(b,(b + 1)/3,(b+ 1)/3)forbE {M_,M+}. We find

g(M..,(M._ + 1)/3,(M_ 4- 1)/3) = 4/15,

g(M+,(M+ + 1)/3,(M+ + 1)/3) = 4/15.

The boundary extrema arefound at (b,a,c)for a,b, ce {M_,M+} and are

listed in Table 2.5.
q

Case 2a/b: Consider (¢',p,b) with b E {M_,M+} and ((,p) E E 2, Then

f((,p,b) = @+b¢+bp-¢-p-b+Z,

.q(¢,p,b) = -3bp + b_ + ¢p - _ + p + b.

We now consider f and g as functions of _ and p. The local extreme values

of f and g are where their gradients (in _ and p) are zero. For f we find

v_,_f(¢,p,b) = (p+ b-. _,_+ b- _)= (o,o)

implies thc.t _"= p. Then

J

f((,(,b) = _2 + 2(b- 1)¢" - b + 1

and (treating f(¢,_,b) as a function of ()

/,.

_-_-f(_, (,b) = 24'+ 2(b- 1) = 0

implies that _" = 1 -b. The local extrema of f((,p,b) are thus found at

(a,c,b) for a,b,c _. {M__M+}. The results are listed in Table 2.5. For g we

find

rC, t, g(_,p,b) - (p 4- b- 1,(--3b q- 1) - (0,0)
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Table 2.5: Boundary Extrema cf f((, p, ¢) and g(C', p, ¢) in LBl.

, M_ M_ M_ 2/5 ' _/5
M_ M_ M+ 1/5 2/5
M_ M+ M_ _/5 2/5
M_ M+ M+ 1/5 0

M+ M_ M_ 1/5 0

M+ M_ M+ 1/5 2/5

M+ M+ M_ 1/5 2/5

M+ M+ M+ 2/5 1/5

impliesthat p = (: - 4b + 2. Then
b

g((_, (_- 4b + 2, b) = (_2+ 2(1 - 3b)_"- 9b + 2 + 12b2

and (treating g(_',_- 4b + 2, b) asa function of _)

4

0--_d_g(¢',¢"- 4b + 2,b) = 2((:-3b+ 1)= 0

impliesthat ¢"= 3b- 1. But 3b- 1 _. E for b E {M_,M+}. Hence, this case

does not producea localextremevalue insidethe domainof ¢', i.e., E \ OE.

And noting that a-4b + 2 f[.E for a,b E {M_,M+} implies that there are

no extreme values on the boundaryof the domain of _"either. So, g(_,p,b)

has no local extrema. However, boundaryextrema are found at (a,c,b) for

a,b,c E {M_,M+}. They are listed in Table 2.5.

Absolute Extrema of Gk,l. The absoluteextrema of f andg arefound as

the respectiveminimum and maximum over the localand boundaryextreme

values. Considering the preceding analysis, we find for (_',p,¢)E E 3,

min f((_,p,¢) = 1/5, max f(C,',p, ¢) = 2/5,

ming((,p,¢) - 0, m_xg(C,p,¢) = 2//5.
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Thus,

2

minGk,t = 0 and maxGk,t = Tj'

Hence, Eq. 2.41 holds, and everywhere in E are the conditions of monotonicity

satisfied.

(2) To show_' cannot be extended. Let E :>0 begiven suchthat 0 <_M_-e <

M+-t-_ _<1. Then let lt_ _ [M_-e, M4. ] and R+ -- [M_,M+._-_], and

M = [M_,M+]. Further, let E± -= M U E:t=. Then let

£o,:k _ MxMxMxE+,

_1,_ =__ MxMxE± xM,

£2,± - MxE._ xMxM,

£3,i - E+ xMxMxM.

lt isenough to showthat for each i E {0,1,2,3} and ,9e {+,-}, Gk,l(n*) <

0 for some k,l E {0, 1,...,d- 1} and some n* E _i,8. Weil, note that from

Eq. 2.56 and Table 2.5, G0,1= 0 for (1) no = M_, and n2 = n3 = M+, and

(2) no = M+, and n2 = n3 = M_. There are eight casesto examine. While

we will only present the proof for two cases, the other casesproceed similarly,

and the tables we will be using have enough information to verify the other

six cases. For each case we use a proof by contradiction.

Case _0,., =MXM xMxE+: Suppose Gk.t > 0, V k,l E {0,1,2,3}

and V n E _0,+. Let

[ ]'n* = M_, M+, M+, M+ + c E _'c),+.

Note that Go,l(n*) = g(M_,M+,M+ +e). From Table 2.6 we see that

9( M_ , M+ , M+ +e) < 0. This coupled with 9(M_,M+,M+) = 0
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(see Table 2.5) implies that G0,t(n*) < 0, which is a contradiction.

Therefore, the conditionsof monotonicity arenot everywheresatisfiedin

_0,+,

Case £o.- = M x M × M × E_: Suppose Gk,t >_ 0, V k,l E {0, 1,2,3}
^

and n E £o,-. Let

n*= M+, At_, M_, M_--e E £o,-.

Note that G0,1(n*) g(M+,M_,M_ -e). From Table 2.6 we see that

Og(M+,M_,M_ -e) < 0. coupled g(M+,M_,M_) = 0
This with

(see Table 2.5) impliesthat G0,1(n*) < 0, which is a contradiction.

Therefore,the conditionsof monotonicityare not everywheresatisfiedin

_'O1--.

As noted, the remaining cases proceedsimilarly,the final result being that

noneof the eight waysof extending£ producesa regioneverywheresatisfying

the conditionsof monotonicity.

We have shownthat the conditionsof monotonicityare satisfied in £, that no

extensionof £ everywheresatisfiesthe conditionsof monotonicity,and that £ has

volume. Hence, £ = [(1- 1/v/'5)/2, (1 + 1/v/'5)/2] 4 isthe domain of monotonicity

for LB 1. []

LEMMA 2.54 (DxscI_E'rF, MAXIMUM/MINIMUM PRINCIPLE FOR LBl).

Considering the lattice method, LBl, let its domain of monotonicity, E, be as

in the hypothesis of Lemma 2.53. Then LB 1 has the discrete maximum and

minimum principles described in Theorem 2.,_9.

Proof. Note that M+ = M+qo and M_ = M_qo, and that Ck(M+) =

OCk(M_) = 0 V k E {0,1,2 3}. Therefore, Theorem 2.49 applies, i.e., if n_. E £ V

_'E £, then n:2E £V_'E.C for ali time stepsn. []
I
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Table 2.6: Direction of Increase in f and g for Arguments Just Outside _ in LBt.
0 0

The table lists =_--f and _-_---gfor arguments just outside the boundary of E. The
O_ O£

arguments are parameterized by e > 0.

f_ _-(-_-)= (C(_)'P(')'¢(_)) of ,, o
__j ,

M_ M_ M_ -e +l/v_ -1/v/5

M_ M_ M+ +e - 1/ v/'5 + 1/ v/'5

M_ M+ M. -- e 0 +2/v_

M.. M+ M+ + e 0 -- 2 /

M+ M_ M_ - e 0 -2/v/5

M+ M_ M+ + e 0 +2 /

M+ M+ M_ -e -l/v/5 + 1/v/'5

M+ M+ M+ +e + 1/V'_" -1/v'_

M_ M_-_ D_ +1/,5 1/,5
M_ M_ - e M+ 0 +2/v/'5

M_ M+-l-e iv/_ -l/v/'5 +l/v/5

M_ M++e M+ 0 -2/v/5

M+ M_ - e M_ 0 -2/x/'5"

M+ M_ -e M+ -l/v/'5 +l/x/_

M+ M+ +e M_ 0 +2/v/5
M+ M+ +e M+ +l/V_" -l/v/5
M_ -e M_ M_ +l/v_ +l/v/'5

M_ -e M_ M+ 0 0

M_ - e M+ M_ 0 0

M_-e M+ M+ - 1/v'_ - 1/v/'5

M+ +_ M_ M_ -l/v/5 -I/v/'5

M+ + e M_ M+ 0 0

M+ +_ Mt. M_ 0 0

M+ +e M+ M+ +l/x/_ +l/v/5
.....
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We haveestablishedmaximumand minimumprinciplesfor the LatticeBoltz-

mannEquationfor LB1, The initialrequirementisthat

2 - - 2

forali latticenodesTand directionsk E {0,1,2,3}, i,e,, IIn- 1/211o0_<

Continuum Maximum/Minimum Principle

d

Recall thai, h is a truncated expansion about an equilibrium so that h = _ h (j) for
j=o

some finite J. Note that the h (j) are irl terms of the cr(t) (l < j) parameters introduced

in determining the corresponding n (j) in the discrete Chapman-Enskog expansion on

n. The cr(°) pararaeters are solutions of the (9[62] consistency conditions, i.e., the

hydrodynamical equations. The a(0 parameters (for l E {1,2,..., g}) satisfy the

O[6 t+2] consistency conditions. Thus, p_.aximum and minimum principles for h can

be obtained from (1) maximum and minimum principles for the ct(°) parameters, and

(2) regularity of all a(t) parameters appearing in the truncated equilibrium expansion,

i.e., la, and (3) conditions on 6.

Example(LB]' ContinuumMaximumand Minimum Principles).

We now presentthe continuum maximum/minimumprinciplefor LB1. The main

resultsare in Lemma2,56 and Corollary2.57.

LEMMA 2.55 (HYDRODYNAMICAL MAXIMUM/MINIMUM PFtlNCIPLE FOR

LBl). Let u(x,y; t) be a solution of

0
O--_u= rV. D(u)Vu on _ = ([0, L] × [0,L]) x (0, TJ, (2.57)

1 1 with initial condition, u(x y;0) = Ul(X,.y) sat-where D(u) = 4u(l- u) - "2

isfying 0 < it_ <_u(x,y;O) <_ [_,+< 1, for some R_,R+ E (0,1) such that
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R_ < R+, and pe_'i¢_lic boundary conditior_s, Then the mazimt_m arid mini.

mum of u(x,y;t) occur either at tile flLitial time, i,e,, [_._ < u(:c, ylt) < [_.+ V

(x,,y;t) e ([0, L] × [(),LI) x [0,T],

Proof, Define a new coefficient, /)(u), that is preciselyD(u) on the closed

interval [/_..,R+] and smoothly extends D(u) beyond the closed interval to al! of

so that D(u) has everywhere a bounded first gradient and /)(u) is a positive

function, Now, let ft be a solution of

with periodic boundary conditions and initial condition satisfying/'__ _< fz(z,y;0) <

/_+ for ali (x,y) E [0, LI x [0, LI and 0 < /__ < /'_.+ < 1. Then since Eq. 2.58 is

easily verified to be parabolic for ali _ and any constant satisfies that equation, The-

orem 12 of [63, p. 187-8] applies to Eq. 2.58. The result is that/__ < a(z,y;t) <

//+ for (z,yit) E ([0, LI × [0,LI) × [0,T], establishing a maximum/minimum prin-

ciple for Eq, 2.58,

Now, suppose i_(z,y;0) = u/(z,y), and [__ - /__ and iii+ -= [_+, Then

the solutions of Eq, 2,57 and Eq, 2,58 are identical, i.e,, '_L(z,y;/) = u(._,y;t),

Therefore,

R_ <_u(x,y;t) <_.[_+ V (x,y;t) E ([0, LI × [0,1;]) × [0, T],

where 0 </5,_ _/_+ < 1, []

We have established a maximum/minimum principle for the hydrodynamical

equation of LB 1 (Eq. 2,29),

We arrive at the following maximum/minimum principle for h,

LEMMA 2,56 (CONTINUUM MAXIMUM/MINIMUM I:*ItlNCIi'I,I,3POIt l.,l:3t).

Let u(x,y;t) be a solution of Eq. 2,29, arid let h = y_'_)=t_chJh(J)be as in lhc
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hypothesi,_ of l,e_n.lna_,,[8,au ,guplJo,_'efor ,_'omcconstant,_ R,_, .It,+, i1(1), tt(_),

and B(a) J

I, o < I¢,_< _(,,y;o) < R+ < i v (a,,y) e [O,L]x [o,L], and

_,IIh,,,ll<,,,;,<_ (x,_,,)_(io,,_]×io,,,])×io,'] ___(_,_,_)
Th.en 3 _o > 0 such lh.at for I_E (0, 6o)

lh n la++R_l[ < R+-la_ < 1- 2 ,% - 2 - "_o'

i,e,, h" E [R_,R+] _t, V time steps n >_O,

Proof, Weil, by kemma 2.55 with [__ .--_-lnfu(x,y;0) and/'_+ = sup u(x,y;(})

so that R_ < /__ </_._. < R,+, we have

lh(O) R++R_ I R+ - R,_
- < V (x y;t) E ([O,L] x [0, L]) X [0, T]

2 too 2 '

Consequently,

R_ < (h_°)); < R+

for ali lattice nodes i'E ,_,, time steps n, and directions k E {0,1,2,3}.

Now, choose/io > 0 9 for/i E (0,6o), R_ < (h_°))_+6B(1)+62B(2)+lfaB(_) <_

R+ for ali lattice nodes i'E E, directions k E {0,1,2,3), and time _tepsn. Then

for 6 E (0,6o) we have

2 too 2 too

< (h(O))n _ la+ + R_ + _ _iJ [(h(J)) n ] too- 2 eco j--I

< (h(o)),,_ R+ + R_._ + _(eo)jB0. I
- 2 too j= l

< R+ - la_
-- 2 '

a"'I'lle coefficients, h (j), j E {0, 1,2, 3}, are(lelim'd in E(lS, '_,.,4,1-2,,lh,'' ' resl)ect,ively,
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Hence, h'_ E [IL_,,R-f.]'t, L3

Coltol, I,AItY 2,57, h_ LB l, -36¢)> (I such thcLtV 6 E (0,6¢)), ifh_! _ E \tIE,

V _ E .£,, then lvrLG _', V _'fi £, V 7),,IohcT'eE i,_the domui)_ of mor_.to14icit!l

lo1' LB I ,

Proof, Let R+ ----M+ < I and R,_= M_ > 0, whereM+ and M_ aredefined

in Lemma2,53, Then applyLemma2,56 to yield the result, []

We have establisheda continuum maximum and minimum principle for the

truncated equilibriumexpansion,h, The sufficientconditionsarethat (1) ct(o)has

a maximum/minimum principle, _2) finite global boundson h(t), h(_), and h(:_)

exist'm, and (3) expansionparameterb'> 0 is sufficientlysmall,

2.4.4 Stability

THEOREM 2,58 (STAI:',It, I'I'Y IN 'file L1-NORIvl), Let_a lat,ticc method be ,qi'vc't)with

do'maiu of mo)),oto)ticit,y, E, Let n'_ (trtd h_, S,Itppo,sc t,hat, (f h_ G E, then h'_ G 8.

V 7t such that 0 < u_t < 'I" and At < v for some. r > 0, 7'hcu if the me't,h.od i,_

mass-couserving it is stable 41 iu t.hc Lt-uorm,

LI_MMA 2,59, Let, C(n) be:a ,m.ass-conscrvi,_# colli,s'iotz,ope:rrttor. 7'h_:l_for n-C g,

I] + 'pC(n)ll,,- 1
f_'roofof lemma, Weil, let

F

G ._=_] (/
h,I

k,

W}l(-._l'g

0

c:;'kf= Ilk(n),

't°It can be shown that the O[b :_] and ('.)[b')] c(,z_sisl,(,z_('y(,()z,(lil.i_)t_s,E,1, '2.'2!1_,_(I l':(l. '2.'21),
respectively, have regular soll_l,io_ls s() t,l_at l.l_ore(,xisl, t_,ili)r_ I)()_¢1,,_()_ 1_(_) !_I:_), , I_,(l l_(:_)

,.(.e Definition 2,,'t2 for the (l(_[lltition o[' st,al_ility,
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atld li(n) = ta + C(n), Note t.LxatG'k.t > !0 for n G £ by Definition 2,40, Then we

Itavt'

d- 1

l iC;'k,,I+ 'L"}C( I1) [[t t
I_lo,t....,,-tl k-o

----suj) Ilk (n)

0

: ""Po,-,,_Z u_(,,)k

,)(

: ._ip- _ (.k+c_(,,))
t On,I k

1 k

"-" 1(

sillce _ CI,.(n) --O, i.e., C.(n) is inass-conserving, []

Proofof Thco,,'v,m2,,5,'¢. \V(, will st,ow !l,l,at II/,[n", lP] e, = 1 V n, Since n_ C E,

' ' ' "_,'19I llcorern .. gulu',mtec, s t.h_t n_ C E Also, h'r_ E £ by t,l_esl;a.temenLof Lhc t,heorern,

'l'lt,_it tic,Ling t,h,d_(hp-. ,,_(h_:- n'_)) c_£ f::r,s E [0, li st, that [,emma, 2,59 a,ppLies, we

IlL' IIIIL[,_",h"]l,, --- [z+vc(n'¢-_,(h_--n_.'))]d_,
tt

_< IIZ+'DC(,,?-,,,(h;'-,_;'))I,,d,,:

= ld s =: 1,

Example (LB I' Stability),

[,I,3MMA 2 (]0 (S'I'AI. II, ITY, Oi" LB I IN Till;; l,t N()IIM), l,ct n" lP, aTtd

L[n", 11n] be dcfinrd a,s' in Drfinition 2.4 I, l._:t domain of monotonicity, E, be



as in Lcmma 2,5,_, Suppose n_, (h(°))_ E E, 't'2 And ,_'Ut,lm,_r the Iqllmlhcscs of

tt

l,cmma 9,5fi are, satisfied, lh,",l -q_r > 0 such dmt IIt;[.",h"]le, -<._v ,,. ,,,,,,,_,/,,

that 0 .< nat < 7' and (1.< At, < r,

Proof, Let .R,+ = M+ and R,_ = M_, where M+ and M_ are defined in

Lemma 2,53, Let /_0 be given by Lemma 2,56, Choose r = 7'(_/0)_ so that

Aa: <_ Lgo, Note that Corollary 2,57 applies to yield that h n E £ V n such that

0 < uar _<T and 0 < At, < r, Then ILL[,,",h"]lle,<_ 1 by Lemma 2,59, El

2.4.5 Convergence

Convergence of ,t lattice met,hod can be made in t,crms or consistellcy and si,a.bilit,y,

TIIEO[tFM 2,(31 (CoNvEItGENC'I_), _'ltpposc a lattice method is cons'i,,_tc'ut, 7'heu

st,,bilit!/ is a su Oicicn.,I c,oudit, ion for ,co'nvc'rflc'..¢:e.

Proof, We show that a consistent _md stal)le lattice xn(,_/,l_odis nec(,ssarily coll-

vergen(,, Let error e_* = n_.' - h_, 'I'hen note that, by tlm Fullda, nmnta.l 'l"h(:,oreln of

Calculus

Ae" : L[n", h"] e'*-F T(h',_),

w _Icre

£'L[,,",h"]= [_'+>c(,,"--. ,_(h"- ,,"))]J._

. Ih_:n(I is the identity matrix), "

L[n", hn] = ¢liag (Lr)re :2' ,ta

't"'Igecallthat h(°) is the e(luilibriutn in l,lw l,runcal,e_l e_lltilil,rit_111_'Xl',allsi¢_l_,li := X:.._..,"6.ilt_2)(S,,,.,
j "=:{1

1,;q, 2,42),

'mL[n", h"] is block diagozial_llatrix,



, '" ;,) )/11(; (7II:I.I2TFI?, 2 .l IlL( H,

wll(.r(, Lr i_ _xd × d t_.-Lt.l'i×,_iv'ol_by

£'t

lilcl('('cl

1 l_erc exists _ perll_ut, t_,(,ionmt_trix, l", such (,h_,t

e''+' = L[n_,h n] e" + q'(h"),

where (Nd) × (Nd) m_t, rix 't't,

L[_",h_]: :'_[:, h_]p,

_-,_1_'(h")= PrT(h"),

By definition of consistency there exists a const,_nt, G'0, such tht_t, [T(h") [ _<

Co5 '2+1':,for some K > 0, V n, such tha, t 0 <_ nAt _< 7', l-ly definition of sl,,Lbilit,y

there exists "r > 0 ¢%ndC1

for all n and At such that 0 < At < r and 0 < nAt < 7'.

We have

n-1

_-I,'".. x _(.."'>+11-IIT(h")ll
frj,-'0

< I. ,II."'1"<'"+'","-- -- k-'O _-: I u -_'- ] (-:0 b'2 + I_,

' , .j . )

'tan : O[l/(Ax)r] is t,lw tot,0.lIltllltJ)(,rlat.t.icettc,(l(,sit_t.h(, lat.(,i('(;,_5,2.
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whereC=IIP_IIm_x(CoC1,Cl/_'l_on
Let f_ and Fn be as in Definition 9.,14.,, Then f_ = dQrern by Lemma 2.45.

Further,
1

IIF__IIQ_IIe'_ll .

Hence,

X_IIF"_II-<d_--7
1

dA_IE_El_c__+'
1

0

as At---_0. []

Example(LBI'Convergence).

THEOREM2.62 (CONVERGENCE OF LBl). Let the conditions of Lemmas

2.48, 2.54, and 2.56 be satisfied. Then lira 1 I]F,_le1 = 0, V n 3 0 < nAt <A t--* O "-_ -- --

T.

Proof. This followsdirectlyfrom Theorem2.61. []

We can recoveran (...9[62] approximationto u(x,y;t) by the covergencear-

guments,the definitionof the truncatedequilibriumexpansion,and consistency

argumentsto obtainthat hydrodynamicalerror,

1
(.to)2 : _qo'e_-t-(9[(_2]

: p_- p_+ o[__]

1_@(,,)__ 1 3
k=O k=O
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= _ Z(,,k)_-_{ (I,_°_)P+ o[_] + o[_]
k=O

1 a
= - r Ur+ 0[__]

k=O

_- _1_](nk)?- _(rax,,nat)+ 0[_2].4
k=O

We have shown that the hydrodynamical mode of the lattice Boltzmann method,

LB l, converges O[_q_] to the solution of its hydrodynamical equation, Eq. 2.29.

Assumptions and statements used to obtain convergence include: (1) monotonicity

principles of the lattice method, which restricts the domain of the occupation

numbers, (2) boundedness of the solutions, u and a (2) (and up to their fourth

spatial derivatives), to the (9[6 2] and Lg[_4] consistency conditions, and (3)a

maximum/minimum principle on u. This concludes our example.

2.5 Conclusion

The analysis of this chapter showed how to obtain convergence results for lattice

Boltzmann methods and the Lattice Boltzmann Approximation to lattice gas meth-

ods. Convergence ca,n be established through formal consistency and stability argu-

ments. These arguments are similar to those employed for establishing convergence

of monotone finite difference methods. Consistency can be obtained through two ap-

plications of the discrete Chapman-Enskog expansion (one to an infinite equilibrium

expansion, one to a, truncated expansion). Stability can be proven by establishing

maximum/minimum principles for botll the lattice method and the partial differen-

tial equation, solutions of which the lattice method approxinlates. Restrictions on

the occupation numbers may be required for ma.ximum/minimum princ!ples of lat-

tice metliods t,o yield convergence iii t,lle Ll-Imrm. The next chapter applies the
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theory to additional lattice methods; its sequel provides computational evidence tohat

substantiates the theory,



Chapter 3

Applications

This chapter presents three lattice methods and analyzes them in accordance with

the ideas set forth in the preceding chapter. Two of the methods are new and have

not been previously investigated.

The first lattice method is a variation of LBl from the previous chapter; we denote

it LB2,1 It is the subject of Section 3.1. The second la_tice method was first introduced

and analyzed in [7] as a lattice gas method for the one-dimensional viscous Burgers

equation,

Pt + PP_ = upon.

The method's statistical properties, i.e., correlations and covariances, were subse-
!

quently discussed in [53]. Our treatment, the subject of Section 3.2, regards it as an

example of a lattice method for advection-diffusion in one dimension, i.e., as a method

with 0[5] biasing in the collision rules, and we detail its analysis. In Chapter 5, the

method is applied to study a domain decomposition method for lattice gas methods.

Finally, Section 3.3 presents and analyzes a lattice method for the two-dimensional

1LB2 actually denotes one of two lattice methods. The other one is obtained by exchanging
particles and holes, i.e., the meaning of 0 and 1 are reversed: In the occupation Ilumbers, nk = 0
would denote presence and i)k = 1 would denote abs'ence of a particle at a node.

191
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aslvcctioll-(litl'usion (_Cltlatio!_,

XVhile convergence is proved for the rnetllods in Sect.ion 3.1 and Section 3.2, conver-

gence of t,he tllird one remains to be completed and will appear in a future work.

3.1 LB2

This sect,ion presents the _ltlrnerical theory for a, lattice method that is a variation

of LBl. (LBl is analyzed extensively in the previous chapter.) The new method is

denoted I,B2, Under the symmetry of exchanging particles and holes, LB2 represents

one of two identical lattice methods, One of the variants of LBl is introduced in Sec-

tion 3,1,1, and the numerical theory of the variant method comprises the succeeding

sections. The equilibrium analysis is in Section 3,1.4,

Irl Section 3,1.5, the discrete Chapman-Enskog expansion is reveals the hydrody-,

namical equations for the method. The formal convergence arguments are made in

Section 3,1,6,

3.1.1 Collision Rules

First, note the lattice, o, and velocity vectors, gk, /_ E {0,1,2,3} are the same as

those for LBl. The collision rules for LB2 are defined to be those for LBl with one

addition, The additional rule adds single-particle collision rule that for a node irl

a pre-collision state of exactly one particle, in the post-collision state tile particle

returns from whence it came, The resulting collision rules axe exhibited in Figure 3.1

and listed in Table 3,1,
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STATE PRE-COLLISION PQ$'r- (ii',0LL!,_IO N

No Particles =# ......

One Particle -" ' =_ _ ' '

Two Orthogonal Particles ----_ => .4---

|

Two Head-on Particles ni_, =,_,

Three Particles ..... :=>

-T
!

Four Particles _1_ . =¢, * :_

Figure 3.1: I_B,acollision rules. Particles cllange direction ollly in stal,(!s with exactly
one or two particles present. In bol.[l the ort,]logoxla.land lle_td-oll cases of tWO-l)a,rticle
collisions, p_trl,icles change direction to l.he _lIlocctll)i(!(Idirections.
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Table 3.1: LB_ Collision Rules.

