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A SURVEY O RE(“ENT AND CIJRRLNT WORK ON THIS GRANT

In thls report we describe the recent research done under this grant and, for each topic,

we prepare the way for the discussion of proposed future work which will be presented in a

later report.

A. Pattern Formation at Liquid Interfaces

Much has been learned in recent years about pattern formation in Hele-Shaw cells. In

- particular, the onset of the Saffman-'l’aylor instability has been carefully studied as has the

shape‘and stability of the éteady state in Saffmaﬁ~T$.ylor ﬁ‘owl"z'sl.‘ However, little is known
about how the mma.l pattern, formed on the initially flat mt;erface, deveIOps into the steady
state This intermediate region of pattern formation 1s.quxte 1mportant to understand, not
just to complete our knowledge of this simplest of pattern-forming problems ‘but, also because
many of the interesting pattern forrna.tioﬁ problems have no wéll defined stead‘y state and
aré eﬁ'ectivelyb in the intermediate regime forevex; (with interesting questions of \;Jhether
there are universal aspects (intefmedia.te asymptotics) to these transiems““). In addition.
it is important to\ma.ke connection between simple pattern forxnation problems and the
more commonly occurring cases of interest for materi‘als technology. Most pattefn‘ formation
problems of technological interest have something in common with Séffman-Taylor flow, at
least in the linear regime®. ’The differences between problems normally in§olve extra terms

added to the basic nonlinear differential equation which governs the growth of an interface.

Thus our recent research along with the work to be proposed in Chapter III is aimed at the

two goals of understanding the nonlinear growth regime and discovering the effect on the
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pattern formixig process of adding well-controlled terms to either the growth equation or to
the Boundary conditions.
During the past year we have reported the results of four projects®®78 aimed at different

aspects of the development of nonlinear patterns. (Reprints of these papers are attached as

appendices 1,2,3,and 4.) We give only br\ie‘f summaries of these results here (referring the

interested reader to the appended reprints), along with somewhat more detailed summaries

of two very recent proj.ects which have not as yet led to publications.

I. A racetrack for Competing Viscous Fingers.

We summarize the results®, since they are available in Appendix 1: we formed an array
of approximately equal-sized vi(s‘cous fingers in ’narrow channels and brought these fingers
simultaneousiy into a widér Hele-Shaw cell. This ‘allowc‘ed us to stﬁdy the dynamics of finger
competition. We observed sever#l regularit‘ies: 1) there was a strong tendency, predicted

by Kessler and Levine?, to kill off every other finger very early in the pattern development.

- While the problem is noisy, and killing off only a third of the fingers in the first stage is a

real possibility, the most probable pattern for a spatial correlation function is that of Figure

- 2b of appendix 1. 2) There was a second stage of competition wherein every other one of the

fingers which had survived the first stage were typically killed off. This suggests a process.

which proceeds in stages of approximately locally-dominated interactions, killing off roughly

every other finger until only one finger survives. 3) We could construct trajectories (position

vs. time, in dimensionless units for which we at present have no theoretical justification) for

the fingers which finish in each place in the race. These trajectories gave a good account
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of the ﬁngef patterns for all observed flow conditions, independent of which of the initial
channels contributed the finger which finished the race in the given position. This suggests

that there are universal features to intermediate stéggs'of the paltern evolution and that we

can give an interesting phenomenological account of the pattern left behind as the winning

finger moves on to form the steady state.

2. An Fxperimental Realization of Periodic Boundary Couditions.

Side-wall interactions are known to be quite important in Saffman-Taylor flow. The walls

of the cell not only set the length scale of the eventual steady state finger2 but they also

provide a source of friction which causes the initial fingers near the wall to grow earliest', -

Since the latter of these effects would not be included in normal theoretical formulations with

periodic boundary conditions, it is of interest to try to eliminate side-wall-friction effects in

at least one experiment to learn how profoundly the flows are being affected by wall friction.

