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In this report we describe the recent research done under this grant and, for each topic,

we prepare the way for the discussion of proposed future work which will be presented inn

later report.

A. Pattern Formation at Liquid Interfaces +

Much has been learned in recent years about pattern formation in Hele-Shaw cells. In

' particular, the onset of the Saffman-Tavlor instability has been carefully studied as has the
'

shapeand stability of the steady state in Saffman-Taylor flow1'2'a' However, little is known

about how the initial pattern, formed, on the initially flat interface, develops into the steady

state. This intermediate region of pattern formation is quite important to understand, not

just to complete our knowledge of this simplest of pattern,forming problems but also because

many of the interesting pattern formation problems have no weil defined steady state and

are effectively in the intermediate regime forever (with interesting questions of whether

I
_- there are universal aspects (intermediate asymptotics) to these transients 4) In addition

it is important to make connection between simple pattern formation problems and the, =

more commonly occurring cases of interest for materials technology. Most pattern formation

problems of technological interest have something in common with Saffman-Taylor flow, at

least in the linear regime s The differences between problems normally involve extra terms

added to the basic nonlinear differential equation which governs the growth of an interface.

Thus our recent, research along with the work to be proposed in Chapter III is aimed' at the

two goals of understanding the nonlinear growth regime and discovering the effect on the
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pattern forming process of adding well-controlled terms to either the growth equation or to

tt_e boundary conditionn.

During the past yearwe have reported the results of four projects a,_'r,s aimed at different

aspects of the development of nonlinear patterns. (Reprints of theae papers are attached as

appendices 1,2,3,and 4.) We give only brief summaries of these results here (referring the

interested reader to the appended reprints), along with somewhat more detailed summaries

of two very recent projects which have not as yet led to publications.

1. ?{racetrack for Competing Viscous Fingers.

\¥e summarize the results 6, since they are available in Appendix 1' we formed an array

of approximately equal-sized viscous fingers in narrow channels and brought these fingers

simultaneously into a wider Hele-Shaw cell. This allowed us to study the dynamics of finger

competition. \Ve observed several regularities: 1) there was a strong tendency, predicted

by I(essler and Levine 9, to kill off every other finger very early in the peLttern development.

While tb.e problem is noisy, and killing off only a third of the fingers in the first stage is a

real possibility, the most probable pattern for a spatial correlation function is that of Figure

2b of appendix 1. 2) There was a second stage of competition wherein every other one of the

fingers which had survived the first stage were typically killed off. This suggests a process

which proceeds in stages of approximately locally-dominated interactions, killing off roughly

every other finger until only one finger survives. 3) We could construct trajectories (position

vs. time, in dimensionless units for which we at present have no theoretical justification) for i
=

the fingers which finish in each .place in the race. These trajectories gave a good account
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of the finger patterns for all observed flow conditions, independent of which of the initial

channels contributed the 'finger which finished the race in the given position. This suggests

that there are universal features to intermediate stages of the pat,tern evolution and that we

can give an interesting phenomenological account of the pattern left behind as the winning

finger moves on to form the steady state.

2. An Experimental Realization of Periodic Boundary Cor._ditions.

Side-wall interactions are known to be quite important in Saffman-Tavlor flow. The walls

of thecell not only set the length scale of the eventual steady state finger 1'_ but they also

provide a source of friction which causes the initial fingers near the wall to grow earliest12

Since the latter of these effects would not be included in normal theoretical formulations with

periodic boundary conditions, it is of interest to try to eliminate side-wall-friction effects in

at least one experiment to learn how profoundly the flows are being affected bv wall friction.

We have constructed a cell which, to a reasonable approximation, realizes periodic boundary

conditions. This cell is an annulus formed by joining two coaxial right circular cylinders of

glass. The ceil is 26 cm long and 3.6 cm in diameter, with a:gap of 1 mm. \Ve filled the cell

with a critical mixture of isobytyric acid + water and initiated the flows at temperatures

where the mixture was in the two phase regime by abruptly rotating the (vertical) axis or'

the cell through 180 degrees, We placed four mirrors to allow observation of the parts of

the circumference of the cell which were not visible on a direct line of sight and obtained

photographic images of the cell and the four mirrors with a tv camera. After digitizing these

images and mathematically projecting them back onto the surface of the original cylinder