Ituie a' 'fl $(a ft)
I,=.4_ . ,.., , --

0 0 0 0 0 0 0 0 0 i
1 0 0 0 i 0 i 0 0 I
2 0 0 i 0 I 0 0 0 i
3 0 0 1 1 1 1 0 0 1
4 0 I 0 0 0 0 0 I 1
5 0 1 0 1 I 0 I 0 i
6 0 1 1 0 1 0 0 1 1
7 0 1 1 1 0 1 1 1 1
8 1 0 0 0 0 0 1 0 1
,9 1 0 0 1 0 1 1 0 1

• 10 I 0 i 0 0 i 0 I I
11 1' 0 1 1 1 0 1 1 1
12 I I 0 0 0 0 I I I
13 i i 0 I I i fl I I
14. i I I 0 I I i 0 i
15 1 1 1 1 1 1 1 1 1

..............
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3.1.2 Collision Operator

The collision operator for the lattice gas method is given by

Ck(ft) = +;zk ¢_k+_hk+2z*7k+3 + _'^nknk+lnk+_nk+a+ ¢_khk+_hk+2C*k+a

' "X"--'- ^ "X---"?_ -z---'---?_lk?_k+l ?_k+2 ?_k+3 -' _knk+l _k+2?_lk+3 _ nknk+l k+2nk+3

^ (31)--f_kf_k+_f_k+2hk+a + nk k+_hk+2fik+a,

3.1.3 Lattice Boltzmann Approximation

The corresponding lattice Boltzmann method is from the Lattice Boltzmann Ap-

proximation, in which we replace the ¢_k e /3 with nk E [0, 1], where nk _ (¢zk}.

The approximation holds under "molecular chaos", in which particles are assumed to

be statistically uncorrelated prior to collisions. This assumption becomes an inherent

part of the lattice Boltzmann method, which then operates on mean occupation num-

bers, i.e., particle distributions, rather than particles themselves as with the lattice

gas method.

3.1.4 Equilibrium Analysis

It can be easily verified that LB2 satisfies detailed balance so thet the Equilibrium

Theorem (Theorem 2.25) can be applied. Then considering LB2 to be in a.n equilib-

rium, i.e., C(n) = O, and consulting Table 3.1), the theorem yields the foUowing'
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n°°°l(_) lI1° = n°l°°(_') lm1 (from rules 1 and 4)

n°m°(i_)11m = n1°°°(_7)°111 (from rules 2 and 8)

n°°Xl(rf) la°° = nla°°(fi') °oil (from rules 3 and 12) ,2

n°la°(]7) l°m = nl°m(r_) tJ11° (from rules 6 and 9)

nXm°(iT)°1°1 = n°1°1(17)1°1° (from rules 10 and 5)

O1'

7_37_.0 17,1 1Z,2 _--. ??,17_0 lt, 2 I13

n2n3no ni = 'aOnln2 lz,a , (3.2)

nl?22?ZO ?_3 =: ?'_07_37-_1 ?-/'2

non_W_lTGa = nlnan'-d_

for nk E (0,1). Define 9k = 7zk/(1 - nk). Then Eq. 3.2 can be written

.q2 = go (b)

g293 = gogl (c) ,

gxg2 = 9093 (d)

9092 = giga (e)

Combining (d) and (e) through gl, we get g2 = ga (because the gk are nonzero). Then

90 = 91 = 92 = 93 and by Lemma 2.31, no = ni = n2 = na - u. Denoting the

'Ilere, the superscripts are in shorthand vector exponent not,ation so that, e,g.,

II0011 =li[ O, [), 1, 1] r
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equilibrium solution, n(°), we have

li

li
n (°) =

U

3.1.5 Discrete Chapman-Enskog Expansion

Linearized Collision Operator

Note that the collision operator is O[1]. (It has no 0[5] contribution for a fixed

argument, i.e., C(1)(n) = 0.) Then C(n) = C(°)(n), and we henceforth drop the

superscript. The linearized collision operator is given by

-(2u + 1) u 1 u

u -(2u + 1) u 1

1 _ -(2u + 1) u

u 1 u --(2u + I)

Note that indeed/2 is a synunetric circulant and thus possesses a complete orthogonal

set of real eigenvectors. Note also that £ is nonpositive definite for u E [0, 1]. The set

of eigenpairs of the linearized collision operator, which can be found by the methods

suggested on p. 52, is

{(Ak,qk) [ k E {0_1,2,3}),

where the eigenvalues are given by

eigenvalues(£) = (Ao,A_,A2,Aa)

= (0,-:2(1 -u)(1 + u),-2(1 -u)(1 + u),-4u(1 -u)), (3.3)



=o ('II,,1 l_'l'li'h', o, ,,1Pt"LI(,',,I 7'IOA5'

anti tile respective eigellvec.t,on's(coltITnzl vectors) are givc,ll iii the eigelllllnt, l'iX,

1 1 0 l
/

Q = qll, cii, q_, q3 =
1 - 1 0 1

1 0 -1 -1

Note that the linearized collision operators of I.,Bl and LB,a llave identical eigenvec-

tors, Consequently, they share a common componetltwise eigenvector produc.t (.);

the possible products are listed in Table 2,4,

Gradient Expressions

Note that in the present method the unit velocity vectors, gk (k E {0,1,2,3}), a':e

the same as in LBl, Thus, gradient expressions involving the unit velocity v,'ctors

are expressed in the same fashion (see Eq, 2,25),

Matching the Advection and Collision Operator Expansions

In matching these expansions, we assume

Ax = Ay = La,

At = T6 2,

La
/1 =

2T'

for Sl,atial and temporal scale lengths, L and 7', respectively; u is a diffusion coeffi-

cient, \Ve use the following notation in the analysis:

A -- At ---._ = - 2(1 -- ,.)(1+ ,,,),
1 1

D(_,) - ,\ ,,,=
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d ,lu

D'(,_)= GD(,_)= V'
3

go) = £, n(S)= E _"_Slqk,
k=O

3

n (j) = a(J)qo'q'/_+'g(J) = Eel j)qk'
k=O

in which, as with LBt, c(j ) = a(J) and c_j) li(J) for k 6 {1,2,3} The ct(J) will be
=Ak_

found to satisfy the consistency conditions of the lattice method, Note that A ¢ A3,

Eqs. 2 =(In referring to .18 and 2,24, the reader is reminded that C(1)(n) 0 and

C(n)= C(°l(n),)

In the convergence arguments, we will be using a third order truncated equilibrium

expansion order, i.e h a 6jh(j) h(j) li(J) o.(:3) rl(a)., = _j=o , in which -- , Since appears in ,

and a (a) is determined by the O[65] consistency condition, we carry out the discrete

Chapman-Enskog procedure to the extent of determining the consistency condition

at O[6s]. For each order in matching the advection and collision operator expansions,

Eqs. 2.24 and 2,18, respectively, we find the following: a

0[1]', C(n (°)) - O, as desired, by choice of n (°). Then

n (°) = q0u, (3,4)

0161',
3

k=O

where

@) = O,

aSince lattice methods LBl and I,B_ are very similar, while reading thin section tlm reader may

wish to consult tlm portion of Section 2,3,5 that discusses matching the advection and collision

operator expansions for LBl, pp, 72-81, Further details may found in Lppendices A and B,
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_':(t1) -- LU,a,

i,_II = LIt,v,

09) - 0

• Consistency:'' qo' g(ll = 0 is already satisfied, so no consistency conditionis

introduce¢l aL this order,

• Solve for n(l): \'Ve hay(,

n(l) = £+ , g(l) + c_(1)qo
3

= cl'')r'o + Z c_')q_, (3,5)
k={I

where c(o1) - a (1) is a free part!tmeter th_tt will be determined in tlm 016 a]

7 ') dconsistency condition, Eq, o,8, _m

Ak

or

el 1) -- L_llx,

1

c(1) = O,

I L _ )2 (o) ,.,0 (o) n_l)
£'n(2) = "_((e"k,V nk-t-7_-)7,, k +L(gk,V)

_ l_7?_C(n(01) , n(lln(ll2

- gcr)
3

k= 0
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where

L_

,('_1 - y V, D(_L)V,,,Co = Ttt t

=

- -_ .AT --_x(D(u)u_,)- -_y(D(u)u_) ,

o Consistency: Imposing the consistency condition tlmt qo' g(_) = 0 yields

3

qo' E c_)_ = 4z'(2)= O,
j=O

L _

or _) = O, \Vith u _ 2-¥ this may be written

ut = uV, D(u)Vu. (3,6)

• Solve for n(_): We.find

n (_) = £+.g(_)+a(_)qo
3

= _ c_)qk, (3,7)
k=O

where c(2) = cr(_) is a free parameter theft will be determined in the C9164]

consistency condition), ' 3, ,Eq. 14 and

Ak '

or

c? ) = La(')_ LD'(u),\a(')u.A

c[_) = La_')_ LD'(u)Aa('),u,,A
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0[_3]: \Ve find

L3 )3 n_!,) O (_;)+ L (Ek V)n_ 2>£ ' n(_) = 7 (_ ' v + LT(_k,V) at"k .

L2 __0 (i]+7 (_k.v)_,_[.') + _aT..k)

_ D2C(n(o)). n(1)n(2) _ _)1D3C(n(O)), n(1)n(l) n(l)

_ g(a)
3

= y'_ ?:[:'_)q/,. ,
k=O

where

4.) T.I,) r,'= ---V. [D(u)Va('> + D'(u)a(')Vu]2

= Tv..= + LTu=,+ -_-Ox---_.+ LT-_7 -_u=

Laa(I ) 2L )2+ 2 a_ ;_" = V _"(('x_('))_-(L_,_) +L_7)

+ 7D'(_/ 2(A_C'))_D'(_)_,_ 2A(_(_)_,.+_(1)_7))

- L_" G 'D(_)W+ ((_,)_-(_)_

Ox _ -_x'--_y " D(u)Vu 4 A2A3 -

_- ,, - >-,, ) -(L,_,)')+ L_',2 Oy

"Jl- _D'(1.t) [2(,_o'(1))2D'(1£),u,!/ - 9/_ (o-(2)IZy_l_ o.(I)o.:I))

o.,°) ,, >, >]+ L_,_ , .D(_,)W_+ ((u, -(_/_

-30 [ 1 (O, _) 9u-1 , 2 ]-J_ ,73 _ .D(_)V,,,+A'A:_/(_:) -(_)_) '
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_, __--_'_(_'-_°)ID___o,1,+_,_o,1,_ul. _°2",1,(_u_-_u_)
1'[ ( f

((2u - 1)D'(u))_) ((u_) 2 -, (u_)2)J."

• Consistency: Imposing the consistency condition that qo' g(3) = 0, we find

_3) = 0 , or

a}l)= uV. [D(u)Va (') + D'(u)a(1)Vu]. (3.8)

Note that a(X)(x,y;t) = const, satisfies the consistency condition. Let us choose

a(1)(x,y; t) = 0. This choice simplifies the ©[5 4] calculations and is crucial for

obtaining consistency and stability.

• Solve for n(3): We find

n (3) _. _+ . g(3) + 0.(3) qo

3

= E c_a)qk, (3.9)
k=O

where c_a) = a(3) is a free parameter that is determined in the 0[5 5] consistency

condition, Eq. 3.16, and

c(k3)= I_3) k E {1 '2 3}.
'_k ' ' '

Note that if cr(1)(z,y; t) - 0, then _!_3)__.c_3)= 0. Further calculations in the

derivations assume a(1)(z, y; t) = 0 .

0154] ' We find

£. n (4)



134 C,HAP7'ER 3, A PPLICA TIONS

'[ L4 L'2T )20 ,(o) + 7'_ 0 `2 (o)
: 77. '_'v)_"?+ ,-7-(_rkv ot''k Tb-F,,,k +z(_k.v),_?

__ La . 0 ]
L_ )_'_) + 0t :-77.'2! (ek. V TOn[ 2) + (ek. V)'>'ni ') + LT (e_. V) 7-_n._')

24

- D2C(n(°)) . n(1)n (a) _ 1T_2C(n(O)) . n(2)n (2)

g(4)
3

k-O

where

_(4) _ L4 L 2 T 2
- 4-"8(u::,:._ + uyy_).+ --_-V2ut + _u_t + Ta} a) (3.10)

+ 1--7aTS'_-Va_' vu + --7--v.a7 w

L= [ L=( O: O' )c?)] + L ( C9c(a) 0c(a))

_,I4} = L (<_p}- D'(u)A_{a)u,), (3.11)

C) = L(4,_)-D'(_)A.(_)_), (a._2)
C'- LA L_T48 (u_:_,: - u_y_y)+ _- (u:,:_- uyyt) + T 0 c(2) (3 13)0-7 3 '

L'b(_) ,(_) L_v,4=) L( oc(') o_(_)_+ T_ =-- ,, + ]+TTF" -_: )

2L(2u -1) (c?'u,_ - c_a,) - L= [2L_(2u -1) ((u=)4 _ (u_,)4)+ ,_ _ ,_Aa

_ _ F' o,_;D(")_'' '
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• Consistency: Imposing the consistency condition that qo' g(4) = O, we find

a_2) = vV. [D(u)Vcr (2) + D'(u)cr(2)Vu] (3.14)

- $-(L, T; x, y, t; u, u_, u_i_s, u_,_k, u_j_k_,)

where x0 and xi denote x and y, respectively. Note that _" can be explicitly

expressed in terms of the spatial derivatives of u using the results of this section

and the details of Appendix B. (The 0[52] consistency condition, Eq. 3.6, can

be used to remove dependences of 2" on the temporal derivatives of u.)

Note that Eq. 3.14 may be written

(L + h)[cr(2)] = Y', (3.15)

where operator

1 0 _ 1 0 0

L=---_ aij(_.;t) + Ebi(x;t)Oxi Ot 'ij=o OxicOxj i=o

in which

aoo(x,y; t) = vD(u) ,

aol(x,y;t) -- 0

alo(x,y; t) = 0 ,

a,l(x,y; t) --- vD(u);

=

b,(x,y; t) = vD'(u)uy ;

and

h(z,y;t) = vV. D'(u)Vu.
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h

Note that operator L is uniformly parabolic in ET = ([0,L] x [0, L]) × (0, TJ for

u E C1([0, L]2, (0,1)) Suppose further that '_LE C,'_(7_'_,_), Tl_en under these

and additional assumptions (regarding smoothnc,,_;_;and initial and boundary

conditions) and regularty arguments, it can be shown [54] that solutions cr(_) of

Eq. 3,15 are C2(_ 2, 7_) functions. Then bounds on cr(2) and up to its second

derivatives exist. \Ve will assume such bounds to obtain statements regarding

numerical convergence of the lattice method. (See Lemma 3.1 for how the

bounds apply to numerical consistency a,nd Lemma 3.5 for how tlley apply to

continuum maximum a,nd minimum principles for the truncated equilibrium

expansion.)

• Solve for n(4): We find

3

n(4) = /2+ . g(4)+ a(4)q0 = _ c_4)qk,
k-O

where c_4) = #(4) is a. free parameter that would be determined in the 0[6 _]

consistency condition, and c_4) -lg:_4) k e {1,2,3).
Ak '

(.9[65]: At this order, only the consistency condition is to be determined. This condi-
r i_

tion specifies a (3). We will find that any cr(a)(x,y; t) -- const, satisfies this condition.

We have

£. n (5)

Ls )shOo) LT_ 0 2 _o) L a On(o )= 7(ek.v +-T-(5.v) b-_n +T(5'v)'_c)t k
, T 2 02

+ C.,(5. v)_ + '-d (_k.v ot,_k 2 o_:

+ -57.,(5. v)',,_`)+ LT(5. v) _..(') + (_Tk.v) + (_'k ,,.0t,0k 7
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+ (Coll.)
3

k=o

where (Coll.) is the contribution from the coefficient of 6_ in the collision operator

expansion, Eq. 2.18. Since (Coll.)is orthogonal to the nullspace of the linearized

collision operator, it does not contribute to the consistency condition. Note that _5)

is completely determined in view of this by the terms listed in Appendix B. The

remaining coefficients, 5_5) (k E {1,2, 3}), are left uncalculated. 4

• Consistency: Imposing the consistency condition that qo' g(5) = 0 implies

(s) = 0, or

ct}a)= vV. [D(u)Va ('_)+ D'(u)a(3)Vu] . (3.16)

Note that any constant a(3)(x, y; t) satisfies the consistency condition. Then

choosing a(3)(x,y;t)= 0 implies that _I4)- 5_4)= 0.

, Solve for n(S): We have no need for calculating this quantity since tile 0[66]

consistency condition is not desired.

3.1.6 Convergence

LEMMA 3.1 (CONSISTENCY OF LB2). Define the truncated equilibrium expansion

by
3

h = _ 6Jh(j), (3.17)
j=O

4The 5_s) (k E {1,2,3}) would need to be calculated for determining n(_), which mean also
calculating the (Coll.) term. One would complete such calculations to determine the next order's
consistency condition.



1,8'_ C'IIAI)7'EI¢ 3, A I'PLICA 7'ION,5'

in 'which h (j) - n (j), tile.n (_) (ts d_::Ji,.cdbg Eqs. 3,,[, ,?.5, 3, 7, and 3,9 iii, th.e applicatio'n,

of the discr_:te C:h,apm an.lJ)tzsko9 pvocedurr of ,5'ection 3, I.5, Then 11satisfies

Ah = 11+ C(h)- T(h), (3,18)

,

i,_ which "r(h) = 0164]. S_mpos__(") _ C"(_2,_)ar_ _(2) _ c_(_2,_). L_t

At = T6 _, and Az = L6 for spatial' and temporal scale lengths L and T, respectively,

Then

1
lira T(h)ll -0

At---*[) _-_

tO l" SOITtC 7tOr,lt, I1' '

Proof. First, we determine the parameters of the truncated equilibrium expansiori

in terms of the expansion for n. Then ,,re determine the remainder, T(h). Finally,
1

we show that lim ]lT(h)[] = 0 for some norm ]'li
A t'--+0 "_" ' '

Part i' Determining the Truncated Equilibrium Ezpansion

Recall that any constant a(_)(z,!l;t) and a(3)(z,y;t)satisfy the 0[531 a.nd O[_r'] (:(),,-

sistency conditions, i.e., Eq, 3.8 and Eq. 3.16, respectively. (Jhoose cz(l)(j', !/; t) =

a(a)(z,v;t) = 0. Then using that hO) - n(J) and Eqs. 3.4, 3.5, 3.7, and 3.!) for n (Ct

n (1), n (2), and n (a), respectively, we find

h(°)= q0u. (3,19)

3

h(l)= E c_')q k , (3.20)
k=O

where

c_1) = 0 ,

cll) _ L
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c_1) L

c(a1) = O;

3

h(_)=E _I_q_, (3,21)
k=O

where

c__) = a(2),

el2) = O,

c_2) = O,

c_2) _ L...._2 2L2(2u 1) ((u,)2 _ (uv)2) _ 2 (D(u)u_,) _y(D(u)u_) '2A3 A2 - '

_nd
3

l_(_)=E _)q_, (3.22)
k=O

where

C(o3) = O,

2L3 )2 LD,(u)Aa(2)u_,+ La(_2) + )---_,l_(uv -

+

"-_-u_,vy+ LTuyt + LT-_ 1- --Xu,)
2L 3

+ La_:) - A---5-(u_):u_- LD'(u)Aa(2)uv

L [ 2L'_(2u-1) _ L2 (0 c)) ]+ -_D'(u) - A u v ((u.) -(uv) 2) + uv "_z'- _ "D(u)Vu
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c,(j_) = 0,

Part <2:Detcrm, ining the Remainder

Now, define truncation error, T(h), by

,1

Ah -h -C(h) = -T(h) = - _ T(J)6 j + C916s1,
j=0

where

T (°) = C(h(°)),
"I

T(') = £'h (')- L(gk,27) h_°) ],,d

T (2) = £. h (=)+ 1D2g(h(°)), h(1)h (1)

- T h (°) h_1)(gk' V) = h_°) + + L (gk' V)
'

T (a) = £, h (a) + IDag(h(°)), h(_)h(1)h (_)+ D2g(h(°)), h(_)la(_)

L a h_O) 0 _o) L' (,)- --_-,)(gk, V) a +LT(gk,V).-_h + --_-.,)(gk, V): h k

+ TO--h_')+ L(gk' V)n_ 2)]cot

T('_) = 1D4C(h(°))'24 h(1)h(_)h(_)h(_) + _ DaC(h(°))' h(1)h(_)h(2)
1

+ _D2C(h(°)). h(2)h (2)+ D2C(h(°)), h(_)h (:3)

L_ I_T )_o. (o) r_ o_t,_o)+ L(_. v)t,._:_)- 7 (ek.v)_/,_o)+ -T (_k.v aT_k 0f

La (,) o lL'_ ','01,('_)+ (c..,_,v):'l,_ + L.'r(_._, v) /,_')+ 7 (_'_'v)' h.l_')+. or._ ,'T, _ ] '

)
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By the discrete Chapman-Enskog expansion on h, we find

T (°)= T (I)= T (2)= T (a)= 0

with our choice of cr(l)(x, y; t) = a(a)(x,y; t) = 0, Further, we find
3

W(4) = _ T_')qk,
k=0

where

TI)4) = _)_)= 0, (because of the 0[6 4] consistency condition)

Ti'') = =o, o)
/

Ti') = _')= 0, (be¢_u__(_)=0)

in which the _4) are given in Eqs. 3.10-a.13. Note that T_4) is a functional in u and

up to its fourth spatial partial derivatives, and in a (2) and up to its second spatial

partial derivatives.

Part 3: Showing Consistency

The combined results of parts 1 and 2 establish consistency, as summarized by the

following', Note that the h (j), j E {0, 1,2,3}, are uniformly bounded since

a (°) E C'_(7_2, 7_) and o'(_) E C2(7_2, 7_)

by the assumptions of the lemma, ttence, by Theorem 2.,I7 3 a norm, I1'I, such tliat
1

lim IT(h)[I = 0 []
A t-"+0 _

LEMMA 3.2 (DOMAIN OF MONO'rONICITY FOR LB2). Let E(k)= [M_, M+] for

lcE {0,1,2,3} whereBi_ / a, =2 3 7_dM+ =5/6. Then

g ---_ g(O) X g(1) X E (2) X _(3)
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is the domair_, of monot,:,nicit,!l for the lattice mrlhod, 1,I3:3,

(Since tile proof is rat, llc,r long aIld izlvolvecl, l,lle r_,a_l_r Inay wisll I,o accept t.ll_.'.

lelnnaa and proceed t,o the discussion and development, of tile contiIluuln Inaxirnunl

and nlillilnllm principles begixlllillg ozl 1>,150,)

Proof, There are tllree parts to l_roving tile lelnln_: (1) show l,ll_t tile conditions

_[' lnonoloilicity are satisfied in £, (2) slmw 1,11al,g cannot be exl,ended to a larger

conn_'cl,ed region, and (3) slaow t,hal, E llas w_l_lrne, \Ve will proceed in the order (3),

(1), all([ (2),

(3) (_lh,arly, £ has volume since i_l_ < M+,

(1) Our proof is by induction o,, n. Note tllat l,he base step is a special case of

the induction step. The induction hypothesis is t,o show that the conditions of

monotonicity are satisfied in £, wr begin by rewriting the l,_._ttice Bolt,znumn

Equation for LB_ in terms of n '''+'' to gel,

k=3"1

I. n+ 1 n ]

J k=O

where i' = (i,j) and &,.is the unit velocity vector for direction k. Then It is

de,fined by

H nr-e_ = Hk(nr_,rk) ,,
k=O k=O

where

It_(n'__.ek) =- (nk);.'_e_+ C'_(n_.2e_),

Then substituting for the LB_ collision operator (Eq. 3,1), II_ may be writtc'_

explicitly,

(nk)P+:= lt (np_e )
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+ bG)L " (n )L_(nk+a)L_

+ (nk)___.,'(n_+l)___.,(n_+_)rL,r_(nk+a)L_.,

-(nk)r\e,,(nk+,)Lr_,(nk+_)rL_r,(na+a)L,r_,

-('_)L_,('_+,) _ )L " ,

Now, to prove that the conditions of monotonicit,y are satisfied on £, we must

show for

l k=a

G-- Ga >_0,
k=O

where

0
- _ fla (nr__,)

Ga- Onr__,

t,hat, (ga > O. In this proof, for the sake of brevit,y, it is understood thai, unless

explicitly stated expressions involving n k for _- _ {k,k + 1,k -+.2, k + 3} are ali

evaluated at (F- ga; n). Then for example, na+l denot,es (na+_)p_a; similarly, n

denotes hp_a, 'Phen wit,h k and l evaluated modulo d-- 4, we have

0
-- Hk (nr_¢,), (3,23)C3'a,_- O(nl)r_e_

where

0
c' - t/a(nr_,:,) (a,24).,a,_ - O(na)r_e_
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\Ve sl_owthat (_i'k> 0 by showitlg tha'_ (;'k,I>_0,

Note that cacti Gk,lis a function of three arguments, Let E --_[M,_,AI+I, 'l'lmIl

the domain of a particular Gk,I is E a, Let

f((,p,¢) = p¢+_p-[,,

g(¢,p,¢) = -2p¢ + q', + ¢,

h(¢,/,,¢) = -'2/,¢ + ¢'¢+ 0,- _ + 1.

Referring to Eqs, 3,23-3,27, we see tl:at

Gk,k -- f(nk+l,nk+'a,n_+a),

Gk,k+l = g(nk,nk+_,nk+a), (3,2S)
Gk,k+2 = h(nk,Ttk+_,nk4.a),

'l'l_e{loma.inof f, g, and h is Ea, q'o prov_ (;_,t > O, it is enougl_ to show tl_at

f((,/', ¢),9((,p, ¢),h(C,,_,, ¢) > 0 for (C,,/,,¢) < 1_':_,\,re sl_owtl_tt tl_,, ext,',,,,_,,

values off a_id .qare non_'.gative,
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Since f, g, _uld h iu'e continuously differentifd_h,, irl all their _u'guments, their

rcspect, ive absolute extrein_ tu'e on t,tle bouncl_ry of E a, i,e,, OEa, or wlmre the

grttdients of f, g, tuid h ltre zero in the interior of Ea, i,e,, EZ\ 0£ a,

Local Extreina of f, g, and h, We show th_Lt f, g, ttnd h htLve no local

extrema in the interior of E a, We look for solutions to V¢,o,¢f((.,p, ¢) - (0, 0, 0),

v¢,.,+:s(¢',t.,¢) = (0,0,0),_ndV¢,.,.h(¢,p,¢) = (0,0,0),

We find

Ve,v,¢f((, p, ¢) = (p,¢ + 4"- 1,p),

v¢.,._(¢.p.¢) = (t,.-2¢ + ¢.-2p + ¢),

v<._._/.(4",p.¢) = (¢+ p- 1.-2¢ + 4".-2p+ ¢),

Setting these to (0, 0, 0), we find no solutions inside of Ea, Therefore, there arc

no local extreme.