We have constr‘ucted‘e‘m cell which, to a reasonable approximéﬁoh. realizes periodic boundary
conditions. This cell is an annulus formed by joining two coaxial right circular cylinders of
glass. Thé cell is ‘26 cm long and 3.6 cm in diameter, with a gap of 1 mm. We filled the cell
with a critical mixture of isobytyric acid + water and initiated the flows at temperatures
where the mixture was in the two phase regime by abruptly rotating the (vertical) axis of
the cell throUgh 180 degregs; We placed four mirrors to allow observation of the parts of
the circumference of the cell which were not ‘visible on a direct line of sight and obtained
photographic images of the cell and the four mirrors with a tv camera. After digitizing these

images and mathematically projecting them back onto the surface of the original cylinder
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(thus forming patterns of interface position as a funtion of azimuthal angle), we could make

~direct comparison of these flows with our earlier work on flows in a plane rectangula: cell

uxider otherwise identical conditions. Figure | shows a typical pattern. The results of the

- experiment are as follows: 1) most features of the flow are unaffected by the change to

périodic boundary conditions. 2) Since our annular cell was much longer than our original
rectangular cell, we were able to observe thé pattern development, to much later stag‘eé ghan
was possible earlier. As the earlier work®® hinted, here we obser‘ve no tendency for the length
scale of the pattern to grow with time toward the expected steady state. Instead the number
of ﬁhgers stays coﬂstant while the longest ﬁﬁgens pinch off beh;nd their finger-tips, forming
a rich variety of bubbles oﬁly afte;‘ their widths héve been reduced to less than the gap sizé

(i.e., after the flow can no longer be regarded as two dimensional). This tendency of shorter

fingers, to fatten and pinch off the tips of the leaders suggests a different dynamic from

the one observed in high contrast flows where'the shorfer fingers stop growing altogether.
Even though the same steady state should be available and stable for all viscosity contrasts.
it could be that t.he mathematical zone of attraction ‘of this steady state is much smaller
for low contrast flows. None of our present results can distinguish between this possibility
and the less interesting one that some as yet unfqreseen three dimensional effect drives the
weakly-driven low-contrast case away from the steady state. In the coﬁrse o‘f studying this
problern, we have constructed a narrow cell whose width matches the wavelength of the
initial pattern; this é'ell essentially forces the initial pattern to look like the steady state.

Under these conditions we can form the steady state and see that is is indeed stable.
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3, What Sets the Length Scale for Patterns between Miscible Liquids?

The initial length scales for patterns between immiscible liquids are reasonably Qell un-
~ derstood in terms of a capillary lgngth set by a comb‘inapion of dynamics énd the equilibrium
interfacial tension'. However, important‘ questions remain abéut the origin of length scales
for patterns between miscible liquids, even though somé of the r;lost intérestin‘g patterns have
been obsérved in'such cases!®. Using a maximum-entropy- production argument along with
an assumption of éero ‘int‘.erfacial energy for miscible Helg-Shaw ﬂow;;\ Patersonn has sug-
‘ gested-that thellength scale for the miscible case should be set by the gap in the Hele-Shaw
cell. DeGennes!? has considered the effect of polymer s‘olution‘ visco elasticity on length scales
for the case of patterns befween water and an aqueous polymer solution, a case which has
been shown to show striking fractal patterns'®. In DeGennes’ formulation!?, the interfacial
energy is also assumed to be zero or sufficiently low to be unimportant in the prpblem. An
experiment to test DeGennes’ formulation wiil be presented in Section III. A. 4 below. The
experiment reported in the present section is relev?xﬁt only to Paterson's formulation sinre
it invol\}es simple Newtonian liquids.

We have prociuced interfaces between miscible liquids by forming an interface between
the two phases of a critical mixture of isobutyric acid+water at a temperature in the two-
phase region and then raising the temperature into the one phase region. While the system
comes to temperature equilibrium within a few minutes, the interface will persist and remain
shiny for many hours “beca,use particle interdiffusion is so slow a procesé. We then initiate

flow and measure the resulting fingering pattern as the interfacial advance proceeds too
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rapidly for diffusion to mix the liquids. (The rapid evolution of the pattern adds interface

area while the interface continues to appear sharp, thus 'raising the possibility that the

interfacial composition-gradient energy involved may lead to dynamical effects which act

like an interfacial tension, even though the equilibrium state would have neither an interface.

nor a surface tension.) We find variations in the typical finger width, with a dependence on

temperature and suggesting that the gap in the cell is not the controlling length scale. If this

1s indeed the case, a plausible explanation would be that the gradient energy which provides

the most important contribution to the interfacial energy at two-phase equilibrium is still

present until diffusion visibly blurs the interface and that the presence of this energy has
an important‘eﬁect on t.he‘ pattetn formation. Unfortunahely, we were not able to vary this
length scale enough to make a very convincing case that the cell gap is( not the important
length, and so rather than publish the experiment in its present form, we propose in the next
chapter (Section II1I.A.3) an auxiliary experiment to measure the effective interfacial energy

directly with surface light scattering.