(thus 'forming patterns of interface position as a funtion of azimuthal angle), we could make

direct comparison of these flows with our earlier work on flows in a plane rectangula," cell

under otherwise identical conditions, Figure _ shows a typical pattern. The results of the

experiment are as follows: i) most features of the flow are unaffected by the change to

periodic boundary conditions. 2) Since our annular cell was much longer than our original

rectangular cell, we were able to observe the pattern development to much later stages than

was possible earlier. As the earlier work 3's hinted, here we observe no tendency for the length

Scale ofthepattern to grow with time toward the expected steady state. Instead the number

of fingers stays constant while the longest fingers pinch off behind their finger-tips, forming

a rich variety of b_,bbles only after their widths have been reduced to less than the gap size

(i.e., after the flow can no longei, be regarded as two dimensional). This tendency of shorter

fingers, to fatten and pinch Off the tips of the leaders suggests a different dynamic from

the one observed in high contrast flows where the shorter fingers stop growing altogether.

Even though the same steady state should be available and stable for ali viscositv contrasts.

it could be that the mathematical zone of attraction of this steady state is much smaller

for low contraoc flows. None of our present results can distinguish between this possibility

and the less interesting one that some as yet unforeseen three dimensional effect drives the

weakly-driven low-contrast case away from the steady state. In the course of studying this

problem, we have constructed a narrow cell whose width matches the wavelength of the

initial pattern; this cell essentially forces the initial pattern to look like the steady state.

Under these conditions we can form the steady state and see that is is indeed stable.





3. What Sets the Length Scale for Patterns between Miscible Liquids?

The initial length scales for p_tterns between immiscible liquids are reasm,ab!y well un-

derstood in terms of a capillary length set by a combination of dynamics and the equilibrium

interfacial tension I'2'a. However, important questions remain about the origin of length scales

for patterns between miscible liquids, even though some of the most interesting patterns have

been observed insuch cases 1°, Using a maximum-entropy- production argument along with

an assumption of zero interfacial energy for miscible Hela-Shaw flows, Paterson 11 has sug-

gested that ' the length Scale for the miscible case should be set by the gap in the Hele-Shaw

cell. DeGennes 12has considered the effect of polymer solution visco elasticity on length scales

for the case of patterns between water and an aqueous polymer solution, _ case which has

b_n shown to show striking fractal patterns x°, IIi DeGennes' formulation 1_, the interfacial

energy is also assumed to be zero or sufficiently low to be unimportant in the problem. ,:ta

experiment to test DeGennes' formulation will be presented in Section III. A. 4 below. The

experiment reported in the present section is relevant only to Paterson's formulation sinf:e

it involves simple Newtonian liquids.
t

We have produced interfaces between miscible liquids by forming an interface between

the two phases of a critical mixture of isobutyric acid+w_ter at a temperature in the two-

ph_tse region and then raising the temperature into the one phase region. While the system

comes to temperature equilibrium within a few minutes, the interface will persist and remain

shiny for many hours because particle interdiffusion is so slow _ process. \Va then initiate

flow and measure the resulting fingering pattern as the interfacial advance proceeds too



rapidly for diffusion to mix the liquids, (The rapid.evolution of the pattern adds interface

area while the interface continues to appear sharp, thus raising the possibility that the

interfacial composition-gradient energy involved may lead to dynamical effeCtS which act

like an interfacial tension, even though the equilibrium state would have neither an interface

nora surface tension.) We find variations in the typical finger width, with a dependence on

temperature and suggesting that the g_p in the cell is not the controlling length scale. If this

is indeed the case, a plausible explanation would be that the gradient energy which provides

the most important contribution to the interfacial energy at two-phase equilibrium is still

present until diffusion visibly blurs' the interface and that the presence of this energy has

an important effect on the pattern formation. Unfortunately, we were not able to vary this

length scale enough to make a very convincing case that the cell gap is not the important,

length, and so rather than publish the experiment in its present form, we propose in the next

chapter (Section III.A.3)an auxiliary experiment to measure the effective interfacial energy

directly with surface light scattering.