Boundary Extrema of f, g, and h. We will show that the boundary ex-

trema of f, g, and h are between (} and 5/9. ["or each function, f, g, and h,

there are six c_es:

i

la.li,: (b.t,.¢). b__{M_,M+},

2_</b', (_,p,b), bE {M_,M+},

3_,./b:(4",_,,</,),_,e{M_,M+}.

c,_Ls,,i_,,/t,: C,>nsi,l,,r(I,,p,¢) wit,l_ b e:..{ M.., M+ } _,._d(t,, ¢) < l',':a.'l'l_e,_

f(l,.r..<1,)= pe+ (#,- i )p.
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g(b,p,¢) = -2p¢+@+¢,

h(b,p,¢) = -2p¢ + I,¢+ @- b+ 1.

\Ve now consider f, g, and h as functions of p and ¢. The local extreme values of

these f, g, and h are where their gradients (in p and ¢) are zero. The gradients

are

_To,¢f(b,p,¢) = (¢+b- l,p),

_7p,¢g( b, p, ¢) = (-2¢ + b,-2p + ¢),

_Tp,¢h(b,p,¢) = (-2¢+b,-2p+b).

For each function, there is no solution for a zero gradient. So, the extrema lie

on cgE2. Table 3.2 lists the boundary values.

Case 2a/b: Consider (_,p,b) with b e {M_,M+} and (_,p)E E 2. Then

f(_,p, b) = bp + _p - p,

g(_,p, b) = -2bp + _p -F b,

h(¢,p, b) = -2bp + b¢ + _p - ¢ + l.

We now consider f, g, and h as functions of _"and p. The local extreme values of

these f, g, and h are where their gradients (in p and ¢) are zero. The gradients

are

V¢,pf(C,p,b) -- (p,b+C-1),

v¢.,g(_,p,_) = (p,-2_+ _),

V_._h(_,p,b) = (b+p- _,-2b+¢).

li
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For each function, there is no solution for a zero gradient. So, the extrema lie

on OE2. Table 3,2 lists the boundary values.

Case 3a/b: Consider (¢,b,¢) with b E {M_,M+} and (_,¢) e E 2. Then

f(¢',b,¢) = b¢+b_-b,

g(_,b,¢) = -2b¢+b_+¢,

h(_,b,¢) = -2b¢+b_+_'¢-_+l.

We now consider f, g, and h as functions of ¢"and ¢. The local extreme values of

these f, g, and h are where their gradients (in p and ¢) are zero. The gradients

are

V¢.¢f(_, b, ¢) = (b,b),

= (b,-2b+l),

Vc,¢h(_, b, ¢) = (b+¢-l,-2b+_).

For each function, there is no solution for a zero gradient. So, the extrema lie

on OE2. Table 3.2 lists the boundary values.

Absolute Extrema of Gk,l. By the preceding analysis, the absolute extrema

of f, g, and h on E 3 is given in Table 3.2. We find that

5

minGk,l=0 and maxGk,l= _.

Hence, Gk._ :> 0 and Hk (ergo H) is a monotonically increasing function in all

its arguments. Then lower and upper bounds on H are found at the respective

infimum and supremum of all its arguments. Table 3.3 lists the two cases.
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Table 3.2: Boundary Extrema of f(¢,p,¢), 9(q',P, ¢), and h(¢,p,¢) in LB2

_ P ¢ f((,P,¢) g(C,P,¢) h(_,p,¢)_
M_ M_ M_ 2/9 2/9 1/3
M_ M_ 5I+ 1/3 1/6 2/9
M_ M+ M_ 5/18 1/9 2/9
M_ M. _f+ 5/12 0 1/18
M+ M_ M_ 1/3 1/3 7/18
M+ 34_ M+ 4/9 5/18 11/36
M+ M+ M_ 5/12 1/4 11/36
M+ M+ 3Q. 5/9 5/36 1/6

Table 3.3: Extrema of H in LB2.

[ Extreme Va,,!uesof ,A'rguments Functional,Value of H []
no ni n2 ns Ho H1 H2 Hs
M,, M_ M_ M_ " ' M_ M_ M_ M_

M+ M+ ..M+ M+ M+ M+ M+ M+
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(2) To show E cannot be extended. Let e > 0 be given such that 0 < M_-e <

M_. +e < 1. Then let R_ - [M_ -e,M+] and R+ = [M_,M+ +e], and

M = [M_, M+]. Further, let E+ - M U E+. Then let

^

eo,_ -= MxMxMxE+,

_l,:i: ----- M×MxE+ xM,

_:2,± = MxE_: xMxM,

_3,_ - E:L xMxMxM,

It is enough to show that for each i E {0, 1,2,3} and s E {+,-}, Gk,t(n*) < 0

for some n* E _i.,. Well, note that from Eq. 3.28 and Table 3.2, we see that

(1) Gk,k+l = 0 for nk = M_ and nk+2 = nk+3 = M+ and (2) Gk,k+a = 0 for

nk = M_ and nk+l = nk+2 = M+. There are eight cases to examine. While

we will only present the proof for two cases, the other cases proceed similarly,

and the tables we will be using have enough information to verify the other six

cases. For each case we use a proof by contradiction.

Case I_o,+ = M x M x M x E+: Suppose GkJ _ 0, V k, l E {0, 1, 2,3} and V
^

n E go,+. Let

[ ]Tn* = M_, M+, M+, M++e EEo,+.

Note that Go,_ = (n*) = g(M_,M+,M+ + _). From Table 3.4 we see that
0

-_ g( M_ , M+ , M+ + e) < 0. This coupled with g(M_,M+,M+) = 0 (see

Table 3.2) implies that Go,l(n*) < 0, which is a contradiction. Therefore,

the conditions of monotonicity are not everywhere satisfied in _'0,+.
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Case $o,- M ×M×M ×E : Sul)pose Gk,l > 0, Vk l E {0,1,,-,3) and

n E _o,-. I.,ct

[ ],i,n'= M+, M+, M+, hl_-c E _o.-.

Note that G_,o(n*) = g(M_ - e,M+,M+). From Table 3.4 we see tidal
0

,-7-.q(M- - _-,M+, M+) < 0. Tills coupl(,d witl_ g(M-, M+, AI+) = 0 (see

']'able 3.2) implies tllat Ga.o(n*) < 0, wllicll is a contradictiozl. Tll('refore,

the conditions of monotonicity are not everywhere satisfied in $o.-.

As noted, the remaining cases proceed similarly, tlm final result beiilg tllat nolle

of the eight ways of extending E produces a region everywhere satisfying the

conditions of monotonicity.

We have shown that the conditions of monotonicity are satisfied in g, that no exten-

sion of $ everywhere satisfies the conditions of monotonicity, and that 8 has volume.

Hence, g = [2/3,.5/614 is the domain of monotonicity for LB2. rq

LEMMA 3.a (DISCRETE MAXIMUM/MINIMUM PRINCIPI,E FOR LB2), Consid-

ering the lattice method, LBe, let its domain of monotonicity, £, be rts in Lemma 3.2.

Then LB2 has the discrete maximum and minimum principles described in Theorem

2.49.

Proof. Note that M+ = M+q0 and M_ = M_q0, and thai, Ck(M+) = Ck(M_) =

0Vk E {0,1,2,3}. Therefore, Theorem 2.49 applies, i.e., ifn ° E g, grEO, the_

n'_E E, Vi'El2 for ali time stepsn. []

\Ve have established the discrete maximum/minimum principle for 1,1_. Now, to

establisll tile continuum maximum and minimum pr!ncil)les.
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Table 3.4: Direction of Increase in f, g, and h for Arguments Just Outside £ in
. 0 0 O

LB2. The table lists -_-f, -_--g, and -_-h for arguments just outside the boundary of
O£ O£ (7£

E. The arguments are parameterized by c > 0.

=

((e) p(e) ¢(e) -_-_f(_e)) _-_g(g(e))

M_ M_ M_ -e -2/3 +1/3 +2/3

M_ M_ M+ +e +2/3 -1/3 -2/3

M_ M+ M_ - e -5/6 +2/3 +1

M_ M+ M+ + e +5/6 -2/3 -1

M+ M_ M_ -c -2/3 +1/3 +1/2

M+ M_ M+ +e +2/3 -1/3 -1/2

M+ M+ M_ -c -5/6 +2/3 +5/6

M+ M+ M+ + e +5/6 -2/3 -5/6

M_ M_-e M_ -1/3 +2/3 +2/3

M_ M_ - e M+ -1/2 +1 +1

M_ M++e M_ +1/3 -2/3 -2/3

M_ M+ + e M+ +1/2 -1 -1

M+ M_ - ¢ M_ -1/2 +1/2 +1/2

M+ M_ - c M+ -2/3 +5/6 +5/6

M+ M++_ M_ +1/2 -1/2 -1/2

M+ M+ +_ M+ +2/3 -5/6 --5/6

M_-e M_ M_ -2/3 -2/3 -1/3

M_-e M_ M+ -2/3 -2/3 -1/2

M_-_ M+ M_ -5/6 -5/6 -1/2

M_-_ M+ M+ -5/6 -5/6 -2/3

M+ + e M_ M_ +2/3 +2/3 +1/3

M+ + e M_ M+ +2/3 +2/3 +1/2

M+ + e M+ M_ +5/6 +5/6 +1/2

M++e M+ M+ +5/6 +5/6 +2/3
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LEMMA 3,4 (HYDRODYNAMIOALMAXIMUM/MINIMUM Pi_INClI'I,E FOIl LBl),
1 1

Lcre'ma 2.55 holds with D(u)=
2(1- + ,,) - '

/:"roof. The arguments follow those for I,cmnla 2.55, cxcepl, t,llat, t,ll('. smooth

extension of D(u) is near u = -1 and zt = +1 instead of zt = 0 and u = 1. []

LEMMA 3.5 (CONTINUUM MAXIMUM/MINXMUMPI_INCII'LE I,'Ol_LBl). Lcrnma

2.,50'holds with, h (°), h(l), h (2), and h (a) defined in £'qs. 3. I9--.3.22, and _l C C'1(75'a,75)

a_d a ('a)C C=(7¢2, 75) solutions of Eq. 3.6 and Eq. 3.1/_, respectively,

Proof. The arguments follow those for Lemma 2.56. [::::1

COROLLAUY 3.6. In LB2, 3 5o >0 such thatVSE (0,50), /lh, °-E g', V_E 2,

then h'_ E F_., V _ E ,P-,V n, where ,f. is the domain of monotonicity for LB2.

Proof. Let R+ _ M+ < 1 and R_ -_-M_ > 0, where M+ and M_ are defined in

Lemm;_ 3.2. Then apply Lemma 3.5 to yield the result. [:::1

We have established continuum maximum and minimum principles for the trun-

cared equilibrium expansion, h. The sufficient conditions are that (1) cr(°) has a

ma.ximum/minimurn principle, (2) finite global bounds on h (1), h (2), enid h (a) exist s,

and (3) expansion parameter 5 > 0 is sufficiently smM1.

LEMMA 3.7 (STABILITY OF LB2). Let n _, h _ and L[n_,h _] be defined as

in Definition 2.41. Let domain of monotonicity, £, be as in Lcmrna 3.2. Suppose

n_, (h(°))_ E g.6 And suppose the hypotheses of Lcmrna 3.5 are satisfied. Then

r > 0 ,such that ]]L[n_',h"]]]6 <_1 V n such that 0 <_nat < T and 0 < At < r.

Proof. Let I'/+ = M+ and R_ = M_, where M+ and M_ are defined in Lemrna

_Theseare guarenteed to exist by regularity of the O[b_] and 0[6 4] consistency conditions, Eqs.
3.6 and 3.14, respectively.

a

61recallthat h(°) is the equilibriuln in the truncated cquilil)riumeXl)ansion,h = E 5Jh[J) (S(_e
j=(}

Eq, 3,17).
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3.2. Let 60 be given by Lemma 3,5, Choose r = T(_0) 2 so that Ax < LG0, Note

that Corollary 3.6 applies to yield that h n E E, V n such that 0 < nat <_ 7' and

0 < At < r, Then IIn[nn, hn]ll6 _<1 by Lemma 2.59, []

TItEOREM 3,8 (CONVERGENCE OF LB2). Let the conditions of Lemmas 3.1,

3.3, and 3,5 be satisfied, Then lim 1at--,0_ IIF"II,,= o,v n _ o < nzXt<_T, in which

At = (Ax)2/(2v), and Ax = LS, At = T62, and u = L2/(2T) for spatial and temporal

scale lengths L and T.

Proof. This is a consequence of Theorem 2,61. []

We cat_ recover an 0[62] approximation to u(x, y; t) by the covergence arguments,

the definition of the truncated equilibrium expansion, and consistency arguments to

obtain that hydrodynamica,1 error,

1

(f0)_ = _q0'e_+(-9[62 ]

_- p?- p_+ o[__]
3 1 3

= _ k=O k=O

1Z:(_k)_- (/4°))_+ O[__1 +o[__1=_ k=O

1 a
= - E (_)_ - _' + oi_]

4 k=o

_- _1_(_k)_ - _(ra_;_at) + o[_],
4 k=o

We have shown that the hydrodynamical mode of the lattice Boltzmann method, LBl,

converges O[6 _] to the solution of its hydrodynamical equation, Eq. 3.6. Assuml}tions

and statements used to obtain convergence include: (1) monotonicity principles of the

lattice method, which restricts the domain of the occupation numbers, (2) bollnded-

ness of the solutions, u and cr(_) (and tlp to their fourth splttial derivatives), to the
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3.2 A Lattice Method for the 1-D Viscous Burg-

ers Equation

q'llis ,,.;cct,ioll l)reseIlts xlutrJerical a.nalysis of a lattice llletllod for tile o_le.._lillle.llsiollal

visco_ls l:lilrgers equ_ttion,

Pt 4- pp:_ "- t:pz,a: , (_,_,2!))

Boghosiall and Levermore [7] introduced a lattice gas rnetllod for l,llis equal, ioxl, Ilere,

w_'_present mi_dysis of tilts method as tt lattice Boll, zmann metliod tlild¢,'r l,lle, frame-

work sel, up iri Chapter 2. The main purpose of ttlis exa, mple is to poi_lt out llow a,

collision operator with an O[b] component affects the analysis. It _dso fills in some of

the details of the analysis in [7], Considering the results of [53], regarding correlations

for tile lattice gas method, our lattice Boltzmann analysis also extends to tile, lattice

gas case. (I,ebowitz, et _1. [53] showed tll_tt the correlatioils may safely lw neglected,

i.e., that particles are statistically uncorrelated prior to collisions,) Willie presenting

colnputational results for the lattice Boltzmann mel, tlod, we a,lso use tlm correspond-

iilg lattice gas method in a forthcoming chapter oil domairl decompositiorl for lattice

nlel, llods. We 1i_¢1 l,l_e lzd,tice ]]oltzrna,_ln n_el,l_od to ]}¢._a sec_¢l-or¢lt,r co_lw.,.rger_l,

fil_il,e diffc,re_ce rrletliod,

J
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Figure 3.2: Direction labels for a lattice method for Eq, 3,29,

3.2.1 Collision Rules

There are two directions, labeled 0 and 1, Their orientation is depicted in Figure 3,2,

with 0 to the right and 1 left, Table 3,5 and Figure 3,3 exhibit the collision rules.

The probability of an advection in direction 0 (to the right) is a; in opposite direction

it is _ = 1 - a, We assume that

l+e 1---e
a=_ and _z=-----

2 2 '

where for some constant K > 0, e = K_ is the advection bias (to the right), 7 The

assumption that _ = 50[5] is crucial in recovering Eq, 3.29 from the dynamics of the

method.

3.2.2 Collision Operator

By examining the collision rules (Table 3.5), we find tile collision operator to be given

by

-'_^ _^ "W"

R.ule lb Rule 2a

Rulelb Rule2a

ZThe advection bia-q is denoted e in the present text while it is denoted _ in [7],
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Figure 3.3: Collision rules of &lattice method for tile one-dimensioned viscous Burg-
ors equation,

Table 3.5: Collision Rules of & Lattice Method for _ ,Lq, 3 29,

Rule oi f] ,5(¢._'----+/:))_

0 0 0 0 0 1
l"a 0 l .... 0 1
1b 0 1 1 0 a

,,

2_ 1 {} 0 1 a
2b 1 0 1 0 a
3 i 1 t 1

.......
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or) in vecLot' [toLal,k)xx)

) +'c(,',)= (-<, + ;,,,)+,-;(,++ r,,,-'2_,0:_,) ,

'/'zkis the occupation number fox'direction k, i,e,, the number of particles moving in

direction k,

3.2.3 Lattice Boltzmann Approximation

'.l'lm ca'act, ensembled collisicm operator is given byu

(c(r,)) = c(,,) +c

+a_7,_ - _rno_ +a Cov(',_,o,n_)- _Cov(no,n_)
= +

= _(--,,.0+ ,_,)+ _(n,,+ ,,.,- 2n:,)- _Cov(,_0,a,) _

= C¢o)(n)+<sC<_)(n)+C,

wl,ere C(°)(n)is Lhe ©[1] c'oe[llcie,,t, C(_)(n)is the C016]coef[icient, and C involves the

covariances. 'I'o get l,lle t,hird lixle of the above, a c,.:rt,ain relationship for cov;triallC(-_s

is used. t,el, 13axed 0 be instances of some infinite collectioxl of events or sa.llil)h!:s.

'l'llen

<:o_(7,_)= /_5(i/-/)_)((i/

= (0- i>(i}--(1- _)(,))

:-: -((1;o/- (p)/o))

= -(/,ov(i',, 0).

al3(:cat_sewe ke(,l) track ot'l,l_(,cowtriallc(,s,t,l_is(,'(lllal,[ol_isexact,; it, isnot,al_ al)l)ro×ilnal, ion,
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\'%"_'are int,_,rest,<,CIirl l_lir_llinl_t.lli_II_,t.llc_las_.lat,t,tc<,l_l_lt.:/,vllnnltllll_,t,lIC,_l,'l'llc't'c,.

{'or_,,we vidal,a,t,llc,_ priori as_Ul_ll>t,ioli t,llat, C "--O,wllicll Ic,acln(,ol,at,t,ic_,13c,lt,zanla,tlli

A_ = n + C(n). (a.:lO)

W]I('I'('

C.(n) : C.(u)(n)-t-_C.(_)(n) (:_,:ll)

IiI1(I

It" -FI ]

C(_)(n)= V ("ot 7_,_- 2.o7_)

a,I_clt,l_ea¢.lv¢:ct,io_ operat,or is ch:fi_wclby

1

Anp ( '"+
k=-O

for _it, w'locit,y w:.ctors, e'_ = --t-1and 8_ = -1, Lz .n zz is the veer,or of n_._l

occ _1pa,(,ioxl n _1tubers,

3.,'.4 Equilibrium Analysis

It, is col_v_,_ient,t,o use t,l_edirect, _c,t,l_<,clof S_,c't,it,_ 2,2.1 for _l_t,_,r_i_it_gt,lle e_l_ilil,--

() 1



8,+2,A LA T77Clg METItOI) FOR, TIlE I.D ItUIP,GEIi',S EQI]A 7'H)N 15!i

II'lien tlm cqttilibritttn nta,y bc written

["In(a) ._
'd

3.2,5 Linearized Collision Operator

Using the non-trlvial equilibrlttm solution, n (°), wo ca,n now lincarize tit(; coltisiott

opertfl,or, But first, rectdl tltat only the le+tdittg order _t',rtIiof t,lw, collisio,,a ol)cra, l,or ts

used irl the lineariz+d,iott (see, [)cfittlt, iott 2,32). 'l'tten t,he littet_rizcd cotlisiota Ol'w+ra.i.or

is givctl by

]'10
,,) - _-c_"'(n)/: = _c"/")( - oT_l'

11_I1(0) kol=O ll +.-+li(O)

'l'here +u'e fottr _'._+ses',

_c[,, ) t 0 +.,I,,l I +to (,,) = --_, _c,,, (,,) -+-+.II,--++lt( 0 ) ll=lt(t I)

°cl"_(,,) = +_, _cl"_(,,) = ....,(f)'t I,O Zl=ll(OI ll=+:ll(O) 2

'l?lw+t_the line+_rized collision opera, tor,/2, writ,t,en in tua,trix ttot,zt,tiort is

l -i + 1 ]

]
o

(llcat'ly, /..:is +tsyrrttllct, t'ic, ltOUl>OSitiW_clNiIlit,+,civctll+ttll,,

3.2.6 Eigenvahtes and Eigenvectors

'.l'Itc ei,gcttv+tlttcs of £ +rrc>giv<'n by

,;ig<'ttvaltt¢,,,+(L;)=: (,+kt,,,kt) = (0, .....l),
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Table 3.6: ('()llll_oll('T_twise l'_ig(,I_v(,clorl)rod_lcts.

[J*li qoIq, II
]qo qo ql
] q l q t qo

r _ , (J

I lie ullnormalized, .,<onvectors of £ ".ai'(,given t)y its oigexln_atrix,"

Q qo, 'ql]

+1 4-1

+1 -1

The nullspace of the linearized ('ollision operator is spanned by the eigenvectors col

res,",::,l::dingto zero eigenvalues, i.e., nullspace(12) = Sl)an(q0). The pseudo-itlw._rse of

£ can be written

£+ qlql r 1 T 1 +1 -1 ]
= - = -_qlqi, = --

ql "ql , 2 -1 +1 J

The componentwise eigenvector products (, operation) are summa, rized in Table 3.6.
I

3.2.7 Discrete Chapman-Enskog Expansion

To apply the discrete Chapman-Enskog procedure of Section 2.3, we ;, _ume

e = KcS,

Ax = La,

At = T_ 2,

9q0 a_d ql are colurnn vectors.
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in which K > O, and L > 0 and T> 0 are the respective spatial and temporal scale

lengths,

Note that gradient expressions involving the unit velocity vectors may be g.,n,_.,1_"' "ally

expressed as follows'

1 { 0j
(V) j _xjq0, jeven,
ck. = cgJ

k=0 _-_Txjql, j odd.

Now, we may readily apply the discrete Chapman-Enskog procedure. We will use

the following notation:

= -

A'(u) = 1-2u,
1

g(J) = /_'n(J)-- E_(J)qk,
k=O

1

n(J) = ¢r(J)q° -]" _+ ' g(J) = E c(J)qk ,
k=O

in which c_j) = a(j) and c? ) = _?:(13').1oWe will be using a third order truncated

equilibrium expansion, i.e., h 3 _5.ih(J) h(j) n(j) o.(3)= _j=0 , in which = . And as appears

in n (a), and cr(a) is determined by the 0[5 '5] consistency condition, we carry out the

discrete Chapman-Enskog procedure to determine the consistency condition at 0[55].

For each order in matching the advection and collision operator expansions, Eq. 2.24

and Eq. 2.18, respectively, we find the following:

0[1]: C(°)(n (°)) = 0 asdesired, si_ e

n(O) = u (3.32)
lt
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is ml equilibrium,,

0[6]' We find

£,n (I) = L G'V ,i (°) -. C(1)(n(°))

= g(1)
1

= Z4'>q ,
k=O

W ] I 0 I'('

• Consistency: Note that already g(l) is orttlogonal to tile nullspace of £, i.e.,

q0' g(') = 0, ao tha*. no consistency condition is introduced al, this order.

• Solve for n(1): We have

n(l) = £+ . g(1) + a(l)q0 (3.33)
1

= Y;4"q ,
k=O

where

i' ,'t (iand a (1) is the. arbitrary parameter introduced by the nullspace of tlle lincmlz:.d

collision operator. 11

110Jleparameter is introduced since dim(nullspacc(£)) = 1.
i,
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0[52]: We find

L 2 O n(1)
/2.n (_) = _2 (_'k'V) _ n (°)+T_t,, (°l+L gk'V

1

_ iT)2C(°)(n(O)), n(_)n (_) _ DC(1)(n(°)). n (_)

= g(2)
1

= E g:_2)qk,
k=O

where

"0_ L2

and in which

D2C(°)(n(°)) , n(1)n (1) = 0,

_C(1)(n(0)) n(I). = KA'(u)a(1)ql.

• Consistency: Setting q0' g(2) = 0 yields the 0[52] consistency condition,

O O O_

_tu + c/-_xA(U ) = v_., (3,34)

where

KL

c = _, (3,35)
L 2

/2 -- _,

2T

With the change of variable, 12p = cA'(u), a linear transformation, we find that

p satisfies Eq. 3.29. (This is identical to the result of [7]._a) The transformation

l_Recall from the beginning of this subsection, i.e., Section 3.2.7, that A(u) = u(1 - u) and
A'(u) = 1 - 2u.

1hOur p is their u.
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is consistent with the following l)aralneters

Ax - L,5,

2v
c_x

e = Ii6=--
9 u '

c ¢ O,

• Solve for n(2): We have "

n(=) = £+. gl2) -!-a(_)qo (3.36)
1

= Z C_2)qk,
k=O

where

C(o2) = o-(2),

cl2) -'-KA'(u)a (1)- ra_"(1),

in which a (2) is the arbitrary parameter (a scalar) introduced by tile nullspace

of the linearized collision operator.

0[(9]' We find

/2. n TM

L2 )_ T ° n(1)_ L a 0 n(°)+ --(gk'V +- _ (gk' V) 3 + LT (gk. V)_. 2! Ot

-1- L (gk' V) ] n (2)- _'Da(Y(°)(rl(°)). n(1)n(1)n(l' - T)2C(°)(n(°)). n(1)n (2)

_ _Z)_C(_)(n(O)).n(_)n(_)_ 6Z)C(_)(n(O)).n(2)

_ g(a),
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where

) = l;L_,t,,,_ !,) ......._(,)+T,,}')'' _ ' '1 2 _ _

ela) . L_ .. ' ,/.I L_ ' D O) A'(u) + La(,:2) - 6KA'(u)a (2).- ---_-u,,,. ,+ !,,/,,_'2' _x + TO7

+K [(ct(2))2- (Lu, - KA(u))2] ,

and in which

Dac(°)(n(°)) , n(1)n(1)n (1) = 0,

D2C(°)(n(°)) , n(l)n (2) = 0 ,

D2C(')(n(°)) . n("n(') = 2K [(Lu,: - KA(u)) 2 - (a(:)) 2] q,,

DC(_)(n(O)). n (2) = KA'(u)a(2)ql .