4. The Fractal Dimension of Radial Hele-Shaw Patterns.

Several pattern-forminlg‘systems (e.g., electrodeposition and amorphous annealing) which
have a mdthématical kinship to radial Hele-Shaw flow have been shown to go over at late
stages of their development into a space filling dense-branching morphology!3!. It would be
of interest to understand the origin of this densébranching transition and in particular to
know which feature(s) of the differential equation govetning the pattern growth give rise to

the phenomenon. One group formulates the problem to say that dense-branching is already
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present in the underlying’ Hele-Shaw flow!’, We have measured” the fractal dimension of

high-contrast radial Hele-Shaw Hows at constant flow rate over a reasonably large range of

 driving forces (roughly equivalent to looking at successively later stages of development) and

have not seen dense branching. There are many details of importance to this problem, and
our published paper is appended (appendix 2) for the interested reader. Our conclusion is

that, for constant flow rate, and within the range of driving forces we can attain without

beginning to distort the plates of our cell, we cannot see evidence of dense-branching. Yeung

and Ja{snbww have subéequently suggested that dense branching shbuld not occur in Hele-
Shaw flow at éoﬂstant flow rate. Grier et al.l7 h;ve sﬁggested an explanation for the dense-
branching seen in electrodéposition in terms of the finite conductivity of the solid phase.
An analogy may exist in radial Hele-Shaw flow i which weakening the viscosity contrast
betv?een the fluids might take the Hele-Shaw problem over closer to the electrodeposition

case, yielding a dense branching. [n section IIL.A.6 below we propose an experiment to test

this,

5. Detailed Analyses of Low-Contrast Saffman-Taylor Flows.

We have recently finished and published.our‘extehsive analysis of low contrast Saffman-
Taylor flow:"s.“ The two resulting and interdependent papers are attached as appendices
3 and 4. The main results of these papers are as follows: 1) most features of the flows
can be reproduced to within 20% even though the instabilikty is broad-band. (Fluctuations
in tﬁe Fourier transform of the developing pattern are, however, much larger if one looks

at a single mode). 2) Several quantitative measures of the developing patterns collapse to
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characteristic curves when the results from flows at very different control conditions are put
in the dimensionless form suggested by the Hele-Shaw equations, Wetting effects have kept

this from happening in all observed high-conirast studies'?.

The results of these papers form a background of information for some of the more

complicated pattern formation problems we wish to study in the future, but we do not plan .

to do any more work on this problem in its original, simple form.

B. Interfaces within Disordered Materials

A few years ago we found that random field theoriés gave a 1ather good account of sevcral
of the nroperties exhibited by éwollen polymeric gels whose solvent was a binary liquid
mixture with a nearby consolute point!81?, In a subsequent experiment®® we attempted
to make the random field behavior go away by making gels whose characteristic length for
the random field (polymer spacing) would be larger than the solvent correlation length at
all temperatures except those exceptionally close to the renormalized critical témperature.
[nterestingly, most of‘the light écattering behavior expected of the random field system
persisted in these larger-pore-size gels. While it was hard to interpret this result because of
the possibility that the gels did in fact have a very short characteristic length even though
they had a gréater incidence of large pores, the experiment also raised interesting questions
about the behavior of demixing liquids inside a disordered medium. Recently we have been
using dynamic light scattering to study how domains of phase separating liquid grow inside
such a medium® and also to learn how wetting and adsorption layers are affected by the

radius of curvature of the wall to which they are attracted (i.e., will the phase of the demixing
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liquid which has greater afﬁnity for the polymer form a fayer on the polymer strand much

as it would if the polymer formed a flat wall?) A reprint of our work®! on the first issue

is attached as appendix 5, and this will not be discussed further here because we do not -

propose any follow-up experiments at the present time. The second issue has led us to study

the behavior of polystyrene spheres at very low concentration in binary liquid mixtures.