4. The Fractal Dimension of Radial Hela-Shaw Patterns.

Several pattern-forming systems (e,g., electrodeposition and amorphous annealing) which

have a rnathematica! kinship to radial Hela-Shaw flow have been shown to go over at late

stages of their development into a space filling dense..branchir_g morphology la,14. It would be

of interest to understand the origin of this dense-branching transition and in particular to

know which feature(s) of the differential equaticm governing the pattern growth give rise to

the phenomenon. One group formulates the problem to say that dense-branching is already

i
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present in the underlying t-Iele-Shaw flowis, We have measured r the fractal dimension of

high-contrast radial ttele-Shaw ttows at constant flow rate over a reasonably large range of

driving forces (roughly equivalent to looking at successively later stages of development) and

have not seen dense branching. There are many details of importance to this problem, and
,

our published paper is appended (appendix 2) for the interested reader. Our conclusion is

that, for constant flow rate, and within the range of driving forces we can attain without

beginning to distort the plates of our cell, we cannot see evidence of dense-branching. Yeung

and aasn0w z6 have subsequently suggested that dense branching should not occur in Hele-
, ,

Shaw flow at constant flow rate. Crier et al. 17have suggested an explanation for the dense-

branching seen in electrodeposition in terms of the finite conductivity of the solid phase.

An analogy may exist in radial I-tele-Shaw flow in ;v,,mh weakening the viscosity contrast

between the fluids might take the Hele-Shaw problem over closer to the electrodeposition

case, yielding a dense branching, l[nsection III.A.6 below we propose an experiment to test

this.

5. Detailed Analyses of Low-Contrast Saffman-Taylor Flows.

We have recently finished and published our extensive analysis of low contrast Saffman-

Taylor flowa's, The two resulting and interdependent papers are attached a.s appendices

3 and 4. The main results of these papers are as follows: 1) most features of the flows

can be reproduced to within 20% even though the instability is broad-band. (Fluctuations

in the Fourier transform of the developing pattern are, however, much larger if one looks

at a single mode). 2) Several quantitative measures of the developing patterns collapse to
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characteristic curves when the resulis from ttows at very different control conditions are put

in the dimensionless form suggested by the Hela'Shaw equations. Wetting effects have kept

this from happening in ali observed high-contrast studies 1'2,

The results of these papers form a background of information for some of the more

complicated pattern formation problems we wish to study in the future, but we do not plan

to do any more work on this problem in its original, simple form.

B. Interfaces within Disordered Materials

A few years ago we found that random field theories gave a Iather good account of several

of the r_roperties exhibited by swollen polymeric gels whose solvent was a binary liquid

mixture with a nearby consolute point ls'19. In a subsequent experiment 2° we attempted

to make the random field behavior go away by making gels whose characteristic length for

the random field (polymer spacing) would be larger than the solvent correlation length at

all temperatures except those exceptionally close to the renormalized critical temperature.

Interestingly, most of the light scattering behavior expected of the random field system

persisted in these larger-pore-size gels. While it was hard to interpret this result because of

the possibility that the gels did in fact have a very short characteristic length even though

they had a greater incidence of large pores, the experiment also raised interesting questions

about the behavior of demixing liquids inside a disordered medium. Recently we have been

using dynamic light scattering to study how domains of phase separating liquid grow inside

such a medium _1 _md also to learn how wetting and adsorption layers are affected by the

radius of curvature of the wall to which they are attracted (i.e., will the phase of the demixing
i
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liquid which has greatei _ affinity for the polymer form a layer on the polymer strand much

as it would if the polymer formed a flat wail7) A reprint of our work 21 on the first issue

is attached as appendix 5, and this will not be discussed further here because we do not

propose any follow-up experiments at the present time. The second isstie has led us to study

the behavior of polystyrene spheres at very low concentration in binary liquid mixtures,

1. The Wetting/Adsorption Properties of Polystyrene Spheres in Binary Liquid Mixtures

We have used static and dynamic light scattering to study the beht_vior of charge-

stabilized polystyrene spheres in critical and off-critical mixtures of 2,61utidine+water(LW),

This binary liquid system.has an inverted coexistence curve with a lower critical point near

34C. Bytuning the system temperature we can make the liquid correlation length as large as .

