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ABSTRACT

The effect of atomic arA molecular motions on the NMS.
free-induction decay (FID) and lineshape is investigated
theoretically in the intermediate temperature range in
which the NMR line is only partially narrowed. It is
shown that the FID ma;- be decomposed into the weighted
sum of a rigid-lattice (background) contribution and an
exponentially decaying part containing all the
information on the diffusive or reorientational motions
in the crystal in terms of the spin-spin relaxation time
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INTRODUCTION

In contrast to spin-lattice relaxation processes, spin-spin relaxation is most
effective in the absence of atomic or molecular motions. The result is a back-
ground ("rigid-lattice") free-induction decay (FID) or linewidth which prohibits
the investigation of internal motions in crystals if the mean time T between
consecutive jumps of an atom or molecule, T, is longer than the inverse of the
rigid-lattice second moment, Au^.

Owing to the complexity of NMR lineshape theories in solids, it has been dif-
ficult in the past to extract quantitative information (such as the diffusion
coefficient) from the relatively simple FID or lineshape measurements in the
intermediate temperature range in which the NMR line is neither Lorentzian (as in
the motionally-narrowed region) nor practically Gaussian (as in the rigid-lattice
region).

In this article it is shown that the rigid-lattice (RL) and motional FID or
linewidth contributions are simply additive and that, therefore, the information
on the atomic motions is extracted rather easily by subtracting the experi-
mentally measuable RL background contribution from the actual FID or linewidth in
the intermediate region. For simplicity, the following discussion is couched in
terms of the FID. As is well known, the lineshape is obtained by a
simple Fourier transform of the FID.

BASIC THEORY

As discussed in some detail in Ref. 1, for NMR purposes the Hamiltonian H of a
crystal is subdivided into a "lattice" Hamiltonian, HL, a Hamiltonian, Hg, of the
completely isolated spin system embedded in the crystal, and the spin-lattice
coupling Hamiltonian, HgL> according to

H - H S + H S L + H L . (I)

By definition, [Hg,HL] - 0. In general, Hg includes internal (rigid-lattice)
spin-spin interactions inside the isolated spin system (such as the direct
dipolar interaction Hamiltonian, Hp ) , as well as Zeeman interaction Hamiltonians
with externally^applied time-independent (Hz) and time-dependent [Hi(t)] magnetic
fields, h and h.(t), respectively; hence, considering only internal dipole-
dipole interactions,

Hg - H*
1- + ^ + HjU) . (2)

The "lattice"-induced fluctuations of HgL are governed by the expression [1]

i/fi HLt -I/ft HLt RT
HSL(t) - e

 L HSLe
 L - HD(t) - H ^ , (3)

where it was observed that, by definition, [Hr^.H, ] - 0.



According to Eqs. (1) - (3),

i/fi HTt -i/fl HTt , „ . .
H(t) - e L H e L - H + HL + H,(t) + HgL(t) , (4)

where HQ * Hz + HJj
1; i.e., H(t) is explicitely time-dependent due to the time

variation of the external field n\(t) and implicitely time dependent due to the
fluctuations in the crystal (such as diffusive motions).

The time evolution of the density matrix a of the spin system (averaged over all
"lattice" degrees of freedom) satisfies the Von Neumann-Liouville equation (see,
e.g., Refs. 1-7)

with the initial condition that for t+ - •» the spin eastern is at thermal
equilibrium with itself and with the "lattice" at temperature 8^:

"Vk6L
eo(t + - -) - o = e -H T

Tr(e ° L)
where k denotes Boltzmann's constant.

Within the framework of the Bloch-Wangsness-Redfield theory [1,2,7] HgL(t) in Eq.
(5) is considered as a perturbation while H^t) = 0 . For that reason the theory
is restricted to the motionally-narrowed region.

In the linear-response theory of Kubo and Tomita [1,4,8] H,(t) is treated as the
small perturbation, thus enabling the calculation of the FID and NMR lineshape
even in a rigid lattice in which by definition, HgL(t) = 0.

In contrast to both theories, we now consider both H^(t) and Hg^(t)
simultaneously as weak perturbations on the spin system. In the usual manner Eq.
(5) may thus be solved recursively by applying an iterative perturbation-type
procedure. The "fast" time variation in Eq. (5) due to HQ is readily removed by
defining the Heisenberg operators

H nt -i/fi H.t . i/fi H ot . -i/fi H_tHSL<> ° ft) ° 5 °nt i/fi H.t . i/fi Hot . i/fi H_t
HSL<t>e ° ; ftt) - e ° 5 ° , (7)

where p * Z. p. • Tf< I. t is the magnetic-moment operator (y - gyromagnetic
ratio, I » nuclear spin vector operator), wich Hj(t) * - u h.(t). If Hgj^t) is
assumed to be a random stationary operator with vanishing ensemble average and if
we realize that the time variations of HSL(t) and H^(t) are not correlated, it
may be shown after a straightforward calculation (compare, e.g., Ref. 3) that in
the linear-response limit for H.(t) and in the second-order perturbation Halt
for HgL(t) the solution to Eq. (5) may be written as follows:



o(t) - a + J^it) + aSL(t) , ' (8)
eq

with

k f dt'
and

(t) \ JZdt' fdt" [H* (t'-t), [H*L(f «-t), a 1] , (10)
•ft -co -co H

where the bar indicates an ensemble average. Note that <r (t) is essentially
governed by HgL(t) while ©^(t) contains rigid-lattice properties only.
Equations (8) - (10) may be applied to determine the time variation of the
expectation value <Q> = Tr(a(t)Q) of any operator Q associated with the spin
system, such as the energy <Hg> or the magnetization $ =* <u>.

