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NEW METHOD FOR THE DETERMINATION OF DIFFUSION CONSTANTS FROM PARTIALLY NARROWED
NMR LINES*
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ABSTRACT

The effect of atomic ard molecular motions on the NMR
free-induction decay (FID) and lineshape is investigated
theoretically in the intermediate temperature range in
which the NMR line is only partially narrowed. It is
shown that the FID mar be decomposed into the weighted
sum of a rigid-lattice (background) contribution and an
exponentially decaying part containing all the
information on the diffusive or reorientational motions
in the crystal in terms of the spin-spin relaxation time
Tz.

*Work supported by the U.S. Department of Energy.



INTRODUCTION

In contrast to spin-lattice relaxation processes, spin-spin relaxation is most
effective in the absence of atomic or molecular motioms. The result is a back-
ground ("rigid-lattice”) free-induction decay (FID) or linewidth which prohibits
the investigation of internal motions in crystals if the mean time T between
consecutive jumps of an atom or molecule, ¥, is longer than the inverse of the
rigid-lattice second moment, AQRL_

Owing to the complexity of NMR lineshape theories in solids, it has been dif-
ficult in the past to extract quantitative information (such as the diffusion

" coefficient) from the relatively simple FID or lineshape measurements in the
intermediate temperature range in which the NMR line is neither Lorentzian (as in
the motionally-narrowed region) nor practically Gaussian (as in the rigid-lattice

region),

In this article it 1s shown that the rigid-lattice (RL) and motional FID or
linewidth contributions are simply additive and that, therefore, the information
on the atomic motions is extracted rather easily by s.btracting the experi-
mentally measuable RL background contribution from the actual FID or linewidth in
the intermediate region. For simplicity, the following discussion is couched in
terms of the FID. As is well known, the lineshape is obtained by a

simple Fouriér transform of the FID.

BASIC THEORY

As discussed in some detail in Ref. 1, for NMR purposes the Hamiltonian H of a
crystal is subdivided into a “"lattice" Hamiltomian, H;, a Hamiltonian, Hg, of the
completely isolated spin system embedded in the crystal, and the spin-lattice

coupling Hamiltonian, Hg;, according to
H = Hg + Hgy -+ Hy, . (1)

By definition, [Hg,H;] = 0. In general, Hg includes internal (rigid-lattice)
spin-spin interactions inside the isolated spin system (such as the direct
dipolar interaction Hamiltonian, HD ), as well as Zeceman interaction Hamiltonians

with externally applied time-independent (H;) and time-dependent [H;(t}] magnetic
fields, h_ and h,(t), respectively; hence, considering only internai dipole-

dipole ingeractions,
Hg = HEL + Hy + Hi(t) . (2)
The "lattice"-induced fluctuations of Hg; are governed by the expression [1]

1/8mt  -i/h Ht
Hy(t) =e = “ Hge L™ « mp(e) - mBL (3

where it was observed that, by definition, [HgL,HL] = 0,



According to Egs. (1) - (3),

i/A H;t -i/4 H;t
Muge ARy

H(t) = e = Hy + H + H(t) + Hg (t) , 4 (4)

where H. = H, + HSL; i.e., H(t) is explicitely time-dependent due to the time

variation of the external field h (t) and implicitely time dependent due to the
fluctuations in the crystal (such as diffusive motions).

The time evolution of the density matrix o of the spin system (averaged over all
“lattice"” degrees of freedom) satisfies the Von Neumann-Liouville equation (see,

€¢gey Refs, 1-7)

do i '

T-F [Ho + H (t) + Hg (¢, at)] , (s)
with the initial condition that for t+ = « the spin system is at thermal
equilibrium with itself and with the “lattice" at temperature aL:

R,y
e
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where k denotes Boltzmann's constant.

Within the framework of the Bloch-Wangsness—Redfield theory [1,2,7] Hg; (t) in Eq.
(5) is considered as a perturbation while H;(t) = 0. For that reason the theory
is restricted to the motionally-narrowed region.

In the linear-response theory of Kubo and Tomita [1,4,8] H;(t) is treated as the
small perturbation, thus enabling the calculation of the FlD and NMR lineshape
even in a rigid lattice in which by definition, HSL(t) z 0.

In contrast to both theories, we now consider both Hl(t) and HSL(t)
simultaneously as weak perturbations on the spin system. In the usual manner Eq.
(5) may thus be solved recursively by applying an iterative perturbation-type
procedure. The “fast" time variation in Eq. (5) due to H, is readily removed by
defining the Helsenberg operators

i/4 H t t iM Bt |, -1/ Ht
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vhere ﬁ = % ﬁ = y4& Zi fi is the magnetic-moment operatgp*ﬁy = gyromagnetic
ratio, T = tuclear spin vector operator), wich Hl(t) = - o hl(t). If HSL(t) is
assumed to be a random stationary operator with vanishing ensemble average and if
we realize that the time variations of Hgy(t) and H{(t) are not correlated, it
may be shown after a straightforward calculation {compare, e.g., Ref. 3) that in
the linear-response limit for H;(t) and in the second-order perturbation limit
for HSL(t) the solution to Eq. tS) may be written as follows:



o+

o(t) = Oeq + aRL(t) + aSL(t) . . (8)

with
I (e) = !: ae* B (e [ie-t),0, ] (9)
and
aV(t) =-—;1—— [Far fdt” [H L(E1-t), [HSL(t" t), o eq]] , (10)

where the bar indicates an_ensemble average. Note that OSL(t) is essentially
governed by Hgy (t) while oRL(t) contains rigid-lattice properties only.
Equations (8) - (10) may be applied to determine the time variation of the
expectation value <Q> = Tr(o(t)Q) of any operator Q associated with the spin
system, such as the emergy <Hg> or the magnetization H = <u>.