1. The.Wetting/Adsorption Properties of Polystyrene Spheres in Binary Liquid Mixtures

We have used static and dynamic light scattering to study the behavior of charge-
stabilized polystyrene spheres in critical and off‘-critiical mixtures of 2,6lutidine+water(LW).
This binary liquid system has an inverted coexlistence curve with a lower critical point near
34C. By tuning the syétem ﬁemperature we can make thé liquid correlation length as large as
50{0nm (our temperature stability is 0.2mK over periods of a few hours and 2 mK over a few
days). We have used polystyrene spheres of radii 30nm, 50nm, 250nm, 500nm and 1500nm,
all at a very low volume‘ fraction of 6 x 10~%, This range of particles gives us great fiexibility

in varying the ratio of particle size to solvent correlation length. We know {rom the work of

Pohl and Goldburg®? that pure LW has a wetting transition for the walls of the glass sample

tube near the demixion critical point, and we might also expect effects analogous to those
seen in LW + glass beads by Esteve and Beyssenszj. We can hope to avoid the flocculation
effects seen by Esteve and Bgyssens, and thus study \vetting/adgorption layers on isolated
spheres both because their glass particles are known to flocculate easily and because our

charge-stabilized spheres should be rather unwilling to aggregate.

[n our first attack on this problem (which we reported recently at the APS March Meeting
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in Anaheim) we have seen the following effects: 1) there is no tendency to aggregate in the

one phase region at any LW concentration (on or off-critical). 2) As soon aa the solvent

enters the two phase region (the critical temperature is shifted by at most a few mK by .

the presence of the spheres), the upper phase (lutidine rich) expels most of its polyballs.
The lower phase (water rich) takes on a slightly higher density of polyballs than in the one

phase region, but most of the polyballs expelled from the upper phase go to the liquid-liquid

" interface and to a water-rich layer which coats the side wall of the sample cell around the

[

edges Qf the upper phase. Near the critical poiﬁt this water rich surface layer is only about
1 cm high (the upper phase is typically about 3 .cm high) but tl.le height of the coating laver
grows as the system température is placed deeper in the two- phase region and eventually
completely wets the glass, The existence of the wetting layer is no surprise in light of
the work of Pohl and Goldburg®?; however, this layer not only holds polyballs, but the
polyballs pack in tightly. and form a crystalline structure along the wall. The geometry of
our samples has thus far prevented us from measuring the number of polyball layers packed
against the glass wall, but we have measured the radius and thickness of the first ring of the
characteristic transmission diffraction pattern and learned that the polyball microcrystals
are ordered along the glass wall over at least 5 polyball diameters with a mean interparticle
spacing of approximately one diameter. All of the abow;e effects are equilibrium effects in
the sense that they can be observed for many days after the sample has been brought to
apparent equilibrium and that they will return reliably after the sample is stirred. There is
a rich literature about molecular and particle ordering at interfaces and walls and between

walls®!, but we are not aware of any other case where a layer has spontaneously formed in

11
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an ordered state betwe;en‘ a \yall and a free interface‘ 3) We have measured the effective sizes
of polyballs iﬁ the water-rich phase by ycombining dynamic light scattering (autocorrelation
{unction measurements) with drawing off and measuring the viscosity of the lower phase
from a pure liquid sample.v This has shown no change in apparant polyball size from that
seen when the same size polyballs are measured as they move diffusively in pure water (both
measurements agree verijell with the manufacturer’s stated size which was determined
with electron microscopy). It is in the lutidine-rich phase that we hope (o see evidence of
an adsorption layer since this is the phase which clearly rejects thg polyballs: we have not
vet managed to extract reliable sizes for the effectivé scatterers in the lutidine-rich phase
because their number density is so low. We hope soon to‘ have results on this, 1) We
observe peculiar effects in the apparant correlation length of the critical LWrﬂuctua,t,ions
near the critical p‘oint in the one-phase region. This is a difficult determination to make
because the autocorrelation functions involve two exponential terms which have similar time
constants for at least part of the temperature range for each size of polyball (i.e.. there is one
characteristic tirﬁe from the diffusive decay of LW concentration fluctuations and another
time from th Brownian motion of the polyballs). However, the data are good enough to give
a rather good separation of the two signals over a significant temperature range, p.articularly

for the largest polyballs. The resulting length scale for the composition fluctuations shows

‘a power law in the reduced temperature with an exponent near 0.5 instead of the expected

value of 0.62 (using a pure liquid critical mixture, we have no trouble reproducing the

published value'® of 0.58 for this system in our temperature range, whereas we measure 0,48

with 1500nm polyballs present), It is extremely unlikely that the critical exponent for the

o il
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correlation length has really been changed by the presence of such a small concentration
of polyballs (Fisher renormalization®® would drive the exponent in the other direction and

would not be expected to be observable until the polyball density was raised by several

orders of magnitude?). Rather we suspect, that a dynamical effect is involved, cha.nging the

effective viscosity for the fluctuating volumes which are trapped between polyballs whose

separation is, at the smallest reduced temperatures, only about ten correlation lengths.
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