• Consistency: Setting qo' g{a) = 0 yields the 0[63 ] consistency condition,

o('_+_ (A'(,,)o"= .-fifty,o(') (a,oT)'

Note that as with LBl and LBl, the 0[63 ] consistency condition is satisfied

with a(_)(x; t) = const. Let us choose a(l)(x; t) = 0; further analysis reltects this

choice.

® Solve for n(3): We l_ave

rl(3) _ /_+ . g(3) + a(2)qo (3.38)
1

= Z"?q_,
k=o {

where

C(o3) = a(a),

= ---ff-u.._, + K 2 _)x _ T_ A'(u) + La (2) - 6KA'(,u)a (:)

+ _:[(_(_))_-(L_.-KA(_))_],
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ill wllich cy(:_)is til<: &r1_it,rary scalar l)aramc(,('r irllrodllc(,(l l)y Cl_(,_lull,_l)aC('of

tlm line&rized collision op(,ra(,or,

016'1]. \,Ve [irld

(,I)

L 'l /.,:_T O 7'2 O2 n(0)
= _ (,.-"j,.,VI" + _ (_7_,,V/'_ + (2 Ot._,

+ _(_.._):_+LT'(,5_.VlN n + T(_7_"v)_+/N '_(_

+ L (Fk, V). ] n (:))- l-[-'D")C(°)(n(°))2,1'
I1(1)11(I)11(1)11(1)

A

_ ,.ST):_C(O)(n(O)).n(1)n(1)n(_) _ 7)_C(O)(n(O)), n(1)n(a) _ _iD_C(c))(n(O)) n(_)n(,2).=. 2

_ ID:_C(_)(n(O)) . n(_)n(1)n(_)_ D_C(_)(n(O)), n(_)n(_) _ _C(1)(n(())), n(:_)

- g(,_)

wl_cr(.,,using }_":t,3,34,

L_ (__I;') = .wl_)+ 6_<L. (A'(_,)_('_))- y_,-,,
+ T.T'(li, L;x,t;u,u_,u_:_.,,._,_._., u_._._,_:), (3,3!))

_I_) : L_?)- I,'A'(_,)_(_), (:),40)

foI'

?(Ii, L, T; x, _; .u,u_. u_,._,u_,_, u,._._:)

2l(aL

+ 7---c-A(_)A'(_I_,
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and in which

7:)4C(°)(n(°)) , n(1)n(1)n(1)n(1) = 0,

T_aC(°)(n(°)) , n(1)n(1)n (2) = 0,

7:)2C(°)(n(°)) . n(1)n (3) = 0,

7:):C(°)(n(°)) , n(_)n (2) = 0 ,

7:)3C(1)(n(°)) , n(1)n(1)n (1) = 0,

7)2C(1)(n(°)) . n(1)n (2) = 0,

_)C(1)(n(o)). n (3) --_ KA'(u)a(3).

Note that our choice of a(l)(x; t) = 0 played a significant role in simplifying the _d)ove

calculations.

• Consistency: Setting qo' g(,t) = 0 yields the 0[54 ] consistency condition,

0 o 02 _)(y(2)
+ 6_(A'(_,)_(_)) = .=--_.._,0-/ Ox_ (3.41)

- _'(I(, L,T; x, t; u, u_, u_.:, u_,_:, ,_._._).

Note that Eq. 3.41 may be written

(L+h)[o(:)]=_:, (3,42)

where operator

02 0 _)

L- .(_;t)b-7_+ _(_;t)0-7- O_'
in which

a(z;t) = .,

b(x;t) = -6cA'(u),

h(x;t) = 12cu_.

Note that I. is uniformly parabolic in region ZT = ([0, L] × [0, L]) × (0, T].

Suppose that u E C4([0, 1], [0, 1]). Then under this and additional assumptions
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(regarding initial and l,Olllldary COIlclitio11s)allcl regl_larity argllm_,11l,s, ii, cazl

be shown [5,i] that solutions rr(_1of Eq. 3..12 ale ("_(7_,'_.) fllnctiollS alld, ill

particular, a (_) -(_) and cr('_)are IlIlit'ormlv I)(_llil¢led. \Ve will assuIlle tllat SllCll

bounds exist to obtain stat_ments regardin_ ll_lln_'rical convergence o1'tile' latt.icc,

metlmd (see Lemma ,3.9 for how the bounds apply i,o numerical consistency

and Lemma 3,14 for llow they apply to continuum inaximum aild miIlimuln

principles for the truncated equilibri_lm expansion).

• Solve for n(4): \,Vehaw_

n(4) = 12+ , g(4) -4-o(_)q0
1

= _ c_4)qk ,
k=o

where

e(o4) -. o.(4)

in which o.(_) is the arbitrary scalar parameter introduced by the nullspace of

the linearized collision operator.

Cq[6s]' At this older, only the consistency condition is to be determined, Tills con-

dition specifies rr(a), We will fi_ld that o.(_)(a:;t) = eonst, satisfies the condition, \Ve

find

£, n (_)

L_ LT'_ ?)_ La /) [
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L4 ,_ L2T 0 T 2 0 _ n(1)
+ _(5, V)+ -F- (¢,k, V)_ F7 + -y Or--z

La 0 (2)
+ -_ (gk' V) a + LT(,_,_,, V)-_ n

[+ -2-[(_'_,V)2 n(a)+ L(gk,V) n (4)

+ (Coli,)

_= g(5)
1

k=o

',vhere

and (Coll,) is the contribution from the coefficient of 65 in the collision operator

expansion, Eq. 2.18,14 Note that (Coli,) is orthogonal to the nullspace of the linearized

collision operator, and therefore does not contribute to the consistency condition. The

remaining coefficient, _I_) _ left uncalculated, l_

• Consistency: Setting qo' g(5) = 0 yields the 0[5 s] consistency condition,

02

OH co"x'x _ . (3,43)

Note that a(a)Ix;t) - const, satisfies Eq, 3,43, Let us choose a(a)Ix;t) = O ,

(This implies that _.I4) = 0 ,)

14(Co11.) consists of the 0155] collision operator expansion terms minus t;. n (_).

155_) would nee(t tr) be calculated for determining n ('_), which wouhl also mean calclllating the

(Coll.) term, One wouhl complete such calculatiot,s to deter_nine the 0[(5 _] consistency cr.,,._dition.
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• Solve for n(r'): \Ve wotlld compl(,te tills calculatioll xw,rew(, to desire tile C'_[_"]

consistencycoildit,ion,wl_icl_wo_ll(ldrterll_it_e,.(,I),l]tltsil_('e'_(,i)_l_Jesll(,t,

appearilltlletruncated_,quilil)riumexpa_isio11,wliicllisusediIlest,ablisliiiig

consistency (as per tile next sul)section), ii, is ll()t llecessary to (.letermill(' rr('a)

uor, hence, n (s),

This Coml)letes tile first apl)licat, ion of the (liscret,c (lllal)Inan-Enskog l)r(,('edure, It,

determined llydrodynamicM equation of the lattice lh)lt,zlnalln metllod to be Ii',(1. ',1,3,1

all(t tlle consistellcy e(luatiolls for rr(l), cz(2), and Cr(3) tO be l!]qs, 3,37, 3,'11, an(l ',l,.l',l,

resl)ectively, \Ve saw tl_tt o"(_) and a (3) may he cl_osen to be co_sta_ts, a,_d tllat

•,t _ (:rC(')E (i;'"([0, 1], [0, 1]) and cr(2) ff (.:2(T_,_.).

3.2.8 C0_, vergence

To obtain a statement regarding the convergence of the lattice Boltzmann method, we

establish consistency, discrete and continuum maximum and minimum principles, and

stability. The discrete maximum and minimum prinr:iples result from monoto_icity

arguments.

LEMMA 3.9 (CONSISTENCY OF LB METIIOD F()n BUnGEnS' EQUATION),

Define the truncated equilibrium expansion by

3

h = _ 6Jh (j), (3o4,1)
j=O

in which h (j) - n (j), then (j) as defined by Eqs. 3.32, 3.33, 3,36, and 3.38 in the ap-

plicatior_ of the discrete Chapman-Enskog proced'uve of Section 3,2, 7, Then h satisfies

Ah = h 4-C(h)- T(h), (3,45)
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in wh,ch truncation e,','o,', '7(h)= 016_], Suppose o"(°} E C4([0,1],[0, 1]).hd o"(_) E

C,'_(7_,7-().t_ Let At = 71,g_..., &x = 1,6, v = L'_/(2T), and c = I(L/T, for spatial,

temporal, r,nd advection scale lengths L, T, and K, respectively, Then

1
li,n 117"(h)ll= 0

_l--+O _-_

for some no,-m, 1'11'

Proof. First, we _tPt)ly the discrete Cllapman..Enskog procedure to del,ermine the

tt'uIlcated (_qttiliiJri_tn_exl)altsiou. '[_]lcn we (h,termine the remainder, T(la). l;'in_dly,
1

we ,,how ,,h_tt Ii,,, 11'7(5)1= 0

l"avt I' Determi,i.q the 7'runcatcd EquilibT_ium Ezpansion

Recall that cr(_)(:r',t) = cohort, and a(3)(x;t) = contr, satisfy tl_e 0[63 ]aud O[6 '_]

coIlsistency conditioIls, i.e., Eq. 3.37 mid l._<.I. 3.,13, respectively. (i".hoose cr(l)(.e',t) =

cr(:_)(x',t) 0 'l'hetl Ilsing that h b) n (J) ;rod Lqs. 3.3,, ',_.33, 3 36, _',ud 3 38 for

n (t;), n {l), n ('_),and n (3), respectively, we [iIlcl

n(°) :_-u qo (3,,16)

1 1 1

k=O k=o k=O

wh ere

el)_) = 0 ,

c]_) = NA(u)- Lu, ;

x6R.ecallthat u(a:',t) _ o'(°)(a_;t),
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(,I)') = oy('2)

,,I_1 = lx'A'(,,)_(_ _ l,c,.l._l;

,,I:'1-- o,

= -.---u + 1( [- (zt) q" •.... a' '-

+h" [(c_(_l)_- (Lug,- A'A(.))_],

l).t't 2: Dctet'minin 9 lhc Remainder

Now, to (let(,,rInixle ttie remaiIlder, 7"(h), let us al)ply the discrete Cl_al)tnaxl-l'nskog

procedure to la. \Ve apply the advection altd collision operator exp_nsions(Lq.i' 2..9,1

_md Eq. '2.18, respectively) to the truncated equilibrium expansion, h, Cttre is taken

in noting that only up to the O[6a]terms of n appear in h. Thus, _ome of the terms

in the advection and collision operator expansions do not appear in the discrete

Chapnlan-gnskog expansion on h, Tlm resulting expansion follows:

4

Ah -h -C(h) = -T(h) = - _ 6JT (j) + O[_S],
j=o

where

T (°) = C?(°)(h(°)),

T (1) = L_. li (1)+C(1)(h (°))- L _k' _7 Ii(°),

1 (()) X)h(|) l)C(l) (x)
T (_) = £.h (_)+ _D_C? (la(())) . h ( + (h(°)). h

La
9 (gk' V) 2 la(°) - 7'0 (o) . (_)- -7" _Th -)-1, 4'V la ,

1 (o) l)h(i) (l) h(_)h(_)T (:_) = £, h (3) + _7)aC (h(°)) , h ( 1i +'P_C(°)(Ia(°)),

1D_ l) _ (l) l )+ '.7 C?( (la(m)' la( )h -)-(;DC' (I_(u) , _i(u)

_

=
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! '. rt ,L' Sh.o it'ing ('o,,, i,_t_', c!1

'l'lle c',,1111,ilj('(lr(.slllt,s ot' p/li'Is I nll¢l '2 ¢'St,nlJlisll ('_,tlSiSt('llCy,nS sllIilllmrlz(,¢l IJy t.ll(.

l'oll_.,,,vi_g',Note tllai, tl_(' hl.,)j _ {ii, 1,2,3}, are ,11_it'_,rl_lyI_ollxlcledsillcr

.(") E ('"([().1).[().1]) .....1 .(-') _-(y-'('r¢,"Zr)

() I,5' "l'll(,.or(,ti12,.11, []

LI,iM_IA 3,1() (D()MAIN ()i,' _I()N()T()NIC1TY ()1" LI3 _II!;Tl[C)l) l"()l', [](!ll(:l;;ll,q '

]!](_t!A'rl(.)N), l, rt _ _ ((I, 1) i, thr latticr l¢olt.:t_,,, _cth_,d,

.4ni = n i + (2(,_'_, ), (:_,,ls)

it!It6'rt:

C(n,)-q_ (--(,,.o)_+(,,_),)+.7((,,.o), 4.(,,_), ....._(,.,,),(,,_)_) (:_.,_!))

(l lid

_n .t-1
IlO)i_. 1

AIII L :--_:
u+ 1

( r/'l _i-t-1

l,ct t.7(u) := E (_) = [0, 1], 7'he'n g - £(o) x _(t) is the dom_fin of monolot_icity for lhc

m_:thod,

l'roof, 'l't_ore _u'e ilmr(_;(;parts to proving tl_(, l(,_a: (l) sl_ow l,l_t the ('()ndil,io_s

(,t' _a()_ot,o_icit,y are sat, islied i_t £, (2) slmw tt_at £ c_nnot I_(_exte_(l(.'d I,o _ larger

(:(,_.,('i,(,(l region,, _u,d (3) show tt_a.t g' l_its volu_lu,, (,h_atly, ('2) and (3) are l,rtte, _r

l"or (2) h;t us write rh(,, I.,t_tti(x',Boltzxn_mn l?,(luttl,io_t, !"-, 3,,18 in {,h(' l'or_n

ll(,(ni' _)_+1
11i _

flu(n,!'+_)

IrS ctu_not, be extended beyond [0, 1]:!, a_(l it obviously I_ns v(.:,lu_le,
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PaT't 3: Showi,.g Consistency

The combined results of parts 1 and 2 establish consistency, as summarized by the

following: Note that the h (j), j E {0, 1,2,3}, are uniformly bounded since

a(o)6 C4([0,1],[0il]) and _r(2) E C2(_,T_)

by the assumptions of the lemma. Hence, B a norm, [' I, such that at--,olim_--_ IT(h)ll =

0 by Theorem 2.47. []

LEMMA 3.10 (DOMAIN OF MONOTONICITY OF LB METHOD FOR BURGERS'

EQUATION). Let e.6 (0,1) in the lattice Boltzmann method,

.4n_ = n_ + C(n_), (3.48)

where

C(n_) = qx (-(n0)_ + (n_)_) + _ ((no)i +(n_)'_-2(no)'_(nx)'_) (3.49)

and

(7%1)n+li+1

Let g(0) = g(_) = [0, 1]. Then F_,=_F_,(°) x £(1) is the domain of monotonicity for the

method.

Proof. There are three parts to proving the lemma: (1) show that the conditions

of monotonicity are satisfied in E, (2) show that E cannot be extended to a larger

connected region, and (3) show that g has volume. Clearly, (2) and (3) are true. a7

For (2) let us write the Lattice Boltzmann Equation, Eq. 3.48, in the form

nn+l= [ Hl(nn+l)H°(n_-l)],

17£ cannot be extended beyond [0.1]2, and it obviouslyhas volume.
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where

2 1 .

Hl(n_+l) -- ((no),+l_ + (nl)_'+1) + e(no)_+,(nl)_+l2

0

Define Gk - 0ni, kHk(n_'_ek), k e {0, 1}. We must show that Gk >_0 for k e {0, 1}.
Well, we have

l+e l+e
ao 2 e(n_)_-_ 2 e(no)_'__

= >_0, Vi_,

G1 1-e 1-eT + --7-+
if

1-e l+e
< <2e - - 2e '

1-e l+e
< <2e - - 2e '

which is certainly true since e E (0, 1). Hence, the domain of monotonicity is g. []

We have established that the domain of monotonicity encompasses all possible

occupation numbers, i.e., nk E [0, 1]. Hence, the method is monotonically increasing.

LEMMA 3.11 (DISCRETE MAXIMUM/MINIMUM PRINCIPLE OF LB METIIOD

FOR BURGERS' EQUATION). Theorem 2.49 holds for the lattice Boltzmann method,

Eq. 3.48, with domain of monotonicity, _. = [0, 1]2.

Proof. First note that any initial condition in this method must necessarily is be

in g. Let M+ denote the extreme values of E, i.e.,

0 1
M_ = and M+ = .

0 1

Then note that C(M_) = C(M+)= 0 e [0,1] 2. []

lSBy definition of a lattice Boltzmann method with the Fermi Exclusion Principle.
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To establish a continuum maxinmm/nlinimun_ principle on 1i, we use two lam-

inas. One is a maximum/minimum principle for Eq. 3.29. The other is a max-

imum/minimum principle for the hydrodynamical equation of our lattice method,

Eq. 3.34.

LEMMA 3.12 (MAXIMUM/MINIMUM PRINCIPLE FOR THE 1-D VIscous BURG-

ErrS EQUATION). Let p(z;t) satisfy the one-dimensional viscous Burgers equation,

Eq. 3.29, on _'t = [0, L] x (0,TJ with v > O, periodic boundary conditions and initial

condition p(x;0) = px(x) E C2(T_,T_). Then the maximum and minimum values of

p(x; t) occur at the initial boundary.

Proof. We easily verify that Eq. 3.29 is parabolic for all functions p. Noting that

any constant satisfies Eq. 3.29, we may apply Theorem 12 of [63,p. 187] to conclude

that the maximum and minimum values of p(x; t) occur at the initial boundary. []

COROLLARY 3.13. Let u(x; t) be a solution of Eq. 3.34 on fl = [0, LI x (0, _'] with

initial condition u(x; O) = Ul(X) Ul G C2(Te,,,T_) satisfying 0 <_R_ <_ni(x) <_R+ <_1

and periodic boundary conditions. Then the maximum and minimum values of u(x;t)

occur at the initial time, i.e., u(x;t) 6 [/__,/_+], V (x;t) G [0, n] x [0, T].

L2
Proof. Let p(x;t) = KLT(1-2u) and v = _. Under this transformation, Lemma

3.12 may be applied to obtain the desired result. []

LEMMA 3.14 (CONTINUUM MAXIMUM/MINIMUM PRINCIPLE OF LB METIIOD
i

FOa BURGERS' EQUATION). Let u(x; t) E C4(_, 7_) be a solution of Eq. 3.34. Let

h (j), j E {0,1,2,3} be defined by Eqs. 3.,_6-3.,_7. Then s_ppose 3 constants R_, R+,

B (1), B (2), and B (3) such that

i. 0 _<R_ < u(z;0) < R+ _<1, V z E [0, n], and

2. FOr e {1,2,3} Ih,:)l< v [0La<0each J
_ex_ _ _ _ _ *
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Then 3 50 > 0 _ .for 6 E (0,5o)

II <2 _- 2 '

for all time sieps n >_0.

Proof. Let /__ = infu(x;0) and/_+ = supu(x;0). Then by Corollary 3.13 and

noting that R_ </__ _</_+ < R+, we have

[lh(O)_ R++ R_l[ < R+- R_2 t,_ 2 '

wh_r_h_°)=h_°_=_(_;t).Consequently,

n_<(_o)):_<R+ (3.50)

for ali lattice nodes i, time steps n, and directions k E {0, 1}.
3

Now, choose 50 9 R_ _< (h_°))° + _(5o)JB (j) < R+ for all lattice nodes i and
j--1

directions k E {0, 1}.19 Then

E, II IIj=o 2 coo

- 2 t,_ j=l

< (h(Ol)._R++ R_ + _(_.o)_.B(_
- 2 too j=l

< R+- R_
- 2 '

the last step by Eq, 3.50 and our choice of 5. o

COROLLARY 3.15. 3 50 > 0 such that V 6 E (0,5o), ifh_ E E, Y _"E _, then

hT}E E, Y _E _ Y n, where E is the domain of monotonicity, E = [0, 1]2.
3

19Thisamounts to choosing60_ R_ < u(z;q) + E(50)J B (j) _<R+ Yz E [0,L] so that Corollary
j-I

3.13 applies.
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Proof. Let R+ _=I and I?_ = 0, Tllen apply Lernma 3.14 to yield the result. []

LEMMA 3.16 (STAI31Lrr',' OF LB XIETIIOD FOR BUI_GEItS' EQUATION). Let

n '_, lar' and L[n". h"] be defined as in De.fiTzition '2..1I. Let domain of mo,.otonicity,

g_., be as in Lemma 3.10, Suppose n_,(h(°)) ° E F__,.And suppose the hypotheses of

Lcre,na 3.14 are satislied. Then 3 r > 0 such tl,at [IL[n",h"] le, < 1 Vn such that

0 <nAt <T andO< At<r.

Proof Let R+ = 1 and R._ = 0. Let 5o be given by Lemma 3.14, Choose

=7' )_r (5o so that /..Sz'< LS0. Note that Corollary 3.15 applies to yield that h '_ E E,

V n such that 0 < nat < T a,nd 0 < At < r. Then ]lLrn"- - t ,h"] le, < 1 bv [,emma

2.59. []

THEOREM 3.17 (CONVERGENCE OF LB METI_OD FOrt BvrmErtS' EQUATION).

Let th.e conditions of Lemmas 3. I, 3.3, and 3.5 be satisfied, Then at-+01im_-/1[[F,_l[e' =

O, V n _ 0 < nAt < T, in which At = (Ax)2/(2u), and Ax = LS, At = T5 _, and

u = L2/(2T) for spatial and temporal scale lengths L and T.

Proof. This is a consequence of Theorem 2.61, []

Discussion

But since this problem is one-dimensional, some of the abstract quantities that

appear in Theorem 2.61 can, be easily listed. We include them here for informational

purposes.

Let error, ep = , be as in Definition 2.44. Then operator L[n n, h nI (;art

be written in the block diagonal form,

L[n n, h '_] = diag (L;)ie£,
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where Li is a 2 x 2 matrix and is given by

i

1 +_ e [(nl)n -1t" (hl)n] 1 -Fe e [(no)_ + (ho)_]
Li= 2 2 2 2

1 -e e 1 -e e

-T- + _[('_');'+ (h,)?] T +_ [(no)?+ (ho)_']

Indeed

Ae n = L[nn, h'_]e'* + T(h"),

The reordered operator matrix, L[n n, hn], as it appears in the proof of Theorem 2,61,

can be derived from the recurrence,

[q:_ + 7 ((_,)r.,+ (hl

Note that the coefficients of (ek)_:l for k E {0, 1} in the r.h.s, of the above are

nonnegative by Lemma 3.11 and Lemma 3.14. Hence, ]L[n '_ h"][] = 1' tl '

Summary

We have shown that the lattice Boltzmann method converges lo the solution of

Eq. 3.34 in the Li-norm. Although the convergence rater or (9[53] for the error,

the method is 0[52]. We see this by the following: Let U_ = ((n0)_' + (nl)_')/2 be

solution computed by the lattice Boltzmann method. Then by consistency arguments

(see the expansion for h, Eq. 3.44), u(x;t) = (h(o°)(x;t)+ h_°)(x;t))/2 +0[,5_]so that

up = ((h(o°))p + (h{°))p)/2 + (9[,52]. We showed that ep = n_' - h_' = (.915a] in the
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arguments for convergence. Itowever,

qo' en
fo),_ = 2

= ((no) n + (",)P -(/'o)i' - (/_,)_')/'2 + 0[_ _]

= ((,_o);'+ (,_:):_-(_,,_o°_):_-(_,[o_):_+ova])+O[_ aI

= ((_0)P+ (,_,)?)/9._ ,,p+ o[_].

Hence, the lattice method is second-order convergent (and. not third-order) because

of how we relate the occupation numbers to the exact solution, u(x;*).

Under the transformation, P? = c(1- 2Up), where P? _ p(iAm;nAe)and p(m;*)

satisfies Eq. 3.29,we see that tile method yields second-order convergent solutions to

the one-dimensional viscous Burgers equation. Note thatthis also verifies convergence

of the corresponding lattice gas method to t:,e extent that the covariances may be

safely neglected. As previously pointed out. Lebowitz, et al. [53] have shown that the

covariances indeed can safely be neglected.

a.a A Lattice Method for a 2-D Advection-Diff-

usion Equation

This section introduces a lattice Boltzmann method the two-dimensional advection-

diffusion equation,

P, + PP_ = u(P= + P_). (3.51)

The first section defines the lattice Boltzmann method. The second section derives

a hydrodynamical equation (via the discrete Chapman-Enskog procedure) that, under

a linear transformation, yields solutions to gq. 3._1. This provides the groundwork
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for a formal consistency argument of this method. The conditions of monotonicity

have yet to be determined. Thus, the convergence proof remains to be completed.

However, a numerical study of this method is reported in Section 4.4 and indicates

second-order convergence.

3.3.1 Collision Rules

First, note the lattice, o, and velocity vectors, _'k,k E {0, 1,2,3} are the same as

those for LBl. Table 3.8 lists the collision rules consistent with our 'notation; Table

3.7 offers a pictoral description. The rules include an O[_] advection bias so that

l+e I-_
a =----- and _= (3.52)2 2 '

where for some constant K > 0,

e= Ko¢ (3,53)

is the advection bias (to the right). As for the lattice method for the one-dimensional

Burgers equation (Section 3.2), that e = O[_5]is crucial for recovering the hydrody-

namics of the method with the discrete Chapman-Enskog expansion.

3.3.2 Collision Operator

By examining the collision rules as listed in Table 3.8, we find the collision operator

to be given by

=
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Table 3.7: Pictorial Description of Collision Rules for Two-Dimensional Advection-
Diffusion, Each line in the table lists possible input slates a and corresponding output
states 3 with nonzero probabilities.

ie

P RE-CO LLISI

_, s(_ _ /3) /3,8(o,_ ,_) /3,s(c, --,/3) 3, 8(_,-, _)
...... _-ii ..... "

- 1

,,

'* 1 1'r

" or _-,--

1 l+e : 1-e
2 2

....... , ,

,, , ' 1 +e 1 +e " 1-e 1-e

4 4 4 ,, 4
,,, ,,, , ,

' 1 +e 1 +e '_ 1--e 1-e' 4 , 4 [ 4 'r 4

,p

, , ....