FID IN THE PRESENCE OF NUCLEAR MOTIONS

From Eq. (8) the relaxation equation for the macroscopic magnetization in the x
direction (perpendicular to it , with Mecj = 0) becomes:

o x •

Mx(t) - M ^ + M^L(t) . (11)

Completely analogous to the theory of Kubo and Tomita [8], hj(t) in Eq. (9) may
be identified with a step function perturbation associated, say, with the sudden
removal of h. at t » 0. Also, applying the classical dissipation-fluctuation
theorem [4] and limiting ourselves to spin systems containing one sort of nuclei
only, after a straightforward calculation identical to that of Abragam [9], we
obtain (with u = yH )

o o

cos b) t

with

M ^ t ) - e Me , (13)

where Hg ' denotes the secular part of the dipole Hamiltonian. We are thus
restricting ourselves to the adiabatic lineshape (i.e., to temperatures well
below the Ti minimum due to the nuclear motions). Equation (12) is identical
with the usual starting equation for the explicit determination of the rigid-
lattice FID and lineshape [3,8,9]. Hence, in the rotating reference frane
(index r) Eq. (12) may formally be written as follows:



where F ^ t ) is the normalized rigid-lattice FID function.

In a similar manner, starting from Eq. (10) M^L(t) may be determined. After a
calculation similar to that of Abragam [2] it is found that in the high-field
limit (in which HQ » HL, where HL is the dipolar local field)

& * 2l&t) - A o ) e 2 , (15)
J^L Atxr

with the usual expression for T2 in the adiabatic limit (Ref. 2):

-i--iT« Kl + l)n0) , (16)
T2 .8

where J™' is the spectral density function associated with fluctuations of the
secular dipole Hamiltonian. For self diffusion in crystals,J^ ^(0) - A T
where T denotes the mean time between successive jumps of an atom, while the
constant A depends on the diffusion mechanism [1].

Combining Eqs. (11), (14) and (15) we thus obtain:

-t/T.
M (t) - M (O)F(t) - M r(0)F (t) + M r(0)e . (17)

As is well known [3,8,9], the calculation of FRL(t) and hence of the actual FID
function F(t) in the presence of nuclear motions is a very difficult problem.
However, to use FID's to investigate atomic motions (via T2) it is sufficient,
according to Eq. (17), to measure F (t) rather than calculate it.

INVESTIGATION OF ATOMIC MOTIONS FROM THE ONSET OF MOTIONAL NARROWING

The remaining problem in fipplying Eq. (17) to determine T 2 arises from the
temperature-dependent prefactors in the weighted sum in Eq. (17). Since, by
definition, FRL(0) - 1, for t - 0 Eq. (17) yields:

Mxr(0) - M^(0) + M^(0) . (18)

Note that M (0) is determined experimentally by the actual FID in the
intermediate temperature range. To determine M~!(0) and M?^(0) independently,
another relationship is needed.



According to Eq. (17), two types of spins may be distinguished, namely those
performing at least one jump during a time of the order of T2 (defined as the
inverse of the RL second moment, Aw ) and those which do not jump during that
time. The probability wQ(T2 , T) that an atom does not perform any jumps in
time "rip if the mean time between successive jumps of a given atom is x, is [1]

wo(T^
L,x) -expt-T^/x) . (19)

Since M (0) is proportional to the total number of spins, we may write
xr

M^(0) =Mxr(0) wo(Tf,x) . (20)

Hence, with Eq. (18) we find that

Mxr(0) = Mxr C 0 ) [1-wo(T2L»TH * (21>

Combining Eqs. (17) - (21) we finally obtain for the FID shape function in the
intermediate temperature region:

-Tf/x _. -Tf/x -t/T,
F(t) = e 2 F ' V ) + (1 - e Z ) e Z . (22)

For thermally activated processes x = x exp(E/kT), where E is the activation
energy. This enables F(t) in Eq. (22) 80 be expressed in terms of the absolute
temperature T.

DISCUSSION

As pointed out above, for an assumed diffusion mechanism T2 may be expressed in
terms of x with no adjustable parameters. Hence, Eq. (22) relates the actual FID
shape function F(t), for example, to the diffusion constant D « Jt /6x, where t is
the jumg distance of the atoms. The normalized rigid-lattice FID func-
tion, F^(t), may be determined from an FID measurement at a lower temperature.
Therefore, Eq. (22) contains only one parameter, namely, the mean residence
time x. From a fit of Eq. (22) to the experimental FID, F(t), in the inter-
mediate temperature range, x and hence D may be extracted in a rather straight-
forward manner.

Another, perhaps more interesting way to extract the diffusional contribution to
F(t) in Eq. (22) may be the use of a multiple-pulse sequence. This technique
takes advantage of the idea that the part of the FID associated with FRL(t) is
reversible (and may thus be refocussed by means of a proper pulse sequence) while
the contribution arising from the nuclear motions (T~) is irreversible.



Finally, it is pointed out that the Fourier transform of Eq. (22) yields the
interesting result that the actual NMR lineshapa under conditions of partial
motional narrowing is a weighted average of the rigid-lattice (low-temperature)
and the rootionally-narrowed Lorentzian (high-temperature) lineshape.
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