500nra (our temperature stability is 0.2mK over periods of a few hours and 2 mK over a few

days), We have used polystyrene spheres of radii 30sm, 50nm, 250nm, 500nm and 1500nm,

ali at a very low volume fraction of 6 x 10-s, This range of particles gives us great flexibility

in varying the ratio of particle size to solvent correlation length, We know from the work of

Pohl and Goldburg "_2that pure LW has a wetting transition for the walls of the glass sample

tube near the demixion critical point, and we might also expect effects analogous to those

seen iri LW + glass beads by Esteve and Beyssens 2a, We can hope to avoid the flocculation

effects seen by Esteve and Beyssens, arid thus study wetting/adsorption layers on isolated

spheres both because their glass particles a.re known to flocculate easily and because our

charge-stabilized spheres should be rather unwilling to aggregate.

In our first attack on this problem (which we reported recently at the APS March Meeting

1.0



in Anaheim) we have seen the following effects' .[) there is no tendency to aggregate in the

one phase region at any LW concentration (on or off-critical), "2)As soon ._ the solven_

enters the two phase region (the critical temperature is shifted by at most a few mK by

the presence of the spheres), the upper phase (lutidine rich) expels most of it_ poly balls,

The lower phase (water rich) takes on a slightly higher density of polyballs than in the one

phase region, but most of the polyballs expelled from the upper pha_e go to the liquid-liquid

interface and to a water-rich layer which coats the side wall of the sample cell around the

edges of the upper phase. Near the critical point this water rich surface layer is only about

1 cm high (the upper phase is typically about 3 ,cm high) but the height of the con,tint layer

grows as the system temperature is placed deeper in the two- phase region and eventually

completely wets the glass, The existence of the wetting layer is no surprise in light of

the work of Pohl and Goldburgn; however, this layer not only holds polyballs, but the

polyballs pack in tightly and form a crystalline structure along the wall. The geometry of

our samples has thus far prevented us from measuring the number of polyball layers packed

against the glass wall, but we have measured the radius and thickness of the first ring of tlm

characteristic transmission diffraction pattern and learned that the polyball rrficrocrystals

are ordered along the glass wall over at least 5 polyball diameters with a mean interparticle

spacing of approximately one diameter. All of the above effects are equilibrium effects in

the sense that they can, be observed for many (lays after the sn,topic has been brought to

apparent equilibrium and that they will return reliably after the sample is stirred. There is

! a rich literature about rnoiecular and particle ordering at interfaces and walls and between
t

_ walls 24, but we are not aware of'any other case where a layer haz spontaneously formed in

11



an ordered state between a wall and a free interface. 3) We have measured tile effective sizes
p

of polyballs in the water-rich phase by combining dynamic light scattering (autocorrelation

function rneasurements/ with drawing off and measuring tim viscosity of the lower phase

from a pure liquid sample, irhis has shown no change in apparant polybatl size from that

seen when tile same size polyballs are measured as they move diffusively in pure water (both '

measurements agree very well with the manufacturer's stated size which was determined

with electron microscopy). It is in the lutidine-rich phase that, we hope c,osee evidence of

an adsorption layer since this is the phase which clearly rejects the polyballs: we have not

yet managed to extract reliable sizes for the effective scatterers in the lutidine-rich phase

because their number density is so low. We hope soon to have results on this. ,1) We

observe peculiar effects in the apparant correlation length of the critical LW fluctuations

near the critical point in the one-phase region. This is a difficult determination to make

because the autocorrelation functions involve two exponential terms which have similar time

constants for at least part of the temperature range for each size of poLyball (i.e.. there is one

characteristic time from the diffusive decay of LW concentration fluctuations and another

time from the Brownian motion of the polyballs), However, the data a,re good enough to give

a rather good separation of the two signals over a significant temperature range, particularly

for the largest polyballs. The resulting length scale for the composition t]uctuations shows

a power law in the reduced temperature with an exponent near 0,5 inatead of the expected

value of 0.62 (using a pure liquid critical mixture, we have no trouble reproducing tlm

published value 'm of 0.58 for this system in our temperature range, whereas we measure (}.,18

with 1500nm polyballs present). 'lt is extremely unlikely that the critical exponent for the

12



corre}ation length has really been changed by the presence of such a small concentration

of polyballs (Fisher renormalization 2s would drive the exponent in the other direction and

would not be expected to be observable until the polybaI1 density was raised by several
J

I

i orders of magnitude2S). Rather we suspect., that a dynamical effect is involved, changing the

effective viscosity for the fluctuating volumes which are trapped between polyballs whose

separation is, at the smallest reduced temperatures only about ten cotrelation lengths.
L
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