'_-- -4--*- 1

1 ' 1

-_-- or ---_--- -+----,. - -+---,. -, 2 2
.... , ...._, ....

, ' l+e ' 1-e

-,j- or '_- _--_ ..' _' ,, 2 , 2
......

I
,L

--,2_-- "*"'-4" 1dh,
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Table 3.8: Collision Rules for Two-Dimensional Advection-Diffusion, a = (1 + e)/2
and _ (1 - e)/2,

o o o o o o o o,o 1
i 0 0" 0 i () 0 0 1 .....1/2

0 I 0 0 1/2
2 0 0 1 0 1 0 0 0 a

0 0 1 0

3 0 0 I..... I 0 O' I I g/2
1 0 0 1 a/2
0 I i 0 "g/2
,1 1 0 0 al2, , ,,

4 0 1 0 0 0 0 0 1 1/2
0 i 0 0 1/2

5 0 1 0 1 1 0 1 0 1
,,,,,,

6 0 i i O- 0-0 i I- _/2
1 0 0 1 a/2
0 I I 0 "_/2
I i 0 0 al2

7 O' i''i 1 0 i i i _'
1 1 0 1 a

8 i 0"'0 0 0 0 i '0
1 0 0 0 a

9 i 0 0 i '0 0 i i _/2

i 0 0 1 a/2
0 I i 0 -El2
1 1 0 0 a/2

I0 i 0 I 0 0 [ 0 I "' i

11 1 0 1 1 1 0 1 1 1/2
I i I 0 i/2

12 I I 0 0 0 0 1 i _/2
1 0 0 1 a/2
o 1 1 o
1 1 0 0 a/2

; 13 1 1 0 ......1 "0 1 1 1
1 1 0 1 a

,, ._ .... , ,,,

14 I I I 0 i 0 I I 1/2

1 i I 0 I/2 ,,., ,,

15 i I I i I 1 I I I
.....
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or, in vector notation,

C(fi) = (3.54)

+ ql [(1 - 2a)4zofi_.+ aCz=- gCZo]

+ q2[fla- fi,1/2

+ q3 [t'Zo'rt2gz3 + /'1o¢Z1_,2 -- n.l¢Z2'£_.3 -- '#"o_:t,l'£t3 + ¢1,1¢ta -- *^Zo¢12] ,
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where column vectors qk are given by

1 1 0 1

Q = qo, ql, q_, q3 = . (3,55)
1 -1 0 1

i 0 -i -i

(We find later in the text that Q is the eigenmatrix of the linearized collision operator.)

3.3.3 Lattice Boltzmann Approximation

The Lattice Boltzmann Approximation is obtained by ensemble averaging Eq. 3.54

and neglecting the covariances. With nk _ (hk) the resulting approximation is

C(n) = C(°)(n)+ 6C(')(n),

in which

C(°)(n) = q,(n2 - no)/2 + q2(na - n,)/2

+ q3(non2n3 + nonxn2 - nxn2n3-- nonln3 + nln3 -- non2),

C(_)(n) = qlK(n0 + n2 - 2non2)/2,

where we have used the relations Eq. 3.52 and Eq. 3.53. Then

,An = n + C(n) (3.56)

may be used as a lattice Boltzmann method with n ¢: [0.,114. 'File remaining analysis

derives the hydrodynamical equations of this method.
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3.3.4 Equilibrium Analysis

Let us use the direct met,hod of Section 2.2.1 for determining the equilibrium. \Ve

will find one form of the equilibrium,

n(o) = uqo .

To see this. first set the leading term of the collision operator to zero,

0

0
C(°)(n) = 0 = (3.57)

0

0
.,

This implies Co(°)(n) = C_°)(n), whict: forces no = n2 - v. Similarly, Cl°)(n) C_°)(n)
,'

implies n,1 = na - w. Substituting these back into Eq. ?.57 we find that either

or

v
W "" _ ,

2v- 1

This yields two forms for the equilibrium:

?2 V

u v/(2v- 1)
(v=w=u) and (w=v/(2v-1)).

i U V
i

u v/(2v- 1)
.a

Not_that fi_.,)-- ,/(2,- 1)¢ (0,1)for_ _ (0,1). Thu_,th__:ond formdo¢__ot

apply; occupation numbers cannot lie outside [0, 1]. \Ve will use the first form for the
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remainder of the analysis. Then the equilibrium is

u
n(°) = .

U

u

3.3.5 Linearized Collision Operator

Using the non-trivial equilibrium solution, n (°), we can now linearize the leading order

of the collision operator,

£= _0_-_C(°)(n) = £k,l ,
n=n(0)

where

£k,l --_0r(°)(n) I •-- (_nl'lc n=n(°)

Completing the calculation, we find

= _(_-, ,.),---_-0r(°)(n) = (2u 2 - 2u- 1)/2, Onk+---'-'_

0
C_°)(n)

Or_k _k n=n(°) n=n(°)

= u(1-u),O c_O)(n) = (2u2-2u+l)/2' Onk_-"-_

0
C_°)(n)

(gr_k+2 n=n(o) n=n(O)

for lc E {0, 1,2,3} and all indices are evaluated modulo 4. Then £ may be written

2u ,-2u-I 2u(l-u) 2u2-2u+I 2u(l-u)1 2-,',l-u) 2u2-2u-1 2u(1-u) 2u 2-2u+i

, Z:=_
2__- 2_+ 1 2_(1- _) 2__- 2u- 1 2u(1- :,)

2_(1- _) 2__-- 2_+ 1 2_(1-,,) 2_"- 2_- 1
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3.3.6 Eigenvalues and Eigenvectors

Note that indeed £ is a symmetric circulant, so ii llas a complete set of orthogonal

real eigenvectors with real eigenvalues. The eigenvalues of L: are given by

eigenvalues(Z:) = (ko, ,\l, ,\2, ,\a) = (0,-1;-1,-4u(1 -u)).

Indeed we see that L: is nonpositive definite for zt E [0, 1].

As previously st, ggested Eq. 3.55 lists the (unnormalized eigenvectors of £, which

one can find, e.g., by noting that £ is a circulant and using the formulas for eigen-

vectors of circulants [3, pp. 242-3]. Note that the dimension of the nullspace of £ is

one, the nullspace being spanned by q0, i.e.,

nullspace(g)= span(q0),

The pseudo-inverseofL_may be written

1 qkq T

k_Xk#O

Noting that the eigenmatricesfor thisand the LBl (and LB2) latticeBoltzmann

methods areidentical,Table 2.4liststhe componentwise eigenvectorproductsforthe

latticemethod ofthissectionalso.

3.3.7 Discrete Chapman-Enskog Expansion

We assume

e = K5

Ax = L5

Ay = L5

At = T5 2,
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in which K > 0, and L and T are the respective spatial and temporal scale lengths.

Now, we may readily apply the discrete Chapman-Enskog analysis.

Gradient Expressions

Note that in the present method the unit velocity vectors, gk (k E {0,1,2,3}), are

the same as in LBl and LB2. Thus, gradient expressions involving the unit velocity

vectors are expressed in the same fashion (see Eq. 2.25).

Matching the Expansions

Employing the results of Section 2.3.5, order by order we obtain the following hierar-

chy:

0[1]: C(°)(n (°)) = O, as desired.

016]: We find

£.n (1) = L e'k'V n (°)-c(1)(n (°))

= (Lu._ - Ku(l - u))q, + (Luy)q,

g(1).

• Consistency: Note that already g(1) is orthogonal to nullspace([), i.e., q0'

g(1) __0, so that no consistency condition is introduced at this order.

• Solve for n(l): We find

n(1) = /:+. g(1) +cr(1)qo

= cr(')qo + (Ku(1 -u)- Lu,)q, + (-Luy)q2,
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where a (1) is the arbitrary para,meter introduced by the nullspace of the lin-

earized collision operator, ()he parameter is introduced since

dim(nu!lspace(£))--1.

O[52]' \Ve find

{ 1L2 )2 n(O) TOn/°) + L ilk' V n (1)£.n (:) = m (_'k.V + 0t2

1D2C(O)(n) n(_)n(_)_DC(_)(n(O)) 11(1)2

( h'LO L2V2 )= Tu,-t 2 Ox (I(u(1-u))-T u qo

-'t- (Lfr(l)+/((2u- 1)o "(1)) ni nt" (Lo'_ 1)) q2

0 L2+ 2lfn-g-z,(I_'_(_- _))-,¥(_ - _)
,,

(1 - 2u)((Luu) 2 -(Ku(1 - u)- Lug)2)) q3

_ g(2),

in which

D2C(°)(n) .n(1)n (1) = 2(2u- 1)((Luu) 2-(Ku(1-u)-Lu_):)q3,

DC(X)(n(°)) . n (1) = Ka(x)(1 - 2u)ql.

• Consistency: Setting qo' g(2) = 0 we find the consistency condition,

00 (02 02'_g_+ c (_(1- _))=, _-_ + o-Sj_,). (a._8)
where

KL
C --

2T'
L'_

bl --
4T

, iii1 ,
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Note that we can now write At and e in terms of c, v, Ax, and Ay.

cAx
6.' --"

2v '

At =
4v

Then with the linear change of variable,

p - c(1- 2u),

Eq. 3.58 becomes Eq. 3.51.

* Solve for n(2): We have

n(:) = £:+. g(2) + a(2)qo

+qal6u(1 - u) L2(u_' uyy) )

4(2u- _)((L_/_- (K_(1- _/- L_,)_)].
, where a(_) is the arbitrary scalar parameter introduced by the nullspace of the

linearized collision operator.

O[6a]: We find

£. n(3)

L3 1 L2 T ° (1)= -_-.t(_'k' V) _ + LT(gk. V) 0-_ n(°) + _(_'k' V) 2 + cot n
.1

+ L (_'_,.V) n (2) - 1.7?aC(O)(n(O)).n(1)n(1)n(1) _ Z_2C(O)(nlO)).n(1)n(2)6

- _Z_C(l)(n(O/).n(_ln(l/_ 6Z_C(_l(n(o/).n(21
3

k=0
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\\' I l 0 I'(_

_;_)' = 2A'L (1 - '2,,)¢s(_) - L'_"O" ct(') _ L'2'2'-0'__(1) + 7,Oer(1)iJ:r Bt '

and 2'_:J)remains uncalculatecl for _: E !1,'2,3}, Although not shown here, ea,ch of

_:-_C(°)(n(°)). n(1)n(1)n (1), T)2C(°)(n(°)), n(l)n (2), T_'2C(1)(n(°)).n(1)n (1), and 'DC(l)(n(°)) ,

n (_) are orthogonal to the nullspttce of L:. They o1_ly contribute to the unc,_lculat,ed

coefficients _a), k e {1,2,3} and do not affect the determination of the consistency

condition.

• Consistency: Setting q0' g(a} = 0 yields the consistency condition,

r [(!- = a7 b-7 (a.59)
We have carried out the expansion this far to see that the O[63] consistency

condition is satisfied with a(_)(z,y; t) = const. We would choose a(_)(x,y;t) = 0

were we to apply a formal consistency argument subaequent to the derivation.

Further, we stop the expansion here since we are not interested in pursuing

higher order consistency condition. An attempt at proving its convergence

would reveal whether higher order consistency conditions would be necessary.

This completes the first application of the discrete Chapman-Enskog expansion.

It determined that the hydrodynamical equation of the lattice Boltzmann method is

Eq. 3.58, while the O[62] consistency condition is Eq. 3.59.

3.4 Conclusions

This chapter presented three lattice methods and determined their hyctrodyn_m_ica,1

equations via the discrete Chapma,n-I_nslmg expat_sion. For two of the rnetlmds,
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through consistency _nd st0,billty arguments, we proved second-order convergence in

the Li-norm,

i
t

i q



Chapter 4

Computational Studies

This chapter provides computational evidence supporting the theory developed in the

previous two chapters for the following lattice Boltzmann methods: LB: (of Sections

2.1-2.4), LB2 (of Section 3.1), the method for the one-dimensional viscous Burgers

equation (of Section 3.2), and the method for a two-dimensional advection-diffusion

equation (of Section 3.3), Section 4,1 examines the computational results for LB:,

Section 4.2 for LB2, Section 4.3 for the method for the one-dimensional viscous Burg-

ers equation, and Section 4,4 for the method for two-Jimension&l advection-diffusion.

The numerical studies yield quantitative results regarding the order of convergence

of the various lattice Boltzmann methods, Coarser grid solutions computed by the

lattice Boltzmann methods are compared with fine grid solutions computed by finite

difference methods (the finite difference.computed solutions are used in place of ana-

lytic solutions). Ali the finite difference methods are conservative monotone schemes.

We find that the studies substantiate the convergence results reported for each lattice

Boltzmann method, excepting the lattice Boltzmann method for a two-dimensional

advection-diffusion equation:.

1Noproofof convergencewasgiven for that method; however,the computational results reported
in Section 4.4 suggest second-order convergence.

195
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\\,'e llow develop sonic, nel,at,ion for cotlip,,riTIg lll_ titbit.c.'_liffereilce- _tllcl lt_.t,ticc,

13olt,zm_utn-cotnptlt.ed soltltio_ls, (/o_lsider solving l ll_' l,ilile-{l_,l)erldent parl, iM clift'er-

enti_l _!(luat,icnl,

u_ + F(u) = O,

witll some appropriate initial and boundttrv conditions, where l',e functional I;' de-

l)t,nds on u(._;t) and its derivatives, Then let Vr" and /r_ denote tlle finite difference

and lattice Boltzmann approximations to u(gAz;nAt), respectively, for grid size N,

where u(aT;i) isan exact solution to the partial differential equation, 2 Tlmn let

E('v_(r;,:) = __/_'- _/?,

with E(N)(n) being a vector of the E(N)(i",n) over the spatial grid points z,' Quanti-

tative results are reported in the L1- and L_-norms, In one dimension, consider nn

error vector E, then tlm norms are defined by

Az

llUll,, - TEIE'I'
t

IIEIItoo= _uplevi,i

where L is the spatial scale length, In two dimensions, consider a column vecl,or E

then the norms are defined as follows:

AzAy

IlZll,, = L(_,)L(y)Z I&';I'
1,3

IIEIle_= _upl&,;I,
10

where L (_) arm L (u) denote the a: arm y scale lengths, respectively, (We use _a: = _!I

and L - L (=)-- L (u) in the two-dimensional numerical studies,) We pay particular

'e\ve will be using a finer grid to compute the finite difference solution than to compute, t,he
latl, ice Boltzmann solution, Then relative to the latl, ice Boll, zmann-,:ornputed solution, the tlnite
dill'ererice-comput, ed solution can be viewed as an exact solution,

alti one. dimension i'= i; in two, i'= (i,j),



4.i, LBI 197

attention to the ratios,

both of which for 016 _] convergence should be near four.

4.1 LBl

This section presents numerical results regarding the order of convergence for lattice

Boltzmann method, LBl. We find that they confirm (and suggest extension of)

the theoretical results reported in Chapter 2 for this laf,tice Boltzmann method. 4

Specifically, we introduce a finite difference method to generate reference solutions

with which to compare the lattice Boltzmann computations. Then we compare the

solutions computed by the two different methods and discuss the results.

4.1.1 Finite Difference Method

Consider the conservative finite difference method,

U .n,+l= U.", (4.1)1_J t ,3

_.lj) + D(U_,j) _+l,j ,,_ _ _-l,j) U___,j
+AxL 2 _x_ 2 Az

D(r/" (l/_",_. - U,",) D(U,",)+ D(U,_j_I) /U',', - U,", )]+-h--_vL..... Z .....AU 2 '

1 1

where D(u) = 4u(1 - u) - 2' With Ax = dxy, one can show that the method is an

C9[(Ax) 21+ O[At] monotone finite difference method for U,", E (0 1) with a stabilityld

criterion of At < (,_x)_/(4v) where U ,n, app,'oximates solutions to Eq. 2.29-- ' l_J

4LBl is the running example of Chapter 2,
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4.1.2 Nulnerical Results

We compute solutions to I_q. 2.'.'9 for (a', !,) fi [0, 1] x [0, 1], t > 0, periodic boundary

conditions, and initial condition, ,tz(x, y; o) - ut(a:, y) = ,4 sin(2_rx) sin(2rry) + t3, for

constants A _md B such that ut(x, y) E (0, 1). We vary A and B to generate initial

conditions for,the lattice Boltzmann method witllin or not (wholly) within the domain

of monotonicity, g = [(1 - 1/v/5)/2, (1 + 1/v/'5)/2] 4, as given in Lemma 2.53.

While ttle lattice Boltznmnn computations are on a grid of size N x N, where

N < 256, the finite difference computations are computed originally on a grid of

256 x 256 points and rendered on the coarser grids via pointwise projection '_, To

avoid conflict with the limit of stability in the finite difference computations, the

associated time increment, AFDt, is half that limit, i.e., AFDt = (A:c)2/(8u). For

the cases in which A = 0.45, AFDt is a quart.ct of the stability limit. Note that

the finite difference-computed solution retains its accuracy when projected onto the

co_rser grids.

We computed solutions for two differenct initial conditions. Figure 4.1 exhibits

the solution at time _ = 0 and time t = l/a2 for initial conditions in the domain of

monotonicity for LBl. Figure 4.2 exhibits the solution at time t = 0 and time t = 1/32

for initial conditions not everywhere satisfying the conditions of monotonicity for LBl,

e.g., the monotonicity conditions are not satisfied at the locations

(z,y) e {(1/4,1/4),(3/4,1/4),(1/4,3/4),(3/4,3/4)}.

5Pointwise projection of the finite difference-computed solutions means that l,he approximal, ion
on a coarse grid is the value of the corresponding point on the finest, grid. This is analogous to the

pointwise projection operator, P, used in showing consistency of finite difference schemes, i.e., in
one space tlinmnsior_ Pu(a:,,) = u(a:, t), where u(a:, t) is au exact solut, ion, A cont, r_tst,ing operator is

:v+ Aat,the cent, rtd averuging operator, Au(a:, t) "- u(x,t)da:,
dx-&;
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At these points the initial occupation numbers are outside the domain of motonicity.

The graphs at t = 1/32 are the result of the 256 x 256 finite difference computations.

Quantitative Analysis

The first case regards T_Lbles4,1 and 4,2. Here_ the initial condition satisfies the

conditions of monotonicity. We look at the ratio between the norm of the difference

between the finite difference- and lattice Boltzmann-computed solutions for grid sizes

a factor of two apart, expecting the rio to be near four. The Li-norm results

support the theoretical second-order convergence in that norm, and even suggest a

slight superconvergence, i.e., convergence beyond the predicted O[g2] rate. The Loo-

norm results indicate that LBl may also be second..order convergent in the L_o-norm.

The second case regards Tables 4.3 and 4.4. Here, the initial condition does

not everywhere satisfy the conditions of monotonicity for LBl. Again, we look at

the ratio bet_,,'een the norm of difference between, the finite difference- and lattice

Boltzmann-computed solutions for grid sizes a factor of two apart, but not necessarily

expecting the ratio to be four (because of a lack 'of a statement of convergence for

initial conditions not satisfying the monotonicity conditions). The Lt-norm results

show _ohat the theoretical second-order convergence of LBl may still hold for some

initial conditions not everywhere satisfying the conditions of monotonicity. One might

argue in favor of a slight superconvergence here, too. The Loo-norm results indicate

similar findings, i.e., LBl may be second-order accurate in the Loo-norm for initial

conditions not everywhere satisfying the conditions of monotonicity.
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,%

(_) (b)

Figure 4.1: Evolution of u(z,y;t) according to Eq. 2.29 with u = 1/2: (,_) Initial
condition, u(z,y;O) = ux(z,y) = Asin(27rx)sin(27ry) + B, where A = 1/v/_ and
B = 1/2;(u)_(x,_/;t)_tt= 1/32.

(_) (u)

Figure 4.2: Evolution of u(z,v;t) according to Eq. 2.29 with u = 1/2: (a) Initial
condition, u(x,y;O) = ut(x,y)= Asin(27rz)sin(27ry)+ B, where A = 0.45 and

= 1/2;(b)u(x,v;t) ,_tt= 1/32.
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Table 4.1: L_-norm Comparison of LB:- a,_d Finite Difference-Computed Solutions
with Initial Condition Parameters, A = l/x/_ and B = 1/2.

N 1/N '_ t= 1/32 1/16 3/32 1/3..... . :-,,
8 1/64 0.00241 0.00301 0.00241 0.00170

16 1/256 0.000605 0.000759 0.000624 0.000449
32 i/i02/, 0.000151 0.000190 0.000157 '0.000114

64 1/4096 0.0000366 0.0000465 0.0000387 0.0000279
128 1/16384 0.00000804 _0.0000107 0.00000902 0.00000662, ,,

S 3.991 3.961 3.867 3.776
, ,, •

16 4.010 4.002 3.987 3.955
32 4.124 _..0'_8" 4.051 4.062
64 ..... 4.550 4.336 4.287 4.223

Table 4.2: Loo-norm Comparison of LBl- and Finite Difference-Computed Solutions
with Initial Condition Parameters, A = 1/v/_ and B = 1/2.

.,,

E(N)I'

N l/A( 2 t= 1/32 1/16 3/32 1/8_L

S 1/64 0.0110 0.00885 0.00683 0.00476
16 1/256 0'.00191 0.00194 0.00157 0.00113

'" 32 1/1024 0.'000455 0.000473 0.000387 0.000280
64 1/4096 O:O00it (} 0,000115 0.0000950 0.0000675

i28 1/16384 0.0000250 0.0000275 0.0000225 0.0000175

8 5.755 4.572 4.343 4.192
16 4.198 4.095 4.058 4.053

,,

32 4.137 4.108 4.078 4.147
64 4.394 4.1.78 4.217 '3.854

,, ,
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Table 4.3: Li-norm Comparison of LBl- and Finite Difference-Computed So,ations
with Initial Condition Parameters, A = (1,4.5and 13 = i/'2.

.....

N 1/N _ t= 1//32 1/16 3/32 1/8

8 .....1/64 0.00576 0,00427 0.00386 :_0.00281
16 1/256 0.0011S 0.00125 0.00108 0.00078!)
( _"i ..........,3. 1/1024 0.000251 0.000325 0,000279 0.000203
64 1/4096 0,0000603 0.0000818 0,0000704 0,0000513

128 1/16384 0.0000142 0.0000199 0.0000175 '0.0000130

N I , , ,

8 4,875 3.409 3.557 3,560
116 4.715 3.846 3.884 '" 31884
32 4.161 ....3.981 3.964 3.'959
6,:1 4.231 4.116 4.025 3.943

,,,

Table 4.4: L_-norm Comparison of LBl- and Finite Difference-Computed Solutions
with Initial Condition Parameters, A = 0.45 altd B = 1/2.

IX' 1/N 2 t= 1/32 1/16 3/32 1/8

8 1/64 .... 0:'0438 0.0173 0.0123 0,00854
16 1/256 0.0054.5 0.00344 0.00272 0.00199
32 1/1024 0.00124 0.000860 0.00068,5 0.000502

-6-_' 1/4096 0.000300 0,0002125 0.000172 0,000127
128 1/16384 0.0000700 0.0000525 0.00'0042'5 0,0000325

N E("v)l ,¢o/ E(2N)I t_
8 8.04'1 ,5.043 4,505 4.29,4

16 4.402 ..... 3.997 " 3,971 3.955
'32 4.125 4.047 3.971 3'.941
64 4.284 4.047 4.059 3.921 ....

, ,,
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4.2 LB2

This section presents numerical results regarding the order of convergence for lattice

3oltzmann mettiod, LB2. We find that they confirm the theoretical results reported

in Section 3.1 for this lattice Boltzmann method. Specifically, we introduce a finite

difference method to generate reference solutions with which to compare the lattice

Boltzmann computations. Then we compare the solutions computed by the two

different methods and discuss the results.

4.2,1 Finite Difference Method

Consider the conservative finite difference method, Eq. 4.1, irl which

1 1
D(u) =

2(1+ - 2

\Vith Ax = Ay, one can show that the method is an O[(Ax) 2] + (9[At] monotone

finite difference method for Ui_,jE (0,1) with a stability criterion of At _<(Az)_'/(4u),

where (/i._japproximates solutions to Eq. 3.6.

4.2.2 Numerical Results

We compute solutions to Eq. 3.6 for (x,y) E [0,1] x [0,1], t > 0, periodic boundary

conditions, and initial condition, u(x, y; 0) .-- 'ui(x, y) = A sin(27rx) sin(27ry) + B, for

constants A and B such that ul(x,y) 6 (0, 1). We wtry A and B to genera_c initial

conditions for the lattice Boltzmann method within or not wholly within the domair:

of monotonicity, £ = [2/3, 5/6] 4, as given in Lemma 3.2.

While the lattice Boltzmann computations are on the grid of size N, where N <

256, the finite difference computations are computed originally on a grid of 256 x 256
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poi1_ts _llld rendcrc<l onto l tl(; <:oars('r _ri,ls via p<>iiltwi._.<,l)rojection. To avoid conflict

xvit,ll t,lle limit of sI,;_l_iliI,\"iri tl_e titlit,<',lifI'cr¢,nc¢_¢:olnl,,_l,i:ltions,1,11eassociated tirne

increIrlont,, ',51:Di, is li,elf the sl;_d)iliLylimit,, i.¢'., Al.'t)t = (",-Xa:)2/(Su). For l,lle cases

in which .4 -- 0.4:5, [._FD t is a, quarter of the si,ability limit. Note that the finit,e

difference-computed solution retains its accuracy when projected onto the coarser

grids.

\¥e comput.ed solutions for two differenct initial conditions. Figure 4.:t exhibits

tile solution at time t = 0 and time t = 1/32 for initial conditions satisfying the

conditions of monotonicity for LB2. Figure 4.4 exhibits the solution at time t, = 0

and time t = 1/32 for initial conditions not everywhere satisfying the conditions

of monotonicity for LB2, e.g., the monotonicity conditions are not satisfied at the

locations

(x,y) E {(1/4,1/4),(3/4,1/4),(1/4,3/4),(3/4,3/4)}.

At these points the initial occupation numbers are outside the domain of motonicity.

The graphs at t = 1/32 are the result of the 256 × 256 finite difference computations.