FID IN THE PRESENCK OF NUCLEAR MOTIONS

From Eq. (8) the relaxation equation for the macroscopic magnetization in the x
direction (perpendicular to h o with M 9 = 0) becomes:

RL SL
Mx(t) =M+ M (t) . (11

Completely analogous to the theory of Kubo and Tomita [8], h it {t) in Eq. (9) may
be identified with a step function perturbation associated, say, with the sudden
removal of h, at t = 0. Also, applying the classical dissipation-fluctuation
theorem [4] &nd limiting ourselves to spin systems containing one sort of nuclei
only, after a straightforward calculation identical to that of Abragam [9], we
obtain (with w = YHO)

cos wt
Mai(e) = ——2—r Tr(o [ui(t), u ]) (12)
2tr(o_u “) 4 x
eq'x
with
(O)RL (O)RL
i/4 t -i/8 t
HEL(t) = e " e kL . (13)

where H(O) denotes the secular part of the dipole Hamiltonian. We are thus
restricting ourselves to the adiabatic lineshape (i.e., to temperatures well
below the Tj minimum due to the nuclear motions). Equation (12) is identical
with the usual starting equation for the explicit determination of the rigid-
lattice FID and lineshape [3,8,9]). Hence, in the rotating reference frame
(index r) Eq. (12) may formally be written as follows:



RL RL
= : 14
Mao(t) = Ho(0) FRo(e) -, (14)
where FRL(t) is the normalized rigid-lattice FID function.
In a similar manner, starting from Eq. (10) MEL(t) may be determined. After a
calculation similar to that of Abragam [2] it is found that in the high-field
limit (in which Hy >> H, where Hy is the dipolar local field)
-t/T
SL SL 2
M_(t) =M _(0) e , (15)

with the usual expression for T, in the adiabatic 1imit (Ref. 2):

4 €))

Y 41 I(X + 1) 37°¢0) (16)

mh»

1 .
T, .

where J(O) is the spectral density function assoclated with f%ggtuations of the
secular dipole Hamiltonian. For self diffusion in crystals,J*-/(0) = At

where 1 denotes the mean time between successive jumps of an atom, while the
constant A depends on the diffusion mechanism [1].

Combining Eqs. (11), (14) and (15) we thus obtain:

-t/T
M_(t) = M_(0)F(t) = Milr'(O)FRL(t) + M:I;(O)e z 17)

As is well known [3,8,9], the calculation of FRL(t) and hence of the actual FID
function F(t) in the presence of nuclear motions is a very difficult problem.
However, to use FID's to investigate atomic motions (via T,) it is sufficient,
according to Eq. (17), to measure FRL(t) rather than calculate it.

INVESTIGATION OF ATOMIC MOTIONS FROM THE ONSET OF MOTIONAL NARROWING
The remaining problem in applying Eq. (17) to determine T, arises from the

temperature—deaendent prefactors in the weighted sum in Eq. (17). Since, by
definition, F*“(0) = 1, for t = 0 Eq. (17) yields:

M (0) = M (0) + M (0) . (18)

Note that Mkr(o) ic determined experimentally bKLthe actual FID in the
intermediate temperature range. To determine Mxr(o) and Mi%(o) independently,
another relationship is needed.



According to Eq. (17), two types of spins may be distinguisheﬂt namely those
performing at least one jump during _a time of the order of T (defined as the
inverse of the RL second momﬁﬂt Aw ) and those which do not jump during that
time. _The probability LA (T 7) that an atom does not perform any jumps in
time TEL if the mean time between successive jumps of a given atom is T, is [1]

wo(TgL,r) = exp(-TgL/T) . (19)
Since Mxr(o) is proportional to the total number of spins, we may write
Mio(0) = M_(0) w_ (To,) (20)
Hence, with Eq. (18) we find that
MoE(0) = H_(0) [1-w (T35,1)] . (21)

Combining Eqs. (17) - (21) we finally obtain for the FID shape function in the

intermediate temperature region:
—TgL/r RL -TgL/r -t/T2

F(t) = e F(t) + (l -e ) e . (22)

For thermally activated processes T = T_ exp(E/kT), where E is the activation
energy. This enables ¥F(t) in Eq. (22) 2o be expressed in terms of the absolute
temperature T,

DISCUSSION

As pointed out above, for an assumed diffusion mechanism T -1 may be expressed in
terms of t with no adjustable parameters. Hence, Eq. (22) relatei the actual FID
shape function F(t), for example, to the diffusion constant D = £ /61, where 2 is
the jumRLdistance of the atoms. The normalized rigid-lattice FID func—

tion, F*(t), may be determined from an FID measurement at a lower temperature.
Therefore, Eq. (22) contains only one parameter, namely, the mean residence

time 1, From a fit of Eq. (22) to the experimental FID, F(t), in the inter-
mediate temperature range, T and hence D may be extracted in a rather straight-
forward manner.

Another, perhaps more interesting way to extract the diffusional contribution to
F(t) in Eq. (22) may be the use of a multiple-pulse sequence. This technique
takes advantage of the idea that the part of the FID associated with FRL (t) is
reversible (and may thus be refocussed by means of a proper pulse sequence) while
the contribution arising from the nuclear motions (Tz) is irreversible.



Finally, it is pointed out that the Fouriér transform of Eq. (22) yields the
interesting result that the actual NMR lineshape under conditions of partial
motional narrowing is a weighted average of the rigid-lattice {low-temperature)
and the motionally-narrowed Lorentzian (high-—temperature} lineshape.
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