Quantitative Analysis

The first case regards Tables 4,5 and 4.6. Here, thr initial condition satisfies the

conditions of monotonicity for LB2. We look at the ratio between the norm of the

difference between the finite difference- and lattice Boltzmann-computed solutions

for grid sizes a factor of two apart, expecting the ratio to be near four. The L1-

norm results support the theoretical second order convergence of LB2, tb.ough not as

strongly as iri the correspoilding (i.e., in the sense of hot:li ii_itial conditions s_tisfying

the conditions of monotonicity) I,B1 c_tse. Tlle L,×,-llornl ro.sults suggest that LB2 is
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second-order convergent in that norm, and, again, not as strongly as in the LBl case.

The second case regards Tables 4.7 and 4.8. Here, the initial condition does

not everywhere satisfy the conditions of monotonicity for LB2. Again, we look at

the ratio between the norm of difference between the finite difference- and lattice

Boltzmann-computed solutions for grid sizes a factor of two apart, but not necessarily

expecting the ratio to be near four. The Li-norm results show that the theoretical

Li-norm second-order convergence of LB2 indeed has trouble for initial conditions

not everywhere satisfying the monotonicity conditions. (Of particular interest in this

regard are the N = 64 entries in Tables 4.7 and 4.8.) It should be noted that N = 128

entries do uphold the ratio of sixteen for errors on grid sizes a factor of four apart,

e,g._
tl

apparent discrepancy may be restricted to smaller grid sizes.
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, o

a"

%

Figure 4.3: Evolution of u(x,y;t) according to Eq. 3.6 with u = 1/2: (a) Initial
condition_ u(x,y;O) = ut(x'y) = Asin(27rx)sin(27ry) + B, where A = 1/12 and
B = 3/4; (b) u(z,y;t) at, t= 1/32.

t
//

(_) (b)

Figure 4.4: Evolution of u(x,y',t) according to Eq. 3.6 with u = 1/2: (a) Initial
condition, u(x,y;O) = u1(x,y) = Asin(27rx)sin(27ry) + B, where A = 0.45 _nd
B = 1/2;(b) ,_(x,v;t) _t t= 1/32.
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Table 4.5: Li-norm Comparison of LB2- and Finite Difference-Computed Solutions
with Initial Condition Parameters, A 1/12 and B = 3/4,

lE(N) lit,I '1 _
N 1/N 2 t= 1/32 1/16 3/32 1/8

.... ' ..... ,i , o., jl ,, ,, , ,

S 1/64 _ 0,000692 0.00202 0.00144 0.000827
.....16 ....1/256 01000276 0,000443 0,000321 0.000198

32 1'/1024 0,000'0722 0.0001.06 0.00007'82 ..... 0.0000'491
64 f/4096 ' 0.6000180 0,0000264 0,0000197 0,0000123

128 1/16384 0,00000463 0,00()00668 0,00000502 0.00000316

8 ..... 2.504 4,572 4,480 4.186
16 3.827 .... 4.16'6 4,106 4,021
32 4.009 4.028 3.971 3,995
64 ' 3.893 3.948 3,924 3.893

Table 4.6: L_-norm Comparison of LB2- and Finite Difference-Computed Solutions
with Initial Condition Parameters, A = 1/12 and B = 3/4.

....N .... 1/N 2, t= 1/32 1/16 3/32 1/8
8 i/64 0.00287 0.00504 ..... 0,00389 0,00226

16 1/256 0.00104 0.00118 0.000830 0.000502
32 1/:[024 0,00'0263 0.000284 0,000200 0.000123

64 1/4096 0.0000650 0.0000700 0.0000500 0.0000300
128 1/16384 0.00001'75 0.0000175 0,0000125 0.0000100

8 2,762 4,271 4.684 4.51J3 -
16 3,952 4.141 4,151 4.100
32 4.037 4,069 3,999 4.079
64 3,711 3.997 3,995 3.000
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Table 4.7: Ll-norna (?,ornparisoll of LBl- and Finite l)ifference-C',ornputed Solutioils
with InitiM Condition Parameters, ,4 = 0,,1,5aIld I3 = 1/2,

........ ]]]._'(N) ]]I:1..........

N IlN 2 t= 1/32 1/16 3/32 1/8• , ,, , ,',' , , ....._,, , ...... _ ,,,_ ,, _

8 1/6,1 0,0191 o,o_a_ o,o_2G o,oiav
1(_ 1/256' o,oo.lsa o,0oaav o.ooa6s o,oo28!_

- , i ,, .... , ,

32 l/lO2,1 0.001i6 0.00091,1 0,000738 0,0005{)<1
c,4 ii;/096 0.00617 0.00830 0.00920 0,009G9

128 1/16384 0,0000657......0:0000_i710,0o00359 0,0000295

8 ....... 3.949 3,8s4 3.426 5,296
i6 ......... 4,i58...... 3,684 41985 4,366
32 o.188 0.1,10.... 0:0803 0.0613-

64 93.855 176.265' 2'56'.275 ' 328,987
,,, , , , J ,,,,, , ,,,,

Table 4.8: Loo-norm Comparison of LB2- and Finite Difference-Computed Solutions
with Initial Condition Parameters, A = 0.45 and B = 1/2.

N 1IN:a t= _/32 1/_6 3/32 _/8
,, ...... L

8 1/64 0.0561 0,0859 0,114 0.148
-- , ,, ,, , ...... , ,,,,....

16 1/256 0.0141 0.0228 0.0320 0.0332
32 f/1024 ...... 0.00462 0.00598 - 0,00946 0101_Jl
64 1/4096 0.0'i30 0.0187'" 0.0262 0,0362

128.....1/16384 (}.000288 0,000338 0.000503 0.'000777

........
,,,,, , , , ,,,, ,, ,

8 3,984 3,765 3.555 4,440
16 3,o46 3.8i7 a.387 2.53i
32 .....0.355 0.319 0.361 0.362
64 ' 45.217 55.39"7 52"'7'076 46,605

. ,. ,, , ........
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4.3 1-D Burgers' Equation LB Method

This section presents qualitative and quantitative numerical results regarding tile

order of convergence for lattice Boltzmann method for the one-dimensional viscou_

Burgers equation, the method as presented and discussed in Section 3,2, We find

that the numerical results substantiate the theoretical second-order convergence of the

method. Specifically, we give a finite difference method to generate reference solutions

with which to compare the lattice Boltzmann computations, Then we comp_Lre the

solutions computed by the two different methods and discuss the results.

4.3.1 Finite Difference Method

To generate accurate solutions to Eq. 3.34, with which to compare those computed

by the lattice Boltzmann method, we use the finite difference method of Appendix

C, i.e.,

At [( . 2 ------- -- P'i+l) -(P_- )_ uAt [P,_+I- 2PI' + Pi".,] (,I,2)p:+l=p_ 4Ax 1 ]+ (Ax)2 -

(cf. Eqs. C.3 and C.4 in which U_ = P/"). One can show (see Appendix C) that rb.is

is an O[(Az) 2] 4- O[At] conservative monotone finite difference method for solutions

p(x;t) of the one-dimensional viscous Burgers equation, pt4-pp_ - tJp_._,the solutions

of which can be transformed to Eq. 3.34 with the substitution p = c(1 - 2u), where

constant c _ lp(x,0)[eoo' The stability criterion is that At ((Ax)'_/(2u). The

difference method, Eq. 4,2, can be compared to the lattice Boltzmann method through

the transformation, p,.n = c(1 - 2U['), where U,.n approximates solutions to Eq. 3.34.
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4.3,2 Numerical Results

\\'e colnpute solutiolls to E(I, ;1,3.1for ,r _ [0, 1], t > {}, l_,rio(lic IJouI_dary conclitiollS,

a11d illitial conditioIl, u(xl(J) = I_/(,rl('J) = (cos(2_ta')+ 1)/2, I;'igure ,1,5 _Xtlibits l.lte

izlitial collditioll and its evoltltion tc, time/= 1/,1 for tj = '2-u,

, Qualitative Analysis

Figtlre ,1,(; exllibits a comparisoll of tile finite ¢lifference- alld lattice l)loltzlnalilt-

comput.ed solutioIls, i"(a_;t)/:tlld ['(,'1';_), resl)ecl,iv(']y, at t = 1/-1 for t, = '2-s,

Tile tiIlit(: difrerence-comput('d solutioll is on a grid of size N - 39"_''',_u_; l.ll(.,,lat-

tice Boltzmatln-computed solutions are Oll grids of size N E {256,192, 160, 128 }, 'l'lie

figur¢' illustrates qualitative differences from the discrete ChapmaIi-Enskog predicted

behavior of the lattice Boltzmann method, Recall from Section 3.2 that the advectioIl

bias, e= cAx/(2v), For the grid sizes N e ,{256,192,160,128}, c e {1/2,2/a, 4/5,1},

respectively (for c = 1, z: = 2-s, and _x = l/N), For decreasing grid sizes N, t,lle

assumption that the advection bias is ©[Ax] weakens, and tile llydrodynamical equa-

tions revealed in the discrete Chapman-Enskog procedure grow less accurate,

Quantitative Analysis

Table ,1,9 regards the L1- and L_o-norm dit:fcrences between the finite difference and

lattice Boltzmann calculations at time t = 1/4 for _, = 2"s, The finite difference

calculations are on a grid of size N = 32768, Varying in the table is the grid size

. /'1 _

the L_-_orm results in the table stro_gly support tile theoretical 0[5 a] conw,_rgc,nce

of the la,trice Boltzmann method and its conw_rg,..'.ncei_ the L_-norm, Tlm L_.:,._lorm
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I

Table 4,9: Cornpartsorl of Lattice Boltzmann- and Finite Difference-Computed
Solutions to gq, 3,34 at t = 1/4 with v = 2-s and Initial Condition u,(a:) =
(co (2 x)+ 11/2

I:1:_ IIJ. I li I i I I I II I li H I II I Iiiii ii i II ii : I Iltll_] I j ll_l_ ::" : II I ,

I

256 1,042x10 -_ 4,436 1,741x10 -_ 4,455

512 2,349x10 -a ,1,099 3,908x10 ''a 4,09(;
........ " ,,,,, ,, i. , . , ::::: : u . ,,,

, 0-,1t02,1 o,731xl ,1,026 9,540x10 -4 4,025
._ i,. -.,, , ,, i,, ,.,.,

20,18 l,,123x10 -'t ,l,010 2,370x10-4 3,950
.......... __,, , , i ,

,1096 3,5,19x10-_ 4,014 6,000x10 -_ ,i,000
, || , , ,, ,,,, .

819,2 8,8,t2x10 -u 4,046 1,500x10 -_ 3,750
.... ,. , , ,, ,,

16384 2,185x10 -a 4,114 4,000x10 -(_ 4,000
, ,, , .,, , , . , , i ,. , , ,, , ,,, ,,

32768 5.311x10 -7 NA 1,000x10 -_ NA
....... ,, .., ,,,

,q

results suggest 0[5 ':] convergence in that norm, As a reference, '.['_tble,1,10 compares

coarser firiite differ(:nce-cotnI)ut, esl solutio!ls with the fine finite difference solution

computed on a, grid sized N -32768, For coarser grid sizes away ft'ore N = 32768

' _ 4 and
(by three orders of magnitude or more), the trend of l,'
IIE<'<'I<./11I,. apparent, <'

allere, E (jr) is the difference between coarser ancl the finest finite difference computations, where
the finest computation is rendered pointwise to the coarser grids,
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/ ",

// ' ,,. ]1
u(x;O) / ",, V(x;t) ' i

'\ / , iI

', /
\ / ; "",

/
\\\\

t \
\\,

. ]\ \,t

\k,. "'"" ioL / o "".......J
0 x 0 x 1

(_,) (b)
. '_ ith tj - ')-"' (a) InitialFigure 4,5' Evolution of u(x;t) according to Lq, 3,34 w .. ,

condition u(x;O)= ,,x(x)= (cos(27rx)+ 1)/2; (b)u(x;t) at t - 1/4,

t t | _'_ '_

\ .._2a

0 x 1

Figure 4.6: Comparison of lattice Boltzma,l,l-(:Oml_uted and t:irlite, difference-
('omputed r,olut,ions to Eq, 3,3,1 at t = 1/4 wit,li t, = 2-s _ncl va,rying gricl sizes', 'I'lle
fiIl(-'st,grid, i,(',, N = 327(;8, is l,lle finite dit[(.,r(:,Il(:(,-('Oml)l_l,ed solutiorl, V(zt.',t)', (;al-
rulat, ioz_s t'or grid sizes N E {25(;, 192, 1(;0, 12_:_]are l,ll(; hd,Lice l](_ll,zmatln-('(_llll_tll:,(_d
s(,lllti()llS, U(,r, t ),
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Table 4,10: C,omparison of Co_trse and Fine Grid t 1,11te Dlfference-Oornputed
Solutions to Eel. 3.34 at t --=1/,1 with u = 2-8 and Initial Condition u,(x) =
(cos(2_r¢)-F- 1)/2. Fine solution is computed on _ 32768 point grid.

..... " '""ll.... ,

....... e_,,, _t ,,, E(N_L'...... ,,, , _

256 8,990x10 -4 4,041 6,525x10 -a 4,012
, ,, ! pl

/512 2,223xL0 -4 4,009 1,626x10 -a 4,033
tl

10.24 5,551x10 -s 4,018 4,032x10 -4 3,992
, IrL ,,

2048 1,381x10-5 4,061 1,OlOxlO-'_ 4,040
' " , ,,,, i t ,, ,

4(196 3,402x10 -a 4,207 2,500x10 -5 4,167
.,,, i _,.,. ,,

8192 8,087x10 -7 4,899 6,000xlO -_ l,O00
....

1638,1. 1,651x1.0-z oo 6,000x10 -_ oo
' , ,, i,_

32768 0,000xL0 -° NA 0,000:×10-° NA
,, , ...... , , li .............
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4.4 2-D Advection-Diffusion LB Method
I

TlLis section gives some numeric.al restllts regarding, tile. order of convergence for l_tttice

Boltznlann rnethod for the two-dirnensiotlal _tdvection-diffusion equation, Eq, 3,ol.

\V(, fi,ld tllat tile results stlgg_,st 0[5 ai collverge_l(:(r for the method in both the L1-

and L._,-tmrms for occupatioils numbers, 7t_,,E [0, 1]; the ttleoretical basis for these

conclusions remains to be iIlvestigatecl, llowever, Specific_tlly, we give a finite dif:

t'erence n_etlmd to generate reference solutions witll which to compare tile l_d.tice

13oltzmann-computed solutions, Then we colnp_u'e the solutions computed by the

two different methods and discuss the results,

4.4.1 Finite Difference Method

Consider the conservative finite difference method,

p,,.+, ,,. ,",t[ ,, _,,: = Pi,j ,lA x (Pi+ l .a l ,j (4.3)

. _At pn -1] ',At [Pi+, "P" -,ii + [t_.,_j+ - 9I'.'. +-i,i+ (fx)_. ,' - "" ;,,+ P?_ (,,XV)_ _ " ',,

With Ax - Ay, one can sh,w thztt this is an O[(Ax) _] + (..9[At] monotone finite

difference method for solutions p(x,y;t) of Eq, 3,51, which can be transformed to

Eq, 3,58 by the linear tr_nsform_tion, p = c(1-2u), with co,ast,mtc >_lp(x, V;0)lle_,

The stability criterion is that At _<(Ax)2/(4t_)..[h:_ difference method, Lq,' 4,3,' can

be compared to the lattice Boltzmann method through the tr_msformation,

P" = c(1 ':'U", ,,j - .. ,,,), (,1,4)
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4.4.2 Numerical Results

In the absence of a convergence theory for the lattice Boltzmann method, we provide

some computational evidence of it being an 49162]convergent method for occupations

numbers nk e [0, 1] and (.9[6] advection bias. To this end, we compute solutions to

Eq. 3.58 on [l = [0, 1] x [0, 1] with c = 1, periodic boundary conditions, and two

different initial conditions, u(x,y;O)= ui(x,y) E [0, 1], where

y) = (cos(2 x)+ 1)/2
(4.5)

ui(x,y) = (sin(27rx)sin(27ry)+ 1)/2. (b)

We compute solutions with initial condition, Eq. 4.5(a), for various diffusion coeffi-

cients, u, while with initial condition, Eq. 4.5(b), for only u = 2-5. Figure 4.7 exhibits

the initial conditicn, Eq. 4.5(a), Mong with with its evolution at time t = 1/8 for

u = 2-5. Similarly, Figure 4.8 exhibits the initial condition, Eq. 4.5(b), along with

with its evolution at. time t = 1/8 for u = 2-5. In both figures the evolution of U is

computed on a 512 x 512 grid by the finite difference method, Eq. 4.3, through linear

transformation, Eq. 4.4 with c = 1. To avoid conflict with the limit of stability in

the finite difference computations, the associated time increment, &FDr, is half thatq

limit, i.e., AFDt = (Ax)'_/(Su).

Quantitative Analysis

Case ur(x,y) -- (cos(2_rx).+ 1)/2:Table3 4.11, 4.12, and 4.13 list quantitative results

at t = 1/8 for u = 2-5. 2-4, and 2-a, respectively. In general, for each case the

ratio E (N) Icl/[ E(2N) el is close to four (and approaches four from below for

larger N), suggesting an 0[6 _] convergence in the Li-norm. Although the mag-

nitude of the error in the L_o-norm is greater than in Li-norm, the same trend



' 110 AA L ,5T L,DIE,5216 CHAPTER ,1, (..O/_IPUTA'" r , r ,,

holds for the rm, io liE(N) ':_ / Z (2'vI s.,. Ilenc.e, 0[6 _]convergence ii1 the L,_-.

norm seems indicated also. Exceptional entries in t,he tables involving N = 512

can be explained by noting that the finite difference calculation is O[(1/512) _]

accurate, and therefore can no longer be consideredl for comparison purposes,

an exact solution. This does not rule out, however, possible superconvergence

as the advection bias, e, diminishes to e << v. (It could also be that some special

cancelling of errors occurs for u = 2-4.) While further results would be needed

to resolve this matter, it does appear that this lattice Boltzmann method is at

least O[a 2] convergent.

Considering the results in the tables as a function cf u, one sees that the

magnitude of the error (in both of the norms) decreases for each N as u increases.

This trend agrees with the predicted theory since the (9[6] assumption regarding

advection bias in the lattice Boltzmann method is stronger with larger u.

Case u,(x,y)= (sin(27rx)sin(27ry)+ 1)/2: Table 4.14 comprises quantitative results

for u = 2 .5 at t = 1/8. The results show a strong case for O[62] convergence in

the Li-norm, while not as strongly for O[62] convergence in the L_-norm.

In conclusion, based on the quantitative results in Tables 4.11-4.14, it seems likely

that at least a theoretical statement regarding (9[62] convergence in the Li-norm for

the lattice Boltzmann method for the two-dimensional advection-diffusion equation,

Eq. 3.58, with periodic boundary conditions can be obtained; perhaps one in the

L_-norm also. Unfortunately, the results can not offer any prediction of the extent

of the domain of monotonicity of the lattice Boltzmann method.
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_i] _',1_\\',,////////////_I/

Figure 4.7: Evolution of u(x,y;t) according to Eq. 3.51 with v = 2-5. (a) Initial

condition, u(x,y; O) --- u,(x,y)- (cos(2_rx)+ 1)/2; (b) u(x,y,;t) at t- 1/8.

:
_ , _'

(_) (b)

Figure 4.8: Evolution of _(z,y;t) according to Eq. 3.51 with u = 2.5. (a) Initial
condition, u(x,y; 0)- u1(x,y)= (sin(27rx)sin(2_'y)+ 1)/2; (b) u(x,y;t) at t = 1/8.
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Table 4.11: Comparison Lattice Boltznltmn- and Finite I)ifference-Computed Solu-
tions to Eq. 3.58 at t -- 1/8 for p - 1/32 and Initial Condition (cos(2_rx)+ 1)/2.

, g_ t'_

32 ,1/1024 0.00986 3.446 0.0,327 3.287
...... ,

64 1/4096 0,00286 ,3,698 0,00996 3,563
, , ,

128 1/16384 0,000774 3,836 0,00280 3.813

256 1/65536 0,000202 3,973 0,000733 3,899
,,,

,512 1/262144 0.0000508 NA 0,000188 NA

4.5 Conclusions

We have presc'nted computational results substantiating the theoret',cal results in the

Li-norm that LBl, LB2, and the lattice method for the one-dimensionM Burgers'

equation are C9162]convergent monotone finite difference methods in the respective

domains of convergence. Additional computational results support the conjecture that

the lattice method for the two-dimensional advection-diffusion equation, Eq. 3.51, is

CO[62]convergent in the Li-norm.
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Table 4.12: Comparison of Lattice Boltzmann- and Finite Difference-Computed
Solutions to Eq, 3,58 at 1-= 1/8 for u - 1/16 and Initial Condition (cos(2_rx)+ 1)/2.

II t ll '
,, ,, , ,,,_ ,,

,, .... i , , ,, .......

32 1/1024 3,85x10 -:_ 4,014 9.88x10 -a 3,896
,, ,, ,

64 1/4096 9,58x10 -4 3.967 2.54x10 -a 4,043

128 1/1.6384 2,42x10 -4 4,000 6.27x10 -4 4,071

256 1/65536 6,04x10 -s 9,155 1,54x10 -4 10.27
....

512 ]/262144 6.60x10 -6 NA 1.50x10 -5 NA
, , L............. , ,,, ......

Table 4.13: Comparison of Lattice Boltzmann- and Finite Difference-Computed
Solutions to Eq. 3,58 at t - 1/8 for u - 1/8 and Initial Condition (cos(27rx) + 1)/2.

,,_...........

32 1/1024 9.50x10 -4 3.963 1.77x10 -a 3.582
....... , _ ,, .......

64 1/4096 2.40x10 -4 3.789 " 4,93x!0 -4 3.652
.... 1 ....... ' .....

" "9, 0 -8128 1/16384 t}.8.xl 3,883 1,35x10 -4 3,857

256 1/65536 1,63x10 -8 4.163 3.50x10 -8 3.889
|| ,_

512 1/262144 3,91x10-':' NA 9.00×10 -4 NA
,,, ,.... H,,,, ,......... , ,
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t . , * C1Table 4.14: Comparison of Lattice Boltzmann-and Finit, e Difference-,.,omputed So-
lutions to Eq. 3.58 atf= 1/8 for u = 1/32 and Initial Condition (sin(27rx) sin(27ry) +
1)/2,

, , , ,, ,, .... '.,, ,

32 1/1024 6.68x10 -3 4.181 2.38x10 -_ 3.861
, , , ,

64 1/4096 1,60x10 -a 4.034 6.17x10 La 3.9OO
, J,, , , , ,,

128 1/16384 3.96xi0-4 4.011 1.58xi0-4 3.923
,,, L , ,,

256 1/65536 9.87x10 -5 4.009 4.03x10 -4 3.838

512 1/262144 2.46x10 -5 NA 1.05x10 -4 NA



Chapter 5

A Domain Decomposition for
Lattice Methods

One difficulty with lattice gas and lattice Boltzmann methods (and often with explicit

methods) is that refining the grid for a problem's domain can exorbitantly increase

the amount of computation. The stability criterion often appears as a restriction

on the time step, At = O[Ax2]; a twofold increase in the number of grid points

corresponds to a fourfold increase in the number of time steps. Were one to refine the

grid of such a method, tile amount of computation would, depending on the stability

criterion and tile grid refinement, dramatically increase.
J

ttowever, often a more accurate computational solution is not required everywhere

in the problem domain. It would be desirable to be able to concentrate computational

resources in regions of interest, e.g., near boundary layers and shocks. There are tech-

niques available for finite difference methods for accomplishing such redistribution of

resources, One technique is domain decomposition, where the problem domain is

subdivided into subregions according to some interest metric. Artificial boundary

conditions are imposed along the boundaries of the subdomains, which may overlap,

And for time-dependent problems these boundaries, as well as the number of subdo-

mains, may change, Ideally, a numerical time differencing scheme is used to aclvance

221
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lhe solution over tile entire clolnain, Tllen a measurenl_mt of l,he computed solution is

taken to determine subregions of activity, Tlle solutioll is then recomputed olt these

subregions using a different grid and possibly a different time differencing scheme,

IIlitial and boundary conditions on the subdomairls are obtainecl by interpolating the

data from the computed solution on the global domain [60, 61, 68].

For implicit finite difference schemes, a computed solution may involve iterating

computations over the subdomains until some convergence criterion is satisfied, e,g.,

the Scllwartz Alternating Method [67]..-\ typical finite difference scheme cloes not in

general involve iteration. Subregion solutions are simply computed in.the subregions

with the boundaries determined from neighboring subregions. A reasonable domain

decomposition strategy is the following:

1. Advance coarse time step A+t on the coarse lattice.

2. Decompose problem domain into subregions.

3. Interpolate coarse boundaries to obtain boundary conditions for refined regions.

4. Advance refined subregions a number of time steps to correspond with one

coarse time step,

5. Update coarse lattice.

The purpose of this chapter is to investigate the possibility and plausibility of

sub-structuring schemes (domain decomposition) for lattice gas methods. We pro-

vide a proof of concept of using sub-structuring techniques to better utilize eo_apu-

tational resources in these methods. \Ve forego attempting to generate subregions

from computed solutions and assume a static domain decomposition. Further, we
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do not update the coarse lattice solution b'.ased upon the fine lattice solution, Sub-

structuring is shown to have some viability with this simplification for the l_ttice gas

rnethod discussed in Section 3.2, lt indicates tile plausibility of using some form oi"

sub-structuring in lattice gas methods,

Section 5.1 proposes a sub-structuring method for lattice gas method of Section

3,2. Section 5.2 provides supporting computational evidence, FinMly, general con-

clusions are drawn in Section 5,3,

5.1 A Sub-Structuring Method for a Lattice Gas

Method for the 1-D Viscous Burgers Equa-

tion

Consider the lattice gas method discussed in Section 3,2 for the one-dimensional

viscous Burgers equation, Ideally in a sub-structuring method for this lattice gas

method, the n-lean occupation numbers would be computed on a coarse lattice and

then a first order measurement of a gradient depending on them would be taken to

determine active subregions. Initial and boundary conditions on these subregions

would be obtained by interpolating the computed mean occupation numbers on the

coarse lattice, The mean occupation numbers would then be recomputed on these

subregions using a finer lattice. And the process would repeat at time t + A_t.

(Quantities related to the differing lattices are subscripted or superscripted with a

"c" for coarse lattice and "f" for fine lattice.)

Desiring a proof of concept for using domain decomposition in lattice gas methods

methods, we consider a problem with a stationar_ shock so that a static domain
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clecoml_osition nmy Ise tlsed, In _ typical firtite difference cal<'ul,_tion (without doln,dll

decompositioIl), computing solutions with a higher resolution requires ,_ finer mesh,

The question to be tmswered by our study is whether it, seems reasonable to expect

tht_.t a domain decomposition stra_tegy is viable (e_t_11) in a lattice gas setting,

Consider a coo.rse periodic la_ttice £_ with lattice sp_cing Ao,. on _ domain _ =

[0,1], Then A,t = (A,x)a/(2v), The advectionbias is given by e, = A0a:/(2z,,)

(assuming c = 1 in gq. a,as), Suppose refinement is desired on _11 =[BL, B_] for

BL < BR, Let us _sociate a refined lattice £! on _i with lattice spacing Aix such

that &ix = A,z/2, Then Aft = Act,/4 and ej = '2e_, Note that eI = O[A_x] still,

We have two sets of occupation numbers,

The coarse l_ttice maintains n_O)(x;t) for k e {0,1}, where x e [0,1] is an inte-

gral multiple of A,x and t is an integral multiple of A_t, The fine lattice maintains

n_S)(x',t) for k e {0,1}, where x e [BL, Bnl is a,n integral multiple of Alx and t

is an integral multiple of Aft, In our approach, the fine solution depends on the

coarse lattice for its boundaries; the coarse solution operates independently, Initially,

n__) and n_I} is determined from the initial condition of the problem, Then n__) at

future time steps is determined by the lattice gas method with e = e_, To deter-

mine n_I)(BL/R;mIAft), we advance n__) one A_t time step, from ,rn_A_t to (m_ +

1)A_t, Then we interpolate the ensemble averaged values of n_)(BL/l_;m_A_t,) and

n_)(BL/R; (m_-F 1)A_t) to obtain Dirichlet boundary conditions for n_])(BL/n; m_k_t +

j _xjt), wherej e {0,1,2,3,4}, Then n_11(x;t) forx _ (BL,B_) and t = m_/X_t+j/Xjt

for j _ {1,2,3,4} is determined by operating the lattice gas method with e = el, The

process repeats, Note that this algorithm operates on an ensemble of lattice gas in-

stances so that the interpol_tted boundaries are more _tccur_tely represented, Tlm
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results of the computatiorl are (l) _t coa,rsc solution, which is iclcntlc_tl to the result

without tile decomposition, and (2) a fine solutior_ on _'_1,

5.2 Computational Evidence

We _pply the lattice gas method of Section 3,2 to compute approxim&te solutions to

Eq: 3.29 with periodic boundary conditions and initial condition

I 4 1 0 < x < 3/4,

p_(_)=_(_;0)= -?; + 7o' -4
--g + 1, 3/4< x < t,

, where0< x < 1 and

v=2 -_,

Then the initial condition for the lattice gas method is given by

nk(xi;0)- / 1, with probability pz(xi)/2,

t 0, with proba,bility 1 - pi(xi)2,

where xi = iAcx E [0, 1] or x_ = lA.rx E [BL, I3t_], depending on whether the coarse

or fine lattices are being initialized.

Let nk,(j)(:v;t) E I3 denote latt_ice gas instance j. Then the ensemble averages in

our computation are

1 P

gj,(x;t) = (nk,(j)(x;t)) = _. nk,(j)(x;t),
3-1

where P = 2048 is /,he number of l;tt,tic¢_gas instttnc.es irl the erlseml)lc. (Tlle (x; t)

are computed orlly ai, the ¢liscrct(_ sptttial all(l t,empor¢tl locatlons.) Let

,,V'(x;t)= N,,(x;_)+N_(x;t).
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()'_lr reslllts also include illterplay witll sol_w spal, i.I averaging, l..t,

l ,_t-I

# (x,,t )= ?-7Z. VI,,,+/,_.,,;t),
I,'--.U

Then our approximation to pis

h= ,(/(;,,;t)12- J..

ll(!garding the figures, the }lorizont,al axis is tlle spatial dimeasion .v E [0, I]; the

vertical axis is/5 E [-I,-I-I], ]"igure 5,1 (lepicl,s l,li(.' iIlil, ial condition, 'I'lle remailling

[igtlres (l"igures 5,2-5,5)exhibit, a collserv_tive, finite difference calculation I superim-

pose(l oii coarse and fine solutions at t = 0,125, 'Flle figures vary with the level of

spatial averaging, In each case, the fine solution more accurately capturing the stee l)

gradient near x = 3/4, And as one expects, increased spatial averaging decreases

higher frequencies in the noise while also sm_,aring the steep gradient near x = 3/,'1,

The steep gradient is better resolved on the fine lattice over the region _! without

having to compute a fine solution everywllere on _,

5.3 Conclusions

Using ideas developed in [60] for solving Burgers' equation by domain decomposition,

a domain decomposition method was developed for a lattice gas method for the one-

climensional viscous Burgers equa,tion, The comI)ut,ationM evidence suI)ports that

sub-structuring or decomposing lattice g_.Lsmethods is a viM)le means for achieving

greater accuracy in specific regions without h_ving to 1)a,yfor an ew:rywhere recluced

l-)erformance,

IAl:,lwn(lixC describes the rnetlmd used,
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u(x:o) _"'--_

0
I ! t ......_ .... I ,,,

0 x

Figure 5.1: Initial conditio,L.

U(x;t) U(x;t)

0 0
0 x 1 0 x 1

(,,) (b)
Figure 5.2: (_t) Coarse' lattice and (b) firm lattice solutions; t = 0,125; M = l,

,lit
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0 x I 0 x I

(_) (b)
Figure 5.3: (a) Coarse 1,'tttice and (b) fine lt_ttice solutions; t - 0,125; M = 2,

I i l _: i | I r I' --T "-'_ ...... I

U(x;t) U(x;t)
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0 0
_..L____ I J ................-L.................L L L

0 x 0 x

Figure 5.4: (a) Co_trse lattice and (b)fine lal,t,ic¢,s_l_t, ions', t, = ().125', til = 4.
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U(x;t) U(x;t)

i

0 0
I J i , | .... _ l - _ , ,1 ,,

0 x 1 0 x 1

(b)
Figure 5.5: (a) Coarse lattice and (b) fine lattice solutions; t = 0.125; M = 8.
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Chapter 6

Conclusions

This dissertation provides a theoretical basis for studying the numerical properties

regarding consistency, stability, and convergence of lattice Boltzmann methods and

the Lattice Boltzmann Approximation to lattice gas methods for computationally

solving some partial differential equations. The lattice methods studied are shown

to be second-order explicit, conservative, monotone finite difference methods. Con-

vergence proofs were provided for lattice methods for two nonlinear two-dimensional

diffusion models of the form,

ut = uV. (D(u)Vu),

in which D(u) is a nonlinear diffusion coefficient determined by the discrete Chapman-

Enskog expansion, and one nonlinear one-dimensional advection-diffusion model (the

one-dimensional viscous Burgers equation),

Pt + PP,c= up_ .

The details of the convergence proofs revealed possible restrictions on the occupation

numbers for convergence of a lattice method. Computational evidence that compares

lattice Boltzmann- and finite difference-computed solutions substantiated the results.

231
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This could have significant repercussions for l_:_tticemethods in general. Tlle computa-

tions, completed on Alliant l"X/8, CIIAY-2, CII,AY-X/:I_IP, and Connection M_chine

CM-2 computers, included a variety of initial conditions. \Vhile convergence was

not proven for a lattice method for a nonlinear two-dimensional advection-diffusion

equation,

Pt + PP_ = u (Px=+ Puu),

computational evidence suggests second-order convergence.

A domain decomposition strategy for lattice gas methods was introduced. The

strategy uses a combination of coarse and fine lattices to resolve regions of interest,

e.g., near steep gradients, with fewer computational resources than a case in which

only a fine lattice is used. Toward developing a proof of concept, the ideas were

applied to the lattice gas method fox' the one-dimensional viscous Burgers equation.

For simplification the problem involved a stationary steep gradient. Computational

results verified that a finer resolution near a steep gradient can be obtained with the

combined coarse and fine lattices than with only the coarse lattice. The results indi-

cate that the strategy shows some promise and merits further investigation. Although

the strategy was originally developed for lattice gas methods, it can apply to lattice

Boltzmann methods.

Generally, it is expected that the numerical theory will extend to other lattice

methods, e.g., the FHP [38] and FCHC [37] type models for the two- and three-

dimensional Navier-Stokes equations, respectively. The extension would also include

lattice Boltzmann methods lacking the Fermi Exclusion Principle. Convergence of

these and other lattice methods remains to be investigated in an effort to build the

numerical understanding of lattice methods and to bring them into a better position
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Appendix A

LB 1 Analysis Details

This appendix lists some of the details regarding the discrete Chapman-Enskog anal-

ysis of the lattice Boltzmann method, LBl. The listing is order by order as in Section

2.3.5. We denote zero order parameter cr(°) = u, and also use

i i i 1
D(u) = =

A 2 4u(1 - u) 2'
',

D'(u) = 4(2u- 1)A2 ,

in which A = -4u(1 - u). Also, regarding notation, at O[64], we do use some of the

c_j) and e_J)coefficients as defined in Section 2.3.5; otherwise, the expressions would

be undescriptively long.

oF]

(e'k' V)n_°)] = q,u_ + q2uy,

016_]:

(e.-'k.V)_n_°) = qo_ (u.x 4-uyy) 4- q3_ _lxx -_ty.v),

C3n_O) = q0utF/

235



236 AI_PEA'DIX /t, LI31 ,,INA L Y,5'I,5'DET)t IL,5'

I (_:_.v)n__1

L( Ill
7)2C(n(°)),n(1)n (1)

= q12LAa(1)D'(u)u,_ + q22LIcr(1)D'(u)uy - q3"-_.

(gk'Vlan_°) = q,u*** + q2u_vv ,
1

(ck.v) On(o)/k = qluxt + q2uut ,
3

(_ v)_')]

= qo_ (cr(l>__,+4')) +q,L_ _, +q_Lo--_j_ _,_ +q_7(_(')-_(')_\ xx yy ]

0-7cO (,, .._(1) _.0(1)Or cO(1)cOt=uoo, +q,L -_u. +q:L i.uy )

(_. v).__)

L [_Vcr(') D' ')Vu]= qo_V' - (u)o "(
_)

0

+ q37 _x'-- _ ' Va(i) "- D'(u)°'(1)V'u '

DaC(n(°)).n(')n(')n (')
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24L. )2 24L

12L: _1)

7)2C(n(°)), n(1)n (:)

= -q, LD'(u)[(2Aa(1))2D'(u)u.- 4A(a(2)u. + a(')a O))

L Di [

_ [
-_,,,,(°(_/_/_/__(_(_ .

Since a(t)(z, y; t) = 0 satisfies the 0[53] consistency condition (Eq. 2.31), we have

made this assumption in the derivation of the 0[5 4] terms.

(Ck. V) 2 c)n(O) 1 1
0 2

_n (°) = qouu,

[ ) _o1 f_.O0c(a) O,.(a)+ qto.(a)+ q2o._3)+ q3_ (0c13)OY 2'(_' _)'_) = q°7\o_ ' + oy_

(_' v)_) 1
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r

= q o_ a (2)+ a (2) + c_2)+q_ L== + + '

o n(2) = qoal2) + qs 0 c(2)

0 (1) ]

774C(n(°)) , n(1)n(1)n(l)n (1)= 0, '

_2C(n(Ol). n(21n(21

_.-_
TgC(n(O)). n(1)n(1)n(2)

2L2 [L2

(o o<.>.._ ],-L_((,_/_+(_,/_)_ _N
_D2C(n(°)). n(1)n (a)

L t u= c_a)-- q=_(.)_(c?) - _,),

0s c_S

(_. v)_._°) = q.b-_u+q_o-7_.
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(ek.v)_l °1 = q,_,,,+q_y,,,

(G' V)4n_ 1) = q, n0-_ _ _u_ +q2n0-_d 4 _u_ ,

(G'V) 20n(l) Oa _ 03 1

= qlL_ -_u:,, + q2L_-_7

o' (.(,, 4')+ +(ck.v)',,_') = q'G-_ +

(_k,v)5 &or

0 2 (a) ... O___c(a) 1
(_k' _7)2n_ 3) = qo1 (a(a) + a (a)_ -I-ql + + qa_ (_(a) cz(3)_.. \ T_̀ ,j_ / __)7,2c l '.42(gy2 2 - ,sv/\ :CT, 4

Ot 8t 1 u2 8t _,2 ,

(¢. v)_"l

L Vu)= qo_'V' ('_Vt7 (3) .-D'(u)a (a)

LfO ,c_8)_ 1 )cr(:3)V.n]+ qaF _,_x'"- {)v,J' [7 Vet(a) - D'(',t



Appendix B

LB 2 Analysis Details

This appendix lists some of the details regarding the discrete Chapman-Enskog anal-

ysis of the lattice Boltzmann method, LB2. The listing is order by order as in Section

3.1.5. We denote zero order parameter a (°) = u, and also use

1 1
D(u) - 2

4u

= V'

in which _ = -2(1 - u)(1 + u), Also, regarding notation, at and beyond 0154], some

of the c_j) and c_J) coefficients as defined in Section 3.1,5 are used; otherwise, 'the

expressions are undescriptively long.

One further note is that since the LB2 n (°) and n (1) terms are symbolically identical

to the LBl n (°) and n (1) terms, only those advection expansion-related quantities

involving higher orders in 11are listed. For those quantities not listed here, refer to

Appendix A, with A, D(u), and D'(u) defined as above, and c_j) defined in the discrete

Chapman-Enskog procedure applied to n of LBl, (Section 3,1,5).

D2C(n(0)), ll(1)l-l(1)
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= ql2L,\a(l)D'(u)u_, + ct'22LAcr(l).l)'(u)u_ - q3 .... ,_'_ '

(_¢,v),__)

L _ 1)Vu ]= qo_._7, [-_V_ (1) D'(u)cr(

.t_ ql[cr(_)_t.L_O( 1 (0 0'_ 2u-1 ((u,,)_ _ )]_;..'- o,)' D(,,)V,,+ A:,A_ - ('''))

+ q37 "_x N ' Va(l)- D'(u)a(1)Vu '

D3C(n(°) ) , n(a)n(1)n(X)

12L 12L Lu_)_)= q,--F-_((_('))__ (L_)_)+q_-_,,_((A_('))__ (
12L_ c1_-

D2C(n(O)), n(1)n (2)

L Dr(?./,) [2)_ (0 '(2) 0 "(1 D1(1/,)12,:= q,_- ,,,+ '4")-_(*_,(_')'
0 0 , D(u)Vu- (2u- 1) )2

[ '(,,+ q_ 2, (_).,,,, - 2(,_,(_))_, ),,,,

(0 O) 2L2(2u- 1) _)- L_u,,_,- _ .D(,.,)Vu+ ._ ,,,,((,,..)"-(.,,,)

2L'(2u-1) [ ,( _ ):_)+ q3 A2 _(') ((2u - 1)+ D zt)A)((u_,) '2 (u_

o[6"]:
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RecMllng that o'(l)(x,y; t) = con_t, stttisfies the 016 a] consistency condition, i,e,,

Eq, 3,8, the expressions below assume cr(l)(z, y; t) = O,

(ek, =1

0 n (_) = qoa}_) + -'-' 0 ..(_)

l:)'_(.:(n(°)), n(t)n(t)n(t)n(t) = O,

_aC(n(O)), n(1)n(lln (_,)

2L :_ [2L:_(2u- 1)

"- q3"_ [ )_'_3

_C(n(°l), n(_ln(_l

-- q3 ,_3 ,_2 ((u_)_ ( _xx'- , D(u)Vu ,

:D_C(n(°l),, n(lln(a/

= cllLD'(u),_a(aIu_, + q,2LD'(u),_a('Jluy

2L(2u- 1) (c?)u,- c?)uu)- qa _\
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'214 I I'I'I_'.\'DIX 1_,I,I1:?,,l,\',,1L_',q'l,b'I)I','?',,IlL,5'

i

") ] (F (_r(") .,l".) iF _,(_)at,,k _ ,.:_ ---:4 ,
J

--- c c) ,,(a) 1 (_._(:._)_ rr(a),_
. _,j Ox__1 (.)!1

f

_.,(a) +
0"Tri = qo + ql at,"1 '-!_ ._ ',

(,_k,v),_,__)]

1Vcrla) D'(u)#(a)Vu)= qo,_V, (_ -

+ q_ + _a j + q2_ -

-F qa_'L(00--_x ' - 0--y0),V [-_V_ (a) - D'(u)_(a)vtL]



Appendix C

Convergence of a Nonlinear' Finite Dxfference Scheme

This _ppeudix presents a proof of convergence of tm explicit conservative monotone

finite difference method for _ nonlinear advection-diffusion equation, n_mely, the

one-dlmensional viscous Burgc_rs equation. Thisconverge!lee proof serves as _ model

for convergence proofs of lattic_t gas methods, First, we give the method, then we

prove convergence vi_t proving consistency, establishing a maximum principle of the

difference scheme, _ttld proving stability. Stability is obtained directly from the (non-

line,Lr) operator; it is not first linelu'iz('d. See, for cx_unple, [69, Cb. IV] for further

information regarding convergence of monotone finite difference methods.

C.1 Nonlinear Problem

[,et ,t(x,t)s_tt, isf>,the ¢_,w-(lime',,siollal vis(:otls I]tlrgers' ¢±qu_ttio,l,

0 . O #"

N,.(_,,,t.)+,,(:,:,t.)?7,,(_,,,t.)=,..,o:,--z,,(:,,,t.)r,:,,.(_,,,t.)e lO,L] × [_),:Z'] (C,1)
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with periodic boundary conditions and slnooth initia,l condition, u(z, 0) = uZ(z) for

some positive constants L and T. Then Eq. C.1 in conservative form is

0 0

_(_(x,t))- _,,,+ _F =0, (C.2)
with

F=,_ - .

C.2 Explicit Finite Difference Method

Let tl!e conservative finite difference method be
_-_n+l/2 ph+l/2

__ _j+l/2 z j-1/2 ._ 0 (C.3)At + Ax ',

U" )2_._/_ _ ( j+_ +(u;)_ u;+,- u;
• j+_/2 = 4 - v Ax '

where U2 is understood as an approximation to Au(jAx, nat), and averaging oper-

ator A is defined by

x+Ax/2
Au(x, t) = J_-a_/_ u(x, t)dx.

C.3 Maximum Principle

We need two maximum principles for stability, one for g(u) and one for G(V). These

may be stated as:

LEMMA C.1 (CONTINUUM MAXIMUM PRINCIPLE). Given

_: a =[o,L]× (0,T]_ n
f

satisfying Eq. C.2 with _J > O, periodic boundary conditions and smooth, bounded

initial condition u(z;0)= u/(z). Then the maximu'r,_ and minimum values of p(x;t)

occur' at the initial boundary.
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Proof. See Lemma 3.12 and its proof, which is based on general theoretical re-

sults for maximum and minimum principles for nonlinearparabolic partial differential

equations. []

LEMMA C.2 (D_.SCRE'rE MAXIMUM PRINCIPLE). Let n be given, and let U_ be

determined V j from the difference method, Eq. C.3. Suppose At <_(Ax)'2/(2u) and

IIg° _ <_2_/d_,Th_ IU"I_ -< U°ll_,
Proof. First, write the difference equation as

uar
( ,_ . )2_ Un )2]_i IUS+, 2U_ + U;_ ](C.4)

H(U?+ 1 , Uj n , Gin_l).

Note that

0

-_n IJ(U;+I, U;, U?_I) = 0

O U'_ 2A--"_At(2u-_z )ou_--_tt(u?+,,u;, ;_,) = _ u?_ >.o,

if the monotonicity condition, IIU" Ioo <- 2v/Ax, holds. Then let M, = Unllo_ and

assume 2uAt/(Ax) 2 _<1 (the stability criterion) to get

2uAr

2uAt

Uj n+i ___ U? (.Ax)2 (M n -lt-U;) _ -Mn ,

i._. u-+_Ioo< M,_ = IIU-_ O0 °

Now, to get gn+l oo <- IU° Ioo we use induction on n. The base step follows

from the preceding argument with n = 1, assuming the the monotonicity condition is

initially satisfied, i.e., U°I oo < 2u/Ax. For the induction step assume that IU"lloo _<

IU°ll_. Then also from the preceding argument, it follows that ][U'_+lll_ _< Ilu'_}loo.

Thus,U"+*I_ < Ilg°loo.
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C.4 Consistency

Sufficient to prove consistency is to Show lim IIG(Au)- Ag(u)llo o = 0 for ali x
Az,At--+oo

and t. Let V - Au. Then

' - _ 2v?+ F-,
1 . )= )=] (Ax) 2v;+, v,o+ [(_+ _(v,_, [_,_,-C(A.) = At ¥_ '

_gTV(_,t)a +_a( v_(_'t))2 .,._a_= - _-z-a_v(_,t)+ O[At]+O[(A_)_].

And noting tha0

v(_,t) = _ _.,=_,,,/=
it follows that

( ) ( )0 0 u=(x t) -vA ,
Ag(u) = a -._u(x,t) +A Ox 2 -_z2u(x t)

a _(_ + A_/2,t) - =_(_- Azl2,t) 02
= _.v(_,t) + 2_ - ,,b--._v(_,t).

Thus,

0 (V2_x,t)) u2(x+Ax/2,t)-u2(x-Ax/2, t)G(Au) - Ag(u) = O"'_ - - 2Ax

+ 0[/',4+ O[(A_)_].

Now,

o v_ ,t) v,_,t_--Ox

' [u(x+Ax/2, t)+u(x-..Ax/2, t) ]= 2 + O[(Ax)_]

[u(x + Ax/2,t) - u(x - AxAx/2, t) + O[(Az)2]]

u2(x + Az/2,t)- u2(x - Azl2,t) 2]-- 2Ax + O[(Az) ,

1By the Fundamental Theorem of Calculus.
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Hence,

G(Au) - Ag(u) = O[At] + O[(Ax) 2]
/

goes to zero irt a norm sense as At, Ax --, O.

C.5 Stability

The consistency analysis followed directly the sort of analysis one would do for a

linear problem. However, the stability analysis departs slightly from the traditional

stability analysis. Instead of one linear operator for all time steps, there is a linear

operator for each time step n. The linear operator depends on both the nth computed

and discretized solutions.
/

Let Vjn =_(Au)y = Aul(x.O=(j/,,x.nAt). Then let Wj_ =_Uj'- Vj_ with

,, W n ].
u"=__w? , ro= w; : =_ w;

Then write

W "+_ = n[v", V"](W _) + r(Y"),

where linear operator L[U n, V nI (yet to be determined) depends on U'_, V n, At, and

Ax, and T(V n) = (..9[(At)2] + CO[At(Ax) 2] (by the consistency arguments). Then to

prove stability (assuming maximum principles of both the finite difference scheme

and the differential equation) is to show that IIL[U'_, Vn]II _<1 for each n. Generally,

this is shown through induction on n, where U° - V ° is assumed, i.e., initial absence

of error.

n n )2 we haveNoting that (U_±_ + Vj+I)(Uj± 1 - Vj_[:I) --(_..fn+l -(gj_l) 2,

w;,+,,= w,; _t [(u;+,t_n- (vj+_n)__ (q_,,,)_+(v;_,)_]4Az

l
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,At [w?+,- 2w?+ w?_,]+ o[(A_),]+ o[_(/,_)']+ (Az)2

_ vat At (Uj_I + Vj_ W_ 1 + 1 (-_z)_ j W_(Ax) 2 4Ax 1

[vAt At (Uj"+I+V" ] O[(At)_] O[At(Az)2]+ (_)2 + _ j+,) w;+,+ +
Hence,

w"+'= L[U",V"I(U_- V")+_'(v_),_

where do b0 0 ... 0 ad

al ". ". ". 0

0 ".

L[U", V n] = : ". aj dj bj ". : ,
, ! ". 0

0 "'. "'. ". bj_l
bd 0 ... 0 ad dd

in which

,,,,t +
aj -- (Ax) 2 4Ax 1 ,

2uAr

dj - 1 (Ax)2, and
vat At

and

_(v-) = o[(_t)_]+o[_t(_) _]= o[(_) _]

The upper right and lower left corner values of L[U '_,V nI come from the periodic

boundary conditions.

Recall the 1-matrix norm, I1' x, on some matrix S' IISII1= sup _ ISijl. Then
J i

L[Un,Vn] I1 =

:J "- L/Ax is assumed (without loss of generality) to be integral.
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A, J, ITM/_x,_
(UP + V:"_ -t- 1 -I- "4- ,-- + --. ,sup

j (Ax 4Ax

Now, the absolute value signs may be dropped if the following hold:

2uAr
< 1, and

(Az)_ -
4u

IIU"+ v"ll_ < A---_'

The first requirement is the usual stability criterion and is only a function of the

diffusion coefficient and grid spacings. The second requirement is a monotonicity

condition, lt is satisfied for sufficiently small Ax. If initially satisfied, then it is

always satisfied since U and V are initially the same (U ° = V°) and by the finite

difference and continuum maximum principles. So, Ax must be chosen to satisfy the

stability criterion and the monotonicity condition ]]Y°]]_ _<2v/Ax. Then if these

conditions are satisfied, the absolute value signs may be dropped. Some terms cancel,

leaving

IIL[U_, V_]l[, = 1,

and we have stability.

A statement regarding convergence can now be stated. We show that the finite

difference method is OlAf] + CO[(Ax)2] accurate for unit time. Specifically, we show

that forn _ O <_nAt <_T,

[wn+'[,,= o[(Ax)_],

which we do by induction on n. First, consider the base step. We assume W° =

U° - Vj° = 0 Y j E {0,1,..,,J}, J = L/Az E ft, Then we have

, = C(zXx)4[wl[_,= ILIa,v,l(wo)+r(v°)I,,
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for some constant C. Now, consider the induction hypothesis tha.t

Iw"lle,= (n- 1)c(ax)4,

We have

[Iw"+'][_.= IL[v",v.l(w")+_'(.")11,.
< IL[U",v"]l, IIw"lle,+ IIv"llt,

< (n- _)C(Az)4+ C(_z)'
i

= nC(Ax) 4,

Now, for n such that 0 _<nat <_T, we have

CT,

Hence, the method is O[(Ax) 2] convergent, and the finite difference scheme, Eq. C.3,

provides a convergent approximation to the solution to Eq. C.1.



Bibliography

[1] N. ASItCROFT AND D. MERMIN, Solid State Physics, Holt-Saunders Interna-

tional Editions, 1976.

[2] D. BARNARDIN AND O. E. SERO-GUILLAUME, "Lattice Gas Mixtures Models
for Mass Diffusion", Eur. J. Mech., 8(6)'.1-26, 1989,

[3] _. BELLMAN, Introduction to Matrix Analysis, McGraw Hill Book Company,
New York, 2nd ed., 1970.

[4] N. BELLOMO, A. PALCZEWSKI, AND G. TOSCANI, Mathematical Topics in
Nonlinear Kinetic Theory, World Scientific, New Jersey, 1988.

[5] R. BENZI AND S. SUCCI, "Bifurcations of a Lattice Gas Flow under External
Forcing", J. Star. Phys., 56(1/2):69-81, 1989.

[6] P_. BENZI AND S. SUCCI, "Two-dimensional turbulence with the lattice Boltz-
mann equation", J. Phys. A: Math. Gen., 23:LI-L5, 1990.

[7] B. BOGIIOSIAN AND C. D. LEVERMOrtE, "A Cellular Automaton for Burgers'
Equation", Complex Systems, 1(1):17-30, February 1987. Reprinted in Lattice
Gas Methods for PDEs, G. Doolen, ed., Addison-Wesley (1989):481-96.

[8] B. BOGIIOSIAN AND C. D. LEVERMORE, "A Deterministic Cellular Automaton
with Diffusive Behavior", in Discrete Kinetic Theory, Lattice Gas Dynamics and
Foundations of Hydrodynamics, R. Monaco, ed., World Scientific, 1989_ pp. 44-
61.

[9] B. BOGHOSIAN, "VV. TAYLOR, AND D. II. I"_OTIIMAN, "A Cellular Automata
Simulation of Two-Phase Flow on the Chi-2 Connection Machine Computer", in
Proceedings of SupeT'computing i988, 1988.

[10] M. BONETTI, A. NOULLEZ, AND J.-P. BOON, "Viscous Fingering in _ 2-D
Porous Lattice", in Discrete Kinetic Theory, Lattice Gas Dynamics, and Foun-
dations of Hydrodynamics, R. Monaco, ed., World Scientific, 1989, pp. 395-9.

253



254 BIBLIOGRAPHY

. , Stochas lc Cellular Automaton Simulation of[11] L BRIEGERAND E BONOMI, "A' t'
the Nonlinear Diffusion Equation", irl Lattice Gas l_lethods for PDE's: Theomj,
Application, and Hardware, Physica D, September 1990,

[12] C, BURGES AND S. ZALESKI, "Buoyant Mixtures of Cellular Automata Gases",
Complex Systems, 1(1)'.31-50, 1987.

[13] D. BURGESS, F. HAvo'r, AND W. F. SAAM, "Model for Surface Tension in
Lattice-Gas Hydrodynamics", Phys. Rev. A, 38(7):3589-92, 1988.

[14] D. BURGESS, F, HAYOT, AND W, F. SAAM, "interface Fluctuations in a
Lattice Gas", Phys. Rev. A, 39'.4695-4700, 1989,

[15] C. CERCIGNANI, \V. GREENBErtG, AND P. ZWEIFEL, "Global solution of the
Boltzmann equation on a lattice", J. Star. Phys., 20',449-62, 1979,

[16] H. CHEN, S. CltEN, G. D. DOOLEN, AND W. H. MATTItAEUS, "A Brief

Description of Lattice Gas Models for Multiphase Flows and Magnetohydrody-
namics". To be published by the Sante Fe Institute, 1990.

[17] H. CHEN, W. H. MATTIIAEUS, AND L. W. KLEIN, "An AnalyticTheory
and Formulation of a Local Magnetohydrodynamic Lattice Gas Model", Phys.

Fluids, 32(6)'.1439-45. 1988.

[18] H. CItEN, W. H. MATTHAEUS, AND L. W. KLEIN, "Theory of Multicolor
Lattice Gas: A Cellular Automaton Poisson Solver", To appear in Journal of
Computational Physics, 1989.

[19] P. CHEN, "GNU Emacs BIBTF_/X-Mode",Tech. Report 87/317, Computer Science
Division, University of California, Berkeley, Berkeley, California, October 1986.

[20] P. CtIEN, "GNU Emacs 2_X-Mode", Tech. Report 87/316, Computer Science
Division, University of California, Berkeley, Berkeley, California, October 1986.

[21] P. CHEN AND M. A. HARRISON, "Automating Index Preparation", Tech.
Report 87/347, Computer Science Division, University of California, Berkeley,
Berkeley, California, March 1987.

[22] P. CHEN AND M. A. HARRISON, "Integrating Noninteractive Document Proces-
sors into an Interactive Environment", Tech, Report 87/349, Coxnputer Science
Division, University of California, Berkeley, California, April 1987.

[23] S. CIIEN, I(. DIEMER, G. D. DOOLEN, K. G. EGGERT, AND B. J. TItAVIS,

"Lattice Gas Automata for Flow Through Porous Media", in Lattice Gas Methods
for PDE's: Theory, Application, and Hardware, Physic_ D, September 1990.



BIBLIOGRAPHY 255

[24] Z, CHENG, J. L, LEBOWITZ, AND E, I_, SPEEP,, "Microscopic Sllock Struc-
ture in Model Particle Systems: The Boghosian-Levermore Cellular Automaton
Revisited"; 1990. Preprint,

[25] I_, C, Y, CIIIN, G, W, H, F, A, HOWES, AND J, I_, McGItAW, "Parallel
Computation of Multiple-scale Problems", in New Computing Environments:
Parallel, Vector and Systolic, A, Wouk, cd., SIAM, Philadelphia) 1986,

[26] B. CtlOPAItD AND M. Dlt.OZ, "Cellular Automata Approach to Diffusion Prob.
lems", in Cellular Automata and Modeling of Complex Physical Systems, P, Man-
neville, N. Boccara, G. Y. Vichniac, and R. Bidaux, eds., Springer-Verlag, 1989,
pp. 130-143.

[27] B. CIIOI:'AItDAND M. DaoZ, "Cellular Automata Model for the DifFusion Equa-
tion", to appear in J. Star. Phys., 1990.

[28] D. DAn AND J.-P. BOON, "Cellular Automata Approach to Reaction-Diffusion
Systems", in Cellular Automata and Modeling of Complex Physical Systems,
P. Manneville, N. Boccara, G. Y. Vichniac, and R. Bidaux, eds., Springer-Verl:_g,
Berlin, 1989, pp. 257-73.

[29] T. J. DARRELL, "Psfig/'_ 1.2 Users Guide", tech. report, Computer and
Information Science, University of Pennsylvania, 1987.

[30] G. DOOLEN, ed., Complex Systems, Vol. 1, no. 4, 1987, pp. 545-851. The articles
in this issue are mostly based in part on presentations given at the Workshop
on i,arge Nonlinear Systems", held in Santa Fe, New Mexico, on October 27-29,
1986.

[31]G, DOOLEN,ed., Lattice Gas Methods for PDEs, Addison-Wesley, 1989.

[32] W. ECI(IIAOS, Asymptotic Analysis of Singular Pertubations, Elsevier North-
Holland, Inc., New York, 1979.

[33] B. ELTON, A. L, PERKINS, AND G, I=t.ODrtIGUE,"Matrix Substructuring, Do..
main Decomposition, and Particle Methods: Current Trends for Solving PDE's
in Parallel", in IEE Proceedings of the Workshop on Design and Application of
Parallel Digital Processors--Lisbon, Portugal, London, May 1988, The Institu-
tion of Electrical Engineers.

[34] B. H, EL'rON, C. D. LEVErtMOrtE, AND G. It. RODI),IGUI;;,"Lattice Boltzmann
Methods for Some 2-D Nonline,_r Diffusion Equations: Computational Results",
in Asymptotic Analysis and Numerical Solution of Partial Differential Equations,
Marcel Dekker Inc., 1990. Proceedings of a workshop held at Argonne National



256 BIBLIOGR,,,1PIf Y

Laboratory, Argonne, II,, February 26-28, 1990, Av_til_ble=asLawrence I,ivermore
National Laboratory Tech, Report I.!CIU.--JC:-104691,

[35] B, H, ELTON aND G, H, RODItlOUI,:, "Sub.Structuring for Lttttice C_Lses",
in Third International Symposium on Domain Decomposition a fet.hodslo,, 1:'_,..
tial Differential Equations, Philadelphia, 1990, SIAM, pp, 451-61, Available as
Lawrence Livermore National Laboratory Tech, Report UCRL-101976,

[36] U, FRISCtI, "Relation Between the Lattice Boltzmann Equation and the Navier-
Stokes Equations", in Lattice Gas Methods for PDE's: Theory, Application, and
Hardware, Physica D, September 1990,

[37] U. Ftuscl_, D, D'HUMIgRES, B, HASSLACIIER, P. LALLEMAND, Y, POMEAU,

AND J.-P. RIVET, "Lattice Gas Hydrodynamics in Two and Three Dimensions",
Complex Systems, 1(4), August 1987,

[38] U. FalscH, B. HASSLACIIEtt, AND Y. POMEAU, "Lattice Gas Automata for the
Navier-S tokes Equation", Physical Review Letters, 56(14): 1505-8, April 1986.

[39] M. GAftny, "Quasilinear Hyperbolic-hyperbolic Singular Perturbation Problem:
Study of a Shock Layer", Mathematical Methods in the Applied Sciences, 11:237-
52, 1989.

[40] R. GATIGNOL, "The Hydrodynamical Description for a Discrete V_]ocity Model
of a Gas", Complex Systems, 1:709-25, 1987,

[41] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, The John Hopkins
University Press, Baltimore, Maryland, 1983.

[42] H. GRAD, "Principles of the Kinetic Theory of Gases", in Handbuch der Physik,
S. Fliigge, ed., Vol. XII, Springer-Verlag, Berlin, 1958, eh. 26, p. 205.

[43] H, GRAD, "Theory of Rarefied Gases", in Rarefied Gas Dynamics, F, M. De-
vienne, ed., Vol. 3 of International Series on Aeronautical Sciences and Space
Flight, Pergamon Press Inc,, New York, 1960, pp. 100-138. Proceedings of the
First International Symposium on Rarefied Gas Dynamics held at Nice.

[44] H. GRAD, "Asymptotic Theory of the Boltzmann Equation", Physics of Fluids,
6(2):147-181, February 1963.

[45] H. (]RAD, "Asymptotic Theory of the Boltzmann Equation II", in Rarefied Gas
r

Dynamics, J. A. Laurmann, ed., Vol. I of Advances in Applied Mechanics, Aca-
demic Press Inc., New York, 1963, pp. 26--59, Proceedings of the Third Inter-

national Symposium on Rarefied Gas Dynamics, held at the Palais de L'unesco,
Paris, in June 1962.



BIBLIOGRAPHY 257

[46] J, HARDY, O. DE PAZZIS, AND Y, POMEAU, "MolecultLr dynamics of a clas-
sical lattice gas: Transport properties and time correlation functions", Physical
Review A, 13(5):1949-1961, M_y 1976.

[47] J. HAItDY AND Y, POMEAU, "Thermodynamics and t-Iydrodynamics for a Mod-
eled Fluid", Journal of Mathematical Physics, 13(7):1042-1051, July 1972,

[48] J. HARDY, Y, POMEAU, AND O, DE PAZZlS, "Time evolution of a two-
dimensional model system. I, Invariant states and time correlation functions",
Journal of Mathematical Physics, 14(12):1746-59, December 1973.

[49] F. J. HIGUERA, S. S_IccI, AND P_. BENZ1, "Lattice Gas Dynamics with En-
hanced Collisions", EuTvpi_ysics Letters, 9(4):345-9, June 1989,

[50] P. G. HOEL, S, C, POI1.T, AND C, J, STONE, Introduction to Stochastic Pro-
cesses, ttaughton Mifflin Company, Boston, Massachusetts, 1972.

[51] L. LAMPORT, [PTFe: A Document Preparation System, Addison-Wesley Pub-
lishing Company, 1985.

[52] Lattice Gas Methods for PDE's: Theory, Application, and Hardware, Physica
D, September 1990. Proceedings of a NATO-sponsored workshop held at Los
Alamos :'_tional Laboratory, September 1989.

[53] J. L. LEBOWVrZ, E. OrtLANDI, AND E, PIt.ESUTTI, "Convergence of Stochastic
Cellular Automaton to Burgers' Equation: Fluctuations and Stability", Physica
D, 33:165-1'88, October/November 1988.

[54] C. D. LEVEttMOrtE. Private communication.

[55] J. E. MAItSDEN, Elementary Classical Analysis, W. H. Freeman and Company,
San Fr_mcisco, 1974.

[56] G. MCNAMARA AND G, ZANETTI, "Using the Lattice Boltzmann Equation to
Simulate Lattice Gas Automat£', Physical Review Letters, 61(20), 1988.

[57] R. MONACO, cd., Discrete Kinetic Theory, Lattice Gas Dynamics and f'ovnda.
, '' t' Ptions of Hydl'odqnamic,_, World Sclen Ifit, I989. roceedings ol'a workshop on

the subject of the title (above) held in 'I'orino, Italy, Sept. 20-4, 1988.

[58] D..MONTGOMEItY AND G. D. DOOLEN, "Two Cellular Automata for Plasmtt
C,omputations", Complex Systems, 1:831-8, 1987, Reprinted in Lattice Gas

" Methods for PDEs, G, Doolen, ed., Addison-Wesley (1989):461-70.



258 I,_IBLI O(./RA PtJ Y

[5!}] /_L'. PALCZEWSKI, "Boltzrn_tnn Equat, totl on _t lattice: global solution for non-
Maxwellian gases", Arch, Aieeh,, 34:287-96, 1982,

[60] A, L, PERKINS AND G, RoDRIGUE, "A Domain Decomposition Method for
Solving a 2-Dimensional Viscous Burgers' Equation", Tech, Report UCI_L-99823

Ii,ev, I, Lawrence Livermore National Laboratory, 1989, To appea, r in Applied
Numerical Mathematics,

[61] L, PERKINS, Parallel Heterogeneous Mesh Refinement For Multidimensional
Convection.Diffusion Equations Using An Euler-Lagrange Method, Ph,D, Dis-
sertation, University of California, Davis, CA, June 1989, Available as Lawrence

Livermore National Laboratory report #UCRL-53950,

[(12] V. L, PETEItSON, "Computational Ch_dlenges in Aerospace", Future Generation
Computer Systems, 5(2.-.3)',243-258, 1989,

[63] M, H, PitOTTErt AND H, F, WEINnErtGEIt, Maximum Principles in Differential
Equations, Springer-Verh_g, 2nd ed,, 1984,

[64] F. Rr, IF, Fundamentals of statistical and thermal phyoies, McGraw-Hill, 1965.

[65] C. E. RIIOADES, cd,, Future Generation Computer Systems, Vol. 5, nos, 2--3,
September 1989, pp. 167-350, Special Issue on "Grand Challeages to Computa-
tionai Science",

[66] R. D. RICHTMYErt AND h:, W, Mort'i'oN, Difference Methods for Initial. Value
Problems, Vol, 4 of Interscience Tracts in Pure and Applied M,xthematics, Inter-
science Publishers (John Wiley & Sons), 2hd cd,, 1967,

[67] H, A. SCHWARTZ,"Ueber einen Grenzfibergang durch alternirendes Verfahren",
in Gesamrnelte Mathematische A bhandlungen, Vol, 2, Springer Verlag, Berlin,
1890. Translation available as Lawrence Livermore National L_boratory Tech,
Report UCRL TRANS-II893, August 1983,

[68] J, S, SCROGGS, The Solution of a Parabolic Partial Differential Eq'uation via
Domain Decomposition: The Synthesis of Asymptotic and Numerical Analysis,
Ph.D, Dissertation, University ,of Illinois, Urbana, IL, May 1988,

[69] G, A. SOD, Numerical Methods in Fluid Dynamics: btitial and Initial Boundary.
Value Problems, Cambridge University Press, Cambridge, 1988,

[70] J. C. STrtII_WEItDA, Finite Difference Schemes and Partial Differential Equa.
t.ions, W_Ldsworth & Brooks/Cole Advanced Books & Software, Pacific Grove,
C_diforni_t, 1989,



L.

i BIBL IOGID1PH Y 259t_ 0

[71] G, B, W III"PlIAM, Linear and No.rt.liuea'r l'Vc.zvea,Pure iuld Applied Mal,hotnt_Lics,,
A Wtlw.,Interscience Series of 'l.'ext;s, Monogral_hs, and ",tra,ct,s", ,lolln \'Vlloy' &
Sons, 1.97'l,

[72] S. WOI, li'itAM, "Cellular Autom_tt,on Fluids 1', l?a.slc 'Pheory', ,Jou,r'nd of Slatis.
tieal Physie,_ 45(3/4)',,'t ='_', 71--,.).,6,Novelnber 1986,

t



i

Index

A boldface page number, e.g.. 21, indicates the location of a definition.

advection bias, 44, 49,155,181,210, of LB method for Burgers' equa-

215, 21.6 tion, 155

advection operator, xiv, 19, 28, 45 ordering of, 32

asymptotic expansion, 66 Taylor expansion, 45, 58, 61
derivative operations in, 62 without Fermi Exclusion Prin-

Taylor expansion, 45, 66 ciple, 34

advection operator expansion, 62, 64, collision operator expansion, 58, 67

67 collision rules, 14, 19, 2lfr, 12l, 155

asympt:,,:,tic expansion, 44, 45 cornpatibility condition, ,see consis-

of advection operator, 66 tency condition

of co]lision operator, 61 componentwise product (,), xiii,, 9,

o, n, 47 48, ,54, 55, 58

Bravais lattice, 15 using, 57

Burgers' Equation, 5, 96, 121, 154, conditions of mor_otonicity, 85, 96,

176, 180, 181, 209, 231, 232, 97

245 connectedness, 12

LB method for, 154, 195,209 conservative form, 246

maximum/minimum principle for, conserved quantity, 21

176 consistency, 83, 85, 88ff, 117

cellular automata, iii, 2 in determining convergeIlce, 115

cellular fluids, 2 theorem on, 89

Chapman-Enskog consistency con- consist, ency condition, 46-48, 1, 72,

dition, see consistency condition 83, 88

Chapman-Enskog-Taylor asymptotic free parameters, 46

equilibrium expansio_l, 61 hydrodynamica, l equation, 71.

circulant, 50, 52, 188 continuum maximum/minilntlm prin-

collision operator, xiv, 28, 83 ciple, see maximum/minim,lm

linearized, see linearized collision principle

operator convergence, 82ff, 88, 97, 118, 1.22
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computational evidence, 195-220 equilibrium, 35
general results, 83 equilibrium analysis, 35
general theorem, 115 equilibrium expansion, xiv, 44, 47,
proof of for a nonlinear differ- 62, 66, 70
ence method, 245-252 equilibrium function, 44

covariance, 13, 33, 157, 185 equilibrium theorem, 36
in LB method for Burgers' equa- applying it, 41
tion, 121 ergodicity, 14

error

detail balance, 24 in truncated equilbrium expan-
in determining equilibrium solu- sion, 87
tions, 24 extreme points

deterministic lattice gas method, 29, of domain of monotonicity, 87,
see lattice gas method 97

differentials, 10
direct naethod, 158 Fermi Exclusion Principle, 14, 3,1,
discrete Chapman-Enskog analysis, 35, 49,232

44ff example of lattice Boltzmann

discrete Chapman-Enskog expansion, method without the, 34
48, 55, 71, 89,122
and consistency, 88 grid, see lattice
equilibrium expansion, 47 ground state, 44

discrete Chapman-E._!skog procedure, H, 85, 96
7, 48 hydrodynamical equa.tioil, 4,4, 71,

discrete maximum/minimum prin- 83

ciple, see max!mum/minimum hydrodynamical error, 88, 117
principle hydrodynamical mode, 87

domain decomposition for lattice meth- llydrodynamical modes, 8,3
ods, 221ff

: domain of monotonicity, 83, 86, 97 Jacobian matrix, 8, 11
in stability, 113

2,, see Bravais lattice
eigenmatrix, 52 £., see linearized collision operator
_k, see velocity vectors £+., see pseudo-inverse

' ensemble average, 13 L[n, h], 87
equilibria, 7 l_ttice, see Bravais lattice

in LBl via direct method, 36 La.ttice Boltzmann Approximation,
in LBl via equilibrium theorem, iv, 7, 32, 33, 1.1.8,231
42 ii'. discrete Chaplna.n-Enskog ex-
via direct method, 36 pansion, 44
via Equfl.lbnum Theorem, 36 LB2, 1.2,5
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lattice Boltzmann collision opera, tor, collision rules, 155, 156
32, see also collision operator componentwise product, 160

Lattice Bolt,zmann Equation, 32, 33, computational results, 209--213
35, 46, 48, 85-87, 89, 95, 97, consistency, 170
138 consistency condition

lattice Boltzmann method, iv, 33 O[52], 163
without Fermi Exclusion Prin- O[6u], 1.65
ciple, 34 (.9[64], 167

ex_unple of, 34 C9165],1.69
lattice gas automata, 2 continuum maximum/minimum '
lattice gas method, 28 principle, 176
lattice gas methods, 14ff ' convergence, 168, 170, 178, 180
lattice isometry invariance, 21 covariance, 1,57, 18(1
lattice node, 15 discrete Chapman-Enskog expan-
LB method, see la.ttice Boltzmann sion, 160-170, 172, ! 73

method discrete maximum/minimum
LB method for 2.-Dadvection-diffusion, principle, 175

195 domain decomposition, 223
advection bias, 181 domain of monotonicity, 174:
collision operator, 181 extreme values of, 175

collisiou rules, 181---,18',"i equilibria, 158
componentwise product, 188 tl, 174
computational results, 214-220 Lattice Boltzmann Approxilna-
consistency condition tion, 157

(..9162],190 Lattice Boltzmann l_;qllation, 158,
O[5:t], 192 174

covariance, 185 stability, 178
discrete Cl_agrna.w Enskog expan- truncated equilibrium ex l)a_lsion,
sion, 188---192 170

equilibria, 186 trl_rJcal,ioll error, 171
llydrodynamical equation, 192 LBl, 19,5
lattice, 181 advection operator
I,at.tice Boltzmann Approxima- derivatives irl, 63
tion, 185 circulant L;, 51

velocity vectors, 181. 189 collision operator, 29, 30
LB method for Burgers' equation, collision operator expansion, 81

195 collision rules, 21-23, 31
advection bias, 155 cornponentwise product, ,55, 69,
advection operator, 158 70

collision operator, 15.5 componentwise product (*), 55
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computational results, 197--.202 I,B_, 195
consistency, 90 analysis, 122--154
consistency condil, ion collision opera,t.or, 125

form of, 71 collision rules, 122-124

0[¢5_], 75 ' componentwise product, 128
6915a],77 computational results, 203-208

CO[54], 78 consistency, 137, 153
C'915_],81 consistency condition, 154

,, COx'tilluum maximum/minimum O[t52], 131
pri1_ciple, 110, 111 O[63], 133
convergence, 117 0[6"4], 135
detailed balance, 24, 42 O[6s], 1.37
direction labels, 17 continuurn maximum/minimuln
discrete Chapman-Enskog expan- principle, 150, 152, 154
sion, 72-81, 94 convergence, 137fr,153

discrete maximum/minimum detailed balance, 125
principle, 108 discrete Chapman-Enskog expan-
equilibria, 36, 42, 43 sion, 127-137, 141
equilibrium solution, 47 discrete maxitnurn/minirnum
ground stale, 47 principle, 150
H, 99 dolnain of nmnotonicity, 141
hydrodynamical equation, 111 equilibria, 125
lattice, 17 equilibrium solution, 127
Lattice Boltzmann Approxima- H, 142
tion, 33 hydrodynamical error, 153 I

lattice Boltzmann collision op- lattice, 122
erator, 3a Lattice Boltzmann Equation, 142
Lattice Boltzmann Equation, 99 linearized collision operator, 127
linearized collision operator, 50 stability, 152

eigenpairs of, 52 truncated equilibrium expansion,
nullspace, 53 137, 153
pseudo-inverse, 54 truncation error, 140

rotation invariance, 31,101 velocity vectors, 122
simplifying gradient expressions, LG method, see lattice gas method
69, 70 linearized collision operator, 46, 49,
stability, 114 55, 83

truncated equilibrium expansion, and (semi-)detailed balance, 24
72, 90, 91, 93 and quasi-detailed balance, 28
truncation error, 93 in matched expansion analysis,
velocity vectors, 17 46

,p, ,
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in terms of its eigenpairs, 53 spatial-gradient expansion, 44
stability, 83, 87, l13ff

mass conservation, 24, 83, 1la, 114 in determining convergence., l lg
maximum principle in Li-norm, 113

continuum, 246 state, 19, see also occupation num-
discrete, 247 bets

maximum/minimum.principle, 83, 95ff state transition function, :19,20ff
continuum, 97, 110, 111 stochastic lattice gas method, 29,
discrete, 95-97 see lattice gas method

general theorem, 97 sul>structuring for lattice methods,
for Burgers' equation, 176 221ff

mean occupation number, 31
microdynamical equation, 18ff, 33 Taylor expansion, 46

for mean occupation numbers, of advection operator, 45, sec
31 also adw_ction operator, (;2, (;6

microdynamical evolution equation, of collisi_,n operator, 45, 58, see
see microdynamical equation also collision operator

molecular chaos, 14, 125 Taylor series expansion
of vector function, 63

norms, 11 truncated equilibrium expansic)i_, 82,

O[.], xiii, 12 85, 87---89,91,97, 117
occupation number, 16 in consistency, 85
occupation numbers, 44 truncation error, 85

vector of, 19 unit velocity vector, set::w.locity v_,c-without Fer,_fi Exclusion Prin- tors
ciple, 35

w.'ctor exponentiation, 10
particle speed, 15 velocity vectors, 15, 19, 62, {;5. 12S
permutation matrix, 116
l_robabilistic lattice gas method, 29,

see lattice gas method
pseudo-inverse (/2+), 53

quasi-detailed bMance, 25

reflection irlvariance, 50
rotation invariance, 29

semi-detailed balance, 25, 47
in determining equilibrium solll-
tions, 24

set volume, 12
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